Mark Morris, P.E.

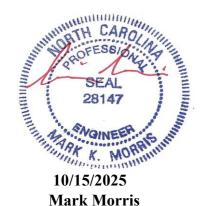
#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 64080 JOB: 25-8623-R01

JOB NAME: LOT 158 PROVIDENCE CREEK

Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B


Mean Roof Height (feet): 35

These truss designs comply with IRC 2015 as well as IRC 2018.

23 Truss Design(s)

Trusses:

PB01, PB02, R01, R02, R03, R03A, R04, R05, R07, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

My license renewal date for the state of North Carolina is 12/31/2025

Warning !—Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI

Job LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N Truss Truss Type 25-8623-R01 PB01 GABLE # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:42 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-xw9oyCzD3NJ80DgMw197kBgS81tuzLf1RhWWFbyT0E7 7-6-0 15-0-0 7-6-0 7-6-0 Scale: 1/2"=1' 4x4 =4 2x4 || 2x4 || 5.00 12 5 3 13 12 ST2 14 q 8 10 3x4 =3x4 =2x4 || 2x4 || 2x4 || 15-0-0 15-0-0

LOADING (psf) SPACING-GRIP CSI. DEFL. PLATES 2-0-0 in (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.28 Vert(LL) n/a n/a 999 MT20 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.21 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 6 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 51 lb FT = 20% Matrix-S BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

All bearings 15-0-0. REACTIONS.

(lb) - Max Horz 1=-44(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 except 1=-129(LC 21), 7=-129(LC 22)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 9 except 2=410(LC 21), 6=410(LC 22), 10=429(LC 21), 8=429(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 3-10=-338/153, 5-8=-338/153

NOTES-(12-15)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-9 to 5-2-2, Exterior(2R) 5-2-2 to 9-9-14, Exterior(2E) 9-9-14 to 14-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

) Provide mechanical connection (by others) of true to be a second connection (by others).
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8 except
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MORRIE S/202 SEAL 28147 NOINEE K. MORR

10/15/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and roaded continued on page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY-	/ARINA,
25-8623-R01	PB01	GABLE	2	1	Job Reference (optional) # 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:42 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-xw9oyCzD3NJ80DgMw197kBgS81tuzLf1RhWWFbyT0E7

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

.lob Truss Truss Type LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N 25-8623-R01 PB02 Piggyback 19 # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:43 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-P6jA9Y_rqhR?dNEYUkhMHPDUJR59iobAgLF3n1yT0E6 7-6-0 15-0-0 7-6-0 7-6-0 Scale = 1:24.7 4x6 = 3 5.00 12 10 0-4-5 6 3x4 =3x4 =2x4 || 15-0-0 Plate Offsets (X,Y)-- [2:0-0-14,Edge], [4:0-0-14,Edge] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.83 Vert(LL) 0.03 n/r 180 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.65 Vert(CT) 0.06 5 n/r 80 TCDL 10.0 WB 0.09 4 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 46 lb Matrix-S FT = 20%**BCDL** 10.0 LUMBER-BRACING-Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. TOP CHORD 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No 3 **OTHERS** MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 2=274/12-7-10 (min. 0-1-8), 4=274/12-7-10 (min. 0-1-8), 6=560/12-7-10 (min. 0-1-8)

Max Horz 2=-44(LC 15)

Max Uplift2=-62(LC 14), 4=-70(LC 15), 6=-34(LC 14) Max Grav 2=349(LC 21), 4=349(LC 22), 6=568(LC 21)

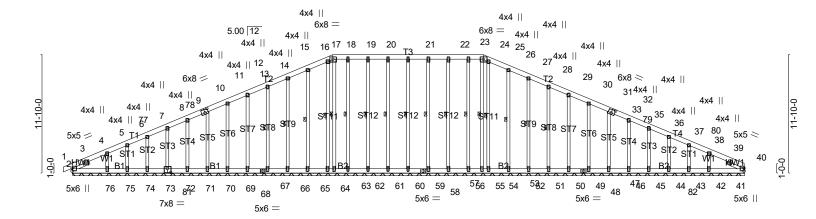
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-6=-379/195

NOTES-(11-14)

0-1-10

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-9 to 5-2-2, Exterior(2R) 5-2-2 to 9-9-14, Exterior(2E) 9-9-14 to 14-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

OFES OFES SEAL 28147 NOINEE K. MORR 10/15/2025

-Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded LOAD CHASE(S) in standardlesign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Truss Truss Type LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N 25-8623-R01 R01 GABLE # 64080 Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s.Sep. 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:46 2025. Page 1 ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-qhOJnZ0j7cqaUqz79tE3v1rBgeHCv7GcMJUkOMyT0E3 -0₇10-8 0-10-8 26-0-0 41-0-0 67-0-0 26-0-0 15-0-0 26-0-0

Scale = 1:114.9

67-0-0 67-0-0 Plate Offsets (X,Y)-- [9:0-4-0,0-4-0], [33:0-4-0,0-4-0], [73:0-4-0,0-4-8] LOADING (psf) DEFI **PLATES** GRIP SPACING-2-0-0 CSI. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) -0.00n/r 180 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.06 Vert(CT) 0.00 n/r 80 **TCDL** 10.0 WB 0.22 Rep Stress Incr YES Horz(CT) 0.01 40 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 697 lb Matrix-SH FT = 20%**BCDL** 10.0

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WFBS 2x4 SP No 3 OTHERS

SLIDER Left 2x4 SP No.3 1-10-0, Right 2x4 SP No.3 1-10-0 BRACING-

TOP CHORD BOT CHORD WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

21-59, 20-60, 19-61, 18-62, 16-64, 15-65, 1 Row at midpt

14-66, 13-67, 17-63, 22-57, 23-56, 24-55, 26-53, 27-52, 28-51, 29-50, 25-54

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 67-0-0.

(lb) - Max Horz 2=-171(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except

41=-105(LC 15), 76=-119(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 2, 40, 62, 64, 72, 73, 74, 75, 63, 55, 53, 45, 44, 43, 42, 54 except 59=287(LC 44), 60=287(LC 44), 61=295(LC 44), 65=293(LC 45), 66=289(LC 45), 67=287(LC 45), 69=286(LC 45), 70=288(LC 45), 71=284(LC 45), 57=287(LC 44), 56=295(LC 44), 52=293(LC 45), 51=289(LC 45), 50=287(LC 45), 49=286(LC 45), 47=288(LC 45), 46=284(LC 45), 41=274(LC 55), 76=261(LC 54)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-106/261, 14-15=-122/297, 15-16=-136/329, 16-17=-134/329, 17-18=-132/326, 18-19=-132/326, 19-20=-132/326, 20-21=-132/326, 21-22=-132/326, 22-23=-132/326, 23-24=-132/326, 24-25=-132/326, 25-26=-134/329, 26-27=-136/329, 27-28=-122/297,

28-29=-106/261

1) Unbalanced roof live loads have been considered for this design.

Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 5-9-14, Exterior(2N) 5-9-14 to 19-3-10, Corner(3R) 19-3-10 to 32-8-6, Exterior(2N) 32-8-6 to 34-3-10, Corner(3R) 34-3-10 to 47-6-0, Exterior(2N) 47-6-0 to 60-3-10, Corner(3E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For stude can get the study of the 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry 🛢 Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15); Pf=20.0 psf (Lum DO

Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

10/15/2025

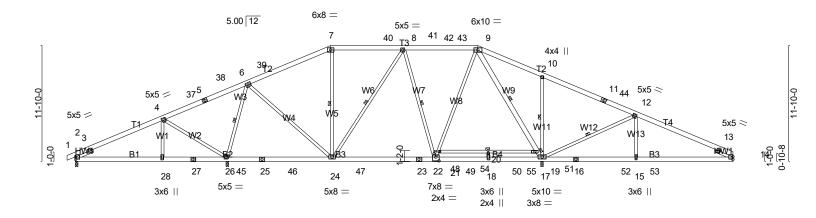
Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an incomposition of all parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer—not truss designer or truss engineer. Bracing shown is for lateral support vertically. Additional permanent bracing of the overall structure is the Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY-V	ARINA,
25-8623-R01	R01	GABLE	2	1	Job Reference (optional) # 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:47 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-ltyh?v1MuwyR6_YJjallRFNMP2dReaWmbzDHxoyT0E2

NOTES- (15-18)

- 7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 3x6 MT20 unless otherwise indicated.
- 10) Gable requires continuous bottom chord bearing.
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except (jt=lb) 41=105, 76=119.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job		Truss		Truss Type		Qty	Ply	LOT 158 PROVIDENCE CREE	K 532 PROVIDENCE CREEK FUQUA	AY-VARINA, I
25-8623-R01		R02		Piggyback Base		8	1	Job Reference (optional)	# <i>64080</i>	
									ustries, Inc. Thu Oct 16 00:45:48 2025 87WGIGX_SwNHSp8NsevqdzqTl	
-0 ₁ 10-8	8-10-5	1	17-5-3	26-0-0	33-6-0	41-0-0	47-6-12	57-1-10	67-0-0	
0-10-8	8-10-5		8-6-13	8-6-13	7-6-0	7-6-0	6-6-12	9-6-14	9-10-6	

Scale = 1:117.4

\vdash	8-10-5 8-10-5	6-7-7	10-6-4	10-6-12	+ 42-0-12 5-6-0	+ 47-6-12 5-6-0	9-6-14	9-10-6	\dashv
Plate Offsets	(X,Y) [22:0-4-								
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2021	1.15 r YES	CSI. TC 0.69 BC 0.67 WB 0.93 Matrix-MSH	\ /	in (loc) -0.31 20-21 -0.43 20-21 0.03 17	l/defl L/d >999 240 >893 180 n/a n/a	PLATES MT20 Weight: 525 lb	GRIP 244/190 FT = 20%

BOT CHORD

WFBS

I UMBER-BRACING-TOP CHORD

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS, B5: 2x4 SP No.2

WFBS 2x4 SP No.3 *Except* W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14), 17=-146(LC 15), 14=-126(LC

Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=2357(LC 45), 17=3149(LC 45), 14=664(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2\text{-}3\text{-}394/0, \, 3\text{-}4\text{-}694/117, \, 6\text{-}38\text{-}0/293, \, 6\text{-}39\text{-}-1177/275, \, 7\text{-}39\text{-}-1127/305, \, 7\text{-}40\text{-}-1040/327, \, 7\text{-}39\text{-}-1127/305, \, 7\text{-}39\text{-}-1127/305, \, 7\text{-}39\text{-}-1127/305, \, 7\text{-}40\text{-}-1040/327, \, 7\text{-}39\text{-}-1127/305, \, 7\text{-}39\text{-}-1127$

40-41=-1040/327, 8-41=-1040/327, 8-42=-1182/289, 42-43=-1182/289, 9-43=-1182/289,

9-10=-29/454, 10-11=0/479, 11-44=0/261, 12-13=-863/204, 13-14=-401/0 2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415

25-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-47=-19/1310, 23-48=-19/1310,

22-48=-19/1310, 22-49=0/839, 18-49=0/839, 18-50=0/839, 50-51=0/839, 17-51=0/839, 16-17=-101/731, 16-52=-101/731, 15-52=-101/731, 15-53=-101/731, 14-53=-101/731

4-28=0/286, 4-26=-816/239, 6-26=-1684/299, 6-24=-17/1003, 8-24=-455/59, 8-22=-553/197,

21-22=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263,

12-17=-1114/287, 12-15=0/280, 18-20=-360/0

BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for this design.

Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 5-9-14 to 19-3-10 to 5-9-14 to 19-3-10 to 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 5-9-14 to 19-3-10 to 5-9-14 to 19-3-10 to 32-8-6 to 34-3-10 to 32-8-6 to 34-3-10 to 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 32-8-6 to 34-3-10 to 32-8-6 to 32-8-6 to 34-3-10 to 32-8-6 to 32-8-6 to 34-3-10 to 32-8-6 to 32-8-6 to 32-8-6 to 32-8-6 to 32-8-2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

6-26, 7-24, 8-24, 8-22, 9-19, 10-17, 12-17

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 9-8-5 oc bracing. Except:

6-0-0 oc bracing: 19-21

1 Row at midpt

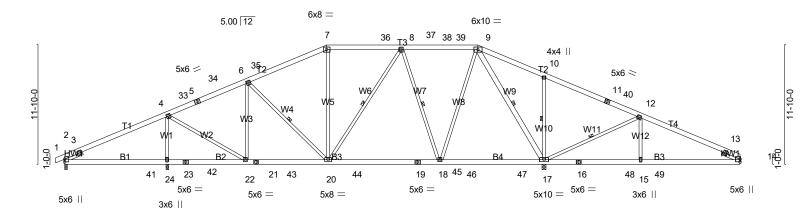
10/15/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is not an increased and read notes before use. This design is based only upon parameters shown, and is not an increased and increased and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of the erector. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVI	DENCE CREEK FUQUAY-VARINA,
25-8623-R01	R02	Piggyback Base	8	1	Job Reference (optional)	# 64080
					it: 8.830 s Sep 3 2025 MiTek Industries, Inc. T 2BEyzqFZ-m4W3CF2_fD4Ik87WGIGX_9	

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 229 lb uplift at joint 26, 146 lb uplift at joint 17 and 126 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss		Truss Type		Qty	Ply	LOT 158 PROVIDENCE CREEK	532 PROVIDENCE CREEK	FUQUAY-VARINA, N
25-8623-R01	R03		PIGGYBACK BASE		1	1	Job Reference (optional)	# 64	1080
							t: 8.830 s Sep 3 2025 MiTek Indus xRI2BEyzqFZ-EG4RQb3cQX0		
-0 _T 1Q-8 10	0-1-12	18-0-14	26-0-0	33-6-0	41-0-0	47-6-1	2 57-1-10	67-0-0	1
0-10-8 10	0-1-12	7-11-2	7-11-2	7-6-0	7-6-0	6-6-12	2 9-6-14	9-10-6	

Scale = 1:114.3

10-1		26-0-0	37-2-12	47-6-12	57-1-10	67-0-0
10-1		7-11-2	11-2-12	10-4-0	9-6-14	9-10-6
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCDL 10.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/		CSI. TC 0.71 BC 0.64 WB 1.00 Matrix-MSH	DEFL. in (loc) Vert(LL) -0.19 18-20 Vert(CT) -0.29 18-20 Horz(CT) 0.04 17	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 512 lb FT = 20%

