

TRUSS BRACING NOTES:

- . IF TRUSS DOES NOT APPEAR ON THIS TRUSS BRACING SHEET, NO ADDITIONAL LATERAL BRACING IS REQUIRED.
- 2. 2X4 SPF#2 LATERAL BRACES SHALL BE NAILED TO MINIMUM (3) TRUSS MEMBERS WITH MINIMUM (2) IOD
- NAILS. PROVISIONS MUST BE MADE AT ENDS OR SPECIFIED INTERVALS TO RESTRAIN OR ANCHOR LATERAL BRACING.

 3. WEB "T" BRACE, DETAIL 3/RF-Ic, IS REQUIRED WHERE LATERAL BRACING IS NOT CONTINUOUS ACROSS
- THREE (3) OR MORE TRUSSES AND MAY BE USED IN LIEU OF 2X4 LATERAL BRACING.

 4. DIAGONAL BRACING REQUIRED WHEN LATERAL
- BRACING IS REQUIRED (4/RF-Ic)
- 5. STUDDED GABLE BRACING DETAIL (I/RF-Ic) TO BE
 UTILIZED FOR TRUSSES 6'-9" IN HEIGHT OR GREATER.
 6. PARTIALLY SHEATHED GABLES, SEE (5/RF-Ic) FOR "L"
 BRACING WHEN REQUIRED.
- 7. LATERAL BRACING CAN BE APPLIED TO EITHER SIDE OF THE WEB MEMBER IDENTIFIED IN THE DRAWING.
 8. SHEATHING (OSB OR GYPSUM) REPLACES LATERAL AND DIAGONAL TRUSS BRACING.

MODEL

GRAND

DRAWING TITLE

TRUSS BRACIN

Job Truss Truss Type Qty 02_Valley 163630249 **ORDERS** VT-93026 VCOM Job Reference (optional) 8.530 s Aug 2 2023 MiTek Industries, Inc. Wed Feb 14 12:12:36 2024 Page 1 NVR, Frederick, MD - 21703, ID:rX8t_AojBI?JmPLOOTboslyPc1a-KXm2xw55w0Gbit8y5xpY2dCdxnV_1a?8sF0xeDzlDrf 10-6-0 10-6-0 10-6-0 4x6 = Scale = 1:44.1 8.00 12 11 10 13 12 9 8 4x4 = 21-0-0 Plate Offsets (X,Y)-- [10:0-2-0,0-1-4]

LOADING (psf) TCLL 30.0 (Roof Snow=30.0) TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.41 BC 0.20 WB 0.23	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S						Weight: 91 lb	FT = 5%	

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud **OTHERS** 2x4 SP No.3 or 2x4 SPF Stud

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 21-0-0.

(lb) -Max Horz 1=-226(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-235(LC 12), 13=-173(LC 12), 9=-235(LC 13),

8=-174(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=324(LC 18), 12=612(LC 18), 13=353(LC 21),

9=612(LC 19), 8=353(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WFBS 3-12=-530/285, 2-13=-284/214, 5-9=-530/284, 6-8=-284/214

NOTES-

LUMBER-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=235, 13=173, 9=235, 8=174.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

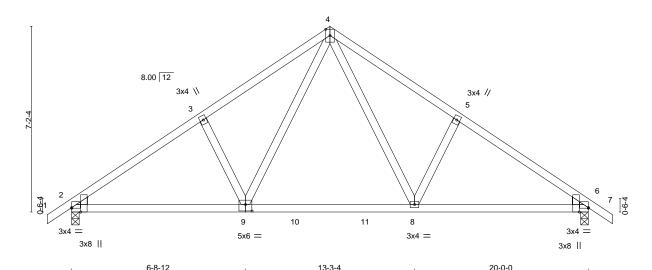
Job Truss Truss Type Qty Ply 10 Southeast 149147380 **ORDERS** SE-14530 COMN Job Reference (optional)

10-0-0

4-10-15

NVR. Frederick, MD - 21703

8.530 s Nov 29 2021 MiTek Industries, Inc. Tue Dec 7 20:30:09 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-ZyR6O84R30qr65gSzJU8?aMQWGcErsLQKGtZrEyBF9C 14-10-15 20-11-4 0-11-4 20-0-0


Structural wood sheathing directly applied or 5-3-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4x6 |

4-10-15

Scale = 1:44 6

6-8-12 6-6-9 6-8-12 Plate Offsets (X,Y)--[2:0-0-0,0-0-4], [2:0-2-1,Edge], [6:0-2-1,Edge], [6:0-0-0,0-0-4], [9:0-3-0,0-3-0] LOADING (psf) SPACING-CSI. DEFL. I /d **PLATES** GRIP 2-0-0 in (loc) I/defI **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.08 8-9 >999 360 197/144 MT20 BC 0.46 TCDL 10.0 Lumber DOL 1.15 Vert(CT) -0.126-8 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.02 6 n/a n/a BCDL 10.0 Code IBC2021/TPI2014 Matrix-S Wind(LL) 0.03 2-9 >999 240 Weight: 103 lb FT = 5%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

WEDGE

Left: 2x4 SP or SPF No.3 or Stud , Right: 2x4 SP or SPF No.3 or Stud

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-185(LC 8)

Max Uplift 2=-116(LC 10), 6=-116(LC 11) Max Grav 2=853(LC 1), 6=853(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5-1-1

5-1-1

TOP CHORD 2-3=-1111/140, 3-4=-977/207, 4-5=-977/207, 5-6=-1111/140 **BOT CHORD** 2-9=-145/938, 8-9=-2/615, 6-8=-38/840

WEBS 3-9=-269/210, 4-9=-122/481, 4-8=-122/481, 5-8=-269/210

NOTES-(6-8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=116, 6=116,
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply NC VT-95002 159511688 VCOM **ORDERS** VT-95002 Job Reference (optional) 8.630 s Nov 19 2022 MiTek Industries, Inc. Thu Jul 13 10:35:19 2023 Page 1 NVR, Frederick, MD - 21703, ID:Na07x_qDLMc?dzdmB8gxPuylbLG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 12-0-0 12-0-0 Scale: 1/4"=1 4x6 = 5x6 🖊 5x6 < 8.00 12 3-0-0 3x4 II 18 15 3x4 || 3x4 / 3x4 × 13 12 109 14 11 8 4x4 = 4x4 = 3x4 || 3x4 || 3x4 || 24-0-0 24-0-0 Plate Offsets (X,Y)--[3:0-3-0,0-3-4], [5:0-3-0,0-3-4], [10:0-2-0,0-1-4], [12:0-2-0,0-1-4] LOADING (psf) SPACING-DEFL in (loc) I/defI L/d **PLATES GRIP TCLL** 30.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) 999 197/144 n/a n/a MT20 (Roof Snow=30.0) Lumber DOL 1.15 ВС 0.12 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.31 0.01 Horz(CT) n/a n/a **BCLL** 0.0 Code IBC2021/TPI2014 Weight: 108 lb FT = 5% Matrix-S BCDL

LUMBER-

2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 **OTHERS** 2x4 SP No.3 or 2x4 SPF Stud

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

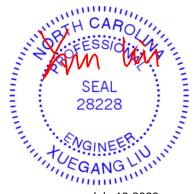
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 24-0-0.

(lb) -Max Horz 1=-264(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 13=-229(LC 12), 14=-216(LC 12), 9=-228(LC 13),

8=-217(LC 13)


Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=338(LC 18), 13=589(LC 18), 14=433(LC 21),

9=589(LC 19), 8=433(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown WFBS 4-11=-256/0, 3-13=-512/279, 2-14=-340/278, 5-9=-512/278, 6-8=-340/278

NOTES-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-5-12 to 4-10-8, Exterior(2N) 4-10-8 to 7-7-5, Corner(3R) 7-7-5 to 16-4-11, Exterior(2N) 16-4-11 to 19-1-8, Corner(3E) 19-1-8 to 23-6-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 13=229, 14=216, 9=228, 8=217.

