

RE: 25-5549-A

RVF-LOT #45 Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 25-5549-A

Lot/Block: Model:
Address: Subdivision:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 35 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4	Seal# 73191977 73191978 73191979 73191980	Truss Name CJ01 HG01 J01 M01	Date 5/5/2025 5/5/2025 5/5/2025 5/5/2025	No. 21 22 23 24	Seal# 173191997 173191998 173191999 173192000	Truss Name T05S T06 T07 T08	Date 5/5/2025 5/5/2025 5/5/2025 5/5/2025
5	173191981	M02	5/5/2025	25	173192001	T08GE	5/5/2025
6	173191982	M03	5/5/2025	26	173192002	V01	5/5/2025
7	I73191983	PB01	5/5/2025	27	173192003	V02	5/5/2025
8	173191984	PB01GE	5/5/2025	28	173192004	V03	5/5/2025
9	173191985	PB02	5/5/2025	29	173192005	V04	5/5/2025
10	173191986	T01GE	5/5/2025	30	173192006	V05	5/5/2025
11	173191987	T02G	5/5/2025	31	173192007	V06	5/5/2025
12	I73191988	T02SGE	5/5/2025	32	173192008	V07	5/5/2025
13	173191989	T03	5/5/2025	33	173192009	V08	5/5/2025
14	173191990	T03A	5/5/2025	34	173192010	V09	5/5/2025
15	I73191991	T03GE	5/5/2025	35	173192011	V10	5/5/2025
16	I73191992	T04	5/5/2025				
17	173191993	T04A	5/5/2025				

5/5/2025

5/5/2025

5/5/2025

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

T05

T05A

T05GE

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

173191994

173191995

173191996

18

19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

May 05, 2025

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191977 CJ01 DIAGONAL HIP GIRDER 2 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:30 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-M9WiY5OHHFUKwzllypMXOs?Hf?zg6KJ3_lbPS_zKbf? Scale = 1:18.8 4.24 12 NAILED NAILED 1-0-0 10 NAILED 4x5 = **NAILED** [7:0-3-0 0-2-0]

Plate Offsets (A, 1) [7.0-3-0,	0-2-0]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.58 BC 0.15 WB 0.02	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 6-7 >999 240 Vert(CT) -0.02 6-7 >999 180 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 35 lb FT = 20%

LUMBER-TOP CHORD

2x4 SP No 2

BOT CHORD 2x6 SP No 2 WFBS 2x4 SP No.3 **BRACING-**

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 5-7-2 oc purlins,

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-4-9, 6=Mechanical

Max Horz 7=95(LC 9)

Max Uplift 7=-82(LC 12), 6=-37(LC 12) Max Grav 7=305(LC 2), 6=232(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-254/89

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-43, 5-7=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191978 HG01 HIP GIRDER 25-5549-A 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:31 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-qL44mQPv2YcBY7KVWXtmw4YZjPJOrlwCDPKy?QzKbf_ -0-11-0 0-11-0 4-0-0 12-0-0 4-0-0 4-0-0 0-11-0

Scale = 1:22.5

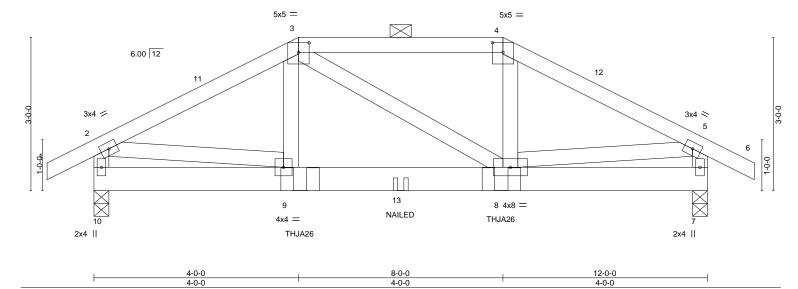


Plate Offsets (X,Y)--[3:0-2-8,0-2-4], [4:0-2-8,0-2-4] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.17 Vert(LL) -0.01 8-9 >999 240 MT20 244/190 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.02 8-9 >999 180 TCDL 10.0 WB Rep Stress Incr NO 0.19 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS FT = 20% Weight: 151 lb BCDL 10.0

LUMBER-

2x4 SP No 2 2x6 SP No 2

TOP CHORD **BOT CHORD** WFBS 2x4 SP No 3 BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 10=0-3-8, 7=0-3-8

Max Horz 10=63(LC 57)

Max Uplift 10=-174(LC 12), 7=-172(LC 12) Max Grav 10=953(LC 35), 7=945(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1205/233, 3-4=-1027/223, 4-5=-1199/231, 2-10=-909/192, 5-7=-899/190

TOP CHORD BOT CHORD 8-9=-172/1014

WFBS 3-9=-59/335, 4-8=-67/363, 2-9=-161/921, 5-8=-161/912

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=174, 7=172.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

May 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof	
25-5549-A	HG01	HIP GIRDER	1	2	Job Reference (optional)	173191978

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:31 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-qL44mQPv2YcBY7KVWXtmw4YZjPJOrlwCDPKy?QzKbf_

NOTES-

- 14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 4-0-6 from the left end to connect truss(es) to back face of bottom chord.
- 15) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 7-11-10 from the left end to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-53, 4-5=-43, 5-6=-43, 7-10=-20

Concentrated Loads (lb)

Vert: 9=-339(B) 8=-339(B) 13=-135(B)

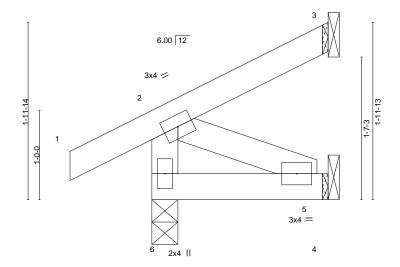
818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191979 J01 JACK-OPEN 4 25-5549-A Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:31 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-qL44mQPv2YcBY7KVWXtmw4YaCPLkrnNCDPKy?QzKbf_


Structural wood sheathing directly applied or 1-11-11 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

-0-11-0 1-11-11 0-11-0

Scale = 1:12.9

1-11-11

BRACING-

TOP CHORD

BOT CHORD

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0						111	(/				
Snow (Pf/Pg) 11.6/15.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	-0.00	6	>999	240	MT20	244/190
	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	5-6	>999	180		
TCDL 10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	-0.00	3	n/a	n/a		
BCLL 0.0	* Code IRC2018/TF	-		x-MP	1.0.2(0.7)	0.00	·	.,,		Weight: 11 lb	FT = 20%
BCDL 10.0	Code INC2016/11	12014	IVIALIT	V-IAII						vveignt. 11 ib	1 1 = 20 /0

LUMBER-

REACTIONS.

WFBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3

(size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=67(LC 16)

Max Uplift 6=-20(LC 16), 3=-10(LC 13), 4=-14(LC 16) Max Grav 6=159(LC 21), 3=37(LC 21), 4=36(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191980 M01 Monopitch 2 25-5549-A Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

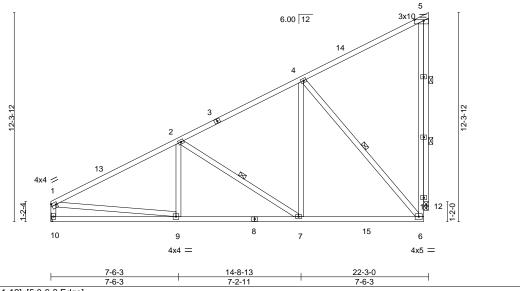
8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:32 2025 Page 1

Structural wood sheathing directly applied or 3-11-8 oc purlins,

2-7, 4-6

5-12

Rigid ceiling directly applied or 9-1-8 oc bracing.


except end verticals.

