

RE: P05544-30705 907 Serenity Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: David Weekly Project Name: P05544-30705

Lot/Block: Model: A671 CAPSTONE / ELEV B / RH

Address: 66 Rainbrook Cove Subdivision: City: FuQuay Varina State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 37.0 psf Floor Load: N/A psf

This package includes 48 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	174501730	A01E	6/26/2025	21	174501750	D03	6/26/2025
2	174501731	A02	6/26/2025	22	174501751	D04	6/26/2025
3	174501732	A03	6/26/2025	23	174501752	D05	6/26/2025
4	174501733	A03G	6/26/2025	24	174501753	D06	6/26/2025
5	174501734	B01SE	6/26/2025	25	174501754	D07	6/26/2025
6	174501735	B02	6/26/2025	26	174501755	G01E	6/26/2025
7	174501736	B03	6/26/2025	27	174501756	G02	6/26/2025
8	174501737	B03A	6/26/2025	28	174501757	G03	6/26/2025
9	174501738	B04	6/26/2025	29	174501758	J1	6/26/2025
10	174501739	B04A	6/26/2025	30	174501759	J1H	6/26/2025
11	174501740	B05	6/26/2025	31	174501760	J2	6/26/2025
12	174501741	B06	6/26/2025	32	174501761	J3	6/26/2025
13	174501742	B07	6/26/2025	33	174501762	J4	6/26/2025
14	174501743	B08	6/26/2025	34	174501763	J5	6/26/2025
15	174501744	B09G	6/26/2025	35	174501764	J6	6/26/2025
16	174501745	C01E	6/26/2025	36	174501765	JD01	6/26/2025
17	174501746	C02	6/26/2025	37	174501766	JD02	6/26/2025
18	174501747	C03	6/26/2025	38	174501767	P01	6/26/2025
19	174501748	D01	6/26/2025	39	174501768	P02	6/26/2025
20	174501749	D02	6/26/2025	40	174501769	P03	6/26/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

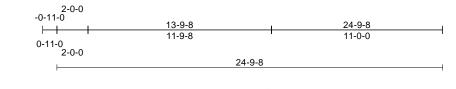
June 26, 2025

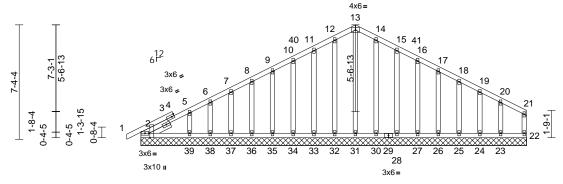
RE: P05544-30705 - 907 Serenity

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: David Weekly Project Name: P05544-30705 Lot/Block: Subdivision:


Lot/Block: Address: 66 Rainbrook Cove City, County: FuQuay Varina


State: NC

No.	Seal#	Truss Name	Date
41	174501770	P03E	6/26/2025
42	174501771	P04	6/26/2025
43	174501772	P05	6/26/2025
44	174501773	P06	6/26/2025
45	174501774	V01	6/26/2025
46	174501775	V02	6/26/2025
47	174501776	V03	6/26/2025
48	174501777	V04	6/26/2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	A01E	Common Supported Gable	1	1	Job Reference (optional)	174501730

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:13 ID:odxfn82QkkySSe2vWWDWfOzPUXw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74.1

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	22	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 184 lb	FT = 20%

LUMBEK	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0 BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=24-9-8, 22=24-9-8, 23=24-9-8, 24=24-9-8, 25=24-9-8, 26=24-9-8, 27=24-9-8, 28=24-9-8, 30=24-9-8,

31=24-9-8, 32=24-9-8, 33=24-9-8, 34=24-9-8, 35=24-9-8, 36=24-9-8,

37=24-9-8, 38=24-9-8, 39=24-9-8

Max Horiz 2=96 (LC 15)

Max Uplift 2=-33 (LC 12), 22=-3 (LC 16),

23=-52 (LC 17), 24=-23 (LC 17), 25=-30 (LC 17), 26=-28 (LC 17), 27=-28 (LC 17), 28=-33 (LC 17), 30=-17 (LC 17), 32=-21 (LC 16),

33=-32 (LC 16), 34=-28 (LC 16), 35=-29 (LC 16), 36=-29 (LC 16), 37=-29 (LC 16), 38=-25 (LC 16),

39=-44 (LC 16)

Max Grav 2=185 (LC 2), 22=53 (LC 2)

23=115 (LC 37), 24=95 (LC 2). 25=99 (LC 37), 26=99 (LC 2), 27=99 (LC 2), 28=99 (LC 37), 30=102 (LC 37), 31=120 (LC 33), 32=102 (LC 36), 33=99 (LC 36), 34=99 (LC 2), 35=99 (LC 36),

36=98 (LC 36), 37=102 (LC 36), 38=81 (LC 2), 39=153 (LC 36)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/19, 2-5=-96/63, 5-6=-71/66,

6-7=-63/77, 7-8=-57/89, 8-9=-54/107, 9-10=-62/130, 10-11=-71/154, 11-12=-80/180, 5) 12-13=-85/197, 21-22=-39/24,

24-9-8

13-14=-85/197, 14-15=-80/180, 15-16=-71/154, 16-17=-62/130,

17-18=-54/107, 18-19=-46/83, 19-20=-38/61, 20-21=-32/31

BOT CHORD 2-39=-26/40, 38-39=-23/39, 37-38=-23/39, 36-37=-23/39, 35-36=-23/39, 34-35=-23/39,

33-34=-23/39, 32-33=-23/39, 31-32=-23/39, 30-31=-23/39, 28-30=-23/39, 27-28=-23/39, 26-27=-23/39, 25-26=-23/39, 24-25=-23/39,

23-24=-23/39, 22-23=-23/39

13-31=-126/34, 12-32=-75/29, 11-33=-72/48, 10-34=-72/41, 9-35=-72/42, 8-36=-72/42, 7-37=-74/43, 6-38=-63/37, 5-39=-106/61, 14-30=-75/27, 15-28=-72/48, 16-27=-72/41, 17-26=-72/42, 18-25=-72/42, 19-24=-69/48,

20-23=-84/88

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 13-9-8, Corner(3R) 13-9-8 to 16-9-8, Exterior(2N) 16-9-8 to 24-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this desian.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

All plates are 2x4 (||) MT20 unless otherwise indicated.

- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 1-4-0 oc.

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

June 26,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

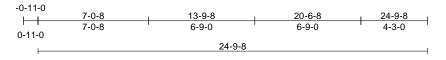
Γ,	Job	Truss	Truss Type	Qty	Ply	907 Serenity	
	P05544-30705	A01E	Common Supported Gable	1	1	Job Reference (optional)	174501730

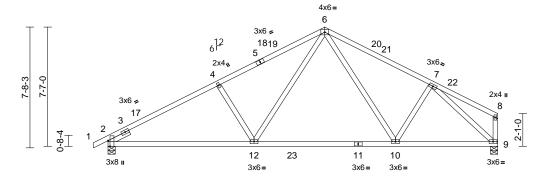
Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:13 Page: 2

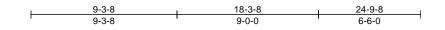
13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 2, 3 lb uplift at joint 22, 21 lb uplift at joint 32, 32 lb uplift at joint 33, 28 lb uplift at joint 34, 29 lb uplift at joint 35, 29 lb uplift at joint 36, 29 lb uplift at joint 37, 25 lb uplift at joint 38, 44 lb uplift at joint 39, 17 lb uplift at joint 30, 33 $\,$ lb uplift at joint 28, 28 lb uplift at joint 27, 28 lb uplift at joint 26, 30 lb uplift at joint 25, 23 lb uplift at joint 24 and 52 lb uplift at joint 23.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard






Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	A02	Common	3	1	Job Reference (optional)	

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:15 ID:ciBDmyIXKg8F06J_tV6z8JzPUYu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.3

Plate Offsets (X, Y): [2:0-4-5,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.25	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.39	10-12	>763	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 130 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

4-3-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size) 2=0-5-8, 9=0-5-8

Max Horiz 2=106 (LC 15)

Max Uplift 2=-148 (LC 16), 9=-118 (LC 17)

Max Grav 2=1042 (LC 3), 9=1008 (LC 3)

(lb) - Maximum Compression/Maximum FORCES

Tension TOP CHORD

1-2=0/22, 2-4=-1557/253, 4-6=-1421/267,

6-7=-1173/232, 7-8=-69/54, 8-9=-79/36

BOT CHORD 2-12=-240/1348, 10-12=-119/846, 9-10=-164/924

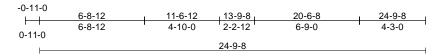
WEBS 6-10=-61/324, 7-10=-49/208, 6-12=-120/704,

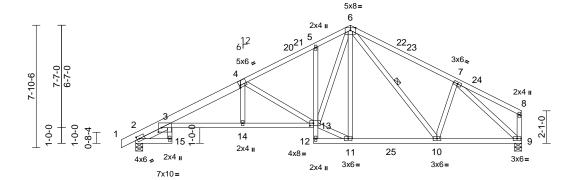
4-12=-348/181, 7-9=-1244/203

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 13-9-8, Exterior(2R) 13-9-8 to 16-9-8, Interior (1) 16-9-8 to 24-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 2 and 118 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard



June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	A03	Roof Special	6	1	Job Reference (optional)	174501732

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:15 ID:20kunY02aVMTuXR1?X7VDYzPUVO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

2-4-0 6-10-8 11-5-0 13-9-8 19-4-4 24-9-8 2-4-0 4-6-8 4-6-8 2-4-8 5-6-12 5-5-4

Plate Offsets (X, Y): [2:0-1-11,0-2-1], [3:0-2-4,0-3-6], [4:0-1-0,0-1-12], [13:0-2-12,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	-0.19	3-14	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.82	Vert(CT)	-0.33	3-14	>881	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.20	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 165 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 1-4:2x6 SP DSS BOT CHORD 2x4 SP No.2 *Except* 3-13:2x4 SP No.1

WEBS 2x4 SP No.2 SLIDER Left 2x4 SP No.2 -- 1-11-3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-6-8 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 6-10

