
### Floor Truss Plan



### Roof Truss Plan



▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

Roof Area = 2067.36 sq.ft.
Ridge Line = 41 ft.
Hip Line = 0 ft.
Horiz. OH = 155.88 ft.
Raked OH = 179.76 ft.
Decking = 71 sheets

ROOF & FLOOR TRUSSES & BEAMS Reilly Road Industrial Park Fayetteville, N.C. 28309

Phone: (910) 864-8787
Fax: (910) 864-4444

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building desig the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsib

design sheets for each truss design identified on the placement drawing. The building designer is responsib for temporary and permanent bracing of the roof and fl system and for the overall structure. The design, of the truss support structure including headers, beall and columns is the responsibility of the building design for general guidance regarding bracing, consult BCSI-and BCSI-B3 provided with the truss delivery package online @ sbcindustry.com

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the

squirements) to determine the minimum foundatize and number of wood studs required to support pactions greater than 3000# but not greater than 5000#. A registered design professional shall be etained to design the support system for any eaction that exceeds those specified in the attact ables. A registered design professional shall be etained to design the support system for all eactions that exceed 15000#.

09/15/25

LOAD CHART FOR JACK STUDS

(BASED ON TABLES R502.5(1) & (b))
NUMBER OF JACK STUDS REQUIRED @ EA END OF

3400 1 6800 2 10200 3

13600 4 17000 5

Signature Sales Area

Sales Area



Trenco 818 Soundside Rd Edenton, NC 27932

Re: 251297-B

Lot 57 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I76971635 thru I76971645

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844



October 9,2025

Gilbert, Eric

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
| 054007 B | F00   |            |     |     | 176971635                |
| 251297-B | F00   | Floor      | 1   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:38 2025 Page 1

ID:\_09zqKsf9De2KkT15adaCvyCKWg-Uf9PWgjqR7ouWKzb?5s8cCSrYLoVqIMdkyVxDOyV593

Structural wood sheathing directly applied or 6-0-0 oc purlins,

0-1-8 1-0-0 1-3-0 1-11-0  $H \vdash$ 

Scale = 1:24.3

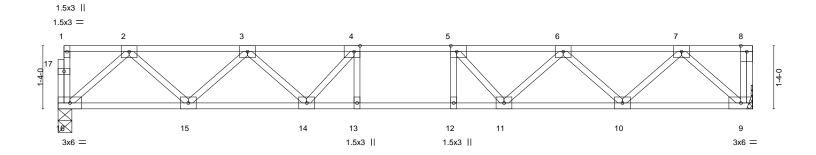



Plate Offsets (X,Y)--[4:0-1-8,Edge], [5:0-1-8,Edge] **PLATES** SPACING-GRIP LOADING (psf) CSI. DEFL. in (loc) I/defl L/d **TCLL** 40.0 Plate Grip DOL 1.00 TC 0.32 Vert(LL) -0.11 11-12 >999 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.65 Vert(CT) -0.15 11-12 >999 360 **BCLL** 0.0 Rep Stress Incr YES WB 0.36 0.03 Horz(CT) n/a n/a **BCDL** Code IRC2021/TPI2014 FT = 20%F. 11%E 5.0 Matrix-S Weight: 77 lb

14-8-0

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 16=0-3-8, 9=Mechanical Max Grav 16=787(LC 1), 9=793(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1383/0, 3-4=-2143/0, 4-5=-2341/0, 5-6=-2143/0, 6-7=-1383/0

BOT CHORD  $15 - 16 = 0/842,\ 14 - 15 = 0/1893,\ 13 - 14 = 0/2341,\ 12 - 13 = 0/2341,\ 11 - 12 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 12 - 13 = 0/2341,\ 11 - 12 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 10 - 11 = 0/1893,\ 13 - 14 = 0/2341,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/1893,\ 10 - 11 = 0/$ 

9-10=0/843

2-16=-1119/0, 2-15=0/752, 3-15=-710/0, 3-14=0/414, 7-9=-1122/0, 7-10=0/752, **WEBS** 

6-10=-710/0, 6-11=0/414, 5-11=-471/0, 4-14=-471/0

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.





| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       |            |     |     | 176971636                |
| 251297-B | F01   | Floor      | 4   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Comtech, Inc, Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:39 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-zsjnj0jSCRwl8UYnYoON9Q\_\_Dl5MZkNnzcFUlqyV592

Structural wood sheathing directly applied or 6-0-0 oc purlins,





Scale = 1:33.0




Plate Offsets (X,Y)--[6:0-1-8,Edge], [7:0-1-8,Edge] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES GRIP** 244/190 TCLL 40.0 Plate Grip DOL 1.00 TC 0.39 Vert(LL) -0.26 19 >916 480 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.86 Vert(CT) -0.35 18-19 >665 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.44 0.07 Horz(CT) 14 n/a n/a BCDL Code IRC2021/TPI2014 Weight: 105 lb 5.0 FT = 20%F, 11%E Matrix-S

19-9-8

LUMBER-**BRACING-**TOP CHORD

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 24=0-3-8, 14=Mechanical Max Grav 24=854(LC 1), 14=859(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1591/0, 3-4=-2703/0, 4-5=-2703/0, 5-6=-3298/0, 6-7=-3448/0, 7-8=-3304/0,

8-10=-2705/0, 10-11=-2705/0, 11-12=-1591/0

BOT CHORD 23-24=0/931, 22-23=0/2228, 20-22=0/3096, 19-20=0/3448, 18-19=0/3448, 17-18=0/3448,

16-17=0/3089, 15-16=0/2228, 14-15=0/931

2-24=-1237/0, 2-23=0/919, 3-23=-886/0, 3-22=0/645, 12-14=-1240/0, 12-15=0/918, WFBS

 $11\text{-}15\text{=-}886/0,\ 11\text{-}16\text{=}0/649,\ 8\text{-}16\text{=-}522/0,\ 8\text{-}17\text{=}0/426,\ 5\text{-}22\text{=-}535/0,\ 5\text{-}20\text{=}0/401,}$ 

6-20=-470/86, 7-17=-497/90

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.





| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       | _          |     |     | 176971637                |
| 251297-B | F02   | Floor      | 4   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Comtech, Inc. Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:39 2025 Page 1  $ID:\_09zqKsf9De2KkT15adaCvyCKWg-zsjnj0jSCRwl8UYnYoON9Q\_\_0l54ZkEnzcFUlqyV592$ 

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8 H | 1-3-0

1-0-0 2-1-0 1-0-0 0-1-8 Scale = 1:33.1

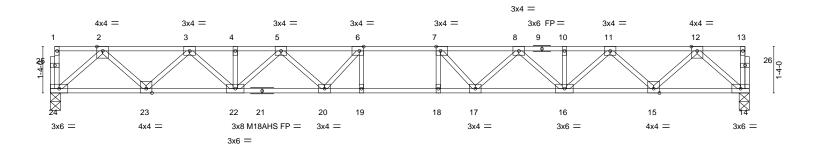



Plate Offsets (X,Y)--[6:0-1-8,Edge], [7:0-1-8,Edge] LOADING (psf) SPACING-CSI. DEFL. in (loc) L/d **PLATES GRIP** -0.27 18-19 TCLL 40.0 Plate Grip DOL 1.00 TC 0.40 Vert(LL) >884 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.88 Vert(CT) -0.37 18-19 >641 360 M18AHS 186/179 **BCLL** Rep Stress Incr YES WB 0.45 0.07 0.0 Horz(CT) 14 n/a n/a BCDL Code IRC2021/TPI2014 Weight: 106 lb FT = 20%F, 11%E 5.0 Matrix-S

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 24=0-3-8, 14=0-3-8 Max Grav 24=867(LC 1), 14=867(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1619/0, 3-4=-2758/0, 4-5=-2758/0, 5-6=-3380/0, 6-7=-3552/0, 7-8=-3380/0,

8-10=-2758/0, 10-11=-2758/0, 11-12=-1619/0

BOT CHORD  $23-24=0/945,\ 22-23=0/2269,\ 20-22=0/3163,\ 19-20=0/3552,\ 18-19=0/3552,\ 17-18=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3552,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20=0/3522,\ 19-20$ 

16-17=0/3163, 15-16=0/2269, 14-15=0/945

2-24=-1256/0, 2-23=0/937, 3-23=-905/0, 3-22=0/665, 5-22=-550/0, 5-20=0/423, WFBS

 $12 - 14 = -1256/0,\ 12 - 15 = 0/937,\ 11 - 15 = -905/0,\ 11 - 16 = 0/665,\ 8 - 16 = -550/0,\ 8 - 17 = 0/423,$ 7-17=-506/76, 6-20=-506/76

NOTES-

1) Unbalanced floor live loads have been considered for this design.

All plates are MT20 plates unless otherwise indicated.
 All plates are 1.5x3 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.





Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971638 251297-B F03 Floor Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

1-3-0

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:39 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-zsjnj0jSCRwl8UYnYoON9Q\_\_Dl5MZkNnzcFUlqyV592

0-9-8 2-0-0 1-0-0 0-11-8

Scale = 1:33.0

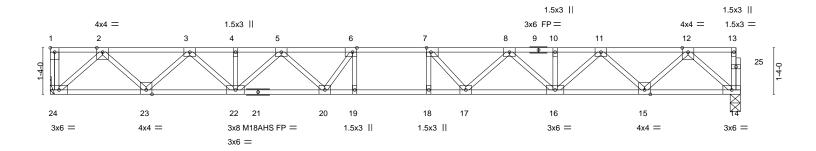



Plate Offsets (X,Y)--[1:Edge,0-1-8], [6:0-1-8,Edge], [7:0-1-8,Edge] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES GRIP** TCLL 40.0 Plate Grip DOL 1.00 TC 0.39 Vert(LL) -0.26 18 >916 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.86 Vert(CT) -0.35 18-19 >665 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.44 0.07 Horz(CT) 14 n/a n/a Code IRC2021/TPI2014 Weight: 105 lb FT = 20%F. 11%E **BCDL** 5.0 Matrix-S

19-9-8

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat)

except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 24=Mechanical, 14=0-3-8 Max Grav 24=859(LC 1), 14=854(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1591/0, 3-4=-2705/0, 4-5=-2705/0, 5-6=-3304/0, 6-7=-3448/0, 7-8=-3298/0,

8-10=-2703/0, 10-11=-2703/0, 11-12=-1591/0 BOT CHORD 23-24=0/931, 22-23=0/2228, 20-22=0/3089, 19-20=0/3448, 18-19=0/3448, 17-18=0/3448,

16-17=0/3096, 15-16=0/2228, 14-15=0/931

2-24=-1240/0, 2-23=0/918, 3-23=-886/0, 3-22=0/649, 5-22=-522/0, 5-20=0/426, WFBS

 $12 - 14 = -1237/0, \ 12 - 15 = 0/919, \ 11 - 15 = -886/0, \ 11 - 16 = 0/645, \ 8 - 16 = -535/0, \ 8 - 17 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 - 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \ 12 = 0/401, \$ 

7-17=-470/86, 6-20=-497/90

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
| 251297-B | F08   | Floor      | 2   | ,   | 176971639                |
| 231297-B | 1706  | FIOOI      | 3   | '   | Job Reference (optional) |

Comtech, Inc, Fayetteville, NC - 28314,

1-3-0

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:42 2025 Page 1

ID:\_09zqKsf9De2KkT15adaCvyCKWg-NRPwL1mLVMIJ?xHMExx4m2cW6y8qm5FDfaT8M9yV59?

0-9-8 1-11-0 0-9-8

Scale: 3/8"=1"

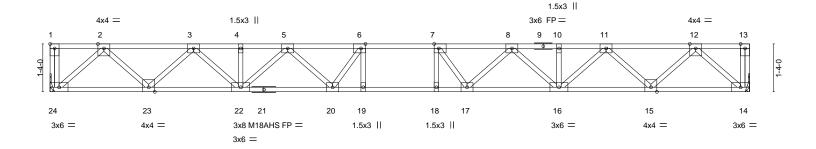



Plate Offsets (X,Y)--[1:Edge,0-1-8], [6:0-1-8,Edge], [7:0-1-8,Edge] SPACING-**PLATES GRIP** LOADING (psf) CSI. DEFL. in (loc) I/defl L/d 244/190 TCLL 40.0 Plate Grip DOL 1.00 TC 0.35 Vert(LL) -0.24 18-19 >963 480 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.81 Vert(CT) -0.33 18-19 >698 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.43 0.06 Horz(CT) 14 n/a n/a Code IRC2021/TPI2014 FT = 20%F. 11%E **BCDL** 5.0 Weight: 104 lb Matrix-S

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD 2x4 SP No.1(flat) except end verticals.

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 24=Mechanical, 14=Mechanical Max Grav 24=846(LC 1), 14=846(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1564/0, 3-4=-2650/0, 4-5=-2650/0, 5-6=-3221/0, 6-7=-3347/0, 7-8=-3221/0,

8-10=-2650/0, 10-11=-2650/0, 11-12=-1564/0 BOT CHORD 23-24=0/917, 22-23=0/2187, 20-22=0/3022, 19-20=0/3347, 18-19=0/3347, 17-18=0/3347,

16-17=0/3022, 15-16=0/2187, 14-15=0/917

2-24=-1220/0, 2-23=0/900, 3-23=-867/0, 3-22=0/629, 5-22=-506/0, 5-20=0/404, WFBS

 $12 - 14 = -1220/0,\ 12 - 15 = 0/900,\ 11 - 15 = -867/0,\ 11 - 16 = 0/629,\ 8 - 16 = -506/0,\ 8 - 17 = 0/404,$ 

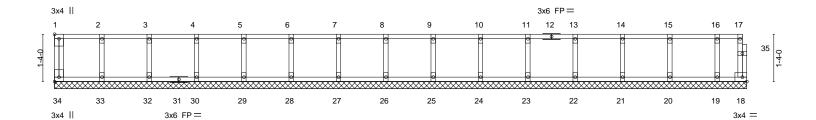
7-17=-461/100, 6-20=-461/100

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



October 9,2025




| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       |            |     |     | I76971640                |
| 251297-B | FKW08 | GABLE      | 1   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Comtech, Inc, Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:43 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-rdzIZNnzGgQAd5sYneSJJG9IXMgdVeoNuEDiubyV59\_

Scale = 1:32.5



| 1-4-0            | 1 2                                                 | 2-8-0   4-0-0   5 | -4-0 <sub>1</sub> 6-8- | 0   8-0-0 | )   9-4-( | 0   10-8-0 | 12-0-0 | 13-4-0 | 0 14-8-0   | 16-0-0 17-4-0 | 18-8-0   19-6-0 |
|------------------|-----------------------------------------------------|-------------------|------------------------|-----------|-----------|------------|--------|--------|------------|---------------|-----------------|
| 1-4-0            | ١,                                                  | 1-4-0 1-4-0 1     | -4-0 1-4-              | ) 1-4-0   | ) 1-4-(   | 0 1-4-0    | 1-4-0  | 1-4-0  | 1-4-0      | 1-4-0 1-4-0   | 1-4-0 0-10-0    |
| Plate Offsets () | Plate Offsets (X,Y) [1:Edge,0-1-8], [34:Edge,0-1-8] |                   |                        |           |           |            |        |        |            |               |                 |
|                  |                                                     |                   |                        |           |           |            |        |        |            |               |                 |
| LOADING (psi     | )                                                   | SPACING-          | 1-7-3                  | CSI       |           | DEFL.      | in     | (loc)  | I/defl L/d | PLATES        | GRIP            |
| TCLL 40.0        | )                                                   | Plate Grip DOL    | 1.00                   | TC        | 0.05      | Vert(LL)   | n/a    | -      | n/a 999    | MT20          | 244/190         |
| TCDL 10.0        | )                                                   | Lumber DOL        | 1.00                   | BC        | 0.01      | Vert(CT)   | n/a    | -      | n/a 999    |               |                 |
| BCLL 0.0         | )                                                   | Rep Stress Incr   | YES                    | WB        | 0.03      | Horz(CT)   | 0.00   | 18     | n/a n/a    |               |                 |
| BCDL 5.0         | )                                                   | Code IRC2021/T    | PI2014                 | Mat       | rix-R     |            |        |        |            | Weight: 87 lb | FT = 20%F, 11%E |
|                  |                                                     |                   |                        |           |           |            |        |        |            |               |                 |
| LUMBED           |                                                     |                   |                        |           |           | DDACING    |        |        |            |               |                 |

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD 2x4 SP No.1(flat) except end verticals. **WEBS** 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3(flat)

REACTIONS. All bearings 19-6-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 34, 18, 33, 32, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20,

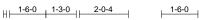
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

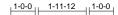
### NOTES-

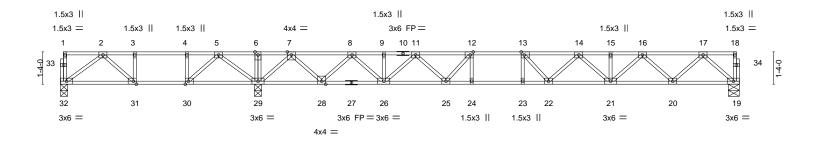
- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

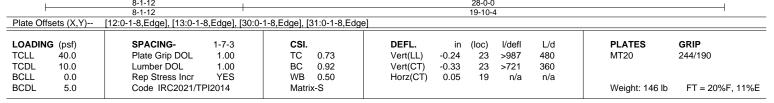





| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       |            |     |     | I76971641                |
| 251297-B | F06   | Floor      | 9   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |


Comtech, Inc. Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:41 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-vErY8ilik2ASNniAgDQrEr4FIYmz1dt4QwkbpjyV590


Structural wood sheathing directly applied or 6-0-0 oc purlins,

0-1-8









**BRACING-**

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat) TOP CHORD

except end verticals. **BOT CHORD** 

Rigid ceiling directly applied or 2-2-0 oc bracing.

