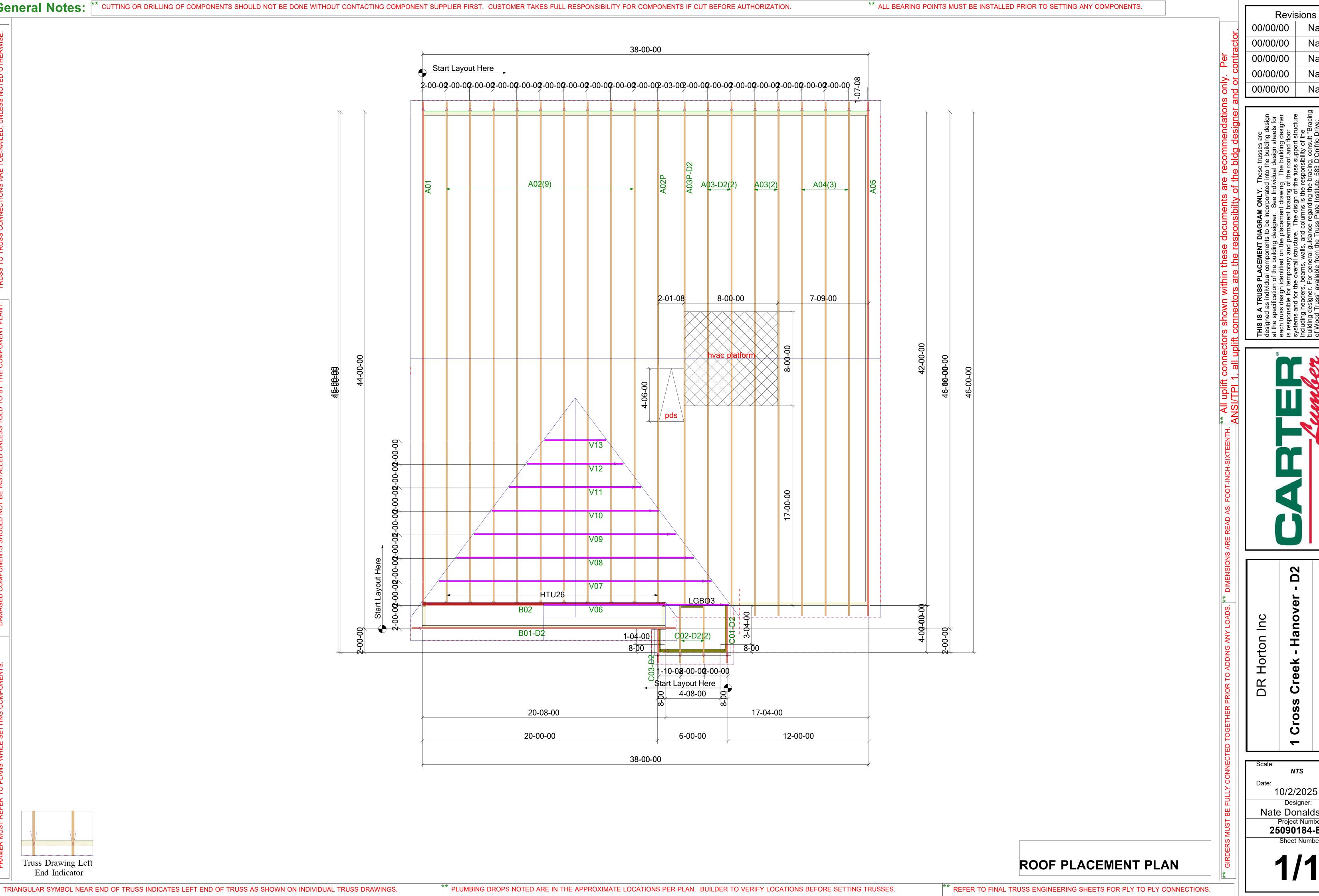


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450


Builder: DR Horton Inc 1 Cross Creek -Model: Hanover - D2

THE PLACEMENT PLAN NOTES:

- 1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
- 2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.
- 3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
- 4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
- 5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
- 6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
- 7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
- 8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.
- 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By:	Date:
--------------	-------

Designer: Nate Donaldson Project Number: **25090184-B** Sheet Number:

Hanover

Creek

Layout

Roof Truss

Name

Name

Name

Name

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25090184-B

1 Cross Creek-Hanover D2

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I76803152 thru I76803172

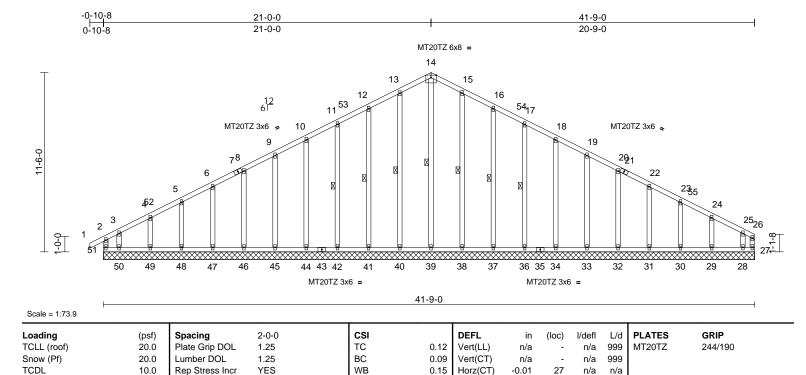
My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

October 3,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


 Job
 Truss
 Truss Type
 Qty
 Ply
 1 Cross Creek-Hanover D2

 25090184-B
 A01
 Common Supported Gable
 1
 1
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:07 ID:zgjStoPZF6y_dmtvQ9Hai?zE3jt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Matrix-MR

LUMBER TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 2 WFBS OTHERS 2x4 SP No.2 **BRACING** TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

Code

IRC2021/TPI2014

FORCES

TOP CHORD

BOT CHORD

1 Row at midpt 14-39, 13-40, 12-41, 11-42, 15-38, 16-37, 17-36

0.0

10.0

17-36

REACTIONS (size) 27=41-9-0, 28=41-9-0, 29=41-9-0, 30=41-9-0, 31=41-9-0, 32=41-9-0, 33=41-9-0, 34=41-9-0, 36=41-9-0, 37=41-9-0, 38=41-9-0, 38=41-9-0, 39=41-9-0, 40=41-9-0, 41=41-9-0, 42=41-9-0, 44=41-9-0, 45=41-9-0, 46=41-9-0, 47=41-9-0, 48=41-9-0, 49=41-9-0, 50=41-9-0, 51=41-9-0

Max Horiz 51=235 (LC 15)

Max Horiz 51=235 (LC 15)

Max Uplift 27=-155 (LC 15), 28=-120 (LC 16), 29=-21 (LC 16), 30=-25 (LC 16), 31=-24 (LC 16), 32=-24 (LC 16), 33=-24 (LC 16), 34=-24 (LC 16), 36=-23 (LC 16), 40=-13 (LC 16), 41=-29 (LC 16), 42=-23 (LC 16), 44=-24 (LC 16), 45=-24 (LC 16), 46=-24 (LC 16), 46=-24 (LC 16), 47=-24 (LC 16), 48=-25 (LC 16), 49=-20 (LC 16),

50=-116 (LC 15), 51=-159 (LC 14)