REACTIONS (size) 2=0-5-8, 9=0-5-8 Max Horiz 2=107 (LC 15)

Max Uplift 2=-149 (LC 16), 9=-117 (LC 17)

Max Grav 2=1040 (LC 3), 9=988 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/28, 2-3=-449/85, 3-5=-1994/307,

5-6=-1295/286, 6-7=-1118/249, 7-8=-75/54,

BOT CHORD 2-15=-3/6, 3-15=-16/119, 3-14=-311/1831,

13-14=-311/1845, 12-13=-6/8, 5-13=-149/84,

11-12=-20/53, 10-11=-111/852, 9-10=-162/905

4-13=-775/185, 6-13=-184/923,

7-9=-1207/199, 4-14=0/260, 6-11=-223/66,

11-13=-99/892, 6-10=-96/200, 7-10=-48/191

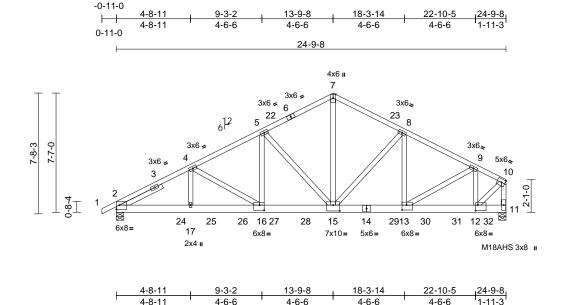
NOTES

WEBS

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 1-11-0, Interior (1) 1-11-0 to 13-9-8, Exterior(2R) 13-9-8 to 16-9-8, Interior (1) 16-9-8 to 24-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 2 and 117 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	A03G	Common Girder	1	2	Job Reference (optional)	174501733

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:15 ID:c98MdKuCLEs4xtiSuMV?m8zPUZQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.3

Plate Offsets (X, Y): [2:Edge,0-3-4], [12:0-1-12,0-4-4], [13:0-3-8,0-3-12], [15:0-5-0,0-4-8], [16:0-3-8,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.13	16-17	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.24	16-17	>999	180	M18AHS	186/179
TCDL	7.0	Rep Stress Incr	NO	WB	0.59	Horz(CT)	0.05	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 349 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

BOT CHORD 2x6 SP DSS *Except* 14-11:2x6 SP No.2

WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 3-0-0

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-1-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

REACTIONS (size) 2=0-5-8, 11=0-5-8

Max Horiz 2=105 (LC 11) Max Uplift 2=-727 (LC 12), 11=-720 (LC 13)

Max Grav 2=4676 (LC 2), 11=5362 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/28, 2-4=-8081/1233, 4-5=-7064/1018,

5-7=-5186/767, 7-8=-5180/778,

8-9=-5890/832, 9-10=-3941/538 10-11=-5180/709

BOT CHORD 2-17=-1124/7102, 16-17=-1124/7102,

15-16=-892/6308, 13-15=-697/5222,

12-13=-488/3502, 11-12=-19/82

WEBS 7-15=-626/4356, 8-15=-999/209,

8-13=-107/811, 9-13=-272/1994, 9-12=-2024/323, 5-15=-2558/440,

5-16=-327/2411, 4-16=-945/269,

4-17=-199/1050, 10-12=-658/4804

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0

Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are MT20 plates unless otherwise indicated.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 727 lb uplift at joint 2 and 720 lb uplift at joint 11.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1032 lb down and 252 lb up at 4-1-10, 710 lb down and 81 lb up at 6-0-12, 710 lb down and 80 lb up at 8-0-12, 792 lb down and 89 lb up at 10-0-12, 788 lb down and 97 lb up at 12-0-12, 710 lb down and 101 lb up at 13-8-4. 710 lb down and 101 lb up at 15-8-4, 710 lb down and 101 lb up at 17-8-4, 710 lb down and 101 lb up at 19-8-4, and 710 lb down and 101 lb up at 21-8-4, and 802 lb down and 76 lb up at 23-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

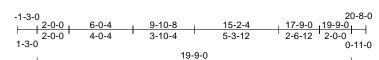
Uniform Loads (lb/ft)

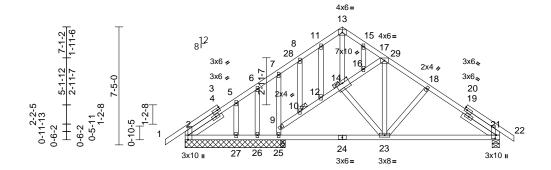
Vert: 1-7=-29, 7-10=-29, 11-18=-20

Concentrated Loads (lb)

Vert: 14=-467 (F), 15=-467 (F), 24=-881 (F), 25=-524 (F), 26=-509 (F), 27=-494 (F), 28=-479 (F), 29=-467 (F), 30=-467 (F), 31=-467 (F), 32=-509 (F)

June 26,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B01SE	Common Structural Gable	1	1	Job Reference (optional)	174501734

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:16 ID:rOFXQrrzHShNfnCSJaH0syzPVXS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-12 12-6-6 19-9-0 6-1-12 6-4-10 7-2-10

Plate Offsets (X, Y): [2:0-3-8,Edge], [14:0-5-0,0-2-0], [21:0-2-8,0-0-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.04	21-23	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.08	21-23	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.01	21	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 2-6-0, Right 2x4 SP No.2

-- 2-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 14,

10

REACTIONS (size) 2=6-3-8, 21=0-5-8, 25=6-3-8,

> 26=6-3-8, 27=6-3-8 Max Horiz 2=128 (LC 13)

Max Uplift 2=-13 (LC 15), 21=-98 (LC 15),

25=-72 (LC 14), 26=-116 (LC 5),

27=-62 (LC 14) Max Grav

2=412 (LC 2), 21=642 (LC 2), 25=407 (LC 2), 26=-17 (LC 10),

27=172 (LC 32)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/31, 2-5=-389/40, 5-6=-361/56,

6-7=-328/66, 7-8=-366/92, 8-11=-327/101,

11-13=-311/113, 13-15=-315/107,

15-17=-340/88, 17-18=-609/111,

18-21=-748/111, 21-22=0/20, 9-10=-150/32,

10-12=-145/29, 12-14=-123/23,

14-16=-260/75, 16-17=-242/63 BOT CHORD 2-27=0/280, 26-27=0/275, 25-26=0/275,

23-25=0/377, 21-23=-34/594

WEBS

6-26=-13/14, 5-27=-130/75, 13-14=-85/218, 11-12=-44/28, 8-10=-11/10, 9-25=-266/112, 7-9=-175/95, 15-16=-34/22, 17-23=0/210, 14-23=-51/160, 18-23=-198/102

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 20-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

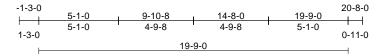
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 2, 98 lb uplift at joint 21, 116 lb uplift at joint 26, 62 lb uplift at joint 27 and 72 lb uplift at joint 25.

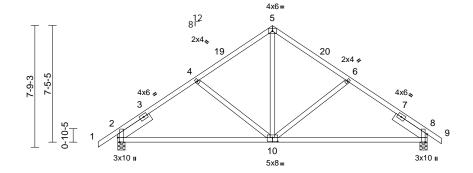
Page: 1

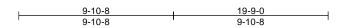
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B02	Common	1	1	Job Reference (optional)	174501735

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:16 ID:60s2Blna_PqwspHspWxAZtzPVFS-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:73.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-6-2,Edge], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.12	10-17	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.24	10-17	>998	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 109 lb	FT = 20%

LUMBER

BRACING

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8. 8=0-5-8

Max Horiz 2=135 (LC 13)

Max Uplift 2=-116 (LC 14), 8=-110 (LC 15) Max Grav 2=799 (LC 2), 8=779 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/37, 2-4=-795/147, 4-5=-715/141,

5-6=-716/141, 6-8=-797/149, 8-9=0/27

BOT CHORD 2-8=-151/702

WEBS 5-10=-65/501, 6-10=-238/146, 4-10=-234/145

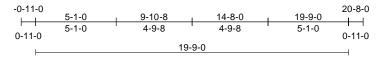
NOTES

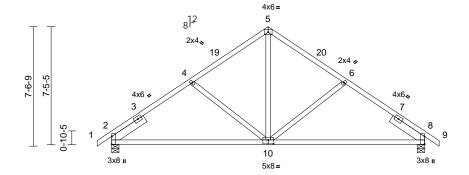
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 20-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 116 lb uplift at joint 2 and 110 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


June 26,2025



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B03	Common	1	1	Job Reference (optional)	174501736

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:17 ID:bIUGYjCXI9EyZBSaMN4NTGzPVEv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-10-8 19-9-0 9-10-8 9-10-8

Scale = 1:72.7

Plate Offsets (X, Y): [2:Edge,0-0-0], [8:Edge,0-0-0], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.12	10-17	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.24	10-17	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 108 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8. 8=0-5-8

Max Horiz 2=-132 (LC 12)

Max Uplift 2=-110 (LC 14), 8=-110 (LC 15)

Max Grav 2=780 (LC 2), 8=780 (LC 2)

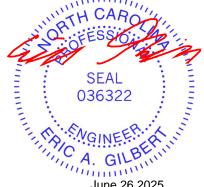
FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/27, 2-4=-799/149, 4-5=-717/142,

5-6=-717/142, 6-8=-799/149, 8-9=0/27

BOT CHORD 2-8=-154/705

WEBS 5-10=-66/502, 6-10=-238/146, 4-10=-238/146


NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 20-8-0 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

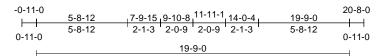
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

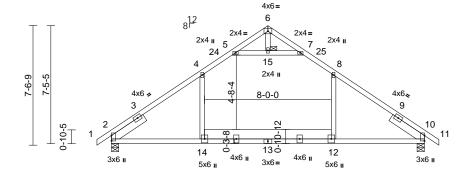
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint 2 and 110 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B03A	Attic	4	1	Job Reference (optional)	174501737

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:17 ID:vogBhELY3XXrIOUbD2lu8bzPVC8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