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except* B4: 2x6 SP DSS

WEBS 2x4 SP No.3 *Except* W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

All bearings 0-3-8 except (jt=length) 14=Mechanical.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-194(LC 10), 24=-187(LC 14), 17=-245(LC 11), 14=-125(LC

Max Grav All reactions 250 lb or less at joint(s) except 2=594(LC 54), 24=2081(LC 45), 17=3134(LC 45), 14=646(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-356/165, 3-4=-559/298, 4-33=-1719/386, 5-33=-1650/390, 5-34=-1638/394,

6-34=-1526/413, 6-35=-1632/417, 7-35=-1551/444, 7-36=-1433/455, 36-37=-1433/455,

8-37=-1433/455, 8-38=-1161/367, 38-39=-1161/367, 9-39=-1161/367, 9-10=0/576,

10-11=0/576, 11-40=0/384, 12-40=0/327, 12-13=-828/198, 13-14=-438/0

BOT CHORD 2-41=-204/443, 24-41=-204/443, 24-42=-204/443, 23-42=-204/443, 22-23=-204/443,

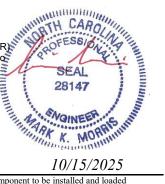
21-22=-208/1492, 21-43=-208/1492, 20-43=-208/1492, 20-44=-121/1412, 19-44=-121/1412,

19-45=-121/1412, 18-45=-121/1412, 18-46=-5/780, 46-47=-5/780, 17-47=-5/780, 16-17=-96/699, 16-48=-96/699, 15-48=-96/699, 15-49=-96/699, 14-49=-96/699

4-24=-1706/255, 4-22=-5/1338, 6-22=-485/106, 6-20=-328/311, 7-20=0/281, 8-20=-80/485,

8-18=-871/242, 9-18=-123/1383, 9-17=-2048/264, 10-17=-865/262, 12-17=-1141/276,

12-15=0/397


NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

vvind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 32-8-6, Interior(1) 47-6-12 to 60-3-10 to 32-8-6, Interior 2) Wind: ASCE 7-16; Vuite-12611,
Roof; Hip Truss; MWFRS (envelope) gable end zone and 2
19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1)
67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members
MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0;
Pough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

The load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

Structural wood sheathing directly applied or 5-1-12 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

6-20, 8-20, 8-18, 9-17, 10-17, 12-17

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Installation guide

10/15/2025

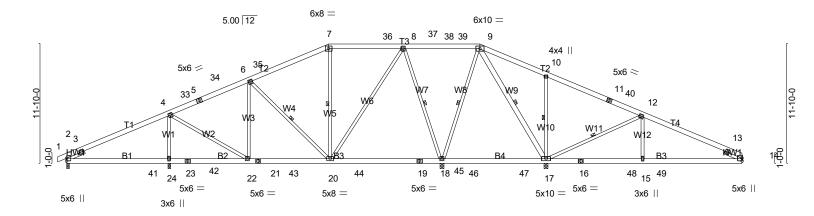
Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is not an increased and read notes before use. This design is based only upon parameters shown, and is not an increased and increased and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of the erector. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY-VAR	INA,
25-8623-R01	R03	PIGGYBACK BASE	1	1	Job Reference (optional) # 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:49 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-EG4RQb3cQXC8Mliiq?nmWgTXnr9l6In32HiO?hyT0E0

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 194 lb uplift at joint 2, 187 lb uplift at joint 24, 245 lb uplift at joint 17 and 125 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Truss Type Qtv LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N 25-8623-R01 R03A Piggyback Base # 64080 Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep. 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:50 2025. Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-iSepdx3EBrK?zRHuOiJ?3t?jqFWHrlRCHxSxX7yT0E? -0₇10-8 0-10-8 18-0-14 26-0-0 41-0-0 47-6-12 57-1-10 67-0-0 10-1-12 33-6-0 10-1-12 7-11-2 7-6-0 7-6-0 6-6-12 9-6-14 9-10-6

Scale = 1:114.3

	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2	37-2-12 11-2-12		47-6-12 10-4-0	57-1-10 9-6-14		
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 20.0 10.0 0.0 *	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.69 BC 0.56 WB 0.98 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.16 18-20 -0.23 18-20 0.02 2	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 512 lb	GRIP 244/190 FT = 20%

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS

WEBS 2x4 SP No.3 *Except* W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

All bearings 0-3-8 except (jt=length) 14=Mechanical.

- Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 24=-168(LC 14), 18=-162(LC 10), 17=-272(LC

15), 14=-124(LC 15)

Max Grav All reactions 250 lb or less at joint(s) except 2=619(LC 54), 24=1555(LC 45), 18=2078(LC 44),

17=1811(LC 39), 14=676(LC 55)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-373/169, 3-4=-612/307, 4-33=-1279/318, 5-33=-1194/323, 5-34=-1179/327,

6-34=-1042/346, 6-35=-892/316, 7-35=-762/343, 7-36=-701/361, 36-37=-701/361

8-37=-701/361, 8-38=-39/300, 38-39=-39/300, 9-39=-39/300, 9-10=-29/465, 10-11=0/480,

11-40=0/271, 12-13=-896/195, 13-14=-464/0

2-41=-212/491, 24-41=-212/491, 24-42=-212/491, 23-42=-212/491, 22-23=-212/491,

21-22=-161/1067, 21-43=-161/1067, 20-43=-161/1067, 20-44=0/379, 19-44=0/379, 19-45=0/379, 18-45=0/379, 16-17=-93/761, 16-48=-93/761, 15-48=-93/761, 15-49=-93/761,

WEBS 4-24=-1246/236, 4-22=0/755, 6-20=-576/193, 8-20=-101/1002, 8-18=-1365/315,

9-18=-253/77, 9-17=-319/38, 10-17=-863/262, 12-17=-1138/276, 12-15=0/397

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16: Pr=20.0 pof (n=6).

and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design

MORRELITION 15/202 10/15/2025

28147

NOINE A. MORRIS

Structural wood sheathing directly applied or 5-10-15 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

6-20, 7-20, 8-18, 9-18, 9-17, 10-17, 12-17

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 17-18.

1 Row at midpt

Installation guide.

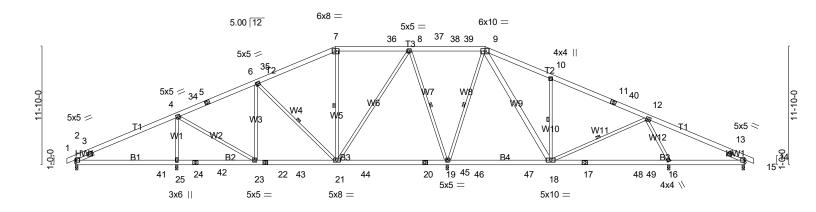
professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member Washing Ubricing: abdize passweres and responsibility for trues! inhadusfactione, bandlying, on paction to be installed and loaded Continued on page vertically. Applies billing parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE	E CREEK FUQUAY-VA	RINA
25-8623-R01	R03A	Piggyback Base	1	1	Job Reference (optional)	# 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:50 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-iSepdx3EBrK?zRHuOiJ?3t?jqFWHrlRCHxSxX7yT0E?

