

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24-5743-A RVF-LOT 60

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I76976974 thru I76977006

My license renewal date for the state of North Carolina is December 31, 2025.

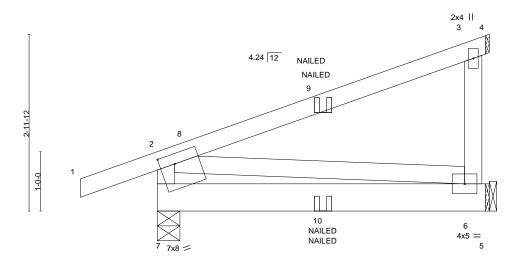
North Carolina COA: C-0844

October 11,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty RVF-LOT 60 176976974 24-5743-A CJ01 DIAGONAL HIP GIRDER 2


Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:48 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-hUgCQ?kOlaW4fp31AgSzyoX9mEhht2q6LVR9ogyUu6X

5-7-2 5-7-2

Scale = 1:19.4

Plate Offsets	(X,Y)	[7:0-3-0,0-2-0]
---------------	-------	-----------------

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.58 BC 0.15 WB 0.02	DEFL. ir Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) -0.00	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP				Weight: 35 lb	FT = 20%

BRACING-

LUMBER-

WEBS

2x4 SP No.2

TOP CHORD **BOT CHORD** 2x6 SP No.2 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-7-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-4-9, 6=Mechanical

Max Horz 7=95(LC 9)

Max Uplift 7=-82(LC 12), 6=-37(LC 12) Max Grav 7=305(LC 2), 6=232(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-254/89

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 7 and 37 lb uplift at
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-43, 5-7=-20

October 11,2025

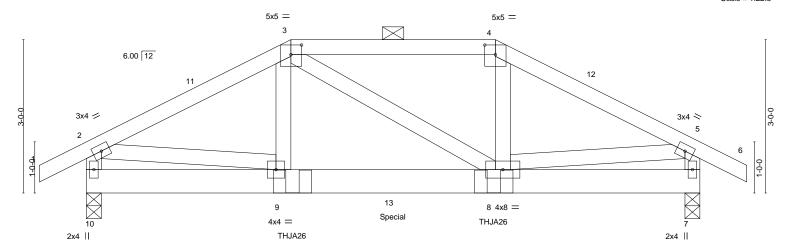
Job Truss Truss Type Qty Ply RVF-LOT 60 176976975 24-5743-A HG01 HIP GIRDER Job Reference (optional)
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:49 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-9gEaeLl03texHzeDkNzCV04Rqe1PcTRGa9BiL6yUu6W 12-11-0

4-0-0

Scale = 1:22.5

0-11-0

12-0-0


4-0-0

12-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

<u>'</u>	4-0-0	4-0-0		'	4-0-0	<u> </u>	
Plate Offsets (X,Y) [3:0-2-8,	0-2-4], [4:0-2-8,0-2-4]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.17 BC 0.18 WB 0.19 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.01 8-9 -0.02 8-9 0.00 7	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

8-0-0

LUMBER-TOP CHORD **BOT CHORD**

WEBS REACTIONS.

-0-11-0 0-11-0

2x4 SP No.2 2x6 SP No.2

2x4 SP No.3

(size) 10=0-3-8, 7=0-3-8 Max Horz 10=63(LC 57)

Max Uplift 10=-174(LC 12), 7=-172(LC 12) Max Grav 10=953(LC 35), 7=945(LC 35)

4-0-0

4-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1205/233, 3-4=-1027/223, 4-5=-1199/231, 2-10=-909/192, 5-7=-899/190

BOT CHORD 8-9=-172/1014

WFBS 3-9=-59/335, 4-8=-67/363, 2-9=-161/921, 5-8=-161/912

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at joint 10 and 172 lb uplift at joint 7. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

October 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976975 HIP GIRDER 24-5743-A HG01 | **Z** | Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:50 2025 Page 2

Riverside Roof Truss, LLC,

Danville, Va - 24541,

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-dsnyrhmeqBmou7DQI4UR1Dcca2NeLwhPppwGtYyUu6V

- 14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 4-0-6 from the left end to connect truss(es) to back face of bottom chord.
- 15) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 7-11-10 from the left end to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 135 lb down and 46 lb up at 6-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-53, 4-5=-43, 5-6=-43, 7-10=-20

Concentrated Loads (lb)

Vert: 9=-339(B) 8=-339(B) 13=-135(B)

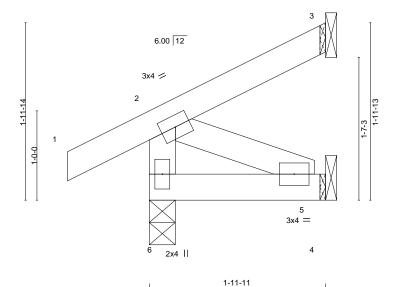
818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT 60 176976976 24-5743-A J01 JACK-OPEN Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:50 2025 Page 1


Structural wood sheathing directly applied or 1-11-11 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-dsnyrhmeqBmou7DQl4UR1Dcd32P_Ly8PppwGtYyUu6V 1-11-11 0-11-0 1-11-11

Scale = 1:12.9

Plate Offsets (X,Y)	[5:0-0-0,0-0-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Page Street Incr VES	CSI. TC 0.08 BC 0.03	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 6 >999 240 Vert(CT) -0.00 5-6 >999 180 Horr(CT) 0.00 2 0/2 2 0/2	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.03 Matrix-MP	Horz(CT) -0.00 3 n/a n/a	Weight: 11 lb FT = 20%

1-11-11

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3

(size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=67(LC 16)

Max Uplift 6=-20(LC 16), 3=-10(LC 13), 4=-14(LC 16) Max Grav 6=159(LC 21), 3=37(LC 21), 4=36(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 6, 10 lb uplift at joint 3 and 14 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 11,2025

Job Truss Truss Type Qty RVF-LOT 60 176976977 24-5743-A M01 Monopitch 2

Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:51 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtgyly9_-53LK20nGbVufWHocso?gaR9g2SaU4DdZ2SgpP?yUu6U

Structural wood sheathing directly applied or 3-11-8 oc purlins,

2-7, 4-6

5-12

Rigid ceiling directly applied or 9-1-8 oc bracing.

except end verticals.

1 Row at midpt 2 Rows at 1/3 pts

14-8-13 7-6-3 7-6-3 7-2-11 7-6-3

Scale = 1:68.4

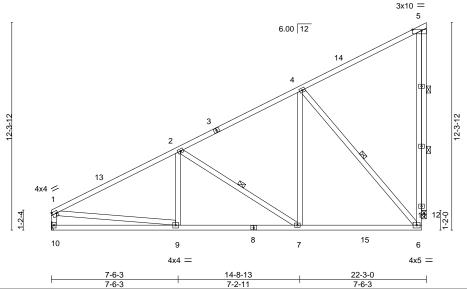


Plate Offsets (X,Y)-- [1:Edge,0-1-12], [5:0-6-8,Edge]

LOADING (psf) TCLL (roof) 20.0		2-0-0 CSI		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg) 11.6/15.0 TCDL 10.0		1.15 TC 1.15 BC	0.66	Vert(LL) Vert(CT)	-0.13 -0.21	6-7 6-7	>999 >999	240 180	MT20	244/190
BCLL 0.0	* Rep Stress Incr Code IRC2018/TPI20	YES WB 014 Mat	0.79 rix-MS	Horz(CT)	-0.02	12	n/a	n/a	Weight: 161 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS. (size) 10=Mechanical, 12=0-3-8

Max Horz 10=334(LC 16) Max Uplift 12=-143(LC 16)

Max Grav 10=987(LC 28), 12=1022(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-1343/0, 2-4=-809/0, 6-11=-119/869, 5-11=-119/869, 1-10=-866/47 TOP CHORD **BOT CHORD** 9-10=-408/314. 7-9=-275/1181. 6-7=-139/679

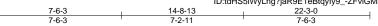
WEBS 2-7=-596/161, 4-7=0/636, 4-6=-984/202, 1-9=0/882, 5-12=-1023/205

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 21-9-12 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