5-8-12 9-10-8 14-0-4 19-9-0 5-8-12 4-1-12 4-1-12 5-8-12

Plate Offsets (X, Y): [2:Edge,0-0-0], [10:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	-0.28	14-18	>857	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.37	14-18	>642	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS		Attic	-0.22	12-14	>462	360		
BCDL	10.0										Weight: 126 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

2x4 SP No.2 *Except* 14-12:2x8 SP DSS **BOT CHORD WEBS** 2x4 SP No.1 *Except* 6-15:2x4 SP No.2 SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 15

REACTIONS (size) 2=0-5-8, 10=0-5-8

> Max Horiz 2=-132 (LC 12) Max Uplift 2=-85 (LC 14), 10=-85 (LC 15)

Max Grav 2=868 (LC 27), 10=868 (LC 28)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-963/114, 4-5=-751/132,

5-6=-21/202, 6-7=-22/202, 7-8=-751/132,

8-10=-962/114, 10-11=0/27

BOT CHORD 2-14=-133/809, 12-14=-40/809,

10-12=-79/809 **WEBS**

8-12=0/373, 4-14=0/373, 5-15=-995/158,

7-15=-995/158, 6-15=-2/15

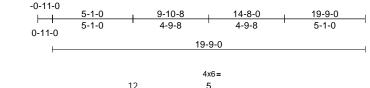
NOTES

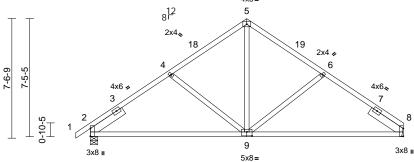
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0. Interior (1) 2-1-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 20-8-0 zone; cantilever left and right exposed: end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 12-14
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 2 and 85 lb uplift at joint 10.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B04	Common	5	1	Job Reference (optional)	174501738

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:18 ID:BPCGoy98tKD8ap38AiulQ0zPV7D-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.7

Plate Offsets (X, Y): [2:Edge,0-0-0], [8:Edge,0-0-0], [9:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.12	9-12	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.24	9-12	>995	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8. 8= Mechanical

Max Horiz 2=128 (LC 11)

Max Uplift 2=-110 (LC 14), 8=-95 (LC 15) Max Grav 2=781 (LC 2), 8=730 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-801/149, 4-5=-719/142,

5-6=-720/143, 6-8=-802/150

BOT CHORD 2-8=-161/709

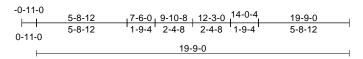
WEBS 5-9=-66/503, 6-9=-242/147, 4-9=-238/146

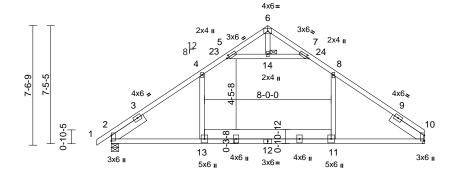
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 19-9-0 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 8 and 110 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard



June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B04A	Attic	1	1	Job Reference (optional)	174501739

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:18 ID:_k4GR38SxvDF5ctQbMJROuzPV3N-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

5-8-12	9-10-8	14-0-4	19-9-0
5-8-12	4-1-12	4-1-12	5-8-12

Plate Offsets (X, Y): [2:Edge,0-0-0], [5:0-1-15,0-1-8], [7:0-1-15,0-1-8], [10:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	-0.27	11-17	>867	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.34	11-17	>692	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.06	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS		Attic	-0.22	11-13	>452	360		
BCDL	10.0										Weight: 125 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

2x4 SP No.2 *Except* 13-11:2x8 SP DSS **BOT CHORD WEBS** 2x4 SP No.1 *Except* 6-14:2x4 SP No.2 SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-5-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 14

REACTIONS 2=0-5-8, 10= Mechanical (size)

Max Horiz 2=128 (LC 11)

Max Uplift 2=-85 (LC 14), 10=-70 (LC 15) Max Grav 2=868 (LC 27), 10=822 (LC 28)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/27, 2-4=-977/116, 4-5=-765/132,

5-6=-17/127, 6-7=-17/128, 7-8=-765/133,

8-10=-975/116

BOT CHORD 2-13=-138/820, 11-13=-49/820,

10-11=-83/820

WFBS 8-11=0/372, 4-13=0/374, 5-14=-911/144,

7-14=-911/144, 6-14=-1/9

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0. Interior (1) 2-1-0 to 9-10-8, Exterior(2R) 9-10-8 to 12-10-8, Interior (1) 12-10-8 to 19-9-0 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

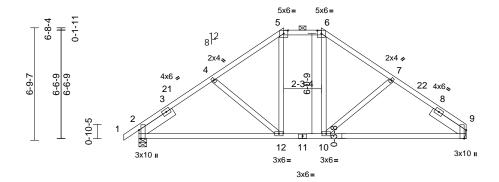
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-13
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 10 and 85 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPI 1
- 12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B05	Hip	1	1	Job Reference (optional)	174501740

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:18 ID:AfpiRGuLLy1SX8cKDOQ_uzzPV2P-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

8-7-2 11-1-14 19-9-0 8-7-2 2-6-12 8-7-2

Scale = 1:69.5

Plate Offsets (X, Y): [2:0-6-2,Edge], [2:0-0-0,0-0-0], [5:0-3-0,0-2-3], [6:0-3-0,0-2-3], [9:0-6-2,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.11	10-15	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.20	10-15	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 111 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No 2 **BOT CHORD WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 9= Mechanical (size)

Max Horiz 2=113 (LC 11)

Max Uplift 2=-106 (LC 14), 9=-91 (LC 15) Max Grav 2=855 (LC 26), 9=808 (LC 27)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/27, 2-4=-949/138, 4-5=-842/131,

TOP CHORD 5-6=-653/137, 6-7=-843/141, 7-9=-932/140

BOT CHORD 2-12=-131/839, 10-12=-27/671, 9-10=-87/775 4-12=-208/134, 5-12=-30/302, 6-10=-30/305,

7-10=-213/135

WEBS **NOTES**

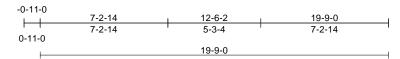
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 8-8-14, Exterior(2E) 8-8-14 to 11-0-2, Exterior(2R) 11-0-2 to 15-4-4, Interior (1) 15-4-4 to 19-9-0 zone: cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

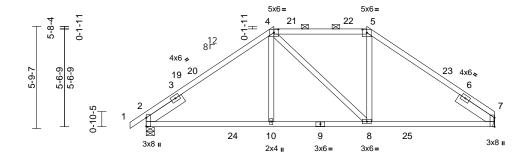
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 9 and 106 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B06	Hip	1	1	Job Reference (optional)	174501741

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:19 ID:Bq17_mXeJk99r1?TBystPezPV0H-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

1	7-1-2	12-7-14	19-9-0
Ī	7-1-2	5-6-12	7-1-2

Scale = 1:65.3

Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-3-0,0-2-3], [5:0-3-0,0-2-3], [7:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	0.07	8-13	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.11	8-13	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	-0.03	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 103 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-4-9 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 7= Mechanical (size)

Max Horiz 2=95 (LC 11)

Max Uplift 2=-98 (LC 14), 7=-83 (LC 15) Max Grav 2=854 (LC 3), 7=812 (LC 3)

FORCES

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-961/136, 4-5=-748/155,

5-7=-934/136

BOT CHORD 2-10=-198/754, 8-10=-71/747, 7-8=-148/755

WEBS 4-10=0/278, 4-8=-107/112, 5-8=-2/279

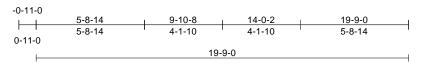
NOTES

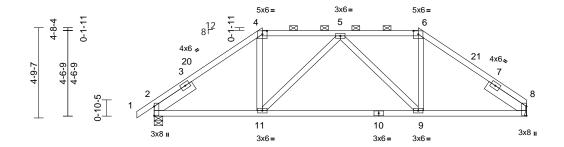
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-2-14, Exterior(2R) 7-2-14 to 11-5-13, Interior (1) 11-5-13 to 12-6-2, Exterior(2R) 12-6-2 to 16-9-1, Interior (1) 16-9-1 to 19-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint 7 and 98 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

June 26,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B07	Hip	1	1	I745017- Job Reference (optional)	42

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:19 ID:OAUW5w2M?qw3PAzXpHJgQIzPUeN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

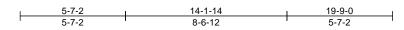


Plate Offsets (X, Y): [2:Edge,0-0-0], [2:0-0-0,0-0-0], [4:0-3-0,0-2-3], [6:0-3-0,0-2-3], [8:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.14	9-11	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.28	9-11	>846	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0			1							Weight: 105 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-8-7 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 8= Mechanical (size)

Max Horiz 2=76 (LC 11)

Max Uplift 2=-89 (LC 14), 8=-74 (LC 15) Max Grav 2=781 (LC 2), 8=730 (LC 2)

FORCES

(lb) - Maximum Compression/Maximum Tension

1-2=0/27, 2-4=-923/122, 4-5=-712/136,

TOP CHORD 5-6=-715/135, 6-8=-926/125

BOT CHORD 2-11=-126/720, 9-11=-118/846, 8-9=-88/724

WEBS 4-11=-21/338, 5-11=-255/115, 5-9=-252/115,

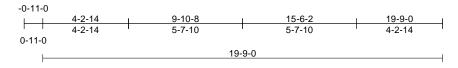
6-9=-21/338

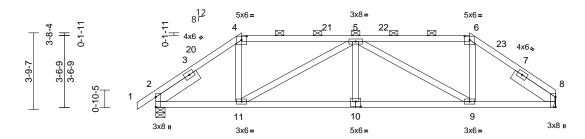
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-8-14, Exterior(2R) 5-8-14 to 9-10-8, Interior (1) 9-10-8 to 14-0-2, Exterior(2R) 14-0-2 to 18-3-1, Interior (1) 18-3-1 to 19-9-0 zone; cantilever left and right exposed: end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 8 and 89 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B08	Hip	1	1	Job Reference (optional)	174501743

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:19 ID:L_L7dwwbVSS3V_KJOKb0CzzPUby-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.9

