
Trenco
818 Soundside Rd
Edenton, NC 27932

Re: 252121-A
Lot 12 West Pointe III

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I77514586 thru I77514620

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

November 5, 2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

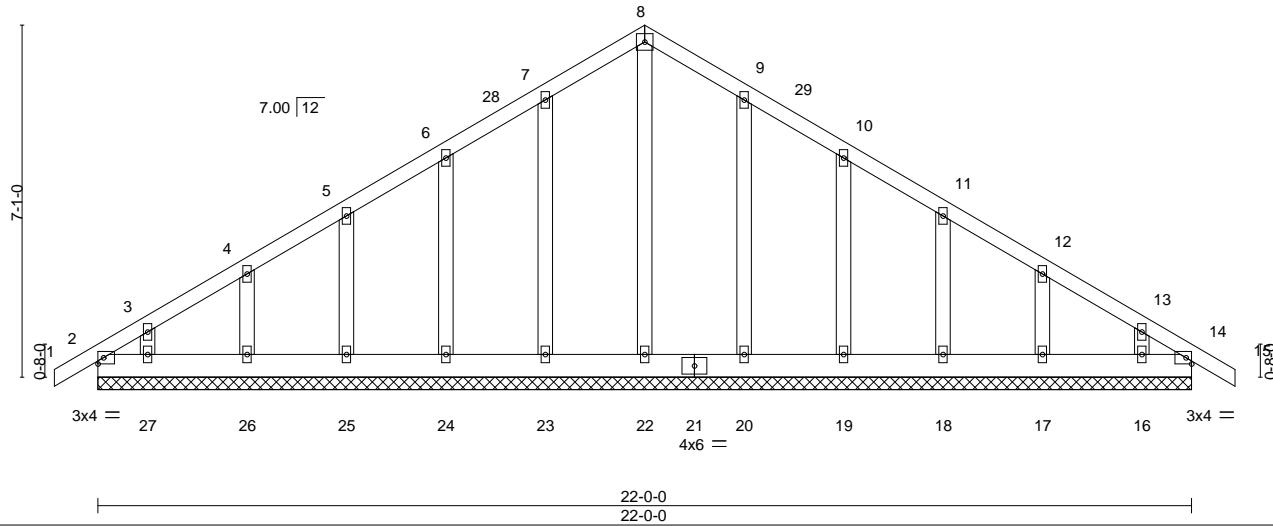
Job 252121-A	Truss D1GE	Truss Type GABLE	Qty 1	Ply 1	Lot 12 West Pointe III	I77514586
-----------------	---------------	---------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

-0-10-8 11-0-0 11-0-0
0-10-8

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:46 2025 Page 1
ID: _ZfilDAQJRSztBHN?xTf04zmc01-ftVMrWnDNUGZjQXOG6?uulP5FScHkzvWQpaNyMsF3

22-0-0


11-0-0

22-10-8

0-10-8

Scale = 1:46.3

4x4 =

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.04	Vert(LL) -0.00	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.02	Vert(CT) -0.00		
TCDL 10.0	Lumber DOL 1.15	WB 0.09	Horz(CT) 0.00		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 145 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 22-0-0.
(lb) - Max Horz 2-208(LC 14)
Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16
Max Grav All reactions 250 lb or less at joint(s) 14, 2, 22, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

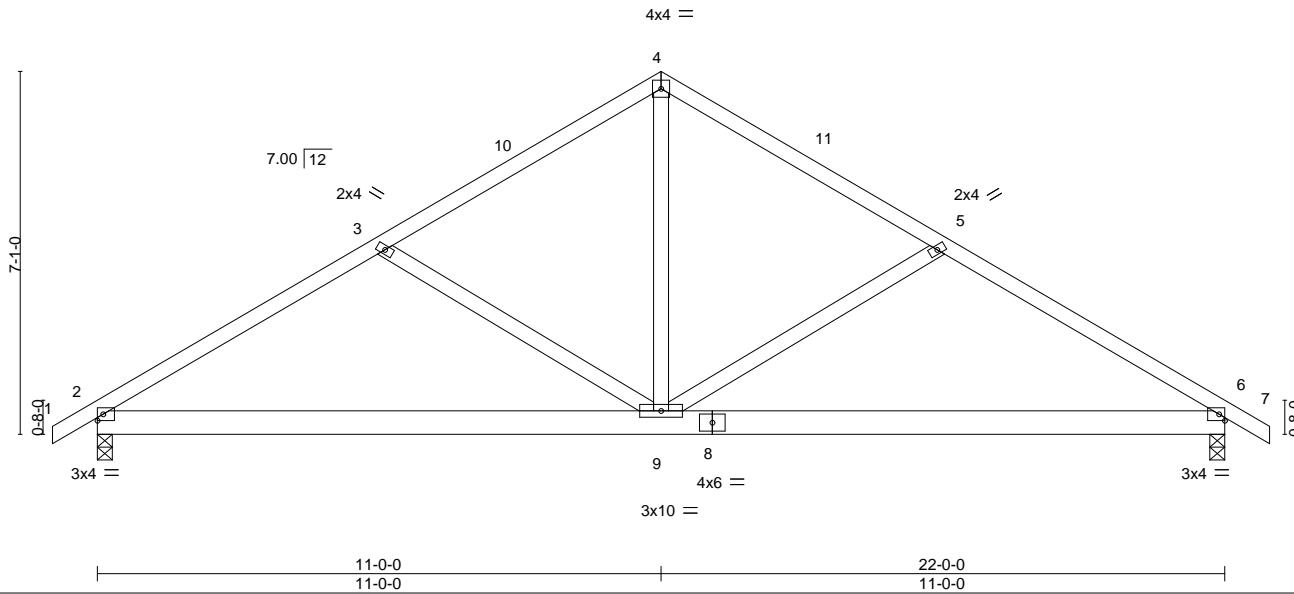
NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 4-2-11, Exterior(2) 4-2-11 to 11-0-0, Corner(3) 11-0-0 to 16-1-3, Exterior(2) 16-1-3 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss D1	Truss Type COMMON	Qty 6	Ply 1	Lot 12 West Pointe III	I77514587
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:46 2025 Page 1
0-10-8 5-7-6 11-0-0 16-4-10 22-0-0 22-10-8
0-10-8 5-7-6 5-4-10 5-7-6 5-7-6 0-10-8

ID: _ZfilDAQRSztBHN?xTfo4zmc0I-ftVmWnDNUGZjQ4XOG6?uuEA598cEnzvWQpaNyMsF3

Scale = 1:45.0

11-0-0 22-0-0
11-0-0 11-0-0

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.31	Vert(LL) -0.08	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.42	Vert(CT) -0.17		
TCDL 10.0	Lumber DOL 1.15	WB 0.26	Horz(CT) 0.02		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 121 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING-

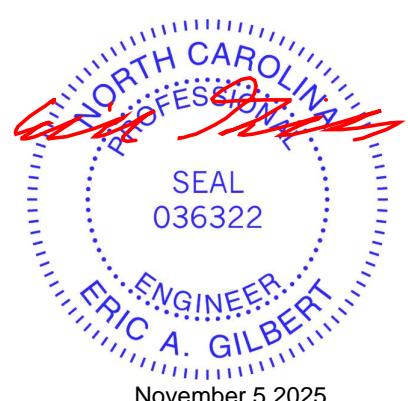
TOP CHORD Structural wood sheathing directly applied or 5-3-13 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 6=0-3-8, 2=0-3-8
Max Horz 2=166(LC 15)
Max Uplift 6=-63(LC 17), 2=-63(LC 16)
Max Grav 6=930(LC 2), 2=930(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 2-3=-1270/380, 3-4=-965/300, 4-5=-965/300, 5-6=-1270/380

BOT CHORD 2-9=-220/1022, 6-9=-222/1003

WEBS 3-9=-360/255, 4-9=-126/658, 5-9=-360/255

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 4-2-11, Exterior(2) 4-2-11 to 11-0-0, Corner(3) 11-0-0 to 16-1-3, Exterior(2) 16-1-3 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15; Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria and DS8-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss D1GR	Truss Type COMMON	Qty 1	Ply 2	Lot 12 West Pointe III	I77514588
-----------------	---------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:47 2025 Page 1
ID: _Zf1lDAQJRSztBHN?xTfO4zmc0l-733l3sor8oOQbs?G56nLX6RMVVQxLcs68AAN6qyMsF2

5-10-9 11-0-0 16-1-7 22-0-0
5-10-9 5-1-7 5-1-7 5-10-9

Scale = 1:41.3

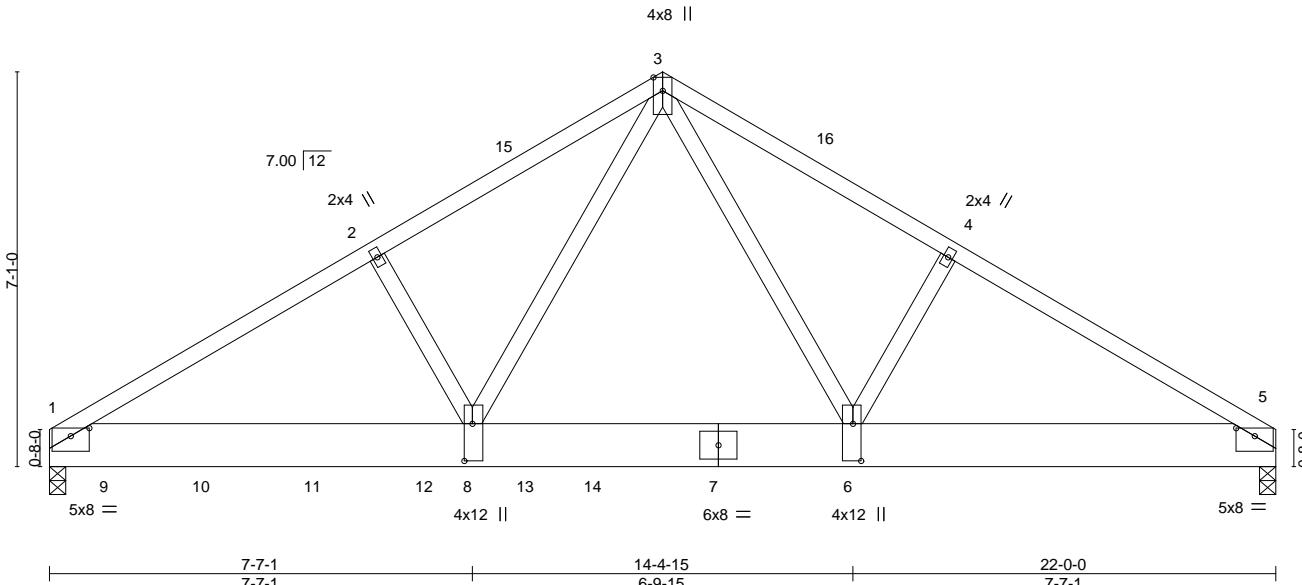


Plate Offsets (X,Y)-- [1:0-4-0,0-1-11], [5:0-4-0,0-1-11], [6:0-8-0,0-1-12], [8:0-8-0,0-1-12]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.46	Vert(LL) -0.08	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.71	Vert(CT) -0.15		
TCDL 10.0	Lumber DOL 1.15	WB 0.59	Horz(CT) 0.02		
BCLL 0.0 *	Rep Stress Incr NO	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 311 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x10 SP No.1
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-10-12 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1-0-3-8, 5-0-3-8
Max Horz 1-157(LC 33)
Max Uplift 1-14(LC 12)
Max Grav 1=4896(LC 2), 5=2312(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=6335/0, 2-3=6185/0, 3-4=3913/0, 4-5=4077/0
BOT CHORD 1-8=0/5338, 6-8=0/3055, 5-6=0/3397
WEBS 2-8=-292/239, 3-8=0/4786, 3-6=-69/646, 4-6=-299/211

NOTES-

- 2-ply truss to be connected together with 10d (0.131" x3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.
Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-4-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 836 lb down and 63 lb up at 1-0-12, 765 lb down and 190 lb up at 2-8-12, 770 lb down and 76 lb up at 4-8-12, and 770 lb down and 76 lb up at 6-8-12, and 2445 lb down at 8-6-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S)

Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
Vert: 1-5=20, 1-3=51, 3-5=-51

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

November 5, 2025

Job 252121-A	Truss D1GR	Truss Type COMMON	Qty 1	Ply 2	Lot 12 West Pointe III Job Reference (optional)	I77514588
-----------------	---------------	----------------------	----------	-----------------	--	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:47 2025 Page 2
ID: _ZfilDAQJRSztBHN?xTfO4zmc0I-733l3sor8oOQbs?G56nLX6RMVVQxLcs68AAN6qyMsF2

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 9=-738(F) 10=-619(F) 11=-619(F) 12=-619(F) 13=-2048(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 252121-A	Truss G1GE	Truss Type GABLE	Qty 1	Ply 1	Lot 12 West Pointe III	I77514589
-----------------	---------------	---------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:48 2025 Page 1
ID: _ZfilDAQJRSztBHN?xTfO4zmc0l-bGd7GBpUv6WHC0aSfpla4J_edvrx4AFGMqvweGyMsF1

-0-10-8 10-10-0 21-8-0 22-6-8
0-10-8 10-10-0 10-10-0 0-10-8

Scale: 1/4"=1'

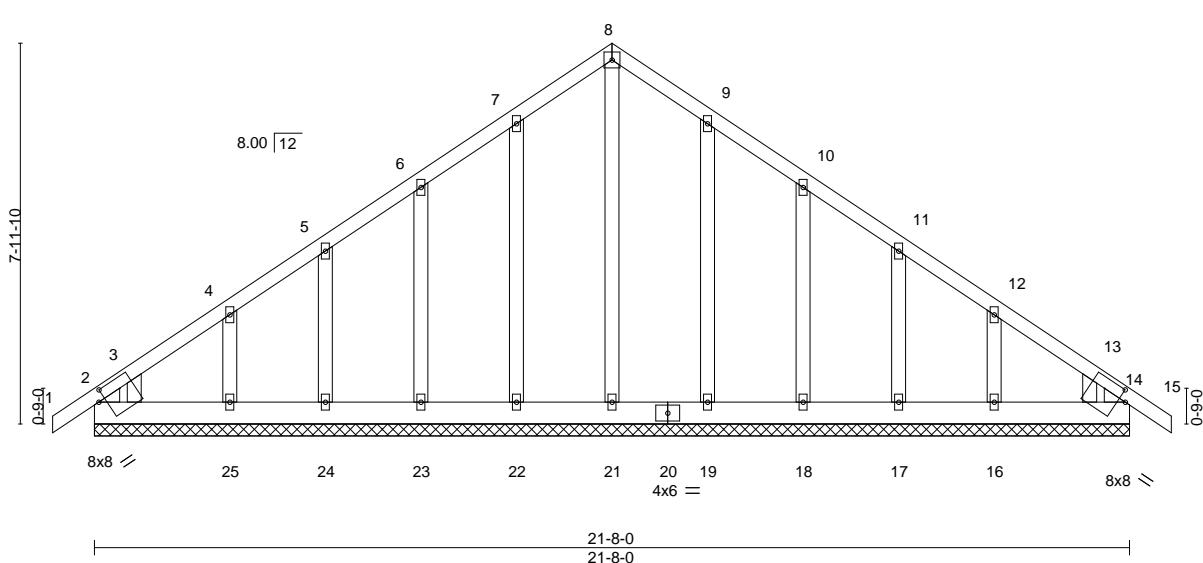


Plate Offsets (X,Y)-- [2:0-1-12,0-2-9], [14:0-1-12,0-2-9]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC 0.06	Vert(LL)	-0.00	14	n/r	120	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL	1.15	BC 0.02	Vert(CT)	-0.00	15	n/r	120		
TCDL 10.0	Rep Stress Incr	YES	WB 0.13	Horz(CT)	0.00	14	n/a	n/a		
BCLL 0.0 *	Code	IRC2015/TPI2014	Matrix-S						Weight: 153 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.