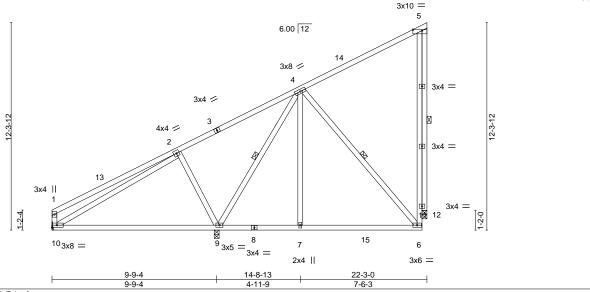
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply RVF-LOT 60 176976978 24-5743-A M02 Monopitch 3


Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:52 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ZFviGMnuMo1W8QNoPVXv6eipgrv_plgiG6PNyRyUu6T

Scale = 1:68.4

Plate Offsets ((X,Y)	[5:0-6-8,Edge]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.65 BC 0.70 WB 0.48	DEFL. in (loc) l/defl L/d Vert(LL) -0.23 9-10 >507 240 Vert(CT) -0.46 9-10 >254 180 Horz(CT) -0.04 12 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 *	Code IRC2018/TPI2014	Matrix-MS		Weight: 165 lb FT = 20%
BCDL 10.0				g

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **WEBS** 4-9, 4-6, 5-12 1 Row at midpt

REACTIONS.

(size) 9=0-3-8, 10=Mechanical, 12=0-3-8

Max Horz 10=311(LC 16)

Max Uplift 9=-75(LC 16), 12=-109(LC 16)

Max Grav 9=1154(LC 28), 10=359(LC 28), 12=537(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-395/101, 6-11=-59/378, 5-11=-59/378, 1-10=-322/103 WFBS $2-9=-424/229,\ 4-9=-570/47,\ 4-7=0/326,\ 4-6=-328/130,\ 5-12=-538/145$

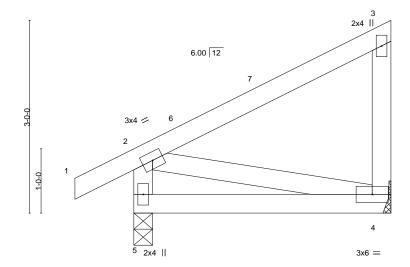
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 21-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 9 and 109 lb uplift at ioint 12.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 11,2025

Job Truss Truss Type Qty Ply RVF-LOT 60 176976979 MONOPITCH 24-5743-A M03 3


Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:52 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ZFviGMnuMo1W8QNoPVXv6eivjr2SpsHiG6PNyRyUu6T

4-0-0 0-11-0 4-0-0

Scale = 1:17.9

LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** CSI. (loc) TCLL (roof) 20.0 Vert(LL) -0.01 240 244/190 Plate Grip DOL 1.15 TC 0.26 4-5 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.16 Vert(CT) -0.02 4-5 >999 180 TCDI 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) -0.00 4 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MF Weight: 24 lb FT = 20% **BCDL** 10.0

LUMBER-TOP CHORD

WEBS

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins,

except end verticals.

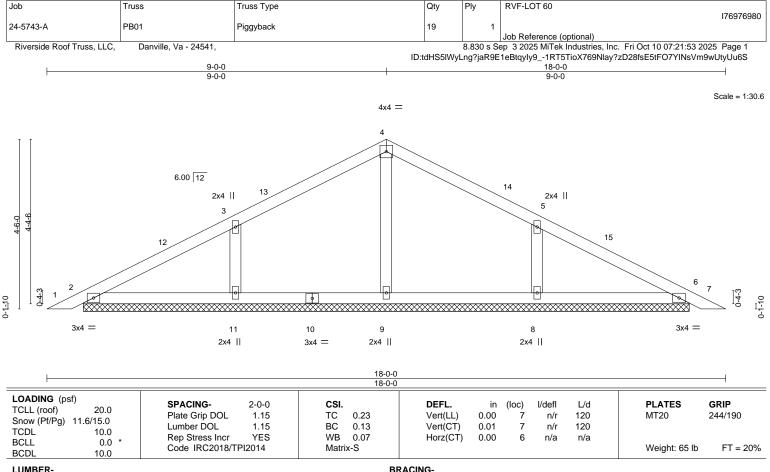
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

BOT CHORD

(size) 5=0-3-8, 4=Mechanical Max Horz 5=97(LC 13) Max Uplift 5=-39(LC 16), 4=-26(LC 13)

Max Grav 5=221(LC 2), 4=155(LC 21)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 5 and 26 lb uplift at
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 11,2025

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 16-0-14. (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 11, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=256(LC 2), 11=379(LC 34), 8=379(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-11=-281/179, 5-8=-281/179 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior(1) 12-0-0 to 17-8-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11, 8, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176976981 24-5743-A PB01GE **GABLE** 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:54 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-Vd1Th2p9uQHENkXBXwZNC3nJPfmxHm3?kQuT0JyUu6R 9-0-0 9-0-0 Scale = 1:30.6 4x4 = 6 5 6.00 12 19 9 10 11 18 17 16 14 13 12 15 3x4 = 3x4 = 5x5 = 18-0-0 Plate Offsets (X,Y)--[16:0-2-8,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 11 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Weight: 76 lb Matrix-S BCDL 10.0 BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS** 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-0-0.

(lb) -Max Horz 1=72(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 11, 2, 15, 16, 17, 18, 14, 13, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-15 to 3-3-15, Exterior(2N) 3-3-15 to 9-0-0, Corner(3R) 9-0-0 to 12-0-0, Exterior(2N) 12-0-0 to 17-8-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty 176976982 24-5743-A PB02 **GABLE** 5 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:55 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-zqbruOqnfjP5?u6N5e4ckHKRi35k0Co8y4e1YmyUu6Q 9-0-0 9-0-0 6-10-8 Scale = 1:29.4 4x4 = 6.00 12 2x4 || 2x4 || 5 2x4 || 9 8 7 10 3x4 = 2x4 || 2x4 || 2x4 || 2x4 || 15-10-8 15-10-8 LOADING (psf) SPACING-2-0-0 DEFL. **PLATES GRIP** CSI. (loc) I/defl L/d TCLL (roof) 20.0 Vert(LL) 244/190 Plate Grip DOL 1.15 TC 0.21 n/a n/a 999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 60 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x4 SP No.2 except end verticals.

BOT CHORD

RVF-LOT 60

Rigid ceiling directly applied or 10-0-0 oc bracing.

Ply

BOT CHORD WEBS 2x4 SP No.3

Truss

REACTIONS. All bearings 15-10-8

2x4 SP No.3

Max Horz 1=82(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 10, 8 except 1=-104(LC 28)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 2=298(LC 2), 9=279(LC 2), 10=354(LC 34), 8=316(LC

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-10=-267/226

(lb) -

NOTES-

OTHERS

Job

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-15 to 3-3-15, Exterior(2N) 3-3-15 to 9-0-0, Corner(3R) 9-0-0 to 12-0-0, Exterior(2N) 12-0-0 to 15-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 10, 8 except (it=lb) 1=104.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 Ply 176976983 24-5743-A T01GE COMMON SUPPORTED GAB Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:55 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-zqbruOqnfjP5?u6N5e4ckHKTp3660DF8y4e1YmyUu6Q 13-7-0 -0-11-0 0-11-0 12-8-0 6-4-0 6-4-0 0-11-0 Scale = 1:30.2 4x4 = 7.00 12 3 3x5 / 3x5 ≥ 8 16 15 14 13 12 11 10 3x4 = 3x4 = 12-8-0

Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС TCDI 10.0 Rep Stress Incr YES WB **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S **BCDL** 10.0

SPACING-

Plate Grip DOL

Vert(LL) -0.00 9 n/r 120 Vert(CT) -0.00 9 120 n/r Horz(CT) 0.00 10 n/a n/a

(loc)

I/defl

PLATES GRIP 244/190 MT20

Weight: 73 lb FT = 20%

LUMBER-

WEBS

OTHERS

LOADING (psf)

TCLL (roof)

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

2x4 SP No.3 2x4 SP No.3

20.0

BRACING-

DEFL.