July 13,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property danage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply 10 Southeast 149171046 **ORDERS** SE-17122 COMN Job Reference (optional)

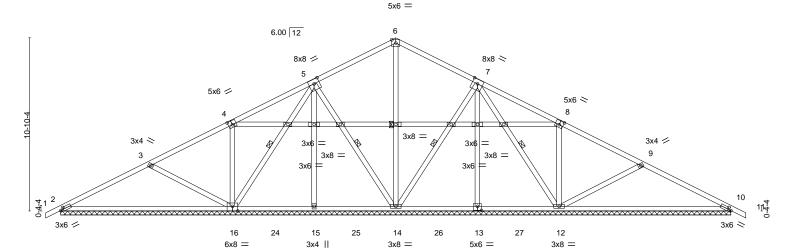
21-0-0

5-1-7

NVR Frederick, MD - 21703

10-9-3

5-1-7


5-7-12

15-10-9

5-1-7

8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Dec 8 22:01:55 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-a9lNS?Kr380S94h3wDLRuiqU38uca1hA50?qaDyAujA 31-2-13 36-4-4 42-0-0 42-11-4 0-11-4 26-1-7 5-1-7 5-1-7 5-1-7 5-7-12

Scale = 1:72.2

<u> </u>	10-9-3 ' 5	5-1-7 5-1-7	5-1-7	'	5-1-7	10-9-3
Plate Offsets (X,Y)-	[2:0-2-5,0-1-8], [4:0-3-0,0-3-0], [5:0-4-0),0-3-4], [7:0-4-0,0-3-4], [8	:0-3-0,0-3-0], [10:0-2-5	5,0-1-8], [13	:0-3-0,0-3-0], [16:0-4	1-0,Edge]
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.44	Vert(LL) 0.	.02 ` 11	n/r 120	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.93	Vert(CT) 0.	.06 11	n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.30	Horz(CT) 0.	.01 10	n/a n/a	
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S				Weight: 288 lb FT = 5%
						3

21-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

BRACING-

TOP CHORD **BOT CHORD** WEBS

26-1-7

Structural wood sheathing directly applied or 6-0-0 oc purlins.

42-0-0

Rigid ceiling directly applied or 2-2-0 oc bracing.

31-2-13

1 Row at midpt 5-16, 5-14, 6-14, 7-14, 7-12

REACTIONS. All bearings 42-0-0.

(lb) - Max Horz 2=-188(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 10, 15, 13 except 16=-214(LC 10), 12=-217(LC 11)

15-10-9

Max Grav All reactions 250 lb or less at joint(s) except 2=400(LC 23), 16=867(LC 23), 14=527(LC 1), 12=867(LC

24), 10=400(LC 24), 15=330(LC 17), 13=323(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-317/114, 4-5=-21/251, 9-10=-317/83

10-9-3

BOT CHORD 2-16=-109/281

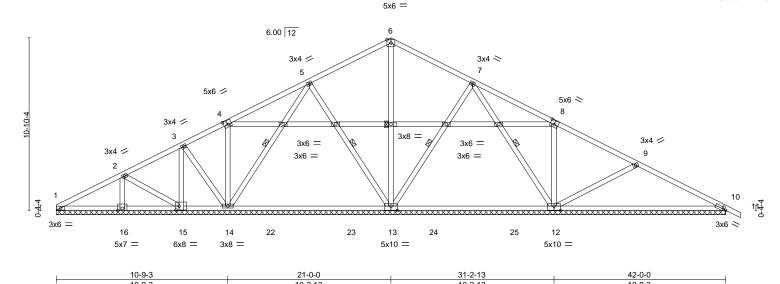
WEBS 3-16=-413/228, 4-16=-280/183, 6-14=-333/8, 8-12=-280/182, 9-12=-413/227

NOTES-(7-10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 10, 15, 13 except (it=lb) 16=214. 12=217.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.
- 10) Framing and bracing of the gable end frame shall be provided by the building designer.

Job Truss Truss Type Qty Ply 10 Southeast 149171048 **ORDERS** SE-17124 COMN Job Reference (optional)

Frederick, MD - 21703


5-1-7

15-10-9

5-1-7

8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Dec 8 22:01:58 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-?kRV40NkM3O10XPecLu8VKS?QLuXnOUcn_EVBYyAuj7 21-0-0 26-1-7 31-2-13 42-0-0 42-11-4 0-11-4 36-4-4 5-1-7 5-1-7 5-7-12 5-1-7

Scale = 1.72.3

Plate Offsets (X,Y)	[4:0-3-0,0-3-0], [8:0-3-0,	0-3-0], [10:0-2-	5,0-1-8], [12:0-5-0	,0-3-4], [13:0-5-0,0-3-4], [1	10-2-13 15:0-2-8,0-3	-0]		10-9-3	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0.4 BC 0.9		in (loc 0.01 1 0.06 1	c) I/defl 1 n/r 1 n/r	L/d 120 120	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2021/T	YES PI2014	WB 0.3 Matrix-S	Horz(CT)	0.01 1	0 n/a	n/a	Weight: 277 lb	FT = 5%

LUMBER-

NVR.

5-7-12

10-9-3

5-1-7

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 **BOT CHORD** 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

BRACING-

TOP CHORD **BOT CHORD** WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 2-2-0 oc bracing.

1 Row at midpt

5-14, 5-13, 6-13, 7-13, 7-12

REACTIONS. All bearings 42-0-0.

(lb) - Max Horz 1=-195(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 16, 13, 10, 15 except 14=-145(LC 10), 12=-227(LC 11) Max Grav All reactions 250 lb or less at joint(s) 1, 15 except 16=348(LC 23), 14=651(LC 25), 13=898(LC 2), 12=960(LC 24), 10=400(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-321/82

WEBS 6-13=-314/0, 7-12=-296/77, 8-12=-291/189, 9-12=-408/227, 2-16=-252/104

NOTES-(8-11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 16, 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 16, 13, 10, 15 except (jt=lb) 14=145, 12=227.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 9) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph. 10) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the
- required maximum reaction. 11) Framing and bracing of the gable end frame shall be provided by the building designer.

 Job
 Truss
 Truss Type
 Qty
 Ply
 10_Southeast
 I49171050

 ORDERS
 SE-17126
 COMN
 1
 1
 1
 Job Reference (optional)

NVR. Frederick, MD - 21703.

8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Dec 8 22:02:01 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-PJ6ej2Pcf_mct?8CHUSr7z4cQZ94_oy3TyS9otyAuj4 20-0-0 20-11-4

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-0-0

4x6 =

Scale = 1:45.9

20-0-0 Plate Offsets (X,Y)--[2:0-0-0,0-0-12], [2:0-2-1,Edge], [16:0-0-0,0-0-12], [16:0-2-1,Edge], [25:0-3-0,0-3-0] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defI I/d 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) -0.00120 197/144 TCLL 16 n/r MT20 BC 0.03 TCDL 10.0 Lumber DOL 1.15 Vert(CT) -0.0017 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.00 16 n/a n/a BCDL 10.0 Code IBC2021/TPI2014 Matrix-S Weight: 156 lb FT = 5%

BRACING-

TOP CHORD

BOT CHORD

20-0-0

LUMBER-TOP CHORD

2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2

10-0-0

10-0-0

BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.2 or 2x4 SPF No.2 OTHERS 2x4 SP No.3 or 2x4 SPF Stud

WEDGE

Left: 2x4 SP or SPF No.3 or Stud , Right: 2x4 SP or SPF No.3 or Stud

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 2=-185(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 25, 26, 27, 28, 29, 30, 23,

22, 21, 20, 19, 18

Max Grav All reactions 250 lb or less at joint(s) 2, 16, 24, 25, 26, 27, 28, 29, 30,

23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10-13)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18.
- 10) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 11) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 12) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.
- 13) Framing and bracing of the gable end frame shall be provided by the building designer.

