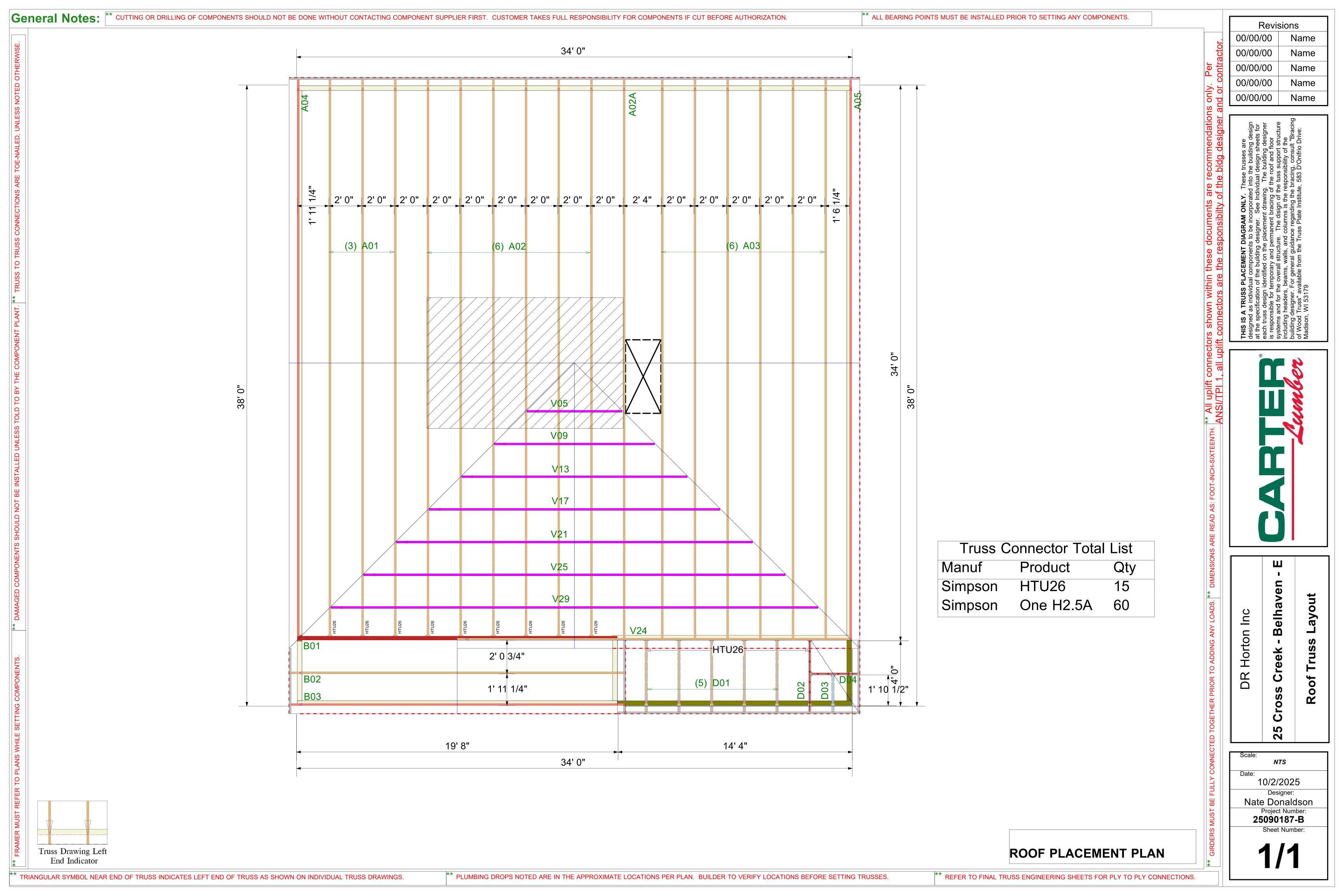


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450


Builder: DR Horton Inc 25 Cross Creek -Model: Belhaven - E

THE PLACEMENT PLAN NOTES:

- 1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
- 2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.
- 3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
- 4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
- 5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
- 6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
- 7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
- 8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.
- 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By:	Date:
--------------	-------

RE: 25090187

25 Cross Creek - Belhaven E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton Inc Project Name: 25090187 Lot/Block: 25 Model: B Model: Belhaven E Address: Subdivision: Cross Creek

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-16 Wind Speed: 130 mph Floor Load: N/A psf Roof Load: 40.0 psf

