

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Lamco Custom Builders LLC

Model: Rosemont A LH - 76
Blackberry Manor

THE PLACEMENT PLAN NOTES:

- 1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
- 2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.
- 3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
- 4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
- 5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
- 6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
- 7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
- 8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.
- 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By:	 Date:	
Approved by	 Date	

Customer: Street 1: City:

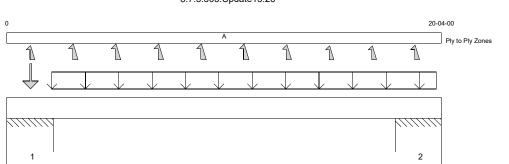
Illustration Not to Scale. Pitch: 0/12

City: Customer Ph. Job Name: 01

Level: 1st FLOOR
Label: GDH - i25
Type: Beam

2 Ply Member 2.1 RigidLam SP LVL 1-3/4

x 11-7/8


Report Version: 2023.09.18

Status:

Design
Passed

10/08/2025 14:04

Designed by Single Member Design Engine in MiTek® Structure Version 8.7.3.303.Update13.26

16-00-00

20-04-00

DESIGN INFORMATION a

Building Code: IRC 2018
Design Methodology: ASD

Risk Category: II (General Construction)

Residential

2-02-00

Service Condition: Dry System Spacing: -

Lateral Restraint Requirements:

Both ends of the member and the outer supports must be laterally restrained. Top and bottom edges of the member must be fully restrained or have the following maximum unbraced length:

Top: 1'- 10 1/2" Bottom: 20'- 4"

Bearing Stress of Support Material:

- 1323 psi Wall @ 0'- 1 1/2"
- 1323 psi Wall @ 2'- 1/2"
- 725 psi Wall @ 18'- 3 1/2" • 725 psi Wall @ 20'- 2 1/2"

ANALYSIS RESULTS						
Design Criteria	Location	Load Combination	LDF	Design	Limit	Result
Max Pos. Moment:	11'- 1 1/4"	D + Lr	1.15	4478 lb ft	24315 lb ft	Passed - 18%
Max Neg. Moment:	18'- 3 1/2"	D + Lr	1.15	7390 lb ft	17708 lb ft	Passed - 42%
Max Neg. Moment: Max Shear:	3'- 1 7/8"	D + Lr	1.15	2842 lb	9241 lb	Passed - 31%
Live Load (LL) Pos. Defl.:	10'- 2"	0.75(L + Lr + 0.6W)		0.092"	L/360	Passed - L/999
Total Load (TL) Pos. Defl.:	10'- 2"	D + 0.75(L + Lr + 0.6W)		0.155"	L/240	Passed - L/999

2-02-00

SI	JPPORT AND	REACTION INFORM	MATION					
ID	Input Bearing Length	Controlling Load Combination	LDF	Downward Reaction	Uplift Reaction	Resistance of Member	Resistance of Support	Result
1	9-00	0.6D + 0.6W	1.60	541 lb		32870 lb	41675 lb	Passed - 2%
1	9-00	D + Lr	1.15		-3703 lb	-	-	
1	1-05-00	D + Lr	1.15	7058 lb		44625 lb	78719 lb	Passed - 16%
1	1-05-00	0.6D + 0.6W	1.60		-1073 lb	-	-	
2	1-05-00	D + Lr	1.15	7123 lb		44625 lb	43138 lb	Passed - 17%
2	1-05-00	0.6D + 0.6W	1.60		-737 lb	-	-	
2	9-00	0.6D + 0.6W	1.60	449 lb		32870 lb	22838 lb	Passed - 2%
2	9-00	D + Lr	1.15		-3705 lb	-	-	

LOADI	NG								
Туре	Start Loc	End Loc	Source	Face	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
Self Weight	0'	20'- 4"	Self Weight	Тор	11 lb/ft	-	-	-	-
Uniform	2'- 1 1/4"	20'- 1 1/4"	Smoothed Load	Top	149 lb/ft	-	113 lb/ft	199 lb/ft	73 lb/ft
Point	1'- 1 1/4"	1'- 1 1/4"	T1(c05)	Top	270 lb	-	187 lb	331/-30 lb	121/-352 lb
Point	3'- 1 1/4"	3'- 1 1/4"	T1(c01)	Top	-	-	-	-36 lb	-422 lb
Point	5'- 1 1/4"	5'- 1 1/4"	T1(c02)	Top	-	-	-	-36 lb	-422 lb
Point	7'- 1 1/4"	7'- 1 1/4"	T1(c06)	Top	-	-	-	-36 lb	-422 lb
Point	9'- 1 1/4"	9'- 1 1/4"	T1(c04)	Top	-	-	-	-33 lb	-425 lb
Point	11'- 1 1/4"	11'- 1 1/4"	T1(c09)	Top	-	-	-	-33 lb	-425 lb
Point	13'- 1 1/4"	13'- 1 1/4"	T1(c07)	Top	-	-	-	-36 lb	-382 lb
Point	15'- 1 1/4"	15'- 1 1/4"	T1(c10)	Top	-	-	-	-36 lb	-331 lb
Point	17'- 1 1/4"	17'- 1 1/4"	T1(c08)	Тор	-	-	-	-36 lb	-331 lb
Point	19'- 1 1/4"	19'- 1 1/4"	T1(c03)	Тор	-	-	-	-35 lb	-364 lb

UNFA	CTORED R	EACTIONS						
ID	Start Loc	End Loc	Source	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
1	0'	2'- 2"	E13(i15)	1580 lb	-	1094 lb	2125/-515 lb	1151 lb/ -2466 lb
==>	0'- 1 1/2"	0'- 1 1/2"	E13(i15)	-	-	-	173/-170 lb	-
==>	2'- 1/2"	2'- 1/2"	E13(i15)	1580 lb	-	1094 lb	1952/-345 lb	-
2	18'- 2"	20'- 4"	E12(i9)	1593 lb	-	1127 lb	2179/-521 lb	1151 lb/ -2466 lb
==>	18'- 3 1/2"	18'- 3 1/2"	E12(i9)	1593 lb	-	1127 lb	2006/-348 lb	-
==>	20'- 2 1/2"	20'- 2 1/2"	E12(i9)	-	-	-	173/-173 lb	-

DESIGN NOTES

- CAUTION: The maximum net analysis reaction exceeds the user-defined maximum uplift value at one or more supports.
- The dead loads used in the design of this member were applied to the structure as projected dead loads.
- Analysis and Design has been performed using precision loading from actual modeled conditions. Some loads may have been modified to simplify reporting.

Customer: Street 1: City:

Customer Ph.