REACTIONS. (size) 32=0-3-8, 29=0-3-8, 19=0-5-8

Max Uplift 32=-77(LC 4)

Max Grav 32=290(LC 3), 29=1474(LC 1), 19=797(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-376/411, 3-4=-376/411, 4-5=-376/411, 5-6=0/1270, 6-7=0/1270, 7-8=-693/0, TOP CHORD

8-9=-1961/0, 9-11=-1961/0, 11-12=-2712/0, 12-13=-2988/0, 13-14=-2931/0,

14-15=-2457/0, 15-16=-2457/0, 16-17=-1469/0

31-32=-139/305, 30-31=-411/376, 29-30=-804/83, 28-29=-259/0, 26-28=0/1407, **BOT CHORD** 

25-26=0/2420, 24-25=0/2988, 23-24=0/2988, 22-23=0/2988, 21-22=0/2800, 20-21=0/2047,

2-32=-377/172, 2-31=-371/97, 5-29=-762/0, 5-30=0/728, 4-30=-377/0, 7-29=-1344/0,

7-28=0/1052, 8-28=-1014/0, 8-26=0/775, 17-19=-1151/0, 17-20=0/838, 16-20=-804/0, 16-21=0/558, 14-21=-466/0, 14-22=0/304, 11-26=-640/0, 11-25=0/483, 12-25=-595/0,

13-22=-330/181

### NOTES-

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 32.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

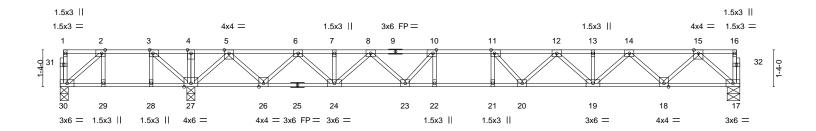


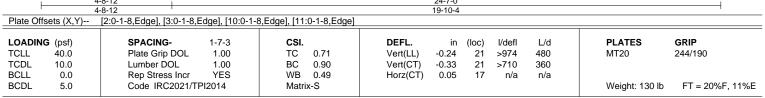
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       |            |     |     | 176971642                |
| 251297-B | F05   | Floor      | 1   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |


Comtech, Inc. Fayetteville, NC - 28314,


25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:41 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-vErY8ilik2ASNniAgDQrEr4FfYmD1d74QwkbpjyV590

0-1-8 H 1-3-0 1-7-4

1-0-0 1-11-12 1-0-0

0-1-8 Scale = 1:41.7





LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) BOT CHORD WEBS 2x4 SP No.3(flat)

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 29-30,28-29,27-28.

REACTIONS. (size) 30=0-3-8, 27=0-3-8, 17=0-5-8

Max Uplift 30=-186(LC 4)

Max Grav 30=130(LC 3), 27=1369(LC 1), 17=809(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-53/405, 3-4=0/980, 4-5=0/980, 5-6=-854/0, 6-7=-2096/0, 7-8=-2096/0,

8-10=-2822/0, 10-11=-3079/0, 11-12=-3003/0, 12-13=-2506/0, 13-14=-2506/0,

14-15=-1493/0

**BOT CHORD** 29-30=-405/53, 28-29=-405/53, 27-28=-405/53, 24-26=0/1551, 23-24=0/2544,

22-23=0/3079, 21-22=0/3079, 20-21=0/3079, 19-20=0/2859, 18-19=0/2083, 17-18=0/879 **WEBS** 2-30=-65/535, 3-27=-865/0, 5-27=-1369/0, 5-26=0/1019, 6-26=-979/0, 6-24=0/748,

15-17=-1168/0, 15-18=0/854, 14-18=-820/0, 14-19=0/575, 12-19=-480/0, 12-20=0/329,

8-24=-616/0, 8-23=0/465, 10-23=-569/0, 11-20=-368/154

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 30.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

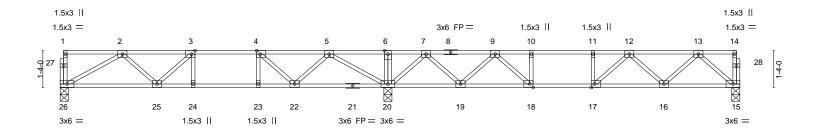




| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       |            |     |     | I76971643                |
| 251297-B | F04   | Floor      | 3   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:40 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-R2H9wMk4zl2cme7z6WvchdXA29XTIDGwCG\_2HHyV591


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

6-0-0 oc bracing: 20-22,19-20.





|                                            | 11-10-4<br>11-10-4                                                     |                                       | 24-7-0<br>12-8-12                                                                                                                                                                                                                                                                                             |    |  |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Plate Offsets (X,Y)                        | [3:0-1-8,Edge], [4:0-1-8,Edge], [17:0-1-8                              | 8,Edge], [18:0-1-8,Edge]              |                                                                                                                                                                                                                                                                                                               |    |  |  |  |  |  |
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 | SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES | CSI.<br>TC 0.38<br>BC 0.49<br>WB 0.27 | DEFL.         in (loc)         l/defl         L/d         PLATES         GRIP           Vert(LL)         -0.08 16-17         >999         480         MT20         244/190           Vert(CT)         -0.10 16-17         >999         360           Horz(CT)         0.02         15         n/a         n/a |    |  |  |  |  |  |
| BCDL 5.0                                   | Code IRC2021/TPI2014                                                   | Matrix-S                              | Weight: 125 lb FT = 20%F, 11                                                                                                                                                                                                                                                                                  | %E |  |  |  |  |  |

TOP CHORD

**BOT CHORD** 

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

(size) 26=0-3-8, 20=0-3-8, 15=0-3-8

Max Grav 26=474(LC 10), 20=1191(LC 1), 15=518(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-905/0, 3-4=-1055/0, 4-5=-755/16, 5-6=0/720, 6-7=0/718, 7-9=-667/34, TOP CHORD

9-10=-1256/0, 10-11=-1256/0, 11-12=-1256/0, 12-13=-867/0

25-26=0/712, 24-25=0/1055, 23-24=0/1055, 22-23=0/1055, 20-22=-143/475, BOT CHORD

 $19\text{-}20\text{=-}166/300,\ 18\text{-}19\text{=-}0/1027,\ 17\text{-}18\text{=-}0/1256,\ 16\text{-}17\text{=-}0/1149,\ 15\text{-}16\text{=-}0/551}$ 

2-26=-816/0, 5-20=-973/0, 5-22=0/452, 4-22=-507/0, 2-25=0/267, 7-20=-854/0, WFBS

7-19=0/564, 9-19=-568/0, 9-18=0/466, 13-15=-732/0, 13-16=0/439, 12-16=-393/0

### NOTES-

REACTIONS.

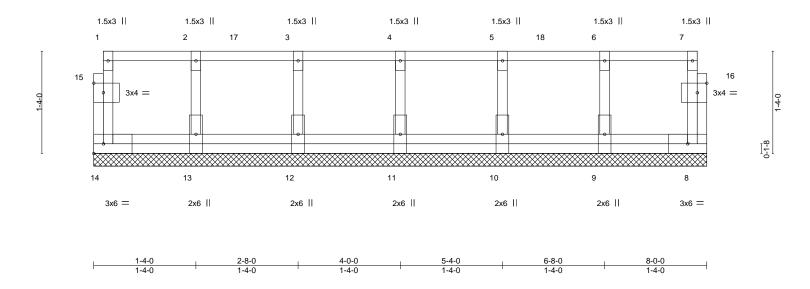
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.





| Job      | Truss   | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|---------|------------|-----|-----|--------------------------|
|          | =10.10= | 0.5.5      | l.  |     | 176971644                |
| 251297-B | FKW07   | GABLE      | 1   | 1   |                          |
|          |         |            |     |     | Job Reference (optional) |

Comtech, Inc,


0-1-8

Fayetteville, NC - 28314,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:43 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-rdzIZNnzGgQAd5sYneSJJG9kYMgiVeaNuEDiubyV59\_

0-1-8

Scale = 1:15.0



| Plate Off | Plate Offsets (X,Y) [15:0-1-8,0-1-8], [16:0-1-8,0-1-8] |                 |        |        |      |          |      |       |        |     |               |                 |
|-----------|--------------------------------------------------------|-----------------|--------|--------|------|----------|------|-------|--------|-----|---------------|-----------------|
| LOADIN    | G (psf)                                                | SPACING-        | 1-7-3  | CSI.   |      | DEFL.    | in   | (loc) | I/defl | L/d | PLATES        | GRIP            |
| TCLL      | 40.0                                                   | Plate Grip DOL  | 1.00   | TC     | 0.11 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190         |
| TCDL      | 10.0                                                   | Lumber DOL      | 1.00   | BC     | 0.00 | Vert(CT) | n/a  | -     | n/a    | 999 |               |                 |
| BCLL      | 0.0                                                    | Rep Stress Incr | YES    | WB     | 0.04 | Horz(CT) | 0.00 | 8     | n/a    | n/a |               |                 |
| BCDL      | 5.0                                                    | Code IRC2021/TI | PI2014 | Matrix | κ-R  |          |      |       |        |     | Weight: 48 lb | FT = 20%F, 11%E |

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat)

**WEBS** 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat) **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Plates checked for a plus or minus 1 degree rotation about its center.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

### LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 8-14=-8, 1-7=-80

Concentrated Loads (lb)

Vert: 7=-99 4=-90 17=-90 18=-90



October 9,2025

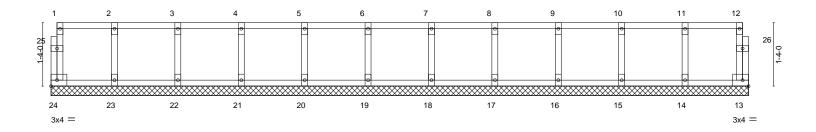


| Job      | Truss | Truss Type | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|------------|-----|-----|--------------------------|
|          |       | 0.5.5      |     |     | 176971645                |
| 251297-B | FKW00 | GABLE      | 1   | 1   |                          |
|          |       |            |     |     | Job Reference (optional) |

Fayetteville, NC - 28314, Comtech, Inc,

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:31:42 2025 Page 1

ID:\_09zqKsf9De2KkT15adaCvyCKWg-NRPwL1mLVMIJ?xHMExx4m2cbcyKQmBTDfaT8M9yV59?