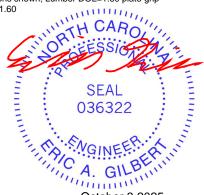
Max Grav 27=151 (LC 14), 28=219 (LC 25), 29=166 (LC 22), 30=159 (LC 1), 31=160 (LC 22), 32=160 (LC 35), 33=161 (LC 22), 34=160 (LC 35), 36=179 (LC 22), 37=230 (LC 22), 38=244 (LC 22), 39=209 (LC 16), 40=241 (LC 21), 41=224 (LC 21), 42=172 (LC 21), 44=160 (LC 34), 45=160 (LC 21), 46=160 (LC 34), 47=161 (LC 21), 48=158 (LC 24), 49=169 (LC 21), 50=222 (LC 14), 51=241 (LC 25)

(lb) - Maximum Compression/Maximum Tension 2-51=-179/96, 1-2=0/46, 2-3=-190/177, 3-4=-149/143, 4-5=-143/133, 5-6=-131/122, 6-8=-120/111, 8-9=-110/150, 9-10=-99/196, 10-11=-94/241, 11-12=-110/286, 12-13=-127/333, 13-14=-142/373, 14-15=-142/373, 15-16=-127/333, 16-17=-110/286, 17-18=-94/241,

18-19=-79/196, 19-20=-63/150, 20-22=-53/105, 22-23=-61/60, 23-24=-69/59, 24-25=-77/70, 25-26=-153/99, 26-27=-129/86 50-51=-84/106, 49-50=-84/106.

24-25=-77/70, 25-26=-153/99, 26-2 50-51=-84/106, 49-50=-84/106, 48-49=-84/106, 47-48=-84/106, 46-47=-84/106, 45-46=-84/106, 44-45=-84/106, 42-44=-84/106, 41-42=-84/106, 40-41=-84/106, 39-40=-84/106, 38-39=-84/106, 37-38=-84/106, 36-37=-84/106, 32-33=-84/106, 31-32=-84/106, 30-31=-84/106, 29-30=-84/106, 28-29=-84/106, 27-28=-84/106 WEBS 14-39=-257/63, 13-40=-201/62, 12-41=-184/85, 11-42=-132/76, 10-44=-120/77, 9-45=-120/77, 8-46=-120/77, 6-47=-120/78, 5-48=-119/77, 4-49=-126/107, 3-50=-124/132, 15-38=-204/62, 16-37=-190/85, 17-36=-139/76, 18-34=-120/77, 19-33=-121/77, 20-32=-120/78, 22-31=-120/77, 23-30=-119/89, 24-29=-124/126.

Weight: 314 lb


FT = 20%

NOTES

 Unbalanced roof live loads have been considered for this design.

25-28=-135/171

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-10-8 to 3-3-10, Exterior(2N) 3-3-10 to 21-0-0, Corner(3R) 21-0-0 to 25-0-0, Exterior(2N) 25-0-0 to 41-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

October 3,2025

Continued on page 2

BCLL

BCDL

WFBS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	A01	Common Supported Gable	1	1	Job Reference (optional)	176803152

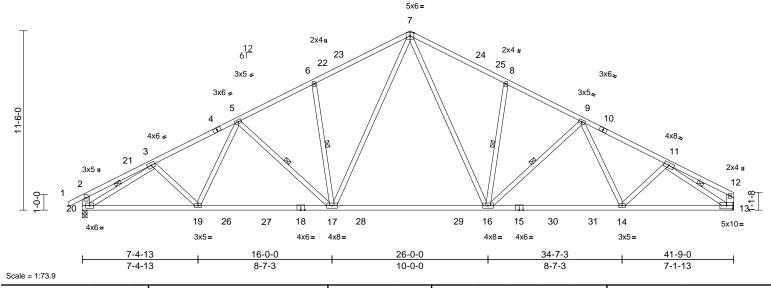
Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:07 ID:zgjStoPZF6y_dmtvQ9Hai?zE3jt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20TZ unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 12) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2 .
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 51, 155 lb uplift at joint 27, 13 lb uplift at joint 40, 29 lb uplift at joint 41, 23 lb uplift at joint 42, 24 lb uplift at joint 44, 24 lb uplift at joint 45, 24 lb uplift at joint 46, 24 lb uplift at joint 47, 25 lb uplift at joint 48, 20 lb uplift at joint 49, 116 lb uplift at joint 50, 13 lb uplift at joint 38, 29 lb uplift at joint 37, 23 lb uplift at joint 36, 24 lb uplift at joint 34, 24 lb uplift at joint 33, 24 lb uplift at joint 32, 24 lb uplift at joint 31, 25 lb uplift at joint 30, 21 lb uplift at joint 29 and 120 lb uplift at joint 28.


LOAD CASE(S) Standard

Job Truss Truss Type Qtv Ply 1 Cross Creek-Hanover D2 176803153 25090184-B A02 9 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:09 ID:u_kV0Ec9oqeLicqDZI5514zE3kv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.84	Vert(LL)	-0.39	16-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.92	Vert(CT)	-0.65	16-17	>759	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.14	13	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 263 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-7.10-7:2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 *Except* 15-13:2x4 SP No.2 WFBS 2x4 SP No.3 *Except* 20-2,13-12:2x6 SP

BRACING

TOP CHORD Sheathed or 2-2-0 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing

WFRS 1 Row at midpt 6-17, 8-16, 5-17, 9-16,

3-20, 11-13

REACTIONS (size) 13= Mechanical, 20=0-3-8

Max Horiz 20=237 (LC 15)

Max Uplift 13=-100 (LC 16), 20=-135 (LC 16) Max Grav 13=1891 (LC 25), 20=1952 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

BOT CHORD

1-2=0/49, 2-3=-407/68, 3-5=-2935/258,

5-6=-2500/283, 6-7=-2491/356,

7-8=-2477/357, 8-9=-2486/284, 9-11=-2863/260, 11-12=-270/48,

2-20=-356/116, 12-13=-211/48

19-20=-208/2600, 17-19=-159/2617, 16-17=-32/1799, 14-16=-149/2425,

13-14=-197/2313

6-17=-424/158, 8-16=-438/158, 3-19=0/226,

5-19=0/214, 5-17=-436/92, 7-17=-108/1117, 7-16=-106/1089, 9-16=-394/91, 9-14=0/172,

11-14=0/284, 3-20=-2601/204,

11-13=-2650/229

NOTES

WEBS

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-10, Interior (1) 3-3-10 to 21-0-0, Exterior(2R) 21-0-0 to 25-2-2, Interior (1) 25-2-2 to 41-6-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: Joint 20 SP No.1.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 13
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

October 3,2025

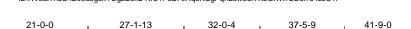
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply 1 Cross Creek-Hanover D2 176803154 25090184-B A02P Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,


4-6-7

9-11-12

14-10-3

-0-10-8

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:09 ID:rvv6aX1IJuAE09a8gskYUgzE3kL-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

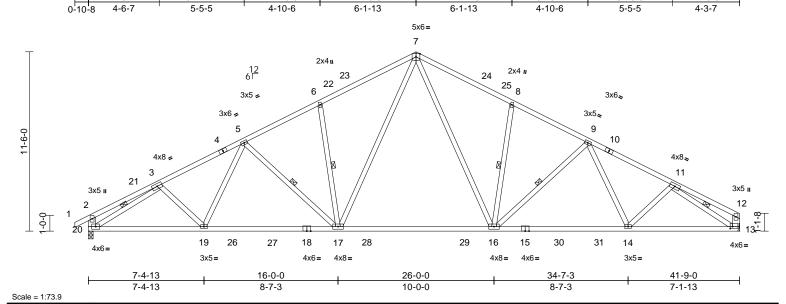


Plate Offsets (X, Y): [13:0-1-12,0-1-8]