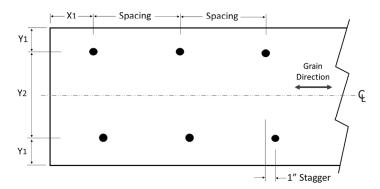
Job Name: 01

Level: 1st FLOOR Label: GDH - i25 Type: Beam 2 Ply Member

2.1 RigidLam SP LVL 1-3/4 Det x 11-7/8 Pas

Design Passed

Status:

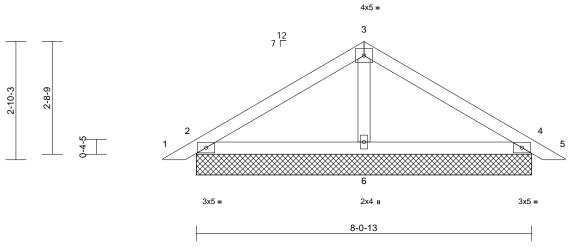

DESIGN NOTES

- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already
 specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if
 required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.99

PLY TO PLY CONNECTION

- Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 42. Row = 2, Spacing = 12"
 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5"
 Install fasteners from one face.
 - X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION - 2 ROWS (FROM ONE FACE)


Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
25090183-01	PB1	Piggyback	25	1	Job Reference (optional)	176925326

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:44 ID:zKYPPF_b6MoOBSfh60pUuuzoFRf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

These truss designs are based upon the building code shown. This code has been specified by the project engineer/architect, or building designer. The applicability of this code in any particular jurisdiction should be confirmed with the building official prior to truss fabrication. This determination is not the responsibility of the component/truss designer This applies to all truss design drawings in this job.

-0-9-12	4-0-6	8-0-13	8-10-8	
0-9-12	4-0-6	4-0-6	0-9-12	

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 32 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=8-0-13, 4=8-0-13, 6=8-0-13

Max Horiz 2=-63 (LC 12)

Max Uplift 2=-42 (LC 14), 4=-50 (LC 15)

Max Grav 2=312 (LC 21), 4=312 (LC 22),

6=296 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-173/88, 3-4=-173/88,

4-5=0/26

BOT CHORD 2-6=-21/79, 4-6=-9/79

WEBS 3-6=-131/30

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Exterior(2R) 3-3-11 to 6-5-7, Exterior(2E) 6-5-7 to 9-5-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

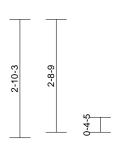
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

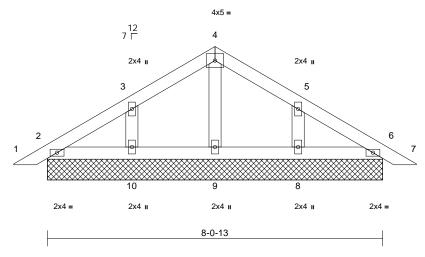
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	PB1GE	Piggyback	2	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:45 ID:zKYPPF_b6MoOBSfh60pUuuzoFRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-9-12	4-0-6	8-0-13	8-10-8
0-9-12	4-0-6	4-0-6	0-9-12

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 35 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=8-0-13, 6=8-0-13, 8=8-0-13,

9=8-0-13, 10=8-0-13 Max Horiz 2=-63 (LC 12)

Max Uplift 2=-8 (LC 15), 6=-12 (LC 15), 8=-64

(LC 15), 10=-65 (LC 14)

2=161 (LC 21), 6=161 (LC 22), Max Grav

8=279 (LC 22), 9=117 (LC 21),

10=279 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-48/43, 3-4=-77/74,

4-5=-77/74, 5-6=-34/35, 6-7=0/26 **BOT CHORD** 2-10=-16/51, 9-10=-16/51, 8-9=-16/51,

6-8=-16/51

4-9=-83/0, 3-10=-222/115, 5-8=-222/115

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Exterior(2R) 3-3-11 to 6-5-7, Exterior(2E) 6-5-7 to 9-5-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

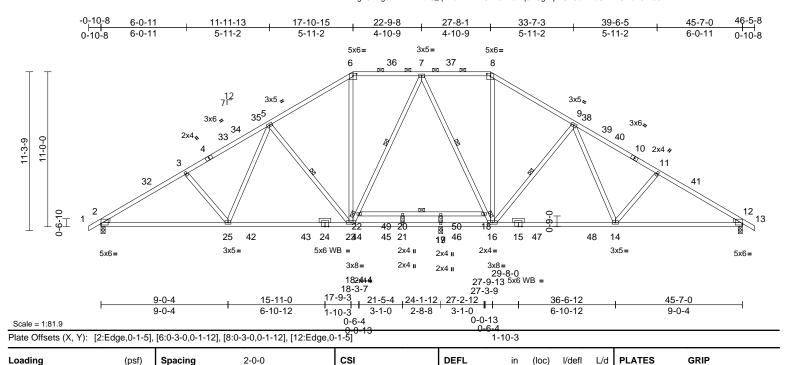
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply 76 Blackberry Manor-Roof-Rosemont A LH 176925328 25090183-01 10 T1 Piggyback Base Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:45 ID:gF8BVg6tlR2zN?Pch6_qI?zoFRV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No 2

2x4 SP No.1 *Except* 24-15:2x4 SP 2400F **BOT CHORD**

20.0

20.0

10.0

0.0

10.0

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Code

2.0E

WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.3 Left: 2x4 SP No.3 WEDGE Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins, except

2-0-0 oc purlins (3-10-10 max.): 6-8. Rigid ceiling directly applied or 2-2-0 oc

BOT CHORD bracing

WEBS 1 Row at midpt 5-23, 9-16, 7-22, 7-18

REACTIONS (size) 2=0-3-8, 12=0-3-8, 17=0-3-8

Max Horiz 2=-258 (LC 12)

Max Uplift 2=-150 (LC 14), 12=-167 (LC 15) 2=2024 (LC 51), 12=1973 (LC 53), Max Grav

17=937 (LC 47)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-3651/241, 3-5=-3460/247,

5-6=-2687/223, 6-7=-2214/234,

7-8=-2105/260, 8-9=-2560/253, 9-11=-3358/278, 11-12=-3549/272,

12-13=0/26

BOT CHORD 2-25=-313/3056, 23-25=-148/2655,

21-23=0/2067, 17-21=0/2067, 16-17=0/2067, 14-16=-25/2556, 12-14=-164/2967,

20-22=-8/31, 19-20=-8/31, 18-19=-8/31 **WEBS** 3-25=-286/188. 5-25=-47/614.

5-23=-857/240, 6-23=-25/974, 8-16=-37/909,

9-16=-874/235, 9-14=-40/638, 11-14=-287/188, 22-23=-269/218 7-22=-258/245, 7-18=-419/169,

16-18=-363/171, 17-19=-432/0, 20-21=-20/24

NOTES

IRC2018/TPI2014

1.15

1.15

Unbalanced roof live loads have been considered for 1) this design

0.79

0.96

0.34

Vert(LL)

Vert(CT)

Horz(CT)

-0.42

-0.72

0.15

14-16

14-16

TC

BC

WB

Matrix-MSH

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-3, Interior (1) 3-8-3 to 11-5-9, Exterior(2R) 11-5-9 to 34-1-7, Interior (1) 34-1-7 to 41-10-13, Exterior(2E) 41-10-13 to 46-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 22-9-8
- from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 294 lb