January 12,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply 02 Valley 147779328 **ORDERS** VT-95517 VCOM Job Reference (optional) NVR, Frederick, MD - 21703, 8.520 s Aug 27 2021 MiTek Industries, Inc. Mon Sep 6 05:29:22 2021 Page 1 ID:Na07x_qDLMc?dzdmB8gxPuylbLG-a9ylmomwE5uiA8jcEptQ1kCJt6Mg_VTqNKDbklygS1x 3-0-0 3-0-0 Scale = 1:11.1 3x4 = 4.00 12 3 2x4 = 2x4 > 6-0-0 6-0-0

Plate Olisets (A, Y) [2:0-2-0,Edge]										
LOADING (psf) TCLL 30.0 (Roof Snow=30.0) TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. TC 0.22 BC 0.38 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 5%			

LUMBER-

TOP CHORD 2x4 SP No 3 or 2x4 SPF Stud BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-0-0, 3=6-0-0 Max Horz 1=-16(LC 13)

Max Uplift 1=-51(LC 8), 3=-51(LC 9) Max Grav 1=224(LC 18), 3=224(LC 19)

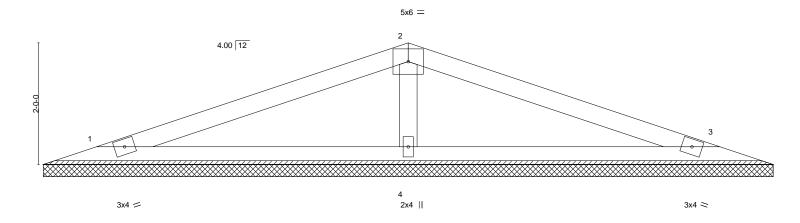
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-287/114, 2-3=-287/114

BOT CHORD 1-3=-93/252

NOTES-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.



September 16,2021

Job Truss Truss Type Qty Ply 02 Valley 147779329 **ORDERS** VT-95518 VCOM Job Reference (optional) NVR Frederick, MD - 21703, 8.520 s Aug 27 2021 MiTek Industries, Inc. Mon Sep 6 05:29:23 2021 Page 1 ID:Na07x_qDLMc?dzdmB8gxPuylbLG-2LVg_8nY?O1ZoIIpoWOfZxlMyWiDjxDzc_y9GlygS1w 6-0-0 12-0-0 6-0-0

Scale = 1:18.9

	12-0-0									
LOADING (psf) TCLL 30.0 (Roof Snow=30.0) TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. TC 0.71 BC 0.43 WB 0.10 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 36 lb FT = 5%		

12-0-0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud **OTHERS** 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 1=12-0-0, 3=12-0-0, 4=12-0-0

Max Horz 1=-39(LC 13)

Max Uplift 1=-71(LC 8), 3=-76(LC 13), 4=-105(LC 8) Max Grav 1=310(LC 18), 3=310(LC 19), 4=580(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-426/162

NOTES-

- $1) \ Wind: ASCE 7-16; \ Vult=150 mph \ (3-second \ gust) \ Vasd=119 mph; \ TCDL=6.0 psf; \ BCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ h=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Cat. \ II; \ Exp \ B; \ Enclosed; \ SCDL=6.0 psf; \ H=33 ft; \ Exp \ Enclosed; \ Exp \ Enclosed; \ Exp \ Enclosed; \ Exp \ Enclosed; \ Exp \ Exp$ MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3 except (jt=lb) 4=105.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

Rigid ceiling directly applied or 10-0-0 oc bracing. Sammunum A.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

September 16,2021

Job Truss Truss Type Qty Ply 02 Valley 147779330 **ORDERS** VT-95519 VSPC Job Reference (optional) NVR, Frederick, MD - 21703, 8.520 s Aug 27 2021 MiTek Industries, Inc. Mon Sep 6 05:29:25 2021 Page 1 ID:Na07x_qDLMc?dzdmB8gxPuylbLG-_kdROqopW0HH1cRBwxR7eMqlXKRyBm3G3IRGLdygS1u 13-6-0 27-0-0 13-6-0 Scale = 1:59.8 4x6 = 10 12 13 5x7 <> 14 5x6 // 8.00 12 3x8 = 32 15 33 6x10 31 3x8 = ²² 21 18 23 19 20 4x4 = 4x6 =3x8 =18-7-12 27-0-0 14-7-12 4-0-0 4-0-0 4-4-4 Plate Offsets (X,Y)-- [4:0-3-0,0-3-0], [14:0-3-8,0-3-0], [19:0-3-0,0-1-4], [23:0-2-0,0-1-4], [41:0-5-0,0-1-4]

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 30.0			CSI.	0.45		in	(IOC)				
(Roof Snow=30.0)	Plate Grip DOL	1.15	10	0.45	Vert(LL)	n/a	-	n/a	999	MT20	197/144
(Lumber DOL	1.15	BC	0.22	Vert(CT)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)		4.0	,			
BCLL 0.0					Horz(CT)	0.01	10	n/a	n/a		
	Code IBC2021/Ti	기2014	Matri	x-S						Weight: 206 lb	FT = 5%
BCDL 10.0											

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No 3 or 2x4 SPF Stud **BOT CHORD** 2x4 SP No.3 or 2x4 SPF Stud

2x4 SP No.3 or 2x4 SPF Stud WFBS **OTHERS** 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. All bearings 27-0-0.

(lb) -Max Horz 1=-221(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 21, 22, 24, 25, 26, 27, 28, 20 except 17=-148(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 16, 22, 24, 25, 26, 27, 28 except 21=352(LC 18), 18=432(LC

19), 17=452(LC 22), 20=536(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-275/129

BOT CHORD $1-28 = -116/264,\ 27-28 = -116/264,\ 26-27 = -116/264,\ 25-26 = -116/265,\ 24-25 = -116/265,$

22-24=-116/265, 21-22=-116/265

WEBS 8-21=-276/66, 11-31=-295/69, 31-33=-253/218, 14-18=-357/20, 15-17=-353/193, 20-33=-454/75

NOTES-(8-9)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 21, 22, 24, 25, 26, 27, 28, 20 except (jt=lb) 17=148.
- 8) Design checked for ASCE 7-10 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 9) Design checked for ASCE 7-10 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

plied or 6-0-0 oc J-0 oc bracing.

TH CARO

FESSIC minness.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 29, 32

September 16,2021

Job Truss Truss Type Qty Ply 02 Valley 147779332 **ORDERS** VT-95521 VCOM Job Reference (optional) NVR, Frederick, MD - 21703, 8.520 s Aug 27 2021 MiTek Industries, Inc. Mon Sep 6 05:29:28 2021 Page 1 ID:Na07x_qDLMc?dzdmB8gxPuylbLG-PJJZ1rqhpxfsu3Amb3_qG?SDuXSxOBqilGgwyyygS1r 16-2-4 8-1-2 8-1-2 Scale = 1:30.4 4x6 = 3 8.00 12 10 9 6 8 16-2-4 Plate Offsets (X,Y)--[8:0-2-0,0-0-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 30.0 Plate Grip DOL 1.15 TC 0.70 Vert(LL) n/a n/a 999 MT20 197/144 (Roof Snow=30.0) Lumber DOL 1.15 BC 0.20 Vert(CT) n/a n/a 999 **TCDL** 10.0 WB Rep Stress Incr YES 0.14 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IBC2021/TPI2014 Matrix-S Weight: 65 lb FT = 5% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No 3 or 2x4 SPF Stud TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. All bearings 16-2-4.

