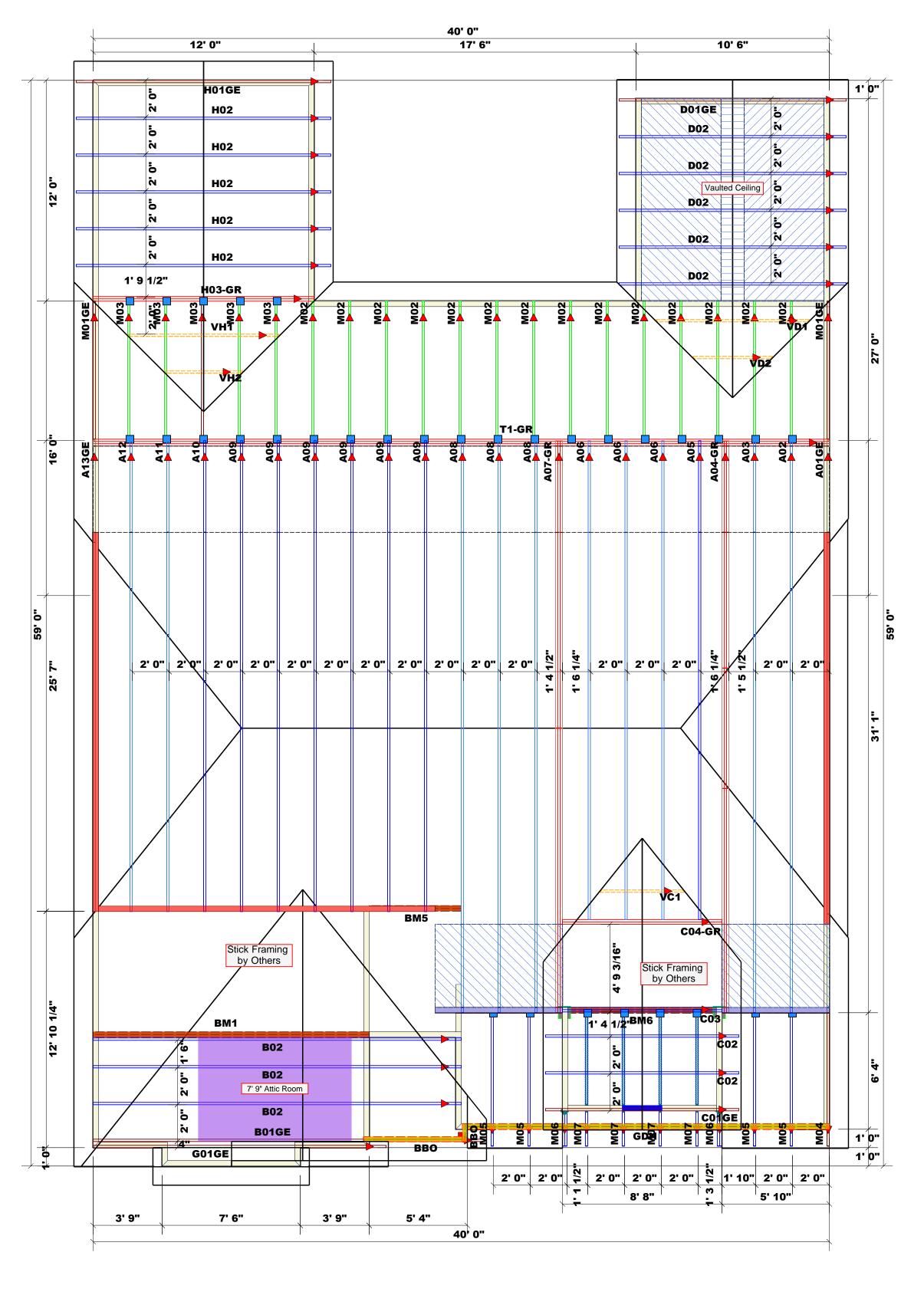


▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

LO.	AD (CHAF	RT FO	RЈ	ACK :	STUD	5						
	(BASED ON TABLES R502.5(1) & (b))												
NUI	NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER												
END REACTION (UP TO)	REQ'D STUBS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER						
1700	1		2550	1		3400	1						
3400	2		5100	2		6800	2						
5100	3		7650	3		10200	3						
6800	4		10200	4		13600	4						
8500	5		12750	5		17000	5						
10200	6		15300	6									
11900	7												
13600	8												
15300	0												

BUILDER	New Home Inc.	CITY / CO.	Lillington / Harnett	THIS IS A These trusse the building of sheets for ea
JOB NAME	Lot 25 Duncans Creek	ADDRESS	395 Beacon Hill Road	is responsible the overall signal walls, and corregarding brains
PLAN	The Guilford - French Country	MODEL	Floor	Bearing rea
SEAL DATE	Seal Date	DATE REV.	10/2/25	(derived fro foundation than 3000# be retained
QUOTE#	Quote #	DRAWN BY	Johnnie Baggett	specified in retained to
JOB#	250918 - B	SALES REP.	House Account	Signatu

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.


These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.

Sales Area
Sales Area

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

All Headers Are Considered 2X10 Beams Unless Otherwise Noted

All Walls Shown Are Considered Load Bearing

Roof Area = 2872.59 sq.ft.
Ridge Line = 92.15 ft.
Hip Line = 65.81 ft.
Horiz. OH = 188.29 ft.
Raked OH = 166.91 ft.
Decking = 99 sheets

Dimension Notes

1. All exterior wall to wall dimensions are to face of stud unless noted otherwise
2. All interior wall dimensions are to face of stud unless noted otherwise
3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

	Conne	ctor Info	rmati	ion	Nail Info	ormation
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	32	NA	16d/3-1/2"	16d/3-1/2"
	THD28-2	USP	2	NA	16d/3-1/2"	10d/3"

Truss Placement Plan
Scale: 1/4"=1'

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

LO.	AD (CHAF	RT FO	RЈ	ACK :	STUD	5						
	(BASED ON TABLES R502.5(1) & (b))												
NU	NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER												
END REACTION (UP TO)	REQ'D STUBS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (4) PLY HEADER						
1700	1		2550	1		3400	1						
3400	2		5100	2		6800	2						
5100	3		7650	3		10200	3						
6800	4		10200	4		13600	4						
8500	5		12750	5		17000	5						
10200	6		15300	6									
11900	7												
13600	8												
15300	9												

BUILDER	New Home Inc.	CITY / CO.	Lillington / Harnett	THIS IS A These truss the building sheets for ea
JOB NAME	Lot 25 Duncans Creek	ADDRESS	395 Beacon Hill Road	is responsib the overall s walls, and co regarding br
PLAN	The Guilford - French Country	MODEL	Roof	Bearing rea
SEAL DATE	Seal Date	DATE REV.	10/2/25	(derived fro foundation than 3000# be retained
QUOTE#	Quote #	DRAWN BY	Johnnie Baggett	specified in retained to
JOB#	250918 - A	SALES REP.	House Account	Signatu

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.

Sales Area

ood studs required to support reactions greater
5000#. A registered design professional shall
system for any reaction that exceeds those
A registered design professional shall be
stem for all reactions that exceed 15000#.

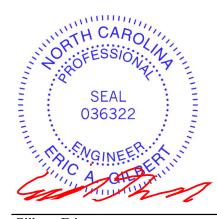
Sales Area

Phone: (9)

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 250918-A


Lot 25 Duncan's Creek

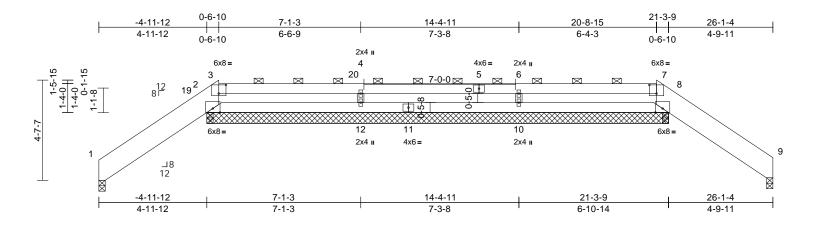
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I76809469 thru I76809506

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

October 3,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A01GE	Hip Structural Gable	1	1	I768094 Job Reference (optional)	169

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:21 ID:MdOsyneLDwdtT06Tx4G5xQyXMCE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.1

Plate Offsets (X, Y): [3:0-4-0,0-4-13], [7:0-4-0,0-4-13]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.01	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.00	12-15	>999	240	Weight: 166 lb	FT = 25%

LUMBER

2x12 SP No.1 *Except* 3-5,5-7:2x6 SP No.1 TOP CHORD 2x6 SP No.1

BOT CHORD 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except

2-0-0 oc purlins (6-0-0 max.): 3-7. Rigid ceiling directly applied.

BOT CHORD REACTIONS (size)

1=0-3-8, 2=21-3-9, 7=21-3-9, 8=21-3-9, 9=0-3-8, 10=21-3-9,

12=21-3-9

Max Horiz 1=88 (LC 9)

Max Uplift 1=-39 (LC 13), 2=-41 (LC 9),

7=-113 (LC 9), 8=-98 (LC 13), 9=-39 (LC 13), 10=-63 (LC 9),

12=-67 (LC 8)

Max Grav 1=151 (LC 20), 2=578 (LC 1),

7=360 (LC 25), 8=362 (LC 20),

9=170 (LC 20), 10=565 (LC 25), 12=587 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-122/185, 2-3=-78/64, 3-4=-50/66,

4-6=-50/66, 6-7=-50/66, 7-8=-59/140, 8-9=-75/136

2-12=-37/80, 10-12=-23/80, 8-10=-45/80

BOT CHORD WFBS 6-10=-427/175, 4-12=-439/174

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 5-6-6, Exterior(2R) 5-6-6 to 11-9-1, Interior (1) 11-9-1 to 25-8-10, Exterior(2E) 25-8-10 to 30-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 113 lb uplift at joint 7, 39 lb uplift at joint 9, 41 lb uplift at joint 2, 98 lb uplift at joint 8, 63 lb uplift at joint 10, 67 Ib uplift at joint 12, 41 lb uplift at joint 2 and 98 lb uplift at ioint 8.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A02	Hip	1	1	Job Reference (optional)	176809470

Comtech, Inc, Fayetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:22 $ID: v2_19JtiQyLY5XKtMnamXkyXMAf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 1

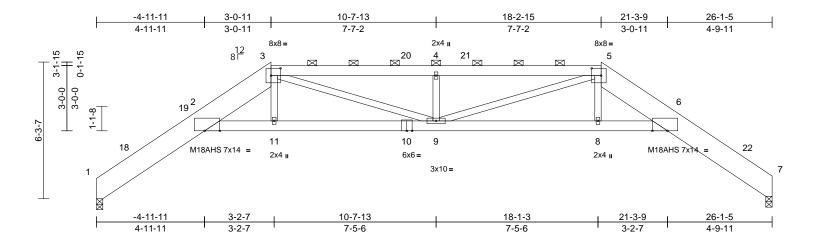


Plate Offsets (X, Y): [2:0-8-6,Edge], [3:0-5-4,0-4-0], [5:0-5-4,0-4-0], [6:0-8-6,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	I /d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.29	(100)	>999		MT20	244/190
TCDL	10.0	Lumber DOL		BC		- (/	-0.29	9-11	>623		M18AHS	186/179
		1	1.15	_	0.34	- (- /		9-11			WITOARIS	100/179
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	- (- /	0.58		n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.20	9-11	>999	240	Weight: 213 lb	FT = 25%

LUMBER

2x12 SP 2400F 2.0E *Except* 3-5:2x6 SP TOP CHORD

No.1

BOT CHORD 2x6 SP 2400F 2.0E 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except

2-0-0 oc purlins (3-10-1 max.): 3-5. Rigid ceiling directly applied.

BOT CHORD REACTIONS

1=0-3-8, 7=0-3-8 (size)

Max Horiz 1=130 (LC 9)

Max Uplift 1=-5 (LC 12), 7=-10 (LC 13)

Max Grav 1=1265 (LC 1), 7=1253 (LC 1) (lb) - Maximum Compression/Maximum

FORCES

Tension

TOP CHORD 1-2=-679/200, 2-3=-3044/410,

3-4=-3799/565, 4-5=-3799/565, 5-6=-3006/446 6-7=-674/171

BOT CHORD 2-11=-282/3052. 9-11=-280/3073.

8-9=-289/3015, 6-8=-292/2995

WEBS 3-11=0/422, 4-9=-429/176, 3-9=-221/904, 5-8=0/416. 5-9=-204/959

NOTES

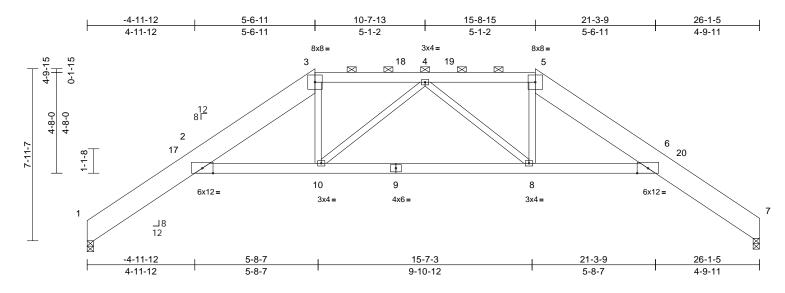
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 8-0-6, Exterior(2R) 8-0-6 to 14-3-1, Interior (1) 14-3-1 to 23-2-10, Exterior(2R) 23-2-10 to 29-5-5, Interior (1) 29-5-5 to 30-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 1 and 10 lb uplift at joint 7.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A03	Hip	1	1	Job Reference (optional)	176809471

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:22 ID:v2_19JtiQyLY5XKtMnamXkyXMAf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.26	10-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.53	10-13	>701	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.62	7	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.18	10-13	>999	240	Weight: 228 lb	FT = 25%

LUMBER

2x12 SP 2400F 2.0E *Except* 3-5:2x6 SP TOP CHORD

No.1

2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

BOT CHORD

FORCES

BOT CHORD

TOP CHORD Structural wood sheathing directly applied,

except

2-0-0 oc purlins (5-2-1 max.): 3-5. Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 7=0-3-8

Max Horiz 1=170 (LC 9)

Max Uplift 1=-22 (LC 12), 7=-27 (LC 13)

Max Grav 1=1265 (LC 1), 7=1253 (LC 1) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-679/202, 2-3=-2249/343,