MT20

244/190

FT = 20%

Page: 1

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

>615

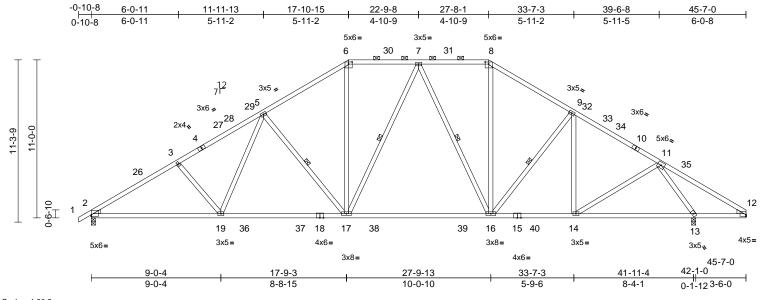
>359

n/a

240

180

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
250901	83-01	T1A	Piggyback Base	6	1	Job Reference (optional)	176925329

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:45 ID:cdGywM87H2JhdIZ?pX1IOQzoFRT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.2

Plate Offsets (X, Y): [2:Edge,0-1-5], [6:0-3-0,0-1-12], [8:0-3-0,0-1-12], [12:Edge,0-1-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.40	16-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.68	16-17	>745	180	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.12	13	n/a	n/a	1	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 284 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.1 **BOT CHORD WEBS** 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

WEBS

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins, except

2-0-0 oc purlins (3-10-11 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc

bracing.

5-17, 7-17, 7-16, 9-16 1 Row at midpt

REACTIONS (size) 2=0-3-8, 13=0-3-8

Max Horiz 2=254 (LC 11)

Max Uplift 2=-193 (LC 14), 13=-194 (LC 15)

Max Grav 2=1999 (LC 51), 13=2284 (LC 47)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-3586/320, 3-5=-3394/327,

5-6=-2657/295, 6-7=-2189/297, 7-8=-1993/281, 8-9=-2426/277,

9-11=-2506/223, 11-12=-186/406

2-19=-361/2998, 17-19=-227/2610,

16-17=-53/2020, 14-16=-26/2046,

13-14=-49/1243, 12-13=-191/240

3-19=-292/186, 5-19=-42/577, 5-17=-831/237, 6-17=-53/958,

7-17=-176/290, 7-16=-481/179,

8-16=-63/837. 9-16=-311/167.

9-14=-288/105 11-14=-35/943

11-13=-2588/297

NOTES

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

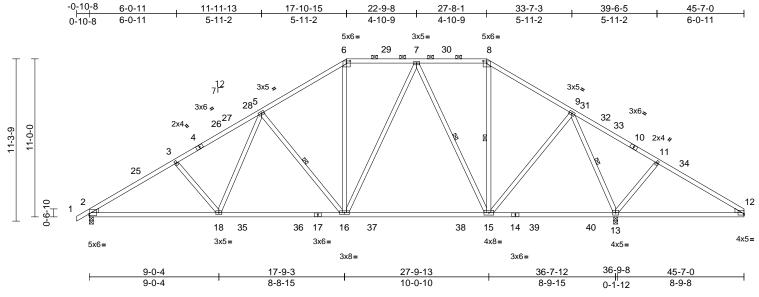
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-3, Interior (1) 3-8-3 to 11-5-9, Exterior(2R) 11-5-9 to 34-1-7, Interior (1) 34-1-7 to 41-0-5. Exterior(2E) 41-0-5 to 45-7-0 zone: cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 9,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
25090183-01	T1B	Piggyback Base	1	1	Job Reference (optional)	i0

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:46 ID:Z0OiL19NpgZPscjNwy3mTrzoFRR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.2

Plate Offsets (X, Y): [2:Edge,0-1-9], [6:0-3-0,0-1-12], [8:0-3-0,0-1-12], [12:Edge,0-1-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.33	15-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.54	15-16	>810	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.79	Horz(CT)	0.07	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 275 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

16-6,16-7,15-7,15-8:2x4 SP No.2 WEDGE Left: 2x4 SP No.3

Right: 2x4 SP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-1-6 oc purlins, except

2-0-0 oc purlins (4-6-7 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 12-13.

WEBS 1 Row at midpt 5-16, 7-15, 8-15, 9-13

REACTIONS 2=0-3-8, 13=0-3-8 (size)

Max Horiz 2=254 (LC 11)

Max Uplift 2=-187 (LC 14), 13=-222 (LC 15) Max Grav 2=1687 (LC 51), 13=2638 (LC 47)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/26, 2-3=-2908/309, 3-5=-2713/315,

5-6=-1949/284, 6-7=-1583/287, 7-8=-1074/190, 8-9=-1326/201

9-11=-184/786, 11-12=-230/533 **BOT CHORD**

2-18=-351/2420, 16-18=-217/2007, 15-16=-99/1296, 13-15=-26/351,

12-13=-372/198

WEBS 3-18=-308/186, 5-18=-42/604,

5-16=-844/237, 6-16=-25/607, 7-16=-68/625,

7-15=-784/159, 8-15=-53/335, 9-15=-46/1038, 9-13=-2389/305,

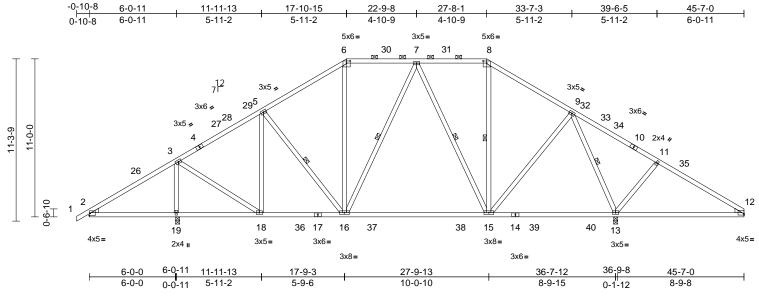
11-13=-387/196

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-3, Interior (1) 3-8-3 to 11-5-9, Exterior(2R) 11-5-9 to 34-1-7, Interior (1) 34-1-7 to 41-0-5, Exterior(2E) 41-0-5 to 45-7-0 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



October 9,2025

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T1C	Piggyback Base	2	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:46 ID:VPVSmjBeLHp66wtm2N5EYGzoFRP-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.2

Plate Offsets (X, Y): [6:0-3-0,0-1-12], [8:0-3-0,0-1-12], [12:Edge,0-1-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.34	15-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.53	15-16	>688	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.02	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 282 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD

BOT CHORD 2x4 SP No.2 *Except* 17-14:2x4 SP No.1 **WEBS**

2x4 SP No.3 *Except*

16-6,16-7,15-7,15-8:2x4 SP No.2 WEDGE Left: 2x4 SP No.3

Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-6-13 oc purlins, except

2-0-0 oc purlins (5-7-15 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 5-16, 7-16, 7-15, 8-15,

9-13

REACTIONS 13=0-3-8, 19=0-3-8 (size)

Max Horiz 19=254 (LC 11)

Max Uplift 13=-223 (LC 15), 19=-224 (LC 14)

Max Grav 13=2308 (LC 47), 19=1959 (LC 47)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-226/553, 3-5=-1071/145,

5-6=-1201/208, 6-7=-985/223, 7-8=-825/189,

8-9=-986/169, 9-11=-184/787,

11-12=-256/534

BOT CHORD 2-19=-398/250, 18-19=-517/231,

16-18=-157/831, 15-16=-112/902, 13-15=-42/250, 12-13=-371/196

WEBS 3-19=-1854/282, 3-18=-131/1398, 5-18=-582/152, 5-16=-100/278,

6-16=-26/282, 7-16=-136/253,

7-15=-441/161. 8-15=-93/188. 9-15=-24/816.