1 Row at midpt

2 Rows at 1/3 pts

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-IYeSzmQXpsk29Huh3EO?TH4dCpWEa2tLS34VWtzKbez 14-<u>8-13</u> 7-2-11

Scale = 1:67.9

Plate Offsets (X,Y)	[1:Eage,0-1-12], [5:0-6-8,Eage]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.64 BC 0.66 WB 0.79	DEFL. in (loc) l/defl L/d Vert(LL) -0.13 6-7 >999 240 Vert(CT) -0.21 6-7 >999 180 Horz(CT) -0.02 12 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	, ,	Weight: 161 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3

REACTIONS. (size) 10=Mechanical, 12=0-3-8

Max Horz 10=334(LC 16) Max Uplift 12=-143(LC 16)

Max Grav 10=987(LC 28), 12=1022(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1343/0. 2-4=-809/0. 6-11=-119/869. 5-11=-119/869. 1-10=-866/47 **BOT CHORD**

9-10=-408/314. 7-9=-275/1181. 6-7=-139/679

WEBS $2-7=-596/161,\ 4-7=0/636,\ 4-6=-984/202,\ 1-9=0/882,\ 5-12=-1023/205$

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 21-9-12 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) All plates are 3x4 MT20 unless otherwise indicated
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12 = 143.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191981 M02 Monopitch 3 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:32 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-IYeSzmQXpsk29Huh3EO?TH4c4pVVa7gLS34VWtzKbez 14-8-13 7-2-11 7-6-3 Scale = 1:68.4 3x10 = 5 6.00 12 3x8 / 3x4 = 3x4 / 4x4 / 2 3x4 1-2-4 12 1-2-0 ₩ 9 8 15 10 6 3x8 =3x5 =3x4 =2x4 || 3x6 = 14-8-13 22-3-0 4-11-9 7-6-3 Plate Offsets (X,Y)-- [5:0-6-8,Edge]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.65 BC 0.70 WB 0.48	DEFL. in (loc) l/defl L/d Vert(LL) -0.23 9-10 >507 240 Vert(CT) -0.46 9-10 >254 180 Horz(CT) -0.04 12 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	11012(01) 0.04 12 194 194	Weight: 165 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No.3 WFBS **OTHERS**

2x4 SP No.3

(size) 9=0-3-8, 10=Mechanical, 12=0-3-8 Max Horz 10=311(LC 16)

Max Uplift 9=-75(LC 16), 12=-109(LC 16)

Max Grav 9=1154(LC 28), 10=359(LC 28), 12=537(LC 28)

FORCES. (lb) - Max, Comp./Max, Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-395/101, 6-11=-59/378, 5-11=-59/378, 1-10=-322/103 WFBS 2-9=-424/229, 4-9=-570/47, 4-7=0/326, 4-6=-328/130, 5-12=-538/145

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 21-9-12 zone; cantilever left and right exposed , end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb)
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

4-9, 4-6, 5-12

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

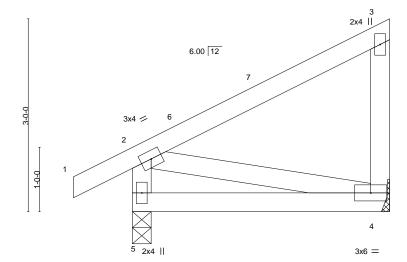
May 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191982 M03 MONOPITCH 3 25-5549-A Job Reference (optional)


Riverside Roof Truss, LLC,

Danville, Va - 24541,

0-11-0

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:33 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-mkBrB6R9aAsvnRTtdyvE0VdtsD_CJhXVhjp32JzKbey

Scale = 1:17.9

4-0-0

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.26	DEFL. in (loc) I/defl L/d Vert(LL) -0.01 4-5 >999 240	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	BC 0.16 WB 0.06 Matrix-MP	Vert(CT) -0.02 4-5 >999 180 Horz(CT) -0.00 4 n/a n/a	Weight: 24 lb FT = 20%

LUMBER-

WFBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins,

except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 5=0-3-8, 4=Mechanical Max Horz 5=97(LC 13)

Max Uplift 5=-39(LC 16), 4=-26(LC 13)

Max Grav 5=221(LC 2), 4=155(LC 21)

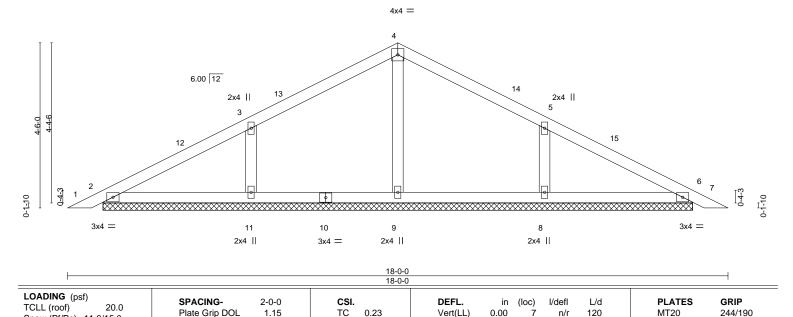
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 5,2025

173191983 PB01 19 25-5549-A Piggyback Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:33 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-mkBrB6R9aAsvnRTtdyvE0VduGD_eJgNVhjp32JzKbey 18-0-0


Qty

Ply

RVF-LOT #45 Roof

9-0-0

Scale = 1:31.4

LUMBER-

Snow (Pf/Pg)

TCDL

BCLL

BCDL

Job

Truss

Truss Type

9-0-0

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD

Vert(CT)

Horz(CT)

0.01

0.00

Structural wood sheathing directly applied or 6-0-0 oc purlins.

120

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

n/r

n/a

6

REACTIONS. All bearings 16-0-14.

11.6/15.0

10.0

10.0

0.0

Max Horz 2=-72(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 11, 8, 6

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=256(LC 2), 11=379(LC 34), 8=379(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-11=-281/179. 5-8=-281/179

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior(1) 12-0-0 to 17-8-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

YES

вс

WB

Matrix-S

0.13

0.07

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11, 8, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Weight: 65 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191984 PB01GE **GABLE** 2 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:34 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-EwIDOSRnKT_mPb24BfQTYiA5odMT283evNZcalzKbex 18-0-0 9-0-0 9-0-0 Scale = 1:31.1 4x4 = 6 5 6.00 12 ø ²⁰ 9 10 11 (mail of the control 18 17 16 15 14 13 12 3x4 = 3x4 = 5x5 = 18-0-0 18-0-0 [16.0_2_8 0_3_0]

Plate Offsets (A, 1) [16.0-2-6	5,0-3-0]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.03 WB 0.04	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/19 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 11 n/a n/a)0
BCDI 10.0	Code IRC2018/TPI2014	Matrix-S	Weight: 76 lb FT	= 20%

LUMBER-

OTHERS

BCDL

TOP CHORD 2x4 SP No 2

10.0

BOT CHORD 2x4 SP No 2 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-0-0.

Max Horz 1=72(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 11, 2, 15, 16, 17, 18, 14, 13, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-15 to 3-3-15, Exterior(2N) 3-3-15 to 9-0-0, Corner(3R) 9-0-0 to 12-0-0, Exterior(2N) 12-0-0 to 17-8-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

173191985 PB02 **GABLE** 5 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:35 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-i7JbboSP5n6c0kdGlMxi5wiD50hGnaoo81l97CzKbew 9-0-0 , _ 15-10-8 9-0-0 6-10-8 Scale = 1:30.1 4x4 = 6.00 12 2x4 || 2x4 || 5 ø 2x4 || 0-11-2 0-1-10 10 9 8 7 3x4 =2x4 || 2x4 || 2x4 || 2x4 || 15-10-8 15-10-8 LOADING (psf) SPACING-2-0-0 CSI. DEFL in I/defl I/d **PLATES** GRIP (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.21 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB Rep Stress Incr YES 0.07 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 60 lb FT = 20% BCDL 10.0 LUMBER-BRACING-

Qty

Ply

RVF-LOT #45 Roof

OTHERS

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-10-8.

(lb) -Max Horz 1=82(LC 15)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 10, 8 except 1=-104(LC 28)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 2=298(LC 2), 9=279(LC 2), 10=354(LC 34), 8=316(LC

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-10=-267/226

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-15 to 3-3-15, Exterior(2N) 3-3-15 to 9-0-0, Corner(3R) 9-0-0 to 12-0-0, Exterior(2N) 12-0-0 to 15-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 10, 8 except (it=lb) 1=104.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

May 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191986 T01GE COMMON SUPPORTED GAB 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:36 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-BJtzp8T1s5ETeuCSl4Txd7FQyQ2tW2UxNh2jfezKbev 0-11-0 6-4-0 12-8-0 Scale = 1:30.2 4x4 = 5 7.00 12 3 3x5 / 3x5 💸 1-0-15 13 12 16 15 14 11 10 3x4 =3x4 =12-8-0 12-8-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) -0.00 n/r 120 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.04 Vert(CT) -0.00 n/r 120 TCDL 10.0 WB Rep Stress Incr YES 0.04 Horz(CT) 0.00 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 73 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins

BOT CHORD

2x4 SP No 3 WFBS OTHERS 2x4 SP No 3

REACTIONS. All bearings 12-8-0. (lb) -Max Horz 16=112(LC 15)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11

Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-4-0, Exterior(2N) 2-4-0 to 6-4-0, Corner(3R) 6-4-0 to 9-4-0, Exterior(2N) 9-4-0 to 13-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12. 11.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing.