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0118

0<sub>1</sub>1<sub>1</sub>8 Scale: 1/2"=1



| 1-4-0                                               |                                                                                             | I-0 6-8-0<br>I-0 1-4-0                | 8-0-0<br>1-4-0                            | 9-4-0<br>1-4-0              | 10-8-0<br>1-4-0    | 12-0-0<br>1-4-0          | 13-4-0<br>1-4-0                 | 14-8-0                                 |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------|--------------------|--------------------------|---------------------------------|----------------------------------------|
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 | SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014 | CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in (k<br>n/a<br>n/a<br>0.00 | - n/a 9<br>- n/a 9 | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 65 lb | <b>GRIP</b> 244/190<br>FT = 20%F, 11%E |

TOP CHORD

**BOT CHORD** 

LUMBER-BRACING-

2x4 SP No.1(flat) TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.3(flat) **WEBS** 

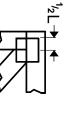
2x4 SP No.3(flat)

REACTIONS. All bearings 14-8-0.

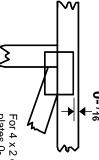
(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

**OTHERS** 


- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.






### Symbols

## PLATE LOCATION AND ORIENTATION



offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

\* Plate location details available in MiTek software or upon request

### PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

## LATERAL BRACING LOCATION



by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

### **BEARING**



Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

### Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

# Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

# Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

## MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

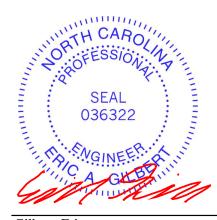
œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.



Trenco 818 Soundside Rd Edenton, NC 27932

Re: 251297-A


Lot 57 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I76971701 thru I76971721

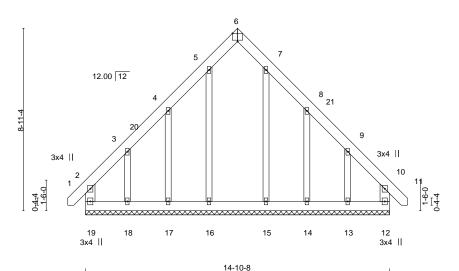
My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844



October 9,2025

Gilbert, Eric


**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971701 251297-A B1GE **GABLE** Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:26 2025 Page 1

ID:\_09zqKsf9De2KkT15adaCvyCKWg-rK3rNjjD5lrKMnq\_vESbCaR5qhKR444inQ8TucyV58J -0-10-8 0-10-8 14-10-8 7-5-4 7-5-4

> 4x6 = Scale = 1:56.4



14-10-8 Plate Offsets (X,Y)--[6:0-3-0,Edge] SPACING-(loc) LOADING (psf) CSI. DEFL. in I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) -0.00 10 120 244/190 n/r MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) -0.00 10 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.11 Horz(CT) 0.00 12 n/a n/a Code IRC2021/TPI2014 FT = 20% **BCDL** 10.0 Weight: 136 lb Matrix-R

LUMBER-**BRACING-**

2x6 SP No.1 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x6 SP No.1 except end verticals. WEBS 2x6 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 14-10-8. Max Horz 19=-296(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 19=-125(LC 10), 12=-102(LC 11), 17=-149(LC 12),

18=-315(LC 12), 14=-152(LC 13), 13=-310(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 17, 14 except 19=284(LC 20), 12=269(LC 22), 16=286(LC 19),

18=298(LC 19), 15=274(LC 21), 13=288(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-259/183, 9-10=-251/161 **BOT CHORD** 

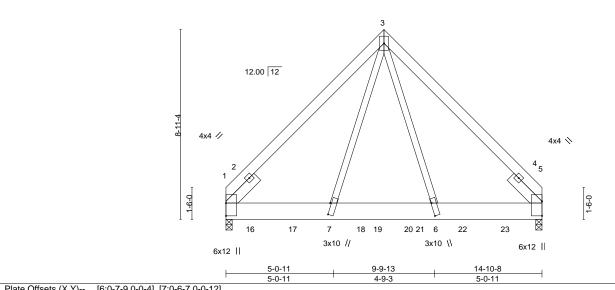
18-19=-146/262, 17-18=-145/264, 16-17=-145/265, 15-16=-145/264, 14-15=-145/265,

13-14=-145/264, 12-13=-144/262

WEBS 4-17=-176/274, 3-18=-191/315, 8-14=-175/274, 9-13=-190/316

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-8-12 to 3-8-1, Exterior(2N) 3-8-1 to 7-5-4, Corner(3R) 7-5-4 to 11-10-1, Exterior(2N) 11-10-1 to 15-7-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 19, 102 lb uplift at joint 12, 149 lb uplift at joint 17, 315 lb uplift at joint 18, 152 lb uplift at joint 14 and 310 lb uplift at joint 13.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971702 251297-A B2GRD COMMON GIRDER Job Reference (optional) 25.2.0 s Jul 10 2025 MTek Industries, Inc. Thu Oct 9 16:39:39 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-sA3oJMgn87WmfhM4Rbtf0et?wE331o2RLHWub0yV51Y Comtech, Inc., Fayetteville, NC 28309 7-5-4 14-10-8 7-5-4 7-5-4 Scale = 1:54.2 5x8 ||



| Tidle Office | 1 late Offsets (X, 1) [0.0 1 0,0 0 4], [1.0 0 1,0 0 12] |                 |       |       |      |          |       |       |        |     |                |          |
|--------------|---------------------------------------------------------|-----------------|-------|-------|------|----------|-------|-------|--------|-----|----------------|----------|
| LOADING      | (psf)                                                   | SPACING-        | 2-0-0 | CSI.  |      | DEFL.    | in    | (loc) | I/defl | L/d | PLATES         | GRIP     |
| TCLL         | 20.0                                                    | Plate Grip DOL  | 1.15  | TC    | 0.46 | Vert(LL) | -0.07 | 6-7   | >999   | 360 | MT20           | 244/190  |
| TCDL         | 10.0                                                    | Lumber DOL      | 1.15  | BC    | 0.26 | Vert(CT) | -0.13 | 6-7   | >999   | 240 |                |          |
| BCLL         | 0.0 *                                                   | Rep Stress Incr | NO    | WB    | 0.58 | Horz(CT) | 0.03  | 5     | n/a    | n/a |                |          |
| BCDL         | 10.0                                                    | Code IRC2021/TP | 12014 | Matri | x-MS | Wind(LL) | 0.04  | 6-7   | >999   | 240 | Weight: 285 lb | FT = 20% |

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x10 SP 2400F 2.0E

**WEBS** 2x4 SP No.2 **SLIDER** Left 2x6 SP No.2 1-11-0, Right 2x6 SP No.2 1-11-0

REACTIONS. (lb/size) 1=6573/0-3-8, 5=6024/0-3-8

Max Horz 1=-178(LC 27)

Max Uplift 1=-426(LC 9), 5=-389(LC 8) Max Grav 1=7492(LC 2), 5=6863(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-4675/350, 2-3=-6526/453, 3-4=-6469/449, 4-5=-4604/346

**BOT CHORD** 1-16=-275/4492, 16-17=-275/4492, 7-17=-275/4492, 7-18=-184/3134, 18-19=-184/3134,

19-20=-184/3134, 20-21=-184/3134, 6-21=-184/3134, 6-22=-221/4451, 22-23=-221/4451,

5-23=-221/4451

WEBS 3-6=-303/4552, 3-7=-311/4694

### NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-5-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 426 lb uplift at joint 1 and 389 lb uplift at joint 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1865 lb down and 118 lb up at 1-1-4, 1865 lb down and 118 lb up at 3-1-4, 1865 lb down and 118 lb up at 5-1-4, 1839 lb down and 118 lb up at 7-1-4, 1859 lb down and 118 lb up at 9-1-4, and 1865 lb down and 118 lb up at 11-1-4, and 1865 lb down and 118 lb up at 13-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