9-13=-2004/267. 11-13=-391/197

NOTES

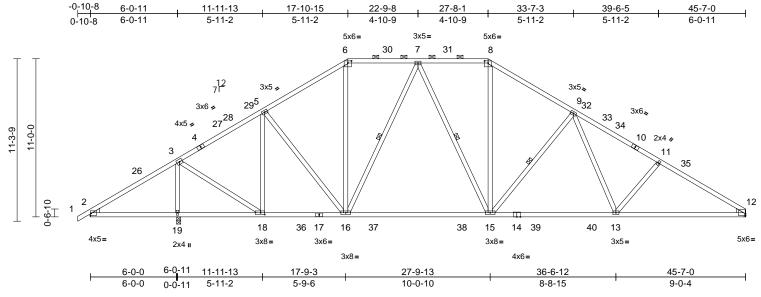
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-3, Interior (1) 3-8-3 to 11-5-9, Exterior(2R) 11-5-9 to 34-1-7, Interior (1) 34-1-7 to 41-0-5, Exterior(2E) 41-0-5 to 45-7-0 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19 and 13. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
25090183-01	T1D	Piggyback Base	6	1	Job Reference (optional)	332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:46 ID:GgT3te4_SWgOWXh10_R7hNzoFRY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.1

Plate Offsets (X, Y): [6:0-3-0,0-1-12], [8:0-3-0,0-1-12], [12:Edge,0-1-9], [18:0-3-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	-0.38	15-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.92	Vert(CT)	-0.62	15-16	>762	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.88	Horz(CT)	0.09	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 283 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.1 **WEBS**

2x4 SP No.3 *Except* 16-6,16-7,15-7,15-8:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-9-10 oc purlins, except

2-0-0 oc purlins (4-1-12 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 7-16, 7-15, 9-15

REACTIONS 12= Mechanical 19=0-3-8 (size)

Max Horiz 19=254 (LC 11)

Max Uplift 12=-173 (LC 15), 19=-226 (LC 14) Max Grav 12=1808 (LC 53), 19=2481 (LC 47)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-226/550, 3-5=-1610/147,

5-6=-1928/211, 6-7=-1568/226, 7-8=-1916/292, 8-9=-2338/290,

9-11=-3090/323, 11-12=-3283/316

2-19=-396/250, 18-19=-514/231,

16-18=-108/1269, 15-16=-17/1672,

13-15=-56/2339, 12-13=-192/2741

3-19=-2417/306, 3-18=-188/1947,

5-18=-880/180, 5-16=-90/451, 6-16=-58/593,

7-16=-601/162. 7-15=-64/443. 8-15=-38/797.

9-15=-838/238, 9-13=-44/593,

11-13=-302/187

NOTES

WEBS

BOT CHORD

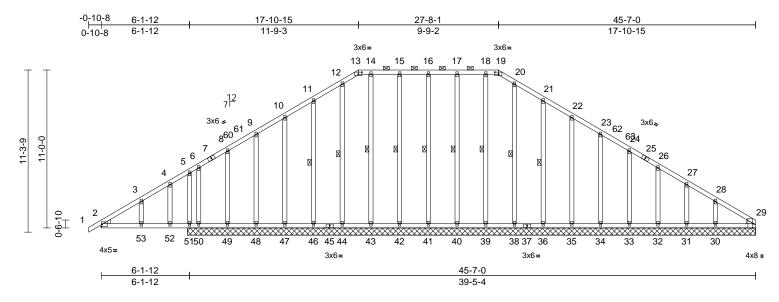
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-8-3, Interior (1) 3-8-3 to 11-5-9, Exterior(2R) 11-5-9 to 34-1-7, Interior (1) 34-1-7 to 41-0-5, Exterior(2E) 41-0-5 to 45-7-0 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 173 lb uplift at joint
- 11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T1DGE	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:46 ID:v_BbOIDWeCBhzNcLjVfxAvzoFRM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.3

Plate Offsets ((X, Y):	[13:0-3-0,0-1	-12], [19:0-3-0,0-1	1-12], [29:0-3-8,Edge]
-----------------	---------	---------------	---------------------	------------------------

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horz(CT)	-0.03	29	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 366 lb	FT = 20%

L	U	М	В	E	I	₹

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 *Except*

41-16,42-15,43-14,40-17,39-18:2x4 SP No.2 Left: 2x4 SP No.3

WEDGE

Right: 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins, except

2-0-0 oc purlins (10-0-0 max.): 13-19. Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 16-41, 15-42, 14-43, 12-44, 11-46, 17-40,

18-39, 20-38, 21-36

REACTIONS (size) 29=39-7-0. 30=39-7-0. 31=39-7-0. 32=39-7-0, 33=39-7-0, 34=39-7-0, 35=39-7-0, 36=39-7-0, 38=39-7-0, 39=39-7-0, 40=39-7-0, 41=39-7-0,

> 46=39-7-0, 47=39-7-0, 48=39-7-0, 49=39-7-0, 50=39-7-0, 51=39-7-0

Max Horiz 51=254 (LC 11)

Max Uplift 29=-212 (LC 26), 30=-100 (LC 15),

31=-34 (LC 15), 32=-54 (LC 15), 33=-49 (LC 15), 34=-51 (LC 15), 35=-48 (LC 15), 36=-65 (LC 15), 38=-4 (LC 10), 39=-17 (LC 10), 40=-42 (LC 11), 41=-25 (LC 10), 42=-40 (LC 11), 43=-7 (LC 10), 46=-68 (LC 14), 47=-48 (LC 14), 48=-50 (LC 14), 49=-56 (LC 14),

50=-625 (LC 43), 51=-260 (LC 14)

42=39-7-0, 43=39-7-0, 44=39-7-0,

Max Grav 29=135 (LC 10), 30=306 (LC 26), 31=128 (LC 59), 32=178 (LC 26), 33=182 (LC 45), 34=231 (LC 45), 35=230 (LC 45), 36=216 (LC 45), 38=319 (LC 41), 39=353 (LC 21), 40=207 (LC 40), 41=224 (LC 40), 42=207 (LC 40), 43=315 (LC 58), 44=325 (LC 43), 46=204 (LC 43), 47=232 (LC 43), 48=222 (LC 43),

49=202 (LC 43), 50=126 (LC 14),

51=1064 (LC 41)

(lb) - Maximum Compression/Maximum Tension 1-2=0/26, 2-3=-249/446, 3-4=-224/491,

4-5=-192/494, 5-6=-67/314, 6-8=-108/455, 8-9=-63/475 9-10=-19/473 10-11=-41/472

11-12=-65/483, 12-13=-77/409, 13-14=-70/390. 14-15=-70/390. 15-16=-70/390, 16-17=-70/390, 17-18=-70/390, 18-19=-70/390,

19-20=-77/411, 20-21=-65/488, 21-22=-45/470, 22-23=-73/473 23-24=-101/482, 24-26=-129/487, 26-27=-158/503, 27-28=-199/506,

28-29=-260/552

BOT CHORD 2-53=-368/274, 52-53=-368/274, 51-52=-368/274, 50-51=-444/247,

49-50=-444/247, 48-49=-444/247, 47-48=-444/247, 46-47=-444/247, 44-46=-444/247, 43-44=-444/247,

42-43=-444/247, 41-42=-444/247, 40-41=-444/247, 39-40=-444/247, 38-39=-444/247, 36-38=-444/247, 35-36=-444/247, 34-35=-444/247,

33-34=-444/247, 32-33=-444/247, 31-32=-444/247, 30-31=-444/247,

29-30=-444/247

WEBS 16-41=-184/49, 15-42=-173/64, 14-43=-275/31, 12-44=-285/33,

11-46=-178/92, 10-47=-190/72,

9-48=-191/75, 8-49=-137/74, 6-50=-88/159, 4-52=-92/50. 3-53=-83/60. 17-40=-173/66.