Loading	(psf)	Spacing	2-3-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.65	Vert(LL)	-0.36	16-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.78	Vert(CT)	-0.61	16-17	>814	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.66	Horz(CT)	0.13	13	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 263 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-7,10-7:2x4 SP 2400F

2.0E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 15-13:2x4 SP

No.1

WEBS 2x4 SP No.3 *Except* 20-2,13-12:2x6 SP

BRACING

WFBS

TOP CHORD Sheathed or 2-9-4 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

1 Row at midpt 6-17. 8-16. 5-17. 9-16.

3-20, 11-13 13= Mechanical, 20=0-3-8 REACTIONS (size)

Max Horiz 20=266 (LC 15)

Max Uplift 13=-112 (LC 16), 20=-152 (LC 16) Max Grav 13=2128 (LC 25), 20=2196 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/56, 2-3=-470/78, 3-5=-3301/290,

5-6=-2813/318, 6-7=-2801/400, 7-8=-2786/401, 8-9=-2797/319,

9-11=-3220/293, 11-12=-309/55,

2-20=-406/132, 12-13=-241/55

19-20=-233/2925, 17-19=-180/2946, 16-17=-35/2025, 14-16=-168/2730,

13-14=-222/2602 WEBS 6-17=-472/176, 8-16=-488/176, 3-19=0/253,

5-19=0/239, 5-17=-494/105, 7-17=-121/1254,

7-16=-118/1224, 9-16=-447/104, 9-14=0/192,

11-14=0/320, 3-20=-2913/227,

11-13=-2975/256

NOTES

BOT CHORD

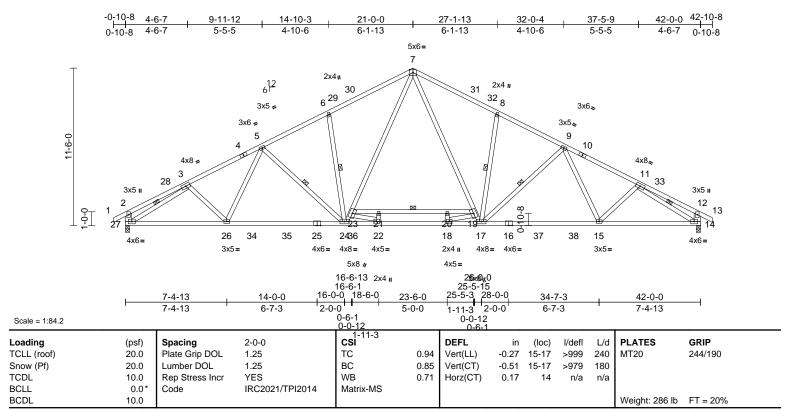
Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-10. Interior (1) 3-3-10 to 21-0-0. Exterior(2R) 21-0-0 to 25-2-2, Interior (1) 25-2-2 to 41-6-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: Joint 20 SP 2400F 2.0E .
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	A03	Common	2	1	Job Reference (optional)	176803155

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:09 ID:QD2r?32B9vm44cAdU9SchBzE3yX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

WEBS

2x4 SP No.1 *Except* 1-4,10-13:2x4 SP No.2 TOP CHORD 2x4 SP No.1 *Except* 23-19:2x4 SP No.2 **BOT CHORD** WFBS 2x4 SP No.3 *Except* 27-2,14-12:2x6 SP

BRACING TOP CHORD Sheathed, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 21-23,19-20

5-7-9 oc bracing: 20-21.

1 Row at midpt 5-24, 6-24, 8-17, 9-17,

3-27, 11-14 14=0-3-8, 27=0-3-8

REACTIONS (size) Max Horiz 27=-237 (LC 14)

Max Grav 14=2244 (LC 25), 27=2244 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/49, 2-3=-436/49, 3-5=-3473/0, TOP CHORD 5-6=-3076/0, 6-7=-3066/51, 7-8=-3066/51,

8-9=-3075/0, 9-11=-3473/0, 11-12=-436/49, 12-13=0/49, 2-27=-375/105, 12-14=-375/105

BOT CHORD 26-27=0/3030, 24-26=0/3121, 22-24=0/2125, 18-22=0/2939, 17-18=0/2166, 15-17=0/2965,

14-15=0/2852, 21-23=-910/0, 20-21=-910/0,

19-20=-910/0

7-19=0/1380, 17-19=-153/1099

23-24=-153/1102, 7-23=0/1380, 3-26=0/307, 5-26=0/175, 5-24=-412/110, 6-24=-436/159, 8-17=-436/159, 9-17=-413/110, 9-15=0/183, 11-15=0/307, 21-22=-226/0, 22-23=0/1017, 18-20=-226/0, 18-19=0/1017, 3-27=-3087/0,

11-14=-3088/0

NOTES

WEBS

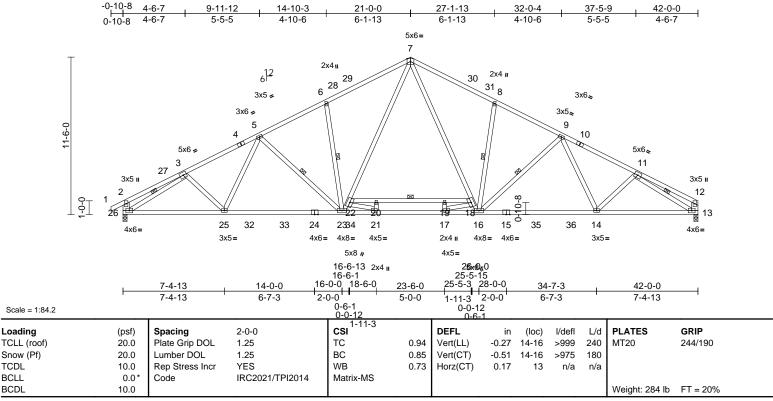
Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-14, Interior (1) 3-3-14 to 21-0-0, Exterior(2R) 21-0-0 to 25-2-6, Interior (1) 25-2-6 to 42-10-8 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 21-0-0 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply 1 Cross Creek-Hanover D2 176803156 25090184-B A03-D2 2 Common Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:09 ID:aZXdu4l5ypgGY7mxwBUsCkzBVX5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-7,10-7:2x4 SP No.1 2x4 SP No.1 *Except* 22-18:2x4 SP No.2 **BOT CHORD** WFBS 2x4 SP No.3 *Except* 26-2,13-12:2x6 SP

BRACING TOP CHORD

Sheathed, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 20-22,18-19

5-7-9 oc bracing: 19-20.

WEBS 1 Row at midpt 6-23, 8-16, 5-23, 9-16, 3-26, 11-13

13=0-3-8, 26=0-3-8

REACTIONS (size) Max Horiz 26=235 (LC 15)

Max Grav 13=2184 (LC 25), 26=2244 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/49, 2-3=-436/49, 3-5=-3474/0,

5-6=-3077/0, 6-7=-3068/51, 7-8=-3069/54, 8-9=-3078/0, 9-11=-3483/0, 11-12=-361/37,