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191987 T02G COMMON GIRDER 25-5549-A 3 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:37 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-fVRL0UUgdOMKG2nesn_AALnVYqGiFPE5bLoGB4zKbeu 9-11-5 4-11-11 14-11-0 <u>19-10-1</u>1 24-10-5 29-4-0 4-11-11 4-11-11 4-11-11 4-11-11 4-5-11 Scale: 3/16"=1" 4x5 || 5 7.00 12 3x5 / 18 3x4 < 6 3x4 / 3x4 <> 4x4 / 4x4 < 2x4 || 2x4 | 1-0-15 1-4-7 ПП пп 鬟 20 15 22 24 25 26 13 27 12 31 11 32 16 14 10 4x5 LUS26 3x4 LUS26 LUS26 4x6 LUS26 3x4 = NAILED NAILED 3x4 =NAILED NAILED LUS26 LUS26 LUS26 3x4 LUS26 NAILED LUS26 6-3-2 12-6-4 17-3-12 23-6-14 29-4-0 6-3-2 4-9-8 6-3-2 6-3-2 5-9-2 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.47 Vert(LL) -0.04 14-15 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.57 Vert(CT) -0.07 14-15 >999 180 TCDL 10.0 WB Rep Stress Incr NO 0.39 Horz(CT) 0.01 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 648 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

BCDL

WFBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3

10.0

(size) 14=0-3-8, 16=0-3-8, 10=0-6-0

Max Horz 16=201(LC 11) Max Uplift 16=-126(LC 12)

Max Grav 14=5621(LC 3), 16=1812(LC 29), 10=1126(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-723/160, 2-4=-1654/123, 4-5=0/847, 5-6=-382/164, 6-8=-1202/0, 8-9=-253/43,

1-16=-468/107

BOT CHORD 15-16=-79/1439. 11-12=0/480. 10-11=0/999

WFBS 4-15=-50/2854, 4-14=-1713/149, 5-14=-1981/0, 5-12=0/1418, 6-12=-801/75,

6-11=0/1012, 2-16=-1068/0, 8-10=-1083/0

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16 = 126
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 1-5-4 from the left end to 17-5-4 to connect truss(es) to back face of bottom chord.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 9-5-4 from the left end to 11-5-4 to connect truss(es) to back face of bottom chord.

May 5,2025

Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins,

ORTH

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					173191987
25-5549-A	T02G	COMMON GIRDER	1	3	Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:37 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-fVRL0UUgdOMKG2nesn_AALnVYqGiFPE5bLoGB4zKbeu

NOTES-

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-43, 5-9=-43, 10-16=-20

Concentrated Loads (lb)

Vert: 13=-247(B) 12=-247(B) 11=-132(B) 19=-501(B) 20=-501(B) 21=-501(B) 22=-499(B) 24=-686(B) 26=-686(B) 27=-247(B) 30=-133(B) 31=-132(B) 32=-132(B)

33=-132(B)

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191988 T02SGE **GABLE** 1 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:38 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-7i?kEqUIOiUBtCMrQVVPiYKcHEdQ_oLEq?XqkXzKbet 14-11-0 29-10-0 7-5-8 Scale = 1:62.9 4x6 || 3x4 || 7.00 12 39 38 40 5x5 / 37 5x5 <> 6 3x5 / 4x8 <> 5x5 / 4x4 || 3x4 || 3x4 || 8 9 1-0-15 12 13 41 16 15 11 <u>ا</u> 3x4 II 3x4 = 3x4 = 3x5 = 4x4 = 3x4 =12-6-4 17-3-12 5-0-12 7-5-8 5-0-12 4-9-8 Plate Offsets (X,Y)--[2:0-2-0,0-1-12], [4:0-2-8,0-3-0], [5:0-1-0,0-1-8], [6:0-2-8,0-3-0], [8:0-2-0,0-1-12] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.08 10-11 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.16 10-11 >999 180 TCDL 10.0 WB Rep Stress Incr YES 0.66 Horz(CT) 0.02 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 267 lb FT = 20% BCDL 10.0 **BRACING-**

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD

2x4 SP No.2 2x4 SP No 2

BOT CHORD 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3

REACTIONS.

(size) 16=0-3-8, 14=0-3-8, 10=0-3-0 Max Horz 16=-212(LC 14)

Max Uplift 16=-70(LC 16), 14=-60(LC 16), 10=-80(LC 16) Max Grav 16=498(LC 28), 14=1494(LC 28), 10=771(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-416/85, 3-5=0/303, 5-7=-364/153, 7-8=-483/175, 2-16=-425/117, 8-10=-454/164

BOT CHORD 15-16=-110/445, 14-15=-53/361, 11-12=0/590, 10-11=0/590

WEBS 3-15=0/278, 3-14=-657/132, 5-14=-920/47, 5-12=-40/630, 7-12=-620/130, 7-11=0/278,

7-10=-370/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 14-11-0, Exterior(2R) 14-11-0 to 17-11-0, Interior(1) 17-11-0 to 30-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 14, 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

5-14, 7-10

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191989 T03 PIGGYBACK BASE 3 25-5549-A Job Reference (optional)

28<u>-6-2</u>

8-0-2

28-6-2

Riverside Roof Truss, LLC, Danville, Va - 24541,

10-3-0

10-3-0

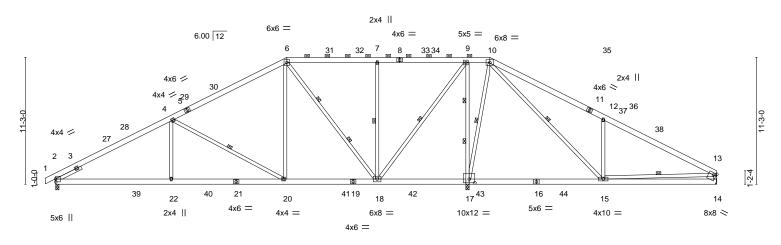
8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:39 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-buZ6RAVw90d2VMx1_C0eFmtmyev4jDuN3fHNGzzKbes 38-6-0 1-11-12 48-6-12 36-6-4 8-0-2 10-0-12 10-0-12

48-6-12

Structural wood sheathing directly applied or 4-1-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-10.

6-18, 9-17


ORTH

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

Scale = 1:102.2

10-3-0	10-3-0	8-0-2	8-0-2	12-0-8	10-0-12
Plate Offsets (X,Y) [14:Edge	e,0-2-4], [17:0-6-0,0-4-0]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.64 WB 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.26 15-17 >999 240 -0.39 15-17 >668 180 0.04 17 n/a n/a	PLATES GRIP MT20 244/190
BCDI 10.0	Code IRC2018/TPI2014	Matrix-MS			Weight: 461 lb FT = 20%

36-6-4

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No 2

10-3-0

2x4 SP No 3 WFBS

SLIDER Left 2x4 SP No.3 2-6-0

(size) 2=0-3-8, 14=Mechanical, 17=0-3-8 REACTIONS.

Max Horz 2=236(LC 15)

Max Uplift 2=-115(LC 16), 14=-49(LC 16), 17=-147(LC 16) Max Grav 2=1562(LC 28), 14=643(LC 29), 17=3386(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2258/236, 4-6=-1298/246, 6-7=-477/239, 7-9=-477/239, 9-10=0/853,

10-12=-746/306, 12-13=-682/121, 13-14=-522/110 BOT CHORD

2-22=-136/2151, 20-22=-136/2151, 18-20=0/1131, 17-18=-867/182, 15-17=-622/150, 14-15=-85/358

4-22=0/507, 4-20=-1169/190, 6-20=0/963, 6-18=-1188/80, 7-18=-667/168

20-6-0

9-18=-144/2020, 9-17=-1917/233, 10-17=-1356/175, 10-15=-204/1587, 12-15=-696/302,

13-15=-121/258

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-6, Interior(1) 4-11-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-6-2, Interior(1) 28-6-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minim

May 5,2025

036322

58-7-8

4-20, 7-18, 9-18, 10-17, 10-15, 13-15

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					173191989
25-5549-A	T03	PIGGYBACK BASE	3	1	
					Job Reference (optional)

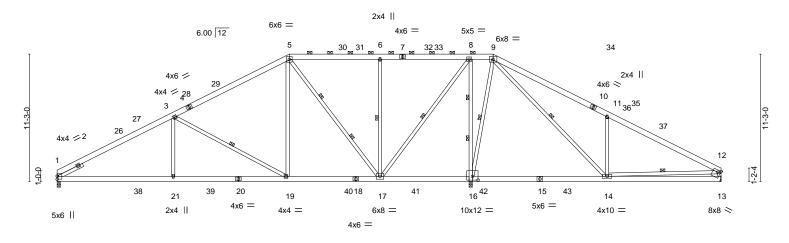
Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:39 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-buZ6RAVw90d2VMx1_C0eFmtmyev4jDuN3fHNGzzKbes

NOTES-

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191990 T03A PIGGYBACK BASE 1 25-5549-A Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:40 2025 Page 1

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-347UfVWYwJlv7WWDXwXtozPxi1FJSg8XIJ0woPzKber 10-3-0 10-3-0 28-6-2 36-6-4 38-6-0 1-11-12 48-6-12 58-7-8 20-6-0 10-3-0 8-0-2 8-0-2 10-0-12 10-0-12