18-39=-313/41, 20-38=-279/33, 21-36=-177/89, 22-35=-190/72,

23-34=-191/75. 24-33=-143/74. 26-32=-144/76, 27-31=-121/66,

28-30=-199/99, 5-51=-395/232

NOTES

Unbalanced roof live loads have been considered for 1) this design.

October 9,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

FORCES

TOP CHORD

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T1DGE	Piggyback Base Supported Gable	1	1	Job Reference (optional)

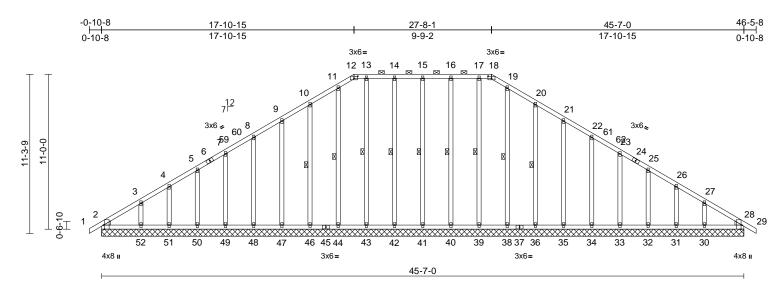
Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:46 ID:v_BbOIDWeCBhzNcLjVfxAvzoFRM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- Wind: ASCE 7-16: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 3-8-3, Exterior(2N) 3-8-3 to 13-4-4, Corner(3R) 13-4-4 to 22-5-10, Exterior(2N) 22-5-10 to 23-1-6, Corner(3R) 23-1-6 to 32-2-12, Exterior(2N) 32-2-12 to 40-9-8, Corner(3E) 40-9-8 to 45-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 260 lb uplift at joint
- 13) N/A

14) N/A

- 15) N/A
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:rMJLpRFm9pRPChljqwhPFKzoFRK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.8

Plate Offsets (X, Y):	[2:0-3-8,Edge]	[12:0-3-0,0-1-12]	, [18:0-3-0,0-1-12]	, [28:0-3-8,Edge]
-----------------------	----------------	-------------------	---------------------	-------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	28	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 362 lb	FT = 20%

LUMBER
TOP CHORD

2x4 SP No 2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 *Except* 41-15,42-14,43-13,40-16,39-17:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 12-18. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 15-41, 14-42, 13-43,

11-44, 10-46, 16-40,

17-39, 19-38, 20-36

2=45-7-0 28=45-7-0 30=45-7-0

REACTIONS (size) 31=45-7-0, 32=45-7-0, 33=45-7-0, 34=45-7-0, 35=45-7-0, 36=45-7-0,

> 38=45-7-0, 39=45-7-0, 40=45-7-0, 41=45-7-0, 42=45-7-0, 43=45-7-0 44=45-7-0, 46=45-7-0, 47=45-7-0, 48=45-7-0, 49=45-7-0, 50=45-7-0,

51=45-7-0, 52=45-7-0

Max Horiz 2=-258 (LC 12)

Max Uplift 2=-54 (LC 10), 30=-93 (LC 15), 31=-36 (LC 15), 32=-54 (LC 15), 33=-49 (LC 15), 34=-51 (LC 15), 35=-48 (LC 15), 36=-65 (LC 15), 39=-7 (LC 11), 40=-33 (LC 10),

41=-25 (LC 11), 42=-36 (LC 10), 43=-17 (LC 11), 44=-5 (LC 11), 46=-61 (LC 14), 47=-49 (LC 14), 48=-51 (LC 14), 49=-49 (LC 14),

50=-55 (LC 14), 51=-33 (LC 14),

52=-102 (LC 14)

Max Grav 2=204 (LC 53), 28=172 (LC 41), 30=234 (LC 26), 31=144 (LC 53), 32=172 (LC 26), 33=183 (LC 45), 34=231 (LC 45), 35=227 (LC 45), 36=232 (LC 45), 38=212 (LC 45), 39=197 (LC 40), 40=226 (LC 40), 41=220 (LC 40), 42=226 (LC 40), 43=197 (LC 40), 44=212 (LC 43), 46=232 (LC 43), 47=227 (LC 43), 48=231 (LC 43), 49=183 (LC 43),

50=173 (LC 25), 51=143 (LC 43), 52=243 (LC 25) (lb) - Maximum Compression/Maximum

Tension 1-2=0/26, 2-3=-241/199, 3-4=-185/165,

4-5=-162/153, 5-7=-148/139, 7-8=-135/136, 8-9=-135/162, 9-10=-128/189,

10-11=-153/223, 11-12=-152/227, 12-13=-135/222, 13-14=-135/222, 14-15=-135/222, 15-16=-135/222 16-17=-135/222, 17-18=-135/222,

18-19=-152/227, 19-20=-153/219 20-21=-128/165, 21-22=-107/120,

22-23=-77/73, 23-25=-69/42, 25-26=-82/52 26-27=-112/65, 27-28=-172/96, 28-29=0/26

2-52=-109/191, 51-52=-84/191 50-51=-84/191, 49-50=-84/191,

48-49=-84/191, 47-48=-84/191, 46-47=-84/191, 44-46=-84/191, 43-44=-84/191, 42-43=-84/191,

41-42=-84/191, 40-41=-84/191, 39-40=-84/191, 38-39=-84/191, 36-38=-84/191, 35-36=-84/191, 34-35=-84/191, 33-34=-84/191,

32-33=-84/191, 31-32=-84/191, 30-31=-84/191, 28-30=-84/191

WEBS 15-41=-180/49, 14-42=-186/61,

13-43=-157/41, 11-44=-172/29, 10-46=-195/85, 9-47=-188/73, 8-48=-191/75, 7-49=-144/74, 5-50=-143/76, 4-51=-128/66,

3-52=-177/100, 16-40=-186/61, 17-39=-157/31, 19-38=-172/9,

20-36=-195/89, 21-35=-188/72 22-34=-191/75, 23-33=-144/74,

25-32=-143/76, 26-31=-128/67,

27-30=-177/96

NOTES

Unbalanced roof live loads have been considered for 1) this design.