2-26=-375/105, 12-13=-264/48

BOT CHORD 25-26=0/3024, 23-25=0/3116, 21-23=0/2120,

17-21=0/2934, 16-17=0/2160, 14-16=0/2967,

13-14=0/2870, 20-22=-909/0, 19-20=-909/0,

18-19=-909/0 6-23=-426/159, 8-16=-437/159, 3-25=0/307,

5-25=0/174, 5-23=-412/110,

22-23=-154/1102, 7-22=0/1380, 7-18=0/1382,

16-18=-153/1102, 9-16=-414/111, 9-14=0/187, 11-14=0/298, 20-21=-226/0,

21-22=0/1017, 17-19=-226/0, 17-18=0/1017,

3-26=-3088/0, 11-13=-3178/0

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

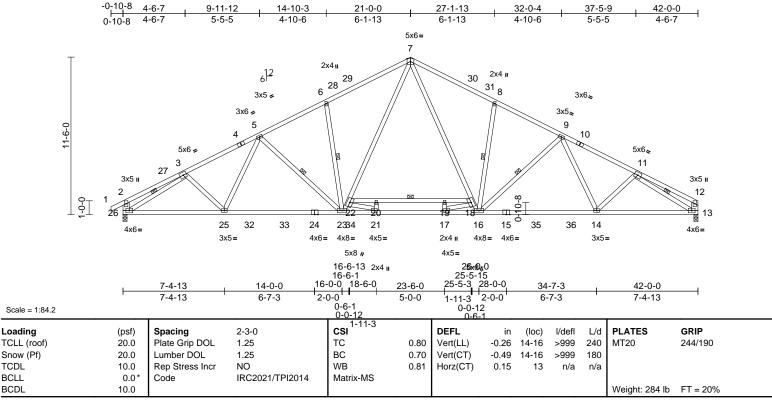
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-14, Interior (1) 3-3-14 to 21-0-0, Exterior(2R) 21-0-0 to 25-2-6, Interior (1) 25-2-6 to 41-9-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 21-0-0 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


 Job
 Truss
 Truss Type
 Qty
 Ply
 1 Cross Creek-Hanover D2

 25090184-B
 A03P-D2
 Common
 1
 1
 1
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:09 ID:m1Lw2vwJLJmf3t6OYLCN5zzBVVb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrcDoi7J4zJC?f

Page: 1

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-7,10-7:2x4 SP 2400F

2.0E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 22-18:2x4 SP

No.2

WEBS 2x4 SP No.3 *Except* 26-2,13-12:2x6 SP

No.2

BRACING

TOP CHORD Sheathed or 2-4-7 oc purlins, except end

verticals

BOT CHORD Rigid ce

RD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

5-8-12 oc bracing: 20-22,18-19 5-3-15 oc bracing: 19-20.

WEBS 1 Row at midpt 6-23, 8-16, 5-23, 9-16,

3-26, 11-13

REACTIONS (size) 13=0-3-8, 26=0-3-8

Max Horiz 26=264 (LC 15)

Max Grav 13=2445 (LC 25), 26=2512 (LC 24)

FORCES (Ib) - Maximum Compression/Maximum
Tension

TOP CHORD 1-2=0/56, 2-3=-504/58, 3-5=-3884/2,

 $5-6=-3437/1,\ 6-7=-3425/82,\ 7-8=-3427/86,$

8-9=-3438/4, 9-11=-3894/13, 11-12=-421/44.

2-26=-428/120, 12-13=-303/55

BOT CHORD 25-26=0/3384, 23-25=0/3486, 21-23=0/2366,

17-21=0/3253, 16-17=0/2411, 14-16=0/3317,

13-14=-1/3211, 20-22=-990/0, 19-20=-990/0, 18-19=-990/0

WEBS 6-23=-474/177, 8-16=-487/177, 3-25=0/341,

5-25=0/195, 5-23=-469/124,

22-23=-170/1239, 7-22=0/1539, 7-18=0/1542, 16-18=-170/1240, 9-16=-470/125,

9-14=0/211, 11-14=0/330, 20-21=-256/0, 21-22=0/1111, 17-19=-256/0, 17-18=0/1111,

3-26=-3438/0, 11-13=-3537/0

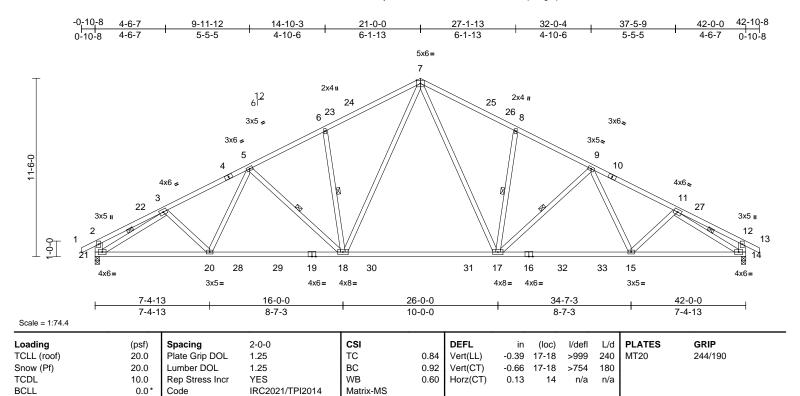
 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-14, Interior (1) 3-3-14 to 21-0-0, Exterior(2R) 21-0-0 to 25-2-6, Interior (1) 25-2-6 to 41-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 21-0-0 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be SP 2400F 2.0E .

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

NOTES

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	A04	Common	3	1	Job Reference (optional)	176803158

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10 ID:TKxf7yldW0hQhivavtKSf6zE3m0-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

BCDL

TOP CHORD 2x4 SP No.2 *Except* 4-7,10-7:2x4 SP No.1

BOT CHORD 2x4 SP No.1 WFBS

2x4 SP No.3 *Except* 21-2,14-12:2x6 SP No 2

10.0

BRACING

TOP CHORD Sheathed or 2-2-0 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing

WFRS 1 Row at midpt 6-18, 8-17, 5-18, 9-17,

3-21, 11-14

REACTIONS (size) 14=0-3-8, 21=0-3-8

Max Horiz 21=237 (LC 15)

Max Uplift 14=-135 (LC 16), 21=-135 (LC 16)

Max Grav 14=1963 (LC 25), 21=1963 (LC 24)

FORCES (lb) - Maximum Compression/Maximum Tension

1-2=0/49, 2-3=-409/68, 3-5=-2954/259,

TOP CHORD 5-6=-2521/284, 6-7=-2512/357,

7-8=-2512/357, 8-9=-2521/284,

9-11=-2954/259, 11-12=-409/68, 12-13=0/49,

2-21=-357/116, 12-14=-357/116

BOT CHORD 20-21=-172/2621, 18-20=-123/2642

17-18=0/1825, 15-17=-112/2486,

14-15=-160/2444

WEBS 6-18=-436/158, 8-17=-436/158, 3-20=0/229,

5-20=0/212, 5-18=-435/92, 7-18=-108/1117, 7-17=-108/1116, 9-17=-435/92, 9-15=0/212,

11-15=0/229, 3-21=-2617/205,

11-14=-2618/205

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 3-3-14, Interior (1) 3-3-14 to 21-0-0, Exterior(2R) 21-0-0 to 25-2-6, Interior (1) 25-2-6 to 42-10-8 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 21 and 14. This connection is for uplift only and does not consider lateral forces.