All bearings 21-8-0.
(lb) - Max Horz 2=234(LC 13)
Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 22, 23, 24, 19, 18, 17 except 25=-116(LC 14), 16=-138(LC 15)
Max Grav All reactions 250 lb or less at joint(s) 14, 2, 21, 22, 23, 24, 25, 19, 18, 17, 16

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 4-4-13, Exterior(2) 4-4-13 to 10-10-0, Corner(3) 10-10-0 to 16-1-5, Exterior(2) 16-1-5 to 22-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 22, 23, 24, 19, 18, 17 except (jt=lb) 25=116, 16=138.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss G1	Truss Type COMMON	Qty 1	Ply 1	Lot 12 West Pointe III	I77514590
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:48 2025 Page 1
ID: _ZfilDAQRSztBHN?xTfO4zmc0I-bGd7GBpUv6WHCoaSfpla4J_auprp487GMqvweGyMsF1

5-5-9 10-10-0 16-2-7 21-8-0 22-6-8
5-5-9 5-4-7 5-4-7 5-5-9 0-10-8

Scale: 1/4"=1'

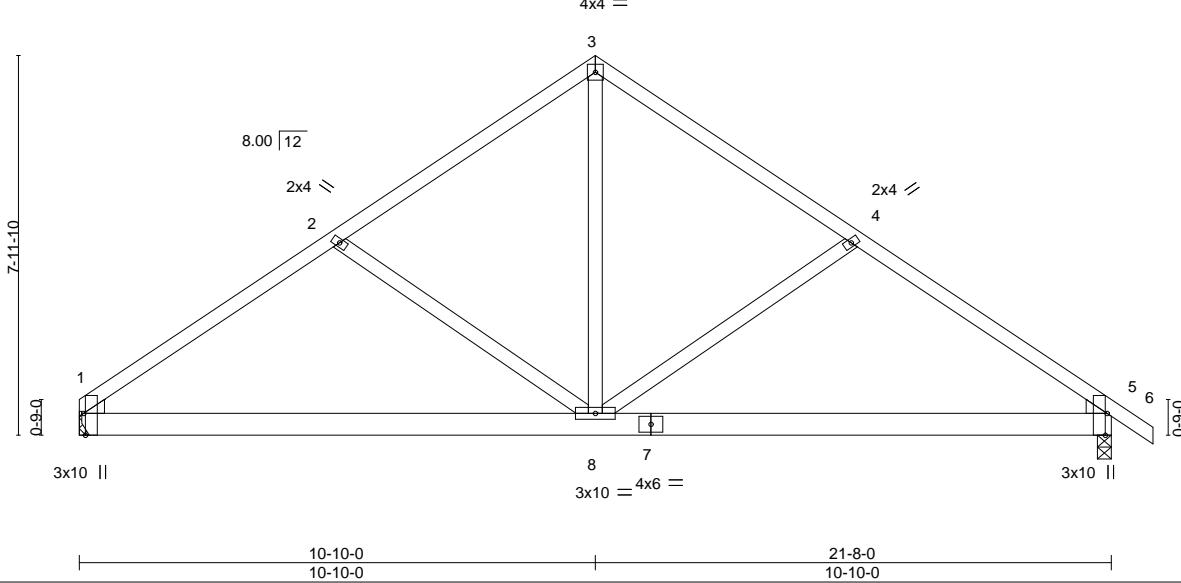


Plate Offsets (X,Y)-- [1:0-5-8,Edge], [5:0-5-8,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.30	Vert(LL) -0.08	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.41	Vert(CT) -0.17		
TCDL 10.0	Lumber DOL 1.15	WB 0.27	Horz(CT) 0.02		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S	in (loc) 1-8 >999 240		
BCDL 10.0	Code IRC2015/TPI2014		l/defl 180		
			n/a		
			n/a		
				Weight: 122 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.

(size) 5=0-3-8, 1=Mechanical
Max Horz 1=185(LC 10)
Max Uplift 5=58(LC 15), 1=-44(LC 14)
Max Grav 5=919(LC 2), 1=855(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-1143/354, 2-3=-890/302, 3-4=-889/301, 4-5=-1156/349

BOT CHORD 1-8=-182/908, 5-8=-174/861

WEBS 2-8=-348/265, 3-8=-159/674, 4-8=-339/254

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=13ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-4 to 5-4-0, Exterior(2) 5-4-0 to 10-10-0, Corner(3) 10-10-0 to 16-4-0, Exterior(2) 16-4-0 to 22-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 1.

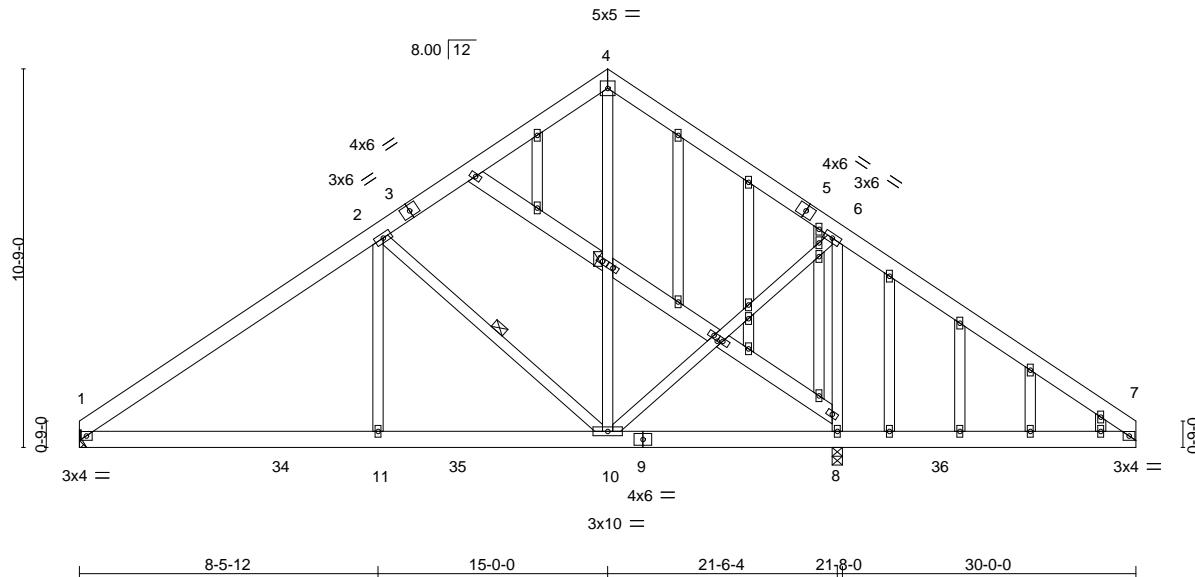
November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss B1	Truss Type GABLE	Qty 1	Ply 1	Lot 12 West Pointe III	I77514591
-----------------	-------------	---------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:41 2025 Page 1
ID: ZfilDAQRSztBHN?xTf04zmc0I-JviTook5ZyeGtxY6krgrlxBNW4VaxsdIEj2vAyMsF8

8-5-12 15-0-0 21-6-4 30-0-0
8-5-12 6-6-4 6-6-4 8-5-12

Scale = 1:65.4

8-5-12 15-0-0 21-6-4 21-8-0 30-0-0
8-5-12 6-6-4 6-6-4 0-1'12 8-4-0

Plate Offsets (X,Y)-- [14:0-1-10,0-1-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.37	Vert(LL) -0.04	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.25	Vert(CT) -0.08		
TCDL 10.0	Lumber DOL 1.15	WB 0.83	Horz(CT) 0.01		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 280 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2 *Except*
12-13,13-14,14-15: 2x6 SP No.1
OTHERS 2x4 SP No.2

REACTIONS.

(size) 1=Mechanical, 8=0-3-8
Max Horz 1=-307(LC 10)
Max Uplift 1=-170(LC 14), 8=-322(LC 15)
Max Grav 1=839(LC 25), 8=1774(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-1032/243, 2-4=-422/259, 4-6=-427/260, 6-7=-146/642
BOT CHORD 1-11=-228/978, 10-11=-228/978, 8-10=-455/220, 7-8=-455/220
WEBS 6-10=-59/846, 6-8=-1456/500, 2-10=-854/350, 2-11=0/467

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-1-4 to 5-9-10, Exterior(2) 5-9-10 to 15-0-0, Corner(3) 15-0-0 to 20-8-6, Exterior(2) 20-8-6 to 30-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15; Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb): 1=170, 8=322.

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 4-10, 2-10

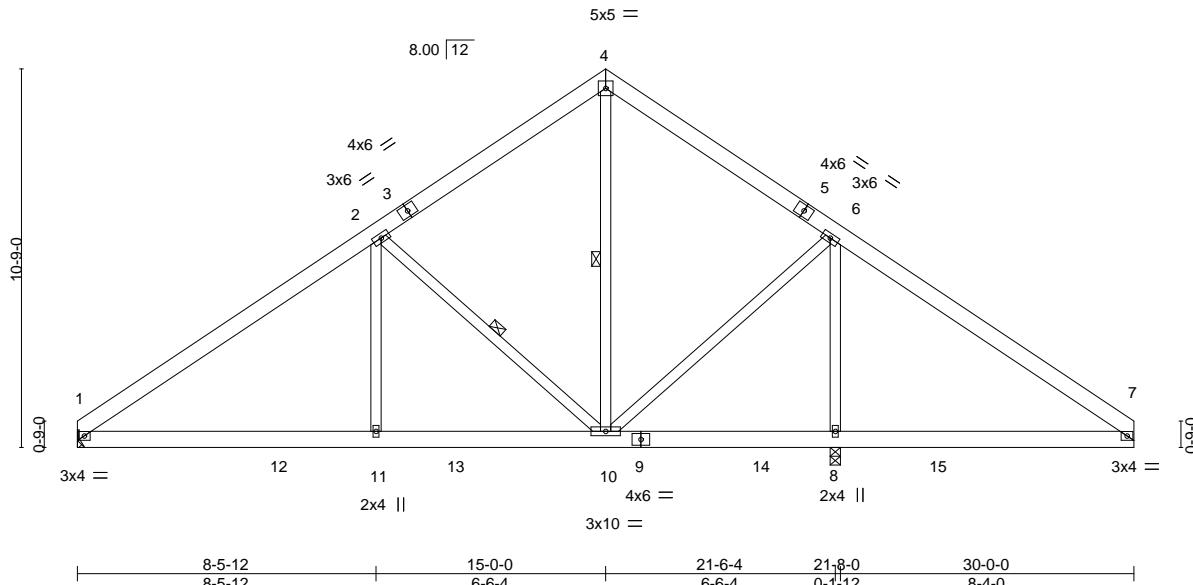
November 5, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss B2	Truss Type COMMON	Qty 2	Ply 1	Lot 12 West Pointe III	I77514592
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:41 2025 Page 1
ID: ZfilDAQRSztBHN?xTf04zmc0I-JviTook5ZyeGtxY6krgrlxBNW4VaxsdElEj2vAyMsF8

8-5-12 15-0-0 21-6-4 30-0-0
8-5-12 6-6-4 6-6-4 8-5-12

Scale = 1:65.4

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.37	in (loc) l/defl L/d		
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.25	Vert(LL) -0.04 1-11 >999 240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	WB 0.83	Vert(CT) -0.08 1-11 >999 180		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S	Horz(CT) 0.01 8 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014			Weight: 211 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 4-10, 2-10

REACTIONS. (size) 1=Mechanical, 8=0-3-8
Max Horz 1=246(LC 11)
Max Uplift 1=56(LC 14), 8=88(LC 15)
Max Grav 1=837(LC 25), 8=1775(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1037/153, 2-4=-445/160, 4-6=-448/163, 6-7=-427/634
BOT CHORD 1-11=-85/941, 10-11=-85/941, 8-10=-416/443, 7-8=-416/443
WEBS 6-10=-192/839, 6-8=-1456/714, 2-10=-830/335, 2-11=0/462

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-4 to 5-9-10, Exterior(2) 5-9-10 to 15-0-0, Corner(3) 15-0-0 to 20-8-6, Exterior(2) 20-8-6 to 30-0-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.

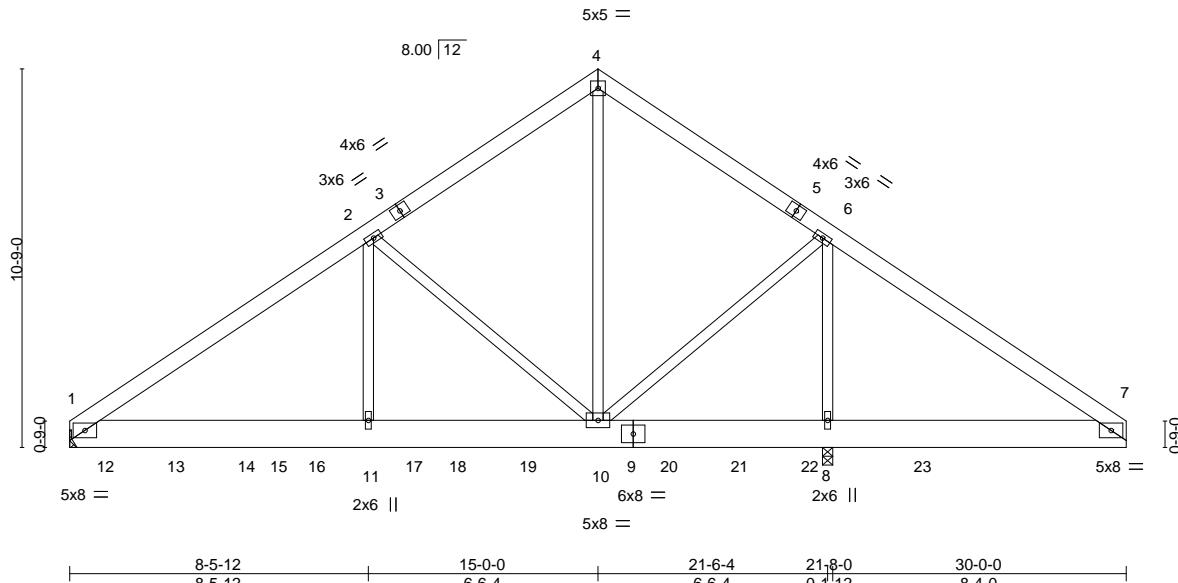
November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss B3GR	Truss Type Common Girder	Qty 1	Ply 2	Lot 12 West Pointe III	I77514593
-----------------	---------------	-----------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:42 2025 Page 1
ID: ZfidaQJRSztBHN?xTfO4zmc0l-n6Gs08kjGm7U56JlZBAq2ka?UpKgPuN_uScRcyMsF7

8-5-12 15-0-0 21-6-4 30-0-0
8-5-12 6-6-4 6-6-4 8-5-12

Scale = 1:65.4

Job 252121-A	Truss B3GR	Truss Type Common Girder	Qty 1	Ply 2	Lot 12 West Pointe III Job Reference (optional)	I77514593
-----------------	---------------	-----------------------------	----------	-----------------	--	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:42 2025 Page 2
ID: _ZfilDAQJRSztBHN?xTfO4zmc0l-n6Gs08kjJGm7U56JIZBAq2ka?UpKgPuN_uScRcyMsF7