Scale = 1:101.7

10-3-0	10-3-0	8-0-2	8-0-2	12-0-8	10-0-12
Plate Offsets (X,Y) [13:Edge	e,0-2-4], [16:0-6-0,0-4-0]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.64 WB 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.26 14-16 >999 240 -0.39 14-16 >668 180 0.04 16 n/a n/a	PLATES GRIP MT20 244/190
BCDI 10.0	Code IRC2018/TPI2014	Matrix-MS			Weight: 458 lb FT = 20%

36-6-4

BRACING-

TOP CHORD

BOT CHORD

WEBS

48-6-12

Structural wood sheathing directly applied or 4-1-9 oc purlins,

5-17, 8-16

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-9.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

28-6-2

LUMBER-

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No 2

10-3-0

2x4 SP No 3 WFBS

SLIDER Left 2x4 SP No.3 2-6-0

REACTIONS. (size) 1=0-3-8, 13=Mechanical, 16=0-3-8

Max Horz 1=229(LC 15)

Max Uplift 1=-86(LC 16), 13=-50(LC 16), 16=-147(LC 16) Max Grav 1=1513(LC 27), 13=644(LC 28), 16=3384(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1-3=-2255/245,\ 3-5=-1301/251,\ 5-6=-479/242,\ 6-8=-479/242,\ 8-9=0/851,\ 9-11=-748/309,$ 11-12=-683/124, 12-13=-523/110

20-6-0

BOT CHORD $1\hbox{-}21\hbox{=-}136/2156,\ 19\hbox{-}21\hbox{=-}136/2156,\ 17\hbox{-}19\hbox{=-}0/1133,\ 16\hbox{-}17\hbox{=-}865/179,\ 14\hbox{-}16\hbox{=-}620/147,$ 13-14=-85/358

3-21=0/507, 3-19=-1171/191, 5-19=0/964, 5-17=-1187/80, 6-17=-667/168,

8-17=-144/2020, 8-16=-1916/233, 9-16=-1355/174, 9-14=-204/1587, 11-14=-696/302,

12-14=-119/254

NOTES-

WEBS

TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-10-6, Interior(1) 5-10-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-6-2, Interior(1) 28-6-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13 except
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

ORTH minim May 5,2025

58-7-8

3-19, 6-17, 8-17, 9-16, 9-14, 12-14

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					173191990
25-5549-A	T03A	PIGGYBACK BASE	1	1	
					Job Reference (optional)

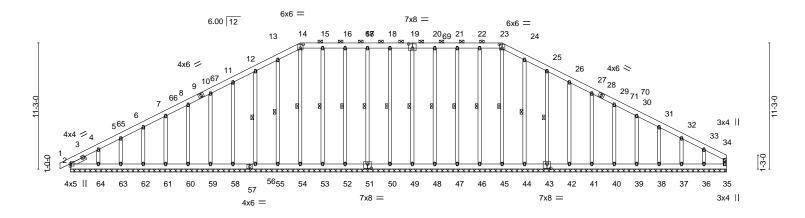
Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:40 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-347UfVWYwJlv7WWDXwXtozPxi1FJSg8XIJ0woPzKber

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191991 T03GE PIGGYBACK BASE SUPPO 1 25-5549-A Job Reference (optional) 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:42 2025 Page 1

Riverside Roof Truss, LLC, Danville, Va - 24541,

-0₋11₋0 0-11-0

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-?TEE3BYoSx?dMpfcfLZLtOVRRr54wk_qldV1tlzKbep 20-6-0 38-6-0 58-6-0 20-6-0 18-0-0 20-0-0

Scale = 1:102.7

58-6-0 Plate Offsets (X,Y)--[14:0-3-0,0-4-0], [19:0-4-0,0-4-8], [23:0-3-0,0-4-0], [43:0-4-0,0-4-8], [51:0-4-0,0-4-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES GRIP** 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.14 Vert(LL) -0.00 n/r 120 MT20 244/190 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.05 Vert(CT) 0.00 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.01 35 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S FT = 20% Weight: 588 lb BCDL 10.0

58-6-0

LUMBER-

TOP CHORD 2x6 SP No.2 2x6 SP No.2

BOT CHORD 2x4 SP No 3 WFBS **OTHERS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 1-6-4 **BRACING-**TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-23.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS

1 Row at midpt 23-45, 22-46, 21-47, 20-48, 19-49, 18-50,

17-51, 16-52, 15-53, 14-54, 13-55, 12-56, 24-44, 25-43

REACTIONS. All bearings 58-6-0.

(lb) - Max Horz 2=234(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 35, 2, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62,

63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36

Max Grav All reactions 250 lb or less at joint(s) 35, 2, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 11-12=-121/252, 12-13=-124/300, 13-14=-137/338, 14-15=-123/323, 15-16=-123/323,

16-17=-123/323, 17-18=-123/323, 18-19=-123/323, 19-20=-123/323, 20-21=-123/323,

21-22=-123/323, 22-23=-123/323, 23-24=-137/338, 24-25=-124/300, 25-26=-107/252

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-11-6, Exterior(2N) 4-11-6 to 20-6-0, Corner(3R) 20-6-0 to 26-6-0, Exterior(2N) 26-6-0 to 38-6-0, Corner(3R) 38-6-0 to 44-6-0, Exterior(2N) 44-6-0 to 58-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					I73191991
25-5549-A	T03GE	PIGGYBACK BASE SUPPO	1	1	
					Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:43 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-TfodHXYQDE7U_zEoD25aPc1cBFRJfBEz_HFbPkzKbeo

NOTES-

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 35, 2, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191992 T04 PIGGYBACK BASE 4 25-5549-A Job Reference (optional)

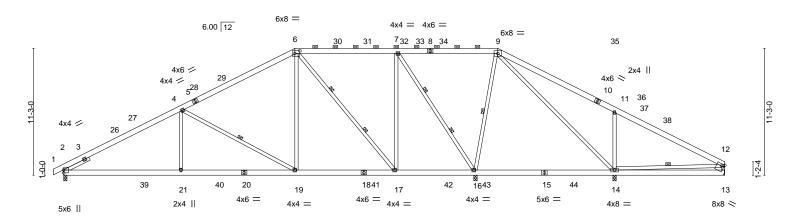
9-0-0

Riverside Roof Truss, LLC, Danville, Va - 24541,

29-6-0

9-0-0

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:44 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-ysM?UtZ3_YFLb7p?mlcpypadnfdjOST6Cx_8xAzKben 48-10-4 58-7-8 38-6-0


9-9-4

58-7-8

10-4-4

48-10-A

Scale = 1:102.2

	10-7-12	20-0-0	1	23-0-0	,	30-0-4	l	71	0-10-4	I	30-1-0	
	10-4-12	10-1-4		9-0-0		7-0-4	1	1	2-4-0	ı	9-9-4	
Plate Offse	ets (X,Y) [6:0-5-4,0)-3-0], [13:Edge,0-2-4]										
LOADING TCLL (roof Snow (Pf/F TCDL BCLL BCDL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.79 0.68 0.94 c- MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.31 0.06		I/defI >693 >477 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 445 lb	GRIP 244/190 FT = 20%

20-6-0

LUMBER-**BRACING-**

20-6-0

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 *Except* WFBS

7-16: 2x4 SP No.1

SLIDER Left 2x4 SP No.3 2-6-0

TOP CHORD

WEBS

BOT CHORD

36-6-4

6-0-0 oc bracing: 14-16. 1 Row at midpt

2 Rows at 1/3 pts

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 4-19, 9-16, 12-14

6-17, 7-16

Structural wood sheathing directly applied or 3-11-15 oc purlins.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-9.

REACTIONS. All bearings 0-3-8 except (jt=length) 13=Mechanical.

(lb) - Max Horz 2=236(LC 15)

10-4-12

10-4-12

10-4-12

Max Uplift All uplift 100 lb or less at joint(s) 16 except 2=-124(LC 16), 14=-135(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 13 except 2=1623(LC 28), 16=2882(LC 28), 14=1062(LC 49)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-4 = -2368/257,\ 4-6 = -1404/268,\ 6-7 = -517/265,\ 7-9 = 0/641,\ 9-11 = -42/489,\ 11-12 = -83/412$ BOT CHORD 2-21=-150/2245, 19-21=-150/2245, 17-19=0/1253, 16-17=0/546, 14-16=-465/137 WEBS 4-21=0/508, 4-19=-1168/190, 6-19=0/998, 6-17=-1214/61, 7-17=0/1209, 7-16=-1980/179,

9-16=-769/135, 9-14=-24/274, 11-14=-714/307, 12-14=-496/170

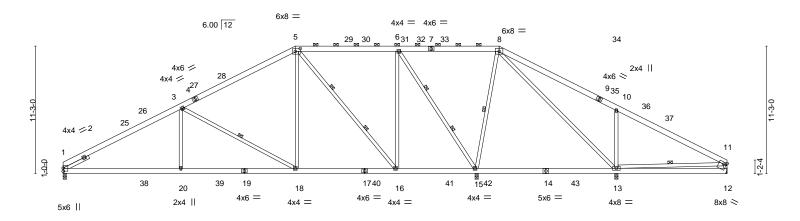
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-6, Interior(1) 4-11-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-9-8, Interior(1) 28-9-8 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 2=124, 14=135.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