(lb) -Max Horz 1=-172(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-243(LC 12), 6=-242(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=324(LC 18), 9=625(LC 18), 6=625(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-533/285, 4-6=-533/285

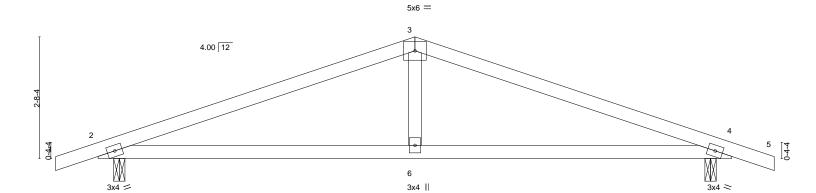
NOTES-(8-9)

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=243, 6=242.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 9) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

The state of the s

September 16,2021

Truss Type 10_Southeast Truss Qty Ply 149194707 **ORDERS** SE-18663 COMN Job Reference (optional) NVR. Frederick, MD - 21703.


8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Dec 9 21:29:29 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-ojoTVIOt1dKQBr?RL3VClLf?r30Wlzp3FOzmm8yAa5a

14-11-4 14-0-0

Structural wood sheathing directly applied or 3-5-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:25.5

0-4-2 0-4-2	7-0-0 6-7-14		-			13-7-14 6-7-14		14-0-0 0-4-2
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. TC 0.76 BC 0.57 WB 0.13 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.06 4-6 -0.14 2-6 0.02 4 0.05 2-6	>999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 49 lb	GRIP 197/144 FT = 5%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

-0-11-4

0-11-4

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 **BOT CHORD** 2x4 SP No.2 or 2x4 SPF No.2

2x4 SP No.3 or 2x4 SPF Stud **WEBS**

REACTIONS. (size) 2=0-3-0, 4=0-3-0

Max Horz 2=-45(LC 15) Max Uplift 2=-129(LC 6), 4=-129(LC 7)

Max Grav 2=614(LC 1), 4=614(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1021/122, 3-4=-1021/122 **BOT CHORD** 2-6=-65/903, 4-6=-65/903

WEBS 3-6=0/332

NOTES-(6-8)

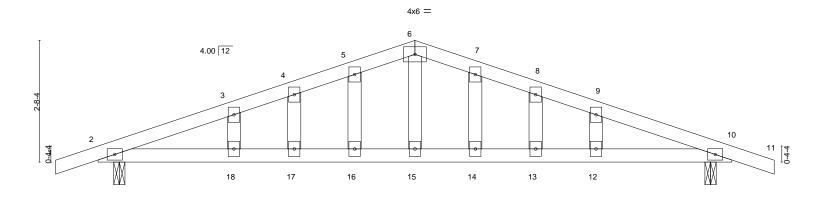
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7-0-0

7-0-0

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=129, 4=129,
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

January 12,2022



Job Truss Truss Type Qty Ply 10 Southeast 149194708 **ORDERS** SE-18664 COMN Job Reference (optional)

NVR. Frederick, MD - 21703

8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Dec 9 21:29:30 2021 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-GwLri5PVoxSHp?advn0RIYCFJTIU1QbDU2jJlayAa5Z 7-0-0 14-0-0 14-11-4 -0-11-4 0-11-4 7-0-0 0-11-4

Scale = 1:25.5

0-4-2		13-7-14	1,4-0-0
0-4-2		13-3-12	0-4-2
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. DEFL. in (loc) l/def TC 0.40 Vert(LL) -0.10 12-13 >998 BC 0.72 Vert(CT) -0.17 12-13 >975 WB 0.16 Horz(CT) 0.02 10 n/z Matrix-S Wind(LL) 0.09 17-18 >998	9 360 MT20 197/144 5 240 a n/a

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

OTHERS 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 2=0-3-0, 10=0-3-0

> Max Horz 2=-45(LC 15) Max Uplift 2=-129(LC 6), 10=-129(LC 7)

Max Grav 2=614(LC 1), 10=614(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1039/115, 3-4=-989/132, 4-5=-970/141, 5-6=-967/155, 6-7=-967/155,

7-8=-970/140, 8-9=-989/132, 9-10=-1039/115

BOT CHORD 2-18=-82/933, 17-18=-82/933, 16-17=-82/933, 15-16=-82/933, 14-15=-82/933,

13-14=-82/933, 12-13=-82/933, 10-12=-82/933

WEBS 6-15=-43/375

NOTES-(9-11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=129, 10=129.
- 9) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 10) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 11) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

Structural wood sheathing directly applied or 5-3-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

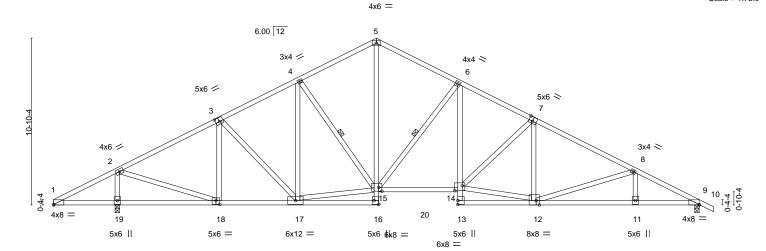
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 80 mly with win New Commercials. This design is based only upon parameters shown, and is for an individual orusining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply 10 Southeast 153690301 **ORDERS** SE-18665 COMN Job Reference (optional)

NVR. Frederick, MD - 21703


4-1-12

4-1-12

6-7-7

8.530 s Jul 18 2022 MiTek Industries, Inc. Tue Aug 16 12:07:28 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-ZVw1epS8okxzm3VirJqzJXX5z2Q?XskqJgtAaDynHAj 42-11_t4 21-0-0 31-2-13 37-10-4 42-0-0 10-9-3 15-10-9 26-5-5 5-1-7 5-1-7 4-1-12 5-5-5 6-7-7

Scale = 1:75.0

	4-0-0	4-1 ₁ 12 10-9-3	15-10-9	21-0-0	26-5-5	1 31-2-13	37-10-4	42-0-0
	4-0-0	0-1 ⁻¹ 12 6-7-7	5-1-7	5-1-7	5-5-5	4-9-8	6-7-7	4-1-12
Plate Offse	ets (X,Y)	[1:0-0-0,0-0-5], [3:0-3-0,0-3	3-0], [7:0-3-0,0-3-4]	, [9:0-0-0,0-0-5], [12	2:0-2-8,Edge], [14:0-6-0,0)-3-12], [15:0-2-8,0	-3-0], [16:Edge,0-3-8], [18	:0-3-0,0-3-0]
LOADING	(nsf)	SPACING-	2-0-0	CSI.	DEFL. in	(loc) I/defl	L/d PLATE	S GRIP
	20.0	Plate Grip DOL	1.15	TC 0.65	Vert(LL) -0.15	14 >999	360 MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC 0.76	Vert(CT) -0.34	14-15 >999	240	
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.92	Horz(CT) 0.12	9 n/a	n/a	
BCDL	10.0	Code IBC2021/TPI	2014	Matrix-S	Wind(LL) 0.13	14 >999	240 Weight	: 272 lb FT = 5%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 *Except* **BOT CHORD**

1-18,12-13: 2x4 SP No.3 or 2x4 SPF Stud

WEBS 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 19=0-3-8, 9=0-3-8 Max Horz 19=-195(LC 15)

> Max Uplift 19=-242(LC 10), 9=-232(LC 11) Max Grav 19=1856(LC 1), 9=1555(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-51/288, 2-3=-1713/223, 3-4=-1734/264, 4-5=-1646/302, 5-6=-1671/285,

6-7=-2276/338, 7-8=-2468/349, 8-9=-2951/407

BOT CHORD 17-18=-207/1448, 11-12=-304/2571, 9-11=-304/2571, 14-15=-56/1980 5-15=-151/1113, 6-14=-87/699, 8-12=-478/181, 3-18=-413/105, 2-18=-105/1717, WEBS

2-19=-1718/312, 6-15=-911/257, 12-14=-134/2139, 7-14=-272/167, 15-17=-133/1472

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 19=242 9=232
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

Structural wood sheathing directly applied or 2-8-10 oc purlins.