NOTES- (13-16)

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 168 lb uplift at joint 24, 162 lb uplift at joint 18, 272 lb uplift at joint 17 and 124 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply LOT 1	158 PROVIDENCE CREEK 5	32 PROVIDENCE CR	EEK FUQUAY-VARINA
25-8623-R01	R04	PIGGYBACK BASE		2	1 Job F	Reference (optional)	#	64080
						0 s Sep 3 2025 MiTek Industr yzqFZ-AfCCqH4sy8Ssbbs		
-0 ₁ 10-8 10-1	-12 18-0-14	26-0-0	33-6-0	41-0-0	47-6-12	57-1-10	67-0-0	67 _r 10-8
0-10-8 10-1	-12 7-11-2	7-11-2	7-6-0	7-6-0	6-6-12	9-6-14	9-10-6	0-10-8

Scale = 1:115.3

	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2	37-2-12 11-2-12	+	47-6-12 10-4-0		59-4-4 11-9-8	67-0-0 7-7-12	<u> </u>
LOADING (psi TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TP	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.63 BC 0.56 WB 0.99 Matrix-MSH	\ /	in (loc) -0.16 19-21 -0.23 19-21 0.03 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 515 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS

WEBS 2x4 SP No.3 *Except* W9: 2x6 SP No 2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0 BRACING-TOP CHORD

BOT CHORD WFBS

Structural wood sheathing directly applied or 5-11-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. 6-21, 7-21, 8-19, 9-19, 10-18, 12-18 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=167(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 25=-163(LC 14), 19=-246(LC 11), 14=-180(LC

11), 16=-110(LC 15)

Max Grav All reactions 250 lb or less at joint(s) except 2=617(LC 54), 25=1536(LC 45), 19=2712(LC 45), 14=452(LC 55), 16=1234(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-372/171, 3-4=-608/311, 4-34=-1244/312, 5-34=-1174/316, 5-6=-1030/339,

6-35=-874/304, 7-35=-745/331, 7-36=-686/350, 36-37=-686/350, 8-37=-686/350,

8-38=0/335, 38-39=0/335, 9-39=0/335, 9-10=-941/369, 10-11=-793/243, 11-40=-854/219,

12-40=-933/210, 12-13=-362/246

2-41=-198/487, 25-41=-198/487, 25-42=-198/487, 24-42=-198/487, 23-24=-198/487,

22-23=-151/1052, 22-43=-151/1052, 21-43=-151/1052, 21-44=-6/375, 20-44=-6/375,

20-45=-6/375, 19-45=-6/375, 17-18=-189/664, 17-48=-189/664, 48-49=-189/664,

16-49=-189/664, 14-16=-140/266

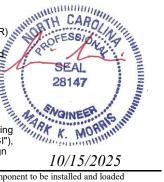
WEBS 4-25=-1222/231, 4-23=0/737, 6-21=-592/197, 8-21=-109/1025, 8-19=-1383/322,

9-19=-1164/232, 9-18=-262/1203, 10-18=-858/263, 12-16=-1078/211

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.


viniu. ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member

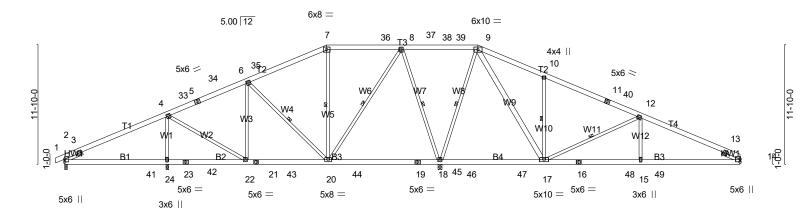
10/15/2025

WESTIND POPULAR AND TESTORISE WHOSE HELES MISURISE THE STANDING OF PERMINDERS SHOWING and is for an individual building component to be installed and loaded Continued on page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENC	CE CREEK FUQUAY-VARINA
25-8623-R01	R04	PIGGYBACK BASE	2	1	Job Reference (optional)	# 64080
					t: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oc RI2BEyzqFZ-AfCCqH4sy8Ssbbs5yQqEb5YvS	

NOTES- (12-15)

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 163 lb uplift at joint 25, 246 lb uplift at joint 19, 180 lb uplift at joint 14 and 110 lb uplift at joint 16.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK	532 PROVIDENCE CREEK F	UQUAY-VARINA, N
25-8623-R01	R05	Piggyback Base	7	1	Job Reference (optional)	# 640	80
					8.830 s Sep 3 2025 MiTek Indust akfxRI2BEyzqFZ-erla2d5UjSaj		
-0 ₁ 10-8 10-1-12	2 18-0-14	26-0-0 33-6-0	41-0-0	47-6-12	2 57-1-10	67-0-0	-
0-10-8 10-1-12	2 7-11-2	7-11-2 7-6-0	7-6-0	6-6-12	9-6-14	9-10-6	

Scale = 1:114.3

	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2	37-2-12 11-2-12		47-6-12 10-4-0		57-1-10 9-6-14	67-0-0 9-10-6	
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0 0.0 *	Plate Grip DOL 1. Lumber DOL 1.	D-0 CSI 15 TC 15 BC ES WB	0.65 0.52	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.16 18-20 -0.23 18-20 0.03 14	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS

WEBS 2x4 SP No 3 *Except*

W7: 2x4 SP No.2, W8: 2x4 SP No.1, W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0 BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-1-9 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 18-20,17-18.

WEBS 1 Row at midpt 6-20, 7-20, 8-20, 8-18, 9-18, 10-17, 12-17

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

All bearings 0-3-8 except (jt=length) 18=0-4-0, 14=Mechanical. REACTIONS.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-195(LC 10), 24=-164(LC 14), 18=-277(LC 11), 14=-176(LC

Max Grav All reactions 250 lb or less at joint(s) except 2=605(LC 54), 24=1360(LC 35), 18=3525(LC 45), 14=1016(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-358/166, 3-4=-580/296, 4-33=-1082/271, 5-33=-1012/276, 5-34=-1003/280,

6-34=-868/299, 6-35=-665/253, 7-35=-517/281, 7-36=-474/303, 36-37=-474/303,

8-37=-474/303, 8-38=0/927, 38-39=0/927, 9-39=0/927, 9-10=-739/334, 10-11=-590/207,

11-40=-649/183, 12-40=-725/174, 12-13=-1664/313, 13-14=-631/0

2-41=-202/462, 24-41=-202/462, 24-42=-202/462, 23-42=-202/462, 22-23=-202/462, 21-22=-157/899, 21-43=-157/899, 20-43=-157/899, 20-44=-495/256, 19-44=-495/256,

19-45=-495/256, 18-45=-495/256, 18-46=-383/198, 46-47=-383/198, 17-47=-383/198,

16-17=-201/1461, 16-48=-201/1461, 15-48=-201/1461, 15-49=-201/1461, 14-49=-201/1461

4-24=-1052/233, 4-22=0/561, 6-20=-731/195, 7-20=-368/95, 8-20=-146/1324,

8-18=-1531/355, 9-18=-1754/273, 9-17=-321/1759, 10-17=-869/263, 12-17=-1064/265,

12-15=0/382

BOT CHORD

WEBS

vilid: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed: 1) Unbalanced roof live loads have been considered for this design.
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

10/15/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is not all more parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of the acceptor. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY-VARINA
25-8623-R01	R05	Piggyback Base	7	1	Job Reference (optional) # 64080
		Run			nt: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:52 2025 Page 2 JakfxRl2BEyzqFZ-erla2d5UjSajDlQHV7LT8l53x3CHJesVlFx2b0yT0Dz