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Seal# 174918054 174918055 174918056 174918057 174918058 174918059 174918060 174918061 174918063 174918064 174918065 174918066 174918067 174918068 174918069 174918070 174918071 174918072 174918073	Truss Name A01 A02 A02A A03 A04 A05 B01 B02 B03 D01 D02 D03 D04 V05 V09 V13 V17 V21 V24 V25	Date 7/16/2025	No. 21	Seal# 74918074	Truss Name V29	Date 7/16/2025
20	1/49180/3	V25	1/16/2025				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

July 16, 2025

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	A01	Common	3	1	Job Reference (optional)	174918054

Run: 8.73 S. Feb 19.2025 Print: 8.730 S. Feb 19.2025 MiTek Industries. Inc. Tue. Jul 15.13:05:41 ID:CUpc08Q1azwIF_Utsq?ii4yUZfN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

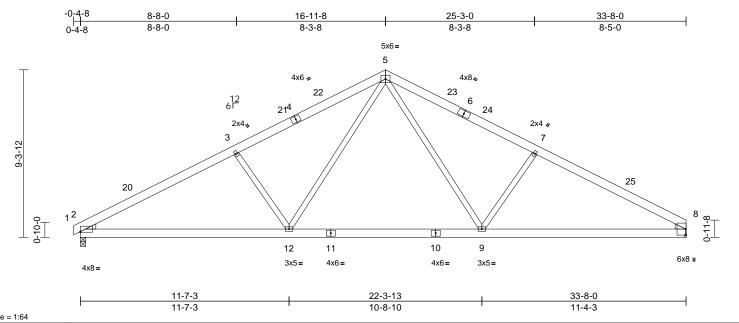


Plate Offsets (X, Y): [2:Edge,0-0-7]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.20	9-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.33	9-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 215 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 2x6 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-9-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8. 8= Mechanical

Max Horiz 2=144 (LC 14)

Max Uplift 2=-137 (LC 14), 8=-126 (LC 15) Max Grav 2=1491 (LC 3), 8=1474 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/10, 2-3=-2441/287, 3-5=-2206/308,

5-7=-2156/306, 7-8=-2370/284 **BOT CHORD** 2-12=-268/2104, 9-12=-45/1422

8-9=-165/2038

WEBS 5-12=-118/944, 5-9=-113/864, 3-12=-541/278,

7-9=-504/270

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-8 to 2-11-14, Interior (1) 2-11-14 to 13-7-2, Exterior(2R) 13-7-2 to 20-3-14, Interior (1) 20-3-14 to 30-2-14, Exterior(2E) 30-2-14 to 33-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 126 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	A02	Common	6	1	Job Reference (optional)	I74918055

Run: 8.73 S. Feb 19.2025 Print: 8.730 S. Feb 19.2025 MiTek Industries. Inc. Tue Jul 15.13:05:42 ID:_BW2EN9MgC3sX7UYH4bTXRyUZd7-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

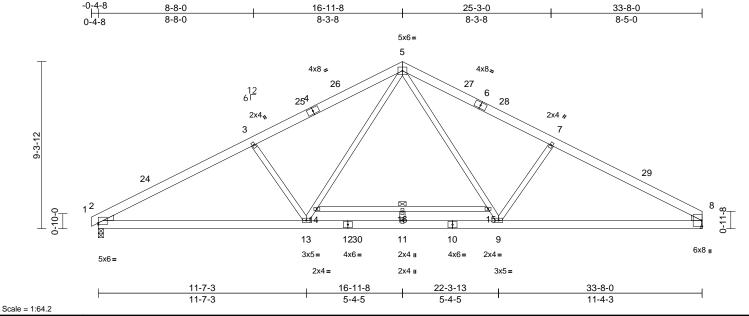


Plate Offsets (X, Y): [2:Edge,0-1-3]

Loading	(psf)	Spacing	2-2-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.11	9-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.36	11	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.58	Horz(CT)	0.07	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 230 lb	FT = 20%

LUMBER

2x6 SP No.2 TOP CHORD BOT CHORD 2x6 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-10-4 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 14-15 REACTIONS 2=0-3-8. 8= Mechanical (size)

Max Horiz 2=155 (LC 14)

Max Uplift 2=-50 (LC 14), 8=-35 (LC 15) Max Grav 2=1579 (LC 1), 8=1559 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/11, 2-3=-2661/93, 3-5=-2357/114,