October 9,2025



Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

| Job      | Truss | Truss Type    | Qty | Ply | Lot 57 Duncan's Creek    |
|----------|-------|---------------|-----|-----|--------------------------|
|          |       |               |     |     | 176971702                |
| 251297-A | B2GRD | COMMON GIRDER | 1   | 2   | Job Reference (optional) |

Comtech, Inc., Fayetteville, NC 28309

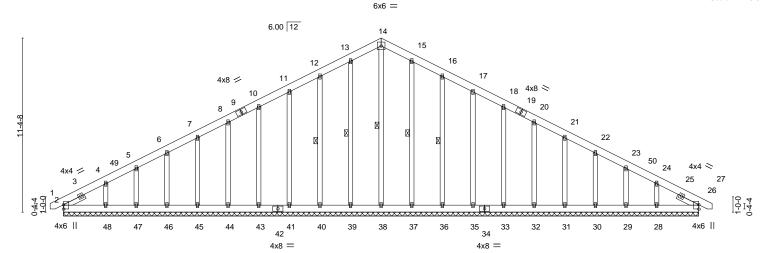
25.2.0 s Jul 10 2025 MTek Industries, Inc. Thu Oct 9 16:39:39 2025 Page 2 ID:\_09zqKsf9De2KkT15adaCvyCKWg-sA3oJMgn87WmfhM4Rbtf0et?wE331o2RLHWub0yV51Y

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 8-12=-20

Concentrated Loads (lb)

Vert: 7=-1630(B) 16=-1630(B) 17=-1630(B) 19=-1630(B) 21=-1630(B) 22=-1630(B) 23=-1630(B)




Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971703 251297-A A1GE **GABLE** Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:24 2025 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

ID:\_09zqKsf9De2KkT15adaCvyCKWg-uyx5y2hzZ8bc7ThcnpP769Mm0ufqcAOPJ6eNqjyV58L 42-4-8 0-10-8

20-9-0

Scale = 1:75.3



LOADING (psf) SPACING-CSI. DEFL. L/d **PLATES GRIP** 2-0-0 (loc) I/defl 20.0 Vert(LL) 0.00 120 244/190 **TCLL** Plate Grip DOL 1.15 TC 0.06 26 n/r MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.03 Vert(CT) 0.00 26 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.01 26 n/a n/a Code IRC2021/TPI2014 BCDL 10.0 Matrix-S Weight: 377 lb FT = 20%

41-6-0

LUMBER-BRACING-

20-9-0

TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x6 SP No.1 BOT CHORD 2x6 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.2 **OTHERS WEBS** 1 Row at midpt 14-38, 13-39, 12-40, 15-37, 16-36 **SLIDER** Left 2x4 SP No.2 1-6-4, Right 2x4 SP No.2 1-6-4

REACTIONS. All bearings 41-6-0.

-0-10-8 0-10-8

Max Horz 2=217(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 39, 40, 41, 43, 44, 45, 46, 47, 37, 36, 35, 33, 32, 31, 30,

29 except 48=-169(LC 12), 28=-148(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 26, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 37, 36, 35,

33, 32, 31, 30, 29, 28

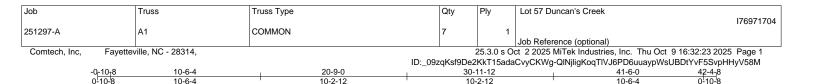
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-295/98, 11-12=-116/294, 12-13=-139/358, 13-14=-150/394, 14-15=-150/394,

15-16=-139/358, 16-17=-116/294

### NOTES-

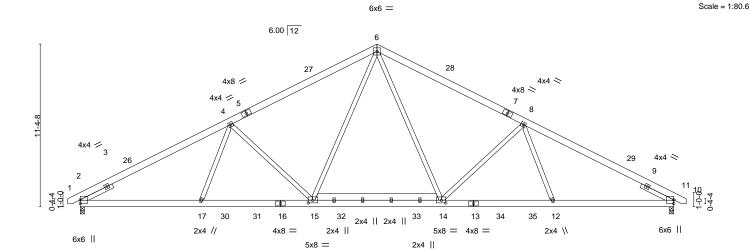
1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-8-10 to 3-8-3, Exterior(2N) 3-8-3 to 20-9-0, Corner(3R) 20-9-0 to 25-1-13, Exterior(2N) 25-1-13 to 42-2-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 39, 40, 41, 43, 44, 45, 46, 47, 37, 36, 35, 33, 32, 31, 30, 29 except (jt=lb) 48=169, 28=148.



October 9,2025






10-2-12

10-6-4

10-2-12



|                     | 8-5-11 <sub>I</sub>           | 16-3-0    | 16-9-8             | 24-9-0   | 25-3-0      | 33-0-5   | 1 41-6-0          | 1          |
|---------------------|-------------------------------|-----------|--------------------|----------|-------------|----------|-------------------|------------|
|                     | 8-5-11                        | 7-9-5     | 0 <del>'</del> 6-8 | 7-11-8   | 0-6-0       | 7-9-5    | 8-5-11            |            |
| Plate Offsets (X,Y) | [14:0-3-12,0-2-4], [15:0-3-12 | 2,0-2-4]  |                    |          |             |          |                   |            |
|                     |                               |           |                    |          |             |          |                   |            |
| LOADING (psf)       | SPACING- 2                    | !-0-0 CSI |                    | DEFL.    | in (loc)    | I/defl L | /d PLATES         | GRIP       |
| TCLL 20.0           | Plate Grip DOL                | 1.15 TC   | 0.34               | Vert(LL) | -0.19 14-15 | >999 36  | 60 MT20           | 244/190    |
| TCDL 10.0           | Lumber DOL                    | 1.15 BC   | 0.57               | Vert(CT) | -0.32 14-15 | >999 24  | 40                |            |
| BCLL 0.0 *          | Rep Stress Incr               | YES WB    | 0.78               | Horz(CT) | 0.10 10     | n/a n    | /a                |            |
| BCDL 10.0           | Code IRC2021/TPI20            | 014 Mat   | rix-AS             | Wind(LL) | 0.06 15     | >999 24  | 40 Weight: 312 II | b FT = 20% |

BRACING-

TOP CHORD

**BOT CHORD** 

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 \*Except\*

14-15: 2x6 SP No.1

SLIDER Left 2x4 SP No.2 2-6-0, Right 2x4 SP No.2 2-6-0

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=140(LC 11)

Max Uplift 2=-109(LC 12), 10=-109(LC 13) Max Grav 2=1946(LC 2), 10=1946(LC 2)

10-6-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

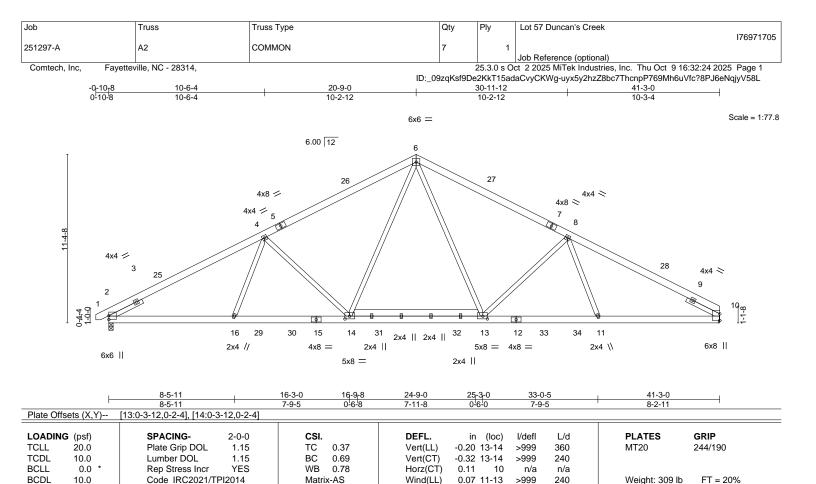
TOP CHORD 2-4=-3197/556, 4-6=-2635/584, 6-8=-2635/584, 8-10=-3197/556

**BOT CHORD** 2-17=-349/2826, 15-17=-381/2739, 14-15=-129/1914, 12-14=-378/2684, 10-12=-346/2769 **WEBS** 

6-14=-115/967, 8-14=-675/296, 8-12=0/306, 6-15=-115/967, 4-15=-675/296, 4-17=0/306

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 20-9-0, Exterior(2R) 20-9-0 to 25-1-13, Interior(1) 25-1-13 to 42-2-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 2 and 109 lb uplift at
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





BRACING-

TOP CHORD

**BOT CHORD** 

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.2 \*Except\*

13-14: 2x6 SP No.1

SLIDER Left 2x4 SP No.2 2-6-0, Right 2x4 SP No.2 2-6-0

REACTIONS. (size) 2=0-3-8, 10=Mechanical

Max Horz 2=142(LC 9)

Max Uplift 2=-109(LC 12), 10=-98(LC 13) Max Grav 2=1935(LC 2), 10=1900(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-3175/552, 4-6=-2611/580, 6-8=-2595/581, 8-10=-3102/547