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2, 164 lb uplift at joint 24, 277 lb uplift at joint 18 and 176 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Type Truss LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARI<mark>N</mark>A, N 25-8623-R01 R07 Common Supported Gable # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:53 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-61JyFy67Umiaqv?T3rsihWdNuSfx2l1ezvgb7SyT0Dy -0-10-8 0-10-8 20-2-0 10-1-0 10-1-0 10-1-0 Scale = 1:44.6 7 8 6 7.00 12 26 25 10 11 3x4 || 3x4 || 12 13 1-2-0 1-2-0 24 23 22 21 20 19 18 17 16 15 14 5x5 = 3x4 II 3x4 || 20-2-0 20-2-0 Plate Offsets (X,Y)-- [18:0-2-8,0-3-0] LOADING (psf) SPACING-DEFL. I/d **PLATES** GRIP 2-0-0 CSI. in (loc) I/defl 20.0 Plate Grip DOL 1.15 TC 0.12 Vert(LL) -0.0013 n/r 180 MT20 244/190 20.0 Lumber DOL 1.15 вс 0.11 Vert(CT) -0.00 13 n/r 80 10.0 Horz(CT) 0.00 14 n/a n/a

TCLL (roof) Snow (Pf) **TCDL** WB 0.16 Rep Stress Incr YES **BCLL** 0.0 Code IRC2021/TPI2014 Matrix-R **BCDL** 10.0

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except

end verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 123 lb

FT = 20%

REACTIONS. All bearings 20-2-0.

2x4 SP No 3

2x4 SP No.3

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

(lb) - Max Horz 24=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 21, 22, 23, 17, 16, 15 except 19=262(LC 27), 20=305(LC 5), 18=302(LC 6)

FORCES. (lb) - Max, Comp./Max, Ten. - All forces 250 (lb) or less except when shown.

LUMBER-

WFBS

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-0, Exterior(2N) 4-1-0 to 5-3-6, Corner(3R) 5-3-6 to 14-10-10, Exterior(2N) 14-10-10 to 16-1-0, Corner(3E) 16-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

10) Gable studs spaced at 2-0-0 oc.

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide 🚾II fit between the bottom chord and any other members, with BCDL = 10.0psf.

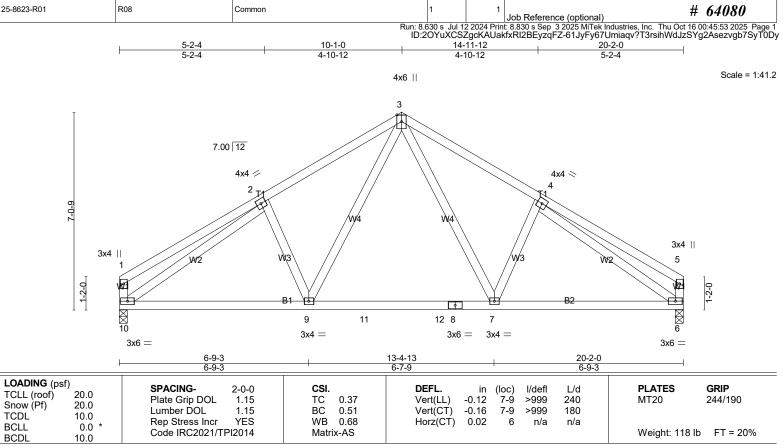
13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23 , 18, 17, 16, 15.

OROFESS! MORRES and lo SEAL 28147 NOINE NOINE MORRE

10/15/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is not an increase and read notes before use. This design is based only upon parameters shown, and is not an increase and increase. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY	-VARINA,
25-8623-R01	R07	Common Supported Gable	1	1	Job Reference (optional) # 64080	


Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:53 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-61JyFy67Umiaqv?T3rsihWdNuSfx2l1ezvgb7SyT0Dy

- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

LUMBER-

Job

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 10=795/0-3-8 (min. 0-1-8), 6=795/0-3-8 (min. 0-1-8)

Max Horz 10=-158(LC 10)

Truss

Truss Type

Max Uplift10=-90(LC 14), 6=-90(LC 15) Max Grav 10=839(LC 20), 6=839(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-265/79, 2-3=-1021/178, 3-4=-1021/178, 4-5=-265/80

9-10=-128/902, 9-11=-19/647, 11-12=-19/647, 8-12=-19/647, 7-8=-19/647, 6-7=-69/873 **BOT CHORD**

WEBS 3-7=-92/411, 3-9=-91/411, 2-10=-908/72, 4-6=-908/64

NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 5-0-11, Exterior(2R) 5-0-11 to 15-1-5, Exterior(2E) 15-1-5 to 20-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

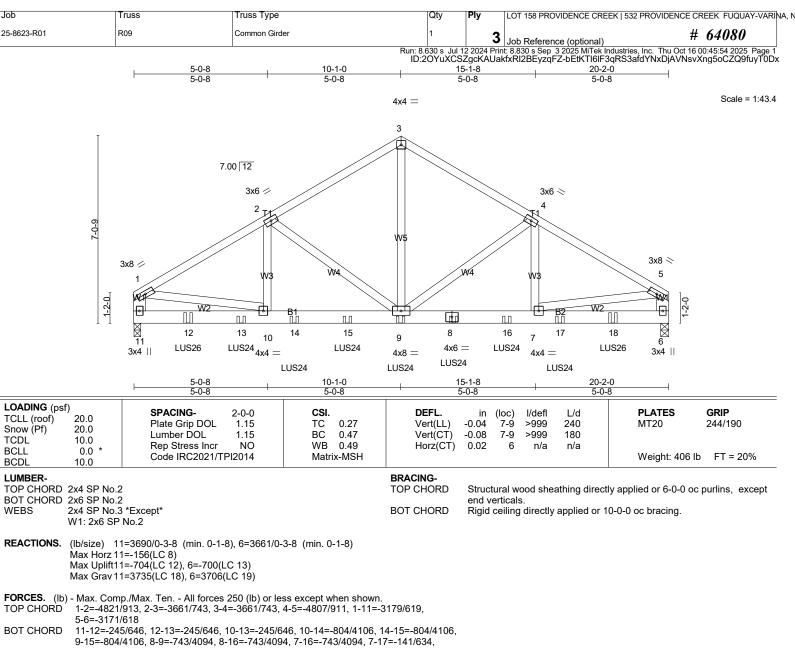
4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- sneetrock be applied directly to the bottom chord.

 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Rearing symbols are only graphical representations of a possible bearing condition. Rearing symbols are only graphical representations of a possible bearing condition.


- structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Harding, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MORNING. CONSIDERATIONS.