5-7=-2310/110, 7-8=-2587/89

BOT CHORD 2-13=-215/2274, 11-13=0/1625, 9-11=0/1625,

8-9=-23/2207

WEBS 13-14=-33/902, 5-14=-17/959, 5-15=-10/886,

9-15=-26/829, 3-13=-572/315, 7-9=-528/311, 14-16=-98/0, 15-16=-98/0, 11-16=0/34

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-8 to 2-11-14, Interior (1) 2-11-14 to 13-7-2, Exterior(2R) 13-7-2 to 20-3-14, Interior (1) 20-3-14 to 30-2-14, Exterior(2E) 30-2-14 to 33-7-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 16-11-8 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:4TYGqG_ZXhSC1Oti7lAyjgyUZT1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



Plate Offsets (X, Y): [2:Edge,0-1-7], [8:Edge,0-1-7]

Loading	(nof)	Chaoina	200	csı		DEFL	in	(100)	I/defl	I /d	PLATES	GRIP
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	i/deli	L/u	PLAIES	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.10	13-22	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.32	11	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.07	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 232 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 2x6 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-6-5 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. **WEBS** 1 Row at midpt

REACTIONS 2=0-3-8, 8=0-3-8 (size)

Max Horiz 2=140 (LC 18)

Max Uplift 2=-38 (LC 14), 8=-29 (LC 15) Max Grav 2=1478 (LC 1), 8=1457 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/10, 2-3=-2500/70, 3-5=-2257/89, 5-7=-2261/86, 7-8=-2504/67

BOT CHORD 2-13=-190/2133, 11-13=0/1541, 9-11=0/1541,

8-9=-59/2137 **WEBS** 13-14=-24/834, 5-14=-8/888, 3-13=-528/292,

5-15=-2/895, 9-15=-17/841, 14-16=-97/0,

15-16=-97/0, 11-16=0/31, 7-9=-528/293

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-8 to 3-0-3, Interior (1) 3-0-3 to 13-6-13. Exterior(2R) 13-6-13 to 20-4-3. Interior (1) 20-4-3 to 30-6-5, Exterior(2E) 30-6-5 to 33-11-0 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 16-11-8 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:4TYGqG_ZXhSC1Oti7lAyjgyUZT1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

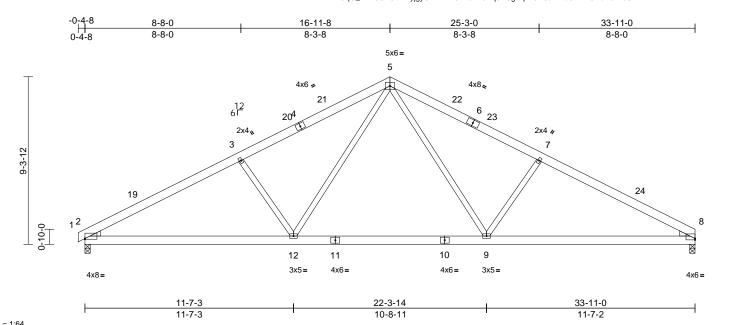


Plate Offsets (X, Y): [2:Edge,0-0-7], [8:Edge,0-0-15]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.20	9-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.31	9-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 216 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 2x6 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-10-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-3-8. 8=0-3-8

Max Horiz 2=140 (LC 18)

Max Uplift 2=-137 (LC 14), 8=-130 (LC 15)

Max Grav 2=1506 (LC 3), 8=1487 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/10, 2-3=-2468/291, 3-5=-2236/312,

5-7=-2237/313, 7-8=-2468/292

BOT CHORD 2-12=-265/2128, 9-12=-42/1452

8-9=-170/2129 5-12=-119/937, 5-9=-119/938, 3-12=-542/278, LOAD CASE(S) Standard **WEBS**