6-15, 4-15

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 1-19,18-19.

1 Row at midpt

August 17,2022

Job Truss Truss Type Qty Ply 10 Southeast 153690302 **ORDERS** SE-20632 COMN Job Reference (optional)

21-0-0

5-1-7

NVR Frederick, MD - 21703

15-10-9

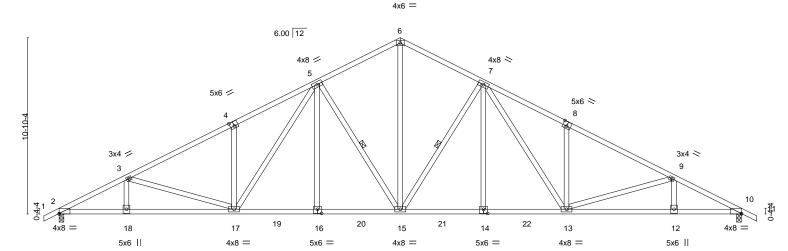
5-1-7

15-10-9

10-9-3

5-1-7

4-1-12


4-1-12

5-7-12

1-6-0

8.530 s Jul 18 2022 MiTek Industries, Inc. Tue Aug 16 12:07:29 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-1hUPs9TnZ23qNC3uP0LCsk4GzRkiGOhzYKcj6fynHAi <u> 37-10-4</u> 36-4-4 42-0-0 26-1-7 31-2-13 42-11₁4 1-6-0 5-1-7 4-1-12 5-1-7

Scale = 1:70.9

	10-9-3	5-1-7 5-1-7	5-1-7 5-1-7	6-7-7 4-1-12
Plate Offsets (X,Y)	[2:0-0-0,0-0-5], [4:0-3-0,0-3-4], [8:0-3-0	,0-3-4], [10:0-0-0,0-0-5], [14:0-3-0,0-3-0], [16:0-3-0,0-3-0]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.70	Vert(LL) -0.21 14-15 >999	360 MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.85	Vert(CT) -0.43 14-15 >999	240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.62	Horz(CT) -0.17 2 n/a	n/a
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S	Wind(LL) 0.17 14 >999	240 Weight: 269 lb FT = 5%
			` '	8

21-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

WEBS 2x4 SP No.3 or 2x4 SPF Stud **BRACING-**

TOP CHORD **BOT CHORD**

26-1-7

Structural wood sheathing directly applied or 2-4-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

37-10-4

42-0-0

8-3-12 oc bracing: 12-13 8-3-6 oc bracing: 10-12.

31-2-13

WEBS 1 Row at midpt 5-15, 7-15

REACTIONS.

(size) 10=0-3-8, 2=0-3-8 Max Horz 10=188(LC 10)

10-9-3

Max Uplift 10=-239(LC 11), 2=-239(LC 10) Max Grav 10=1733(LC 1), 2=1733(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3329/422, 3-4=-2851/366, 4-5=-2838/493, 5-6=-1946/329, 6-7=-1946/329,

7-8=-2837/493, 8-9=-2852/367, 9-10=-3329/419

BOT CHORD 2-18=-316/2905, 17-18=-316/2905, 16-17=-87/2104, 15-16=-87/2105, 14-15=-203/2104,

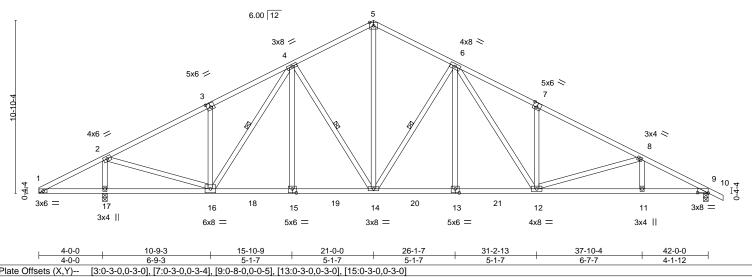
13-14=-203/2105, 12-13=-502/2904, 10-12=-502/2904

WEBS 3-17=-473/176, 4-17=-370/226, 5-17=-244/762, 5-15=-781/253, 6-15=-183/1441,

7-15=-780/253, 7-13=-244/759, 8-13=-369/226, 9-13=-471/173, 5-16=0/265, 7-14=0/265

NOTES-(6-8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=239, 2=239,
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.



Job Truss Truss Type Qty 10 Southeast 161259435 ORDERS SE-20635 COMN Job Reference (optional) 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Oct 6 12:34:26 2023 Page 1 NVR, Frederick, MD - 21703,

5x6 =

ID:5lb56nez?NGp7jN5pS3vTuyrxGa-aSKSrvcU1XdlKE4p1e4zOwjAIEq9FTRq8Nf2lwyW7vR 37-10-4 1-6-0 26-1-7 31-2-13 36-4-4 42-0-0 5-1-7 0-11-4 4-1-12 1-6-0 5-1-7 5-1-7 5-1-7 5-1-7 4-1-12

Scale = 1:72.3

Plate Offsets (X,Y)	[3:0-3-0,0-3-0], [7:0-3-0,0-3-4], [9:0-8-0	<u>,0-0-5], [13:0-3-0,0-3-0], [</u>	15:0-3-0,0-3-0]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) 1/c	defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.61	Vert(LL) -0.15 12-13 >9	999 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.77	Vert(CT) -0.30 11-12 >9	999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.74	Horz(CT) -0.10 17	n/a n/a	
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S	Wind(LL) 0.13 12 >9	999 240	Weight: 267 lb FT = 5%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 **BOT CHORD** 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

> (size) 9=0-3-8, 17=0-3-8 Max Horz 9=-195(LC 15)

Max Uplift 9=-231(LC 11), 17=-241(LC 10) Max Grav 9=1556(LC 1), 17=1857(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-51/286, 2-3=-1733/221, 3-4=-1716/347, 4-5=-1566/310, 5-6=-1566/290, TOP CHORD

6-7=-2449/474, 7-8=-2464/348, 8-9=-2955/401

15-16=-67/1547, 14-15=-67/1547, 13-14=-193/1769, 12-13=-193/1769, 11-12=-493/2574, BOT CHORD 9-11=-493/2574

2-16=-101/1724, 3-16=-354/224, 4-14=-417/200, 5-14=-166/1104, 6-14=-783/253,

6-12=-245/762, 7-12=-368/226, 8-12=-482/173, 2-17=-1718/309, 4-15=0/268,

NOTES-(6-8)

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-Č Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=231, 17=241.
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

Structural wood sheathing directly applied or 2-10-4 oc purlins.