10/15/2025

NEED MORRISMINION OF THE PARTY LOAD CASE(S) Standard Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

17-18=-141/634, 6-18=-141/634

3-9=-647/3260, 4-9=-1293/335, 4-7=-213/1032, 2-9=-1308/337, 2-10=-215/1050, **WEBS**

1-10=-615/3532, 5-7=-615/3531

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

=1.60 HETH CAROLINA 3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

to 16-0-12 to connect truss(es) R02 (1 ply 2x6 SP) to front face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

10/15/2025

NOINEE ARK K. MORR

NEER BRITAIN NO PARTIE NO Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applies billy of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENC	E CREEK FUQUAY-VARI	NΑ,
25-8623-R01	R09	Common Girder	1	3	Job Reference (optional)	# 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:54 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-bEtKTl6IF3qRS3afdYNxDjAVNsvXng5oCZQ9fuyT0Dx

- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 8=-644(F) 9=-644(F) 12=-644(F) 13=-644(F) 14=-644(F) 15=-644(F) 16=-644(F) 17=-644(F) 18=-626(F)

LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N .lob Truss Truss Type 25-8623-R01 R10 Common Supported Gable # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MTek Industries, Inc. Thu Oct 16 00:45:55 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-3QRige7N0Nyl4D9sBGuAmxjjwGLTWDwxRD9iCLyT0Dw 14-0-0 7-0-0 7-0-0 7-0-0 Scale = 1:32.7 4x4 = 5 7.00 12 7 3 19 8 3x4 || 8 2 3x4 9 1-2-0 18 16 15 12 10 17 14 13 11 3x4 II 3x4 II 14-0-0 14-0-0 LOADING (psf) GRIP SPACING-CSI. DEFL. L/d PLATES 2-0-0 in I/defl (loc) TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.09Vert(LL) n/a n/a 999 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.11 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) -0.00 10 n/a n/a **BCLL** 0.0

BCDL LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Weight: 76 lb

FT = 20%

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 14-0-0.

2x4 SP No 3

10.0

(lb) - Max Horz 18=-118(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 18, 10, 15, 16, 17, 13, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 18, 10, 14, 15, 16, 17, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed: Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 5-0-0, Corner(3R) 5-0-0 to 9-0-0, Corner(3E) 9-0-0 to 13-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-R

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- *This russ has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 *This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will be the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of the c
- 9) Gable State of 1.

 10) This truss has been designed for a live load of 30.0psi on the fit between the bottom chord and any other members, with BCDL = 10.0psf.

 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s), ..., , 12, 11.

 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 130 Graphical representations of a possible bearing condition. Bearing symbols are not considered in the loads indicated.

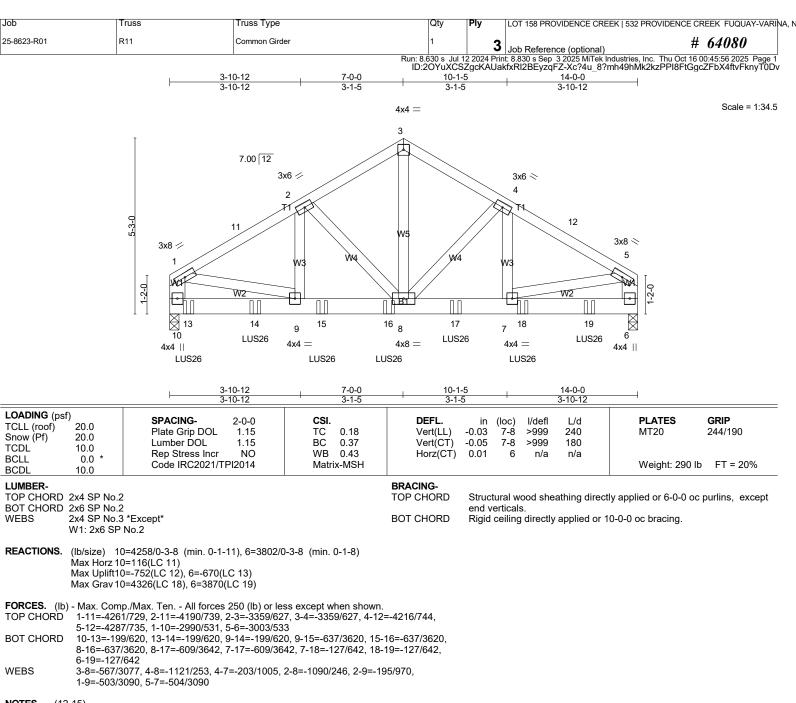
 140 Pefer to BCSI Guide to Good Practice for Handling, and alignment of the brace of the member including diagonal bracing.

- 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

MORRELITATION TO STATE OF THE PARTY OF THE P 10/15/2025

SEAL 28147

NOINEE K. MORR


WATONS IDENTIFY DESIGN parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded continued on page 2. The page 2. The page 2. The page 2. The page 3. The page of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREEK 532 PROVIDENCE CREEK FUQUAY-VARI	NA, N
25-8623-R01	R10	Common Supported Gable	1	1	Job Reference (optional) # 64080	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MTek Industries, Inc. Thu Oct 16 00:45:55 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-3QRige7N0Nyl4D9sBGuAmxjjwGLTWDwxRD9iCLyT0Dw

LOAD CASE(S) Standard

NOTES-(12-15)

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

=1.60 HETH CARO 3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of whitestanding 100 to 2 per 100 to 6=670.

10) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-6-12 from the left end 100 to 1

11) Fill all nail holes where hanger is in contact with lumber.

10/15/2025

NOINE

MORRES dand le Warning!—Verify design parameters and read notes before use. This design is based only upon parameters snown, and is not an individual outloing component to component of page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 158 PROVIDENCE CREE	K 532 PROVIDENCE CREEK FUQUAY-VARINA, N
25-8623-R01	R11	Common Girder	1	3	Job Reference (optional)	# 64080

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:56 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-Xc?4u_8?mh49hMk2kzPPl8FtGgcZFbX4ftvFknyT0Dv

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb)

Vert: 13=-1002(F) 14=-996(F) 15=-996(F) 16=-996(F) 17=-996(F) 18=-996(F) 19=-996(F)

LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N .lob Truss Truss Type VT01 25-8623-R01 Valley # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:56 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-Xc?4u_8?mh49hMk2kzPPl8FqkgdlFgk4ftvFknyT0Dv 17-10-9 8-11-5 8-11-5 8-11-5 Scale = 1:33.9 4x4 = 3 7.00 12 2x4 || 2x4 || 10 5 3x4 // 3x4 < 8 9 12 7 6 13 2x4 || 2x4 || 2x4 || 3x6 =17-10-9 17-10-9 LOADING (psf) SPACING-GRIP CSI. DEFL. PLATES 2-0-0 in I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.34 Vert(LL) n/a n/a 999 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.26 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 69 lb FT = 20% Matrix-S BCDL 10.0 BRACING-LUMBER-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD 2x4 SP No.3 BOT CHORD OTHERS 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 17-10-9.

(lb) - Max Horz 1=-108(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-136(LC 14), 6=-136(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=372(LC 5), 9=514(LC 20), 6=514(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-410/177, 4-6=-410/177

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 12-6-8, Exterior(2E) 12-6-8 to 17-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb)

- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines in additional bracing guidelines. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

MONES & MORRIS 10/15/2025

MORRIE TO STATE OF THE PARTY OF Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N .lob Truss Truss Type 25-8623-R01 VT02 Valley # 64080 Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep. 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:56 2025. Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-Xc?4u_8?mh49hMk2kzPPI8FrkgeOFg04ftvFknyT0Dv 15-0-5 7-6-2 7-6-2 Scale = 1:28.3 4x4 = 3 7.00 12 2x4 || 2x4 || 10 5 (x)8 7 6 3x4 / 3x4 > 2x4 || 2x4 || 2x4 || 15-0-5 15-0-5 LOADING (psf) GRIP SPACING-CSI. DEFL. PLATES 2-0-0 in I/defl L/d (loc) TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.28 Vert(LL) n/a n/a 999 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.19 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 57 lb FT = 20% Matrix-S BCDL 10 0 BRACING-LUMBER-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD 2x4 SP No.3 BOT CHORD OTHERS 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing

All bearings 15-0-5. REACTIONS.