3-4=-2158/405, 4-5=-2133/380,

5-6=-2236/349, 6-7=-674/172 2-10=-190/2146, 8-10=-234/2262,

6-8=-149/2120

WFBS 3-10=0/422, 4-10=-270/204, 5-8=0/433,

4-8=-299/187

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 10-6-6, Exterior(2R) 10-6-6 to 16-9-1, Interior (1) 16-9-1 to 20-8-10, Exterior(2R) 20-8-10 to 26-11-5, Interior (1) 26-11-5 to 30-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 27 lb uplift at joint 7.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A04-GR	Hip Girder	1	3	Job Reference (optional)	176809472

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:22 ID:G0owC0wqFV_rBIDr8KAxEnyXMAa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

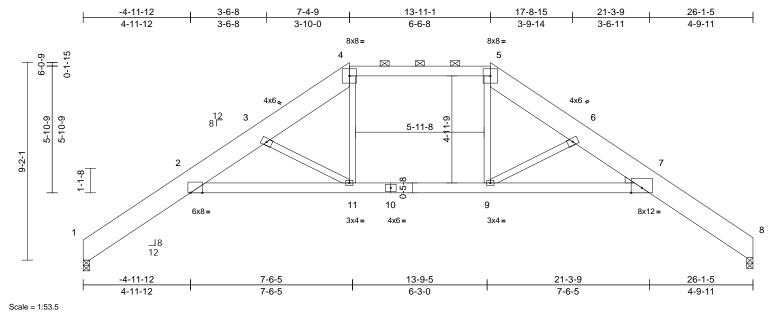


Plate Offsets (X, Y): [2:0-6-10,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.28	9-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.52	9-17	>708	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.48	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.16	9-17	>999	240	Weight: 718 lb	FT = 25%

LUMBER

TOP CHORD 2x12 SP No.1 *Except* 4-5:2x6 SP No.1,

5-8:2x12 SP 2400F 2.0E

BOT CHORD 2x6 SP No.1 2x4 SP No 2 WFBS WEDGE Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-5. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 8=0-3-8

Max Horiz 1=199 (LC 5)

Max Uplift 1=-53 (LC 8), 8=-157 (LC 9) Max Grav 1=1814 (LC 15), 8=3770 (LC 16)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1058/146, 2-3=-4742/195,

3-4=-3817/126, 4-5=-3225/137, 5-6=-4031/140, 6-7=-6209/192,

7-8=-2072/156

BOT CHORD 2-11=-155/4878, 9-11=-20/3279

7-9=-96/7225

WEBS 4-11=-10/1614, 3-11=-1877/213,

5-9=-22/2369, 6-9=-4847/318

NOTES

3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 1, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1 and 157 lb uplift at joint 8.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2821 lb down and 141 lb up at 26-3-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-13=-84, 4-13=-60, 4-5=-60, 5-7=-60, 7-8=-84, 12-15=-20

Concentrated Loads (lb)

Vert: 15=-2583 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A05	Hip	1	1	Job Reference (optional)	3

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:22 ID:ke5pAAl9V2B36mXmmJd4UNyXLI?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

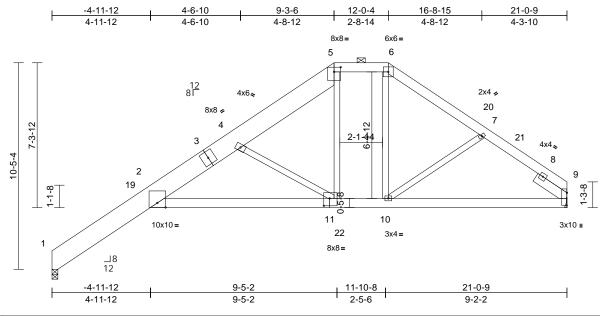


Plate Offsets (X, Y): [5:0-4-0,0-2-13], [9:0-7-10,0-0-3], [11:0-3-8,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.23	11-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.44	11-18	>700	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.89	Horz(CT)	0.27	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.18	11-18	>999	240	Weight: 206 lb	FT = 25%

LUMBER

Scale = 1:58.2

TOP CHORD 2x12 SP No.1 *Except* 5-6,6-9:2x6 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

SLIDER Right 2x6 SP No.2 -- 1-11-0

BRACING

TOP CHORD Structural wood sheathing directly applied,

except

2-0-0 oc purlins (6-0-0 max.): 5-6. Rigid ceiling directly applied.

BOT CHORD

REACTIONS (size) 1=0-3-8, 9= Mechanical Max Horiz 1=229 (LC 9)

Max Uplift 1=-33 (LC 12), 9=-29 (LC 13)

Max Grav 1=1147 (LC 19), 9=1141 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-676/80, 2-4=-2283/436, 4-5=-1556/311, TOP CHORD

5-6=-1091/298, 6-7=-1340/305,

7-9=-1413/303

BOT CHORD 2-10=-443/2510, 9-10=-167/1089

WEBS 5-11=-135/1011, 6-10=-1/316, 7-10=-141/165,

4-11=-1590/405

NOTES

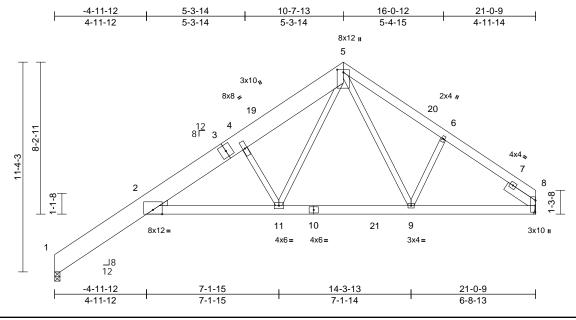
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 14-3-1, Exterior(2E) 14-3-1 to 16-11-15, Exterior(2R) 16-11-15 to 23-2-10, Interior (1) 23-2-10 to 26-0-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 9 and 33 lb uplift at joint 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A06	Roof Special	3	1	Job Reference (optional)	76809474

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:NFYPNftKBGTPjhv3vV5?3xyXMAe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.4

Plate Offsets (X, Y): [5:0-1-12,0-4-0], [8:0-7-10,0-0-3]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.Ó	Plate Grip DOL	1.15	TC	1.00	Vert(LL)	-0.22	11-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.43	11-18	>717	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.28	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.18	11-18	>999	240	Weight: 211 lb	FT = 25%

LUMBER

TOP CHORD 2x12 SP No.1 *Except* 5-8:2x6 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS WEDGE Left: 2x4 SP No 3

SLIDER Right 2x6 SP No.2 -- 1-11-0

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 1=0-3-8, 8= Mechanical

Max Horiz 1=250 (LC 9)

Max Uplift 1=-36 (LC 12), 8=-40 (LC 12)

Max Grav 1=1172 (LC 19), 8=1188 (LC 19) (lb) - Maximum Compression/Maximum **FORCES**

Tension

1-2=-709/75, 2-4=-2200/398, 4-5=-2184/471,

TOP CHORD 5-6=-1417/363, 6-8=-1533/301

BOT CHORD 2-11=-370/2328, 9-11=-77/1068,

8-9=-169/1192

WEBS 5-11=-278/1620, 6-9=-177/180, 4-11=-1219/367, 5-9=-78/421

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 15-7-8, Exterior(2R) 15-7-8 to 20-0-5, Interior (1) 20-0-5 to 26-0-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 8 and 36 lb uplift at joint 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qty Lot 25 Duncan's Creek 176809475 3 250918-A A07-GR Roof Special Girder Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:kCMIQMxS0o6hpSo1i2hAm?yXMAZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

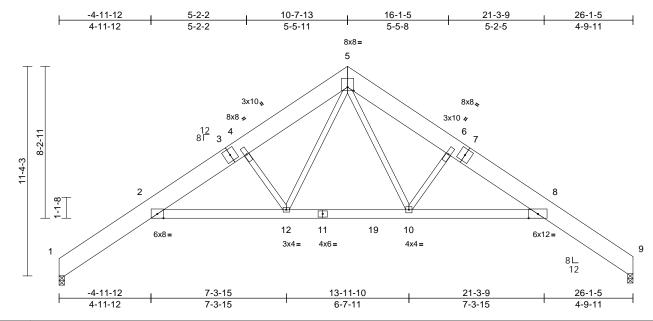


Plate Offsets (X, Y): [5:0-4-0,0-2-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.25	10-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.46	10-18	>798	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.26	Horz(CT)	0.49	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.15	10-18	>999	240	Weight: 799 lb	FT = 25%

LUMBER

Scale = 1:62.4

TOP CHORD 2x12 SP No.1 *Except* 7-9:2x12 SP 2400F

2.0E 2x6 SP No.1

BOT CHORD 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-3-8, 9=0-3-8

Max Horiz 1=247 (LC 5)

Max Uplift 1=-68 (LC 8), 9=-173 (LC 9)

Max Grav 1=1792 (LC 15), 9=3678 (LC 16)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-1085/179, 2-4=-4049/223,

4-5=-3925/260, 5-6=-4679/250,

6-8=-4797/212 8-9=-2021/164

BOT CHORD 2-12=-183/4158, 10-12=0/2425, 8-10=-112/5421

WEBS 5-12=-141/1931, 4-12=-1693/247,

5-10=-170/3382, 6-10=-3177/275

NOTES

1) 3-ply truss to be connected together with 10d

(0.131"x3") nails as follows:

Top chords connected as follows: 2x12 - 2 rows

staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

unless otherwise indicated.

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 1, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 1 and 173 lb uplift at joint 9.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2721 lb down and 143 lb up at 26-3-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

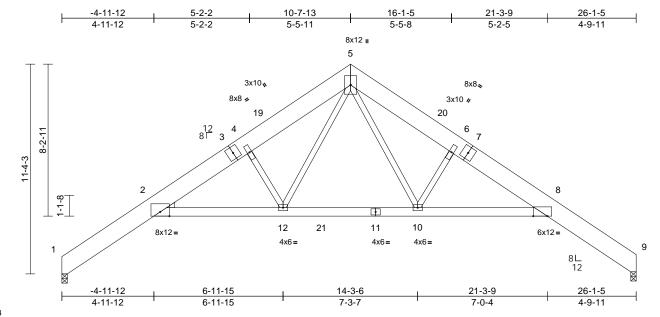
Vert: 1-14=-84, 5-14=-60, 5-8=-60, 8-9=-84,

13-16=-20

Concentrated Loads (lb) Vert: 16=-2466 (F)

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A08	Roof Special	3	1	Job Reference (optional)	176809476

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:NFYPNftKBGTPjhv3vV5?3xyXMAe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.4 Plate Offsets (X, Y): [8:0-9-2,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.29	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.56	12-15	>659	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.64	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.19	12-15	>999	240	Weight: 267 lb	FT = 25%

LUMBER

BOT CHORD

2x12 SP No.1 *Except* 1-3,7-9:2x12 SP TOP CHORD

2400F 2.0E 2x6 SP No.1 2x4 SP No.2

WFBS WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 1=0-3-8, 9=0-3-8

Max Horiz 1=247 (LC 9)

Max Uplift 1=-46 (LC 12), 9=-52 (LC 13)

Max Grav 1=1383 (LC 19), 9=1371 (LC 20)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-857/195, 2-4=-2818/426,

4-5=-2792/485, 5-6=-2655/488, 6-8=-2704/430, 8-9=-742/181

BOT CHORD 2-12=-247/2954. 10-12=-3/1584.

8-10=-225/2678

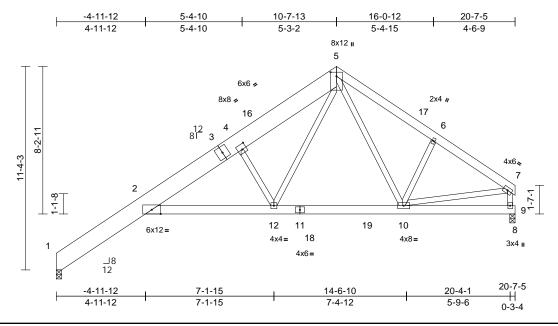
5-12=-211/1662, 4-12=-1288/306, WFBS 6-10=-1156/297, 5-10=-201/1517

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 15-7-8, Exterior(2R) 15-7-8 to 20-0-5, Interior (1) 20-0-5 to 30-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 1, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 1 and 52 lb uplift at joint 9.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A09	Roof Special	6	1	Job Reference (optional)	176809477

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:rR6oa?uyyabGKrUGTCcEc9yXMAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.2

Plate Offsets (X, Y): [4:0-3-0,0-3-8], [5:0-2-12,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.21	12-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.41	12-15	>735	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.27	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.18	12-15	>999	240	Weight: 213 lb	FT = 25%

LUMBER

TOP CHORD 2x12 SP No.1 *Except* 5-7:2x6 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 9=0-3-8

Max Horiz 1=250 (LC 9)

Max Uplift 1=-33 (LC 12), 9=-42 (LC 12)

Max Grav 1=1138 (LC 19), 9=1172 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-685/68, 2-4=-2099/387, 4-5=-2082/461,

5-6=-1333/346, 6-7=-1424/278, 7-9=-1069/221

BOT CHORD 2-12=-380/2230. 10-12=-84/993.

9-10=-18/134, 8-9=0/0

WFBS 4-12=-1201/371, 5-12=-280/1584.