12-8-0

CSI.

TC

0.08

0.04

0.04

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

L/d

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 12-8-0.

Max Horz 16=112(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

2-0-0

1.15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-4-0, Exterior(2N) 2-4-0 to 6-4-0, Corner(3R) 6-4-0 to 9-4-0, Exterior(2N) 9-4-0 to 13-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12 11
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 11,2025

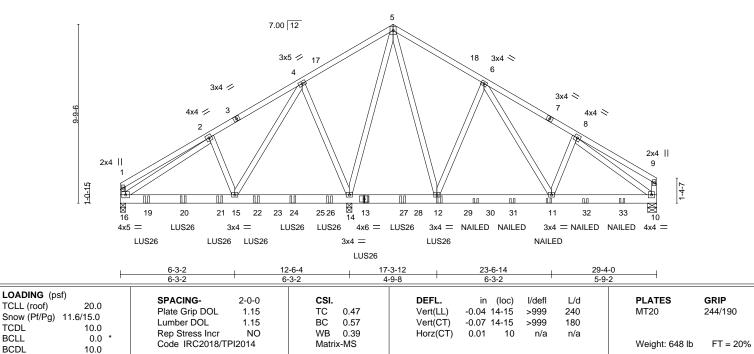
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976984 24-5743-A T02G COMMON GIRDER Job Reference (optional)
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:56 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-S09D6kqPQ1Xyc2haeLbrHUsYNTK?la0IBkNa5CyUu6P

19-10-11 4-11-11 4-11-11 4-11-11 4-11-11 4-11-11 4-5-11 Scale = 1:63.0 4x5 ||


24-10-5

29-4-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3

> (size) 14=0-3-8, 16=0-3-8, 10=0-6-0

Max Horz 16=201(LC 11) Max Uplift 16=-126(LC 12)

Max Grav 14=5790(LC 3), 16=1811(LC 29), 10=1166(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-725/160, 2-4=-1651/123, 4-5=0/841, 5-6=-397/134, 6-8=-1259/0, 8-9=-258/42,

1-16=-469/106

BOT CHORD 15-16=-79/1436, 11-12=0/536, 10-11=0/1044

WFBS 4-15=-52/2843, 4-14=-1707/150, 5-14=-2071/0, 5-12=0/1537, 6-12=-793/77, 6-11=0/996,

2-16=-1063/0, 8-10=-1136/0

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=126.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 6-0-0 oc max. starting at 1-5-4 from the left
- end to 17-5-4 to connect truss(es) to back face of bottom chord. 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at
- 9-5-4 from the left end to 11-5-4 to connect truss(es) to back face of bottom chord.

Och)tinilledlonaipagles where hanger is in contact with lumber.

October 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976984 **COMMON GIRDER** 24-5743-A T02G

Riverside Roof Truss, LLC,

Danville, Va - 24541,

3 | Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:57 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-wCjbJ4r1ALfpECFmC264piPj6sfEU1GRQO78deyUu6O

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-43, 5-9=-43, 10-16=-20

Concentrated Loads (lb)

Vert: 13=-300(B) 12=-300(B) 11=-134(B) 19=-501(B) 20=-501(B) 21=-501(B) 22=-499(B) 24=-686(B) 26=-686(B) 27=-300(B) 30=-135(B) 31=-134(B) 32=-134(B)

33=-134(B)

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty RVF-LOT 60 176976985 24-5743-A T02SGE **GABLE** Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:57 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-wCjbJ4r1ALfpECFmC264piPf7sgfUz6RQO78deyUu6O 14-11-0 29-10-0 30-9-0 0-11-0 -0-11-0 0-11-0 7-5-8 7-5-8 7-5-8 7-5-8 7-5-8 Scale = 1:68.9 3x4 || 4x6 || 7.00 12 5 39 38 5x5 / 40 37 5x5 <> 3x5 / 6 4x8 < 5x5 / 4x4 || 8 9 1-0-15 × 13 41 16 15 12 11 10 3x4 || 3x4 =3x5 =4x4 = 3x4 || 3x4 || 3x10 = 3x10 = 17-3-12 29-10-0 12-6-4 5-0-12 4-9-8 Plate Offsets (X,Y)--[2:0-2-0,0-1-12], [4:0-2-8,0-3-0], [5:0-1-0,0-1-8], [6:0-2-8,0-3-0], [8:0-2-0,0-1-12], [19:0-2-0,0-2-0], [25:0-2-0,0-0-8], [25:0-2-0,0-1-12], [19:0-2-0,0-2-0], [25:0-2-0,0-0-8], [25:0-2-0,0-1-12], [25LOADING (psf) SPACING-2-0-0 CSI. (loc) L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.08 10-11 >999 240 244/190 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.16 10-11 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.66 Horz(CT) 0.02 10 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Matrix-MS Weight: 272 lb FT = 20%BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **WEBS** 1 Row at midpt 5-14, 7-10

REACTIONS.

(size) 16=0-3-8, 14=0-3-8, 10=0-3-0

Max Horz 16=-212(LC 14)

Max Uplift 16=-70(LC 16), 14=-60(LC 16), 10=-80(LC 16) Max Grav 16=498(LC 28), 14=1494(LC 28), 10=771(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-3=-416/85,\ 3-5=0/303,\ 5-7=-364/153,\ 7-8=-483/175,\ 2-16=-425/117,\ 8-10=-454/164$

BOT CHORD 15-16=-110/445, 14-15=-53/361, 11-12=0/590, 10-11=0/590

WEBS 3-15=0/278, 3-14=-657/132, 5-14=-920/47, 5-12=-40/630, 7-12=-620/130, 7-11=0/278,

7-10=-370/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 14-11-0, Exterior(2R) 14-11-0 to 17-11-0, Interior(1) 17-11-0 to 30-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 14, 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 Ply 176976986 24-5743-A T03 PIGGYBACK BASE 3 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:58 2025 Page 1

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-OPG_XQsfxenfsLqymmdJMvxpoGzJDOebf2sh95yUu6N

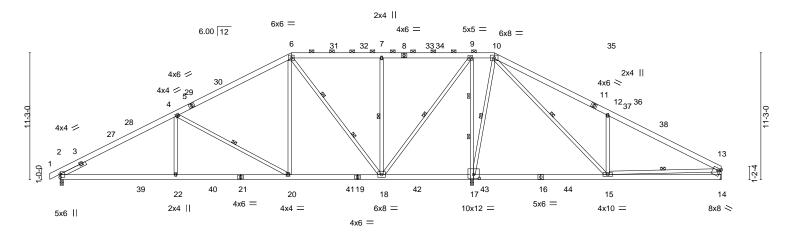
Structural wood sheathing directly applied or 4-1-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-10.

6-18, 9-17

4-20, 7-18, 9-18, 10-17, 10-15, 13-15

ORTH


Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

36-6-4 38-6-0₁ 48-6-12 -0-11-0 0-11-0 10-3-0 10-3-0 8-0-2 8-0-2 1-11-12 10-0-12 10-0-12

Scale = 1:102.2

	10-3-0	20-6-0	28-6-2	36-6-4	48-6-12	58-7-8
	10-3-0	10-3-0	8-0-2	8-0-2	12-0-8	10-0-12
Plate Offse	ets (X,Y) [14:Edge	e,0-2-4], [17:0-6-0,0-4-0]				
LOADING TCLL (roof Snow (Pf/F TCDL BCLL BCDL) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.80 BC 0.64 WB 0.83 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.26 15-17 >999 240 -0.39 15-17 >668 180 0.04 17 n/a n/a	PLATES GRIP MT20 244/190 Weight: 461 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.2 TOP CHORD **BOT CHORD** 2x6 SP No.2 WEBS 2x4 SP No.3

Left 2x4 SP No.3 2-6-0 SLIDER

REACTIONS.