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 10=-339(B) 12=-254(B) 13=-253(B) 14=-253(B) 16=-253(B) 17=-253(B) 18=-253(B) 19=-253(B) 20=-339(B) 21=-339(B) 22=-242(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 252121-A	Truss C1GE	Truss Type GABLE	Qty 1	Ply 1	Lot 12 West Pointe III	I77514594
-----------------	---------------	---------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:44 2025 Page 1
ID: ZfilDAQRSztBHN?xTfO4zmc0l-jUNcRqmzrt0rkPGhQ_EevTpzslaz8MugSCxiVVyMsF5

13-3-0 26-6-0 27-4-8
13-3-0 13-3-0 0-10-8

Scale = 1:54.4

4x4 =

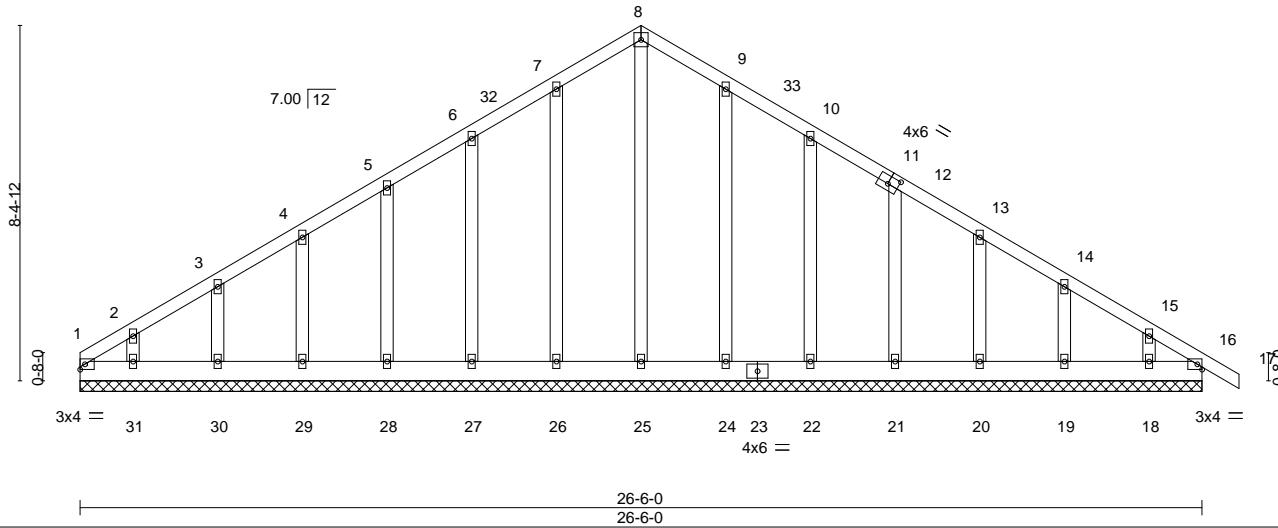


Plate Offsets (X,Y)-- [11:0-3-0-0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC 0.04	Vert(LL)	-0.00	16	n/r	120	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL	1.15	BC 0.02	Vert(CT)	-0.00	17	n/r	120		
TCDL 10.0	Rep Stress Incr	YES	WB 0.15	Horz(CT)	0.00	16	n/a	n/a		
BCLL 0.0 *	Code	IRC2015/TPI2014	Matrix-S						Weight: 185 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 26-6-0.
(lb) - Max Horz 1=244(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 1, 16, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19, 18 except
31=117(LC 16)
Max Grav All reactions 250 lb or less at joint(s) 1, 16, 25, 26, 27, 28, 29, 30, 31, 24, 22, 21, 20, 19, 18

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=265/192

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=14ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 5-3-0, Exterior(2) 5-3-0 to 13-3-0, Corner(3) 13-3-0 to 18-7-15, Exterior(2) 18-7-15 to 27-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15; Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 16, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19, 18 except (jt=lb) 31=117.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss C1	Truss Type COMMON	Qty 1	Ply 1	Lot 12 West Pointe III	I77514595
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:43 2025 Page 1

ID: _ZfilIDAQJRSztBHN?xTfO4zmc0l-FlpEDUJL4Zu_6FhVsGjPNNGGcu9yPuEXDYC9z2yMsF6

6-9-4 13-3-0 19-8-12 26-6-0 27-4-8
6-9-4 6-5-12 6-5-12 6-9-4 6-10-8

Scale = 1:49.6

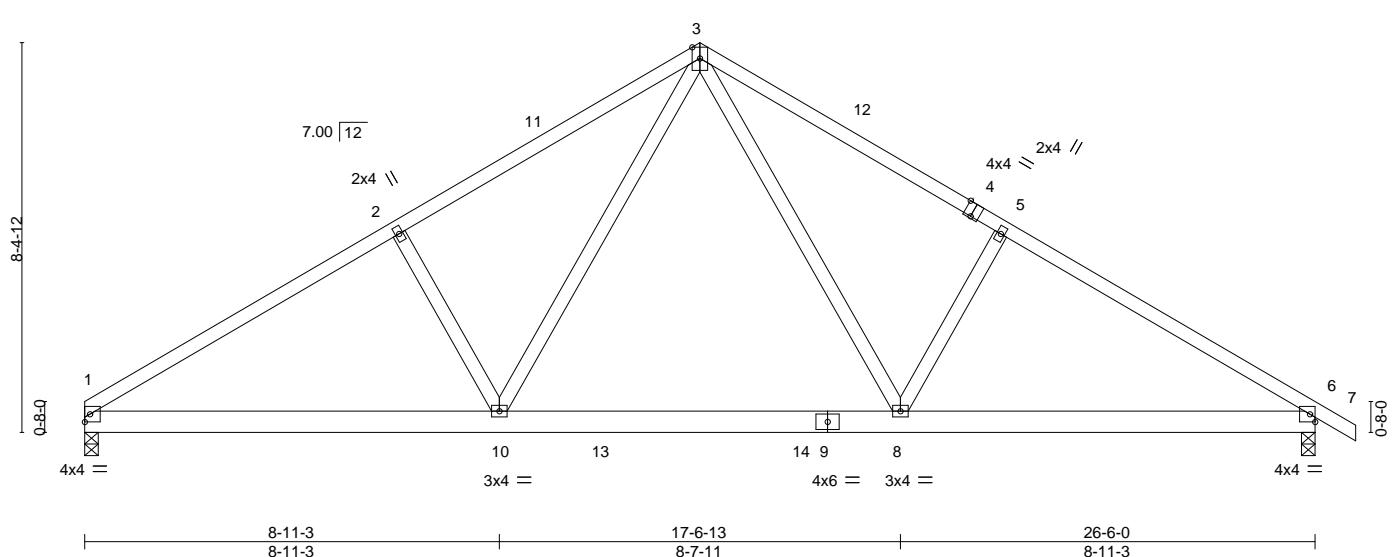


Plate Offsets (X,Y)-- [4:0-2-0,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.52	Vert(LL) -0.11 8-10 >999 240	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.32	Vert(CT) -0.16 8-10 >999 180		
TCDL 10.0	Lumber DOL 1.15	WB 0.24	Horz(CT) 0.03 6 n/a n/a		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 149 lb	FT = 20%

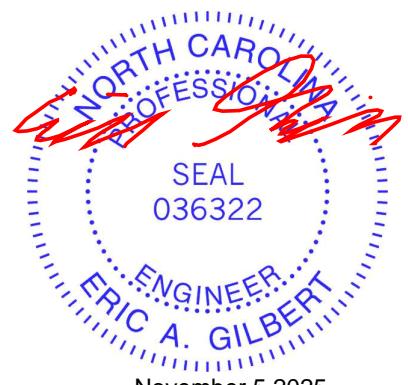
LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-4-7 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.


(size) 1=0-3-8, 6=0-3-8
Max Horz 1=196(LC 12)
Max Uplift 1=59(LC 16), 6=73(LC 17)
Max Grav 1=1077(LC 30), 6=1136(LC 31)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-1670/441, 2-3=-1514/497, 3-5=-1510/496, 5-6=-1667/441
BOT CHORD 1-10=262/1472, 8-10=45/966, 6-8=-257/1317
WEBS 3-8=-169/706, 5-8=-383/280, 3-10=-170/711, 2-10=-392/290

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=14ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-12 to 5-6-11, Exterior(2) 5-6-11 to 13-3-0, Corner(3) 13-3-0 to 18-7-15, Exterior(2) 18-7-15 to 27-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.

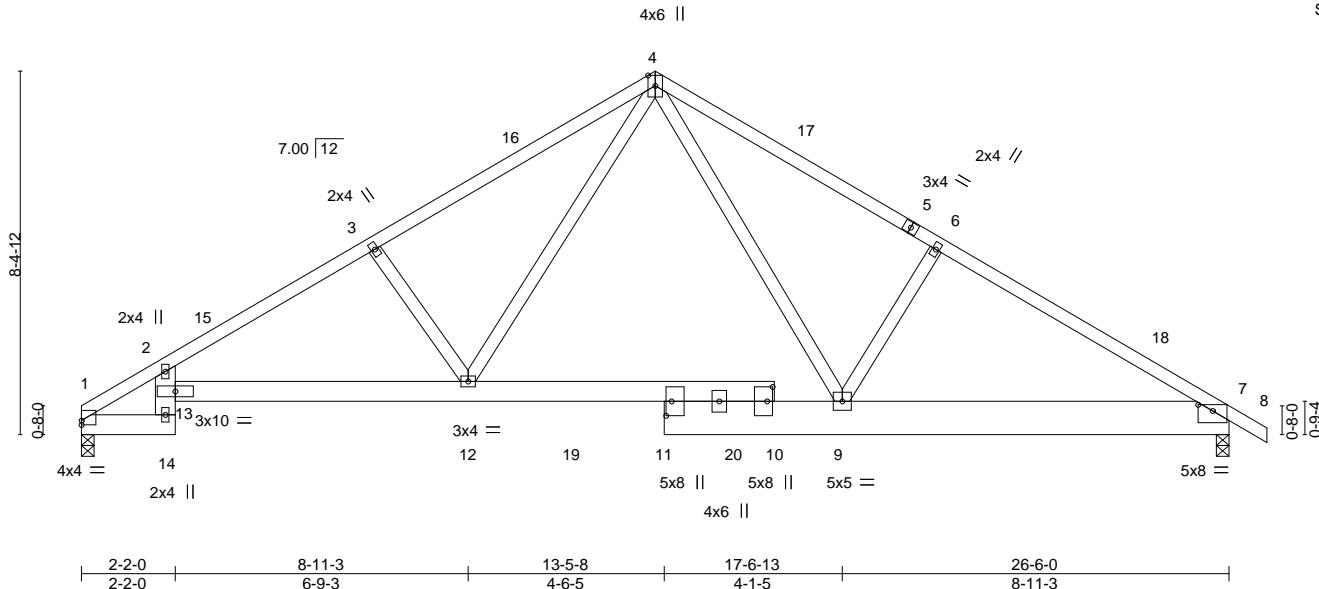
November 5, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss C2	Truss Type COMMON	Qty 3	Ply 1	Lot 12 West Pointe III	I77514596
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:44 2025 Page 1
ID: _ZfiiDAQJRSztBHN?xTfO4zmc0l-jUNcRqmzr0rkPGhQ_EevTptlTd8HzgSCxiVVyMsF5

6-9-4 13-3-0 19-8-12 26-6-0 27-4-8
6-9-4 6-5-12 6-5-12 6-9-4 0-10-8

Scale = 1:53.2

Job 252121-A	Truss C4	Truss Type COMMON	Qty 1	Ply 1	Lot 12 West Pointe III	I77514598
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:45 2025 Page 1
ID: ZfilDAQRSztBHN?xTfO4zmc0lBhx_eAnbcB8iLZruzhltShM0RiqStohpgshG2xyMsF4

6-9-4 13-3-0 6-5-12 19-8-12 26-6-0
6-9-4 6-5-12 6-9-4

Scale = 1:49.2

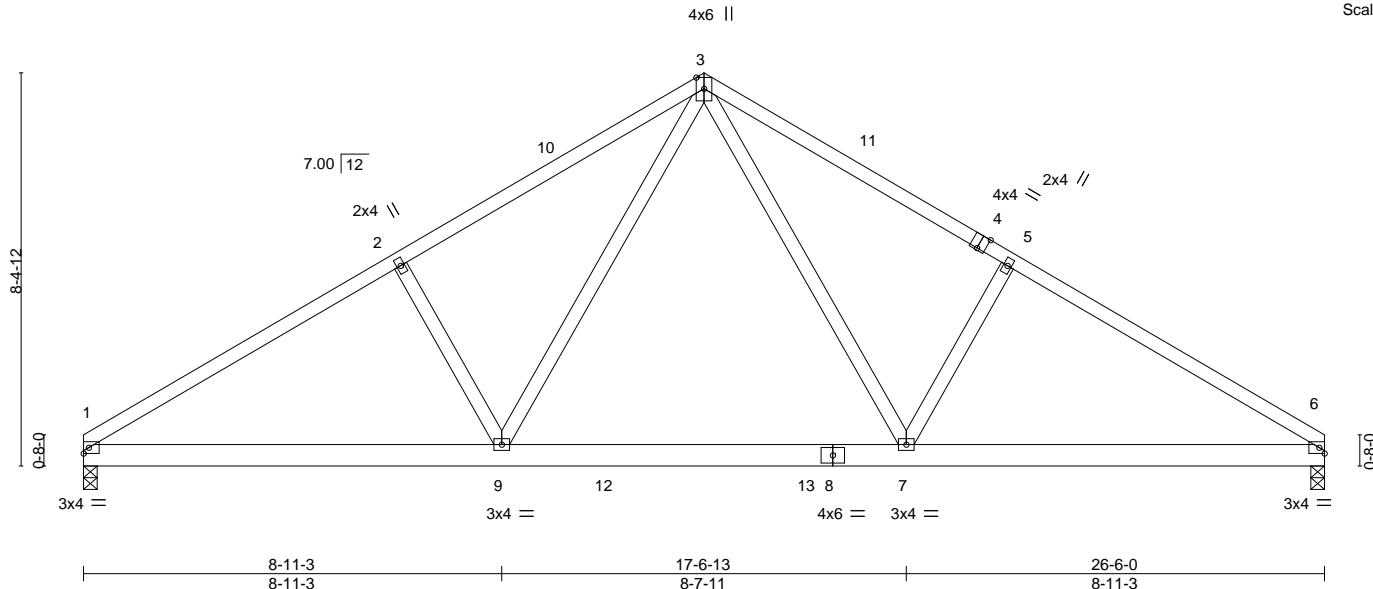


Plate Offsets (X,Y)-- [4:0-2-0,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 2-0-0	TC 0.50	Vert(LL) -0.11	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.32	Vert(CT) -0.16		
TCDL 10.0	Rep Stress Incr YES	WB 0.25	Horz(CT) 0.03		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S			
BCDL 10.0				Weight: 147 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-4-6 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1-0-3-8, 6-0-3-8
Max Horz 1-192(LC 12)
Max Uplift 1-59(LC 16), 6-59(LC 17)
Max Grav 1=1077(LC 29), 6=1077(LC 30)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-1672/443, 2-3=-1516/499, 3-5=-1516/499, 5-6=-1672/443
BOT CHORD 1-9=-273/1471, 7-9=-54/964, 6-7=-273/1327
WEBS 3-7=-172/712, 5-7=-393/290, 3-9=-172/712, 2-9=-393/290