5-10=-65/351, 6-10=-264/199,

7-10=-160/1034

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 15-7-8, Exterior(2R) 15-7-8 to 20-0-5, Interior (1) 20-0-5 to 25-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

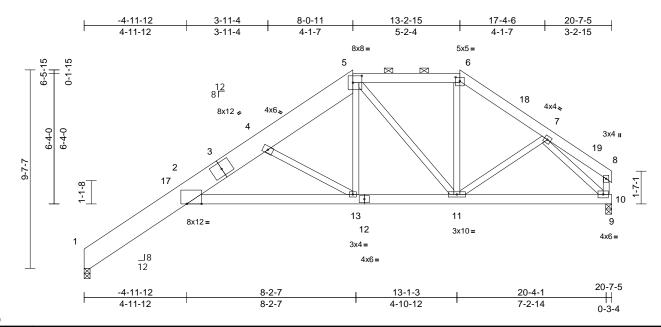
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 9 and 33 lb uplift at joint 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job		Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-	-A	A10	Hip	1	1	Job Reference (optional)	176809478

Comtech, Inc, Fayetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:rR6oa?uyyabGKrUGTCcEc9yXMAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.9

Plate Offsets (X, Y): [2:0-8-10, Edge], [5:0-5-4,0-4-0], [6:0-2-8,0-2-5]

												-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.17	13-16	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.35	13-16	>861	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.52	Horz(CT)	0.24	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.15	13-16	>999	240	Weight: 207 lb	FT = 25%

LUMBER

TOP CHORD 2x12 SP No.1 *Except* 5-6,6-8:2x6 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(6-0-0 max.): 5-6.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 10=0-3-8

Max Horiz 1=207 (LC 9)

Max Uplift 1=-28 (LC 12), 10=-17 (LC 13)

Max Grav 1=1037 (LC 1), 10=1017 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

1-2=-553/62, 2-4=-2072/502, 4-5=-1448/369,

5-6=-909/289, 8-10=-184/46, 6-7=-1117/304,

7-8=-204/39

BOT CHORD 2-13=-528/2148, 11-13=-204/1126,

10-11=-170/795, 9-10=0/0

WFBS 5-13=-129/779, 5-11=-392/114, 6-11=-34/330,

7-11=-47/203, 7-10=-1008/264,

4-13=-1233/378

NOTES

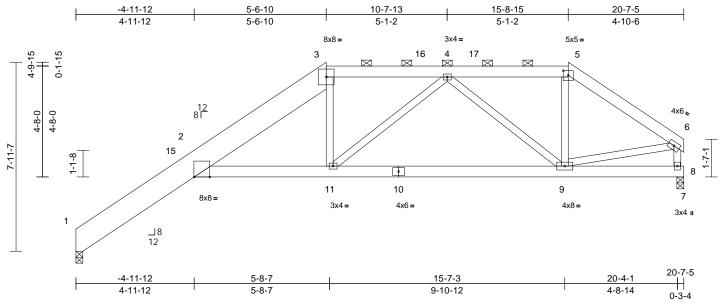
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 13-0-6, Exterior(2E) 13-0-6 to 18-2-10, Exterior(2R) 18-2-10 to 24-5-5, Interior (1) 24-5-5 to 25-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 10 and 28 lb uplift at joint 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A11	Hip	1	1	Job Reference (optional)	

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:rR6oa?uyyabGKrUGTCcEc9yXMAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.5

Plate Offsets (X, Y): [2:0-7-14,Edge], [5:0-2-8,0-2-5]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	I /d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.19	11-14	>999		MT20	244/190
` '				-		- ()						244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.39	11-14	>777	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.47	Horz(CT)	0.26	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.16	11-14	>999	240	Weight: 187 lb	FT = 25%

LUMBER

2x6 SP No.1 *Except* 1-3:2x12 SP No.1 TOP CHORD

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(6-0-0 max.): 3-5.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 8=0-3-8

Max Horiz 1=171 (LC 12)

Max Uplift 1=-19 (LC 12)

Max Grav 1=1037 (LC 1), 8=1017 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-553/35, 2-3=-1665/324, 3-4=-1591/401, 4-5=-969/258, 5-6=-1202/256, 6-8=-968/212

BOT CHORD 2-11=-297/1585, 9-11=-297/1434, 8-9=-38/94,

7-8=0/0

WEBS 5-9=0/375, 6-9=-116/882, 4-11=-28/297,

4-9=-654/196. 3-11=0/277

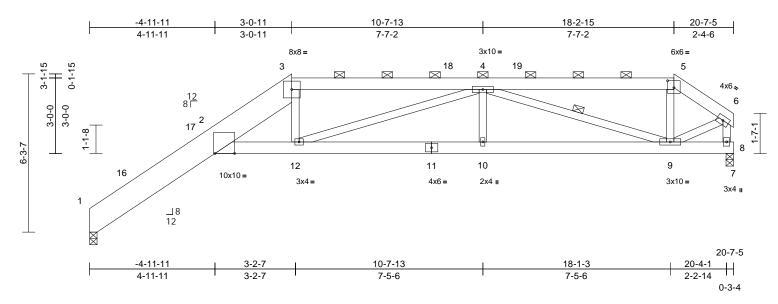
NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 10-6-6, Exterior(2R) 10-6-6 to 16-9-1, Interior (1) 16-9-1 to 20-8-10, Exterior(2E) 20-8-10 to 25-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A12	Hip	1	1	Job Reference (optional)	176809480

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:rR6oa?uyyabGKrUGTCcEc9yXMAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.8

Plate Offsets (X, Y): [2:0-9-6,Edge], [5:0-3-0,0-3-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.17	12-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.35	12-15	>855	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0.26	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.14	12-15	>999	240	Weight: 175 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 *Except* 1-3:2x12 SP No.1

BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(4-11-8 max.): 3-5

BOT CHORD Rigid ceiling directly applied. WFRS 1 Row at midpt 4-9

REACTIONS (size) 1=0-3-8, 8=0-3-8

Max Horiz 1=151 (LC 12) Max Uplift 1=-8 (LC 9), 8=-36 (LC 9)

Max Grav 1=1037 (LC 1), 8=1017 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-553/28, 2-3=-2288/406, 3-4=-2335/477,

4-5=-918/209, 5-6=-1046/205, 6-8=-1037/187

BOT CHORD 2-12=-433/2315, 10-12=-421/2466,

9-10=-421/2466, 8-9=-7/20, 7-8=0/0

5-9=0/285, 6-9=-183/1017, 4-10=0/283,

4-12=-301/190, 3-12=0/415, 4-9=-1648/292

WFBS NOTES

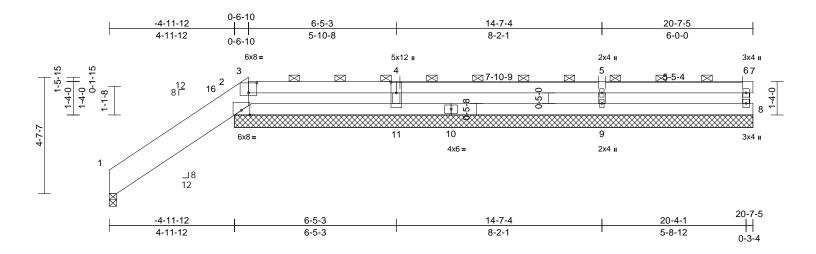
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 8-0-6, Exterior(2R) 8-0-6 to 14-3-1, Interior (1) 14-3-1 to 23-2-10, Exterior(2E) 23-2-10 to 25-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1 and 36 lb uplift at joint 8.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	A13GE	Half Hip Supported Gable	1	1	Job Reference (optional)	176809481

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 $ID: v2_19JtiQyLY5XKtMnamXkyXMAf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 1

Scale = 1:45.8

Plate Offsets (X, Y): [3:0-4-0,0-4-13], [4:0-5-0,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.08	11-14	>950	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.17	11-14	>451	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.11	7	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.09	11-14	>859	240	Weight: 131 lb	FT = 25%

LUMBER

2x6 SP No.1 *Except* 1-3:2x12 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(6-0-0 max.): 3-7.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size)

1=0-3-8, 2=20-7-4, 7=20-7-4, 8=20-7-4, 9=20-7-4, 11=20-7-4

Max Horiz 1=120 (LC 12)

7=-72 (LC 26), 8=-111 (LC 8), Max Uplift

9=-82 (LC 8), 11=-89 (LC 9)

1=426 (LC 1), 2=3 (LC 1), 7=91 Max Grav (LC 8), 8=301 (LC 26), 9=513 (LC

26), 11=930 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-214/13, 2-3=-68/167, 3-5=-223/81, 5-6=-223/81, 6-7=0/0, 6-8=-239/166

BOT CHORD 2-11=-186/404, 9-11=-81/223, 8-9=-81/223

WEBS 4-11=-602/341, 5-9=-410/254

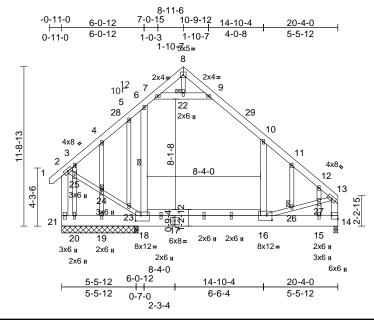
NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) 0-1-12 to 4-6-9, Exterior(2N) 4-6-9 to 5-6-6, Corner(3R) 5-6-6 to 9-11-3, Exterior(2N) 9-11-3 to 25-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Provide adequate drainage to prevent water ponding.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 8, 72 lb uplift at joint 7, 89 lb uplift at joint 11 and 82 lb uplift at joint 9.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	B01GE	Attic Structural Gable	1	1	Job Reference (optional)	176809482

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:23 ID:cvOmZTcV8zB89ii70dWyuFyXLPx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.07	16-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.13	16-18	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.05	16-18	>999	240	Weight: 268 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1

BOT CHORD 2x10 SP No.1 *Except* 18-16:2x6 SP No.1 2x6 SP No.1 *Except* 7-9:2x6 SP No.2, WEBS

8-22,18-2,16-13:2x4 SP No.2

OTHERS 2x4 SP No.2

BRACING

JOINTS

TOP CHORD Structural wood sheathing directly applied,

except end verticals

BOT CHORD Rigid ceiling directly applied. WFBS 1 Row at midpt 6-18

1 Brace at Jt(s): 22,

24, 26

REACTIONS (size) 14=0-3-8, 18=5-7-8, 19=5-7-8, 20=5-7-8, 21=5-7-8

Max Horiz 21=-317 (LC 10)

Max Uplift 18=-176 (LC 9), 19=-638 (LC 18),

20=-23 (LC 13), 21=-132 (LC 8) Max Grav

14=1100 (LC 21), 18=629 (LC 20), 19=15 (LC 8), 20=583 (LC 21),

21=914 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/39, 2-3=-946/86, 3-4=-994/113,

4-5=-1031/220, 5-6=-897/238, 6-7=-653/194, 7-8=-94/94. 8-9=-106/54. 9-10=-811/197.

10-11=-893/78, 11-12=-926/26, 12-13=-841/0, 2-21=-1036/123, 13-14=-654/0

BOT CHORD 20-21=-267/268, 19-20=-267/268,

18-19=-267/268, 16-18=0/609, 15-16=-92/256, 14-15=-92/256 **WEBS**

6-18=-124/326, 10-16=-123/197 7-22=-812/302, 9-22=-812/302, 8-22=-1/75, 2-25=-90/858, 24-25=-93/881,

23-24=-93/895, 18-23=-102/958 16-26=0/416, 26-27=0/421, 13-27=0/403,

5-23=-15/109, 4-24=-206/146, 19-24=-231/159, 3-25=-120/54, 20-25=-153/51, 11-26=-60/55,

12-27=-190/110, 15-27=-281/139

NOTES

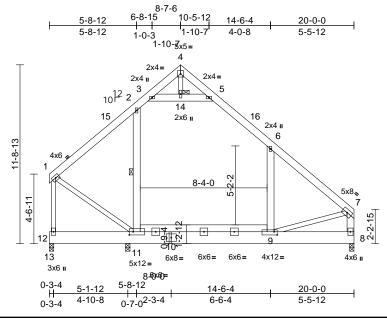
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-9 to 3-7-4, Interior (1) 3-7-4 to 8-11-6, Exterior(2R) 8-11-6 to 13-4-2, Interior (1) 13-4-2 to 20-1-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 6-7, 9-10, 7-22, 9-22
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-18

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 21, 176 lb uplift at joint 18, 638 lb uplift at joint 19 and 23 lb uplift at joint 20.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	B02	Attic	3	1	Job Reference (optional)	176809483

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:oztXc6y9RPxk4qG6CpN4VpyXQPh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.6

Plate Offsets (X, Y): [9:0-2-8,0-2-8], [11:0-3-0,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.06	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.11	9-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.04	9	>999	240	Weight: 230 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1

BOT CHORD 2x10 SP No.1 *Except* 11-9:2x6 SP No.1 2x6 SP No.1 *Except* 4-14,12-1,9-7,11-1:2x4 WEBS

SP No.2

BRACING

Structural wood sheathing directly applied, TOP CHORD except end verticals.

Rigid ceiling directly applied. **BOT CHORD**

WFBS 1 Row at midpt 2-11

1 Brace at Jt(s): 14 JOINTS

This truss requires both edges of the bottom

chord be sheathed in the room area.

REACTIONS (size) 8=0-3-8, 11=0-3-8, 12=0-3-8

Max Horiz 12=-256 (LC 8)

Max Uplift 11=-254 (LC 9), 12=-51 (LC 13) Max Grav 8=1070 (LC 21), 11=539 (LC 20),

12=1037 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-940/141, 2-3=-604/180, 3-4=-100/76, TOP CHORD

4-5=-87/55, 5-6=-741/163, 6-7=-848/1, 1-12=-1162/142, 7-8=-780/0

BOT CHORD 12-13=0/0, 11-12=-247/258, 9-11=0/542,

8-9=-104/244

2-11=-171/267, 6-9=-199/159, 4-14=-1/73,

7-9=0/361, 3-14=-726/292, 5-14=-726/292,

1-11=-84/832

NOTES

WEBS

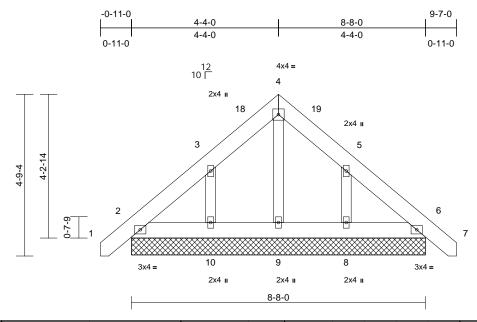
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-7-4 to 5-0-1, Interior (1) 5-0-1 to 8-11-6, Exterior(2R) 8-11-6 to 13-4-2, Interior (1) 13-4-2 to 20-1-4 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-14, 5-14
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 9-11
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 254 lb uplift at joint 11 and 51 lb uplift at joint 12.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	C01GE	Common Supported Gable	1	1	Job Reference (optional)	176809484

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:98aESRRsLgKaO3JLwYFb3lyXLNZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 63 lb	FT = 25%

LUMBER

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied. **BOT CHORD**

REACTIONS (size)

2=8-8-0, 6=8-8-0, 8=8-8-0, 9=8-8-0, 10=8-8-0

Max Horiz 2=-102 (LC 10)

2=-7 (LC 8), 8=-82 (LC 13), 10=-83 Max Uplift

(LC 12)

2=154 (LC 1), 6=154 (LC 1), 8=222

(LC 20), 9=92 (LC 22), 10=224 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/31, 2-3=-92/60, 3-4=-96/159,