(size) 2=0-3-8, 14=Mechanical, 17=0-3-8

Max Horz 2=236(LC 15)

Max Uplift 2=-115(LC 16), 14=-49(LC 16), 17=-147(LC 16) Max Grav 2=1562(LC 28), 14=643(LC 29), 17=3386(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD $2\text{-}4\text{--}2258/236,\ 4\text{-}6\text{--}1298/246,\ 6\text{-}7\text{--}477/239,\ 7\text{-}9\text{--}477/239,\ 9\text{-}10\text{--}0/853,}$

10-12=-746/306, 12-13=-682/121, 13-14=-522/110

BOT CHORD 2-22=-136/2151, 20-22=-136/2151, 18-20=0/1131, 17-18=-867/182, 15-17=-622/150, 14-15=-85/358

WEBS 4-22=0/507, 4-20=-1169/190, 6-20=0/963, 6-18=-1188/80, 7-18=-667/168,

9-18=-144/2020, 9-17=-1917/233, 10-17=-1356/175, 10-15=-204/1587, 12-15=-696/302,

13-15=-121/258

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft: Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-6, Interior(1) 4-11-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-6-2, Interior(1) 28-6-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (it=lb)

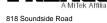
Timmin's October 11,2025

SEAL

Continue 605 or 7 age 472

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Ply RVF-LOT 60 176976986 T03 PIGGYBACK BASE 3 24-5743-A | Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:21:59 2025 Page 2

Riverside Roof Truss, LLC,

Danville, Va - 24541,

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-sbqMkltliyvWTVP8KT9Yv7U_YgJYyrukticEhXyUu6M

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Ply RVF-LOT 60 176976987 24-5743-A T03A PIGGYBACK BASE Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:00 2025 Page 1

8-0-2

1-11-12

8-0-2

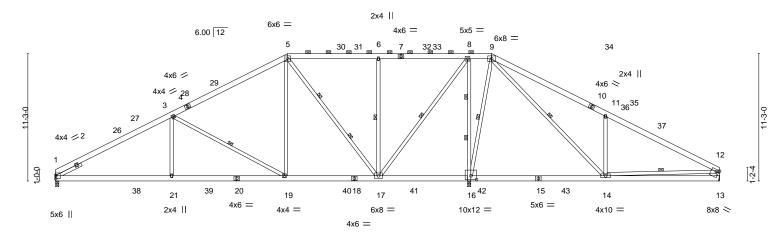
ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-KnOkx5uwTG1N5f_LtBgnRK19J4fnhl8t6MLoEzyUu6L 48-6-12 36-6-4 38-6-0

Structural wood sheathing directly applied or 4-1-9 oc purlins,

5-17. 8-16

3-19, 6-17, 8-17, 9-16, 9-14, 12-14

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-9.


Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 2 Rows at 1/3 pts

10-0-12

Scale = 1:101.7

10-0-12

	10-3-0	20-0-0	20-0-2	30-0- 4	70-0-12	30-7-0
	10-3-0	10-3-0	8-0-2	8-0-2	12-0-8	10-0-12
Plate Offs	ets (X,Y) [13:Edge,	0-2-4], [16:0-6-0,0-4-0]				
LOADING TCLL (roo Snow (Pf/I TCDL BCLL BCDL	of) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.80 BC 0.64 WB 0.83 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.26 14-16 >999 240 -0.39 14-16 >668 180 0.04 16 n/a n/a	PLATES GRIP MT20 244/190 Weight: 458 lb FT = 20%

TOP CHORD

BOT CHORD

WEBS

LUMBER-BRACING-

10-3-0

2x6 SP No.2 TOP CHORD **BOT CHORD** 2x6 SP No.2 WEBS 2x4 SP No.3

Left 2x4 SP No.3 2-6-0 SLIDER

10-3-0

(size) 1=0-3-8, 13=Mechanical, 16=0-3-8

Max Horz 1=229(LC 15)

Max Uplift 1=-86(LC 16), 13=-50(LC 16), 16=-147(LC 16) Max Grav 1=1513(LC 27), 13=644(LC 28), 16=3384(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-3=-2255/245,\ 3-5=-1301/251,\ 5-6=-479/242,\ 6-8=-479/242,\ 8-9=0/851,\ 9-11=-748/309,\ 3-$

11-12=-683/124. 12-13=-523/110

BOT CHORD 1-21=-136/2156, 19-21=-136/2156, 17-19=0/1133, 16-17=-865/179, 14-16=-620/147,

13-14=-85/358

WEBS 3-21=0/507, 3-19=-1171/191, 5-19=0/964, 5-17=-1187/80, 6-17=-667/168,

8-17=-144/2020, 8-16=-1916/233, 9-16=-1355/174, 9-14=-204/1587, 11-14=-696/302,

12-14=-119/254

NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft: Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-10-6, Interior(1) 5-10-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-6-2, Interior(1) 28-6-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13 except (jt=lb) 16=147.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere naestagia 12 dard ANSI/TPI 1

October 11,2025

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT 60
					176976987
24-5743-A	T03A	PIGGYBACK BASE	1	1	
					Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:00 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-KnOkx5uwTG1N5f_LtBgnRK19J4fnhl8t6MLoEzyUu6L

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 176976988 24-5743-A T03GE PIGGYBACK BASE SUPPO

Riverside Roof Truss, LLC, Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:02 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-GAWUMnvA?tH5Lz8j?ciFWl6f2tVY9M?AZgqulsyUu6J

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-23.

24-44, 25-43

ORTH

23-45, 22-46, 21-47, 20-48, 19-49, 18-50,

17-51, 16-52, 15-53, 14-54, 13-55, 12-56,

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

58-6-0 20-6-0 18-0-0 20-0-0

Scale = 1:102.7

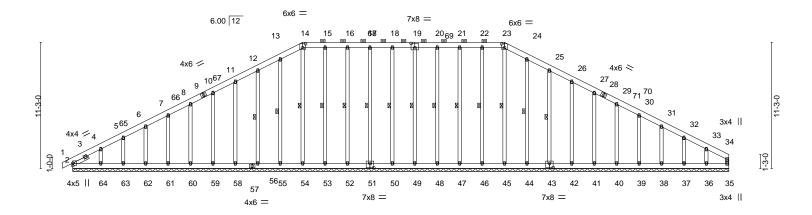


Plate Offsets (X,Y)--[14:0-3-0,0-4-0], [19:0-4-0,0-4-8], [23:0-3-0,0-4-0], [43:0-4-0,0-4-8], [51:0-4-0,0-4-8] LOADING (psf) SPACING-2-0-0 (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.00 120 244/190 n/r MT20 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.05 Vert(CT) 0.00 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.01 35 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Weight: 588 lb FT = 20%Matrix-S BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2 WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 1-6-4

REACTIONS. All bearings 58-6-0. Max Horz 2=234(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 35, 2, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36

All reactions 250 lb or less at joint(s) 35, 2, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, Max Grav 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

11-12=-121/252, 12-13=-124/300, 13-14=-137/338, 14-15=-123/323, 15-16=-123/323,

16-17=-123/323, 17-18=-123/323, 18-19=-123/323, 19-20=-123/323, 20-21=-123/323,

21-22=-123/323, 22-23=-123/323, 23-24=-137/338, 24-25=-124/300, 25-26=-107/252

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-11-6, Exterior(2N) 4-11-6 to 20-6-0, Corner(3R) 20-6-0 to 26-6-0. Exterior(2N) 26-6-0 to 38-6-0. Corner(3R) 38-6-0 to 44-6-0. Exterior(2N) 44-6-0 to 58-4-4 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Continued on page 2

Thin Gira

October 11,2025

RVF-LOT 60 Job Truss Truss Type Qty Ply 176976988 PIGGYBACK BASE SUPPO 24-5743-A T03GE 1

Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional)
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:02 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-GAWUMnvA?tH5Lz8j?ciFWl6f2tVY9M?AZgqulsyUu6J

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 35, 2, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 176976989 24-5743-A T04 PIGGYBACK BASE Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:03 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,

9-0-0

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-kM4ta7womBPyy7jwZJDU3yfgeHgyudEKoKaSqlyUu6I 38-6-0 48-10-4 9-0-0 10-4-4 9-9-4

Scale = 1:102.2

10-4-12	20-6-0	29-6-0	36-6-4	48-10-4	58-7-8
10-4-12	10-1-4	9-0-0	7-0-4	12-4-0	9-9-4
Plate Offsets (X,Y) [6:0-5-4,	0-3-0], [13:Edge,0-2-4]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.79 BC 0.68 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.21 14-16 >693 240 -0.31 14-16 >477 180 0.06 16 n/a n/a	PLATES GRIP MT20 244/190 Weight: 445 lb FT = 20%

LUMBER-BRACING-

10-1-4

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

-0-11-0 0-11-0

10-4-12

7-16: 2x4 SP No.1 Left 2x4 SP No.3 2-6-0

TOP CHORD **BOT CHORD**

WEBS

Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-9. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 14-16. 1 Row at midpt

4-19, 9-16, 12-14 2 Rows at 1/3 pts 6-17, 7-16

REACTIONS. All bearings 0-3-8 except (jt=length) 13=Mechanical.