7-9=-542/278

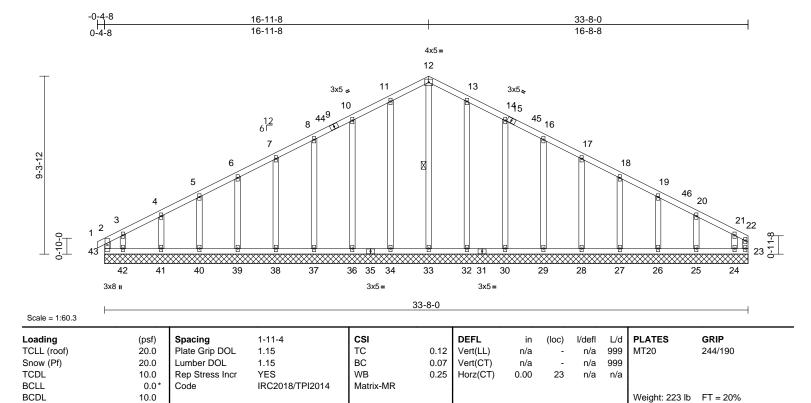
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-8 to 3-0-3, Interior (1) 3-0-3 to 13-6-13, Exterior(2R) 13-6-13 to 20-4-3, Interior (1) 20-4-3 to 30-6-5, Exterior(2E) 30-6-5 to 33-11-0 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply 25 Cross Creek - Belhaven E - Roof 174918058 25090187 A04 Common Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:Cb?kyaNiS1xuK3ApNOkwtwyUZRE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL		10.0			
LUMBER				FORCES	(lb) - Maximum Compression/Ma
TOP CHORD	2x4 SP N	0.2			Tension
BOT CHORD	2x4 SP N	0.2		TOP CHORD	2-43=-113/39, 1-2=0/14, 2-3=-17
WEBS	2x4 SP N	0.3			3-4=-121/67, 4-5=-89/78, 5-6=-6
OTHERS	2x4 SP N	0.3			6-7=-57/123, 7-8=-55/165, 8-10=
BRACING					10-11=-91/254, 11-12=-108/294
TOP CHORD	Structural	I wood she:	athing directly applied or		12-13=-108/294, 13-14=-91/254
TOT OTTOTAL			cept end verticals.		14-16=-72/208, 16-17=-55/165,
BOT CHORD			applied or 10-0-0 oc		17-18=-37/121, 18-19=-37/77, 1
	bracing.		арриов и по о о о о		20-21=-84/33, 21-22=-138/47, 2
WEBS	1 Row at	midpt	12-33	BOT CHORD	42-43=-31/106, 41-42=-31/106,
REACTIONS	(size)), 24=33-8-0, 25=33-8-0,		40-41=-31/106, 39-40=-31/106,
ILE/IOTIONO	(0.20)), 27=33-8-0, 28=33-8-0,		38-39=-31/106, 37-38=-31/106,
), 30=33-8-0, 32=33-8-0,		36-37=-31/106, 34-36=-31/106,
), 34=33-8-0, 36=33-8-0,		33-34=-31/106, 32-33=-31/106,
), 38=33-8-0, 39=33-8-0,		30-32=-31/106, 29-30=-31/106,
			0, 41=33-8-0, 42=33-8-0,		28-29=-31/106, 27-28=-31/106,
		43=33-8-0)		26-27=-31/106, 25-26=-31/106, 24-25=-31/106, 23-24=-31/106
	Max Horiz	43=122 (L	.C 11)	WEBS	12-33=-194/36, 11-34=-198/65,
	Max Uplift	23=-44 (L	C 13), 24=-168 (LC 15),	WEBS	10-36=-182/80, 8-37=-131/74, 7
		25=-40 (L	C 15), 26=-43 (LC 15),		6-39=-117/75, 5-40=-115/72, 4-4
		27=-42 (L	C 15), 28=-43 (LC 15),		3-42=-90/129, 13-32=-198/65,
		29=-42 (L	C 15), 30=-46 (LC 15),		14-30=-182/80, 16-29=-131/74,
		32=-37 (L	C 15), 34=-39 (LC 14),		17-28=-116/75, 18-27=-117/75,
		36=-45 (L	C 14), 37=-42 (LC 14),		19-26=-115/75, 10-27=-117/75,

38=-43 (LC 14), 39=-42 (LC 14),

40=-44 (LC 14), 41=-35 (LC 14),

42=-154 (LC 14), 43=-58 (LC 12)

25=160 (LC 22), 26=154 (LC 35), 27=156 (LC 22), 28=155 (LC 35), 29=170 (LC 22), 30=221 (LC 22), 32=237 (LC 22), 33=182 (LC 27) 34=237 (LC 21), 36=221 (LC 21), 37=170 (LC 21), 38=155 (LC 34), 39=156 (LC 21), 40=154 (LC 34), 41=161 (LC 21), 42=137 (LC 28),

Max Grav 23=181 (LC 15), 24=131 (LC 29),

43=168 (LC 14)

m Compression/Maximum

1-2=0/14, 2-3=-177/71, 4-5=-89/78, 5-6=-66/101 7-8=-55/165, 8-10=-72/208, 4, 11-12=-108/294, 94, 13-14=-91/254,

8, 16-17=-55/165, 1. 18-19=-37/77. 19-20=-58/40. 21-22=-138/47 22-23=-113/36

6. 41-42=-31/106.