(lb) - Max Horz 1=90(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-113(LC 14), 6=-113(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=286(LC 20), 8=444(LC 20), 6=444(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-367/149, 4-6=-367/149

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

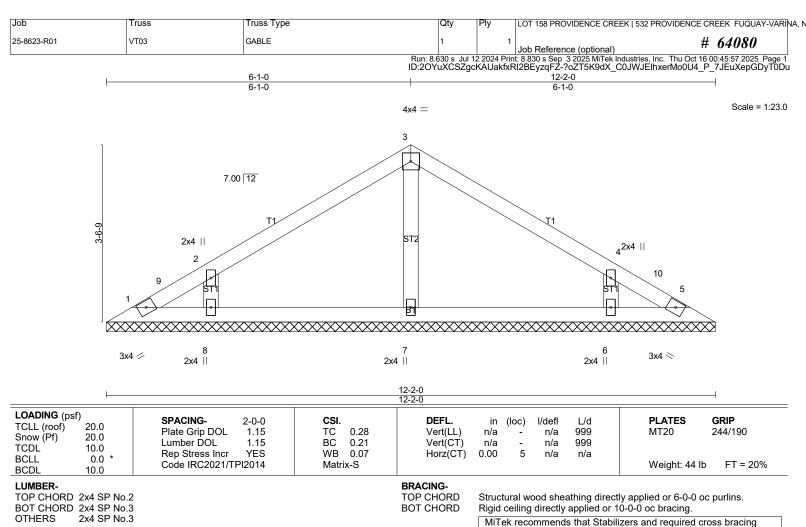
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 9-8-3, Exterior(2E) 9-8-3 to 14-5-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=113,
- b=113.

 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines in studies.
- 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard


10/15/2025

NOINEE NOINE MORRE

be installed during truss erection, in accordance with Stabilizer

Installation guide.

MORRELITION TO STORE THE S Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

All bearings 12-2-0. REACTIONS. (lb) - Max Horz 1=71(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-104(LC 14), 6=-104(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=291(LC 20), 8=425(LC 20), 6=425(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-368/141, 4-6=-368/141

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 6-9-15, Exterior(2E) 6-9-15 to 11-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8=104, 6=104.

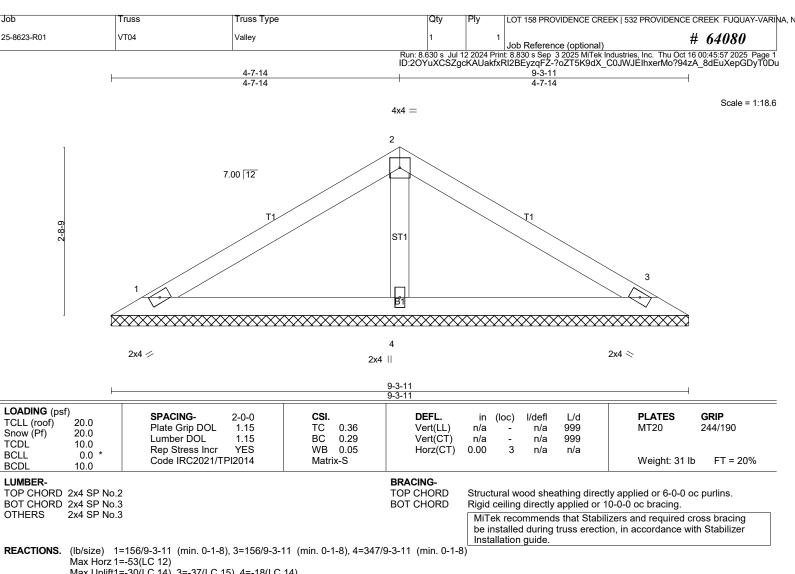
 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines installing. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb)

- 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

LOAD CASE(S) Standard


CONSIDERATIONS.

MONES & MORRIS 10/15/2025

be installed during truss erection, in accordance with Stabilizer

Installation guide.

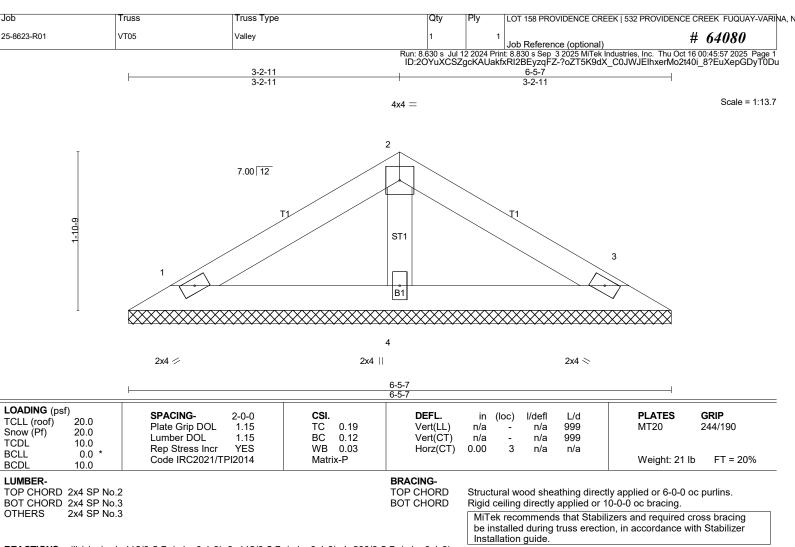
MORRIEMIN STATE TO ST Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Uplift1=-30(LC 14), 3=-37(LC 15), 4=-18(LC 14) Max Grav 1=223(LC 20), 3=223(LC 21), 4=358(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.


 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN CONSIDERATIONS

 CONSIDERATIONS

 CONSIDERATIONS 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=112/6-5-7 (min. 0-1-8), 3=112/6-5-7 (min. 0-1-8), 4=206/6-5-7 (min. 0-1-8) Max Horz 1=35(LC 11)

Max Uplift1=-24(LC 14), 3=-29(LC 15), 4=-2(LC 14)

Max Grav 1=148(LC 20), 3=148(LC 21), 4=206(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.