Max Horz 2=236(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16 except 2=-124(LC 16), 14=-135(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 13 except 2=1623(LC 28), 16=2882(LC 28), 14=1062(LC 49)

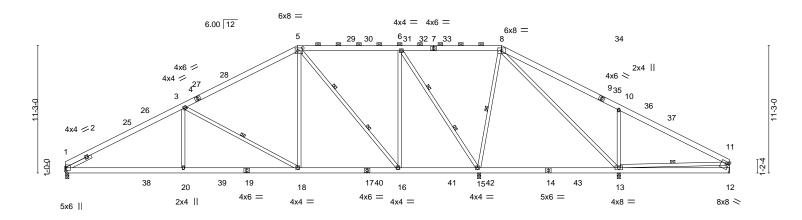
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2368/257, 4-6=-1404/268, 6-7=-517/265, 7-9=0/641, 9-11=-42/489, 11-12=-83/412 **BOT CHORD** 2-21=-150/2245, 19-21=-150/2245, 17-19=0/1253, 16-17=0/546, 14-16=-465/137 **WEBS** 4-21=0/508, 4-19=-1168/190, 6-19=0/998, 6-17=-1214/61, 7-17=0/1209, 7-16=-1980/179,

9-16=-769/135, 9-14=-24/274, 11-14=-714/307, 12-14=-496/170

SLIDER

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-6, Interior(1) 4-11-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-9-8, Interior(1) 28-9-8 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 2=124, 14=135.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


October 11,2025

Job Truss Truss Type Qty RVF-LOT 60 176976990 PIGGYBACK BASE 24-5743-A T04A Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:04 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-DZeFnTxQXUXpaGl661kjcABrOh0Gd3TT1_J?NkyUu6H

38-6-0 48-10-4 58-7-8 10-4-12 10-1-4 9-0-0 9-0-0 10-4-4 9-9-4

Scale = 1:101.7

10-4	-12	20-6-0	1	29-6-0	<u>) </u>	36-6-4	I.	48	3-10-4	1	58-7-8	
10-4	-12	10-1-4		9-0-0	, <u>'</u>	7-0-4	l	1	2-4-0		9-9-4	
Plate Offsets (X,Y) [5:)-5-4,0-3-0], [12:Edge,0-2-4]										
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	, F	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.79 0.67 0.94 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.31 0.06		l/defl >693 >477 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 443 lb	GRIP 244/190 FT = 20%

LUMBER-BRACING-

2x6 SP No.2 TOP CHORD **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

6-15: 2x4 SP No.1 Left 2x4 SP No.3 2-6-0

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-8. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 13-15. 3-18, 8-15, 11-13

WEBS 1 Row at midpt

2 Rows at 1/3 pts 5-16, 6-15

REACTIONS. All bearings 0-3-8 except (jt=length) 12=Mechanical.

Max Horz 1=229(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 15 except 13=-135(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 12 except 1=1573(LC 27), 15=2879(LC 27), 13=1063(LC 48)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2362/267, 3-5=-1407/273, 5-6=-518/269, 6-8=0/638, 8-10=-41/487, 10-11=-83/410 **BOT CHORD** $1\hbox{-}20\hbox{-}150/2251,\ 18\hbox{-}20\hbox{-}-150/2251,\ 16\hbox{-}18\hbox{-}0/1255,\ 15\hbox{-}16\hbox{-}0/547,\ 13\hbox{-}15\hbox{-}-462/133$ **WEBS** 3-20=0/508, 3-18=-1171/190, 5-18=0/999, 5-16=-1214/61, 6-16=0/1209, 6-15=-1980/179,

8-15=-766/134, 8-13=-24/272, 10-13=-714/307, 11-13=-495/170

SLIDER

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-10-6, Interior(1) 5-10-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-9-8, Interior(1) 28-9-8 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 15 except (jt=lb) 13=135
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

October 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976991 24-5743-A T05 PIGGYBACK BASE Job Reference (optional)

8-0-2

Riverside Roof Truss, LLC, Danville, Va - 24541,

10-4-12

10-1-4

-0-11-0 0-11-0

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:05 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-hlBd?px2lofgCQtlgkFy8Nk0Q5MXMX?dGe3ZvByUu6G 36-6-4 38-6-0 59-0-0

Structural wood sheathing directly applied or 4-5-7 oc purlins, except

6-19, 9-18

4-21, 7-19, 10-18, 10-16

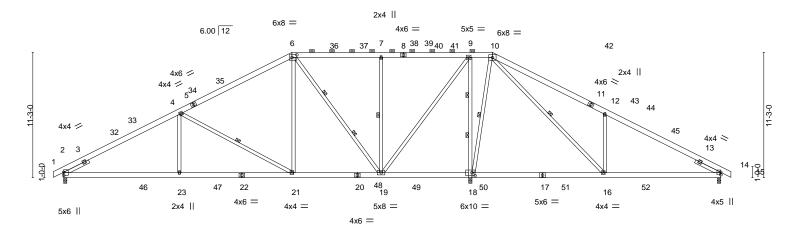
2-0-0 oc purlins (6-0-0 max.): 6-10.

1 Row at midpt

2 Rows at 1/3 pts

Rigid ceiling directly applied or 6-0-0 oc bracing.

10-1-4


59₁11₁-0 0-11-0

10-4-12

1-11-12

8-0-2

10-4-12	20-6-0	28-6-2	36-6-4	48-7-4	59-0-0
10-4-12	10-1-4	8-0-2	8-0-2	12-1-0	10-4-12
Plate Offsets (X,Y) [6:0-5-4,0	0-3-0], [18:0-3-4,0-3-4]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.77 BC 0.67 WB 0.86 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.26 16-18 >999 240 -0.40 16-18 >682 180 0.05 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.2 TOP CHORD

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 SLIDER

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 18=0-3-8 Max Horz 2=222(LC 15)

Max Uplift 2=-130(LC 16), 14=-104(LC 16), 18=-109(LC 16)

Max Grav 2=1598(LC 28), 14=828(LC 29), 18=3321(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2320/271, 4-6=-1345/276, 6-7=-532/276, 7-9=-532/276, 9-10=0/797,

10-12=-989/349. 12-14=-810/170 $2-23 = -128/2207, \ 21-23 = -128/2207, \ 19-21 = 0/1203, \ 18-19 = -771/137, \ 16-18 = -527/115,$

WEBS 4-23=0/521, 4-21=-1184/185, 6-21=0/964, 6-19=-1174/46, 7-19=-667/170,

9-19=-124/1978, 9-18=-1897/208, 10-18=-1353/166, 10-16=-213/1706, 12-16=-698/297

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2. Interior(1) 28-10-2 to 38-6-0. Exterior(2R) 38-6-0 to 46-10-2. Interior(1) 46-10-2 to 59-11-0 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=130, 14=104, 18=109.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere naestagia 12 dard ANSI/TPI 1

SEAL October 11,2025

MRNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORF USF

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT 60	
					I76976991	
24-5743-A	T05	PIGGYBACK BASE	1	1		
					Llob Reference (optional)	

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:05 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-hlBd?px2lofgCQtlgkFy8Nk0Q5MXMX?dGe3ZvByUu6G

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 Ply 176976992 24-5743-A T05A PIGGYBACK BASE Job Reference (optional)

8-0-2

8-0-2

Riverside Roof Truss, LLC, Danville, Va - 24541,

10-4-12

10-1-4

-0₇11₋0 0-11-0

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:06 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-9xl?C9yh36nXpaSVERnChbHB9Vij5_FmUlo6RdyUu6F 36-6-4 48-7-4 59-0-0 1-11-12

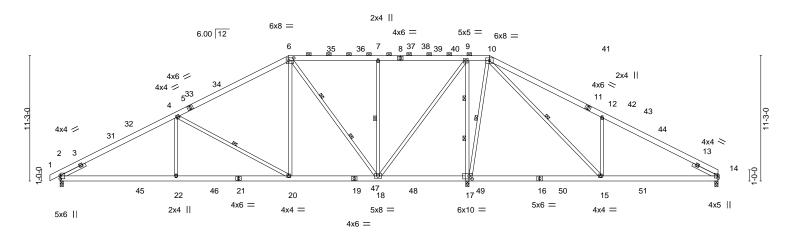
Structural wood sheathing directly applied or 4-5-7 oc purlins, except

6-18, 9-17

4-20, 7-18, 10-17, 10-15

2-0-0 oc purlins (6-0-0 max.): 6-10.