Plate Offsets (X, Y): [2:Edge,0-0-0], [2:0-0-0,0-0-0], [4:0-3-0,0-2-3], [6:0-3-0,0-2-3], [8:Edge,0-0-0], [10:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.04	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.10	10-11	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.42	Horz(CT)	0.04	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 107 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-7-12 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 8= Mechanical (size)

Max Horiz 2=58 (LC 11)

Max Uplift 2=-79 (LC 11), 8=-75 (LC 10) Max Grav 2=781 (LC 2), 8=730 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-935/127, 4-5=-734/124,

5-6=-739/124, 6-8=-939/128

BOT CHORD 2-11=-124/746, 9-11=-189/1181, 8-9=-73/751 WEBS

4-11=-22/348, 5-11=-559/136, 5-10=0/255, 5-9=-556/136, 6-9=-22/348

NOTES

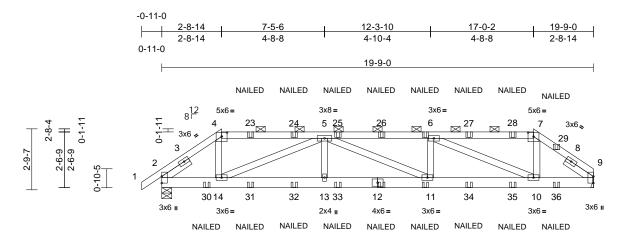
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 4-2-14, Exterior(2R) 4-2-14 to 8-5-13, Interior (1) 8-5-13 to 15-6-2, Exterior(2E) 15-6-2 to 19-9-0 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 8 and 79 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	B09G	Hip Girder	1	2	Job Reference (optional)	174501744

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:20 ID:fhvvxO2Iqj20X7M?nfFbxNzPUaW-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

7-5-6 12-3-10 17-1-14 19-9-0 2-7-2 2-7-2 4-10-4 4-10-4 4-10-4 2-7-2

Scale = 1:52.7

Plate Offsets (X, Y): [4:0-3-0,0-2-3], [7:0-3-0,0-2-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.05	11-13	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.09	11-13	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 233 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No 2 WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 9= Mechanical (size)

Max Horiz 2=40 (LC 7)

Max Uplift 2=-277 (LC 7), 9=-246 (LC 6)

Max Grav 2=1123 (LC 2), 9=1052 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-1403/384, 4-5=-1117/321,

5-6=-2337/641, 6-7=-1104/296,

7-9=-1384/352

BOT CHORD 2-14=-334/1153, 13-14=-662/2354,

11-13=-662/2354, 10-11=-643/2337,

9-10=-281/1139

WEBS 4-14=-137/580, 5-13=0/281, 5-14=-1375/396,

6-11=0/275, 5-11=-31/21, 7-10=-113/556,

6-10=-1366/405

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 246 lb uplift at joint 9 and 277 lb uplift at joint 2.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-29, 4-7=-39, 7-9=-29, 15-19=-20

Concentrated Loads (lb)

Vert: 12=-28 (B), 6=-44 (B), 11=-28 (B), 23=-44 (B), 24=-44 (B), 25=-44 (B), 26=-44 (B), 27=-44 (B), 28=-45 (B), 29=-14 (B), 30=-100 (B), 31=-28 (B),

32=-28 (B), 33=-28 (B), 34=-28 (B), 35=-28 (B),

36=-68 (B)

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	C01E	Common Supported Gable	1	1	Job Reference (optional)	174501745

Run: 8.83 S. Jun 11.2025 Print: 8.830 S. Jun 11.2025 MiTek Industries. Inc. Thu Jun 26.11:30:20 ID:xDU9wEmkGHk2VJqgz4iJu9zPXJA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

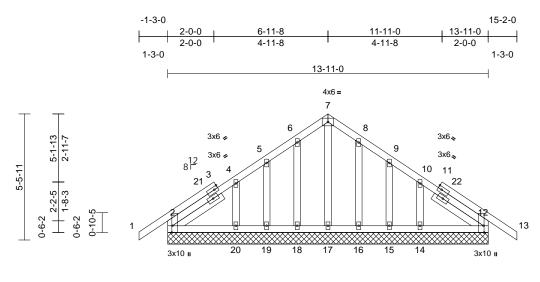


Plate Offsets (X, Y): [2:0-3-8,Edge], [12:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999			
TCDL	7.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	12	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS									
BCDL	10.0										Weight: 98 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD **OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 2-6-11, Right 2x4 SP

No.2 -- 2-6-11

BRACING TOP CHORD

FORCES

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=13-11-0. 12=13-11-0. 14=13-11-0, 15=13-11-0, 16=13-11-0. 17=13-11-0. 18=13-11-0, 19=13-11-0, 20=13-11-0

Max Horiz 2=-94 (LC 12)

Max Uplift 2=-14 (LC 15), 12=-23 (LC 15),

14=-60 (LC 15), 15=-36 (LC 15), 16=-32 (LC 15), 18=-34 (LC 14), 19=-34 (LC 14), 20=-57 (LC 14)

Max Grav 2=206 (LC 2), 12=206 (LC 2),

14=157 (LC 27), 15=86 (LC 27), 16=105 (LC 33), 17=93 (LC 29),

18=108 (LC 26), 19=85 (LC 2),

20=153 (LC 26)

(lb) - Maximum Compression/Maximum Tension

1-2=0/31, 2-4=-98/57, 4-5=-66/51 5-6=-59/83, 6-7=-67/117, 7-8=-67/117,

8-9=-50/83, 9-10=-42/44, 10-12=-71/20,

12-13=0/31

BOT CHORD 2-20=-30/93, 19-20=-29/91, 18-19=-29/91,

17-18=-29/91, 16-17=-29/91, 15-16=-29/91, 14-15=-29/91, 12-14=-30/93

WEBS

7-17=-84/27, 6-18=-79/51, 5-19=-67/58 4-20=-110/82, 8-16=-76/51, 9-15=-67/59,

13-11-0

10-14=-109/83

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-3-0 to 1-9-0, Exterior(2N) 1-9-0 to 6-11-8, Corner(3R) 6-11-8 to 9-11-8, Exterior(2N) 9-11-8 to 15-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 2, 23 lb uplift at joint 12, 34 lb uplift at joint 18, 34 lb uplift at joint 19, 57 lb uplift at joint 20, 32 lb uplift at joint 16, 36 lb uplift at joint 15 and 60 lb uplift at joint 14.

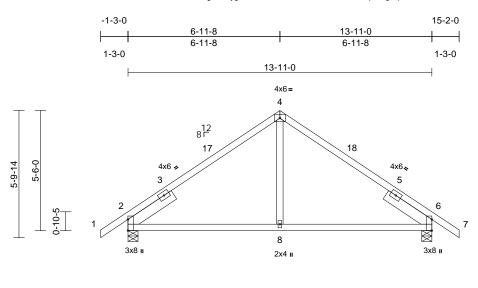
Page: 1

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	C02	Common	1	1	Job Reference (optional)	174501746

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:21 ID:Tg7tnd1ygWbMIYZhSldeiHzPWlz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

13-11-0

6-11-8

Scale = 1:52.8

Plate Offsets (X, Y): [2:Edge,0-0-0], [6:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.07	8-15	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.10	8-15	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.03	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 70 lb	FT = 20%

6-11-8

6-11-8

LUMBER

2x4 SP No 2 TOP CHORD **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 6=0-5-8

Max Horiz 2=101 (LC 13)

Max Uplift 2=-87 (LC 14), 6=-87 (LC 15)

Max Grav 2=582 (LC 2), 6=582 (LC 2) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/37, 2-4=-466/128, 4-6=-466/128,

6-7=0/37 **BOT CHORD** 2-8=-165/388, 6-8=-117/388

WEBS 4-8=-1/293

NOTES

FORCES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-11-8, Exterior(2R) 6-11-8 to 9-11-8, Interior (1) 9-11-8 to 15-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2 and 87 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

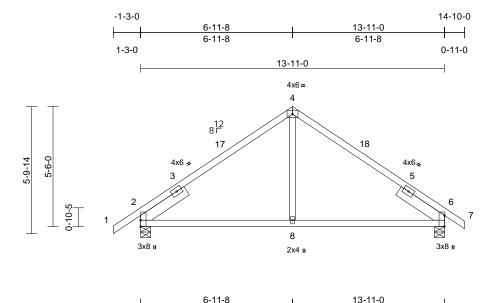
LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	C03	Common	3	1	Job Reference (optional)	174501747

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:21 ID:ECba6r5iJDPJhajYW2TY24zPVvg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

6-11-8

Page: 1

Scale = 1:52.8

Plate Offsets (X, Y): [2:Edge,0-0-0], [6:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.07	8-15	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.11	8-15	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.03	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 69 lb	FT = 20%

6-11-8

LUMBER

2x4 SP No 2 TOP CHORD BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 6=0-5-8 (size)

Max Horiz 2=99 (LC 13) Max Uplift 2=-87 (LC 14), 6=-81 (LC 15)

Max Grav 2=584 (LC 2), 6=563 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/37, 2-4=-469/129, 4-6=-469/130,

6-7=0/27

BOT CHORD 2-8=-168/390, 6-8=-125/390

WEBS 4-8=-2/294

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-11-8, Exterior(2R) 6-11-8 to 9-11-8, Interior (1) 9-11-8 to 14-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

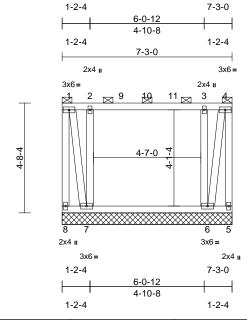
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2 and 81 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D01	Roof Special	1	1	Job Reference (optional)	174501748

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:21 ID:B2u9ITy3C0gvU41ckPqOGTzPa?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.23	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 58 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 1-4. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS 5=7-3-0, 6=7-3-0, 7=7-3-0, 8=7-3-0 (size) Max Uplift 5=-143 (LC 25), 6=-80 (LC 10),

7=-79 (LC 10), 8=-141 (LC 25) Max Grav 5=-6 (LC 10), 6=782 (LC 3), 7=782

(LC 3), 8=-3 (LC 10) **FORCES** (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-5/4, 2-3=-26/12, 3-4=-5/4 **BOT CHORD** 7-8=-2/1, 6-7=-12/26, 5-6=-2/1 WFBS 1-8=-39/47, 4-5=-31/47, 2-7=-658/228,