**BOT CHORD** 2-16=-376/2802, 14-16=-408/2714, 13-14=-156/1889, 11-13=-386/2607, 10-11=-355/2678 6-13=-109/932, 8-13=-629/286, 8-11=0/275, 6-14=-115/965, 4-14=-675/296, 4-16=0/308 **WEBS** 

### NOTES-

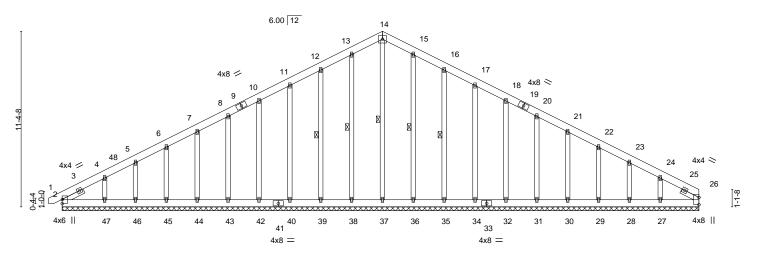
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 20-9-0, Exterior(2R) 20-9-0 to 25-1-13, Interior(1) 25-1-13 to 41-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb)
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971706 251297-A A3GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:25 2025 Page 1

ID:\_09zqKsf9De2KkT15adaCvyCKWg-M8VTANibKSjTkdFoLXwMfNuxkH?0LdeYYmOwMAyV58K -0-10-8 0-10-8 20-9-0 20-6-0

> Scale = 1:74.6 6x6 =



41-3-0 LOADING (psf) SPACING-DEFL. L/d **PLATES GRIP** 2-0-0 CSI (loc) I/def 20.0 Vert(LL) -0.00 244/190 **TCLL** Plate Grip DOL 1.15 TC 0.06 n/r 120 MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.04 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.01 26 n/a n/a Code IRC2021/TPI2014 BCDL 10.0 Matrix-S Weight: 374 lb FT = 20%

BRACING-LUMBER-

TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.2 **OTHERS WEBS** 1 Row at midpt 14-37, 13-38, 12-39, 15-36, 16-35

**SLIDER** Left 2x4 SP No.2 1-6-4, Right 2x4 SP No.2 1-3-9

REACTIONS. All bearings 41-3-0.

(lb) -Max Horz 2=-223(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 38, 39, 40, 42, 43, 44, 45, 46, 36, 35, 34, 32, 31, 30, 29,

28 except 47=-169(LC 12), 27=-163(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 26, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 36, 35, 34,

32, 31, 30, 29, 28, 27

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

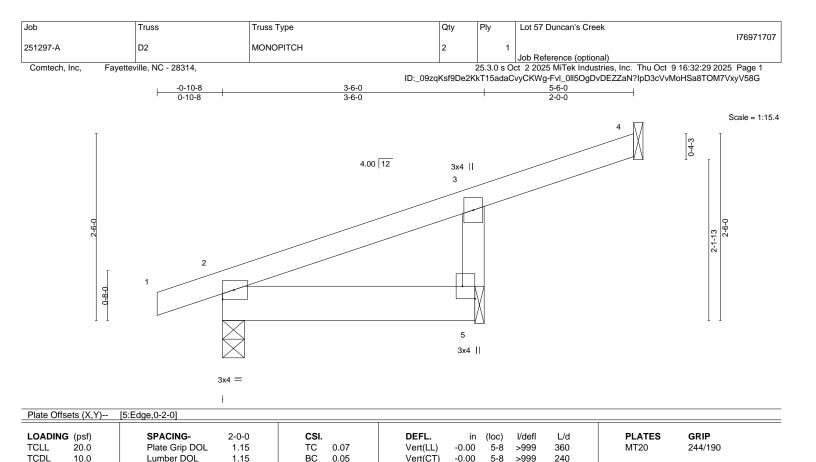
TOP CHORD 2-4=-292/101, 10-11=-97/252, 11-12=-117/310, 12-13=-140/374, 13-14=-150/409,

14-15=-150/409, 15-16=-140/374, 16-17=-117/310, 17-18=-97/252

**WEBS** 24-27=-144/265

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-8-10 to 3-8-3, Exterior(2N) 3-8-3 to 20-9-0, Corner(3R) 20-9-0 to 25-1-13, Exterior(2N) 25-1-13 to 41-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 38, 39, 40, 42, 43, 44, 45, 46, 36, 35, 34, 32, 31, 30, 29, 28 except (jt=lb) 47=169, 27=163.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

**BOT CHORD** 

-0.00

0.00

4

5-8

n/a

>999

except end verticals.

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 3-6-0 oc purlins,

Weight: 20 lb

FT = 20%

LUMBER-

BCLL

**BCDL** 

2x4 SP No.1 TOP CHORD 2x6 SP No.1 **BOT CHORD** 

0.0

10.0

**WEBS** 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=0-1-8

Max Horz 2=73(LC 8)

Max Uplift 4=-17(LC 8), 2=-26(LC 8), 5=-63(LC 12) Max Grav 4=40(LC 1), 2=180(LC 1), 5=226(LC 1)

Rep Stress Incr

Code IRC2021/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-8 to 3-4-4, Interior(1) 3-4-4 to 5-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MP

0.00

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 4, 26 lb uplift at joint 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971708 251297-A D1 MONOPITCH Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:28 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-njBcoPkTdN52b5\_N0fU3H?WPGV?zY?K\_EkdazVyV58H 5-6-0 5-6-0 0-10-8 Scale = 1:16.3 3x4 II 3 4.00 12 2 3x4 || 3x4 =

| Plate Offse | ets (X,Y) | [2:0-1-9,0-1-8], [3:0-2-0,0 | )-1-11], [4:Edg | e,0-2-0] |      |          |       |       |        |     |               |          |
|-------------|-----------|-----------------------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| LOADING     | (psf)     | SPACING-                    | 2-0-0           | CSI.     |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL        | 20.0      | Plate Grip DOL              | 1.15            | TC       | 0.23 | Vert(LL) | 0.03  | 4-7   | >999   | 240 | MT20          | 244/190  |
| TCDL        | 10.0      | Lumber DOL                  | 1.15            | BC       | 0.15 | Vert(CT) | -0.03 | 4-7   | >999   | 240 |               |          |
| BCLL        | 0.0 *     | Rep Stress Incr             | YES             | WB       | 0.00 | Horz(CT) | -0.01 | 2     | n/a    | n/a |               |          |
| BCDL        | 10.0      | Code IRC2021/Ti             | PI2014          | Matri    | x-AS |          |       |       |        |     | Weight: 25 lb | FT = 20% |

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 **WEBS** 2x4 SP No.2

> (size) 2=0-3-0, 4=0-1-8 Max Horz 2=72(LC 8)

Max Uplift 2=-104(LC 8), 4=-93(LC 8) Max Grav 2=271(LC 1), 4=210(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-4-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 2 and 93 lb uplift at joint 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971709 251297-A VB1 Valley Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:32 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-fUQ6enn\_hbbT4il8FVY?Rrh5W6McUnla9Mbo6GyV58D 13-9-8 6-10-12 6-10-12 Scale = 1:44.0 4x4 =

> 3 12.00 12 10 2x4 II 2x4 || 12 9 3x4 // 3x4 🚿 8 7 6 2x4 || 2x4 || 2x4 || 0-<u>0-6</u> 0-0-6 13-9-8

| LOADING | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | D | EFL.     | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------|---------|-----------------|--------|-------|------|---|----------|------|-------|--------|-----|---------------|----------|
| TCLL    | 20.0    | Plate Grip DOL  | 1.15   | TC    | 0.15 | V | /ert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL    | 10.0    | Lumber DOL      | 1.15   | BC    | 0.17 | V | /ert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL    | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.10 | H | Horz(CT) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL    | 10.0    | Code IRC2021/TP | PI2014 | Matri | x-S  |   |          |      |       |        |     | Weight: 64 lb | FT = 20% |

**BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 13-8-12.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-168(LC 12), 6=-168(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=439(LC 19), 6=439(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-298/356, 4-6=-298/356 WEBS

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-10-12, Exterior(2R) 6-10-12 to 11-3-9, Interior(1) 11-3-9 to 13-5-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=168, 6=168.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971710 251297-A VB2 Valley Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:33 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-7h\_Vr7ocRvkKistKpC4E\_3EGzWj2DERkO0KLeiyV58C 5-10-12 5-10-12 Scale = 1:37.9 4x4 = 3 12.00 12 2x4 | 2x4 || 10 3x4 📏 3x4 // 8 7 6 2x4 || 2x4 || 2x4 ||

| LOADING | (psf) | SPACING-        | 2-0-0 | CSI.  |      | DEFL.    | in   | (loc) | I/defI | L/d | PLATES        | GRIP     |
|---------|-------|-----------------|-------|-------|------|----------|------|-------|--------|-----|---------------|----------|
| TCLL    | 20.0  | Plate Grip DOL  | 1.15  | TC    | 0.17 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL    | 10.0  | Lumber DOL      | 1.15  | BC    | 0.09 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL    | 0.0 * | Rep Stress Incr | YES   | WB    | 0.07 | Horz(CT) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL    | 10.0  | Code IRC2021/TP | 12014 | Matri | x-S  |          |      |       |        |     | Weight: 53 lb | FT = 20% |