May 5,2025

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191993 PIGGYBACK BASE 25-5549-A T04A Job Reference (optional)

29-6-0

9-0-0


20-6-0

Riverside Roof Truss, LLC, Danville, Va - 24541, 10-4-12

10-4-12

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:45 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-Q2wNiDahlsNCDHOBKT72V17oY2y17ujGRbkhTdzKbem 38-6-0 48-10-4 58-7-8 9-0-0 10-4-4 9-9-4

Scale = 1:101.7

10-4-12	20-0-0	29-0-0	30-0-4	40-10-4	30-7-0
10-4-12	10-1-4	9-0-0	7-0-4	12-4-0	9-9-4
Plate Offsets (X,Y) [5:0-5-4,0	0-3-0], [12:Edge,0-2-4]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.79 BC 0.67 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.21 13-15 >693 240 -0.31 13-15 >477 180 0.06 15 n/a n/a	PLATES GRIP MT20 244/190 Weight: 443 lb FT = 20%

LUMBER-**BRACING-**

20-6-0

10-1-4

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 *Except* WFBS

6-15: 2x4 SP No.1

Left 2x4 SP No.3 2-6-0

SLIDER

TOP CHORD

36-6-4

BOT CHORD

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-8. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

Structural wood sheathing directly applied or 3-11-15 oc purlins,

6-0-0 oc bracing: 13-15.

WEBS 1 Row at midpt 3-18, 8-15, 11-13 2 Rows at 1/3 pts 5-16, 6-15

48-10-4

REACTIONS. All bearings 0-3-8 except (jt=length) 12=Mechanical.

Max Horz 1=229(LC 15) (lb) -

10-4-12

Max Uplift All uplift 100 lb or less at joint(s) 1, 15 except 13=-135(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 12 except 1=1573(LC 27), 15=2879(LC 27), 13=1063(LC 48)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1 - 3 = -2362/267, \ 3 - 5 = -1407/273, \ 5 - 6 = -518/269, \ 6 - 8 = 0/638, \ 8 - 10 = -41/487, \ 10 - 11 = -83/410$ BOT CHORD $1\hbox{-}20\hbox{=-}150/2251,\ 18\hbox{-}20\hbox{=-}150/2251,\ 16\hbox{-}18\hbox{=-}0/1255,\ 15\hbox{-}16\hbox{=-}0/547,\ 13\hbox{-}15\hbox{=-}462/133}$ WEBS 3-20=0/508, 3-18=-1171/190, 5-18=0/999, 5-16=-1214/61, 6-16=0/1209, 6-15=-1980/179, 8-15=-766/134, 8-13=-24/272, 10-13=-714/307, 11-13=-495/170

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-10-6, Interior(1) 5-10-6 to 20-6-0, Exterior(2R) 20-6-0 to 28-9-8, Interior(1) 28-9-8 to 38-6-0, Exterior(2R) 38-6-0 to 46-9-8, Interior(1) 46-9-8 to 58-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 15 except (jt=lb) 13=135.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

58-7-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

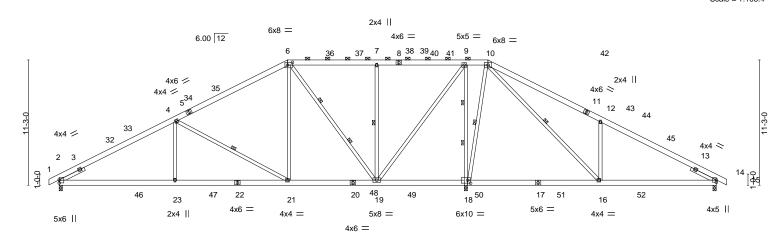
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191994 T05 PIGGYBACK BASE 1 25-5549-A Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

10-1-4


28-6-2

8-0-2

28-6-2

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:46 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-uEUlvZbJW9V3rRzNuAeH1EfzZSlIsMFPgFTF03zKbel 48-7-4 59-0-0 36-6-4 10-4-12 8-0-2 10-1-4

Scale = 1:103.4

	10-4-12	20-0-0	20-0-2	30-0-7	TU-1-T		33-0-0	
	10-4-12	10-1-4	8-0-2	8-0-2	12-1-0		10-4-12	<u> </u>
Plate Offse	ets (X,Y) [6:0-5-4,0)-3-0], [18:0-3-4,0-3-4]						
LOADING TCLL (roof Snow (Pf/P TCDL BCLL) 20.0	Lumber DOL 1.	15 TC 15 BC	0.77 Vert(LL) 0.67 Vert(CT) 0.86 Horz(CT	in (loc) I/defl -0.26 16-18 >999 -0.40 16-18 >682) 0.05 18 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDI	10.0	Code IRC2018/TPI201	4 Matrix	r-MS			Weight: 454 lb	FT = 20%

36-6-4

BRACING-

TOP CHORD

BOT CHORD

WEBS

18-7-1

2-0-0 oc purlins (6-0-0 max.): 6-10.

1 Row at midpt

2 Rows at 1/3 pts

Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

-0₇11₋0 0-11-0

10-4-12

10-4-12

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No 2

10-4-12

2x4 SP No 3 WFBS

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 14=0-3-8, 18=0-3-8

Max Horz 2=222(LC 15)

Max Uplift 2=-130(LC 16), 14=-104(LC 16), 18=-109(LC 16) Max Grav 2=1598(LC 28), 14=828(LC 29), 18=3321(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2320/271, 4-6=-1345/276, 6-7=-532/276, 7-9=-532/276, 9-10=0/797,

10-12=-989/349, 12-14=-810/170

BOT CHORD 2-23=-128/2207, 21-23=-128/2207, 19-21=0/1203, 18-19=-771/137, 16-18=-527/115, 14-16=-38/702

4-23=0/521, 4-21=-1184/185, 6-21=0/964, 6-19=-1174/46, 7-19=-667/170

20-6-0

9-19=-124/1978, 9-18=-1897/208, 10-18=-1353/166, 10-16=-213/1706, 12-16=-698/297

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=130, 14=104, 18=109.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

ORTH May 5,2025

50_0_0

Structural wood sheathing directly applied or 4-5-7 oc purlins, except

6-19, 9-18

4-21, 7-19, 10-18, 10-16

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					I73191994
25-5549-A	T05	PIGGYBACK BASE	1	1	
					Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:46 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-uEUlvZbJW9V3rRzNuAeH1EfzZSlIsMFPgFTF03zKbel

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191995 PIGGYBACK BASE 25-5549-A T05A Job Reference (optional)

8-0-2

28-6-2

8-0-2

10-1-4

Riverside Roof Truss, LLC, Danville, Va - 24541, 10-4-12

10-4-12

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:48 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-qdbVKFcZ1nlm4k7m?bgl6flJ2G_jKGli7ZyM4xzKbej 36-6-4 48-7-4 59-0-0

Structural wood sheathing directly applied or 4-5-7 oc purlins, except

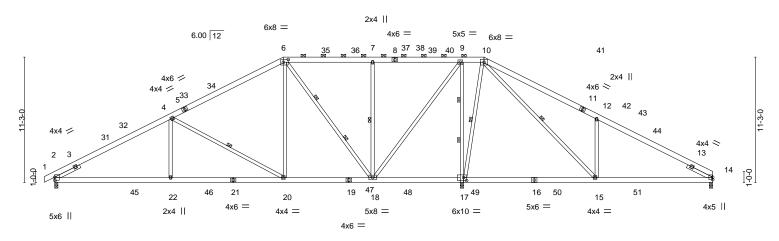
6-18, 9-17

4-20, 7-18, 10-17, 10-15

NORTH

2-0-0 oc purlins (6-0-0 max.): 6-10.

1 Row at midpt


2 Rows at 1/3 pts

Rigid ceiling directly applied or 6-0-0 oc bracing.

10-1-4

Scale = 1:103.3

10-4-12

10-4-12 10-4-12	20-6-0 10-1-4	28-6-2 8-0-2	36-6-4 8-0-2	48-7-4 12-1-0	59-0-0 10-4-12
Plate Offsets (X,Y) [6:0-5-4,0-	3-0], [17:0-3-4,0-3-4]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.77 BC 0.67 WB 0.86 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.26 15-17 >999 240 -0.40 15-17 >683 180 0.05 17 n/a n/a	PLATES GRIP MT20 244/190 Weight: 452 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

WERS

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No 2

2x4 SP No.3 SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

(size) 2=0-3-8, 14=0-3-8, 17=0-3-8 REACTIONS.