3-6=-658/229, 1-7=-32/41, 4-6=-30/40

NOTES

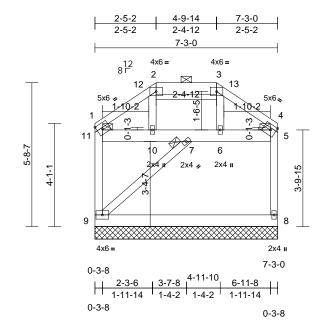
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 8, 143 lb uplift at joint 5, 79 lb uplift at joint 7 and 80 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 206 lb down and 63 lb up at 0-3-8, 145 lb down and 45 lb up at 2-6-4, 145 lb down and 45 lb up at 3-7-8, and 145 lb down and 45 lb up at 4-8-12, and 206 lb down and 60 lb up at 6-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-39, 5-8=-20 Concentrated Loads (lb)


Vert: 1=-158, 4=-158, 9=-76, 10=-76, 11=-76

June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D02	Roof Special Girder	1	1	Job Reference (optional)	174501749

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:21 ID:NzdbJgiyb3U6wcnXMQyxmYzPa_z-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	NO	WB	0.05	Horiz(TL)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 69 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 2-3:2x6 SP No.2 2x6 SP No.2 **BOT CHORD**

2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-3.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 11,

5.7

REACTIONS (size) 8=7-3-0, 9=7-3-0

Max Horiz 9=129 (LC 9)

Max Uplift 8=-22 (LC 13), 9=-22 (LC 12)

Max Grav 8=327 (LC 2), 9=327 (LC 2)

(lb) - Maximum Compression/Maximum **FORCES**

Tension TOP CHORD

1-2=-268/70, 2-3=-191/65, 3-4=-268/90,

9-11=-252/50, 1-11=-197/47, 5-8=-256/41, 4-5=-197/45

BOT CHORD $8\hbox{-}9\hbox{--}21/26,\ 10\hbox{--}11\hbox{--}11/186,\ 7\hbox{--}10\hbox{--}11/185,$

6-7=-97/187, 5-6=-100/191

WEBS 7-9=-121/117, 2-10=-10/66, 3-6=-38/87

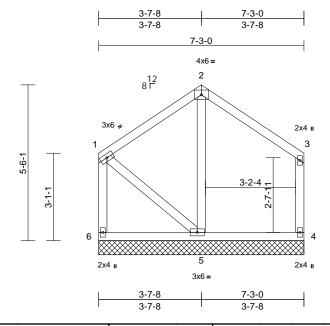
NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Building Designer/Project engineer responsible for 5) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 8 and 22 lb uplift at joint 9.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D03	Valley	1	1	Job Reference (optional)	174501750

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:22 ID:cBZgfTwcDBobBm8Ow0uUBjzPZYH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.7

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 46 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 7-3-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size)

4=7-3-0, 5=7-3-0, 6=7-3-0 Max Horiz 6=120 (LC 11)

Max Uplift 4=-40 (LC 15), 5=-76 (LC 11),

6=-82 (LC 10)

Max Grav 4=136 (LC 26), 5=323 (LC 25),

6=173 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

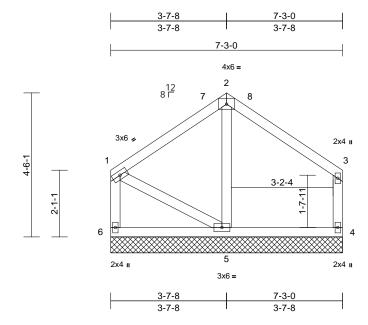
TOP CHORD 1-2=-90/113, 2-3=-89/113, 1-6=-164/170,

3-4=-110/114

BOT CHORD 5-6=-110/111. 4-5=-39/42 WFBS 2-5=-188/84, 1-5=-105/105

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-7-8, Exterior(2R) 3-7-8 to 6-7-8, Interior (1) 6-7-8 to 7-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10


- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 6, 40 lb uplift at joint 4 and 76 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D04	Valley	1	1	Job Reference (optional)	174501751

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:22 ID:kMICZYDkY_N_1Xa4eYPsgwzPaCV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 40 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 4=7-3-0, 5=7-3-0, 6=7-3-0 (size)

Max Horiz 6=93 (LC 11)

Max Uplift 4=-44 (LC 15), 5=-38 (LC 11),

6=-46 (LC 10)

Max Grav 4=131 (LC 26), 5=297 (LC 25),

6=145 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-81/101, 2-3=-73/111, 1-6=-125/151,

3-4=-105/123

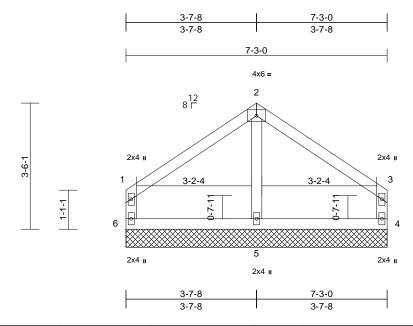
BOT CHORD 5-6=-86/82. 4-5=-25/34 WFBS 2-5=-188/75. 1-5=-77/77

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 3-7-8, Corner(3R) 3-7-8 to 6-7-8, Exterior(2N) 6-7-8 to 7-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 6, 44 lb uplift at joint 4 and 38 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D05	Valley	1	1	Job Reference (optional)	174501752

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:22 ID:99Di_dZIQfoRtWyKKtp89BzPZWA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 30 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 4=7-3-0, 5=7-3-0, 6=7-3-0 (size)

Max Horiz 6=66 (LC 11)

Max Uplift 4=-43 (LC 15), 6=-43 (LC 14)

Max Grav 4=151 (LC 2), 5=212 (LC 2), 6=151

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-105/97, 2-3=-105/96, 1-6=-121/103,

3-4=-121/102

5-6=-44/61, 4-5=-44/61 BOT CHORD

WEBS 2-5=-133/17

NOTES

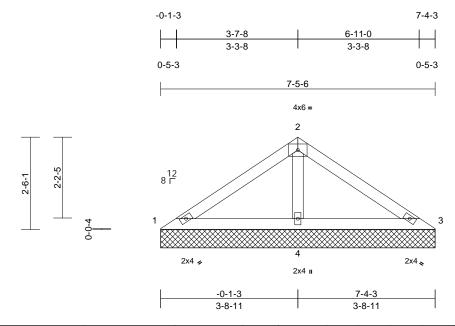
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-7-8, Exterior(2R) 3-7-8 to 6-7-8, Interior (1) 6-7-8 to 7-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 6 and 43 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D06	Valley	1	1	Job Reference (optional)	174501753

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:22 ID:_reqNI2O?yrmhf00gGXXndzPZVY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 26 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-3-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-5-6, 3=7-5-6, 4=7-5-6 Max Horiz 1=-43 (LC 12)

1=-9 (LC 32), 3=-10 (LC 10), 4=-72 Max Uplift

(IC 14)

1=65 (LC 31), 3=65 (LC 32), 4=474 Max Grav

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-75/201, 2-3=-75/201 1-4=-143/116, 3-4=-143/116 BOT CHORD

WFBS 2-4=-332/154

NOTES

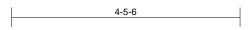
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-1-3 to 2-10-13, Interior (1) 2-10-13 to 3-7-8, Exterior(2R) 3-7-8 to 6-5-0, Interior (1) 6-5-0 to 7-4-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

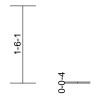
- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 10 lb uplift at joint 3 and 72 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	D07	Valley	1	1	Job Reference (optional)	174501754

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:23 ID:rYx3h7woRsuoKAMW?kc1v?zPZEw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

4-5-6

Scale = 1:22.4

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-6 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=4-5-6, 3=4-5-6

Max Horiz 1=-24 (LC 10)

Max Uplift 1=-22 (LC 14), 3=-22 (LC 15) Max Grav 1=165 (LC 2), 3=165 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-249/101, 2-3=-249/101 TOP CHORD

BOT CHORD 1-3=-74/201

NOTES

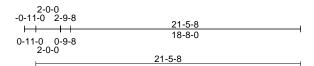
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

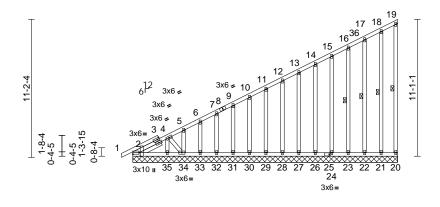
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 22 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

June 26,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	G01E	Monopitch Supported Gable	1	1	Job Reference (optional)	174501755

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:23 ID:zMkpa4u5nrT3RhODliy6FTzPZ5w-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:93.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [2:Edge,0-1-8], [25:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999	1	
TCDL	7.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	34	n/a	n/a	1	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 209 lb	FT = 20%

BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

TOP CHORD 2x4 SP No 2

SLIDER Left 2x4 SP No.2 -- 1-11-7

BRACING

LUMBER

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 19-20, 18-21, 17-22,

16-23

REACTIONS (size)

2=21-5-8, 20=21-5-8, 21=21-5-8, 22=21-5-8, 23=21-5-8, 24=21-5-8, 26=21-5-8, 27=21-5-8, 28=21-5-8, 29=21-5-8, 30=21-5-8, 31=21-5-8, 32=21-5-8, 33=21-5-8, 34=21-5-8, 35=21-5-8

Max Horiz 2=308 (LC 16)

Max Uplift 20=-11 (LC 16), 21=-28 (LC 16),

22=-30 (LC 16), 23=-29 (LC 16), 24=-29 (LC 16), 26=-29 (LC 16), 27=-29 (LC 16), 28=-29 (LC 16), 29=-29 (LC 16), 30=-29 (LC 16),

31=-29 (LC 16), 32=-28 (LC 16), 33=-32 (LC 16), 34=-73 (LC 16)

2=186 (LC 2), 20=36 (LC 2), 21=99 Max Grav (LC 2), 22=100 (LC 2), 23=99 (LC 2), 24=99 (LC 2), 26=99 (LC 2), 27=99 (LC 2), 28=99 (LC 2), 29=99