4-5=-95/155, 5-6=-80/35, 6-7=0/31 2-10=-58/202, 9-10=-58/202, 8-9=-58/202,

WEBS 4-9=-93/15, 3-10=-187/286, 5-8=-188/285

NOTES

BOT CHORD

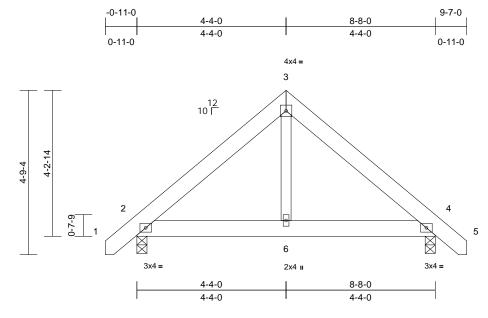
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-9-9 to 3-7-4. Exterior(2N) 3-7-4 to 4-4-0. Corner(3R) 4-4-0 to 8-8-0. Exterior(2N) 8-8-0 to 9-5-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2, 83 lb uplift at joint 10, 82 lb uplift at joint 8 and 7 lb uplift at joint 2.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	C02	Common	2	1	Job Reference (optional)	176809485

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 $ID: Hfs8Bub? HfzkS3 prAm_e42 yXLNM-RfC? PsB70 Hq3NSgPqnL8 w3ulTXbGKWrCDoi7J4 zJC? from the control of the con$

Page: 1

Scale = 1:33.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	6-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	6-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.01	6-9	>999	240	Weight: 58 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=0-3-8, 4=0-3-8

Max Horiz 2=102 (LC 11) Max Uplift 2=-26 (LC 12), 4=-26 (LC 13)

Max Grav 2=394 (LC 1), 4=394 (LC 1)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/31, 2-3=-360/189, 3-4=-360/189,

4-5=0/31

BOT CHORD 2-6=-15/233, 4-6=-10/233

WFBS 3-6=-47/202

NOTES

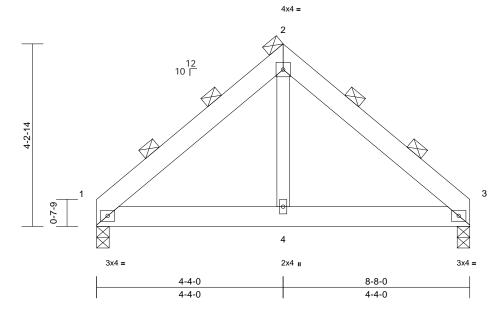
FORCES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-9 to 3-7-4, Interior (1) 3-7-4 to 4-4-0, Exterior(2R) 4-4-0 to 8-8-0, Interior (1) 8-8-0 to 9-5-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2 and 26 lb uplift at joint 4.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	C03	Common	1	2	Job Reference (optional)	176809486

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:9Q6f1FeWLuT9xg6cPc2bFuyXLNI-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	3-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	4-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	4-10	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP		Wind(LL)	0.00	4-7	>999	240	Weight: 106 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD 2-0-0 oc purlins (6-0-0 max.)

(Switched from sheeted: Spacing > 2-0-0). **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 3=0-3-8

Max Horiz 1=-130 (LC 8)

Max Uplift 1=-22 (LC 12), 3=-22 (LC 13) Max Grav 1=520 (LC 1), 3=520 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-551/274, 2-3=-551/295 BOT CHORD 1-4=-110/345, 3-4=-91/345

WFBS 2-4=-85/310

NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows

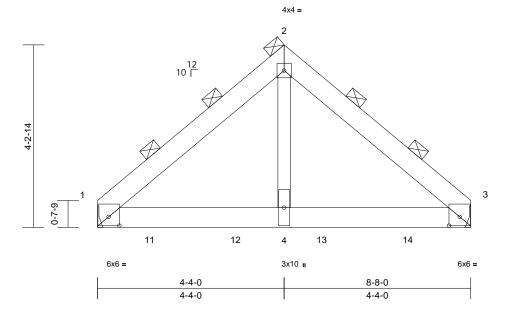
staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 22 lb uplift at joint 3.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	C04-GR	Common Girder	1	2	Job Reference (optional)	176809487

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:G0owC0wqFV_rBIDr8KAxEnyXMAa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Plate Offsets (X, Y): [1:0-3-0,0-2-7], [3:0-3-0,0-2-7]

Loading	(psf)	Spacing	3-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	-0.02	4-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.04	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.35	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP		Wind(LL)	0.01	4-7	>999	240	Weight: 106 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD 2-0-0 oc purlins (6-0-0 max.) (Switched from sheeted: Spacing > 2-0-0).

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 1= Mechanical, 3= Mechanical (size)

Max Horiz 1=-130 (LC 4)

Max Uplift 1=-132 (LC 8), 3=-133 (LC 9) Max Grav 1=2818 (LC 15), 3=2718 (LC 16)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-2696/181, 2-3=-2695/180 1-4=-90/2078, 3-4=-66/2078 **BOT CHORD**

2-4=-110/2918

WEBS NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows

staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-7-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 1 and 133 lb uplift at joint 3.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1111 lb down and 47 lb up at 1-2-8, 1158 lb down and 58 lb up at 3-2-8, and 1158 lb down and 58 lb up at 5-2-8, and 1158 lb down and 58 lb up at 7-2-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-90, 2-3=-90, 5-8=-30

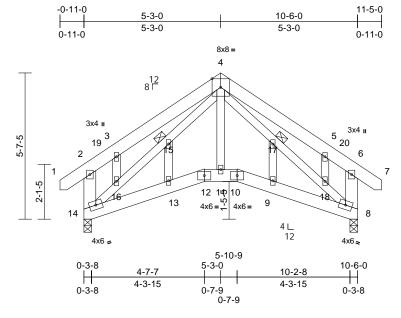
Concentrated Loads (lb)

Vert: 11=-1010 (B), 12=-1010 (B), 13=-1010 (B),

14=-1010 (B)

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	D01GE	Roof Special	1	1	Job Reference (optional)	176809488

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:VDAvzFaPKoRJCQGilwixwOyXQrH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	9-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.00	12-13	>999	240	Weight: 101 lb	FT = 25%

LUMBER

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 14-2,8-6:2x6 SP No.1 WEBS

2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied.

JOINTS 1 Brace at Jt(s): 15,

17

REACTIONS (size) 8=0-3-8, 14=0-3-8

Max Horiz 14=96 (LC 11)

Max Uplift 8=-28 (LC 13), 14=-28 (LC 12)

Max Grav 8=463 (LC 1), 14=463 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-221/146, 3-4=-216/197,

4-5=-211/194, 5-6=-213/143, 6-7=0/34,

2-14=-291/226, 6-8=-282/223 13-14=-23/342, 12-13=-18/359

11-12=-15/329, 10-11=-15/329, 9-10=-19/358,

8-9=-22/341

WEBS 14-16=-294/2, 15-16=-290/0, 4-15=-311/0, 4-17=-344/20, 17-18=-322/19, 8-18=-324/14,

4-11=0/345, 13-15=-34/25, 3-16=-29/48,

9-17=-34/26, 5-18=-28/47

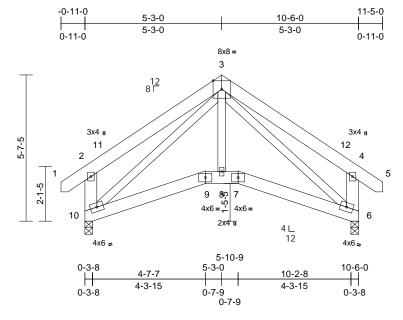
NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-7 to 3-7-6, Interior (1) 3-7-6 to 5-3-0, Exterior(2R) 5-3-0 to 9-7-13, Interior (1) 9-7-13 to 11-3-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 8, 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 8 and 28 lb uplift at joint 14.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	D02	Roof Special	5	1	Job Reference (optional)	176809489

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:VDAvzFaPKoRJCQGilwixwOyXQrH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.00	9	>999	240	Weight: 93 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 10-2,6-4:2x6 SP No.1 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals. BOT CHORD

Rigid ceiling directly applied. REACTIONS (size) 6=0-3-8, 10=0-3-8

Max Horiz 10=158 (LC 11)

Max Uplift 6=-32 (LC 13), 10=-32 (LC 12) Max Grav 6=463 (LC 1), 10=463 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-248/247, 3-4=-236/234,

4-5=0/34, 2-10=-319/265, 4-6=-310/259 **BOT CHORD**

9-10=-78/367, 8-9=-66/343, 7-8=-66/343,

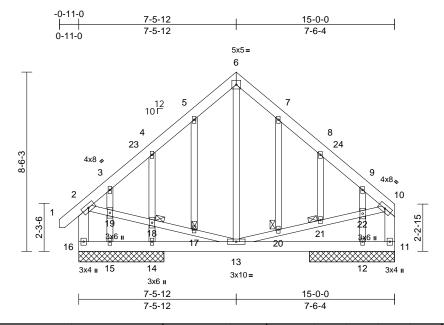
6-7=-77/366

WEBS 3-10=-304/0 3-6=-361/47 3-8=0/348

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-7 to 3-7-6, Interior (1) 3-7-6 to 5-3-0, Exterior(2R) 5-3-0 to 9-7-13, Interior (1) 9-7-13 to 11-3-7 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 6, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 6 and 32 lb uplift at joint 10.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	G01GE	Common Structural Gable	1	1	Job Reference (optional)	176809490

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:AeWnwWe0m_rwqlSlv3QgpHyXLFZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.01	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	12-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.00	13	>999	240	Weight: 158 lb	FT = 25%

LUMBER

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 16-2,11-10:2x6 SP WEBS

No.1 **OTHERS** 2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied.

1 Brace at Jt(s): 17, **JOINTS**

18 20 21

REACTIONS (size) 11=4-0-8, 12=4-0-8, 14=4-0-8,

15=4-0-8, 16=4-0-8 Max Horiz 16=226 (LC 9)

Max Uplift 11=-90 (LC 11), 12=-175 (LC 13),

14=-95 (LC 12), 15=-59 (LC 9),

16=-35 (LC 8)

11=157 (LC 8), 12=546 (LC 20), Max Grav 14=314 (LC 19), 15=94 (LC 19),

16=357 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/39, 2-3=-311/43, 3-4=-296/44,

4-5=-302/146, 5-6=-244/171, 6-7=-225/145, 7-8=-277/123, 8-9=-339/87, 9-10=-237/25,

2-16=-320/45, 10-11=-193/46

15-16=-197/176, 14-15=-197/176, **BOT CHORD**

13-14=-197/176, 12-13=-40/42, 11-12=-40/42

WEBS 6-13=-11/117, 2-19=-16/227, 18-19=-18/224,

> 17-18=-15/226, 13-17=-19/230, 13-20=-13/208, 20-21=-12/204

21-22=-10/210, 10-22=-14/202. 5-17=-18/27.

4-18=-216/185, 14-18=-239/198, 3-19=-102/80, 15-19=-92/80, 7-20=-8/20,

8-21=-39/39, 9-22=-345/298, 12-22=-415/368

NOTES 1) Unbalanced roof live loads have been considered for

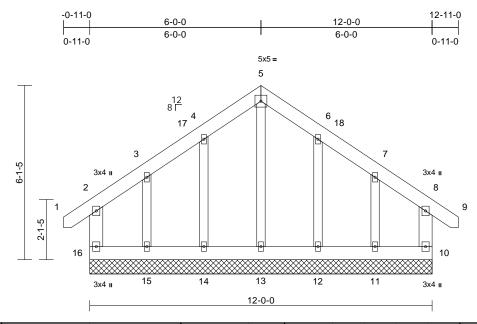
this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-9 to 3-5-12, Interior (1) 3-5-12 to 7-5-12, Exterior(2R) 7-5-12 to 11-10-9, Interior (1) 11-10-9 to 14-9-4 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 16, 90 lb uplift at joint 11, 95 lb uplift at joint 14, 59 lb uplift at joint 15 and 175 lb uplift at joint 12.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	H01GE	Common	1	1	Job Reference (optional)	176809491

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:24 ID:MRRaIVk7s_JH0XjsYEt8?RyXQnC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 101 lb	FT = 25%

LUMBER

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 2x6 SP No.1 WEBS 2x4 SP No.2 OTHERS

BRACING

TOP CHORD

Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 10=12-0-0, 11=12-0-0, 12=12-0-0,

13=12-0-0, 14=12-0-0, 15=12-0-0, 16=12-0-0

Max Horiz 16=-170 (LC 10)

Max Uplift 10=-82 (LC 9), 11=-110 (LC 8),

12=-27 (LC 13), 14=-27 (LC 12), 15=-120 (LC 9), 16=-94 (LC 8)

Max Grav 10=179 (LC 19), 11=223 (LC 20),

12=168 (LC 26), 13=149 (LC 1),

14=168 (LC 25), 15=231 (LC 19), 16=190 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-95/92, 3-4=-80/201,

4-5=-123/287, 5-6=-123/286, 6-7=-83/206,

7-8=-84/98, 8-9=0/34, 2-16=-139/190,

8-10=-132/184

BOT CHORD 15-16=-88/95, 14-15=-88/95, 13-14=-88/95,

12-13=-88/95, 11-12=-88/95, 10-11=-88/95

WEBS 5-13=-176/12, 4-14=-134/132

3-15=-152/183, 6-12=-133/133,

7-11=-149/186

NOTES

Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-9-7 to 3-7-6, Exterior(2N) 3-7-6 to 6-0-0, Corner(3R) 6-0-0 to 10-4-13, Exterior(2N) 10-4-13 to 12-9-7 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 16, 82 lb uplift at joint 10, 27 lb uplift at joint 14, 120 lb

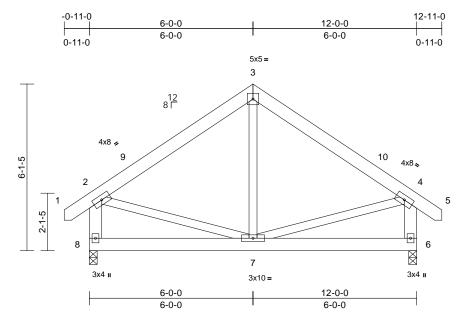
uplift at joint 15, 27 lb uplift at joint 12 and 110 lb uplift at

joint 11. 11) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	H02	Common	5	1	Job Reference (optional)	176809492

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:MRRalVk7s_JH0XjsYEt8?RyXQnC-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.00	7	>999	240	Weight: 99 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 8-2,6-4:2x6 SP No.1 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals. BOT CHORD

Rigid ceiling directly applied. REACTIONS (size) 6=0-3-8, 8=0-3-8

Max Horiz 8=108 (LC 11)

Max Uplift 6=-31 (LC 13), 8=-31 (LC 12)

Max Grav 6=523 (LC 1), 8=523 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-415/176, 3-4=-415/176,