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=14ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-12 to 5-7-5, Exterior(2) 5-7-5 to 13-3-0, Corner(3) 13-3-0 to 18-8-9, Exterior(2) 18-8-9 to 26-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

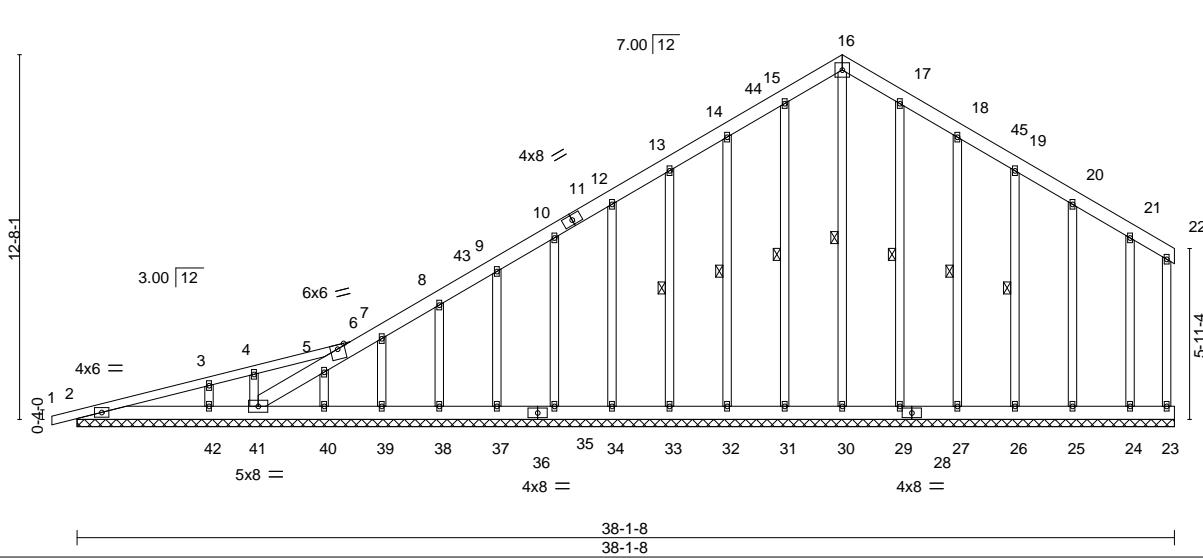
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss A1GE	Truss Type GABLE	Qty 1	Ply 1	Lot 12 West Pointe III	I77514599
-----------------	---------------	---------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:36 2025 Page 1
ID: _ZfIIIDAQJRSztBHN?xTfO4zmc0l-yyubl5gykQ?_mAf9yl5mbnUzo3qNGI9Vcy?HDyyMsFD

-0-10-8
0-10-8

26-7-0
26-7-0

38-1-8
11-6-8

Scale = 1:80.0

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.17	Vert(LL) -0.00	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.06	Vert(CT) 0.00		
TCDL 10.0	Lumber DOL 1.15	WB 0.14	Horz(CT) -0.00		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 361 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*
1-6: 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2
OTHERS 2x4 SP No.2

REACTIONS.

All bearings 38-1-8.
(lb) - Max Horz 2=408(LC 16)
Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 29, 27, 26, 25, 24 except 41=121(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 2, 23, 41, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 29, 27, 26, 25, 24 except 42=399(LC 39)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 6-7=333/284, 7-8=302/284, 8-9=266/257, 13-14=183/273, 14-15=222/314,
15-16=251/326, 16-17=251/313, 17-18=222/275
WEBS 3-42=254/250

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 4-7-0, Exterior(2) 4-7-0 to 26-7-0, Corner(3) 26-7-0 to 32-3-6, Exterior(2) 32-3-6 to 37-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10; Min. flat roof snow load governs.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 29, 27, 26, 25, 24 except (jt=lb) 41=121.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss A1	Truss Type ROOF SPECIAL	Qty 5	Ply 1	Lot 12 West Pointe III	I77514600
-----------------	-------------	----------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

-0-10-8 5-3-4 6-1-12 9-6-0 13-9-0 21-5-4 26-7-0 31-8-12 38-1-8
0-10-8 5-3-4 0-10-8 3-4-4 4-3-0 7-8-4 5-1-12 5-1-12 6-4-12

25.3.0 s Aug 20 2025 MiTek Industries, Inc. Wed Nov 5 10:57:04 2025 Page 1
ID: _ZfilDAQRSztBHN?xTf04zmc0l-?151B90crj497mu3HaDNMLZ23oEbZ?ROtHeDyMR3j

Scale = 1:87.2

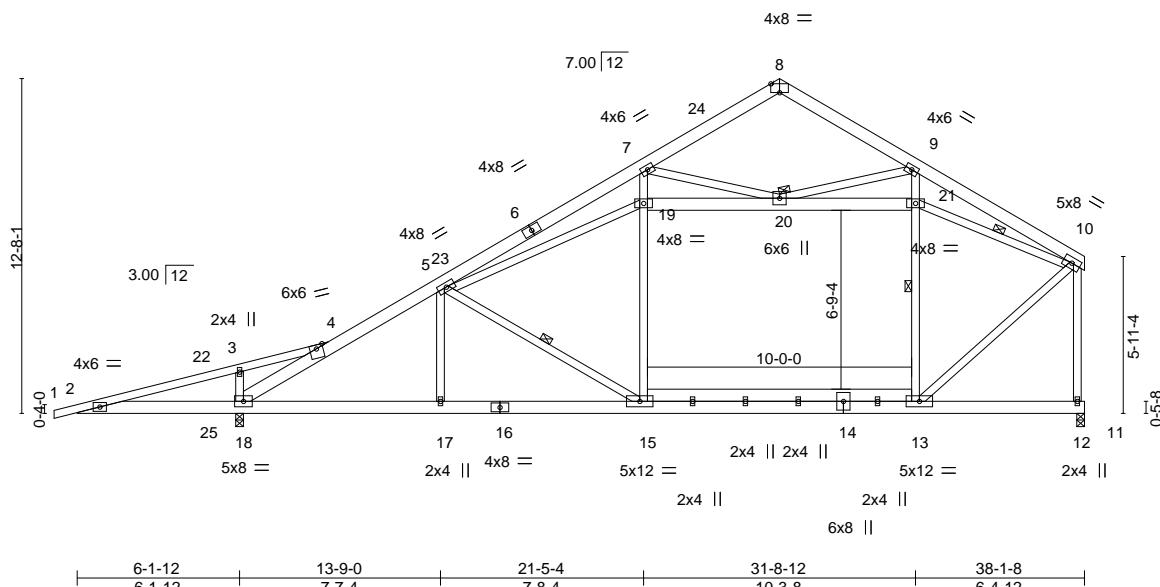


Plate Offsets (X,Y)-- [8:0-4-0,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 2-0-0	TC 0.79	Vert(LL) -0.24 13-15	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.56	Vert(CT) -0.34 13-15		
TCDL 10.0	Rep Stress Incr YES	WB 0.78	Horz(CT) 0.03 12		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S			
BCDL 10.0				Weight: 341 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*
1-4: 2x4 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2 *Except*
19-21: 2x6 SP No.1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-3-6 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 9-13, 5-15, 10-21
JOINTS 1 Brace at Jt(s): 20

REACTIONS. (size)

18=0-3-8, 12=0-3-8
Max Horz 18=292(LC 13)
Max Uplift 18=-149(LC 16), 12=-55(LC 16)
Max Grav 18=1871(LC 2), 12=1429(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-22=-1161/1107, 3-22=-1145/1160, 3-4=-1069/1122, 4-18=-2507/1121, 4-5=-1897/235,
5-23=-1944/202, 6-23=-1934/222, 6-7=-1847/248, 7-24=-327/110, 8-9=-399/136,
9-10=-309/1297, 10-12=-1464/327
BOT CHORD 2-25=-1076/1205, 18-25=-1076/1205, 17-18=-251/1722, 16-17=-253/1721,
15-16=-253/1721, 14-15=-229/1299, 13-14=-229/1299
WEBS 3-18=-407/321, 15-19=0/675, 7-19=-48/855, 13-21=-662/312, 9-21=-1414/490,
10-13=-307/1767, 19-20=-271/476, 20-21=-2355/561, 5-15=-526/164, 5-19=-286/490,
7-20=-1538/288, 9-20=-238/1350, 10-21=-2449/583

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 4-9-14, Exterior(2) 4-9-14 to 26-7-0, Corner(3) 26-7-0 to 32-3-6, Exterior(2) 32-3-6 to 37-11-10 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 18=149.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

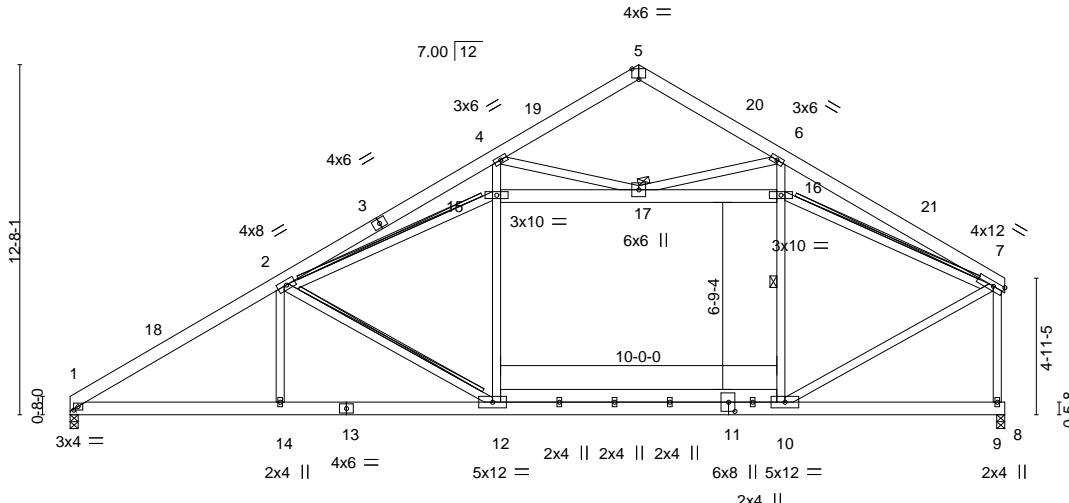
November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss A2	Truss Type COMMON	Qty 1	Ply 1	Lot 12 West Pointe III	I77514601
-----------------	-------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

7-7-4 15-5-4 20-7-0 25-8-12 33-10-0
7-7-4 7-10-0 5-1-12 5-1-12 8-1-4

ID: _ZfilDAQRSztBHN?xTfO4zmc0l-TgEi5xfEchGhO6lu6CVPUKWWF0XynFhfOUT1SCyMR2v
25.3.0 s Aug 20 2025 MiTek Industries, Inc. Wed Nov 5 10:57:56 2025 Page 1

Scale = 1:83.4

7-7-4 15-5-4 20-7-0 25-8-12 33-10-0
7-7-4 7-10-0 10-3-8 8-1-4

Plate Offsets (X,Y)-- [1:0-1-13,0-1-8], [5:0-3-0,Edge], [11:0-4-0,0-2-12]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.51	Vert(LL) -0.25 10-12 >999 240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.59	Vert(CT) -0.36 10-12 >999 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.95	Horz(CT) 0.04 9 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			
				Weight: 322 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2 *Except*
15-16: 2x6 SP No.1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-7 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 9-10.
WEBS 1 Row at midpt 6-10
T-Brace: 2x4 SPF No.2 - 2-12, 2-15, 7-16
Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.
Brace must cover 90% of web length.
JOINTS 1 Brace at Jt(s): 17

REACTIONS. (size) 1=0-3-8, 9=0-3-8

Max Horz 1=287(LC 9)
Max Uplift 1=80(LC 12), 9=51(LC 13)
Max Grav 1=1449(LC 19), 9=1499(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-18=-2347/356, 2-18=-2278/384, 2-3=-1839/179, 3-4=-1724/222, 4-19=-327/98,
5-20=-301/133, 6-20=-355/105, 6-21=-284/1033, 7-21=-302/915, 7-9=-1487/303
BOT CHORD 1-14=-386/2113, 13-14=-387/2110, 12-13=-387/2110, 11-12=-212/1543, 10-11=-212/1543
WEBS 2-14=0/330, 10-16=-469/236, 6-16=-1251/415, 7-10=-241/1802, 12-15=0/745,
4-15=-85/804, 2-12=-717/210, 15-17=-484/386, 16-17=-2359/493, 2-15=-523/402,
7-16=-2486/519, 4-17=-1404/270, 6-17=-272/1122

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 3-6-6, Interior(1) 3-6-6 to 20-7-0, Exterior(2) 20-7-0 to 23-11-10, Interior(1) 23-11-10 to 33-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

November 5, 2025

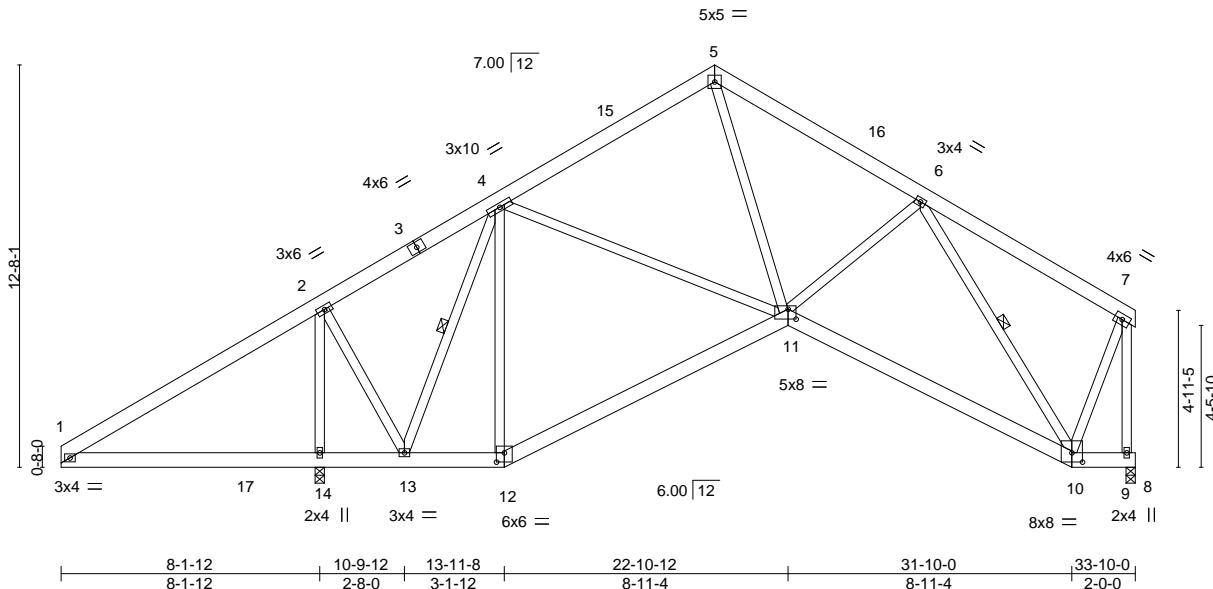
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss A3	Truss Type ROOF SPECIAL	Qty 3	Ply 1	Lot 12 West Pointe III	I77514602
-----------------	-------------	----------------------------	----------	----------	------------------------	-----------