October 9,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

FORCES

TOP CHORD

BOT CHORD

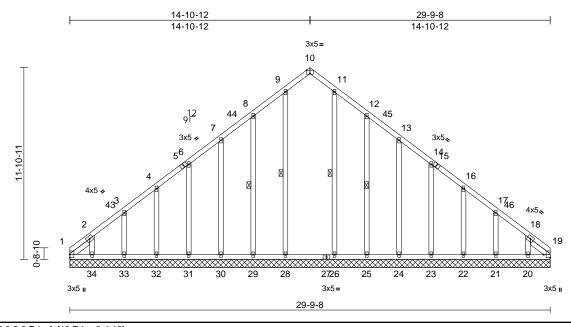
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:rMJLpRFm9pRPChljqwhPFKzoFRK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 3-8-3, Exterior(2N) 3-8-3 to 13-4-4, Corner(3R) 13-4-4 to 22-5-10, Exterior(2N) 22-5-10 to 23-1-6, Corner(3R) 23-1-6 to 32-2-12, Exterior(2N) 32-2-12 to 41-10-13, Corner(3E) 41-10-13 to 46-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 2 and 54 lb uplift at joint 2.
- 14) N/A
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 28, 56.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T2GE	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:gg0whrZWtqJYO8KD9hsaVKzoFf6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.4

Plate Offsets (X, Y):	[10:0-2-8,Edge], [19:Edge,0-4-1	13]
-----------------------	---------------------------------	-----

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.02	19	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 224 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3 *Except* 28-9,26-11:2x4 SP

Left 2x4 SP No.3 -- 1-6-14, Right 2x4 SP **SLIDER**

No.3 -- 1-6-14

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 9-28, 11-26, 8-29, 12-25 1 Row at midpt

REACTIONS (size)

1=29-9-8, 19=29-9-8, 20=29-9-8, 21=29-9-8, 22=29-9-8, 23=29-9-8, 24=29-9-8, 25=29-9-8, 26=29-9-8, 28=29-9-8, 29=29-9-8, 30=29-9-8,

31=29-9-8, 32=29-9-8, 33=29-9-8, 34=29-9-8

Max Horiz 1=-262 (LC 10) Max Uplift

1=-120 (LC 12), 19=-91 (LC 13),

20=-158 (LC 15), 21=-63 (LC 15), 22=-67 (LC 15), 23=-67 (LC 15), 24=-61 (LC 15), 25=-96 (LC 15), 29=-90 (LC 14), 30=-63 (LC 14),

31=-67 (LC 14), 32=-67 (LC 14), 33=-63 (LC 14), 34=-164 (LC 14)

1=329 (LC 14), 19=309 (LC 15), Max Grav 20=206 (LC 25), 21=204 (LC 25),

22=200 (LC 25), 23=200 (LC 25), 24=205 (LC 25), 25=229 (LC 21), 26=289 (LC 6), 28=289 (LC 5).

29=229 (LC 20), 30=206 (LC 24), 31=200 (LC 24), 32=201 (LC 24), 33=204 (LC 24), 34=213 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-167/77, 2-3=-337/162, 3-4=-268/136,

4-6=-199/112, 6-7=-143/87, 7-8=-123/64, 8-9=-118/96, 9-10=-118/88, 10-11=-118/88 11-12=-118/76, 12-13=-97/29, 13-14=-125/52,

14-16=-176/77. 16-17=-244/106. 17-18=-313/145, 18-19=-157/72

BOT CHORD 1-34=-141/310, 33-34=-141/310,

32-33=-141/310, 31-32=-141/310, 30-31=-141/310, 29-30=-141/310,

28-29=-141/310, 26-28=-141/310, 25-26=-141/310, 24-25=-141/310,

23-24=-141/310, 22-23=-141/310, 21-22=-141/310, 20-21=-141/310,

19-20=-141/310

9-28=-208/31, 11-26=-208/9, 8-29=-194/111,

7-30=-145/87, 6-31=-147/91, 4-32=-146/90, 3-33=-150/91, 2-34=-153/162, 12-25=-194/117, 13-24=-145/86, 14-23=-147/91, 16-22=-146/90,

17-21=-150/91, 18-20=-153/157

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0. Exterior(2N) 3-0-0 to 11-10-12, Corner(3R) 11-10-12 to 17-10-12, Exterior(2N) 17-10-12 to 26-9-8, Corner(3E) 26-9-8 to 29-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 1, 91 lb uplift at joint 19, 120 lb uplift at joint 1 and 91 lb uplift at joint 19.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	T2GE	Common Supported Gable	1	1	Job Reference (optional)

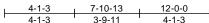
Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47

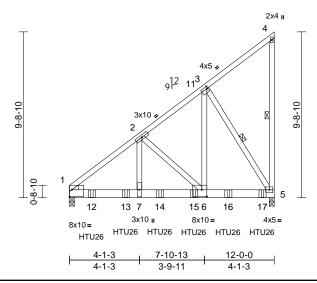
Page: 2

12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932



Job Truss Truss Type Qty Ply 76 Blackberry Manor-Roof-Rosemont A LH 176925336 2 25090183-01 T2GR Monopitch Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:Gx_URSHfSkp_38UIW2E6tyzoFRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.5

Plate Offsets (X, Y): [1:Edge,0-4-14], [3:0-0-12,0-1-8], [6:0-3-8,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.06	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.10	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.71	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	l									Weight: 190 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x6 SP 2400F 2.0E BOT CHORD

WEBS 2x4 SP No.3 *Except* 3-6:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

bracing. WEBS

1 Row at midpt 4-5, 3-5 REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=326 (LC 11)

Max Uplift 1=-526 (LC 12), 5=-729 (LC 12) Max Grav 1=5481 (LC 22), 5=6251 (LC 21)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-6111/590, 2-3=-3435/361, 3-4=-186/108,

4-5=-172/68

BOT CHORD 1-7=-593/4904, 6-7=-593/4904, 5-6=-346/2703

WEBS 2-7=-332/3382, 2-6=-2944/400,

3-6=-635/5890, 3-5=-4966/648

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 1. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-12 from the left end to 11-3-12 to connect truss(es) to front face of bottom chord
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) LGT2 Hurricane ties must have two studs in line below the truss

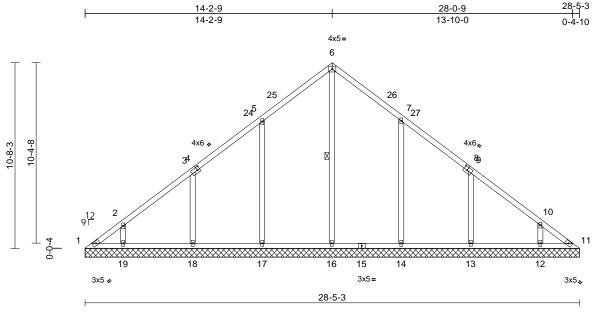
LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-60, 5-8=-20 Concentrated Loads (lb)

Vert: 12=-1604 (F), 13=-1604 (F), 14=-1604 (F), 15=-1604 (F), 16=-1604 (F), 17=-1608 (F)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	V1	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:4kjcsRK53TsB4?x7NyKbAlzoFSW-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3 Plate Offsets (X, Y): [3:0-1-12,0-2-4], [8:0-2-8,0-2-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horiz(TL)	0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3 *Except* 16-6:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