 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN CONSIDERATIONS

 CONSIDERATIONS

 CONSIDERATIONS 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

10/15/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

.lob Truss Type Truss LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARINA, N Valley 25-8623-R01 VT06 # 64080 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:58 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-T?7rlg9FIIKtxguRsOStOZKF2TMujbhN7BOMofyT0Dt 1-9-9 3-7-2 1-9-9 1_Q_Q Scale = 1:7.8 3x6 = 2 7.00 12 3 B1 2x4 / 2x4 < Plate Offsets (X,Y)-- [2:0-3-0,Edge] LOADING (psf) GRIP SPACING-CSI. DEFL. **PLATES** 2-0-0 in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.13 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Horz(CT) Rep Stress Incr YES 0.00 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Matrix-P Weight: 10 lb FT = 20% BCDL 10.0 LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-7-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

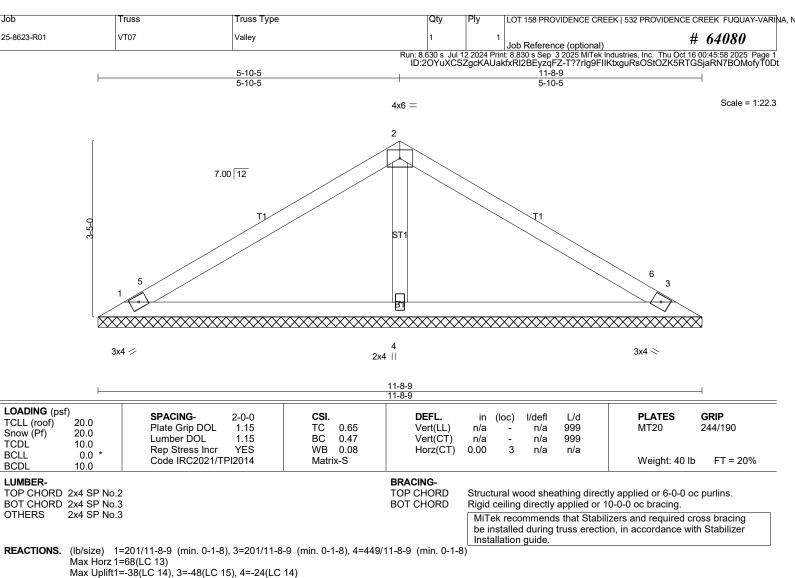
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=101/3-7-2 (min. 0-1-8), 3=101/3-7-2 (min. 0-1-8)

Max Horz 1=-16(LC 12) Max Uplift1=-12(LC 14), 3=-12(LC 15) Max Grav 1=109(LC 20), 3=109(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.


 MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

MORRIS TO 12 NOINEE 4. MORRIS

10/15/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Grav 1=277(LC 20), 3=277(LC 21), 4=469(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

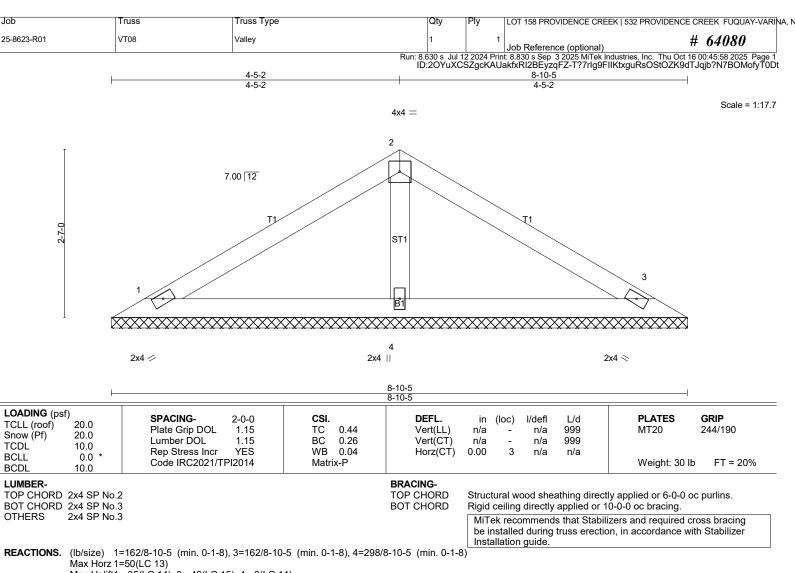
WEBS 2-4=-312/105

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 6-4-8, Exterior(2E) 6-4-8 to 11-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit or OFESE between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECŎMMENDE MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard


MORRELITION 15/202 10/15/2025

SEAL

28147

WOINER K. MORR

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Uplift1=-35(LC 14), 3=-42(LC 15), 4=-3(LC 14) Max Grav 1=225(LC 20), 3=225(LC 21), 4=305(LC 21)

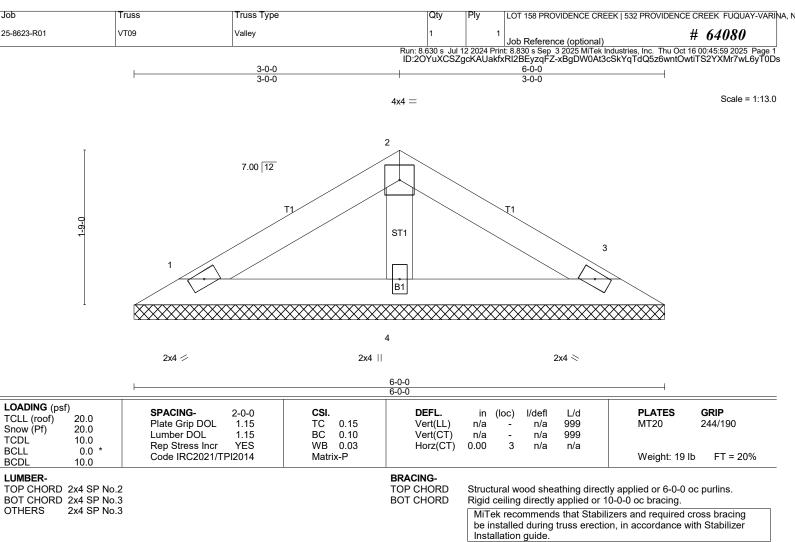
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.

 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN CONSIDERATIONS

 CONSIDERATIONS


 CONSIDERATIONS 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

MORRELITATION TO STATE OF THE PARTY OF THE P NOINEE K. MORR

10/15/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

REACTIONS. (lb/size) 1=103/6-0-0 (min. 0-1-8), 3=103/6-0-0 (min. 0-1-8), 4=188/6-0-0 (min. 0-1-8)

Max Horz 1=32(LC 11)

Max Uplift1=-22(LC 14), 3=-27(LC 15), 4=-2(LC 14) Max Grav 1=134(LC 20), 3=134(LC 21), 4=188(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

(9-12)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.

 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN CONSIDERATIONS

 CONSIDERATIONS

 CONSIDERATIONS 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

10/15/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

.lob Truss Type Truss LOT 158 PROVIDENCE CREEK | 532 PROVIDENCE CREEK FUQUAY-VARI<mark>N</mark>A, N 25-8623-R01 VT10 Valley # 64080 Job Reference (optional) un: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 16 00:45:59 2025 Page 1 ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-xBgDW0At3cSkYqTdQ5z6wntQztioS2xXMr7wL6yT0Ds 1-6-14 3-1-11 1-6-14 1-6-14 Scale = 1:7.2 3x6 = 2 7.00 12 3 В1 2x4 / 2x4 > 3-1-11 3-1-11 Plate Offsets (X,Y)-- [2:0-3-0,Edge] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d TCLL (roof) Plate Grip DOL 1.15 TC 0.02 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.08 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 8 lb FT = 20% Matrix-P **BCDL** 10.0

LUMBER-

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-1-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=83/3-1-11 (min. 0-1-8), 3=83/3-1-11 (min. 0-1-8)

Max Horz 1=13(LC 13)

Max Uplift1=-10(LC 14), 3=-10(LC 15) Max Grav 1=88(LC 20), 3=88(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that
- the member must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

 MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS. 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

MORRELINIAN STATE OF THE PARTY NOINEE K. MORR

10/15/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.