1 Row at midpt


2 Rows at 1/3 pts

Rigid ceiling directly applied or 6-0-0 oc bracing.

10-1-4

Scale = 1:103.3

10-4-12

	10-4-12	1 20-6-0		28-6-2		36-6-4		48	-7-4		59-0-0	
	10-4-12	10-1-4		8-0-2		8-0-2		12	-1-0	1	10-4-12	<u> </u>
Plate Offse	ets (X,Y) [6:0-5-4,0	0-3-0], [17:0-3-4,0-3-4]										
LOADING TCLL (roof Snow (Pf/F TCDL BCLL BCDL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matri	0.77 0.67 0.86 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.40 0.05		l/defl >999 >683 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 452 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.2 TOP CHORD **BOT CHORD** 2x6 SP No.2

WEBS 2x4 SP No.3 Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 SLIDER

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 17=0-3-8

Max Horz 2=220(LC 15)

Max Uplift 2=-128(LC 16), 14=-72(LC 16), 17=-114(LC 16) Max Grav 2=1600(LC 28), 14=779(LC 29), 17=3317(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2324/268, 4-6=-1349/274, 6-7=-534/273, 7-9=-534/273, 9-10=0/792,

10-12=-997/351, 12-14=-818/171

BOT CHORD 2-22=-150/2206, 20-22=-150/2206, 18-20=0/1201, 17-18=-766/131, 15-17=-522/100, 14-15=-45/711

WEBS 4-22=0/521, 4-20=-1183/185, 6-20=0/964, 6-18=-1172/47, 7-18=-667/170,

9-18=-125/1975, 9-17=-1896/210, 10-17=-1352/168, 10-15=-213/1709, 12-15=-699/297

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=128, 17=114.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere naestagia 12 dard ANSI/TPI 1

October 11,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT 60	٦
					176976992	:
24-5743-A	T05A	PIGGYBACK BASE	1	1		
					Job Reference (optional)	

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:07 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-d8JNPVzJqPvORk0ho9lRDopMvu2yqRVvjyYfz3yUu6E

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 176976993 24-5743-A T05GE PIGGYBACK BASE SUPPO

Riverside Roof Truss, LLC, Danville, Va - 24541,

Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:08 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-5Ktmdq_xbj2F3ubtLspgm0MiyIYLZ3U3ycHDWVyUu6D

59-0-0 -0<u>-11-0</u> 0-11-0 20-6-0 18-0-0 20-6-0

Scale = 1:105.3

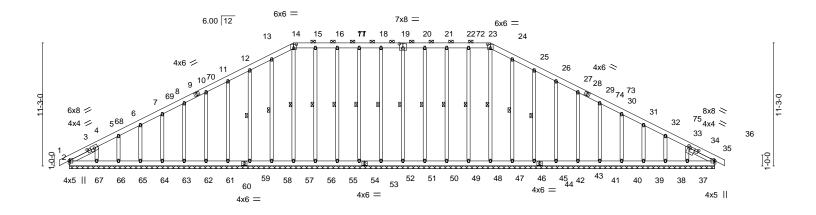


Plate Offsets (X,Y)--[2:1-10-12,0-2-0], [14:0-3-0,0-4-0], [19:0-4-0,0-4-8], [23:0-3-0,0-4-0], [33:0-2-12,0-2-1], [35:1-8-10,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) -0.00 35 120 244/190 n/r MT20 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.02 Vert(CT) -0.00 35 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.01 35 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Weight: 597 lb FT = 20%Matrix-S BCDL 10.0

LUMBER-BRACING-

TOP CHORD 2x6 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except TOP CHORD **BOT CHORD** 2x6 SP No.2 2-0-0 oc purlins (6-0-0 max.): 14-23

OTHERS 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 23-47, 22-48, 21-49, 20-50, 19-51, 18-52, SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 1 Row at midpt

17-54, 16-55, 15-56, 14-57, 13-58, 12-59, 24-46, 25-45

JORTH

REACTIONS. All bearings 59-0-0.

Max Horz 2=-216(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 48, 49, 50, 51, 52, 54, 55, 58, 59, 61, 62, 63, 64, 65, 66,

67, 46, 45, 43, 42, 41, 40, 39, 38, 37

Max Grav All reactions 250 lb or less at joint(s) 2, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62,

 $63,\,64,\,65,\,66,\,67,\,46,\,45,\,43,\,42,\,41,\,40,\,39,\,38,\,37,\,35$

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

12-13=-104/261, 13-14=-120/300, 14-15=-112/289, 15-16=-112/289, 16-17=-112/289,

17-18=-112/289, 18-19=-112/289, 19-20=-112/289, 20-21=-112/289, 21-22=-112/289,

22-23=-112/289, 23-24=-120/300, 24-25=-104/261

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-11-13, Exterior(2N) 4-11-13 to 20-6-0, Corner(3R) 20-6-0 to 26-6-0. Exterior(2N) 26-6-0 to 38-6-0. Corner(3R) 38-6-0 to 44-6-0. Exterior(2N) 44-6-0 to 59-11-0 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976993 PIGGYBACK BASE SUPPO 24-5743-A T05GE

Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional)
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:09 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ZWR8qA_ZM1A6g2A3vaKvIDvtiiualWkCAG1m2yyUu6C

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 48, 49, 50, 51, 52, 54, 55, 58, 59, 61, 62, 63, 64, 65, 66, 67, 46, 45, 43, 42, 41, 40, 39, 38, 37.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 Ply 176976994 24-5743-A T05S PIGGYBACK BASE 8

Riverside Roof Truss, LLC, Danville, Va - 24541, Job Reference (optional)

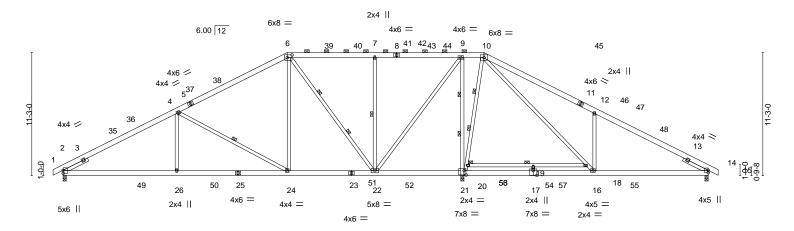
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:10 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-1i?W2W?B7KIyIBIGTHr8rRRtM60a1m3MPwmKaOyUu6B

Structural wood sheathing directly applied or 4-6-8 oc purlins, except

4-24, 7-22

6-22, 9-21, 10-20

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:


2-0-0 oc purlins (6-0-0 max.): 6-10.