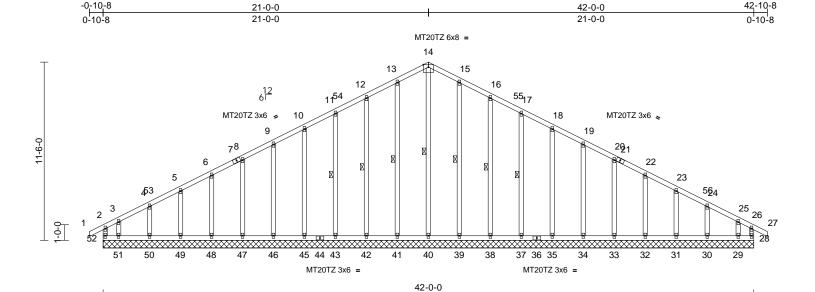
LOAD CASE(S) Standard

Weight: 265 lb

FT = 20%

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply 1 Cross Creek-Hanover D2 176803159 25090184-B A05 Common Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10 ID:zmq982DDE?WLnC4_PRVWSLzE3ip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading 2-0-0 CSI **DEFL** I/defI L/d **PLATES** GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.12 Vert(LL) n/a n/a 999 MT20TZ 244/190 BC Snow (Pf) 20.0 1 25 Vert(CT) Lumber DOL 0.09 n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.15 Horz(CT) -0.01 28 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Matrix-MR BCDL 10.0 Weight: 316 lb FT = 20%

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

BRACING TOP CHORD

LUMBER

Scale = 1:74.4

Sheathed or 6-0-0 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WFBS 1 Row at midpt 14-40, 13-41, 12-42,

11-43, 15-39, 16-38, 17-37

28=42-0-0, 29=42-0-0, 30=42-0-0, REACTIONS (size) 31=42-0-0, 32=42-0-0, 33=42-0-0, 34=42-0-0, 35=42-0-0, 37=42-0-0, 38=42-0-0, 39=42-0-0, 40=42-0-0, 41=42-0-0, 42=42-0-0, 43=42-0-0, 45=42-0-0, 46=42-0-0, 47=42-0-0, 48=42-0-0, 49=42-0-0, 50=42-0-0, 51=42-0-0, 52=42-0-0 Max Horiz 52=236 (LC 15)

Max Uplift 28=-69 (LC 15), 29=-79 (LC 12), 30=-20 (LC 16), 31=-25 (LC 16), 32=-24 (LC 16), 33=-24 (LC 16), 34=-24 (LC 16), 35=-24 (LC 16), 37=-23 (LC 16), 38=-29 (LC 16), 39=-13 (LC 16), 41=-13 (LC 16), 42=-29 (LC 16), 43=-23 (LC 16), 45=-24 (LC 16), 46=-24 (LC 16), 47=-24 (LC 16), 48=-24 (LC 16), 49=-25 (LC 16), 50=-20 (LC 16), 51=-109 (LC 15), 52=-157 (LC 14)

28=164 (LC 28), 29=159 (LC 29), Max Grav 30=168 (LC 22), 31=158 (LC 1), 32=160 (LC 22), 33=160 (LC 35), 34=161 (LC 22), 35=160 (LC 35), 37=179 (LC 22), 38=230 (LC 22), 39=244 (LC 22), 40=212 (LC 16), 41=244 (LC 21), 42=230 (LC 21), 43=179 (LC 21), 45=160 (LC 34), 46=161 (LC 21), 47=160 (LC 34), 48=160 (LC 21), 49=158 (LC 24), 50=168 (LC 21), 51=220 (LC 14), 52=230 (LC 29)

(lb) - Maximum Compression/Maximum Tension

2-52=-172/94, 1-2=0/46, 2-3=-182/175, 3-4=-142/141, 4-5=-135/131, 5-6=-124/120, 6-8=-113/109, 8-9=-102/150, 9-10=-92/195, 10-11=-89/240, 11-12=-107/285, 12-13=-127/333, 13-14=-143/372, 14-15=-143/372, 15-16=-127/333,

16-17=-107/285, 17-18=-89/240, 18-19=-72/195, 19-20=-57/150,

20-22=-52/105, 22-23=-60/59, 23-24=-71/66, 24-25=-78/77, 25-26=-121/97, 26-27=0/46, 26-28=-150/34

BOT CHORD 51-52=-91/124, 50-51=-91/124, 49-50=-91/124, 48-49=-91/124, 47-48=-91/124, 46-47=-91/124,

45-46=-91/124, 43-45=-91/124, 42-43=-91/124, 41-42=-91/124, 40-41=-91/124, 39-40=-91/124, 38-39=-91/124, 37-38=-91/124, 35-37=-91/124, 34-35=-91/124, 33-34=-91/124, 32-33=-91/124,

31-32=-91/124, 30-31=-91/124, 29-30=-91/124, 28-29=-91/124

14-40=-256/64, 13-41=-204/62, **WEBS** 12-42=-190/85, 11-43=-139/76,

10-45=-120/77, 9-46=-121/77, 8-47=-120/77, 6-48=-120/78, 5-49=-119/77, 4-50=-126/108, 3-51=-125/132, 15-39=-204/62,

16-38=-190/85, 17-37=-139/76, 18-35=-120/77, 19-34=-121/77, 20-33=-120/77, 22-32=-120/78, 23-31=-119/77, 24-30=-126/108,

25-29=-100/133

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=42ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-10-8 to 3-3-14, Exterior(2N) 3-3-14 to 21-0-0, Corner(3R) 21-0-0 to 25-0-0, Exterior(2N) 25-0-0 to 42-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

October 3,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

FORCES

TOP CHORD

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	A05	Common Supported Gable	1	1	Job Reference (optional)	176803159

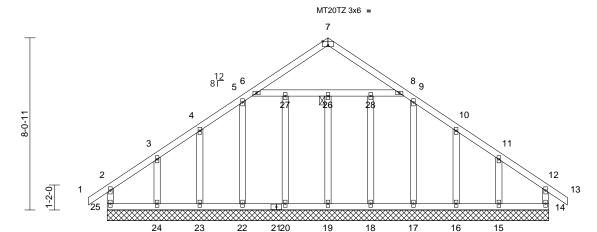
Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10 ID:zmq982DDE?WLnC4_PRVWSLzE3ip-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20TZ unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 12) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2 .
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint 52, 69 lb uplift at joint 28, 13 lb uplift at joint 41, 29 lb uplift at joint 42, 23 lb uplift at joint 43, 24 lb uplift at joint 45, 24 lb uplift at joint 46, 24 lb uplift at joint 47, 24 lb uplift at joint 48, 25 lb uplift at joint 49, 20 lb uplift at joint 50, 109 lb uplift at joint 51, 13 lb uplift at joint 39, 29 lb uplift at joint 38, 23 lb uplift at joint 37, 24 lb uplift at joint 35, 24 lb uplift at joint 34, 24 lb uplift at joint 33, 24 lb uplift at joint 32, 25 lb uplift at joint 31, 20 lb uplift at joint 30 and 79 lb uplift at joint 29.

LOAD CASE(S) Standard


Job Truss Truss Type Qty Ply 1 Cross Creek-Hanover D2 176803160 25090184-B B01-D2 Common Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10

ID:HEIFis8gYtifFXO3y?qysAzE1xJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?fd

Scale = 1:53.9

Plate Offsets (X, Y): [7:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20TZ	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 138 lb	FT = 20%

MT20TZ 3x6 =

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.2

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 26

REACTIONS (size)

14=20-8-0, 15=20-8-0, 16=20-8-0, 17=20-8-0, 18=20-8-0, 19=20-8-0, 20=20-8-0, 22=20-8-0, 23=20-8-0,

24=20-8-0, 25=20-8-0 Max Horiz 25=180 (LC 13)

14=-64 (LC 14), 15=-42 (LC 10),

16=-29 (LC 14), 23=-29 (LC 14), 24=-47 (LC 11), 25=-64 (LC 14)

Max Grav 14=203 (LC 20), 15=200 (LC 21), 16=111 (LC 1), 17=345 (LC 1), 18=89 (LC 5), 19=70 (LC 5), 20=89 (LC 5), 22=345 (LC 1), 23=111 (LC 1), 24=208 (LC 20), 25=217 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-25=-173/124, 1-2=0/57, 2-3=-150/86 3-4=-112/135, 4-5=-109/189, 5-6=-172/209, 6-7=-266/93, 7-8=-266/93, 8-9=-172/209,