4-5=0/34, 2-8=-465/237, 4-6=-465/237 7-8=-108/187, 6-7=-60/114

BOT CHORD

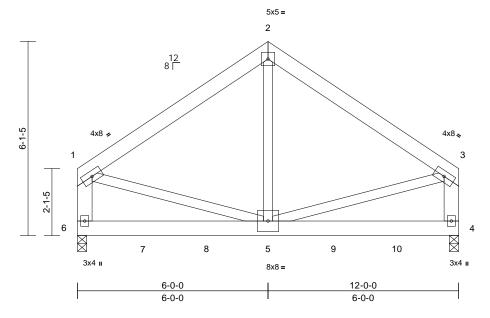
WEBS 3-7=0/165, 2-7=-18/214, 4-7=-21/216

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-7 to 3-7-6, Interior (1) 3-7-6 to 6-0-0, Exterior(2R) 6-0-0 to 10-4-13, Interior (1) 10-4-13 to 12-9-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 8 and 31 lb uplift at joint 6.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	H03-GR	Common Girder	1	2	Job Reference (optional)	176809493

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:t6AQ9YAcPVOh5VqCUJD_bYyXLEt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.00	5-6	>999	240	Weight: 188 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 6-1,4-3:2x6 SP No.1 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 4=0-3-8, 6=0-3-8

Max Horiz 6=-153 (LC 4)

Max Grav 4=1124 (LC 1), 6=1113 (LC 1) (lb) - Maximum Compression/Maximum

FORCES

Tension TOP CHORD 1-2=-977/0, 2-3=-977/0, 1-6=-836/0,

3-4=-836/0

BOT CHORD 5-6=-119/253, 4-5=-6/165

WEBS 2-5=0/662, 1-5=0/598, 3-5=0/597

NOTES

2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc

- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 263 lb down at 2-0-12, 263 lb down at 4-0-12, 263 lb down at 6-0-12, and 263 lb down at 8-0-12, and 263 lb down at 10-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-3=-60, 4-6=-20

Concentrated Loads (lb)

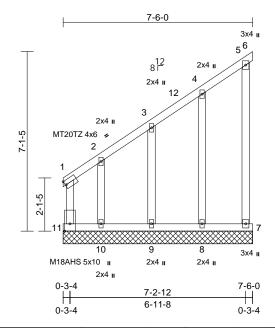
Vert: 5=-263 (F), 7=-263 (F), 8=-263 (F), 9=-263 (F),

10=-263 (F)

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M01GE	Jack-Partial Supported Gable	2	1	Job Reference (optional)	176809494

Comtech. Inc. Favetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:sFZsr3s_J6rpEriCY65MhzyXL3f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	n/a	-	n/a	999	M18AHS	186/179
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(TL)	n/a	-	n/a	999	MT20TZ	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	-0.09	6	n/a	n/a	MT20	244/190
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 54 lb	FT = 25%

LUMBER

2x4 SP No.1 TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS

BRACING

Structural wood sheathing directly applied, TOP CHORD

except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 6=7-6-0, 7=7-6-0, 8=7-6-0, 9=7-6-0, 10=7-6-0, 11=7-6-0

Max Horiz 11=157 (LC 12)

Max Uplift 6=-43 (LC 12), 7=-2 (LC 12), 8=-24

(LC 12), 9=-14 (LC 12), 10=-356 (LC 12), 11=-146 (LC 10)

Max Grav 6=28 (LC 19), 7=59 (LC 1), 8=163 (LC 19), 9=166 (LC 19), 10=257

(LC 19), 11=374 (LC 12)

FORCES (lb) - Maximum Compression/Maximum

1-11=-548/228, 1-2=-624/279, 2-3=-293/140, TOP CHORD

3-4=-165/87, 4-5=-57/32, 5-6=-64/31,

5-7=-44/2

BOT CHORD 10-11=-18/9, 9-10=-18/9, 8-9=-18/9,

7-8=-18/9

WEBS 4-8=-135/173, 3-9=-136/207, 2-10=-290/582

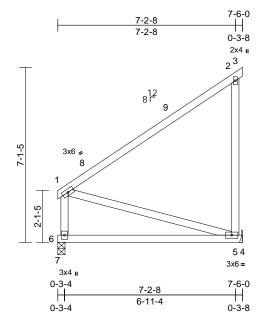
NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) 0-3-4 to 4-8-1, Exterior(2N) 4-8-1 to 7-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are MT20 plates unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 11, 43 lb uplift at joint 6, 2 lb uplift at joint 7, 24 lb uplift at joint 8, 14 lb uplift at joint 9 and 356 lb uplift at joint 10.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M02	Jack-Partial	14	1	Job Reference (optional)	176809495

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:wU36vYYVQDjG9vZ0W35vFlyXPds-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.12	5-6	>690	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.24	5-6	>345	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 47 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 5= Mechanical, 6=0-3-8

Max Horiz 6=156 (LC 12)

Max Uplift 5=-128 (LC 12)

Max Grav 5=327 (LC 19), 6=283 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

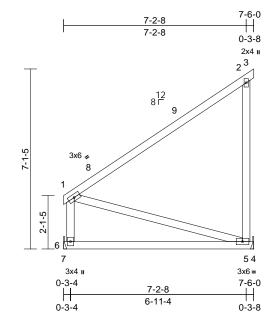
TOP CHORD 1-6=-208/2, 1-2=-198/113, 2-3=-3/0 BOT CHORD 6-7=0/0, 5-6=-282/132, 4-5=0/0 **WEBS** 1-5=-137/293, 2-5=-237/279

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-4 to 4-8-1, Interior (1) 4-8-1 to 7-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



ſ	Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
	250918-A	M03	Jack-Partial	5	1	Job Reference (optional)	176809496

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:wU36vYYVQDjG9vZ0W35vFlyXPds-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.12	5-6	>690	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.24	5-6	>345	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 47 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

2x4 SP No.2 *Except* 6-1:2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals. BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 5= Mechanical, 6= Mechanical

Max Horiz 6=156 (LC 12)

Max Uplift 5=-128 (LC 12)

Max Grav 5=327 (LC 19), 6=283 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

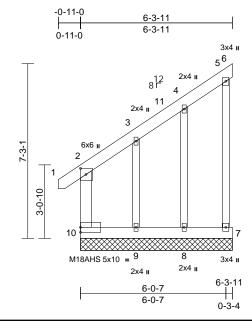
TOP CHORD 1-6=-208/2, 1-2=-198/113, 2-3=-3/0 BOT CHORD 6-7=0/0, 5-6=-282/132, 4-5=0/0 **WEBS** 1-5=-137/293, 2-5=-237/279

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-4 to 4-8-1, Interior (1) 4-8-1 to 7-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M04	Monopitch Supported Gable	1	1	Job Reference (optional)	176809497

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:PUkJI1iKWp?ETCKPS1q?r0yXL1H-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.9

Plate Offsets (X, Y): [2:0-3-0,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	M18AHS	186/179
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	n/a	-	n/a	999	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	-0.07	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 63 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x6 SP No.1 *Except* 5-7:2x4 SP No.2 WEBS

2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 6=6-3-11, 7=6-3-11, 8=6-3-11,

9=6-3-11, 10=6-3-11

Max Horiz 10=159 (LC 9)

Max Uplift 6=-33 (LC 12), 7=-18 (LC 12),

9=-310 (LC 12), 10=-105 (LC 10)

6=41 (LC 19), 7=51 (LC 19), 8=159 Max Grav (LC 1), 9=327 (LC 10), 10=256 (LC

12)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-10=-324/174, 1-2=0/34, 2-3=-481/236,

3-4=-153/87, 4-5=-63/36, 5-6=-58/34,

5-7=-28/18

BOT CHORD 9-10=-17/8, 8-9=-17/8, 7-8=-17/8 WEBS 4-8=-127/139, 3-9=-325/567

NOTES

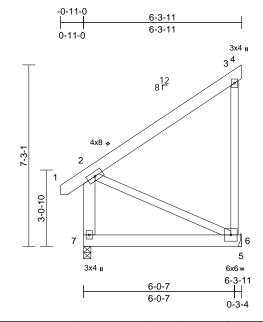
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) 0-2-9 to 4-7-6, Exterior(2N) 4-7-6 to 7-3-11 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- All plates are MT20 plates unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 10, 33 lb uplift at joint 6, 18 lb uplift at joint 7 and 310 lb uplift at joint 9.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M05	Monopitch	4	1	Job Reference (optional)	176809498

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID: 7ht XPG1G96OPD Mub XCpKSjy XL0s-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full start of the property o

Page: 1

Scale = 1:46.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.02	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 59 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 7-2:2x6 SP No.1 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 6= Mechanical, 7=0-3-8

Max Horiz 7=148 (LC 12)

Max Uplift 6=-137 (LC 12)

Max Grav 6=280 (LC 19), 7=298 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-187/120, 3-4=-3/0,

3-6=-233/272, 2-7=-240/16 **BOT CHORD** 6-7=-332/177, 5-6=0/0

WEBS 2-6=-195/366

NOTES

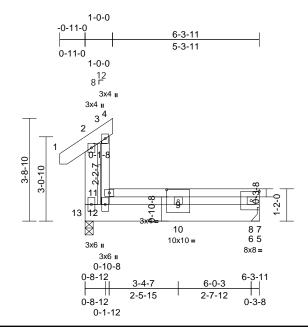
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-9 to 4-7-6, Interior (1) 4-7-6 to 7-3-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSB Building Component Safety Information, available from the Structural Building Component Safety Information and Safety Information, available from the Structural Building Component Safety Information and Safety In and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M06	Roof Special	2	2	Job Reference (optional)	176809499

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries. Inc. Thu Oct 02 22:15:25 ID:5arqDWj8edUmTdRS5XJd_kyXKzN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.7

Plate Offsets (X, Y): [9:0-5-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.06	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.13	9-11	>528	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.08	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.12	9-11	>567	240	Weight: 86 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1

2x8 SP 2400F 2.0E *Except* 11-5:2x4 SP BOT CHORD

No.1

WFBS 2x4 SP No.2 *Except* 13-2:2x6 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-0-0 oc purlins, except end verticals.

Except:

6-0-0 oc bracing: 3-11 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 12-13.

REACTIONS (size) 8= Mechanical, 13=0-3-8

Max Horiz 13=33 (LC 12)

Max Uplift 8=-297 (LC 12), 13=-236 (LC 12) Max Grav 8=3510 (LC 19), 13=2896 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-51/27, 3-4=-3/0, 11-12=-776/540, 3-11=-68/107, 2-13=-114/16

BOT CHORD 12-13=-24/9, 10-12=0/0, 8-10=0/0, 7-8=0/0,

9-11=0/0. 6-9=0/0. 5-6=0/0

WFBS 6-8=-905/539, 9-10=-1420/847

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B). unless otherwise indicated.

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 236 lb uplift at joint 13 and 297 lb uplift at joint 8.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 152 lb down and 97 lb up at 1-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-3=-60, 3-4=-20, 12-13=-20,

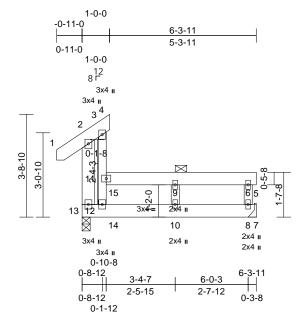
7-12=-545, 5-11=-545 Concentrated Loads (lb)

Vert: 12=-150

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	M07	Roof Special	4	1	Job Reference (optional)	176809500

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:fGn7EpQTpKwUZVG4T5H9r3yXKuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.05	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.11	10-12	>617	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.05	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.10	10-12	>690	240	Weight: 45 lb	FT = 25%

LUMBER

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* 13-2:2x6 SP No.1 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-0-0 oc purlins, except end verticals.

Except:

10-0-0 oc bracing: 3-11

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 9

REACTIONS (size) 8= Mechanical, 13=0-3-8

Max Horiz 13=33 (LC 12)

Max Uplift 8=-18 (LC 12), 13=-34 (LC 12) Max Grav 8=882 (LC 19), 13=990 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/34, 2-3=-124/49, 3-4=-3/0,

11-12=-288/164, 3-11=0/143, 2-13=-225/110

BOT CHORD 12-13=-66/60, 10-12=0/0, 8-10=0/0, 7-8=0/0,

9-11=0/0, 6-9=0/0, 5-6=0/0 WFBS 6-8=-455/228. 9-10=-55/90

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 13 and 18 lb uplift at joint 8.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 304 lb down and 194 lb up at 2-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

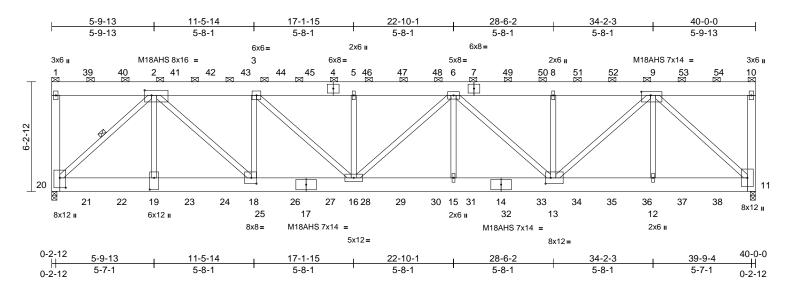
Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

7-12=-130, 5-11=-130

Vert: 1-2=-60, 2-3=-60, 3-4=-20, 12-13=-20,

Concentrated Loads (lb) Vert: 14=-300


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	T1-GR	Flat Girder	1	3	Job Reference (optional)	I76809501

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:ssBsKEZmyqzzPDjPeU7NKjyXPdq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.5

Plate Offsets (X, Y): [2:0-4-12,0-3-8], [9:0-6-4,0-2-8], [13:0-3-8,0-4-0], [18:0-3-8,0-4-0], [19:0-8-0,0-3-0], [20:0-6-12,0-4-0]

Loading	(ncf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	1/4	PLATES	GRIP
Loading	(psf)	Spacing	2-0-0	COI		DEFL	1111	(IUC)	i/ueii	L/u	FLAILS	GKIF
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.29	15-16	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.56	15-16	>841	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	NO	WB	1.00	Horz(CT)	0.14	11	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		Wind(LL)	0.19	15-16	>999	240	Weight: 1356 lb	FT = 25%

LUMBER

WEBS

TOP CHORD 2x10 SP 2400F 2.0E 2x10 SP 2400F 2.0E **BOT CHORD**

2x4 SP No.2 *Except* 20-1,10-11:2x6 SP 2400F 2.0E, 20-2,11-9:2x4 SP 2400F 2.0E,

18-2,16-3,16-6,13-6,13-9:2x4 SP No.1

BRACING

TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 1-10, except

end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 2-20

REACTIONS (size) 11=0-3-8, 20=0-3-8

Max Uplift 11=-893 (LC 4), 20=-1127 (LC 4) 11=18847 (LC 15), 20=20453 (LC Max Grav

15)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-20=-1343/65, 10-11=-1454/0, 1-2=-245/14,

2-3=-31392/1712, 3-5=-37121/2038, 5-6=-37121/2038, 6-8=-29476/1646,

8-9=-29476/1646. 9-10=-222/13 **BOT CHORD** 19-20=-1039/19154. 18-19=-1039/19154.