6-0-0 oc bracing: 18-20

2 Rows at 1/3 pts

_ 48-7-4 20-6-0 36-6-4 38-6-0 59-0-0 -0-11-0 0-11-0 10-4-12 10-1-4 8-0-2 8-0-2 1-11-12 10-1-4 10-4-12 0-11-0

Scale = 1:105.4

	10-4-12	20-0-0	20-0-2	30-0-4	40-7-4	J 35-U-U	1
	10-4-12	10-1-4	8-0-2	8-0-2	12-1-0	10-4-12	1
Plate Offse	ets (X,Y) [6:0-5-4,	0-3-0], [17:0-4-0,0-5-4], [21:0-2-	1,0-4-12]				
LOADING TCLL (roof Snow (Pf/F TCDL BCLL BCDL	20.0	SPACING- 2-0-1 Plate Grip DOL 1.1: Lumber DOL 1.1: Rep Stress Incr YES Code IRC2018/TPI2014	5 TC 0.76 5 BC 0.87	Vert(CT Horz(C) -0.58 19-20 >462 18	0 MT20	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-**BOT CHORD**

TOP CHORD 2x6 SP No.2

2x6 SP 2400F 2.0E *Except*

21-23,23-25: 2x6 SP No.2, 18-20: 2x4 SP No.1

2x4 SP No.3 *Except* WEBS 10-21,10-16: 2x4 SP No.2

Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 SLIDER

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 21=0-3-8

Max Horz 2=222(LC 15)

Max Uplift 2=-141(LC 16), 14=-87(LC 16)

Max Grav 2=1584(LC 28), 14=923(LC 29), 21=3717(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2291/291, 4-6=-1315/299, 6-7=-512/305, 7-9=-512/305, 9-10=0/801, 10-12=-1220/310, 12-14=-1048/121

> 2-26=-146/2182, 24-26=-146/2182, 22-24=0/1176, 21-22=-775/99, 17-21=-257/107, 16-17=-257/107, 14-16=-2/910, 19-20=-353/0, 18-19=-353/0

WEBS 4-26=0/523, 4-24=-1184/183, 6-24=0/970, 6-22=-1193/31, 7-22=-661/169,

9-22=-114/1951, 9-21=-1922/204, 20-21=-1645/66, 10-20=-1418/106, 10-18=-117/2036,

16-18=-142/1738, 12-16=-689/300, 17-19=-292/0

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pq=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

October 11,2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT 60
					176976994
24-5743-A	T05S	PIGGYBACK BASE	8	1	Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:10 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-1i?W2W?B7KlyIBIGTHr8rRRtM60a1m3MPwmKaOyUu6B

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=141.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty RVF-LOT 60 176976995 24-5743-A T06 PIGGYBACK BASE 5 Job Reference (optional)
8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:11 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-VvZuFs0pteQpwLKS1?MNOe_?mWMZmGTVeaWt6qyUu6A 20-6-0 7-0-5 7-0-5 6-8-13 6-8-13 7-11-4 Scale = 1:73.9 5x8 = 4x5 = 2x4 || 5 20 21 22 23 6.00 12 3x4 // 19 18 4 3x6 / 3 2 4x6 / 9-0-26 10 12 25 27 9 15 13 11 8 14 3x6 =3x6 =6x6 = 3x4 = 5x8 = 3x4 =3x4 = 3x4 = 13-9-3 20-6-0 7-0-5 6-8-13 Plate Offsets (X,Y)--[1:0-3-0,0-1-8], [5:0-6-0,0-2-8], [8:Edge,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.91 Vert(LL) -0.18 8-9 >999 240 MT20 244/190 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.89 Vert(CT) -0.30 8-9 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.79 Horz(CT) 0.07 8 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Weight: 252 lb FT = 20%Matrix-MS BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

BOT CHORD

TOP CHORD 2x4 SP No.2 *Except*

5-7: 2x4 SP No.1 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 7-8: 2x4 SP No.1

REACTIONS. (size) 8=Mechanical, 15=0-3-8

Max Horz 15=311(LC 16)

Max Uplift 8=-135(LC 16), 15=-39(LC 16) Max Grav 8=1732(LC 38), 15=1685(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2672/108, 2-4=-2277/131, 4-5=-1667/145, 5-6=-1012/102, 6-7=-1012/102,

7-8=-1570/211, 1-15=-1566/106

BOT CHORD 14-15=-344/402, 13-14=-337/2383, 11-13=-263/2004, 9-11=-167/1440

2-13=-446/99, 4-13=0/508, 4-11=-913/143, 5-11=-20/993, 5-9=-783/111, 6-9=-702/176, **WEBS**

7-9=-174/1725, 1-14=0/1993

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=36ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-9-6, Interior(1) 3-9-6 to 20-6-0, Exterior(2R) 20-6-0 to 25-7-12, Interior(1) 25-7-12 to 36-2-12 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 8=135.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-2-0 oc purlins,

4-11, 5-9, 6-9, 7-9

except end verticals, and 2-0-0 oc purlins (5-4-3 max.): 5-7.

7-8

Rigid ceiling directly applied or 9-11-9 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

October 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT 60 176976996 24-5743-A T07 COMMON 3 Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:11 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-VvZuFs0pteQpwLKS1?MNOe_4MWVdmRMVeaWt6qyUu6A 12-11-0 12-0-0 0-11-0 6-0-0 6-0-0 0-11-0 Scale = 1:26.1 4x4 = 3 6.00 12 10 5x5 / 5x5 <> 7 4x8 = 6 П 2x4 П 2x4 6-0-0 12-0-0 Plate Offsets (X,Y)--[2:0-2-4,0-1-12], [4:0-2-4,0-1-12] LOADING (psf) SPACING-2-0-0 CSI. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) -0.02 7-8 >999 240 244/190 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.31 Vert(CT) -0.05 7-8 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.10 Horz(CT) 0.00 6 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-MS Weight: 64 lb BCDL 10.0 BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3

Max Horz 8=-82(LC 14) Max Uplift 8=-62(LC 16), 6=-62(LC 16) Max Grav 8=532(LC 2), 6=532(LC 2)

(size) 8=0-3-8, 6=0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-538/176, 3-4=-538/176, 2-8=-479/228, 4-6=-479/228 TOP CHORD

BOT CHORD 7-8=-170/276, 6-7=-124/257

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0 , Interior(1) 9-0-0 to 12-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176976997 24-5743-A V01 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:12 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-_57GTC1ReyYgXVveaiucwsXKRvsYVstftEFQfHyUu69 13-4-1 13-4-1 Scale = 1:50.1 4x4 = 15 7.00 12 0-0-4 3x4 / 3x4 < 13 10 9 17 8 16 12 11 3x4 = 26-7-10 26-8-1 0-0-7

BCLL BCDL

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

LUMBER-

TCDI

BRACING-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

TOP CHORD BOT CHORD

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

L/d

999

999

n/a

(loc)

n/a

n/a

0.00

I/defl

n/a

n/a

n/a

PLATES

Weight: 116 lb

MT20

GRIP

244/190

FT = 20%

CSI.

TC

ВС

WB

Matrix-S

0.27

0.20

0.21

2-0-0

1.15

1.15

YES

REACTIONS. All bearings 26-7-3.

20.0

10.0

10.0

0.0

Max Horz 1=-149(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

All reactions 250 lb or less at joint(s) 1, 7 except 10=390(LC 27), 12=422(LC 27), 13=493(LC 27), Max Grav

9=422(LC 28), 8=493(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-13=-299/128, 6-8=-299/128 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 13-4-1, Exterior(2R) 13-4-1 to 16-4-1, Interior(1) 16-4-1 to 26-1-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176976998 24-5743-A V02 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:13 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-SHgfgY24PFgX9fUr8QPrT33WKJDAEK0o5u?_BjyUu68 11-7-7 11-7-7 4x4 = Scale = 1:44.0 1 7.00 12 15 6 0-0-4 3x4 <> 3x4 / 13 12 11 10 3x4 = LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES GRIP**

(loc)

n/a

n/a

0.00

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

I/defl

n/a

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

999

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

Snow (Pf/Pg) 11.6/15.0

REACTIONS. All bearings 23-2-1. Max Horz 1=129(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 11, 13, 9, 8

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=380(LC 27), 11=431(LC 27), 13=366(LC 27),

1.15

1.15

YES

CSI.