9-10=-108/189, 10-11=-104/135,

11-12=-134/68, 12-13=0/57, 12-14=-165/121 BOT CHORD 24-25=-70/94, 23-24=-70/94, 22-23=-70/94, 20-22=-70/94, 19-20=-70/94, 18-19=-70/94,

17-18=-70/94, 16-17=-70/94, 15-16=-70/94,

14-15=-70/94

WEBS

6-27=-26/170, 26-27=-26/170, 26-28=-26/170, 8-28=-26/170, 19-26=-6/31, 20-27=-29/6, 5-22=-305/35, 4-23=-70/74, 3-24=-151/99, 18-28=-29/6, 9-17=-305/35, 10-16=-70/73. 11-15=-146/98

20-8-0

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; $B{=}45ft;\,L{=}25ft;\,eave{=}2ft;\,Cat.\,\,II;\,Exp\,\,B;\,Enclosed;$ MWFRS (directional) and C-C Corner(3E) -0-10-8 to 2-4-0, Exterior(2N) 2-4-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20TZ unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Vertical gable studs spaced at 2-0-0 oc and horizontal gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Page: 1

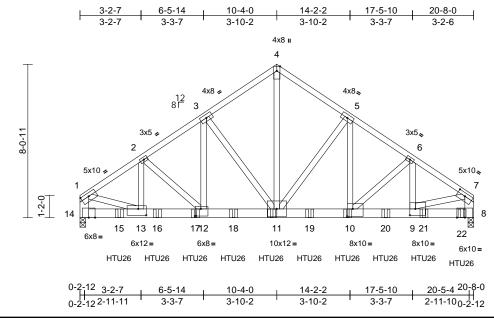
- 12) All bearings are assumed to be SP No.2.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 25, 64 lb uplift at joint 14, 29 lb uplift at joint 23, 47 lb uplift at joint 24, 29 lb uplift at joint 16 and 42 lb uplift at joint 15.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qtv Ply 1 Cross Creek-Hanover D2 176803161 25090184-B B₀2 Common Girder 2 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10 ID:6_GiATa7JDOEJHiYMrQPH5zBVIW-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.5

Plate Offsets (X, Y): [1:0-5-0,0-2-0], [7:0-5-0,0-2-0], [9:0-3-8,0-4-0], [10:0-3-8,0-4-12], [12:0-3-8,0-4-8], [13:0-5-0,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.60	Vert(LL)	-0.13	10-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.52	Vert(CT)	-0.24	10-11	>999	180	1	
TCDL	10.0	Rep Stress Incr	NO	WB	0.98	Horz(CT)	0.05	8	n/a	n/a	1	
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0	[Weight: 318 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 14-1,8-7:2x6 SP No.2, 13-1,9-7:2x4 SP No.2, 11-4:2x4 SP No.1

BRACING

TOP CHORD Sheathed or 3-4-11 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 8=0-3-8, 14=0-3-8

Max Horiz 14=164 (LC 9)

Max Uplift 8=-660 (LC 10), 14=-566 (LC 10) Max Grav 8=11030 (LC 16), 14=9375 (LC 15)

(lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=-10729/671, 2-3=-10476/693,

3-4=-8309/601, 4-5=-8309/601,

5-6=-10606/700, 6-7=-10891/680,

1-14=-8474/529, 7-8=-8569/534 **BOT CHORD** 13-14=-133/1108, 12-13=-501/8961,

10-12=-466/8823, 9-10=-508/8995,

8-9=-62/1126

WEBS 1-13=-467/8227, 7-9=-467/8234,

2-13=-37/228, 2-12=-243/55, 3-11=-3057/247, 3-12=-185/3448,

4-11=-591/8936, 5-11=-3235/258,

5-10=-197/3661, 6-10=-277/57, 6-9=-36/269

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

staggered at 0-4-0 oc.

Bottom chords connected as follows: 2x6 - 3 rows Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Bearing at joint(s) 14, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 8. This connection is for uplift only and does not consider lateral forces.
- 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 20-0-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

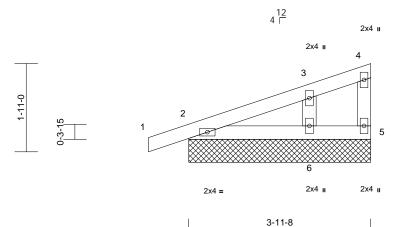
Vert: 1-4=-60, 4-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 11=-1631 (B), 10=-1631 (B), 15=-1631 (B), 16=-1631 (B), 17=-1631 (B), 18=-1631 (B), 19=-1631 (B), 20=-1631 (B), 21=-1631 (B), 22=-1842 (B)

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	C01-D2	Monopitch Supported Gable	1	1	Job Reference (optional)	176803162

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:10 ID:s60FxChSGV2vJr3yHkfHsNzE1xu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

-0-10-8	3-11-8
0-10-8	3-11-8

Scale = 1:25.1

Loading	(psf)	Spacing	2-0-0	CSI	0.11	DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.16	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Sheathed or 3-11-8 oc purlins, except end

verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=3-11-8, 5=3-11-8, 6=3-11-8

Max Horiz 2=49 (LC 16)

Max Uplift 2=-30 (LC 16)

Max Grav 2=213 (LC 21), 5=78 (LC 7), 6=262

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/28, 2-3=-77/38, 3-4=-28/1, 4-5=-13/30

TOP CHORD **BOT CHORD**

2-6=-23/41, 5-6=0/0 WEBS 3-6=-211/183

NOTES

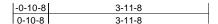
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 3-9-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

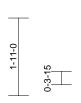
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 1-4-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 2 and 30 lb uplift at joint 2.

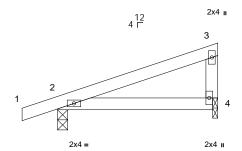
LOAD CASE(S) Standard

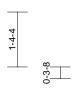
Page: 1

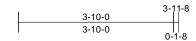
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	C02-D2	Monopitch	2	1	Job Reference (optional)	6803163


Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:Z44yOF8?AAiHmp7yYaPf8yzBIRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:28.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.26	Vert(LL)	-0.02	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.22	Vert(CT)	-0.03	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

Sheathed or 3-11-8 oc purlins, except end TOP CHORD

verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 4=0-1-8

Max Horiz 2=49 (LC 15)

Max Uplift 2=-39 (LC 16), 4=-7 (LC 16)

Max Grav 2=288 (LC 21), 4=194 (LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/28, 2-3=-87/42, 3-4=-134/88

BOT CHORD 2-4=-44/83

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2, Joint 4 SP No.3.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

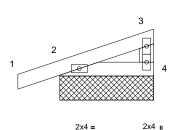
October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	C03-D2	Monopitch Supported Gable	1	1	Job Reference (optional)	176803164

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:5aXEFTbR9212LcSPp2WPYhzE1y0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 II

Page: 1

12 4 Г

Scale = 1:24

1-11-8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 8 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Sheathed or 1-11-8 oc purlins, except end

verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=1-11-8, 4=1-11-8

Max Horiz 2=30 (LC 16) Max Uplift 2=-36 (LC 16)

Max Grav 2=178 (LC 21), 4=77 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/28, 2-3=-28/21, 3-4=-48/48