Max Horz 2=220(LC 15)

Max Uplift 2=-128(LC 16), 14=-72(LC 16), 17=-114(LC 16) Max Grav 2=1600(LC 28), 14=779(LC 29), 17=3317(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2324/268, 4-6=-1349/274, 6-7=-534/273, 7-9=-534/273, 9-10=0/792,

10-12=-997/351, 12-14=-818/171

BOT CHORD $2\text{-}22\text{=-}150/2206,\ 20\text{-}22\text{=-}150/2206,\ 18\text{-}20\text{=-}0/1201,\ 17\text{-}18\text{=-}766/131,\ 15\text{-}17\text{=-}522/100,}$ 14-15=-45/711

4-22=0/521, 4-20=-1183/185, 6-20=0/964, 6-18=-1172/47, 7-18=-667/170

9-18=-125/1975, 9-17=-1896/210, 10-17=-1352/168, 10-15=-213/1709, 12-15=-699/297

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb)
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

minim

May 5,2025

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					173191995
25-5549-A	T05A	PIGGYBACK BASE	1	1	
					Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:48 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-qdbVKFcZ1nlm4k7m?bgl6flJ2G_jKGli7ZyM4xzKbej

NOTES-

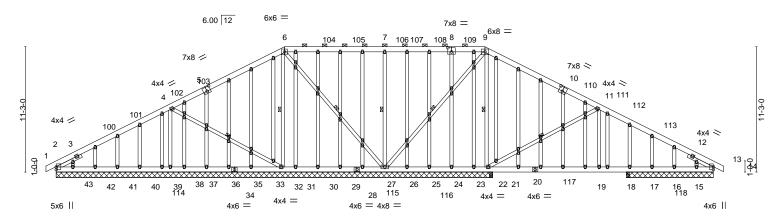
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
05 5540 A	TOFOF	Discontinuity Description Oakla COMMON	_		I7319199
25-5549-A	T05GE	Piggyback Base Structural Gable COMMON	1	1	Job Reference (optional)

29-6-0

9-0-0

29-6-0


Riverside Roof Truss, LLC, Danville, Va - 24541, 10-3-0

10-3-0

-0₇11₋0 0-11-0

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:51 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ECHeyGfSKh7LxCrLhkESklNrdT2sXgU8pXB0hGzKbeg 38-6-0 -48-9-0 59-0-0 9-0-0 10-3-0 10-3-0

Scale = 1:103.4

	10-3-0	10-3-0	-	9-0-0		9-0-0	0-8-4	9-6-12	2-8-1	2 7-6-4	
Plate Offsets	(X,Y) [5:0-4-0,0	0-4-8], [8:0-4-0,0-4-8], [10:0	0-4-0,0-4-8]								
LOADING (p: TCLL (roof) Snow (Pf/Pg) TCDL	20.0 16.5/15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.69 0.45 0.66	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.07 19-21 -0.13 19-21 0.01 96	>999 >999	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI	2014	Matri	x-MS					Weight: 712 lb	FT = 20%

BOT CHORD

38-6-0

39-2-4

1 Row at midpt

48-Q-N

2-0-0 oc purlins (10-0-0 max.): 6-9.

Rigid ceiling directly applied or 6-0-0 oc bracing.

.51-5-12

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

59-0-0

4-32, 6-32, 6-26, 7-26, 9-26, 9-21, 11-21

TH CAROUS ORTH CARO

LUMBER-BRACING-TOP CHORD

20-6-0

20-6-0

10-3-0

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No 2 2x4 SP No 3 WFBS

OTHERS 2x4 SP No.3 SLIDER

10-3-0

WEBS Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. All bearings 39-2-4 except (jt=length) 13=7-9-12, 18=7-9-12, 18=7-9-12, 17=7-9-12, 16=7-9-12, 15=7-9-12, 13=7-9-12.

(lb) -Max Horz 2=222(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 32, 42, 18, 17 except 38=-134(LC 16), 26=-228(LC 16), 43=-181(LC 16), 22=-376(LC 7), 15=-174(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 2, 27, 29, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 25, 24, 23, 18, 18, 17, 16, 2 except 38=525(LC 39),

32=498(LC 28), 26=1066(LC 38), 21=1647(LC 49), 21=1047(LC 1), 13=484(LC 49),

43=563(LC 28), 15=354(LC 29), 13=291(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-236/488, 4-6=-167/272, 6-7=0/284, 7-9=0/284, 9-11=-3/410, 11-13=-689/183 **BOT CHORD** 25-26=-300/154, 24-25=-300/154, 23-24=-300/154, 22-23=-300/154, 21-22=-300/154, 19-21=-8/587, 18-19=-8/587, 17-18=-8/587, 16-17=-8/587, 15-16=-8/587, 13-15=-8/587

WEBS 4-38=-516/167, 6-32=-338/61, 6-26=-281/78, 7-26=-788/182, 9-21=-526/77,

11-21=-1009/186, 11-19=0/374

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.

May 5,2025

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					I73191996
25-5549-A	T05GE	Piggyback Base Structural Gable COMMON	1	1	
	1	I .	1	1	Llob Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:51 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ECHeyGfSKh7LxCrLhkESklNrdT2sXgU8pXB0hGzKbeg

NOTES-

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 32, 42, 18, 17, 2 except (jt=lb) 38=134, 26=228, 43=181, 22=376, 15=174.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

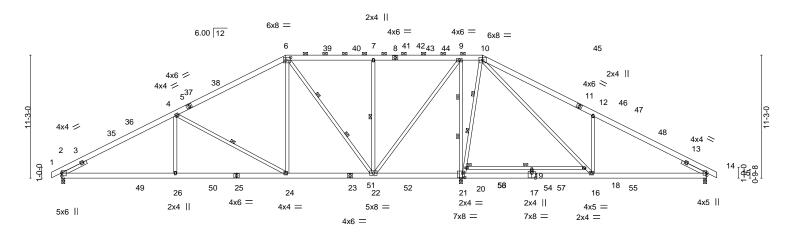
Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173191997 T05S PIGGYBACK BASE 8 25-5549-A Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:52 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-jOr0Acf45?FCZMQXERlhHVv?GtlZG2Yl2BwZDjzKbef

59-0-0

OR FEER


6-22, 9-21, 10t20

Structural wood sheathing directly applied or 4-6-8 oc purlins, except

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

10-4-12 28-6-2 48-7-4 59-0-0 36-6-4 10-4-12 8-0-2 8-0-2 10-1-4

Scale = 1:105.4

10-4-12	10-1-4	8-0-2	8-0-2	12-1-0		10-4-12	
Plate Offsets (X,Y) [6:0-5-4,	0-3-0], [17:0-4-0,0-5-4], [21:0-2-4,0-4-12]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.76 BC 0.87 WB 1.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl -0.37 19-20 >720 -0.58 19-20 >462 0.03 21 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS				Weight: 471 lb	FT = 20%

36-6-4

BRACING-

TOP CHORD

BOT CHORD

WEBS

48-7-4

2-0-0 oc purlins (6-0-0 max.): 6-10.

6-0-0 oc bracing: 18-20

1 Row at midpt

2 Rows at 1/3 pts

28-6-2

LUMBER-TOP CHORD 2x6 SP No 2

BOT CHORD

2x6 SP 2400F 2.0E *Except*

10-4-12

21-23,23-25: 2x6 SP No.2, 18-20: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except* 10-21,10-16: 2x4 SP No.2

SLIDER

Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 21=0-3-8

Max Horz 2=222(LC 15)

Max Uplift 2=-141(LC 16), 14=-87(LC 16)

Max Grav 2=1584(LC 28), 14=923(LC 29), 21=3717(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2291/291, 4-6=-1315/299, 6-7=-512/305, 7-9=-512/305, 9-10=0/801,

10-12=-1220/310, 12-14=-1048/121

BOT CHORD $2 - 26 = -146/2182, \ 24 - 26 = -146/2182, \ 22 - 24 = 0/1176, \ 21 - 22 = -775/99, \ 17 - 21 = -257/107, \ 21 - 22 = -775/99, \ 21 - 21 = -257/107, \ 2$

20-6-0

16-17=-257/107, 14-16=-2/910, 19-20=-353/0, 18-19=-353/0

WEBS 4-26=0/523, 4-24=-1184/183, 6-24=0/970, 6-22=-1193/31, 7-22=-661/169,

9-22=-114/1951, 9-21=-1922/204, 20-21=-1645/66, 10-20=-1418/106, 10-18=-117/2036,

16-18=-142/1738, 12-16=-689/300, 17-19=-292/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=59ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-11-13, Interior(1) 4-11-13 to 20-6-0, Exterior(2R) 20-6-0 to 28-10-2, Interior(1) 28-10-2 to 38-6-0, Exterior(2R) 38-6-0 to 46-10-2, Interior(1) 46-10-2 to 59-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