4-16, 4-14, 6-14

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

October 10,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply 10 Southeast 153690306 **ORDERS** SE-20636 COMN Job Reference (optional)

21-0-0

5-1-7

15-10-9

5-1-7

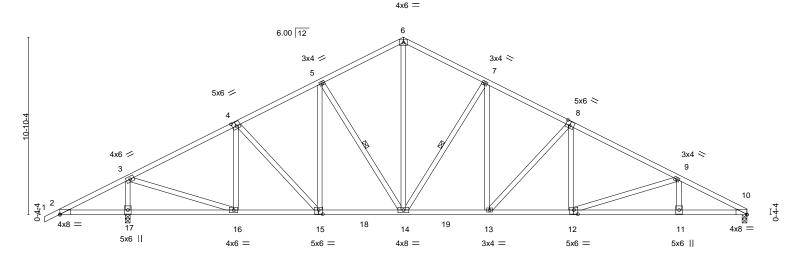
NVR Frederick, MD - 21703 4-1-12

4-1-12

10-9-3

6-7-7

8.530 s Jul 18 2022 MiTek Industries, Inc. Tue Aug 16 12:07:34 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-OfHlvsXvNai7U_yrCaxNZon7?STExbTjhcKUosynHAd 31-2-13 37-10-4 42-0-0 26-1-7 5-1-7 6-7-7 4-1-12 5-1-7


Structural wood sheathing directly applied or 2-10-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 2-17,16-17.

1 Row at midpt

Scale = 1.704

4-0-0	4-1 ₁ 12 10-9-3	15-10-9	21-0-0	<u> </u>	31-2-13	37-10-4	42-0-0
4-0-0	0-1-12 6-7-7	5-1-7	5-1-7	5-1-7	5-1-7	6-7-7	4-1-12
Plate Offsets (X,Y)	[2:0-0-0,0-0-5], [4:0-3-0,0-3-0],	, [8:0-3-0,0-3-4], [10:0	0-0-0,0-0-5], [12:0-3-	0,0-3-0], [15:0-3-0,0-3	3-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0		15 TC 15 BC ES WB	0.62 0.77 0.78	Vert(LL) -0.14 Vert(CT) -0.29 11-	10 n/a n/a	PLATES MT20 Weight: 261 lb	GRIP 197/144 FT = 5%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 17=0-3-8, 10=0-3-8 Max Horz 17=195(LC 10)

Max Uplift 17=-264(LC 10), 10=-206(LC 11) Max Grav 17=1921(LC 1), 10=1483(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-101/422, 3-4=-1672/205, 4-5=-1711/257, 5-6=-1522/309, 6-7=-1521/289,

7-8=-1976/327, 8-9=-2454/349, 9-10=-2946/410

BOT CHORD 2-17=-308/127, 16-17=-308/205, 15-16=-198/1411, 14-15=-127/1464, 13-14=-45/1700,

12-13=-147/2118, 11-12=-321/2579, 10-11=-321/2579

6-14=-164/1005, 7-14=-757/253, 7-13=-86/535, 8-13=-610/198, 8-12=0/363, WEBS 9-12=-498/183, 5-14=-374/193, 4-16=-439/116, 3-16=-137/1806, 3-17=-1783/334

NOTES-(6-8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=264 10=206
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

August 17,2022

Job Truss Truss Type Qty Ply 10 Southeast 153690307 **ORDERS** SE-20637 COMN Job Reference (optional)

5-1-7

21-0-0

5-1-7

15-10-9

5-1-7

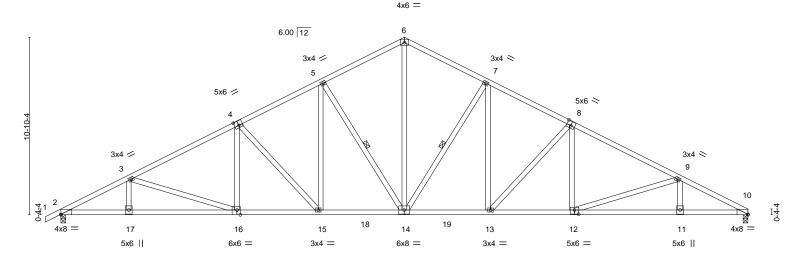
15-10-9

NVR Frederick, MD - 21703 4-1-12

4-1-12

10-9-3

6-7-7


8.530 s Jul 18 2022 MiTek Industries, Inc. Tue Aug 16 12:07:36 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-K1P2KYZAvCyrjH6EJ?zseDsRyG7NPXJ?9wpbslynHAb 31-2-13 37-10-4 42-0-0 26-1-7

6-7-7

5-1-7

Scale = 1.704

4-1-12

L	7-1-12	10-3-3	13-10-3	21-0-0	20-1-7	31-2-13	31-10-4	72-0-0
ŗ	4-1-12	6-7-7	5-1-7	5-1-7	5-1-7	5-1-7	6-7-7	4-1-12
Plate Offsets (X,Y) [2:0-0-0,0-0-5], [4:0-3-0,0-3-4], [8:0-3-0,0-3-4], [10:0-0-0,0-0-5], [12:0-3-0,0-3-0], [16:0-2-8,Edge]								
LOADING	(psf)	SPACING- 2	-0-0 CS	i.	DEFL. in (loc) I/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15 TC	0.72	Vert(LL) -0.20	13 >999 360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15 BC	0.85	Vert(CT) -0.42 13	3-14 >999 240		
BCLL	0.0 *	Rep Stress Incr	YES WB	0.69	Horz(CT) 0.18	10 n/a n/a		
BCDL	10.0	Code IBC2021/TPI20	014 Mai	trix-S	Wind(LL) 0.18	15 >999 240	Weight: 261 lb	FT = 5%
					, ,			

21-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS

4-1-12

2x4 SP No.3 or 2x4 SPF Stud

BRACING-

TOP CHORD **BOT CHORD**

26-1-7

Structural wood sheathing directly applied or 2-4-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

37-10-4

8-2-7 oc bracing: 2-17 8-2-15 oc bracing: 16-17.

31-2-13

WEBS 7-14, 5-14 1 Row at midpt

REACTIONS.

BOT CHORD

(size) 2=0-3-8, 10=0-3-8 Max Horz 2=195(LC 14)

Max Uplift 2=-240(LC 10), 10=-215(LC 11) Max Grav 2=1734(LC 1), 10=1667(LC 1)

10-9-3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3331/420, 3-4=-2853/367, 4-5=-2380/347, 5-6=-1929/330, 6-7=-1928/329,

7-8=-2382/347, 8-9=-2857/369, 9-10=-3335/429

2-17=-510/2907, 16-17=-510/2907, 15-16=-343/2472, 14-15=-209/2061, 13-14=-94/2063, 12-13=-165/2478, 11-12=-338/2922, 10-11=-338/2922

WEBS 6-14=-182/1364, 7-14=-754/252, 7-13=-86/533, 8-13=-608/198, 8-12=0/360,

9-12=-487/182, 5-14=-752/251, 5-15=-86/533, 4-15=-605/197, 4-16=0/359,

3-16=-475/175

NOTES-(6-8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=240, 10=215.
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

Job Truss Truss Type Qty Ply 10 Southeast 153690308 **ORDERS** SE-20638 COMN Job Reference (optional)

21-0-0

5-1-7

NVR. Frederick, MD - 21703

10-9-3

6-7-7

4-1-12

4-1-12

15-10-9

5-1-7

15-10-9

8.530 s Jul 18 2022 MiTek Industries, Inc. Tue Aug 16 12:07:37 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-oEzQXuZogV4iLRhQtiU5BQPeCgUu8zo9OaY8OBynHAa 31-2-13 37-10-4 42-0-0 26-1-7

6-7-7

37-10-4

Structural wood sheathing directly applied or 2-9-15 oc purlins.