11-9-8 11-9-2

**BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

**OTHERS** 2x4 SP No.2

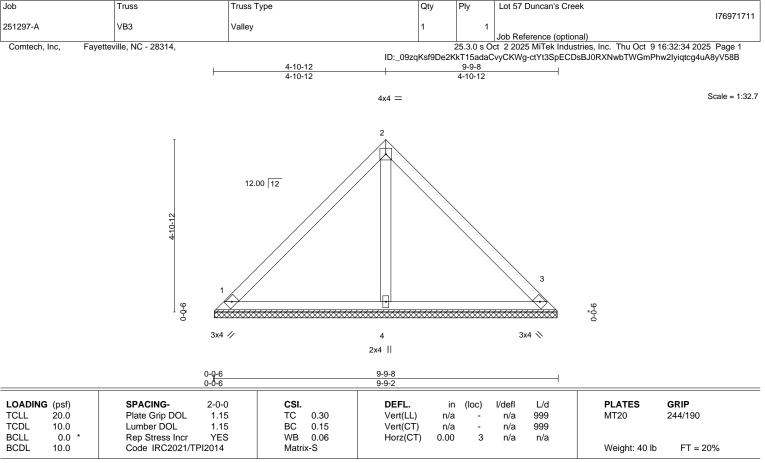
REACTIONS. All bearings 11-8-12. Max Horz 1=133(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-161(LC 12), 6=-160(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=338(LC 19), 6=338(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-302/405, 4-6=-302/405 WEBS

### NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-10-12, Exterior(2R) 5-10-12 to 10-3-9, Interior(1) 10-3-9 to 11-5-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=161, 6=160.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.





**BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

**OTHERS** 2x4 SP No.2

> 1=9-8-12, 3=9-8-12, 4=9-8-12 (size) Max Horz 1=-109(LC 8)

Max Uplift 1=-27(LC 13), 3=-27(LC 13)

Max Grav 1=206(LC 1), 3=206(LC 1), 4=315(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971712 251297-A VB4 Valley Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:34 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-ctYt3SpECDsBJ0RXNwbTWGmPSw3EyiLtcg4uA8yV58B 3-10-12 3-10-12 Scale = 1:26.5 4x4 = 2 12.00 12 3 9-0-0 9-0-0 3x4 // 3x4 📏 2x4 || 7-9-2 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 **TCLL** 0.32 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 3 n/a n/a Code IRC2021/TPI2014 BCDL 10.0 Matrix-P Weight: 31 lb FT = 20%

**BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS.

1=7-8-12, 3=7-8-12, 4=7-8-12 (size) Max Horz 1=-85(LC 8) Max Uplift 1=-31(LC 13), 3=-31(LC 13)

Max Grav 1=173(LC 1), 3=173(LC 1), 4=222(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971713 251297-A VB5 Valley Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:35 2025 Page 1 ID:\_09zqKsf9De2KkT15adaCvyCKWg-436FGoqszW\_2x90jwd6i3UJcJJPAh9r0rJpSjbyV58A 2-10-12 2-10-12 Scale = 1:20.2 4x4 =2 12.00 12 3 9-0-0 9-0-0 4 3x4 📏 3x4 / 2x4 || LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP

Vert(LL)

Vert(CT)

Horz(CT)

**BRACING-**

TOP CHORD

BOT CHORD

n/a

n/a

0.00

999

999

n/a

n/a

n/a

n/a

3

LUMBER-

**TCLL** 

TCDL

**BCLL** 

**BCDL** 

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

20.0

10.0

0.0

10.0

**OTHERS** 2x4 SP No.2

REACTIONS.

1=5-8-12, 3=5-8-12, 4=5-8-12 (size) Max Horz 1=61(LC 9) Max Uplift 1=-22(LC 13), 3=-22(LC 13)

Plate Grip DOL

Rep Stress Incr

Code IRC2021/TPI2014

Lumber DOL

Max Grav 1=124(LC 1), 3=124(LC 1), 4=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TC

ВС

WB

Matrix-P

0.18

0.05

0.01

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15

1.15

YES

- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



244/190

FT = 20%

MT20

Structural wood sheathing directly applied or 5-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 23 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971714 251297-A VB6 Valley Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:35 2025 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:\_09zqKsf9De2KkT15adaCvyCKWg-436FGoqszW\_2x90jwd6i3UJd\_JOeh930rJpSjbyV58A 3-9-8 1-10-12 1-10-12 3x4 = Scale = 1:12.3 12.00 12 3 9-0-0 9-0-0 3x4 // 3x4 📏 Plate Offsets (X,Y)--[2:0-2-0,Edge] SPACING-L/d **PLATES** GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI 20.0 Plate Grip DOL 244/190 TCLL 1.15 TC 0.07 Vert(LL) 999 MT20 n/a n/a TCDL 10.0 Lumber DOL 1.15 BC 0.08 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2021/TPI2014 FT = 20% **BCDL** 10.0 Matrix-P Weight: 12 lb LUMBER-**BRACING-**TOP CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 3-9-8 oc purlins. **BOT CHORD** BOT CHORD 2x4 SP No.1 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=3-8-12, 3=3-8-12 (size)

Max Horz 1=37(LC 9)

Max Uplift 1=-4(LC 12), 3=-4(LC 13)

Max Grav 1=124(LC 1), 3=124(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971715 251297-A G1GE **GABLE** Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:30 2025 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:\_09zqKsf9De2KkT15adaCvyCKWg-j6IMD5mk9\_LlrO8I84WXMQco5lia0vLHi26h1NyV58F 12-10-8 6-0-0 6-0-0 6-0-0 0-10-8 Scale = 1:23.0 5x5 = 5.00 12 2x4 || 5 2x4 || 14 2x4 || 6<sup>2x4</sup> || 2 1-0-0 13 3x6 || 3x6 || 2x4 || 4x4 = 2x4 || 2x4 || 4x4 = 12-0-0 Plate Offsets (X,Y)--[9:0-1-0,0-2-0], [13:0-1-8,0-2-0] **PLATES** LOADING (psf) SPACING-CSI. in (loc) I/defI L/d GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) -0.00 120 244/190 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.01 Vert(CT) 0.00 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 n/a n/a Code IRC2021/TPI2014 FT = 20% **BCDL** 10.0 Weight: 79 lb Matrix-S

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

2x6 SP No.1 TOP CHORD 2x6 SP No.1 **BOT CHORD OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 1-10-4, Right 2x4 SP No.2 1-10-4

REACTIONS. All bearings 12-0-0.

Max Horz 1=66(LC 16) (lb) -

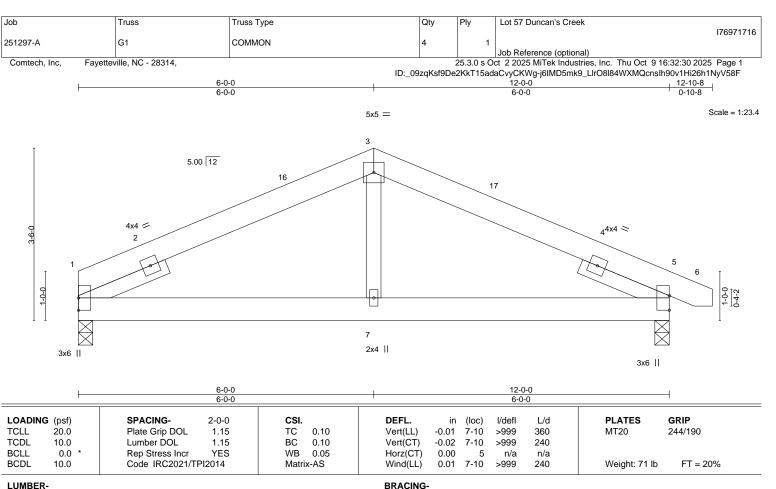
Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 13, 9, 12, 10 All reactions 250 lb or less at joint(s) 1, 7, 13, 9, 11, 12, 10 Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-0-0 to 4-4-13, Exterior(2N) 4-4-13 to 6-0-0, Corner(3R) 6-0-0 to 10-4-13, Exterior(2N) 10-4-13 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13, 9, 12, 10.



Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

WEBS

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.2

**SLIDER** Left 2x4 SP No.2 1-11-0, Right 2x4 SP No.2 1-11-0

REACTIONS.