BOT CHORD 2-4=-23/29

NOTES

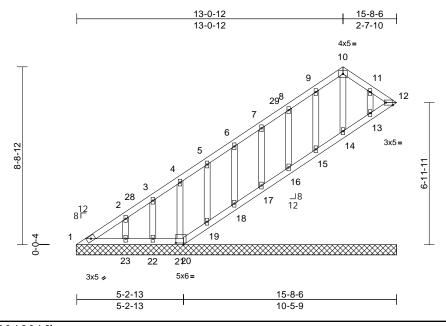
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2 and 36 lb uplift at joint 2.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 5.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V06	Valley	1	1	I7680316 Job Reference (optional)	5

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:2nEGNbEhgKjXCm?bQhzqBszE1xB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.5

Plate Offsets (X, Y): [1	2:0-4-1,Edge], [20:0-4-8,0-1-0]
--------------------------	---------------------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 91 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=15-8-12, 12=15-8-12,

13=15-8-12, 14=15-8-12, 15=15-8-12, 16=15-8-12, 17=15-8-12. 18=15-8-12. 19=15-8-12, 20=15-8-12, 21=15-8-12, 22=15-8-12, 23=15-8-12

Max Horiz 1=196 (LC 14)

12=-35 (LC 14), 13=-33 (LC 14),

15=-21 (LC 14), 16=-25 (LC 14), 17=-23 (LC 14), 18=-24 (LC 14), 19=-24 (LC 14), 20=-19 (LC 12),

21=-22 (LC 14), 22=-25 (LC 14),

23=-21 (LC 14) Max Grav 1=92 (LC 20), 12=44 (LC 19),

13=123 (LC 30), 14=104 (LC 1), 15=114 (LC 19), 16=107 (LC 19), 17=108 (LC 19), 18=108 (LC 19), 19=108 (LC 19), 20=16 (LC 11),

21=123 (LC 1), 22=78 (LC 19), 23=192 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-199/150, 2-3=-165/113, 3-4=-131/95,

4-5=-98/72, 5-6=-65/55, 6-7=-32/46, 7-8=-25/38, 8-9=-32/52, 9-10=-55/86, 10-11=-55/88, 11-12=-39/57

BOT CHORD

WEBS

1-23=-68/96, 22-23=-29/22, 21-22=-29/22, 20-21=-29/22, 19-20=-41/34, 18-19=-42/33, 17-18=-42/33, 16-17=-42/33, 15-16=-42/33, 14-15=-42/33, 13-14=-42/34, 12-13=-42/26 10-14=-80/5. 9-15=-86/51. 8-16=-81/53. 7-17=-82/44, 6-18=-82/44, 5-19=-81/44, 4-21=-83/44, 3-22=-69/45, 2-23=-119/45,

NOTES

1) Unbalanced roof live loads have been considered for this design

11-13=-85/40

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 13-1-2, Exterior(2E) 13-1-2 to 15-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.

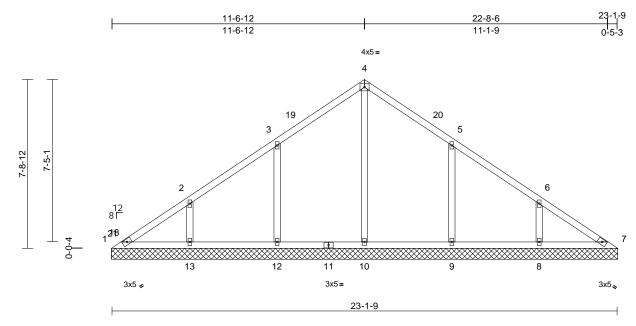
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 20, 35 lb uplift at joint 12, 21 lb uplift at joint 15, 25 lb uplift at joint 16, 23 lb uplift at joint 17, 24 lb uplift at joint 18, 24 lb uplift at joint 19, 22 lb uplift at joint 21, 25 lb uplift at joint 22, 21 lb uplift at joint 23 and 33 lb uplift at ioint 13.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 12, 14, 15, 16, 17, 18, 19, 13.

LOAD CASE(S) Standard

TOP CHORD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V07	Valley	1	1	Job Reference (optional)	3166

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:EuOQhMMa4i5z1SLjZVfP8AzE1x0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

= 1	:52.8
	= 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.25	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 104 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. REACTIONS (size)

1=23-2-5, 7=23-2-5, 8=23-2-5,

9=23-2-5, 10=23-2-5, 12=23-2-5,

13=23-2-5

Max Horiz 1=149 (LC 13)

1=-7 (LC 12), 8=-62 (LC 14), 9=-78 Max Uplift (LC 14), 12=-79 (LC 14), 13=-61

(IC 14)

Max Grav 1=110 (LC 20), 7=105 (LC 30),

8=389 (LC 20), 9=429 (LC 20),

10=440 (LC 19), 12=429 (LC 19),

13=388 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-169/159, 2-3=-89/139, 3-4=-88/142, 4-5=-88/138, 5-6=-48/96, 6-7=-144/117

BOT CHORD 1-13=-74/146, 12-13=-74/86, 10-12=-74/86,

9-10=-74/86, 8-9=-74/86, 7-8=-74/118 **WEBS**

4-10=-235/0, 3-12=-264/140, 2-13=-236/103, 5-9=-263/140, 6-8=-236/103

NOTES

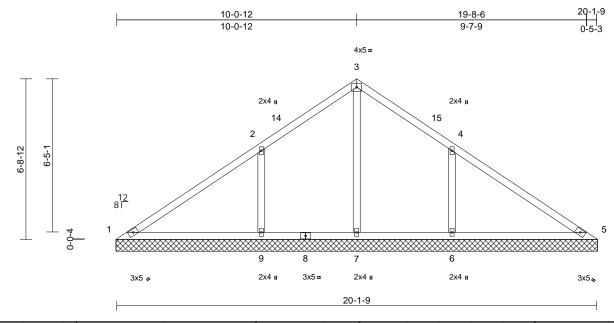
TOP CHORD

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-7-2, Interior (1) 3-7-2 to 11-7-2, Exterior(2R) 11-7-2 to 14-7-2, Interior (1) 14-7-2 to 23-2-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 1, 79 lb uplift at joint 12, 61 lb uplift at joint 13, 78 lb uplift at joint 9 and 62 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V08	Valley	1	1	Job Reference (optional)	76803167

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:asCJk3QjvFkF7DEgM2FarEzE1wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	=	1:48.3

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.31	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horiz(TL)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 84 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Sheathed or 10-0-0 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=20-2-5, 5=20-2-5, 6=20-2-5, 7=20-2-5, 9=20-2-5

Max Horiz 1=-131 (LC 12)

1=-9 (LC 30), 5=-9 (LC 29), 6=-105 Max Uplift

(LC 14), 9=-105 (LC 14)

1=89 (LC 29), 5=89 (LC 30), 6=619 Max Grav (LC 20), 7=637 (LC 19), 9=621 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-85/452, 2-3=0/354, 3-4=0/349,

4-5=-83/412 **BOT CHORD**

1-9=-284/113, 7-9=-284/113, 6-7=-284/113,

5-6=-284/113

WEBS 3-7=-488/0, 2-9=-356/162, 4-6=-356/162

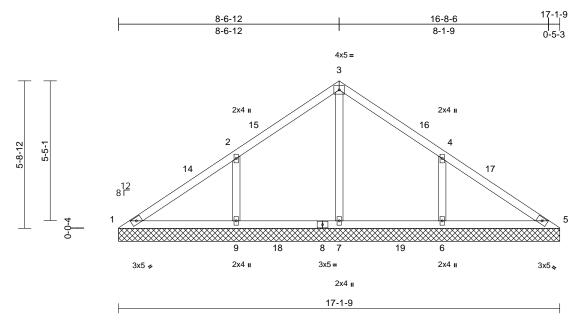
NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-1-2, Exterior(2R) 10-1-2 to 13-1-2, Interior (1) 13-1-2 to 20-2-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 9 lb uplift at joint 5, 105 lb uplift at joint 9 and 105 lb uplift
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V09	Valley	1	1	Job Reference (optional)	3