16-18=-1712/31392, 15-16=-2007/36290,

13-15=-2007/36290, 12-13=-973/17458,

11-12=-973/17458

WFBS 2-20=-26430/1434, 2-19=-201/1612,

2-18=-933/16983, 3-18=-9540/470, 3-16=-452/7951, 5-16=-4724/186, 6-16=-42/1152. 6-15=-163/1898. 6-13=-9457/502, 8-13=-3039/122

9-13=-933/16677, 9-12=-168/1821, 9-11=-24092/1343

NOTES

3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0

Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 20, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1127 lb uplift at joint 20 and 893 lb uplift at joint 11.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

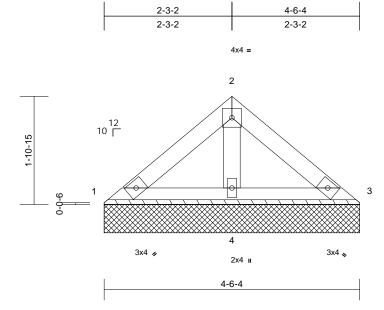
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	T1-GR	Flat Girder	1	3	Job Reference (optional)	176809501

12) Hanger(s) or other connection device(s) shall be

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:25 ID:ssBsKEZmyqzzPDjPeU7NKjyXPdq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

provided sufficient to support concentrated load(s) 384 lb down at 2-0-0, 307 lb down and 140 lb up at 2-0-12. 384 lb down at 4-0-0, 307 lb down and 140 lb up at 4-0-12, 278 lb down and 54 lb up at 5-10-4, 307 lb down and 140 lb up at 6-0-12, 413 lb down at 7-10-4, 307 lb down and 140 lb up at 8-0-12, 413 lb down at 9-10-4, 307 lb down and 140 lb up at 10-0-12, 413 lb down at 11-10-4, 307 lb down and 140 lb up at 12-0-12, 413 lb down at 13-10-4, 307 lb down and 140 lb up at 14-0-12, 397 lb down at 15-10-4, 307 lb down and 140 lb up at 16-0-12, 397 lb down at 17-10-4, 307 lb down and 140 lb up at 18-0-12, 397 lb down at 19-10-4, 307 lb down and 140 lb up at 20-0-12, 397 lb down at 21-10-4, 307 lb down and 140 lb up at 22-0-12, 397 lb down at 23-10-4, 307 lb down and 140 lb up at 24-0-12, 413 lb down at 25-10-4, 307 lb down and 140 lb up at 26-0-12, 397 lb down at 27-10-4, 307 lb down and 140 lb up at 28-0-12, 397 lb down at 29-10-4, 307 lb down and 140 lb up at 30-0-12, 397 lb down at 31-10-4, 307 lb down and 140 lb up at 32-0-12, 397 lb down at 33-10-4, 307 lb down and 140 lb up at 34-0-12, 397 lb down at 35-10-4, 307 lb down and 140 lb up at 36-0-12, and 397 lb down at 37-10-4, and 307 lb down and 140 lb up at 38-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 11-20=-20. 1-10=-60 Concentrated Loads (lb) Vert: 1=-140, 10=-426, 2=-1656, 19=-311 (F=-42, B=-269), 9=-1037, 4=-1265, 7=-1037, 21=-355 (F=-86, B=-269), 22=-355 (F=-86, B=-269), 23=-367 (F=-98, B=-269), 24=-367 (F=-98, B=-269), 25=-367 (F=-98, B=-269), 26=-367 (F=-98, B=-269), 27=-363 (F=-94, B=-269), 28=-363 (F=-94, B=-269), 29=-363

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	VC1	Valley	1	1	Job Reference (optional)	176809502

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:26 ID:rS2?pqN0CctHXeoGbACgYjyXKtN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 16 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=4-6-4, 3=4-6-4, 4=4-6-4

Max Horiz 1=-41 (LC 10)

Max Uplift 3=-45 (LC 25), 4=-19 (LC 12)

Max Grav 1=0 (LC 8), 3=45 (LC 26), 4=361

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-168/171, 2-3=-77/164 1-4=-156/167, 3-4=-146/141

BOT CHORD 2-4=-266/187 WFBS

NOTES

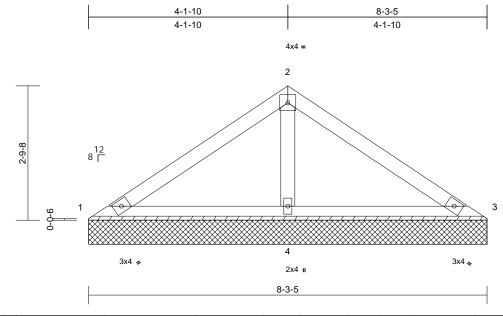
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 3 and 19 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	VD1	Valley	1	1	Job Reference (optional)	3

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:26 ID: G0 fimfHtc MocUT2zk0 E5 IryXL4P-RfC? PsB70 Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC? figure for the property of the property of

Page: 1

Scale = 1:23.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 29 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied.

REACTIONS (size) 1=8-3-5, 3=8-3-5, 4=8-3-5

Max Horiz 1=63 (LC 9)

Max Uplift 1=-11 (LC 26), 3=-12 (LC 8), 4=-46

(LC 12) Max Grav 1=72 (LC 25), 3=72 (LC 26), 4=580

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-134/253, 2-3=-134/253

BOT CHORD 1-4=-232/202, 3-4=-232/202

2-4=-420/275 WEBS

NOTES

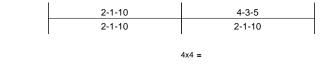
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

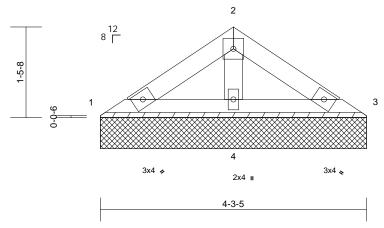
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 12 lb uplift at joint 3 and 46 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	VD2	Valley	1	1	Job Reference (optional)	176809504

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:26 ID:COnTBKI88z2KjnBMsRHZqGyXL4N-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:18.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 14 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied. BOT CHORD

REACTIONS (size) 1=4-3-5, 3=4-3-5, 4=4-3-5

Max Horiz 1=-31 (LC 8)

Max Uplift 1=-4 (LC 12), 3=-8 (LC 13), 4=-12

(LC 12)

Max Grav 1=59 (LC 25), 3=59 (LC 26), 4=241

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-54/72, 2-3=-54/71

BOT CHORD 1-4=-73/79, 3-4=-73/79

2-4=-137/92 WEBS

NOTES

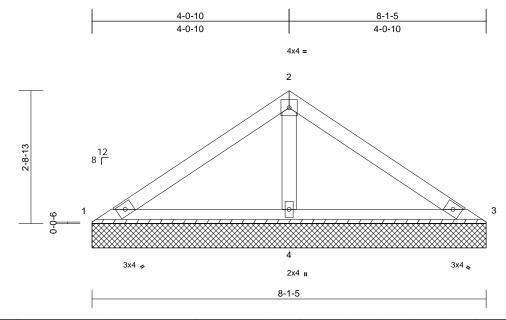
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 1, 8 lb uplift at joint 3 and 12 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	VH1	Valley	1	1	Job Reference (optional)	809505

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:26 ID:qaPurU0Ww?CIVGAfb0TPQJyXLDn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 28 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=8-1-5, 3=8-1-5, 4=8-1-5

Max Horiz 1=61 (LC 9)

Max Uplift 1=-9 (LC 26), 3=-11 (LC 8), 4=-45

(LC 12) Max Grav 1=72 (LC 25), 3=72 (LC 26), 4=564

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-129/243, 2-3=-129/243 BOT CHORD 1-4=-224/198, 3-4=-224/198

2-4=-406/268 WEBS

NOTES

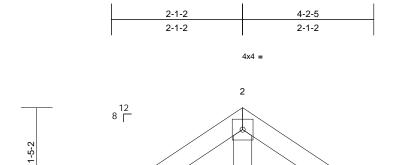
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

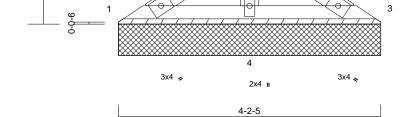
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 11 lb uplift at joint 3 and 45 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-A	VH2	Valley	1	1	Job Reference (optional)	09506

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:15:26 ID:BYCnuC4fkYq2b12dNZ3a7NyXLDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:18.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 13 lb	FT = 25%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied. **BOT CHORD**

REACTIONS (size) 1=4-2-5, 3=4-2-5, 4=4-2-5

Max Horiz 1=-30 (LC 10)

Max Uplift 1=-4 (LC 12), 3=-8 (LC 13), 4=-12

(LC 12) Max Grav 1=58 (LC 25), 3=58 (LC 26), 4=236

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-53/70, 2-3=-53/68 BOT CHORD 1-4=-70/77, 3-4=-70/77

2-4=-132/88 WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 1, 8 lb uplift at joint 3 and 12 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 250918-B

Lot 25 Duncan's Creek

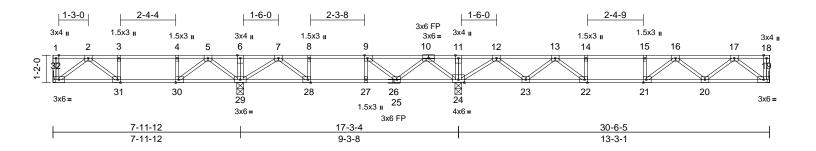
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I76809453 thru I76809468

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

October 3,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F01	Floor	2	1	Job Reference (optional)	09453

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:12 ID:JdgAnLvajtj7y?3S1v7T8MyXMAc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.1

Plate Offsets (X, Y): [9:0-1-8,Edge], [21:0-1-8,Edge], [22:0-1-8,Edge], [28:0-1-8,Edge], [30:0-1-8,Edge], [31:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.57	Vert(LL)	-0.13	20-21	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.57	Vert(CT)	-0.17	20-21	>946	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.03	19	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 150 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.3(flat) WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 19= Mechanical, 24=0-3-8, 29=0-3-8, 32= Mechanical

19=662 (LC 5), 24=1410 (LC 11), Max Grav

29=927 (LC 3), 32=404 (LC 14)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-32=-57/0, 18-19=-41/0, 1-2=0/0,

2-3=-671/0, 3-4=-671/0, 4-5=-671/0, 5-6=0/407, 6-7=0/408, 7-8=-739/183, 8-9=-739/183, 9-11=-415/1141,

11-12=0/1141, 12-13=-920/79, 13-14=-1853/0, 14-15=-1853/0,

15-16=-1853/0, 16-17=-1276/0, 17-18=0/0 BOT CHORD 31-32=0/437, 30-31=0/671, 29-30=-82/302,

28-29=-181/435, 27-28=-183/739,

25-27=-183/739, 24-25=-525/76, 23-24=-279/361, 22-23=0/1469,

21-22=0/1853, 20-21=0/1692, 19-20=0/810

WEBS 6-29=-190/0, 11-24=-125/0, 5-29=-641/0, 2-32=-548/0, 5-30=0/559, 2-31=0/299,

3-31=-173/4, 4-30=-295/0, 10-24=-875/0, 7-29=-664/0, 10-25=0/526, 7-28=-3/409, 9-25=-552/0, 8-28=-213/4, 9-27=-4/75, 12-24=-1342/0. 17-19=-1017/0. 12-23=0/770. 17-20=0/607, 13-23=-771/0, 16-20=-541/0,

13-22=0/700, 16-21=-45/313, 14-22=-325/0, 15-21=-169/19

Unbalanced floor live loads have been considered for

All plates are 3x4 (=) MT20 unless otherwise indicated.

Plates checked for a plus or minus 1 degree rotation about its center.

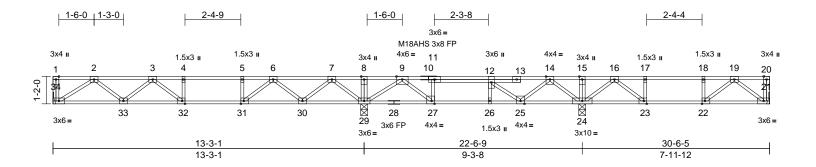
Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

October 3,2025


NOTES

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F02-GR	Floor Girder	1	1	Job Reference (optional)	176809454

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries. Inc. Thu Oct 02 22:10:13 ID:kCMIQMxS0o6hpSo1i2hAm?yXMAZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.1

Plate Offsets (X, Y): [22:0-1-8,Edge], [23:0-1-8,Edge], [27:0-1-8,Edge], [31:0-1-8,Edge], [32:0-1-8,Edge]

	, ,		4.7.0	001		5		(1)	1/1 (1		DI 4750	
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	ın	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.83	Vert(LL)	-0.12	25-26	>947	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.87	Vert(CT)	-0.15	25-26	>729	240	M18AHS	186/179
BCLL	0.0	Rep Stress Incr	NO	WB	0.52	Horz(CT)	0.03	24	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 155 lb	FT = 20%F, 11%E

ш	м	R	F	R	

TOP CHORD 2x4 SP No.1(flat) *Except* 10-20:2x4 SP

2400F 2.0E(flat) **BOT CHORD** 2x4 SP No.1(flat)

2x4 SP No.3(flat) WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (size)

21= Mechanical, 24=0-3-8, 29=0-3-8, 34= Mechanical

Max Uplift 21=-38 (LC 3)

Max Grav 21=294 (LC 5), 24=1439 (LC 11),

29=1230 (LC 16), 34=562 (LC 14)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-34=-44/0, 20-21=-42/9, 1-2=0/0,

2-3=-1177/0, 3-4=-1676/0, 4-5=-1676/0, 5-6=-1676/0, 6-7=-974/0, 7-8=-111/477,

8-9=-110/478, 9-11=-1614/0, 11-12=-1612/0,

12-14=-928/10, 14-15=0/1219, 15-16=0/1219, 16-17=-428/326, 17-18=-428/326,

18-19=-428/326, 19-20=0/0

BOT CHORD

33-34=0/794, 32-33=0/1523, 31-32=0/1676, 30-31=0/1398, 29-30=0/525, 27-29=-227/876,

26-27=0/1614, 25-26=0/1614, 24-25=-125/231, 23-24=-723/61,

22-23=-326/428, 21-22=-77/311

WFBS 8-29=-169/0. 15-24=-94/0. 7-29=-938/0.