May 5,2025

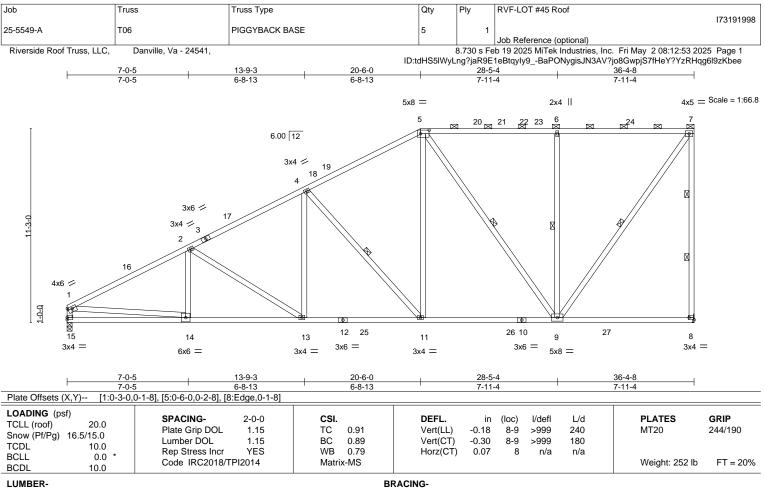
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #45 Roof
					173191997
25-5549-A	T05S	PIGGYBACK BASE	8	1	
					Job Reference (optional)

Riverside Roof Truss, LLC,


Danville, Va - 24541,

8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:52 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-jOr0Acf45?FCZMQXERlhHVv?GtlZG2Yl2BwZDjzKbef

NOTES-

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=141.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x4 SP No.2 *Except* TOP CHORD 5-7: 2x4 SP No.1

BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 *Except*

7-8: 2x4 SP No.1

REACTIONS. (size) 8=Mechanical, 15=0-3-8

Max Horz 15=311(LC 16)

Max Uplift 8=-135(LC 16), 15=-39(LC 16) Max Grav 8=1732(LC 38), 15=1685(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1\hbox{-}2\hbox{--}2672/108, 2\hbox{-}4\hbox{--}2277/131, 4\hbox{-}5\hbox{--}1667/145, 5\hbox{-}6\hbox{--}1012/102, 6\hbox{-}7\hbox{--}1012/102, }$

7-8=-1570/211, 1-15=-1566/106

BOT CHORD 14-15=-344/402, 13-14=-337/2383, 11-13=-263/2004, 9-11=-167/1440 **WEBS**

2-13=-446/99, 4-13=0/508, 4-11=-913/143, 5-11=-20/993, 5-9=-783/111, 6-9=-702/176,

7-9=-174/1725, 1-14=0/1993

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=36ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-9-6, Interior(1) 3-9-6 to 20-6-0, Exterior(2R) 20-6-0 to 25-7-12, Interior(1) 25-7-12 to 36-2-12 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 8=135
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-2-0 oc purlins,

4-11, 5-9, 6-9, 7-9

except end verticals, and 2-0-0 oc purlins (5-4-3 max.): 5-7.

7-8

Rigid ceiling directly applied or 9-11-9 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Qty 173191999 T07 COMMON 3 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:54 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-fnznblhKdcVwofawMsn9Mw?N?h7rkA6bWUPglbzKbed -0-11-0 0-11-0 6-0-0 6-0-0 12-11-0

Ply

RVF-LOT #45 Roof

Scale = 1:26.7

0-11-0

Weight: 64 lb

FT = 20%

LUMBER-

TCDL

BCLL

BCDL

Job

TOP CHORD 2x4 SP No.2 2x4 SP No 2

0.0

10.0

BOT CHORD 2x4 SP No.3 WFBS

BRACING-

Horz(CT)

0.10

Matrix-MS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

n/a

n/a

except end verticals.

6

0.00

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 8=0-3-8, 6=0-3-8 Max Horz 8=-82(LC 14)

Truss

Truss Type

Max Uplift 8=-62(LC 16), 6=-62(LC 16) Max Grav 8=532(LC 2), 6=532(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Incr

Code IRC2018/TPI2014

TOP CHORD 2-3=-538/176, 3-4=-538/176, 2-8=-479/228, 4-6=-479/228

BOT CHORD 7-8=-170/276, 6-7=-124/257

NOTES-

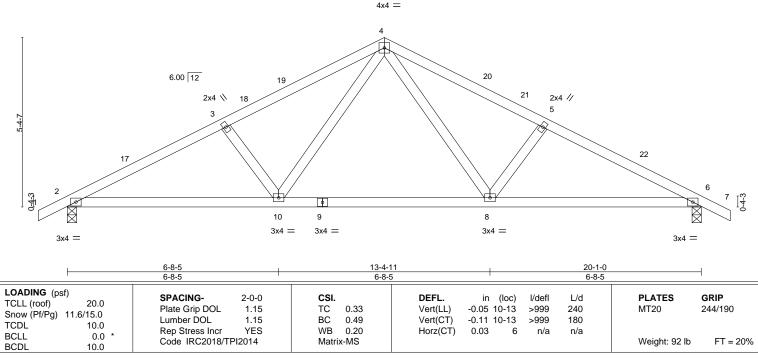
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0 , Interior(1) 9-0-0 to 12-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

YES

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192000 T08 COMMON 5 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:55 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-7zX9oeiyOwenQp96wZlOv8Xc94QGTblkk89Dq1zKbec 10-0-8 15-0-12 20-1-0

5-0-4

Scale = 1:36.5

5-0-4

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-91(LC 14)

Max Uplift 2=-78(LC 16), 6=-78(LC 16) Max Grav 2=858(LC 2), 6=858(LC 2)

5-0-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1407/248, 3-4=-1256/253, 4-5=-1256/253, 5-6=-1407/248 **BOT CHORD** 2-10=-146/1230 8-10=-31/799 6-8=-154/1230

WEBS 4-8=-60/477, 5-8=-310/157, 4-10=-60/477, 3-10=-310/157

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 10-0-8, Exterior(2R) 10-0-8 to 13-0-8, Interior(1) 13-0-8 to 21-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192001 T08GE COMMON SUPPORTED GAB 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:55 2025 Page 1

Scale = 1:37.4

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-7zX9oeiyOwenQp96wZIOv8Xgw4WtTe1kk89Dq1zKbec 10-0-8 20-1-0 10-0-8 10-0-8

3x4 = 7 6.00 12 25 24 10 11 3 26 12 13 [4 3x4 = 3x4 = 21 22 20 19 18 17 16 15 14 3x4 = 20-1-0

Plate Offsets (X,Y) [7:0-2-0,I	Edge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.09 BC 0.06 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 13 0.00 13 0.00 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 100 lb	GRIP 244/190
BCDL 10.0	Code INC2016/1712014	Matrix-3					Weight. 100 lb	F1 = 2076

20-1-0

LUMBER-TOP CHORD

2x4 SP No 2 BOT CHORD 2x4 SP No 2 2x4 SP No 3 OTHERS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-1-0.

(lb) -Max Horz 2=-91(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 16, 15, 14, 12

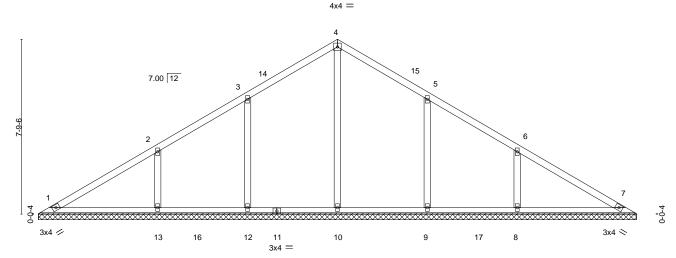
Max Grav All reactions 250 lb or less at joint(s) 2, 18, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 10-0-8, Corner(3R) 10-0-8 to 13-0-8, Exterior(2N) 13-0-8 to 21-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 16, 15, 14, 12,
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192002 V01 25-5549-A Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:56 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-b94X?_ia9Eme1zklTHqdRL4oqUq?C2stzounMUzKbeb 13-4-1 13-4-1 26-8-1

Scale = 1:51.3

26-8-1 0-0-7

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.27 BC 0.20 WB 0.21	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	,					Weight: 116 lb	FT = 20%

26-7-10

26-7-10

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 26-7-3.

Max Horz 1=-149(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=390(LC 27), 12=422(LC 27), 13=493(LC 27), 9=422(LC 28), 8=493(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 2-13=-299/128, 6-8=-299/128

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 13-4-1, Exterior(2R) 13-4-1 to 16-4-1, Interior(1) 16-4-1 to 26-1-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192003 V02 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:57 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-3MevDJjCwXuVf7JU1_Ls_Yc_juBdxW?1CSeKvwzKbea 23-2-15 Scale = 1:44.7 4x4 = 7.00 12 15 0-0-4 3x4 > 3x4 / 13 12 11 10 9 8 3x4 = 23-2-15 23-2-8 LOADING (psf)

LUMBER-

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

in (loc)

n/a

n/a

0.00

Structural wood sheathing directly applied or 6-0-0 oc purlins.