Max Grav

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. WEBS

1 Row at midpt

REACTIONS (size)

1=28-5-3, 11=28-5-3, 12=28-5-3, 13=28-5-3, 14=28-5-3, 16=28-5-3. 17=28-5-3, 18=28-5-3, 19=28-5-3

Max Horiz 1=-247 (LC 10)

Max Uplift 1=-73 (LC 12), 11=-13 (LC 13), 12=-85 (LC 15), 13=-139 (LC 15),

14=-143 (LC 15), 17=-145 (LC 14), 18=-137 (LC 14), 19=-90 (LC 14) 1=133 (LC 11), 11=104 (LC 27),

12=337 (LC 25), 13=440 (LC 25), 14=506 (LC 6), 16=421 (LC 27), 17=507 (LC 5), 18=439 (LC 24),

19=342 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-263/204, 2-3=-203/168, 3-5=-175/151, 5-6=-193/228, 6-7=-192/205, 7-9=-128/95,

9-10=-144/83, 10-11=-204/117

BOT CHORD 1-19=-92/182, 18-19=-86/182,

17-18=-86/182, 16-17=-86/182, 14-16=-86/183, 13-14=-86/183, 12-13=-86/183, 11-12=-86/183

6-16=-223/30, 5-17=-378/193, 3-18=-298/185, 2-19=-254/147, 7-14=-376/191, 9-13=-299/186,

10-12=-254/145

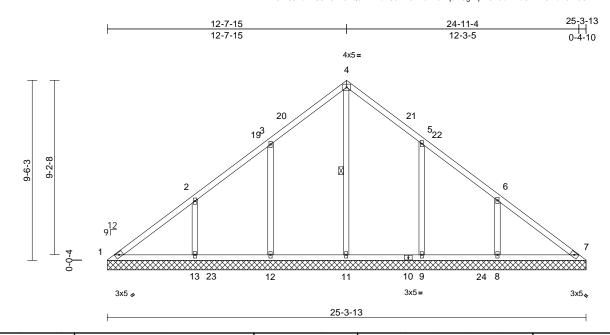
NOTES

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 11-2-15, Exterior(2R) 11-2-15 to 17-2-15, Interior (1) 17-2-15 to 25-5-8, Exterior(2E) 25-5-8 to 28-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 1 and 13 lb uplift at joint 11.
- 12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job Truss Truss Type Qty Ply 76 Blackberry Manor-Roof-Rosemont A LH 176925338 25090183-01 V2 Valley Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:47 ID:JIHSJKePxS8VC?x6vQohDnzoFS6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.9

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.28	Horiz(TL)	-0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 123 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WFBS 1 Row at midpt

REACTIONS (size) 1=25-3-13, 7=25-3-13, 8=25-3-13, 9=25-3-13, 11=25-3-13,

12=25-3-13, 13=25-3-13

Max Horiz 1=219 (LC 11)

Max Uplift 1=-84 (LC 10), 8=-147 (LC 15),

9=-143 (LC 15), 12=-140 (LC 14),

13=-152 (LC 14)

1=107 (LC 13), 7=0 (LC 25), 8=497 (LC 25), 9=481 (LC 6), 11=736 (LC

27), 12=489 (LC 5), 13=485 (LC

24)

FORCES (lb) - Maximum Compression/Maximum

Tension

Max Grav

1-2=-158/441, 2-3=-83/390, 3-4=-34/398, TOP CHORD 4-5=-34/378, 5-6=0/308, 6-7=-148/334

BOT CHORD 1-13=-233/91, 12-13=-233/81,

11-12=-233/81, 9-11=-232/82, 8-9=-232/82,

7-8=-232/82

WFBS 4-11=-532/0. 3-12=-373/193. 2-13=-321/186.

5-9=-368/192, 6-8=-327/185

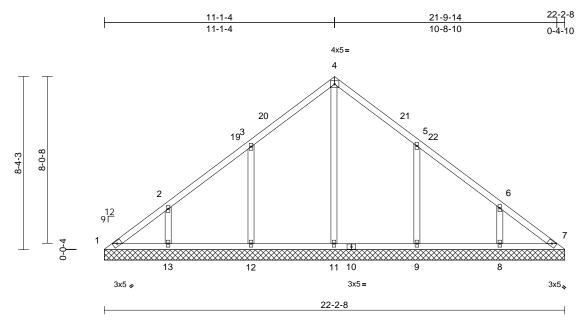
NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 9-8-4, Exterior(2R) 9-8-4 to 15-8-4, Interior (1) 15-8-4 to 22-4-3, Exterior(2E) 22-4-3 to 25-4-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint
- 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qty 76 Blackberry Manor-Roof-Rosemont A LH 176925339 25090183-01 V3 Valley Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:NvDY1H1UPHAy2wNGn8MBWXzoFRc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 104 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. REACTIONS (size)

1=22-2-8, 7=22-2-8, 8=22-2-8, 9=22-2-8, 11=22-2-8, 12=22-2-8,

13=22-2-8

Max Horiz 1=191 (LC 11)

Max Uplift 1=-83 (LC 10), 8=-105 (LC 15), 9=-156 (LC 15), 12=-151 (LC 14),

13=-115 (LC 14)

Max Grav 1=110 (LC 13), 8=378 (LC 25),

9=470 (LC 6), 11=610 (LC 27),

12=481 (LC 5), 13=361 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-171/301, 2-3=-120/283, 3-4=-85/290,

4-5=-85/271, 5-6=-8/204, 6-7=-63/186

BOT CHORD 1-13=-119/67, 12-13=-119/55, 11-12=-119/55,

9-11=-118/56, 8-9=-118/56, 7-8=-118/56 WEBS 4-11=-401/0, 3-12=-386/201, 2-13=-260/153,

5-9=-380/201, 6-8=-268/150

NOTES

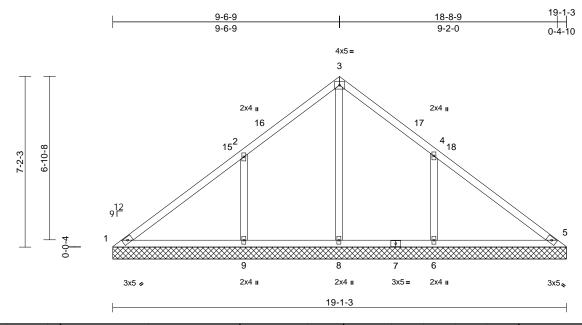
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-1-4, Interior (1) 3-1-4 to 8-1-9, Exterior(2R) 8-1-9 to 14-1-9, Interior (1) 14-1-9 to 19-1-4, Exterior(2E) 19-1-4 to 22-2-13 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint
- 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	V4	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:r5nwEc16Ablpf4ySLruQ3kzoFRb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horiz(TL)	-0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 83 lb	FT = 20%

LUMBER

Scale = 1:48.5

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=19-1-3, 5=19-1-3, 6=19-1-3, 8=19-1-3, 9=19-1-3