6-13, 4-13

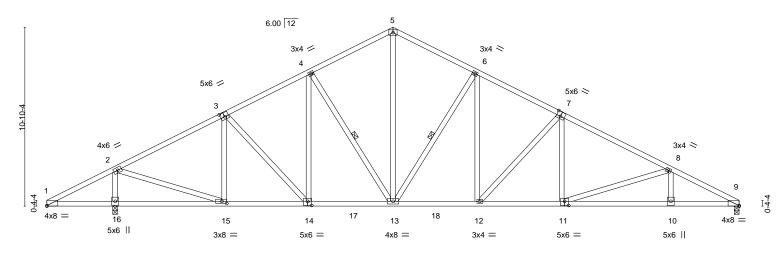
Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

5-1-7

31-2-13

6-0-0 oc bracing: 1-16,15-16.

1 Row at midpt


Scale = 1:69.9

4-1-12

42-0-0

5-1-7

	4-0-0 0	i-1 ¹ -12 6-7-7	5.	-1-7 '	5-1-7	5-1-	7 '	5-1-7		6-7-7	4-1-12
Plate Offsets (X,Y) [1:0-0-0,0-0-5], [3:0-3-0,0-3-0], [7:0-3-0,0-3-4], [9:0-0-0,0-0-5], [11:0-3-0,0-3-0], [14:0-3-0,0-3-0], [15:0-3-8,0-1-8]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	-0.14 12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.30 10-11	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.74	Horz(CT)	0.10 9	n/a	n/a		
BCDL	10.0	Code IBC2021/T	PI2014	Matrix-	-S	Wind(LL)	0.12 11-12	>999	240	Weight: 260 lb	FT = 5%

BRACING-

WEBS

TOP CHORD

BOT CHORD

26-1-7

21-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3 or 2x4 SPF Stud

4-1₁12

REACTIONS.

4-0-0

(size) 16=0-3-8, 9=0-3-8 Max Horz 16=181(LC 14)

Max Uplift 16=-241(LC 10), 9=-207(LC 11) Max Grav 16=1858(LC 1), 9=1490(LC 1)

10-9-3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

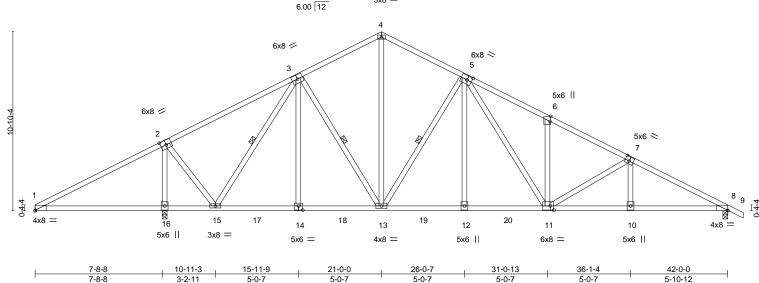
TOP CHORD 1-2=-51/287, 2-3=-1716/222, 3-4=-1736/264, 4-5=-1537/311, 5-6=-1536/291,

6-7=-1991/329, 7-8=-2469/350, 8-9=-2960/411

BOT CHORD 14-15=-213/1451, 13-14=-136/1487, 12-13=-50/1714, 11-12=-148/2131, 10-11=-322/2592,

9-10=-322/2592

WEBS 5-13=-165/1017, 6-13=-757/253, 6-12=-86/535, 7-12=-610/198, 7-11=0/363, 8-11=-498/183, 4-13=-390/199, 3-15=-412/106, 2-15=-104/1719, 2-16=-1719/311


NOTES-(6-8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=241 9=207
- 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

Job Truss Type Qty 10_Southeast 153690310 ORDERS SE-20645 COMN Job Reference (optional) B.530 s Mar 11 2022 MiTek Industries, Inc. Tue Aug 16 17:22:57 2022 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-Qvi_W6?I?d2wAUYfLXFd_m0sKRtb7vJ019hISZynCYy NVR, X 5-10-12 10-11-3 15-11-9 21-0-0 26-0-7 31-0-13 36-1-4 42-0-0 5-10-12 5-0-7 5-0-7 5-0-7 5-0-7 5-0-7 5-10-12 Scale = 1:69.9 3x6 = 6.00 12

Plate Offsets (X,Y) [1:0-0-0,0-0-5], [2:0-4-0,0-3-4], [5:0-3-8,0-3-0], [6:0-3-10,Edge], [7:0-3-0,0-3-0], [8:0-0-0,0-0-5], [11:0-2-8,0-3-0], [14:0-3-0,0-3-0]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP					
TCLL 20.0	Plate Grip DOL 1.15	TC 0.95	Vert(LL) -0.11 11-12 >999 360	MT20 197/144					
TCDL 10.0	Lumber DOL 1.15	BC 0.69	Vert(CT) -0.22 11-12 >999 240						
BCLL 0.0 *	Rep Stress Incr YES	WB 0.70	Horz(CT) 0.07 8 n/a n/a						
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S	Wind(LL) 0.10 11 >999 240	Weight: 259 lb FT = 5%					

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 *Except*

1-2.2-3: 2x4 SP No.2D

BOT CHORD 2x4 SP No 2 or 2x4 SPF No 2 **WEBS** 2x4 SP No.3 or 2x4 SPF Stud

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

The American

6-0-0 oc bracing: 1-16,15-16.

WEBS 3-15, 3-13, 5-13 1 Row at midpt

REACTIONS. (size) 8=0-3-8, 16=0-3-8

Max Horz 16=-195(LC 15)

Max Uplift 8=-221(LC 11), 16=-267(LC 10) Max Grav 8=1353(LC 1), 16=2060(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-112/667, 2-3=-512/176, 3-4=-1139/291, 4-5=-1132/270, 5-6=-1975/439,

6-7=-1981/334, 7-8=-2427/364

BOT CHORD 1-16=-482/151, 15-16=-471/216, 15-17=-51/986, 14-17=-51/986, 14-18=-50/989,

13-18=-50/989, 13-19=0/1375, 12-19=0/1375, 12-20=0/1375, 11-20=0/1375,

10-11=-238/2088, 8-10=-238/2088

WEBS $3-15=-1097/70,\ 4-13=-157/739,\ 5-13=-791/256,\ 5-11=-232/722,\ 6-11=-282/175,$ 7-11=-462/161, 3-14=0/277, 5-12=0/270, 2-16=-1875/338, 2-15=-35/1233

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 8 and 267 lb uplift at ioint 16. 6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to
- a wind speed of 115 mph. 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of
- 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph. 8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

LOAD CASE(S) Standard

August 17,2022

Job Truss Truss Type 02_Valley Qty 154705066 **ORDERS** VT-00861 VCOM Job Reference (optional) 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:37 2022 Page 1 ID:lwgfHqLuldM7W6Kxo5rjJByUXxn-tl0UVwpW5nlQcYixzK5McV9S1Qbd2s7Y0umzOByTqEK NVR. Frederick, MD - 21703 1-6-0 3-0-0 1-6-0 Scale = 1.7.73x4 = 2 8.00 12 3 3x4 🖊 3x4 ≫ 3-0-0 3-0-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d **TCLL** 30.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) 999 197/144 n/a n/a MT20 (Roof Snow=30.0) BC Lumber DOL 1.15 0.08 Vert(CT) n/a n/a 999 TCDL 10.0

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Weight: 8 lb

FT = 5%

LUMBER-

BCLL

BCDI

TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD**

0.0

10.0

REACTIONS. (size) 1=3-0-0, 3=3-0-0

> Max Horz 1=23(LC 11) Max Uplift 1=-22(LC 12), 3=-22(LC 13)

Rep Stress Incr

Code IBC2021/TPI2014

Max Grav 1=108(LC 18), 3=108(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WB