> 2-34=-943/0, 7-30=0/604, 2-33=0/499, 6-30=-594/0, 3-33=-450/0, 6-31=0/453 3-32=0/334, 4-32=-169/0, 5-31=-218/0,

14-24=-1561/0, 9-29=-998/0, 14-25=0/980, 9-27=0/1084, 12-25=-856/0, 11-27=-544/0, 12-26=-168/0, 16-24=-723/0, 19-21=-390/96

16-23=0/788, 19-22=-318/149, 17-23=-387/0, 18-22=-95/155

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 3x4 (=) MT20 unless otherwise indicated. 3)
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 715 lb down at 18-6-9 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 21-34=-8 1-20=-80

Concentrated Loads (lb)

Vert: 12=-651 (F)


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F03	Floor	4	1	Job Reference (optional)	

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries. Inc. Thu Oct 02 22:10:14 ID:JdgAnLvajtj7y?3S1v7T8MyXMAc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.1

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.45	Vert(LL)	-0.12	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.51	Vert(CT)	-0.15	14-15	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	0.03	13	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 92 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.3(flat) WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 13= Mechanical, 19=0-3-8, 22=

Mechanical Max Uplift 22=-7 (LC 4)

Max Grav 13=694 (LC 7), 19=1117 (LC 8),

22=251 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-22=-85/0, 12-13=-40/0, 1-2=0/0,

2-3=-243/114, 3-4=0/474, 4-5=0/474, 5-6=-1244/0, 6-7=-2050/0, 7-8=-2050/0, 8-10=-2050/0, 10-11=-1352/0, 11-12=0/0

BOT CHORD 21-22=-114/243, 20-21=-114/243,

19-20=-114/243, 17-19=0/715, 16-17=0/1743, 15-16=0/2050, 14-15=0/1812, 13-14=0/852

4-19=-82/0, 3-19=-668/0, 2-22=-300/141, WEBS

2-21=-67/0, 3-20=0/107, 5-19=-1267/0, 11-13=-1069/0, 5-17=0/702, 11-14=0/651, 6-17=-670/0, 10-14=-600/0, 6-16=0/574, 10-15=0/482, 7-16=-274/0, 8-15=-237/0

NOTES

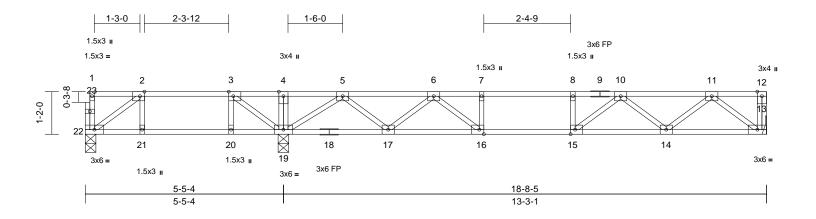
- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x4 (=) MT20 unless otherwise indicated.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 22.

- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F04	Floor	3	1	Job Reference (optional)	09456

Comtech, Inc, Fayetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:HTTzYAGtTXX8FcjEkx?GtcyXKqx-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.45	Vert(LL)	-0.12	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.50	Vert(CT)	-0.15	14-15	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	0.03	13	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 92 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 13= Mechanical, 19=0-3-8,

22=0-3-8

Max Grav 13=698 (LC 7), 19=1117 (LC 8),

22=264 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-22=-76/0, 12-13=-40/0, 1-2=-5/0,

2-3=-278/84, 3-4=0/426, 4-5=0/426 5-6=-1280/0, 6-7=-2072/0, 7-8=-2072/0, 8-10=-2072/0, 10-11=-1360/0, 11-12=0/0

BOT CHORD 21-22=-84/278, 20-21=-84/278,

19-20=-84/278, 17-19=0/755, 16-17=0/1773, 15-16=0/2072, 14-15=0/1826, 13-14=0/856

WEBS 4-19=-75/0, 3-19=-677/0, 2-22=-340/106,

2-21=-55/1, 3-20=0/99, 5-19=-1264/0, 11-13=-1074/0, 5-17=0/697, 11-14=0/656, 6-17=-663/0, 10-14=-606/0, 6-16=0/572, 10-15=0/494, 7-16=-274/0, 8-15=-242/0

NOTES

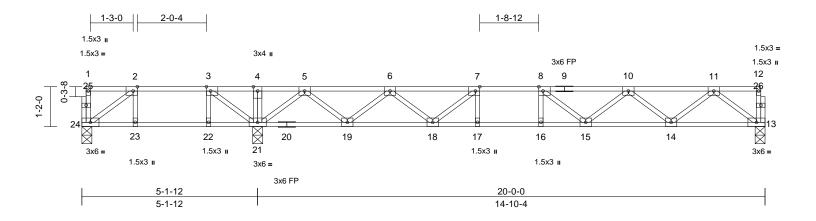
- Unbalanced floor live loads have been considered for 1) this design.
- All plates are 3x4 (=) MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.

Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

October 3,2025



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F05	Floor	6	1	Job Reference (optional)	176809457

Comtech, Inc, Fayetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:WT2o?3aALWoSNcjEFPTMw5yXKqX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.7

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [7:0-1-8,Edge], [8:0-1-8,Edge]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.41	Vert(LL)	-0.11	16	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.59	Vert(CT)	-0.15	16	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	13	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 100 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 23-24,22-23,21-22.

REACTIONS (size) 13=0-3-8, 21=0-3-8, 24=0-3-8

Max Uplift 24=-36 (LC 4)

13=613 (LC 7), 21=1000 (LC 8), Max Grav

24=187 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-24=-75/0, 12-13=-34/0, 1-2=-5/0,

2-3=-174/161, 3-4=0/520, 4-5=0/520,

5-6=-978/0, 6-7=-1776/0, 7-8=-2066/0, 8-10=-1900/0, 10-11=-1243/0, 11-12=-2/0

23-24=-161/174, 22-23=-161/174, BOT CHORD

21-22=-161/174, 19-21=0/423, 18-19=0/1501,

17-18=0/2066, 16-17=0/2066, 15-16=0/2066, 14-15=0/1705, 13-14=0/756

WEBS 4-21=-40/23, 3-21=-594/0, 2-24=-211/202,

2-23=-73/0, 3-22=0/106, 5-21=-1066/0, 11-13=-946/0, 5-19=0/733, 11-14=0/634,

6-19=-693/0, 10-14=-601/0, 6-18=0/382, 10-15=0/297, 7-18=-473/0, 8-15=-345/6,

7-17=-67/141, 8-16=-118/89

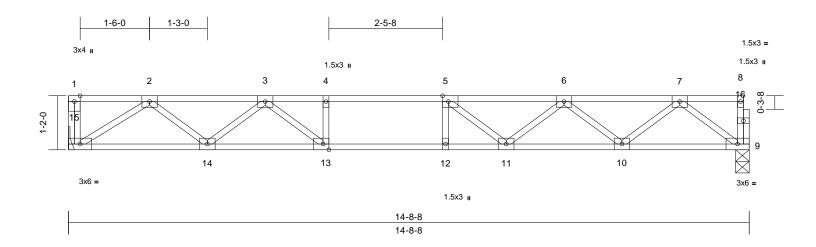
NOTES

- Unbalanced floor live loads have been considered for
- All plates are 3x4 (=) MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F06	Floor	3	1	I768094 Job Reference (optional)	

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:ezKjkVkKHWRcRcCkWdCPyryXKqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.9

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.48	Vert(LL)	-0.16	11-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.71	Vert(CT)	-0.21	11-12	>831	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.03	9	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 73 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 9=0-3-8, 15= Mechanical Max Grav 9=631 (LC 1), 15=636 (LC 1) **FORCES** (lb) - Maximum Compression/Maximum

Tension

1-15=-44/0, 8-9=-34/0, 1-2=0/0, 2-3=-1368/0,

3-4=-2154/0, 4-5=-2154/0, 5-6=-1988/0,

6-7=-1287/0, 7-8=-2/0

BOT CHORD 14-15=0/906, 13-14=0/1821, 12-13=0/2154,

11-12=0/2154, 10-11=0/1772, 9-10=0/779

WEBS 7-9=-974/0, 2-15=-1076/0, 7-10=0/662, 2-14=0/601, 6-10=-632/0, 3-14=-590/0,

6-11=0/346, 3-13=0/592, 5-11=-390/0,

4-13=-258/0, 5-12=-116/71

NOTES

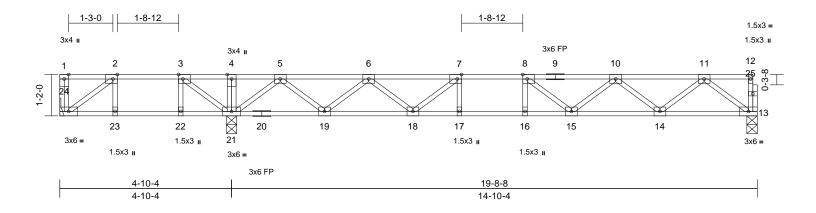
- Unbalanced floor live loads have been considered for 1) this design.
- All plates are 3x4 (=) MT20 unless otherwise indicated.
- Plates checked for a plus or minus 1 degree rotation 3) about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F07	Floor	6	1	Job Reference (optional)	

Comtech, Inc, Fayetteville, NC - 28314

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14

Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [7:0-1-8,Edge], [8:0-1-8,Edge]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.41	Vert(LL)	-0.11	16	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.59	Vert(CT)	-0.15	16	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	13	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 99 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 23-24,22-23,21-22.

13=0-3-8, 21=0-3-8, 24= REACTIONS (size)

Mechanical Max Uplift 24=-59 (LC 4)

13=608 (LC 7), 21=1012 (LC 8), Max Grav

24=174 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-24=-81/0, 12-13=-34/0, 1-2=0/0,

2-3=-143/201, 3-4=0/585, 4-5=0/585 5-6=-922/0, 6-7=-1731/0, 7-8=-2032/0, 8-10=-1876/0, 10-11=-1231/0, 11-12=-2/0

BOT CHORD 23-24=-201/143, 22-23=-201/143,

21-22=-201/143, 19-21=0/361, 18-19=0/1450, 17-18=0/2032, 16-17=0/2032, 15-16=0/2032,

14-15=0/1688, 13-14=0/750

WEBS 4-21=-46/19, 3-21=-607/0, 2-24=-176/248,

2-23=-88/0, 3-22=0/119, 5-21=-1074/0, 11-13=-938/0, 5-19=0/741, 11-14=0/627 6-19=-699/0, 10-14=-594/0, 6-18=0/385, 10-15=0/290, 7-18=-479/0, 8-15=-333/12

7-17=-62/143, 8-16=-121/85

NOTES

- Unbalanced floor live loads have been considered for
- All plates are 3x4 (=) MT20 unless otherwise indicated.
- Plates checked for a plus or minus 1 degree rotation about its center.

- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F08	Floor	2	1	Job Reference (optional)	6809460

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:TODPZM0mtaLLh8T9Mz6oNhyXKpz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.10	Vert(LL)	-0.01	6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.08	Vert(CT)	-0.01	6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 27 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 5= Mechanical, 8=0-3-8 Max Grav 5=209 (LC 1), 8=204 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-8=-45/6, 4-5=-47/4, 1-2=-3/0, 2-3=-222/0,

3-4=0/0

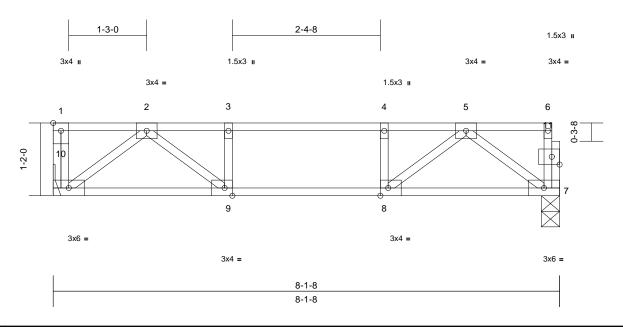
BOT CHORD 7-8=0/222, 6-7=0/222, 5-6=0/222

WEBS 3-5=-274/0, 2-8=-271/0, 2-7=-1/30, 3-6=-2/29

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard



October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F09	Floor	5	1	Job Reference (optional)	76809461

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:JdgAnLvajtj7y?3S1v7T8MyXMAc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:18.5

Plate Offsets (X, Y): [1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,Edge], [11:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.03	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.23	Vert(CT)	-0.04	7-8	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	7	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 41 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 7=0-3-8, 10= Mechanical Max Grav 7=427 (LC 1), 10=433 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-10=-61/0, 6-7=-59/0, 1-2=0/0, 2-3=-778/0,

3-4=-778/0, 4-5=-778/0, 5-6=-4/0 BOT CHORD 9-10=0/475, 8-9=0/778, 7-8=0/474 5-7=-590/0, 2-10=-596/0, 5-8=0/434,

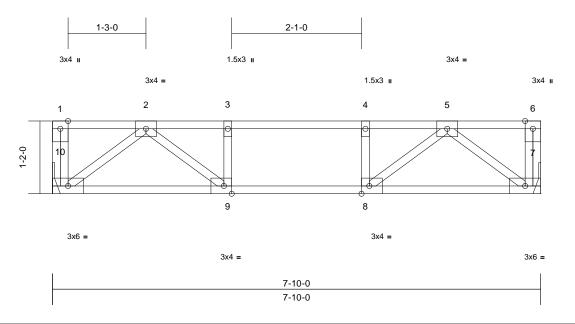
2-9=0/433. 3-9=-220/0. 4-8=-220/0

WEBS NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek
250918-B	F10	Floor	11	1	Job Reference (optional)

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:JdgAnLvajtj7y?3S1v7T8MyXMAc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:18.5

Plate Offsets (X, Y): [8:0-1-8,Edge], [9:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.24	Vert(LL)	-0.03	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.20	Vert(CT)	-0.03	9-10	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.01	7	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 41 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 7= Mechanical, 10= Mechanical

Max Grav 7=417 (LC 1), 10=417 (LC 1) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-10=-59/0, 6-7=-59/0, 1-2=0/0, 2-3=-727/0,