Max Horiz 1=164 (LC 11)

1=-62 (LC 36), 6=-187 (LC 15), Max Uplift

9=-194 (LC 14)

1=100 (LC 35), 5=1 (LC 25), 6=594 Max Grav

(LC 25), 8=686 (LC 24), 9=599 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-97/459, 2-3=0/367, 3-4=0/366,

4-5=-203/417

1-9=-294/97, 8-9=-294/94, 6-8=-292/95,

BOT CHORD 5-6=-292/95

3-8=-544/0, 2-9=-439/227, 4-6=-437/225

WEBS NOTES

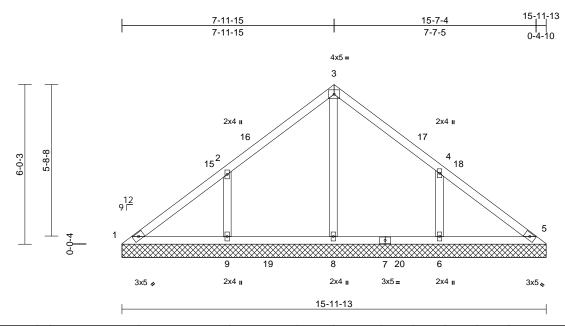
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-6-15, Exterior(2R) 6-6-15 to 12-6-15, Interior (1) 12-6-15 to 16-1-8, Exterior(2E) 16-1-8 to 19-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
25090183-01	V5	Valley	1	1	Job Reference (optional)	176925341

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:r5nwEc16Ablpf4ySLruQ3kzoFRb-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 67 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=15-11-13, 5=15-11-13, 6=15-11-13, 8=15-11-13,

9=15-11-13

Max Horiz 1=137 (LC 11)

Max Uplift 1=-41 (LC 10), 6=-151 (LC 15),

9=-156 (LC 14)

1=74 (LC 35), 5=0 (LC 30), 6=488 Max Grav

(LC 21), 8=613 (LC 24), 9=486 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-87/327, 2-3=-20/286, 3-4=0/264,

4-5=-93/273

BOT CHORD 1-9=-186/66, 8-9=-186/61, 6-8=-184/62,

5-6=-184/62

WEBS 3-8=-434/0 2-9=-391/190 4-6=-391/188

NOTES

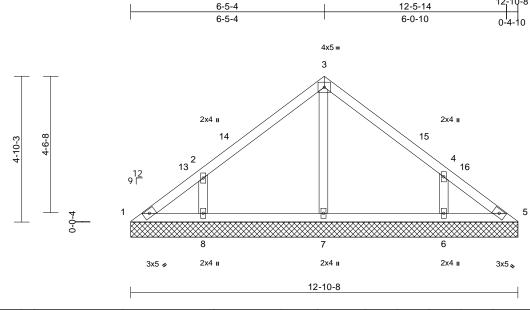
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-0-4, Exterior(2R) 5-0-4 to 11-0-4, Interior (1) 11-0-4 to 13-0-3, Exterior(2E) 13-0-3 to 16-0-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	V6	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:r5nwEc16Ablpf4ySLruQ3kzoFRb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.3

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-10-8, 5=12-10-8, 6=12-10-8, 7=12-10-8, 8=12-10-8

Max Horiz 1=-110 (LC 10)

Max Uplift 1=-22 (LC 10), 6=-124 (LC 15),

8=-128 (LC 14)

1=93 (LC 25), 5=77 (LC 24), 6=443 Max Grav

(LC 21), 7=281 (LC 20), 8=444 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-120/98, 2-3=-188/105, 3-4=-186/105,

4-5=-98/58

1-8=-34/89, 7-8=-34/68, 6-7=-33/68,

WEBS

5-6=-33/76 3-7=-195/1, 2-8=-393/181, 4-6=-387/178

NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-5-9, Exterior(2R) 3-5-9 to 9-5-9, Interior (1) 9-5-9 to 9-10-13, Exterior(2E) 9-10-13 to 12-10-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

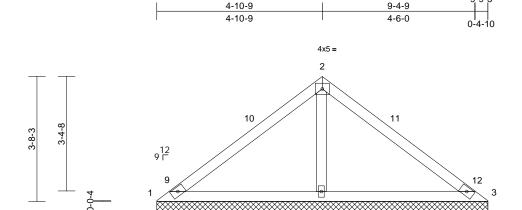
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	V7	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:JHLISy2kxvQgHDXfuZPfbyzoFRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 📞

Page: 1

4

2x4 II

9-9-3

Scale = 1:34

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.43	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 36 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-9-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-3, 3=9-9-3, 4=9-9-3

Max Horiz 1=-82 (LC 10)

Max Uplift 1=-54 (LC 21), 3=-50 (LC 20),

4=-95 (LC 14)

Max Grav 1=97 (LC 20), 3=102 (LC 21),

4=786 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-109/393, 2-3=-106/386 1-4=-267/162, 3-4=-262/160 **BOT CHORD**

2-4=-643/247

WFBS NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-9-8, Exterior(2E) 6-9-8 to 9-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

3x5 🚜

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

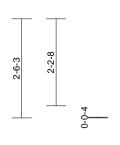
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 1 and 50 lb uplift at joint 3.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

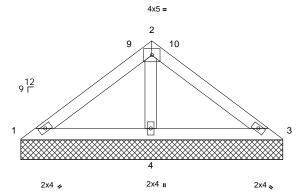
LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH
25090183-01	V8	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:JHLISy2kxvQgHDXfuZPfbyzoFRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7-13

Scale = 1:29.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-7-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-7-13, 3=6-7-13, 4=6-7-13

Max Horiz 1=55 (LC 13)

Max Uplift 1=-6 (LC 21), 3=-6 (LC 15), 4=-53

(IC 14)

Max Grav 1=99 (LC 20), 3=103 (LC 21),

4=462 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-88/198, 2-3=-95/193

1-4=-162/128, 3-4=-158/126 BOT CHORD

WFBS 2-4=-359/161

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 3-8-3, Exterior(2E) 3-8-3 to 6-8-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

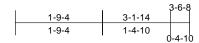
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

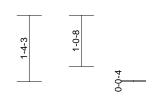
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1 and 6 lb uplift at joint 3.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

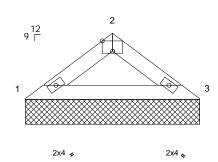
LOAD CASE(S) Standard

October 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	76 Blackberry Manor-Roof-Rosemont A LH	
25090183-01	V9	Valley	1	1	Job Reference (optional)	


Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Oct 08 13:02:48 ID:JHLISy2kxvQgHDXfuZPfbyzoFRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

3-6-8

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

3-6-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=3-6-8, 3=3-6-8 Max Horiz 1=27 (LC 13)

Max Uplift 1=-12 (LC 14), 3=-12 (LC 15)

Max Grav 1=164 (LC 20), 3=164 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

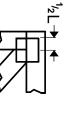
TOP CHORD 1-2=-226/81, 2-3=-226/81 BOT CHORD 1-3=-51/171

NOTES

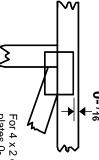
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.

- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 12 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



October 9,2025



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.