(LC 2), 30=99 (LC 2), 31=99 (LC 2), 32=98 (LC 2), 33=100 (LC 2), 34=111 (LC 2), 35=99 (LC 32)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/19, 2-4=-298/135, 4-5=-335/161,

5-6=-319/154, 6-7=-294/141, 7-9=-271/129, 9-10=-247/117, 10-11=-224/105, 11-12=-200/92, 12-13=-177/80, 13-14=-153/68, 14-15=-129/56,

21-5-8

15-16=-106/44, 16-17=-82/32, 17-18=-49/19, 18-19=-18/9

4-34=-63/96

4-1-8

4-1-8

2-35=-66/43, 34-35=-65/43, 33-34=0/0, 32-33=0/0, 31-32=0/0, 30-31=0/0, 29-30=0/0,

28-29=0/0, 27-28=0/0, 26-27=0/0, 24-26=0/0, 23-24=0/0, 22-23=0/0, 21-22=0/0, 20-21=0/0 19-20=-27/24, 18-21=-71/65, 17-22=-74/61,

16-23=-72/43, 15-24=-72/42, 14-26=-72/42, 13-27=-72/42, 12-28=-72/42, 11-29=-72/42, 10-30=-72/42, 9-31=-72/42, 7-32=-72/41, 6-33=-73/46, 5-34=-70/24, 4-35=-60/0,

NOTES

BOT CHORD

WFBS

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 21-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

Page: 1

- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

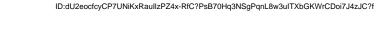
Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	G01E	Monopitch Supported Gable	1	1	Job Reference (optional)	174501755

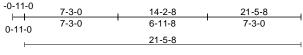
Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:23 ID:zMkpa4u5nrT3RhODliy6FTzPZ5w-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

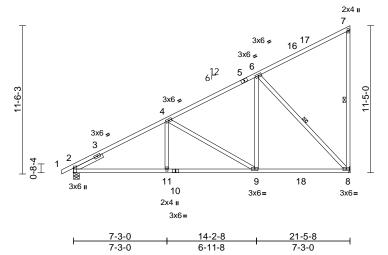
12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 20, 28 lb uplift at joint 21, 30 lb uplift at joint 22, 29 lb uplift at joint 23, 29 lb uplift at joint 24, 29 lb uplift at joint 26, 29 lb uplift at joint 27, 29 lb uplift at joint 28, 29 lb uplift at joint 29, 29 lb uplift at joint 30, 29 lb uplift at joint 31, 28 lb uplift at joint 32, 32 lb uplift at joint 33 and 73 lb

uplift at joint 34. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Page: 2




818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	G02	Monopitch	5	1	Job Reference (optional)	174501756

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:23 ID:dU2eocfcyCP7UNiKxRaullzPZ4x-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:89.4

Plate Offsets (X, Y): [2:0-4-1,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.13	8-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.22	8-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 132 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 2-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. WEBS

1 Row at midpt 7-8, 6-8 REACTIONS (size) 2=0-5-8, 8= Mechanical

Max Horiz 2=317 (LC 16)

Max Uplift 2=-86 (LC 16), 8=-234 (LC 16) Max Grav 2=896 (LC 3), 8=880 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-4=-1222/86, 4-6=-751/25,

6-7=-109/51

BOT CHORD 2-11=-348/1093, 9-11=-319/1093,

8-9=-164/616

WEBS 7-8=-151/78, 4-11=0/268, 6-9=-37/602,

4-9=-551/179, 6-8=-894/238

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 21-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

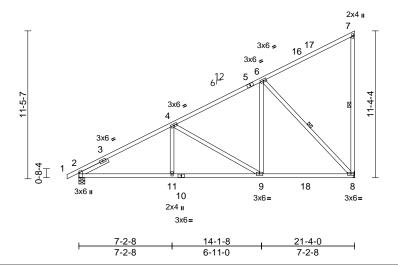
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2 and 234 lb uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	G03	Monopitch	4	1	Job Reference (optional)	174501757

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:23 ID:qmQCftRqKMwGdzRa2pjMllzPZ2e-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:89.2

Plate Offsets (X, Y): [2:0-4-1,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.13	8-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.22	8-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 131 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 2-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 7-8, 6-8

REACTIONS (size) 2=0-5-8, 8= Mechanical

Max Horiz 2=315 (LC 16) Max Uplift 2=-85 (LC 16), 8=-233 (LC 16)

Max Grav 2=891 (LC 3), 8=874 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-4=-1214/85, 4-6=-747/24,

6-7=-108/50

BOT CHORD 2-11=-346/1086, 9-11=-317/1086,

8-9=-163/612 **WEBS** 7-8=-151/77, 4-11=0/266, 6-9=-37/598,

4-9=-547/177, 6-8=-889/237

NOTES

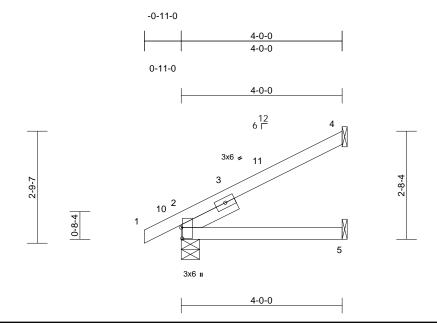
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 21-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 2 and 233 lb uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J1	Jack-Open	7	1	Job Reference (optional)	174501758

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:24 ID:mwgO50?nmVXa3W2EYpAfmXzPUaa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-3-4,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.01	5-8	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.02	5-8	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical, 5=

Mechanical

Max Horiz 2=68 (LC 16)

Max Uplift 2=-25 (LC 16), 4=-45 (LC 16), 5=-2

Max Grav 2=201 (LC 2), 4=91 (LC 2), 5=69

(LC 16) (LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-4=-130/33

BOT CHORD 2-5=-131/76

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

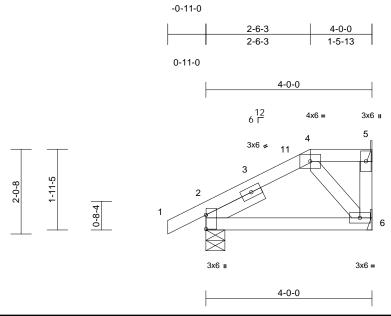
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4, 25 lb uplift at joint 2 and 2 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J1H	Half Hip	1	1	Job Reference (optional)	174501759

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:24 ID:F6EmJM?QXogRgfdQ6WhuJlzPUaZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.7

Plate Offsets (X, Y): [2:0-4-1,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	6-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins: 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8. 5= Mechanical. 6= Mechanical

2=51 (LC 15)

Max Horiz Max Uplift 2=-36 (LC 16), 5=-14 (LC 12),

6=-15 (LC 13)

Max Grav 2=200 (LC 38), 5=39 (LC 37),

6=101 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/24, 2-4=-169/45, 4-5=-22/24, 5-6=0/0

BOT CHORD 2-6=-90/68 WEBS 4-6=-88/83

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 2-6-3, Exterior(2E) 2-6-3 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 5, 36 lb uplift at joint 2 and 15 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 14) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

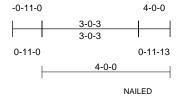
LOAD CASE(S) Standard

June 26,2025

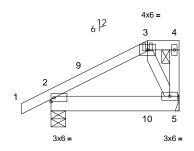
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J2	Half Hip Girder	1	1	Job Reference (optional)	174501760


Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:24 ID:jln8Wi02I6oIIpCcgEC7ryzPUaY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

2-3-8

Scale = 1:36

		Opeoidi	
	4-0-0		\dashv

Special

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	5-8	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	5-8	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-0-0 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-5-8, 5= Mechanical

Max Horiz 2=55 (LC 12)

Max Uplift 2=-39 (LC 12), 5=-59 (LC 12) Max Grav 2=207 (LC 34), 5=142 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/24, 2-3=-77/55, 3-4=0/0

TOP CHORD

BOT CHORD 2-5=-61/34

WEBS 4-5=-24/9, 3-5=-80/58

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 2 and 59 lb uplift at joint 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 34 lb down and 10 lb up at 3-0-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

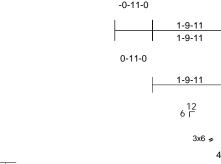
Uniform Loads (lb/ft)

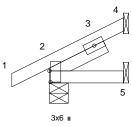
Vert: 1-3=-29, 3-4=-39, 5-6=-20

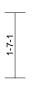
Concentrated Loads (lb)

Vert: 3=-11 (F), 10=-4 (F)

June 26,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J3	Jack-Open	1	1	Job Reference (optional)	174501761

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:24 ID:F6EmJM?QXogRgfdQ6WhuJlzPUaZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

1-9-11

Scale = 1:28.1

Plate Offsets (X, Y): [2:0-3-4,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	8	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	5-8	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-9-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical, 5=

Mechanical Max Horiz 2=37 (LC 16)

Max Uplift 2=-19 (LC 16), 4=-20 (LC 16), 5=-1

(LC 16)

2=128 (LC 2), 4=36 (LC 2), 5=28 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

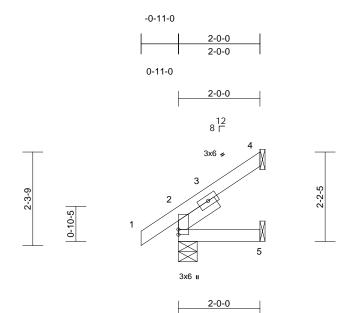
TOP CHORD 1-2=0/22, 2-4=-40/15

2-5=-28/22 BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 1 lb uplift at joint 5 and 20 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J4	Jack-Open	1	1	Job Reference (optional)	174501762

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:25 ID:F6EmJM?QXogRgfdQ6WhuJlzPUaZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.3

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	5-8	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	5-8	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

Left 2x4 SP No.2 -- 1-2-1 SLIDER

BRACING

Structural wood sheathing directly applied or TOP CHORD

2-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical, 5= Mechanical

Max Horiz 2=53 (LC 14)