3-4=-727/0, 4-5=-727/0, 5-6=0/0

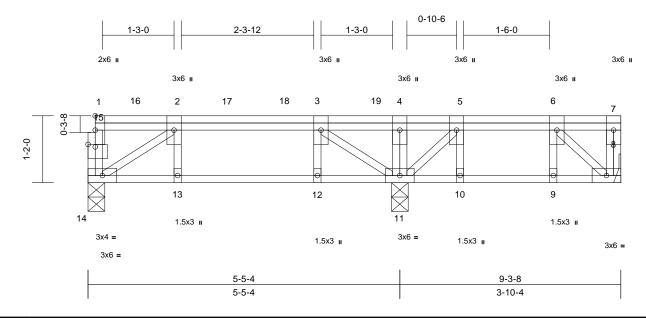
BOT CHORD 9-10=0/456, 8-9=0/727, 7-8=0/456 WEBS 5-7=-572/0, 2-10=-572/0, 5-8=0/391,

2-9=0/391, 3-9=-195/0, 4-8=-195/0

NOTES

- 1) Unbalanced floor live loads have been considered for
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


October 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F11-GR	Floor Girder	1	1	Job Reference (optional)	

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:bi5c?FnvoFPGN_MS6PGpzByXKoz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.1

Plate Offsets (X, Y): [15:0-1-8,0-0-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.20	Vert(LL)	-0.01	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.17	Vert(CT)	-0.02	12-13	>999	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.22	Horz(CT)	0.01	8	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 61 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 8= Mechanical, 11=0-3-8, 14=0-3-8 (size)

Max Grav 8=359 (LC 7), 11=1047 (LC 8),

14=567 (LC 10)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-14=-112/38, 7-8=-79/6, 1-2=-7/2, 2-3=-677/0, 3-4=-10/171, 4-5=-11/169,

5-6=-329/0, 6-7=0/0

BOT CHORD 13-14=0/677, 12-13=0/677, 11-12=0/677,

10-11=0/329, 9-10=0/329, 8-9=0/329 4-11=-206/21, 2-14=-812/0, 3-11=-929/0,

2-13=0/23, 3-12=0/28, 5-11=-546/0, 6-8=-450/0, 5-10=0/23, 6-9=-3/18

NOTES

WEBS

- Unbalanced floor live loads have been considered for this design.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 4) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 159 lb down and 138 lb up at 0-9-15, 158 lb down and 139 lb up at 2-5-2, 158 lb down and 139 lb up at 3-5-2, 158 lb down and 139 lb up at 5-0-5, and 158 lb down and 139 lb up at 6-7-8, and 158 lb down and 139 lb up at 8-2-11 on top chord. The design/selection of such connection device(s) is the responsibility of others.

In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 8-14=-10, 1-7=-100

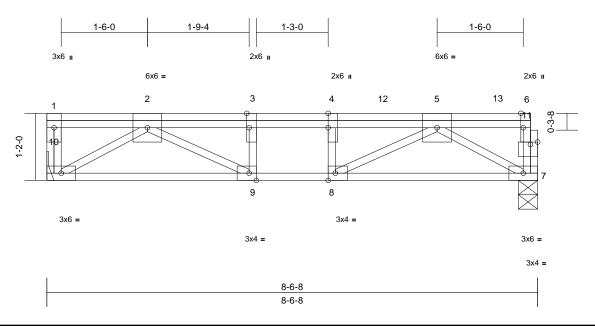
Concentrated Loads (lb)

Vert: 5=-94 (F), 6=-94 (F), 16=-102 (F), 17=-94 (F),

18=-94 (F), 19=-94 (F)

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F12-GR	Floor Girder	1	1	Job Reference (optional)	176809464

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID:G0owC0wqFV_rBIDr8KAxEnyXMAa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20

Plate Offsets (X, Y): [3:0-3-0,Edge], [4:0-3-0,Edge], [6:0-3-0,Edge], [8:0-1-8,Edge], [9:0-1-8,Edge], [11:0-1-8,0-0-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.21	Vert(LL)	-0.04	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.36	Vert(CT)	-0.06	9-10	>999	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.41	Horz(CT)	0.01	7	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 56 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 7=0-4-0, 10= Mechanical Max Grav 7=873 (LC 4), 10=731 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-10=-73/0, 6-7=-191/0, 1-2=0/0,

2-3=-1591/0, 3-4=-1591/0, 4-5=-1591/0, 5-6=-12/0

BOT CHORD 9-10=0/1079, 8-9=0/1591, 7-8=0/1115 2-10=-1259/0. 5-7=-1288/0. 2-9=0/871. WFBS

5-8=0/835, 3-9=-372/0, 4-8=-341/0

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 231 lb down and 107 lb up at 1-10-4, 231 lb down and 107 lb up at 3-10-4, and 231 lb down and 107 lb up at 5-10-4, and 236 lb down and 82 lb up at 7-10-4 on top chord. The design/selection of such connection device (s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb/ft)

Vert: 7-10=-10, 1-6=-100 Concentrated Loads (lb)

Vert: 2=-151 (F), 3=-151 (F), 12=-151 (F), 13=-176

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	F13	Floor	1	1	Job Reference (optional)	176809465

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 ID: cQMtgNrYmUp8m6M746Jgs1yXKmJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Page: 1

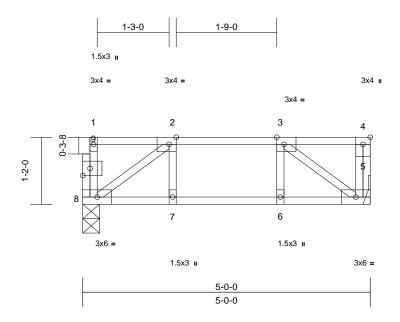


Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.10	Vert(LL)	-0.01	6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.08	Vert(CT)	-0.01	6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 27 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 5= Mechanical, 8=0-3-8 Max Grav 5=209 (LC 1), 8=204 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-8=-45/6, 4-5=-47/4, 1-2=-3/0, 2-3=-222/0,

3-4=0/0

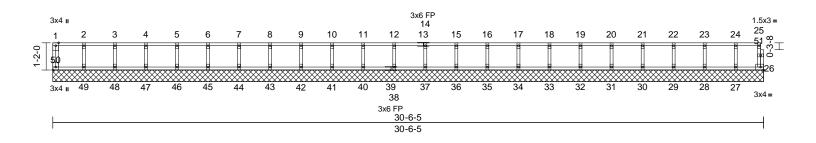
BOT CHORD 7-8=0/222, 6-7=0/222, 5-6=0/222 WEBS

3-5=-274/0, 2-8=-271/0, 2-7=-1/30, 3-6=-2/29

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- Plates checked for a plus or minus 1 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


October 3,2025

Ī	Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
	250918-B	FKW1	Floor Supported Gable	1	1	Job Reference (optional)	76809466

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:14 $ID: dUR1 HndKYAFrIr1c_QwzPZyXLGt-RfC?PsB70 Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 1

Scale = 1:49.5

Plate Offsets	(X,	Y):	[50:Edge,0-1-8]
---------------	-----	-----	-----------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	26	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-R							Weight: 126 lb	FT = 20%F, 11%E

LUMBER	TOP CHORD	1-50=-55/0, 25-26=-42/0, 1-2=-8/0, 2-3=-8/0,
TOP CHORD 2x4 SP No.1(flat)		3-4=-8/0, 4-5=-8/0, 5-6=-8/0, 6-7=-8/0,
BOT CHORD 2x4 SP No.1(flat)		7-8=-8/0, 8-9=-8/0, 9-10=-8/0, 10-11=-8/0,
WEBS 2x4 SP No.3(flat)		11-12=-8/0, 12-14=-8/0, 14-15=-8/0,
OTHERS 2x4 SP No.3(flat)		15-16=-8/0, 16-17=-8/0, 17-18=-8/0,
BRACING		18-19=-8/0, 19-20=-8/0, 20-21=-8/0,
TOP CHORD Structural wood sheathing of	ectly applied or	21-22=-8/0, 22-23=-8/0, 23-24=-8/0,
6-0-0 oc purlins, except en	verticals	24-25=-8/0
BOT CHORD Rigid ceiling directly applied		
bracing.		45-46=0/8, 44-45=0/8, 43-44=0/8, 42-43=0/8,
REACTIONS (size) 26=30-6-5, 27=3	6-5. 28=30-6-5.	41-42=0/8, 40-41=0/8, 38-40=0/8, 37-38=0/8,
29=30-6-5, 30=3		36-37=0/8, 35-36=0/8, 34-35=0/8, 33-34=0/8,
32=30-6-5, 33=3		32-33=0/8, 31-32=0/8, 30-31=0/8, 29-30=0/8,
35=30-6-5, 36=3	S-5 37-30-6-5	28-29=0/8, 27-28=0/8, 26-27=0/8
38=30-6-5, 40=3		2-49=-132/0, 3-48=-134/0, 4-47=-133/0,
42=30-6-5, 43=3	6-5, 44=30-6-5,	5-46=-133/0, 6-45=-133/0, 7-44=-133/0,
45=30-6-5, 46=3	6-5, 47=30-6-5,	8-43=-133/0, 9-42=-133/0, 10-41=-133/0, 11-40=-133/0, 12-38=-133/0, 14-37=-133/0,
48=30-6-5, 49=3	6-5, 50=30-6-5	15-36=-133/0, 16-35=-133/0, 17-34=-133/0, 15-36=-133/0, 16-35=-133/0, 17-34=-133/0,
Max Grav 26=48 (LC 1), 27	35 (LC 1),	18-33=-133/0, 19-32=-133/0, 17-34=-133/0, 18-33=-133/0, 19-32=-133/0, 20-31=-133/0,
28=150 (LC 1), 2	146 (LC 1),	21-30=-134/0, 22-29=-133/0, 23-28=-136/0,
30=147 (LC 1), 3	147 (LC 1),	24-27=-123/0
32=147 (LC 1), 3	147 (LC 1),	2121-12070
34=147 (LC 1), 3		and 4 500 (II) MTOO contains athermatical
36=147 (LC 1), 3	(=0 .),	are 1.5x3 () MT20 unless otherwise
38=147 (LC 1), 4		
41=147 (LC 1), 4	147 (LO 1), /	ecked for a plus or minus 1 degree rotation
43=147 (LC 1), 4	147 (LC 1),	center.

47=147 (LC 1), 48=147 (LC 1), 49=146 (LC 1), 50=60 (LC 1)

45=147 (LC 1), 46=147 (LC 1),

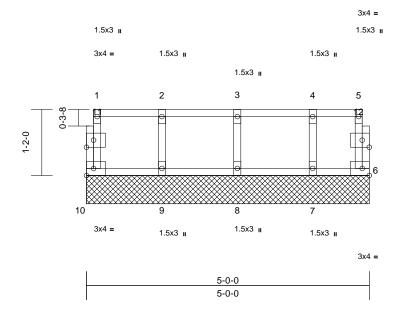
- (lb) Maximum Compression/Maximum Tension
- about its center.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

October 3,2025

FORCES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	FKW2	Floor Supported Gable	1	1	Job Reference (optional)	176809467

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:15 ID:IGFNa2_8UO1bLSKNlkS?duyXLGP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.4

Plate Offsets (X, Y): [11:0-1-8,0-1-8], [12:0-1-8,0-1-8]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-R							Weight: 24 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=5-0-0, 7=5-0-0, 8=5-0-0, 9=5-0-0,

10=5-0-0

6=30 (LC 1), 7=97 (LC 1), 8=122 (LC 1), 9=116 (LC 1), 10=43 (LC 1)

FORCES Tension

(lb) - Maximum Compression/Maximum

TOP CHORD 1-10=-40/0, 5-6=-25/0, 1-2=-6/0, 2-3=-6/0, 3-4=-6/0, 4-5=-6/0

9-10=0/6, 8-9=0/6, 7-8=0/6, 6-7=0/6

BOT CHORD 2-9=-104/0, 3-8=-111/0, 4-7=-90/0 WEBS

NOTES

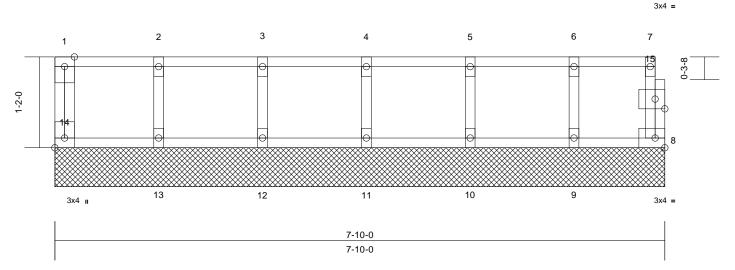
- 1) Plates checked for a plus or minus 1 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 25 Duncan's Creek	
250918-B	FKW3	Floor Supported Gable	1	1	Job Reference (optional)	176809468

Run: 25.30 S Sep 17 2025 Print: 25.3.0 S Sep 17 2025 MiTek Industries, Inc. Thu Oct 02 22:10:15 $ID: \underline{\hspace{0.5cm}} In T75 n M9AJwqW5m776 UnyXLGG-RfC? PsB70 Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the first of the fir$

Page: 1

3x4 II

Scale = 1:14.8

Plate Offsets (X, Y): [14:Edge,0-1-8], [15:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-R							Weight: 35 lb	FT = 20%F, 11%E

LOAD CASE(S) Standard

LUMBER TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 8=7-10-0, 9=7-10-0, 10=7-10-0,

11=7-10-0, 12=7-10-0, 13=7-10-0,

14=7-10-0

Max Grav 8=47 (LC 1), 9=131 (LC 1), 10=150

(LC 1), 11=146 (LC 1), 12=148 (LC 1), 13=145 (LC 1), 14=61 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-14=-56/0, 7-8=-42/0, 1-2=-9/0, 2-3=-9/0,

3-4=-9/0, 4-5=-9/0, 5-6=-9/0, 6-7=-9/0

BOT CHORD 13-14=0/9, 12-13=0/9, 11-12=0/9, 10-11=0/9,

9-10=0/9, 8-9=0/9

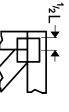
WEBS 2-13=-131/0, 3-12=-134/0, 4-11=-132/0,

5-10=-136/0, 6-9=-121/0

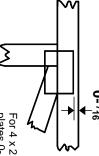
NOTES

- All plates are 1.5x3 (||) MT20 unless otherwise 1) indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

October 3,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

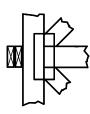
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

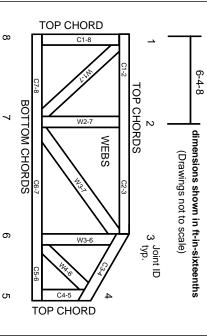

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.