TC

ВС

WB

Matrix-S

0.20

0.17

0.15

9=430(LC 28), 8=366(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-11=-263/125, 5-9=-263/125 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-7-7, Interior(1) 3-7-7 to 11-7-7, Exterior(2R) 11-7-7 to 14-7-7, Interior(1) 14-7-7 to 22-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

244/190

FT = 20%

MT20

Weight: 98 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty 176976999 24-5743-A V03 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:13 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-SHgfgY24PFgX9fUr8QPrT33UwJCzELzo5u?_BjyUu68 9-10-14 9-10-14 Scale = 1:37.5 4x4 = 3 7.00 12 2x4 || 2x4 || 3x4 / 3x4 <> 6 3x4 = 2x4 || 2x4 || 2x4 || 19-9-13 19-9-6 LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES GRIP** CSI. (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 244/190 1.15 TC 0.36 n/a n/a 999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.25 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 78 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-

TOP CHORD

BOT CHORD

RVF-LOT 60

TOP CHORD

Job

Truss

2x4 SP No.2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 19-8-15 Max Horz 1=109(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=298(LC 27), 9=566(LC 27), 6=566(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-346/156, 4-6=-346/156 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 9-10-14, Exterior(2R) 9-10-14 to 12-10-14, Interior(1) 12-10-14 to 19-3-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty 176977000 24-5743-A V04 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:14 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-wUE1tu2iAZoOnp31i7w4?HchpjaFzoRxKXkXj9yUu67 16-4-10 8-2-5 8-2-5 8-2-5 Scale = 1:30.9 4x4 = 3 7.00 12 11 2x4 || 2x4 || 13 10 3x4 / 3x4 < 9 8 7 6 2x4 || 3x4 = 2x4 || 2x4 || 16-4-10 16-4-3 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 999 244/190 1.15 TC 0.22 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 62 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

RVF-LOT 60

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3

> Max Horz 1=-89(LC 14) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 9, 6

All bearings 16-3-13.

Truss

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=255(LC 2), 9=363(LC 33), 6=363(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-272/134, 4-6=-272/134 WEBS

NOTES-

REACTIONS.

Job

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 8-2-5, Exterior(2R) 8-2-5 to 11-2-5, Interior(1) 11-2-5 to 15-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

176977001 24-5743-A V05 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:14 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-wUE1tu2iAZoOnp31i7w4?Hch4jaEzplxKXkXj9yUu67 6-5-12 6-5-12 6-5-12 Scale = 1:24.4 4x4 = 3 7.00 12 2x4 || 4^{2x4} || 2 6 2x4 || 3x4 🗸 3x4 > 2x4 || 2x4 || 12-11-8 12-11-1 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.20 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 47 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-

TOP CHORD

BOT CHORD

Qty

RVF-LOT 60

REACTIONS.

(lb) -

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3

> Max Horz 1=-69(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=277(LC 2), 8=307(LC 20), 6=307(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

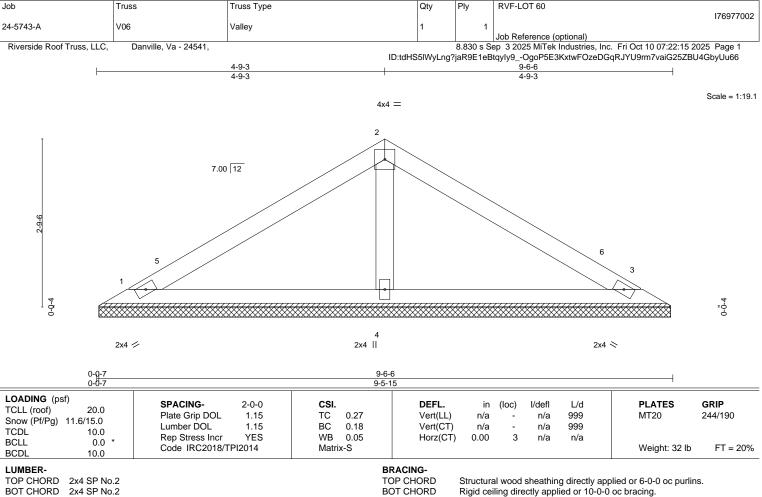
NOTES-

1) Unbalanced roof live loads have been considered for this design.

All bearings 12-10-10.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-5-12, Exterior(2R) 6-5-12 to 9-5-12, Interior(1) 9-5-12 to 12-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

REACTIONS.

2x4 SP No.2

OTHERS 2x4 SP No.3

> 1=9-5-8, 3=9-5-8, 4=9-5-8 (size)

Max Horz 1=-49(LC 14)

Max Uplift 1=-20(LC 16), 3=-20(LC 16)

Max Grav 1=160(LC 2), 3=160(LC 2), 4=356(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-9-3, Exterior(2R) 4-9-3 to 7-9-3, Interior(1) 7-9-3 to 8-11-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176977003 24-5743-A V07 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:15 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-OgoP5E3KxtwFOzeDGqRJYU9uA7wMiGS5ZBU4GbyUu66 3-0-10 3-0-10 Scale = 1:13.4 4x4 = 2 7.00 12 0-0-4 70-0 4 2x4 / 2x4 || 2x4 < 0-0-7 6-1-3 6-0-13 LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** CSI. (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.12 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 19 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3

REACTIONS.

1=6-0-6, 3=6-0-6, 4=6-0-6 (size)

Max Horz 1=-29(LC 14) Max Uplift 1=-17(LC 16), 3=-17(LC 16)

Max Grav 1=105(LC 2), 3=105(LC 2), 4=192(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176977004 24-5743-A V08 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:16 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ssMnla4yiA2606CQpYyY5ih4WXG9Rj5EnrDeo2yUu65 1-4-1 1-4-1 Scale = 1:6.6 3x4 = 7.00 12 3 0-D-4 0-0-4 2x4 / 2x4 < 2-7-10 Plate Offsets (X,Y)-- [2:0-2-0,Edge] (loc) I/defI L/d **PLATES** GRIP Vert(LL) 999 MT20 244/190 n/a n/a

LOADING (psf)				
TCLL (roof)	20.0	SPACING-	2-0-0	CSI.	
` ,		Plate Grip DOL	1.15	TC 0.01	
Snow (Pf/Pg)	11.6/15.0	Lumber DOL	1.15	BC 0.03	
TCDL	10.0				
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.00	
DCLL	0.0	Code IRC2018/TF	PI2014	Matrix-P	
BCDL	10.0	0000 11(02010/11	12017	IVIGUIX I	

Vert(CT) n/a n/a 999 Horz(CT) 0.00 3 n/a n/a

FT = 20% Weight: 7 lb

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-8-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=2-7-3, 3=2-7-3 Max Horz 1=9(LC 15) Max Uplift 1=-4(LC 16), 3=-4(LC 16) Max Grav 1=64(LC 2), 3=64(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty 176977005 24-5743-A V09 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:16 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ssMnla4yiA2606CQpYyY5ih1yXFgRjTEnrDeo2yUu65 4-1-8 Scale = 1:15.1 4x4 = 6 6.00 12 4 2x4 🖊 2x4 || 2x4 < LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** CSI. (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.24 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 26 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

RVF-LOT 60

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. 1=8-2-0, 3=8-2-0, 4=8-2-0 (size) Max Horz 1=29(LC 15)

Truss

Max Uplift 1=-21(LC 16), 3=-21(LC 16)

Max Grav 1=145(LC 20), 3=145(LC 21), 4=276(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

Job

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 4-1-8, Exterior(2R) 4-1-8 to 7-1-8, Interior(1) 7-1-8 to 7-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT 60 176977006 24-5743-A V10 Valley Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Oct 10 07:22:17 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-K3w9Wv5aTUAzeGncNFTndvEFewb8AAKO0VzBKUyUu64 2-1-8 Scale: 1.5"=1 3x4 = 2 6.00 12 3 0-0-2x4 / 2x4 < Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) 999 MT20 244/190 n/a n/a 11.6/15.0 Snow (Pf/Pg) Lumber DOL 1.15 BC 0.11 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-P Weight: 11 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-3-0 oc purlins. BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=4-2-0, 3=4-2-0 (size) Max Horz 1=-12(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16) Max Grav 1=120(LC 2), 3=120(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

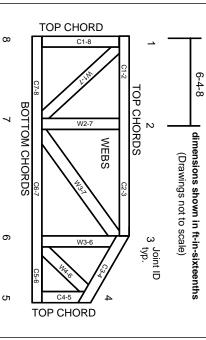
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

n General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.