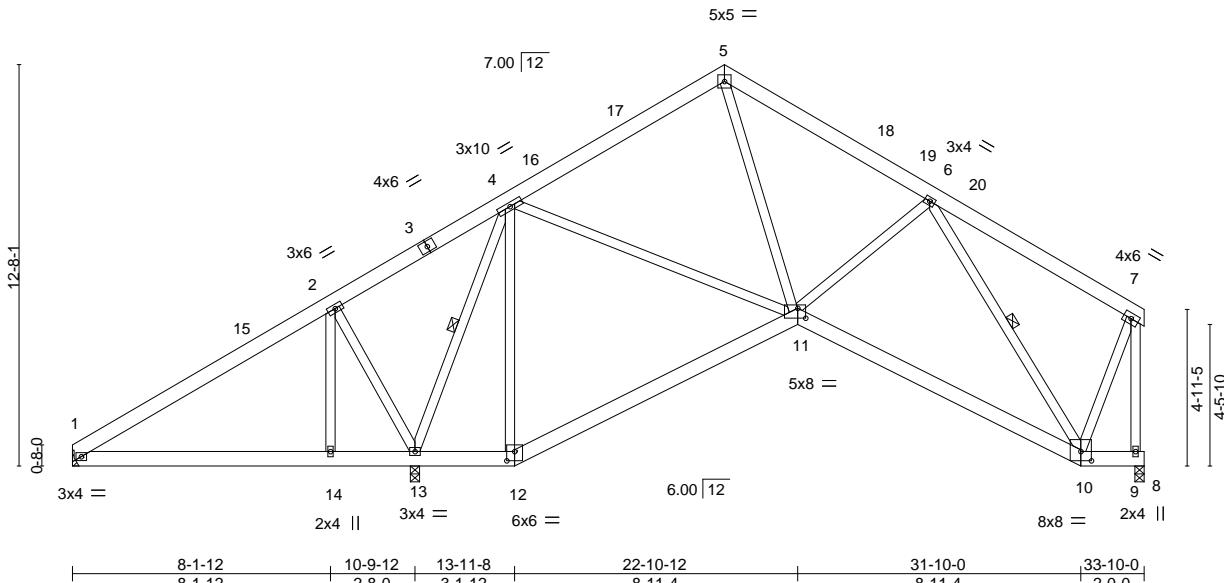

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:37 2025 Page 1

ID: _ZfIIIDAQJRSztBHN?xTfO4zmc0l-Q8SzRgaVj7OKELV0c??70h5T7X?5EerclmPyMsFC

8-1-12 13-11-8 20-7-0 27-0-12 33-10-0
8-1-12 5-9-12 6-7-8 6-5-12 6-9-4

Scale = 1:72.6


Job 252121-A	Truss A4	Truss Type ROOF SPECIAL	Qty 1	Ply 1	Lot 12 West Pointe III	I77514603
-----------------	-------------	----------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:38 2025 Page 1
ID: ZfilDAQJRSztBHN?xTfO4zmc01-uK0LanhCG1F10UpX3j7EgCZltTukbnn3GUOlryMsFB

8-1-12 13-11-8 20-7-0 27-0-12 33-10-0
8-1-12 5-9-12 6-7-8 6-5-12 6-9-4

Scale = 1:72.7

8-1-12 10-9-12 13-11-8 22-10-12 31-10-0 33-10-0
8-1-12 2-8-0 3-1-12 8-11-4 8-11-4 2-0-0

Plate Offsets (X,Y)-- [10:0-4-0-0-3-8], [11:0-3-0-0-3-12], [12:0-3-0-0-3-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC 0.27	Vert(LL)	-0.06 11-12	>999	240	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL	1.15	BC 0.25	Vert(CT)	-0.13 11-12	>999	180		
TCDL 10.0	Rep Stress Incr	YES	WB 0.39	Horz(CT)	0.04 9	n/a	n/a		
BCLL 0.0 *	Code	IRC2015/TPI2014	Matrix-S					Weight: 276 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 1-14,13-14.
WEBS 1 Row at midpt 6-10, 4-13

REACTIONS. (size) 1=Mechanical, 9=0-3-8, 13=0-3-8

Max Horz 1=294(LC 13)
Max Uplift 9=-48(LC 17), 13=-189(LC 16)
Max Grav 1=319(LC 33), 9=838(LC 2), 13=1579(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=51/392, 4-5=767/245, 5-6=901/287, 6-7=323/125, 7-9=842/164
BOT CHORD 11-12=91/254, 10-11=153/760
WEBS 2-14=0/305, 4-11=0/474, 5-11=71/455, 6-10=854/201, 7-10=23/589, 2-13=-620/215, 4-13=1131/221

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=17ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-4 to 5-9-10, Interior(1) 5-9-10 to 20-7-0, Exterior(2) 20-7-0 to 26-3-6, Interior(1) 26-3-6 to 33-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 13=189.

November 5, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss A5	Truss Type ROOF SPECIAL	Qty 3	Ply 1	Lot 12 West Pointe III Job Reference (optional)	I77514604
-----------------	-------------	----------------------------	----------	----------	--	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:38 2025 Page 1
ID:_ZfilDAQJRSztBHN?xTf04zmc0l-uK0LAnhCG1Fi0UpX3j7EgCZltT8kbPn3GUOlryMsFB

I77514604

Scale = 1:72 7

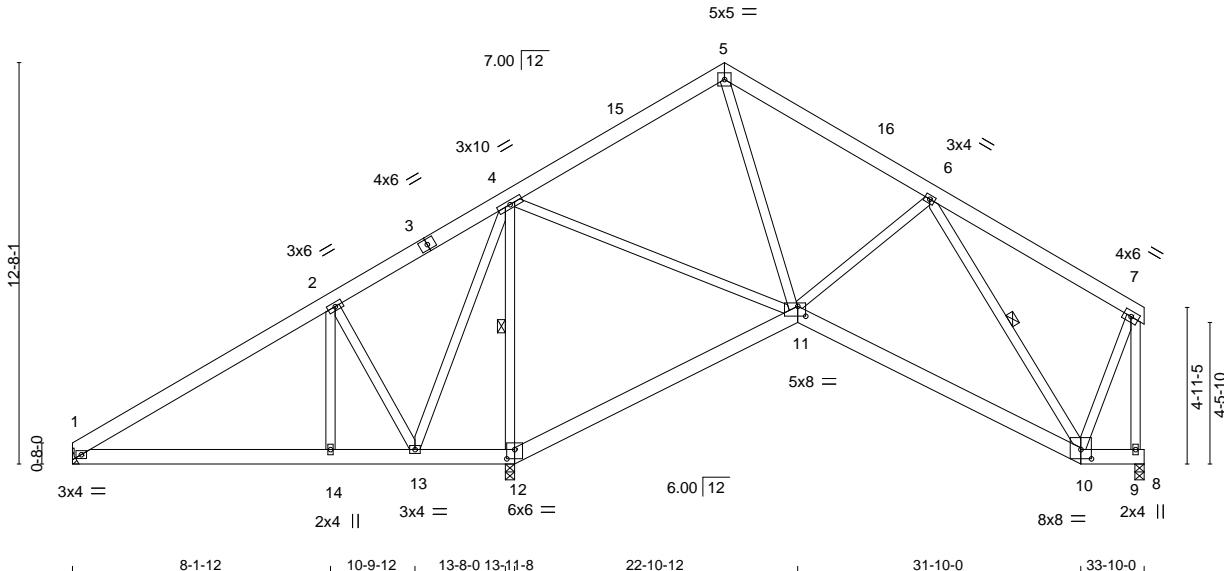
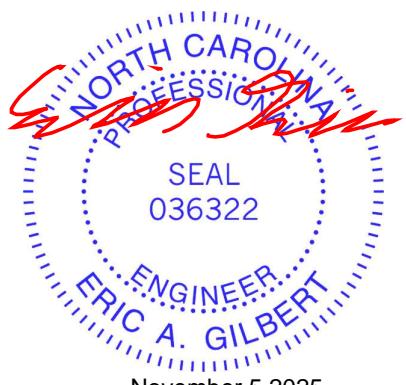


Plate Offsets (X Y)-- [10:0-4-0-0-3-8] [11:0-3-0-0-3-12] [12:0-3-0-0-3-8]

Plate Onsets (A, I) --		[10.0-0-0, 0-3-0], [11.0-3-0, 0-3-12], [12.0-3-0, 0-3-0]										
LOADING (psf)	SPACING-	2-0-0	CSI-	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	-0.05	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.12	10-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.03	9	n/a	n/a		
BCLL	0.0 *	Code IRC2015/TPI2014		Matrix-S								
BCDL	10.0										Weight: 276 lb	FT = 20%

LUMBER-
TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2


REACTIONS. (size) 1=Mechanical, 12=0-3-8, 9=0-3-8
 Max Horz 1=294(LC 13)
 Max Uplift 12=-161(LC 16), 9=-49(LC 17)
 Max Grav 1=430(LC 33), 12=1646(LC 2), 9=

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
 TOP CHORD 1-2=-425/63, 4-5=-525/230, 5-6=-561/246, 6-7=-260/118, 7-9=-669/148
 BOT CHORD 1-14=-162/290, 13-14=-162/290, 12-13=-301/112, 11-12=-404/161, 10-11=-136/547
 WEBS 2-14=0/360, 4-11=-48/690, 6-10=-579/180, 4-12=-1319/499, 7-10=-13/441,
 2-13=-667/269, 4-13=-221/515

NOTES-

- 1) Indicated live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=17ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-4 to 5-9-10, Exterior(2) 5-9-10 to 20-7-0, Corner(3) 20-7-0 to 26-3-6, Exterior(2) 26-3-6 to 33-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except ($j=t=b$)
 $12=161$.

BRACING-	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WFBS	1 Row at midpt 6-10 4-12

November 5,2025

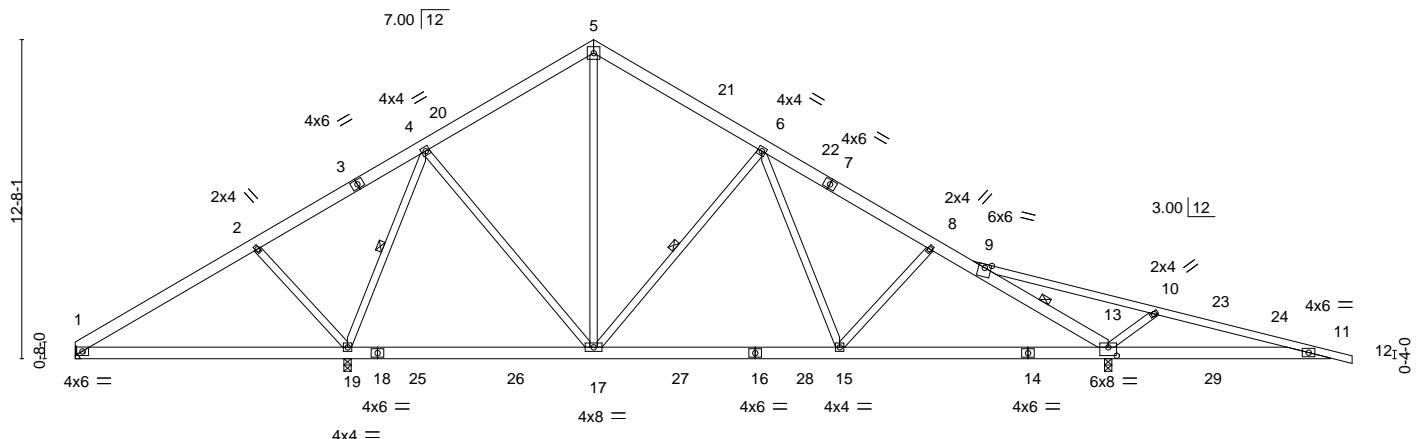
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 Rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com).

TRENCO
ENGINEERING BY
A MiTek Affiliate

Job 252121-A	Truss A7	Truss Type ROOF SPECIAL	Qty 7	Ply 1	Lot 12 West Pointe III	I77514605
-----------------	-------------	----------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:39 2025 Page 1

ID: ZfidaQJRSztBHN?xtf04zmc0l-MXajN6iq1LNZdeOkdQeTCQ6vRHmgT1QxIwEyqHyMsFA

7-2-12 13-10-14 20-7-0 27-3-2 33-11-4 35-8-0 42-10-0 49-10-0 50-8-8
7-2-12 6-8-2 6-8-2 6-8-2 6-8-2 1-8-12 7-2-0 7-0-0 0-10-8

Scale = 1:91.5

6x6 =

10-9-12 20-7-0 30-4-4 41-0-4 49-10-0
10-9-12 9-9-4 9-9-4 10-8-0 8-9-12

Plate Offsets (X,Y)-- [13:0-4-0.0-4-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.85	Vert(LL) -0.11 15-17 >999 240	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.41	Vert(CT) -0.17 15-17 >999 180		
TCDL 10.0	Lumber DOL 1.15	WB 0.49	Horz(CT) 0.02 13 n/a n/a		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 343 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*
9-12: 2x4 SP No.1

BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 19=0-3-8, 13=0-3-8

Max Horz 1=-297(LC 14)

Max Uplift 19=-144(LC 16), 13=-224(LC 13)

Max Grav 1=323(LC 42), 19=2019(LC 30), 13=2028(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=43/445, 4-5=842/306, 5-6=815/312, 6-8=1376/124, 8-9=1438/106,
9-13=2664/1524, 9-10=1679/1687, 10-11=1409/1186

BOT CHORD 17-19=0/332, 15-17=0/1037, 13-15=0/1203, 11-13=1098/1446

WEBS 2-19=480/310, 4-19=1406/318, 4-17=0/658, 5-17=106/432, 6-17=701/186,
6-15=0/395, 10-13=723/490

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-1-4 to 5-9-10, Exterior(2) 5-9-10 to 20-7-0, Corner(3) 20-7-0 to 26-3-6, Exterior(2) 26-3-6 to 50-8-8 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 19=144, 13=224.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

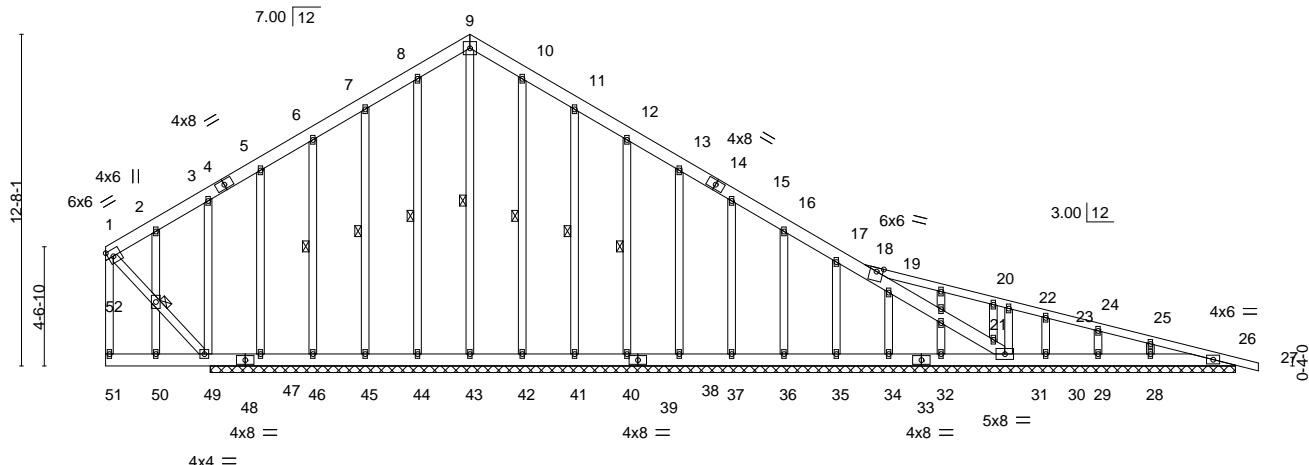
November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss A7GE	Truss Type ROOF SPECIAL SUPPORT	Qty 1	Ply 1	Lot 12 West Pointe III	I77514606
-----------------	---------------	------------------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

13-11-0 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:40 2025 Page 1
ID: _ZfiiIDAQJRSztBHN?xTfO4zmc0l-qj85bSjSoeVQFozwB89ildeEvhCTCZg4XazVMkyMsF9
13-11-0 29-0-0 31-11-0 34-4-4 43-2-0 44-0-8
13-11-0 15-1-0 2-11-0 2-5-4 8-9-12 0-10-8

Scale = 1:88.0

6x6 =

1-11-0 4-0-0 | 34-4-4 | 43-2-0
1-11-0 2-1-0 | 30-4-4 | 8-9-12

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.19	Vert(LL) 0.00 in (loc) 26 l/defl n/r 120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) 0.00 27 n/r 120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.17	Horz(CT) 0.01 26 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 406 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*
18-27: 2x4 SP No.1

BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS.