(size) 1=0-3-8, 5=0-3-8 Max Horz 1=-37(LC 17)

Max Uplift 1=-29(LC 12), 5=-39(LC 13) Max Grav 1=479(LC 1), 5=523(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-573/355, 3-5=-573/350 **BOT CHORD** 1-7=-204/528, 5-7=-204/528

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 6-0-0, Exterior(2R) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 39 lb uplift at
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

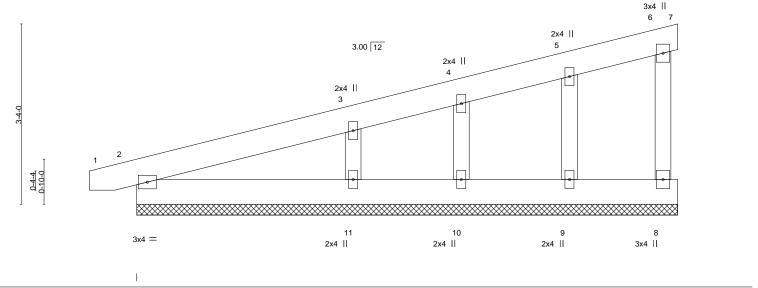


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971717 251297-A P1GE MONOPITCH SUPPORTED Job Reference (optional)


Comtech, Inc, Fayetteville, NC - 28314,

0-10-8

25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:32 2025 Page 1 ID:H2tAMAfrUkMVRFgw\_w7XcCyb3Rp-fUQ6enn\_hbbT4il8FVY?Rrh716OeUoQa9Mbo6GyV58D

10-0-0 10-0-0

Scale = 1:21.3



LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP (loc) I/defl 20.0 Plate Grip DOL TC Vert(LL) 0.00 120 244/190 **TCLL** 1.15 0.06 n/r MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.04 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.06 Horz(CT) -0.00 n/a n/a Code IRC2021/TPI2014 **BCDL** 10.0 Matrix-S Weight: 60 lb FT = 20%

BRACING-LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

**OTHERS** 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-0-0.

Max Horz 2=126(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 2, 9, 10 except 11=-113(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10 except 11=317(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

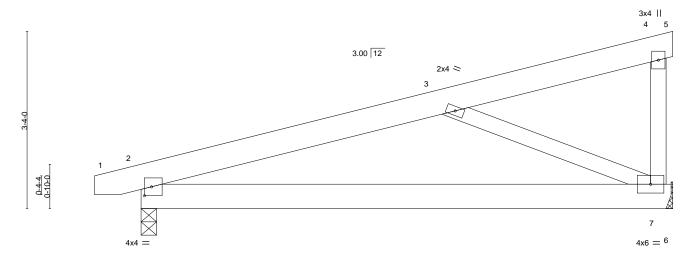
WEBS 3-11=-224/332

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-7-11 to 4-0-0, Exterior(2N) 4-0-0 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 2, 9, 10
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.






Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971718 251297-A P1 MONOPITCH Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:31 2025 Page 1 Fayetteville, NC - 28314, Comtech, Inc.

ID:H2tAMAfrUkMVRFgw\_w7XcCyb3Rp-BlskQRnMwlTcSYjyhn1mue8uBi?ClJSRwirEapyV58E 10-0-0 4-1-2

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:21.7



5-10-14

10-0-0

TOP CHORD

**BOT CHORD** 

| Plate Offsets (X,Y) | [2:0-1-9,0-2-0] |
|---------------------|-----------------|
|                     |                 |
|                     |                 |

-0-10-8

0-10-8

| LOADING (psf) | SPACING- 2-0-0       | CSI.      | DEFL. in (loc) I/defl L/d    | PLATES GRIP            |
|---------------|----------------------|-----------|------------------------------|------------------------|
| TCLL 20.0     | Plate Grip DOL 1.15  | TC 0.32   | Vert(LL) -0.05 7-10 >999 360 | MT20 244/190           |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.24   | Vert(CT) -0.11 7-10 >999 240 |                        |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.17   | Horz(CT) 0.01 2 n/a n/a      |                        |
| BCDL 10.0     | Code IRC2021/TPI2014 | Matrix-AS | Wind(LL) 0.07 7-10 >999 240  | Weight: 59 lb FT = 20% |

LUMBER-BRACING-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 **WEBS** 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 7=Mechanical

Max Horz 2=89(LC 8)

Max Uplift 2=-160(LC 8), 7=-164(LC 8) Max Grav 2=429(LC 1), 7=399(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-563/424 **BOT CHORD** 2-7=-521/522 WFBS 3-7=-528/523

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-7-11 to 3-9-2, Interior(1) 3-9-2 to 10-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=160, 7=164.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971719 251297-A D3GE MONOPITCH Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:29 2025 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:\_09zqKsf9De2KkT15adaCvyCKWg-Fvl\_0ll5OgDvDEZZaN?lpD3d6vMMHS78TOM7VxyV58G 0-10-8 1-4-4 2-1-12 Scale: 1"=1 3x4 II 4.00 12 2x4 || 3 6 5 3x4 = 2x4 || 3x4 ||

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

**BOT CHORD** 

I/defI

n/r

n/r

n/a

except end verticals.

(loc)

-0.00

-0.00

0.00

L/d

120

120

n/a

**PLATES** 

Weight: 17 lb

MT20

Structural wood sheathing directly applied or 3-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

244/190

FT = 20%

LUMBER-

**TCLL** 

TCDL

**BCLL** 

BCDL

LOADING (psf)

TOP CHORD 2x4 SP No 1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

20.0

10.0

0.0

10.0

REACTIONS. 5=3-6-0, 2=3-6-0, 6=3-6-0 (size)

Max Horz 2=66(LC 8)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2021/TPI2014

Lumber DOL

Max Uplift 5=-25(LC 8), 2=-42(LC 8), 6=-62(LC 12) Max Grav 5=67(LC 1), 2=105(LC 1), 6=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2-0-0

1.15

1.15

YES

CSI.

TC

ВС

WB

Matrix-P

0.04

0.01

0.03

- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 5, 42 lb uplift at joint 2 and 62 lb uplift at joint 6.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 57 Duncan's Creek 176971720 251297-A D3 MONOPITCH Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:29 2025 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID:\_09zqKsf9De2KkT15adaCvyCKWg-FvI\_0ll5OgDvDEZZaN?lpD3clvMgHSa8TOM7VxyV58G 3-6-0 3-6-0 0-10-8 Scale = 1:11.8 3x4\_H 4.00 12 1-4-0 -9-8 0-8-0 4 3x4 || 3x4 = 3-6-0 Plate Offsets (X,Y)--[3:0-2-0,0-1-11], [4:Edge,0-2-0] **PLATES** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) -0.00 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.05 Vert(CT) -0.00 4-7 >999 240 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a Code IRC2021/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MP Wind(LL) 240 0.00 4-7 >999 Weight: 16 lb LUMBER-BRACING-TOP CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals.

**BOT CHORD** 

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.1

2x4 SP No.2 REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=50(LC 8) Max Uplift 2=-40(LC 8), 4=-22(LC 12)

Max Grav 2=194(LC 1), 4=127(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

**WEBS** 

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 22 lb uplift at joint 4.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 57 Duncan's Creek 176971721 251297-A D1GE **GABLE** Job Reference (optional)
25.3.0 s Oct 2 2025 MiTek Industries, Inc. Thu Oct 9 16:32:28 2025 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:\_09zqKsf9De2KkT15adaCvyCKWg-njBcoPkTdN52b5\_N0fU3H?WQdV1pY\_9\_EkdazVyV58H 5-6-0 0-10-8 1-6-0 4-0-0 Scale = 1:15.8 3x4 ||

| $   \begin{array}{ccccccccccccccccccccccccccccccccccc$ | 2-6-0 | 1     | 4.00 12 2x4    3 |  |
|--------------------------------------------------------|-------|-------|------------------|--|
|                                                        |       | 3x4 = |                  |  |

| LOADIN | IG (psf) | SPACING-         | 2-0-0 | CSI.  |      | DEFL.    | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------|----------|------------------|-------|-------|------|----------|------|-------|--------|-----|---------------|----------|
| TCLL   | 20.0     | Plate Grip DOL   | 1.15  | TC    | 0.15 | Vert(LL) | 0.00 | 1     | n/r    | 120 | MT20          | 244/190  |
| TCDL   | 10.0     | Lumber DOL       | 1.15  | BC    | 0.03 | Vert(CT) | 0.00 | 1     | n/r    | 120 |               |          |
| BCLL   | 0.0 *    | Rep Stress Incr  | YES   | WB    | 0.08 | Horz(CT) | 0.00 |       | n/a    | n/a |               |          |
| BCDL   | 10.0     | Code IRC2021/TPI | I2014 | Matri | x-P  |          |      |       |        |     | Weight: 27 lb | FT = 20% |

TOP CHORD

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

**OTHERS** 2x4 SP No.2

(size) 5=5-6-0, 2=5-6-0, 6=5-6-0

Max Horz 2=97(LC 8)

Max Uplift 5=-11(LC 8), 2=-55(LC 8), 6=-105(LC 12) Max Grav 5=29(LC 1), 2=175(LC 1), 6=277(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-6=-204/429

### NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-6-0, Exterior(2N) 3-6-0 to 5-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 5, 55 lb uplift at joint 2 and 105 lb uplift at joint 6.

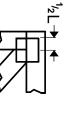


Structural wood sheathing directly applied or 5-6-0 oc purlins,

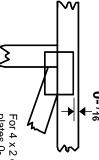
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

October 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




### Symbols

## PLATE LOCATION AND ORIENTATION



offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

\* Plate location details available in MiTek software or upon request

### PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

## LATERAL BRACING LOCATION



by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

### **BEARING**



Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

### Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

# Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

# Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

## MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.