I/d

999

999

n/a

PLATES

Weight: 98 lb

MT20

GRIP

244/190

FT = 20%

Rigid ceiling directly applied or 10-0-0 oc bracing.

I/defl

n/a

n/a

n/a

REACTIONS. All bearings 23-2-1.

20.0

10.0

10.0

0.0

11.6/15.0

Max Horz 1=129(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 13, 9, 8

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=380(LC 27), 11=431(LC 27), 13=366(LC 27), 9=430(LC 28), 8=366(LC 28)

CSI.

TC

вс

WB

Matrix-S

0.20

0.17

0.15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 3-11=-263/125, 5-9=-263/125

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-7-7, Interior(1) 3-7-7 to 11-7-7, Exterior(2R) 11-7-7 to 14-7-7, Interior(1) 14-7-7 to 22-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

1.15

1.15

YES

- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192004 V03 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:57 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-3MevDJjCwXuVf7JU1_Ls_YcyJuAQxXy1CSeKvwzKbea 9-10-14 19-9-13 9-10-14 9-10-14 Scale = 1:38.1 4x4 = 3 7.00 12 10 2x4 || 2x4 || 2 3x4 🖊 3x4 ≥ q 12 7 13 6 3x4 = 2x4 || 2x4 || 2x4 || 19-9-13 19-9-6 LOADING (psf) **PLATES** GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.36 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.25 Vert(CT) n/a n/a 999 TCDL 10.0 WB Rep Stress Incr YES 0.09 Horz(CT) 0.00 n/a n/a

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

Matrix-S

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-8-15.

Max Horz 1=109(LC 15) (lb) -

0.0

10.0

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=298(LC 27), 9=566(LC 27), 6=566(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

WEBS 2-9=-346/156, 4-6=-346/156

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 9-10-14, Exterior(2R) 9-10-14 to 12-10-14, Interior(1) 12-10-14 to 19-3-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 78 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

V04 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:58 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-XYCHQfkrhr0MHHuhbis5Wm99CIXig_QAR6NtRMzKbeZ _ 16-4-10 8-2-5 Scale = 1:31.7 4x4 = 3 7.00 12 12 2x4 || 2x4 || 13 3x4 / 7 3x4 <> 9 8 6 3x4 = 2x4 | 2x4 || 2x4 || 16-4-10 16-4-3 LOADING (psf) **PLATES** GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.07 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 62 lb FT = 20% BCDL 10.0

Qty

Ply

RVF-LOT #45 Roof

173192005

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-3-13.

Max Horz 1=-89(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=255(LC 2), 9=363(LC 33), 6=363(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-272/134, 4-6=-272/134

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 8-2-5, Exterior(2R) 8-2-5 to 11-2-5, Interior(1) 11-2-5 to 15-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

V05 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:12:59 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-?kmge?ITS98DuQTt9PNK3ziKChtwPS_Kfm7RzpzKbeY 6-5-12 6-5-12 12-11-8 6-5-12 Scale = 1:25.0 4x4 = 3 7.00 12 10 2x4 || ₄2x4 || 3x4 // 3x4 > 2x4 || 2x4 || 2x4 || 12-11-8 12-11-1 LOADING (psf) **PLATES** GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.05 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 47 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Qty

Ply

RVF-LOT #45 Roof

Rigid ceiling directly applied or 10-0-0 oc bracing.

173192006

REACTIONS. All bearings 12-10-10.

2x4 SP No.2

2x4 SP No.3

Max Horz 1=-69(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=277(LC 2), 8=307(LC 20), 6=307(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BOT CHORD

OTHERS

Job

Truss

Truss Type

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-5-12, Exterior(2R) 6-5-12 to 9-5-12, Interior(1) 9-5-12 to 12-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192007 V06 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:13:00 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-UxK2rLI5DSG3Wa13i7uZcBEUu5CG8vHTuQs_VFzKbeX 4-9-3 4-9-3 9-6-6 Scale = 1:19.5 4x4 = 2 7.00 12 0-0-4 D-0-4 2x4 🖊 2x4 > 2x4 || 9-6-6 9-5-15 LOADING (psf) GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.27 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.18 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.05 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 32 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS**

REACTIONS.

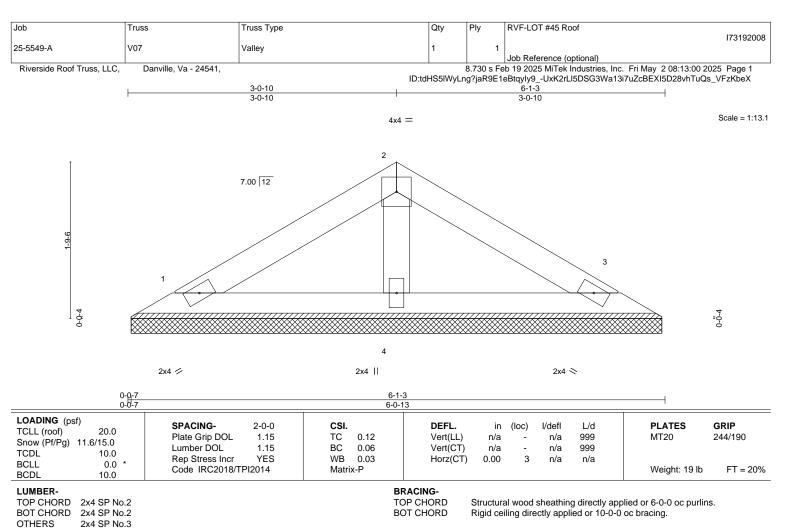
(size) 1=9-5-8, 3=9-5-8, 4=9-5-8 Max Horz 1=-49(LC 14)

Max Uplift 1=-20(LC 16), 3=-20(LC 16)

Max Grav 1=160(LC 2), 3=160(LC 2), 4=356(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-9-3, Exterior(2R) 4-9-3 to 7-9-3, Interior(1) 7-9-3 to 8-11-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS.

(size) 1=6-0-6, 3=6-0-6, 4=6-0-6

Max Horz 1=-29(LC 14)

Max Uplift 1=-17(LC 16), 3=-17(LC 16)

Max Grav 1=105(LC 2), 3=105(LC 2), 4=192(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192009 V08 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:13:00 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-UxK2rLl5DSG3Wa13i7uZcBEYu5Ec8v4TuQs_VFzKbeX 1-4-1 1-4-1 Scale = 1:6.6 3x4 =7.00 12 3 0-0-4 0-0-2x4 / 2x4 💸 2-7-10 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES GRIP** TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.01 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL вс 1.15 0.03 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 7 lb FT = 20% BCDL 10.0

LUMBER-TOP CHORD BOT CHORD

2x4 SP No.2 2x4 SP No.2

TOP CHORD

BRACING-**BOT CHORD**

Structural wood sheathing directly applied or 2-8-1 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=2-7-3, 3=2-7-3

Max Horz 1=9(LC 15)

Max Uplift 1=-4(LC 16), 3=-4(LC 16) Max Grav 1=64(LC 2), 3=64(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192010 V09 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:13:01 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-y7uQ3hmj_mOw8kcGGqPo8Ong4VZMtMhd74cY2hzKbeW Scale = 1:15.1 4x4 = 6.00 12 8 0-0-4 2x4 / 2x4 || 2x4 > 8-3-0 LOADING (psf) GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.04 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 26 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=8-2-0, 3=8-2-0, 4=8-2-0

2x4 SP No.3

Max Horz 1=29(LC 15)

Max Uplift 1=-21(LC 16), 3=-21(LC 16)

Max Grav 1=145(LC 20), 3=145(LC 21), 4=276(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 4-1-8, Exterior(2R) 4-1-8 to 7-1-8, Interior(1) 7-1-8 to 7-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #45 Roof 173192011 V10 Valley 25-5549-A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.730 s Feb 19 2025 MiTek Industries, Inc. Fri May 2 08:13:02 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-QJSoG1nLk4WnmuBSqXw1hcKunvvqcpZmLkL5a7zKbeV 2-1-8 2-1-8 Scale: 1.5"=1 3x4 6.00 12 3 0-0-4 2x4 / 2x4 < 4-3-0 4-2-8 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL вс 1.15 0.11 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING-

Matrix-P

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-3-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-2-0, 3=4-2-0

0.0

10.0

Max Horz 1=-12(LC 14)

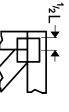
Max Uplift 1=-7(LC 16), 3=-7(LC 16) Max Grav 1=120(LC 2), 3=120(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

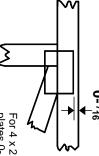
Code IRC2018/TPI2014

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Weight: 11 lb

FT = 20%



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

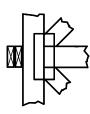
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

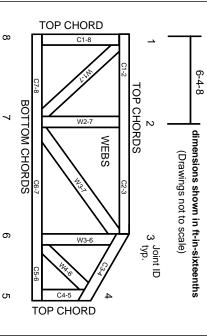

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.