2=-8 (LC 14), 4=-31 (LC 14), 5=-4 Max Uplift

(LC 14)

Max Grav 2=134 (LC 2), 4=45 (LC 26), 5=35

(LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-34/24

BOT CHORD 2-5=-71/31

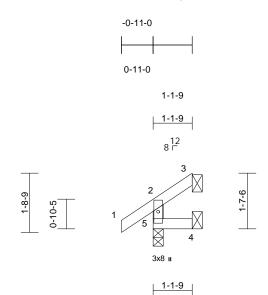
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 2, 4 lb uplift at joint 5 and 31 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J5	JACK	1	1	Job Reference (optional)	174501763

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:25 ID:OKbxWO2J2wpGdlFj277OhzzPS8H-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

1-1-9

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	4-5	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 6 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-1-9 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-3-8

Max Horiz 5=29 (LC 14)

Max Uplift 3=-14 (LC 14), 4=-5 (LC 14), 5=-12

(LC 14)

Max Grav 3=9 (LC 12), 4=16 (LC 5), 5=125

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/32, 2-3=-27/17, 2-5=-107/84

BOT CHORD 4-5=0/0

NOTES

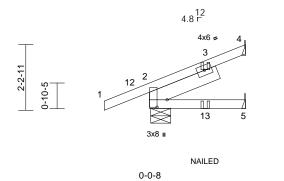
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 5, 5 lb uplift at joint 4 and 14 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	J6	Diagonal Hip Girder	1	1	Job Reference (optional)	174501764

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:25 ID:F6EmJM?QXogRgfdQ6WhuJlzPUaZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Special

Scale = 1:39

Plate Offsets (X, Y): [2:0-3-0,0-4-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.00	5-10	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	0.00	5-10	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 18 lb	FT = 20%

0-0-8

3-3-0 3-2-8

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

SLIDER Left 2x6 SP No.2 -- 2-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-3-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-8-3, 4= Mechanical, 5=

Mechanical Max Horiz 2=52 (LC 12)

Max Uplift 2=-57 (LC 8), 4=-50 (LC 12)

Max Grav 2=252 (LC 2), 4=56 (LC 2), 5=45

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/31, 2-4=-37/61

BOT CHORD 2-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 4 and 57 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 40 lb down and 32 lb up at 3-2-4 on top chord. The design/ selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

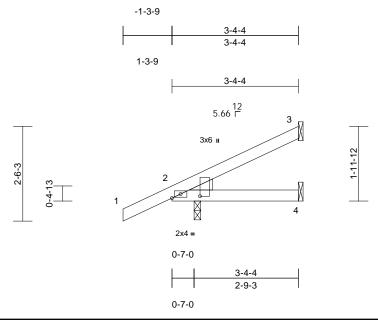
Uniform Loads (lb/ft) Vert: 1-4=-29, 5-6=-20

Concentrated Loads (lb)

Vert: 4=-6 (F), 13=-3 (B)

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	JD01	Jack-Open	2	1	Job Reference (optional)	I74501765

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:25 ID:jrKm57xRRjY2swTQAhJ9jFzPa?y-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	4-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-4-4 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-2-2, 3= Mechanical, 4=

Mechanical Max Horiz 2=60 (LC 16)

Max Uplift 2=-46 (LC 16), 3=-25 (LC 16)

Max Grav 2=250 (LC 2), 3=46 (LC 23), 4=42

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/30. 2-3=-238/205

BOT CHORD 2-4=-194/287

NOTES

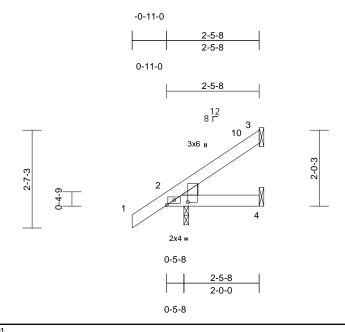
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-3-9 to 2-11-6, Exterior(2R) 2-11-6 to 3-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3 and 46 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	JD02	Jack-Open	3	1	Job Reference (optional)	174501766

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:25 ID:jrKm57xRRjY2swTQAhJ9jFzPa?y-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.6

Plate Offsets (X, Y): [2:0-4-6,0-0-9], [2:0-0-15,0-6-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	4-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-5-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-1-8, 3= Mechanical, 4=

Mechanical Max Horiz 2=61 (LC 14)

Max Uplift 2=-25 (LC 14), 3=-24 (LC 14), 4=-1

(LC 14)

Max Grav 2=183 (LC 2), 3=35 (LC 26), 4=30

(LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-107/109

BOT CHORD 2-4=-100/154

NOTES

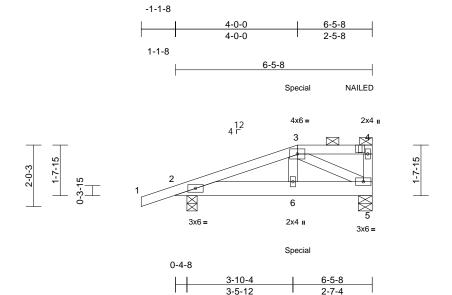
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 2-4-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 4) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 3, 1 lb uplift at joint 4 and 25 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P01	Half Hip Girder	1	1	Job Reference (optional)	174501767

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:26 ID:o2fqBRprkCruBlKzAPtROuzPSpB-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	6-10	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	6-10	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 33 lb	FT = 20%

0-4-8

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-4-0, 5=0-5-8 Max Horiz 2=53 (LC 8)

Max Uplift 2=-96 (LC 8), 5=-49 (LC 8)

Max Grav 2=372 (LC 2), 5=284 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-363/76, 3-4=0/0

BOT CHORD 2-6=-87/318. 5-6=-63/303

WEBS 4-5=-85/19, 3-6=-2/184, 3-5=-347/73

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 5 and 96 lb uplift at joint 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 64 lb up at 4-0-0 on top chord, and 90 lb down and 16 lb up at 4-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-29, 3-4=-39, 2-5=-20

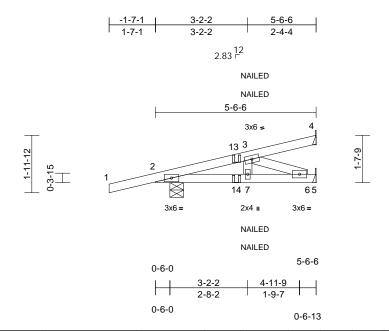
Concentrated Loads (lb)

Vert: 4=-23 (B), 6=-87 (B), 3=-35 (B)

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P02	Diagonal Hip Girder	1	1	Job Reference (optional)	174501768

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:26 ID:Js6Sz5pDzvj1ZcIndiLCrgzPSpC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.6

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.01	6-7	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-6-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-11, 4= Mechanical, 5=

Mechanical Max Horiz 2=51 (LC 8)

2=-98 (LC 8), 4=-23 (LC 8), 5=-11 Max Uplift

(LC 12)

Max Grav 2=322 (LC 2), 4=59 (LC 2), 5=111

(LC 7)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/20, 2-3=-232/244, 3-4=-15/11 BOT CHORD 2-7=-250/214. 6-7=-44/214. 5-6=0/0

3-7=0/101. 3-6=-229/47

WFBS NOTES

FORCES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 4, 11 lb uplift at joint 5 and 98 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

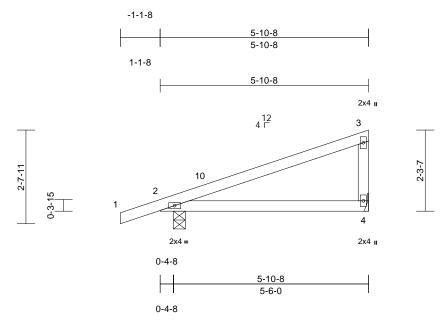
Uniform Loads (lb/ft) Vert: 1-4=-29, 5-8=-20

Concentrated Loads (lb)

Vert: 14=2 (F=1, B=1)

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P03	Monopitch	7	1	Job Reference (optional)	174501769

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries, Inc. Thu Jun 26 11:30:26 ID:dl4ya6lxJVuD_vOfWpaq0KzPSoZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.03	4-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.07	4-9	>941	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-10-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=0-4-0, 4= Mechanical **REACTIONS** (size)

Max Horiz 2=69 (LC 12)

Max Uplift 2=-74 (LC 12), 4=-45 (LC 16)

Max Grav 2=298 (LC 2), 4=186 (LC 2) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/19, 2-3=-117/120

BOT CHORD 2-4=-125/140

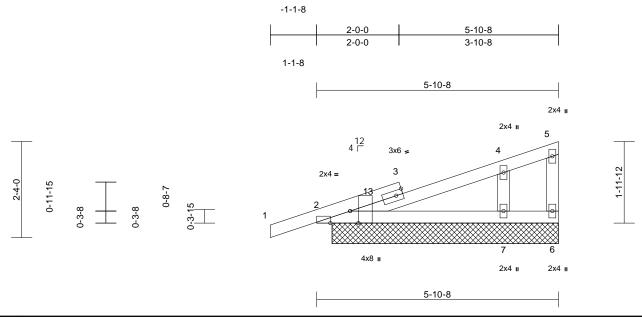
WEBS 3-4=-124/102

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-1-8 to 1-10-8, Interior (1) 1-10-8 to 5-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 74 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P03E	Monopitch Supported Gable	1	1	Job Reference (optional)	174501770

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:27 ID:Zxn_iExBqnZir2xr7R1FfVzPSnk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%

LUMBER

Scale = 1:28

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-10-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

2=5-6-0, 6=5-6-0, 7=5-6-0

REACTIONS (size)

Max Horiz 2=60 (LC 12) Max Uplift 2=-65 (LC 12), 6=-39 (LC 2), 7=-62

(LC 16)

2=234 (LC 2), 6=6 (LC 16), 7=290

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19. 2-4=-104/66. 4-5=-27/6 **BOT CHORD** 2-7=-59/112, 6-7=0/0 4-7=-200/235, 5-6=-19/23