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:xp?CnnUsjnMYD_6e8brlYHzE1ws-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 70 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Sheathed or 10-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

1=17-1-9, 5=17-1-9, 6=17-1-9, 7=17-1-9, 9=17-1-9

Max Horiz 1=-111 (LC 12)

Max Uplift 6=-86 (LC 14), 9=-86 (LC 14) Max Grav

1=102 (LC 29), 5=102 (LC 30), 6=486 (LC 20), 7=493 (LC 19),

9=488 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-125/244, 2-3=0/191, 3-4=0/173,

4-5=-119/210

BOT CHORD 1-9=-128/123, 7-9=-128/75, 6-7=-128/75,

5-6=-128/95

WEBS 3-7=-327/0, 2-9=-294/140, 4-6=-294/140

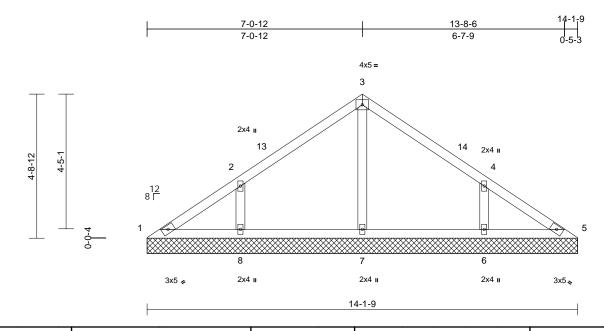
NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 8-7-2, Exterior(2R) 8-7-2 to 11-7-2, Interior (1) 11-7-2 to 17-1-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 9 and 86 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V10	Valley	1	1	Job Reference (optional)	176803169

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 $ID: paEjd8XNn0s_icQPNRvhi7zE1wo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffrom Particle Pa$

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 55 lb	FT = 20%

LUMBER

Scale = 1:37.8

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

1=14-1-9, 5=14-1-9, 6=14-1-9, 7=14-1-9, 8=14-1-9

Max Horiz 1=-91 (LC 12)

Max Uplift 6=-70 (LC 14), 8=-70 (LC 14)

1=94 (LC 20), 5=86 (LC 1), 6=334 Max Grav (LC 30), 7=301 (LC 1), 8=334 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-125/103, 2-3=-81/93, 3-4=-71/90,

4-5=-104/76

1-8=-41/106, 7-8=-41/52, 6-7=-41/52, **BOT CHORD**

5-6=-41/81

3-7=-222/7, 2-8=-249/149, 4-6=-249/149

WEBS NOTES

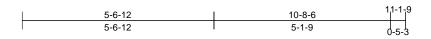
TOP CHORD

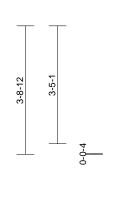
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-6 to 3-1-2, Interior (1) 3-1-2 to 7-1-2, Exterior(2R) 7-1-2 to 10-1-2, Interior (1) 10-1-2 to 14-1-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

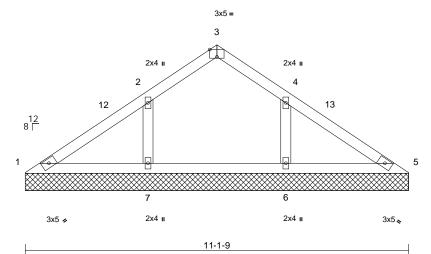
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 8 and 70 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V11	Valley	1	1	Job Reference (optional)	03170

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:a7jlltdOuTtrfq1xr63a1pzE1wg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

Plate Offsets (X, Y): [3:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.14	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 40 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=11-1-9, 5=11-1-9, 6=11-1-9,

7=11-1-9

Max Horiz 1=-71 (LC 12)

Max Uplift 6=-39 (LC 14), 7=-39 (LC 14)

Max Grav 1=134 (LC 1), 5=134 (LC 1), 6=311

(LC 1), 7=315 (LC 19)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-182/46, 2-3=-95/44, 3-4=-95/43,

4-5=-182/45

BOT CHORD 1-7=-46/169, 6-7=-46/93, 5-6=-46/148

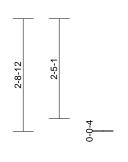
WEBS 2-7=-212/131, 4-6=-210/130

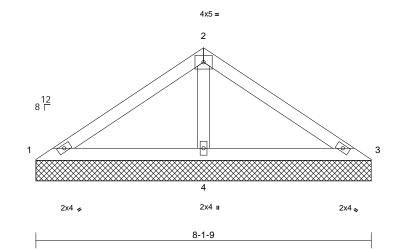
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-7-2, Exterior(2R) 5-7-2 to 8-7-2, Interior (1) 8-7-2 to 11-1-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00: Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 7 and 39 lb uplift at joint 6.

LOAD CASE(S) Standard


October 3,2025


Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V12	Valley	1	1	Job Reference (optional)	76803171

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID:XVrVjZfeQ47Zv8BKzX526EzE1we-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 28 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

Sheathed or 8-1-9 oc purlins. TOP CHORD **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS 1=8-1-9, 3=8-1-9, 4=8-1-9 (size) Max Horiz 1=-51 (LC 12)

1=-13 (LC 30), 3=-13 (LC 29), Max Uplift

4=-57 (LC 14)

1=68 (LC 29), 3=68 (LC 30), 4=577 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-97/256, 2-3=-97/256

BOT CHORD 1-4=-203/150, 3-4=-203/150 **WEBS** 2-4=-417/193

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-1-2, Exterior(2R) 4-1-2 to 7-2-12, Interior (1) 7-2-12 to 8-1-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

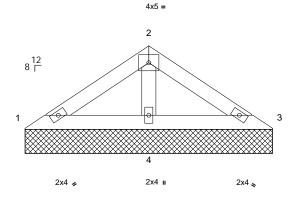
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1, 13 lb uplift at joint 3 and 57 lb uplift at joint 4.

LOAD CASE(S) Standard

October 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1 Cross Creek-Hanover D2	
25090184-B	V13	Valley	1	1	Job Reference (optional)	176803172

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Oct 02 14:35:11 ID: TuzF8FguyiNH8SKi4y7WBfzE1wc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

i	•	5-1-9
2-6-12	4-8-6	
2-6-12	2-1-9	0-5-3

Scale = 1:23.9

	-	i	÷	·	-				-		i	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.25	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		1						
BCDL	10.0					1					Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Sheathed or 5-1-9 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS 1=5-1-9, 3=5-1-9, 4=5-1-9 (size)

Max Horiz 1=-31 (LC 12)

Max Uplift 1=-2 (LC 14), 3=-2 (LC 14), 4=-22

(LC 14)

1=64 (LC 29), 3=64 (LC 30), 4=307 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-61/104, 2-3=-61/104

BOT CHORD 1-4=-90/82 3-4=-90/82

WEBS 2-4=-191/98

NOTES

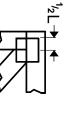
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 1, 2 lb uplift at joint 3 and 22 lb uplift at joint 4.

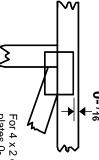
LOAD CASE(S) Standard

October 3,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

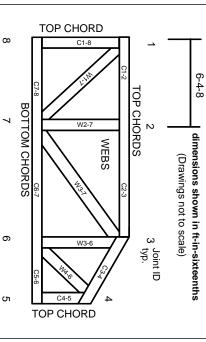
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.