Matrix-P

0.00

- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

October 13,2022

Job Truss Truss Type 02_Valley Qty 154705067 **ORDERS** VT-00862 VCOM Job Reference (optional) 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:38 2022 Page 1 ID:D6E1UAMWWxU_8Gv8MpMysOyUXxm-LVatjFp8s4tHDiH7X2cb9ihYkpqYnJNiFYVWwdyTqEJ NVR. Frederick, MD - 21703, 3-0-0 6-0-0 3-0-0 Scale = 1:14 7 3x4 =2 8.00 12 3x4 / 3x4 × 6-0-0 6-0-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d **TCLL** 30.0 Plate Grip DOL 1.15 TC 0.41 Vert(LL) 999 197/144 n/a n/a MT20 (Roof Snow=30.0) BC Lumber DOL 1.15 0.55 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IBC2021/TPI2014 Matrix-P Weight: 18 lb FT = 5%**BCDI** 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

(size) 1=6-0-0, 3=6-0-0

Max Horz 1=58(LC 9) Max Uplift 1=-54(LC 12), 3=-54(LC 13) Max Grav 1=292(LC 18), 3=292(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

October 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Type 02_Valley Truss Qty 154705068 **ORDERS** VT-00863 VCOM Job Reference (optional) 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:39 2022 Page 1 NVR. Frederick, MD - 21703 ID:hJoPiVN8HEcrmQUKwWtBOcyUXxl-ph8FwbqmdO?8rsrK5l7rhwEfiDE1WlarUCF3T3yTqEllup files for the control of the co4-6-0 9-0-0 4-6-0 4-6-0 Scale = 1:20 1 4x6 = 2 8.00 12 3x4 / 3x4 × 3x4 || 9-0-0 9-0-0 LOADING (psf) SPACING-DEFL. **PLATES GRIP** 2-0-0 CSI L/d in (loc) I/defl TCLL 30.0 Plate Grip DOL TC 0.65 Vert(LL) 999 197/144 1.15 n/a n/a MT20 (Roof Snow=30.0) Lumber DOL BC 0.28 Vert(CT) 999 1.15 n/a n/a TCDL WB Rep Stress Incr YES 0.07 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IBC2021/TPI2014 Matrix-S Weight: 31 lb FT = 5%BCDL 10.0 **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2

BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud 2x4 SP No.3 or 2x4 SPF Stud **OTHERS**

REACTIONS. (size) 1=9-0-0, 3=9-0-0, 4=9-0-0

> Max Horz 1=-92(LC 8) Max Uplift 1=-73(LC 12), 3=-86(LC 13), 4=-27(LC 12) Max Grav 1=312(LC 18), 3=312(LC 19), 4=364(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-264/218

NOTES-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

October 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

02_Valley Job Truss Type Truss Qty Ply 154705069 **ORDERS** VT-00864 VCOM Job Reference (optional) 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:40 2022 Page 1 ID:9VMovrOm2YkhOZ3WUEOQxpyUXxk-Hthd8xrPOi7?T0QWeTe4E7nqadbLFCu?is_d?WyTqEH NVR. Frederick, MD - 21703 12-0-0 6-0-0 6-0-0 Scale = 1:25.3 4x6 = 3 10 8.00 12 3x4 || ₄3x4 || 12 3x4 <> 3x4 / 3x4 II 3x4 II 3x4 II 12-0-0 12-0-0 LOADING (psf) SPACING-**PLATES GRIP** 2-0-0 CSI DEFL. L/d in (loc) I/defl TCLL 30.0 Plate Grip DOL TC Vert(LL) 999 197/144 1.15 0.64 n/a n/a MT20 (Roof Snow=30.0) Lumber DOL BC 0.21 Vert(CT) 999 1.15 n/a n/a TCDL WB 5 Rep Stress Incr YES 0.13 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IBC2021/TPI2014 Matrix-S Weight: 45 lb FT = 5%BCDL 10.0 **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD** 2x4 SP No.3 or 2x4 SPF Stud

2x4 SP No.3 or 2x4 SPF Stud **OTHERS**

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 1=-127(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-210(LC 12), 6=-209(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=341(LC 19), 8=561(LC 18), 6=561(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-7=-255/83, 2-8=-507/413, 4-6=-507/413

NOTES-

- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-5-12 to 4-10-8, Corner(3R) 4-10-8 to 7-1-8, Corner(3E) 7-1-8 to 11-6-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=210, 6=209.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

October 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

02_Valley Job Truss Truss Type Qty Ply 154705070 **ORDERS** VT-00865 VCOM Job Reference (optional) 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:41 2022 Page 1 ID:dhwA6BPOpssY?jdj1xvfT1yUXxj-I4F?LHs19?Fs4A?iCA9JnLJ?D1yq_fD8xWkAXyyTqEG NVR. Frederick, MD - 21703 15-0-0 7-6-0 7-6-0 Scale = 1:31.4 4x6 = 3 8.00 12 12 3x4 II 3x4 || 13 3x4 // 3x4 <> 9 6 87 3x4 || 4x4 = 3x4 || 15-0-0 15-0-0 Plate Offsets (X,Y)--[8:0-2-0,0-1-4] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d **TCLL** 30.0 Plate Grip DOL TC 0.65 Vert(LL) 999 197/144 1.15 n/a n/a MT20 (Roof Snow=30.0) BC Lumber DOL 1.15 0.19 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.00 5 n/a n/a BCLL 0.0 Code IBC2021/TPI2014 Matrix-S Weight: 59 lb FT = 5% BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 or 2x4 SPF Stud **OTHERS** REACTIONS. All bearings 15-0-0. (lb) - Max Horz 1=-161(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-230(LC 12), 6=-230(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=334(LC 18), 9=592(LC 18), 6=592(LC 19) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-7=-254/22, 2-9=-512/383, 4-6=-512/383 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-5-12 to 4-10-8, Corner(3R) 4-10-8 to 10-1-8, Corner(3E) 10-1-8 to 14-6-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.602) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=230, 6=280.

SEAL
28228 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

October 13.2022

02_Valley Truss Type Job Truss Qty 154705071 **ORDERS** VT-00866 VCOM Job Reference (optional) NVR. Frederick, MD - 21703 8.530 s Aug 11 2022 MiTek Industries, Inc. Thu Oct 13 12:35:42 2022 Page 1 $ID: dhwA6BPOpssY? jdj\overset{-}{1}xvfT1yUXxj-DGpNZdsfwJNjiKaumtgYJYs8ERGlj5tHAATk4OyTqEF$ 9-0-0 18-0-0 9-0-0 Scale = 1:37.94x6 = 3 8.00 12 3x4 || 3x4 || 3x4 <> 3x4 🖊 9 87 6 4x4 =3x4 II 3x4 II 18-0-0 18-0-0 Plate Offsets (X,Y)--[8:0-2-0,0-1-4] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d **TCLL** 30.0 Plate Grip DOL TC 0.82 Vert(LL) 999 197/144 1.15 n/a n/a MT20 (Roof Snow=30.0) BC Lumber DOL 1.15 0.28 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.16 Horz(CT) 0.00 5 n/a n/a BCLL 0.0 Code IBC2021/TPI2014 Matrix-S Weight: 74 lb FT = 5%BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.3 or 2x4 SPF Stud **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 or 2x4 SPF Stud **OTHERS** REACTIONS. All bearings 18-0-0. (lb) - Max Horz 1=195(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-281(LC 12), 6=-281(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=300(LC 18), 9=686(LC 18), 6=686(LC 19) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-576/406, 4-6=-576/406 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-5-12 to 5-0-0, Corner(3R) 5-0-0 to 13-0-0, Corner(3E) 13-0-0 to 17-6-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.602) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=281, 6=281.

SEAL
28228 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.