WEBS

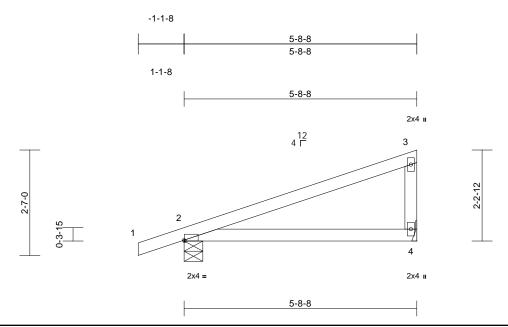
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-1-8 to 1-8-13, Exterior(2N) 1-8-13 to 5-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 2, 39 lb uplift at joint 6, 62 lb uplift at joint 7 and 65 lb uplift at joint 2.
- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P04	Monopitch	4	1	Job Reference (optional)	174501771

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:27 ID:WbRAhkA6Mdy?dzuUkxtiwVzPSnR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-0-2,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.04	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.09	4-7	>740	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-8-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical

Max Horiz 2=68 (LC 12)

Max Uplift 2=-68 (LC 12), 4=-47 (LC 16)

Max Grav 2=273 (LC 2), 4=200 (LC 2) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/19, 2-3=-88/33

BOT CHORD 2-4=-45/93

WEBS 3-4=-130/103

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-1-8 to 1-10-8, Interior (1) 1-10-8 to 5-6-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

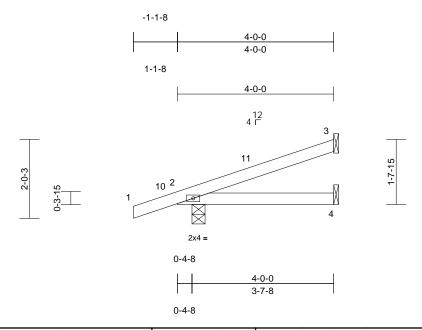
- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 2 and 47 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	_
P05544-30705	P05	Jack-Open	2	1	I74501772 Job Reference (optional)	2

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:27 ID:Js6Sz5pDzvj1ZcIndiLCrgzPSpC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.01	4-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	4-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=0-4-0, 3= Mechanical, 4=

Max Horiz 2=52 (LC 12)

Max Uplift 2=-67 (LC 12), 3=-31 (LC 16)

2=238 (LC 2), 3=77 (LC 2), 4=61 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-104/121

BOT CHORD 2-4=-126/137

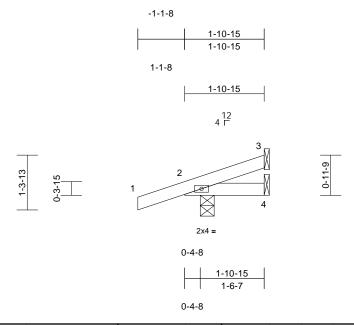
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-1-8 to 1-10-8, Interior (1) 1-10-8 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 3 and 67 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	P06	Jack-Open	2	1	Job Reference (optional)	174501773

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:27 ID:Js6Sz5pDzvj1ZcIndiLCrgzPSpC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	5	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	5	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 8 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-10-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=0-4-0, 3= Mechanical, 4= Mechanical

Max Horiz 2=33 (LC 12)

Max Uplift 2=-69 (LC 12), 3=-8 (LC 16)

2=186 (LC 2), 3=15 (LC 2), 4=20 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-104/123

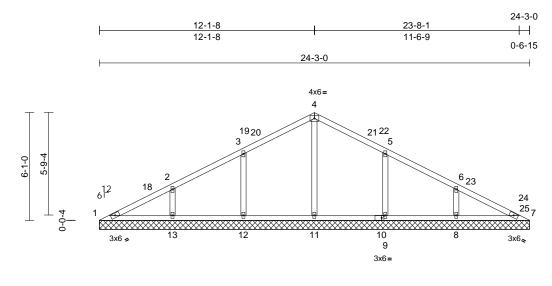
BOT CHORD 2-4=-127/136

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 3 and 69 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


June 26,2025

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	V01	Valley	1	1	Job Reference (optional)	174501774

Run: 8.83 S. Jun 11 2025 Print: 8.830 S. Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:27 ID:gZXTFtMww7auOnT?jsMDqzzPUlk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.9

Plate Offsets (X, Y): [10:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 98 lb	FT = 20%

24-3-0

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=24-3-0, 7=24-3-0, 8=24-3-0, 9=24-3-0, 11=24-3-0, 12=24-3-0,

13=24-3-0

Max Horiz 1=77 (LC 16)

Max Uplift 1=-12 (LC 17), 8=-88 (LC 17), 9=-93 (LC 17), 12=-93 (LC 16),

13=-90 (LC 16)

Max Grav 1=106 (LC 35), 7=78 (LC 36),

8=345 (LC 38), 9=347 (LC 38) 11=428 (LC 29), 12=350 (LC 37),

13=348 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-154/126, 2-3=-28/130, 3-4=-39/140, TOP CHORD

4-5=-39/132, 5-6=-6/106, 6-7=-133/108 BOT CHORD 1-13=-57/142, 12-13=-57/67, 11-12=-57/67,

9-11=-57/67, 8-9=-57/67, 7-8=-57/119

WFBS 4-11=-246/5. 3-12=-232/119. 2-13=-223/103.

5-9=-232/120, 6-8=-221/102

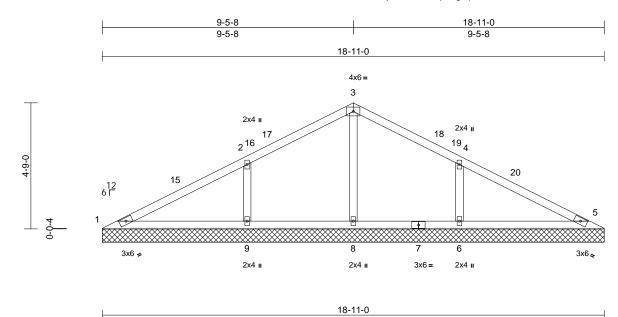
NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 12-2-0. Exterior(2R) 12-2-0 to 15-2-0. Interior (1) 15-2-0 to 23-8-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 93 lb uplift at joint 12, 90 lb uplift at joint 13, 93 lb uplift at joint 9 and 88 lb uplift at joint 8.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	V02	Valley	1	1	Job Reference (optional)	174501775

Run: 8.83 S. Jun 11.2025 Print: 8.830 S. Jun 11.2025 MiTek Industries. Inc. Thu Jun 26.11:30:28 ID:8I4rSDMYhQil0x2CHZtSNAzPUIj-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	:4	3.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	-0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 70 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=18-11-0, 5=18-11-0, 6=18-11-0, 8=18-11-0, 9=18-11-0

Max Horiz 1=59 (LC 16)

1=-46 (LC 36), 6=-120 (LC 17), Max Uplift

9=-124 (LC 16)

1=105 (LC 35), 5=1 (LC 2), 6=413 Max Grav

(LC 36), 8=498 (LC 2), 9=425 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-143/383, 2-3=-2/355, 3-4=0/354,

4-5=-120/383

1-9=-284/124, 8-9=-284/94, 6-8=-284/94,

5-6=-284/94 WEBS

3-8=-451/68, 2-9=-289/138, 4-6=-284/138

NOTES

BOT CHORD

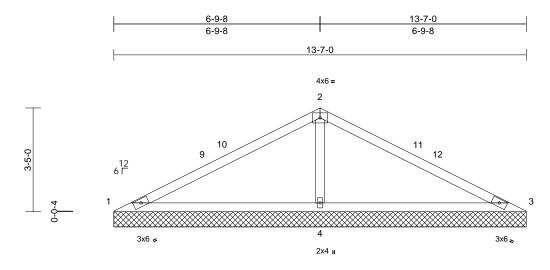
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 9-6-0, Exterior(2R) 9-6-0 to 12-6-0, Interior (1) 12-6-0 to 18-4-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 1, 124 lb uplift at joint 9 and 120 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	V03	Valley	1	1	Job Reference (optional)	174501776

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:28 ID:8I4rSDMYhQil0x2CHZtSNAzPUIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

13-7-0 Scale = 1:37.9

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.42	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0	1									Weight: 45 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=13-7-0, 3=13-7-0, 4=13-7-0

Max Horiz 1=40 (LC 16)

Max Uplift 1=-69 (LC 36), 3=-69 (LC 35),

4=-141 (LC 16) 1=67 (LC 35), 3=67 (LC 36),

Max Grav 4=1010 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-188/592, 2-3=-184/592

1-4=-463/218, 3-4=-463/218 BOT CHORD

WFBS 2-4=-795/312

NOTES

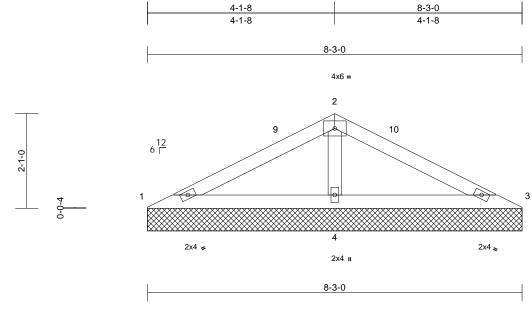
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 6-10-0, Exterior(2R) 6-10-0 to 9-10-0, Interior (1) 9-10-0 to 13-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1, 69 lb uplift at joint 3 and 141 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	907 Serenity	
P05544-30705	V04	Valley	1	1	Job Reference (optional)	77

Run: 8.83 S Jun 11 2025 Print: 8.830 S Jun 11 2025 MiTek Industries. Inc. Thu Jun 26 11:30:28 ID:8I4rSDMYhQil0x2CHZtSNAzPUIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	<u> –</u>	1.25	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

8-3-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=8-3-0, 3=8-3-0, 4=8-3-0

Max Horiz 1=24 (LC 16)

Max Uplift 1=-10 (LC 16), 3=-15 (LC 17),

4=-68 (LC 16)

1=76 (LC 35), 3=76 (LC 36), 4=517 Max Grav

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-117/256, 2-3=-110/256 BOT CHORD

1-4=-204/152, 3-4=-204/152

2-4=-360/195

WFBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-2-0, Exterior(2R) 4-2-0 to 7-1-3, Interior (1) 7-1-3 to 8-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 15 lb uplift at joint 3 and 68 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.