All bearings 39-2-0.

(lb) - Max Horz 49=-370(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 44, 45, 46, 47, 42, 41, 40, 38, 37, 36, 35, 34, 29, 28, 26
except 49=-151(LC 12), 31=-199(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 44, 45, 46, 47, 42, 41, 40, 38, 37, 36, 35, 34, 32, 30, 29,
28, 26 except 43=298(LC 21), 49=397(LC 19), 31=303(LC 24)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-186/304, 8-9=-217/340, 9-10=-217/353, 10-11=-186/344, 11-12=-136/302,
12-13=-153/265, 13-15=-171/254, 15-16=-196/274, 16-17=-231/300, 17-18=-262/301,

19-21=-270/176, 21-31=-256/248

BOT CHORD 47-49=-174/375, 46-47=-174/375, 45-46=-174/375, 44-45=-174/375, 43-44=-174/375,
42-43=-174/375, 41-42=-174/375, 40-41=-174/375, 38-40=-174/375, 37-38=-174/375,

36-37=-174/375, 35-36=-174/375, 34-35=-174/375, 32-34=-174/375, 31-32=-174/375

WEBS 9-43=-258/65, 20-21=-325/228

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-1-12 to 4-5-9, Exterior(2) 4-5-9 to 13-11-0, Corner(3) 13-11-0 to 18-2-13, Exterior(2) 18-2-13 to 44-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Bearing at joint(s) 26 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 44, 45, 46, 47, 42,
41, 40, 38, 37, 36, 35, 34, 29, 28, 26 except (j=lb) 49=151, 31=199.

10) Non Standard bearing condition. Review required.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

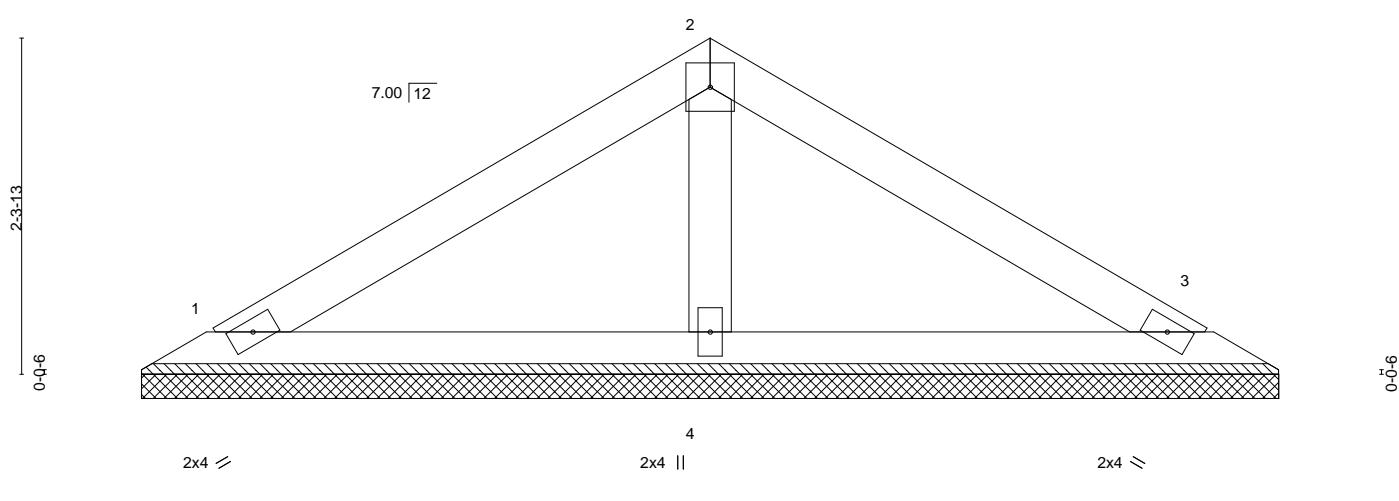
November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 252121-A	Truss VC1	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514607
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:53 2025 Page 1
ID: ZfidaQJRSztBHN?xTfO4zmc0I-yDQ0Jvtcke8aJnSQRNulnNhTlwd0lTA?W5dhJTyMsEy

3-11-10 3-11-10 7-11-4 3-11-10

Scale: 3/4"=1'

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.16	Vert(LL) n/a - n/a 999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.09	Vert(CT) n/a - n/a 999		
TCDL 10.0	Lumber DOL 1.15	WB 0.02	Horz(CT) 0.00 3 n/a n/a		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-P			
BCDL 10.0	Code IRC2015/TPI2014			Weight: 26 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=16ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VC2	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514608
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:54 2025 Page 1
ID: _ZfilDAQJRSztBHN?xTfO4zmc0l-QP_OXFuEVyGQxx1c?4P_JaDgdKzXUwm8lMErwyMsEx

1-11-10
1-11-10

3-11-4
1-11-10

Scale = 1:8.4

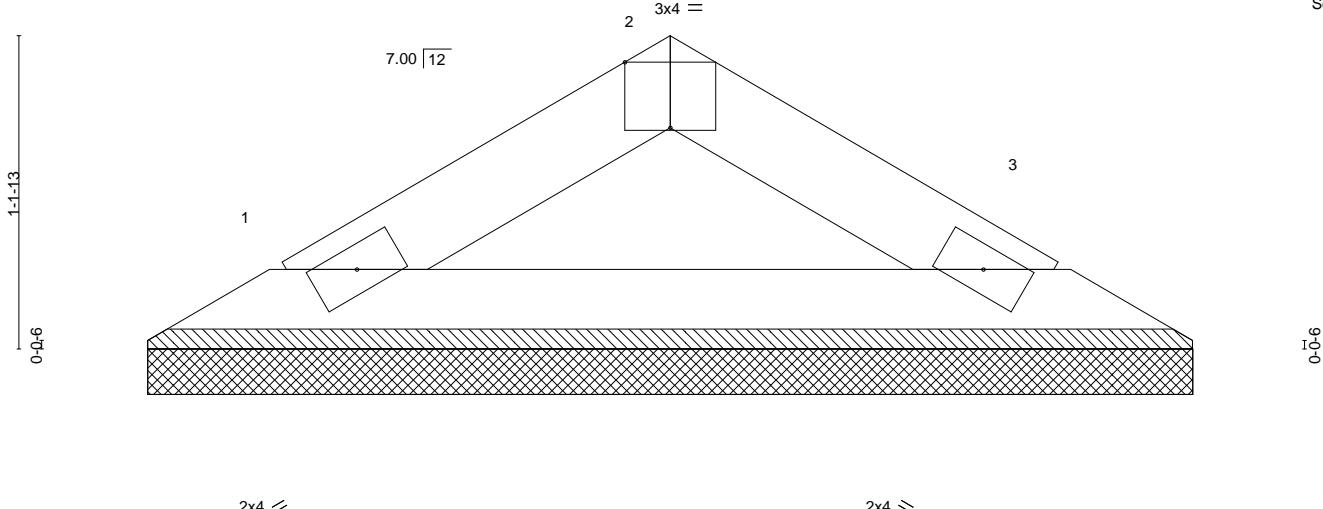


Plate Offsets (X,Y)-- [2:0-2-0,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL)	n/a	-	n/a	999	
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.07	Vert(CT)	n/a	-	n/a	999	
TCDL 10.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a	
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-P						
BCDL 10.0							Weight: 11 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=3-10-0, 3=3-10-0
Max Horz 1=21(LC 12)
Max Uplift 1=7(LC 16), 3=7(LC 17)
Max Grav 1=113(LC 2), 3=113(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=17ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB1	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514609
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:49 2025 Page 1
ID: _ZfilDAQJRSztBHN?xTfO4zmc0I-4SBVUXq6gPe8qA9fCxqpcXWmvJFupdqPbUFTBiyMsFO

13-5-1 13-5-1 26-10-2 13-5-1

Scale = 1:54.8

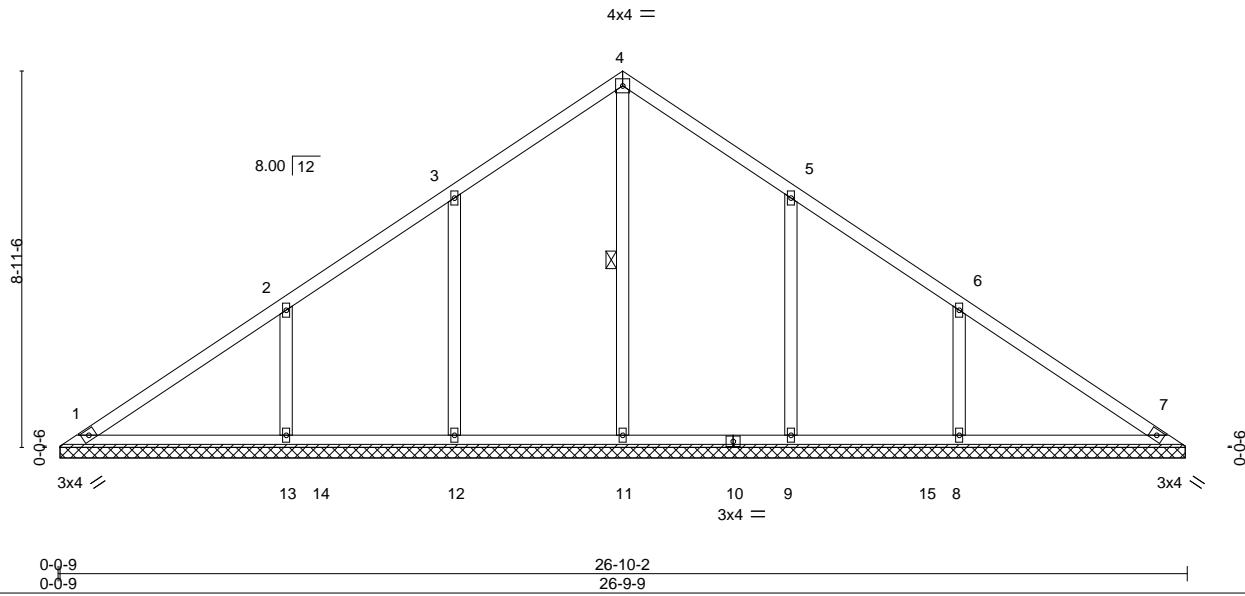


Plate Offsets (X,Y)-- [5:0-0,0-0-0], [6:0-0-0,0-0-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	n/a	-	n/a	999	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.16	n/a	-	n/a	999	
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	7	n/a	n/a
BCLL	0.0 *	Code	IRC2015/TPI2014	Matrix-S						
BCDL	10.0								Weight: 125 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 4-11

REACTIONS.

All bearings 26-9-0.
(lb) - Max Horz 1=208(LC 13)
Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 9 except 13=-121(LC 14), 8=-121(LC 15)
Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=444(LC 28), 12=520(LC 25), 13=497(LC 25),
9=519(LC 26), 8=497(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=284/203, 2-13=369/258, 5-9=284/203, 6-8=369/258

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-5-15 to 6-2-5, Exterior(2) 6-2-5 to 13-5-1, Corner(3) 13-5-1 to 19-1-7, Exterior(2) 19-1-7 to 26-4-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 9 except (jt=lb) 13=121, 8=121.
- 8) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB2	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514610
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:50 2025 Page 1
ID: ZfilDAQRSztBHN?xTfO4zmc0l-YelthtrkRjm?SKkrnEL29k3yfjbjY4AYq8O1j9yMsF?

11-8-1 11-8-1 23-4-2 11-8-1

Scale: 1/4"=1'

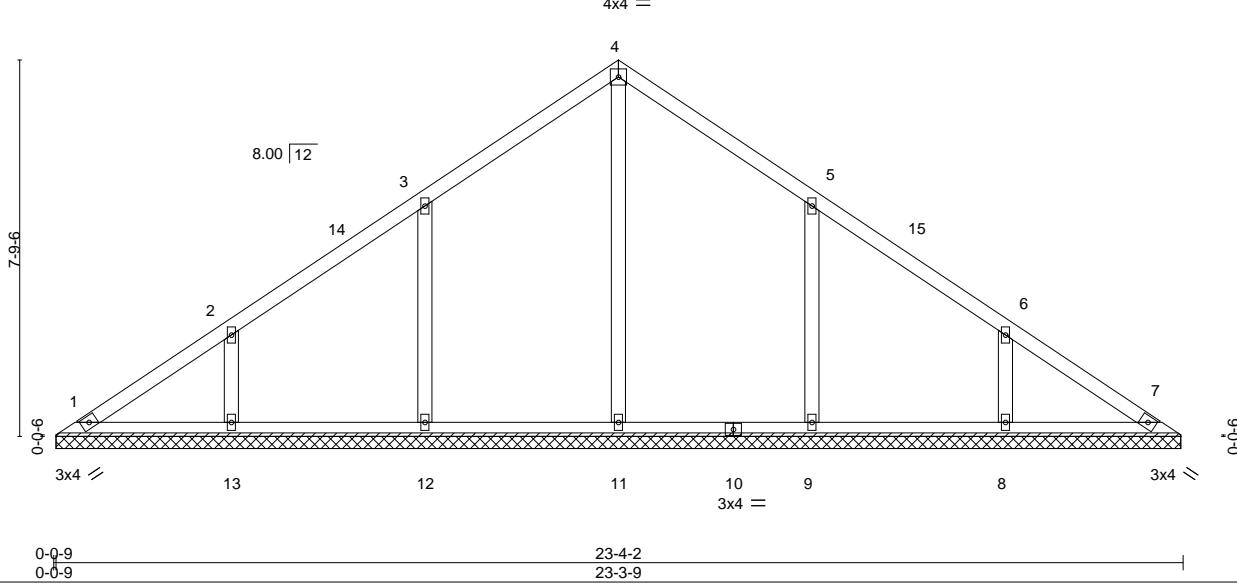


Plate Offsets (X, Y)-- [5:0-0,0-0-0], [6:0-0-0,0-0-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC 0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL	1.15	BC 0.19	Vert(CT)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr	YES	WB 0.17	Horz(CT)	0.00	7	n/a	n/a		
BCLL 0.0 *	Code	IRC2015/TPI2014	Matrix-S						Weight: 104 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 23-3-0.
(lb) - Max Horz 1=181(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 8 except 12=-105(LC 14), 9=-105(LC 15)
Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=453(LC 28), 12=452(LC 25), 13=327(LC 25),
9=452(LC 26), 8=327(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=314/219, 2-13=284/202, 5-9=314/220, 6-8=284/201

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=16ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 6-2-5, Interior(1) 6-2-5 to 11-8-1, Exterior(2) 11-8-1 to 17-4-7, Interior(1) 17-4-7 to 22-10-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 8 except (jt=lb) 12=105, 9=105.
- 8) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB3	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514611
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:50 2025 Page 1
ID: ZfiiDAQRSztBHN?xTfO4zmc0I-YelthtrkRjm?SKkrnEL29k3YjblY5zYq8O1j9yMsF?

9-11-1 9-11-1 19-10-2 9-11-1

Scale = 1:40.5

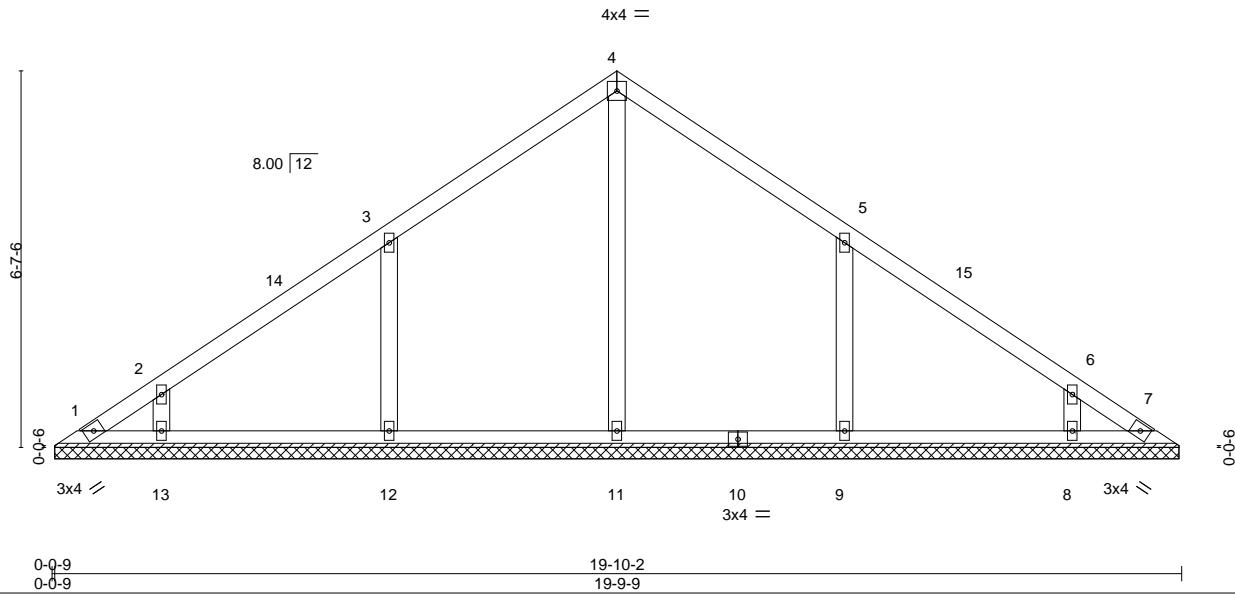


Plate Offsets (X,Y)-- [5:0-0,0-0-0], [6:0-0-0,0-0-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	n/a	-	n/a	999	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.19	n/a	-	n/a	999	
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	7	n/a	n/a
BCLL	0.0 *	Code	IRC2015/TPI2014	Matrix-S						
BCDL	10.0									

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 19-9-0.
(lb) - Max Horz 1=154(LC 13)
Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 13, 8 except 12=-110(LC 14), 9=-110(LC 15)
Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=445(LC 25), 12=464(LC 25), 13=262(LC 25),
9=464(LC 26), 8=262(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 3-12=323/227, 5-9=323/227

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=17ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 5-11-1, Interior(1) 5-11-1 to 9-11-1, Exterior(2) 9-11-1 to 15-7-7, Interior(1) 15-7-7 to 19-4-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13, 8 except (jt=lb) 12=110, 9=110.
- 8) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO
Engineering by
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB4	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514612
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:51 2025 Page 1
ID: ZfilDAQJRSztBHN?xTf04zmc0l-0rlFvDrMC1us3UJ1KysHiyb7E6xVHYpi3o8aFbyMsF_

8-2-1 8-2-1 16-4-2 8-2-1

Scale = 1:33.5

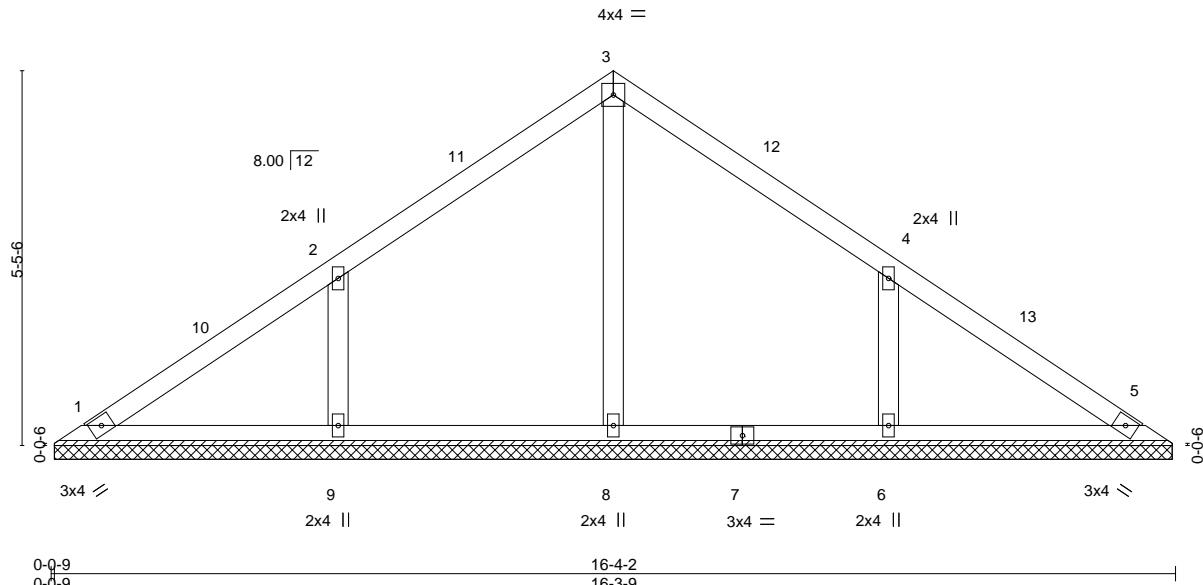


Plate Offsets (X,Y)-- [4:0-0,0-0-0-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 2-0-0	TC 0.16	Vert(LL) n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.09	Vert(CT) n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	5	n/a	n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S					Weight: 65 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 16-3-0.
(lb) - Max Horz 1=126(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=116(LC 14), 6=116(LC 15)
Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=392(LC 25), 6=391(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 2-9=-333/232, 4-6=-333/232

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=17ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 6-2-5, Interior(1) 6-2-5 to 8-2-1, Exterior(2) 8-2-1 to 13-10-7, Interior(1) 13-10-7 to 15-10-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=116, 6=116.
- 7) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB5	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514613
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:51 2025 Page 1
ID: ZfiIDAQJRSztBHN?xTfO4zmc0I-0rFvDrMC1us3UJ1KysHiyb8l6xVHZEi3o8aFbyMsF_

6-5-1
6-5-1

12-10-2
6-5-1

Scale = 1:26.3

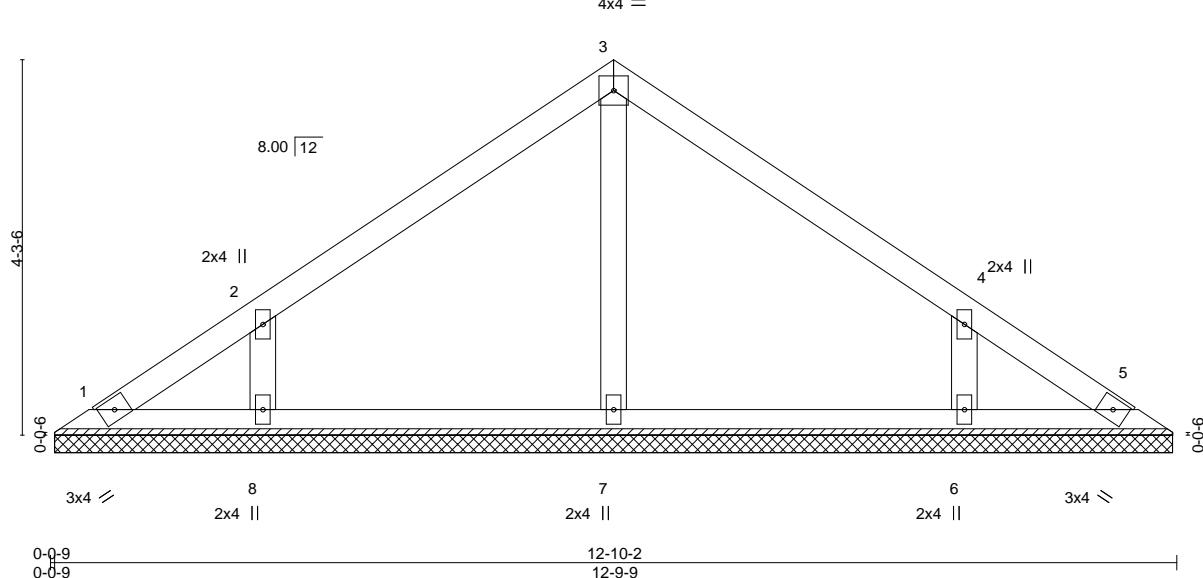


Plate Offsets (X,Y)-- [4:0-0,0-0-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 2-0-0	TC 0.13	Vert(LL) n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.09	Vert(CT) n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.00	5	n/a	n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S					Weight: 49 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 12-9-0.
(lb) - Max Horz 1=98(LC 11)
Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=264(LC 2), 8=319(LC 25), 6=319(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 2-8=-285/213, 4-6=-285/213

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.
- 7) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB6	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III Job Reference (optional)	I77514614
-----------------	--------------	----------------------	----------	----------	--	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:52 2025 Page 1
ID: _ZfilDAQJRSztBHN?xTfO4zmc0I-U1se6Zs_zK0jhetEufNWE98liWG700jrHSt8m1yMsEz

4-8-1 4-8-1 9-4-2 4-8-1

Scale = 1:21.2

4x4 =

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL) n/a - n/a 999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.13	Vert(CT) n/a - n/a 999		
TCDL 10.0	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00 3 n/a n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S		Weight: 32 lb	FT = 20%
BCDL 10.0					

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=9-3-0, 3=9-3-0, 4=9-3-0
Max Horz 1=70(LC 12)
Max Uplift 1=24(LC 14), 3=30(LC 15)
Max Grav 1=166(LC 2), 3=166(LC 2), 4=337(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) Non Standard bearing condition. Review required.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

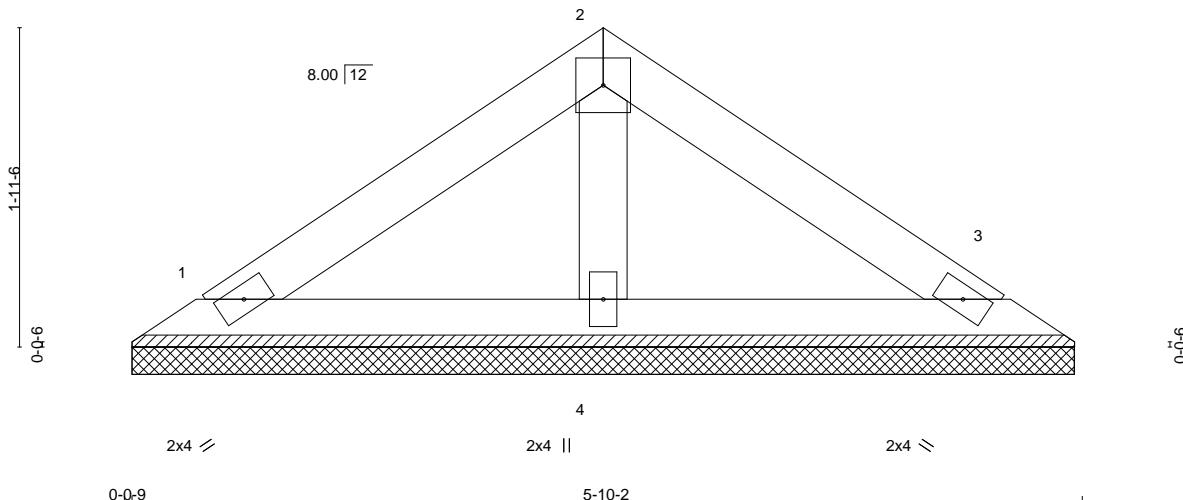
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB7	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III Job Reference (optional)	I77514615
-----------------	--------------	----------------------	----------	----------	--	-----------

Comtech, Inc., Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:52 2025 Page 1
ID: ZfiiDAQJRSztBHN?xTfO4zmc0I-U1se6Zs_zK0jhetEufNWE98JIWIR002rHSt8m1yMsEz

2-11-1
2-11-1

5-10-2
2-11-1

Scale = 1:14.1

4x4 =

LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.04	Vert(CT)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YES	WB 0.01	Horz(CT)	0.00	3	n/a	n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-P						Weight: 19 lb	FT = 20%
BCDL 10.0									

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-10-2 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=19ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) Non Standard bearing condition. Review required.

November 5, 2025

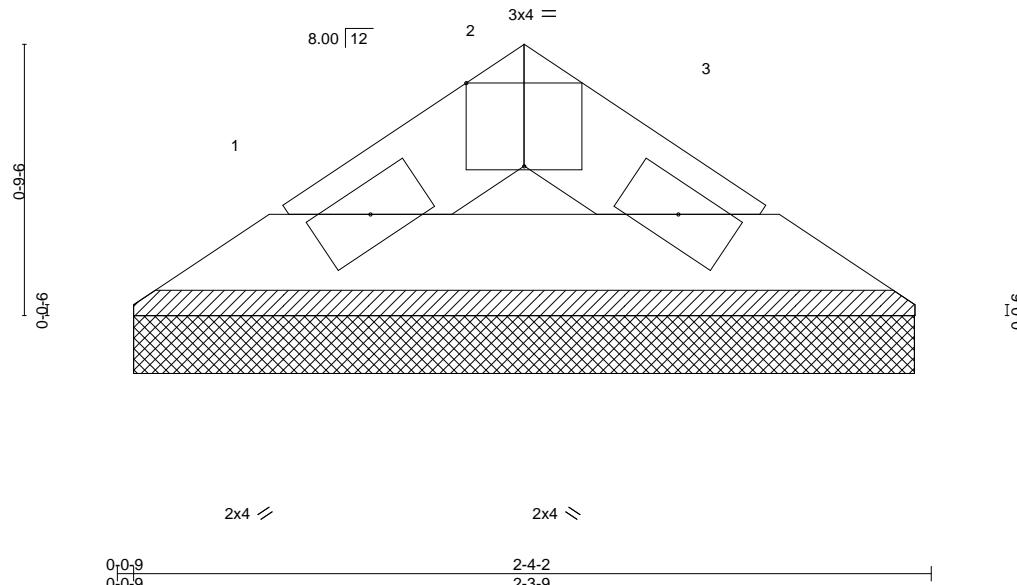
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VB8	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III Job Reference (optional)	I77514616
-----------------	--------------	----------------------	----------	----------	--	-----------


Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:53 2025 Page 1
ID: _ZfidaQJRSztBHN?xTf04zmc0l-yDQ0Jvtcke8aJnSQRNulnNhV7we8ITW?W5dhJTyMsEy

1-2-1
1-2-1

2-4-2
1-2-1

Scale = 1:6.6

Plate Offsets (X,Y)-- [2:0-2-0,Edge]									
LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15	TC 0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.01	Vert(CT)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-P						Weight: 6 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-4-2 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=2-3-0, 3=2-3-0
Max Horz 1=12(LC 10)
Max Uplift 1=4(LC 14), 3=4(LC 15)
Max Grav 1=54(LC 2), 3=54(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=19ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) Non Standard bearing condition. Review required.

November 5, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

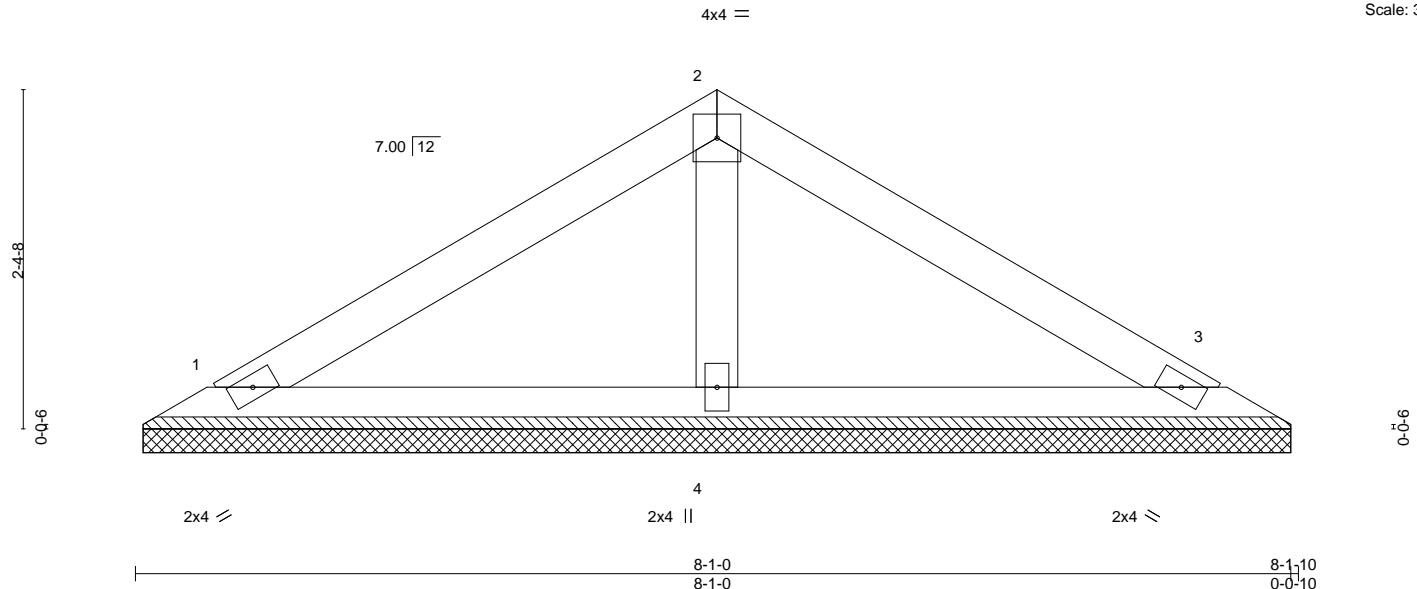
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VD3	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514617
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:55 2025 Page 1

ID: ZfilDAQRSztBHN?xTfO4zmc0I-ucYmkbutGFOHY5cpZnwDsomp5kJPDNflzP6oNMyMsEw

4-0-13
4-0-13

8-1-10
4-0-13

Scale: 3/4"=1'

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.17	Vert(LL) n/a - n/a 999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.09	Vert(CT) n/a - n/a 999		
TCDL 10.0	Lumber DOL 1.15	WB 0.02	Horz(CT) 0.00 3 n/a n/a		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-P			
BCDL 10.0	Code IRC2014/TPI2014			Weight: 27 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

(size) 1=8-0-5, 3=8-0-5, 4=8-0-5
Max Horz 1=49(LC 15)
Max Uplift 1=24(LC 16), 3=28(LC 17)
Max Grav 1=148(LC 2), 3=148(LC 2), 4=266(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

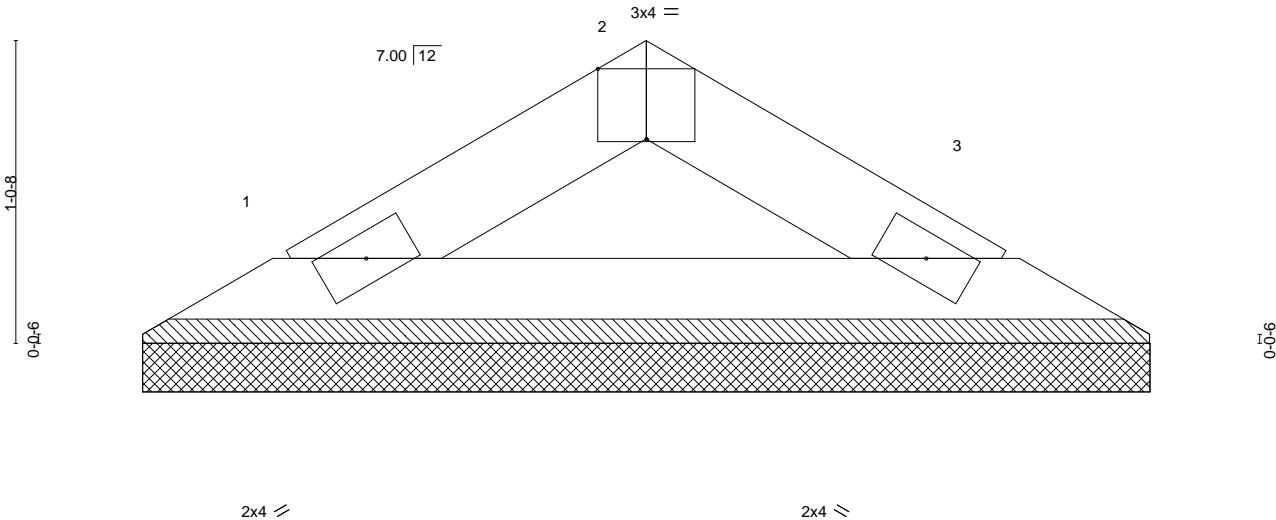
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 252121-A	Truss VD4	Truss Type VALLEY	Qty 1	Ply 1	Lot 12 West Pointe III	I77514618
-----------------	--------------	----------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Mon Nov 3 15:01:56 2025 Page 1


ID: _ZfilDAQRSztBHN?xTfO4zmc0I-Mo68yxvV0ZW8AFB?7VSSO?J0C7gGyqGRC3rLwoyMsEv

1-9-6
1-9-6

3-6-12

1-9-6

Scale = 1:7.9

2x4 ≈

2x4 ≈

3-6-2
3-6-2
3-6-12
0-0-10

Plate Offsets (X,Y)-- [2:0-2-0,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.05	Vert(CT)	n/a	-	n/a	999		
TCDL 10.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-P						Weight: 9 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-6-12 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=3-5-8, 3=3-5-8
Max Horz 1=18(LC 13)
Max Uplift 1=6(LC 16), 3=6(LC 17)
Max Grav 1=98(LC 2), 3=98(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=16ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

November 5, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252121-A Truss VD1 Truss Type ROOF SPECIAL Qty 1 Ply 1 Lot 12 West Pointe III Job Reference (optional) 25.3.0s Aug 20 2025 MiTek Industries, Inc. Wed Nov 5 10:54:40 2025 Page 1 ID: _ZfilDAQJRSztBHN?xTfO4zmc0I-DyObywHJHmTaVt?mDe1_RX?O6gk0soopK??faZyMR5z Comtech, Inc. Fayetteville, NC - 28314, 8-7-11 8-7-11 12-11-4 4-3-9 Scale = 1:30.7

4x4 =

5-0-8

5-0-6

7.00 12

2x4 //

2

7

1

8

9

3

10

4

3x4 =

2.66

6

2x4 //

5x5 =

7.00 12

3x4 //

6

2x4 //

5-0-6

0-0-10

8-7-2

8-6-8

12-11-4

4-4-2

Plate Offsets (X,Y) -- [4:0:4-6,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	2-0-0	TC 0.19	in (loc)	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	BC 0.21	Vert(LL) n/a - n/a 999		
TCDL 10.0	Lumber DOL 1.15	WB 0.15	Vert(CT) n/a - n/a 999		
BCLL 0.0 *	Rep Stress Incr YES	Matrix-S	Horz(CT) -0.00 5 n/a n/a		
BCDI 10.0	Code: IRC2015/TPI2014				

Weight: 51 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
 BOT CHORD 2x4 SP No.1
 OTHERS 2x4 SP No.2

CSI.
TC 0.1
BC 0.2
WB 0.1
Matrix-S

DEFL.
Vert(LL)
Vert(CT)
Horz(CT)

oc) /defl
- n/a
- n/a
5 n/a

PLATES **GRIP**
MT20 244/190

REACTIONS. (size) 1=8-7-2, 5=8-7-2, 6=8-7-2

Max Horz 1=164(LC 13)

Max Uplift 1=-11(LC 34), 5=-17(LC 17), 6=-97(LC 16)
Max Grav 1=89(LC 33), 5=539(LC 2), 6=403(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-326/179, 2-7=-304/240

WEBS 3-5=-382/328, 2-6=-327/218

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=14ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-6-12 to 6-3-2; Interior(1) 6-3-2 to 8-7-11, Exterior(2) 8-7-11 to 12-7-12 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 17 lb uplift at joint 5 and 97 lb uplift at joint 6.
- 8) Non Standard bearing condition. Review required.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

A circular seal with a blue dotted border. The top half of the border contains the text "NORTH CAROLINA" in blue, and the bottom half contains "STATE ENGINEER" in blue. The bottom half of the border is partially obscured by a red scribble. The center of the seal contains the word "SEAL" above the number "036322". Below the number, the name "ERIC A. GILBERT" is written in blue, and the word "ENGINEER" is written above it in blue. The entire seal is set against a white background.

November 5, 2025

!

WARNING: Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL7473 rev. 1/2/2023 BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com).

The logo for TRENCO Engineering. It features the word "TRENCO" in a large, bold, black, sans-serif font. The letter "T" has three horizontal blue bars of decreasing length from left to right. Above "TRENCO", the words "ENGINEERING BY" are written in a smaller, black, sans-serif font. Below "TRENCO", the text "A Mitek Affiliate" is written in a smaller, black, sans-serif font.

Job 252121-A	Truss VD2	Truss Type ROOF SPECIAL	Qty 1	Ply 1	Lot 12 West Pointe III	I77514620
-----------------	--------------	----------------------------	----------	----------	------------------------	-----------

Comtech, Inc., Fayetteville, NC - 28314,

25.3.0 s Aug 20 2025 MiTek Industries, Inc. Wed Nov 5 10:55:30 2025 Page 1
ID: _ZfiIDAQJRSztBHN?xTfO4zmc0l-1aQVS0uf_qtPtgaqZXuAZYSfUaquaQHAqm6lLgyMR5B

6-4-4
6-4-4

10-7-13
4-3-9

Scale = 1:23.5

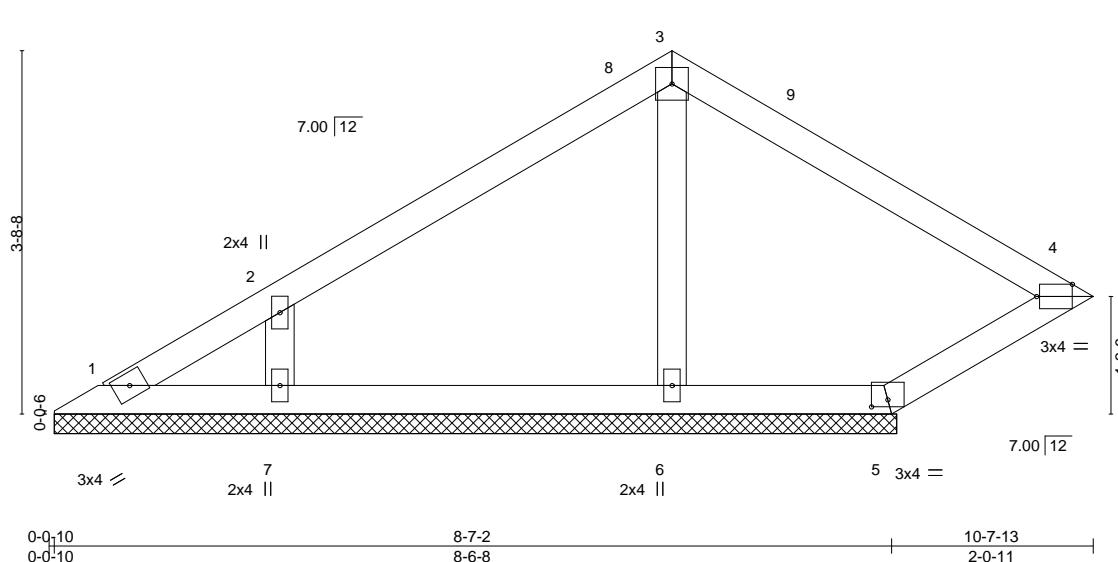


Plate Offsets (X,Y)- [4:0-4-6,Edge], [5:0-2-0,0-0-14]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 2-0-0	TC 0.17	Vert(LL) n/a - n/a 999	MT20	244/190
Snow (Pf/Pg) 15.4/20.0	Lumber DOL 1.15	BC 0.07	Vert(CT) n/a - n/a 999		
TCDL 10.0	Rep Stress Incr YES	WB 0.07	Horz(CT) -0.00 5 n/a n/a		
BCLL 0.0 *	Code IRC2015/TPI2014	Matrix-S			
BCDL 10.0				Weight: 39 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

All bearings 8-7-2.
(lb) - Max Horz 1=104(LC 13)
Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6, 7
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=409(LC 2), 7=314(LC 29)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 3-6=344/225, 2-7=-263/191

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCOL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp C; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6, 7.
- 8) Non Standard bearing condition. Review required.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 5, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
Engineering by
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

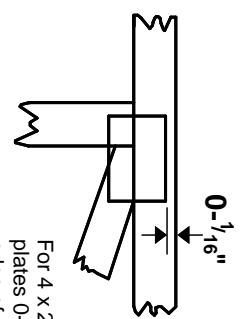

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

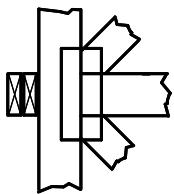
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE


4 x 4
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

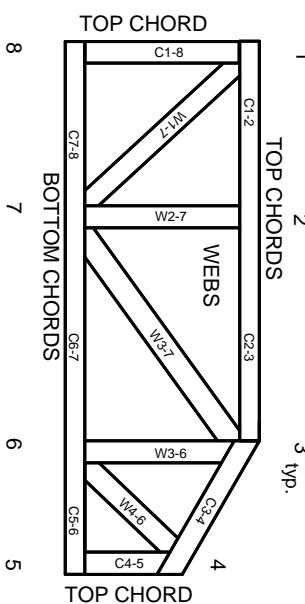
BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-22: Design Standard for Bracing.


BCSI: Building Component Safety Information,

Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal

Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek
ENGINEERING BY
TRENGO
A MiTek Affiliate