6. 37-38=-31/106 6. 34-36=-31/106 6, 32-33=-31/106 6, 29-30=-31/106 6, 27-28=-31/106 6, 25-26=-31/106, 6, 23-24=-31/106

6, 11-34=-198/65, 0, 8-37=-131/74, 7-38=-116/75, 5-40=-115/72, 4-41=-121/98, 13-32=-198/65,

0, 16-29=-131/74 5, 18-27=-117/75, 19-26=-115/75, 20-25=-120/114, 21-24=-93/155

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-4-8 to 2-11-8, Exterior(2N) 2-11-8 to 13-7-2, Corner(3R) 13-7-2 to 20-3-14, Exterior(2N) 20-3-14 to 30-1-14, Corner(3E) 30-1-14 to 33-6-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

NOTES

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

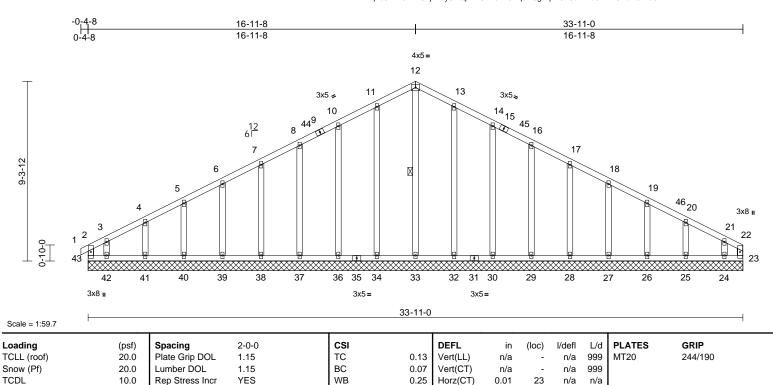
Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	A04	Common Supported Gable	1	1	Job Reference (optional)	I74918058

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:Cb?kyaNiS1xuK3ApNOkwtwyUZRE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

All plates are 2x4 MT20 unless otherwise indicated.

- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

Page: 2

Job Truss Truss Type Qty Ply 25 Cross Creek - Belhaven E - Roof 174918059 25090187 A05 Common Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:wn7xdpie5KL23Dk?SZjFTcyUZQp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Matrix-MR

Max Grav

LUMBER TOP CHORD

TOP CHORD

BCLL

BCDL

WFBS

2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3 **BRACING**

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

0.0

10.0

Code

Structural wood sheathing directly applied or

IRC2018/TPI2014

FORCES

BOT CHORD

WEBS

NOTES

bracing.

WERS 1 Row at midpt 12-33 **REACTIONS** (size) 23=33-11-0, 24=33-11-0, 25=33-11-0, 26=33-11-0, 27=33-11-0. 28=33-11-0. 29=33-11-0, 30=33-11-0, 32=33-11-0, 33=33-11-0, 34=33-11-0, 36=33-11-0, 37=33-11-0, 38=33-11-0, 39=33-11-0, 40=33-11-0

> 43=33-11-0 Max Horiz 43=123 (LC 14) Max Uplift 23=-23 (LC 13), 24=-128 (LC 15), 25=-38 (LC 15), 26=-45 (LC 15), 27=-43 (LC 15), 28=-44 (LC 15),

41=33-11-0, 42=33-11-0,

29=-43 (LC 15), 30=-47 (LC 15), 32=-38 (LC 15), 34=-40 (LC 14), 36=-47 (LC 14), 37=-43 (LC 14), 38=-44 (LC 14), 39=-43 (LC 14), 40=-46 (LC 14), 41=-36 (LC 14), 42=-159 (LC 14), 43=-57 (LC 12)

34=244 (LC 21), 36=228 (LC 21), 37=175 (LC 21), 38=160 (LC 34), 39=161 (LC 21), 40=158 (LC 34), 41=166 (LC 21), 42=140 (LC 24), 43=174 (LC 14) (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-43=-117/37, 1-2=0/14, 2-3=-183/71, 3-4=-125/67, 4-5=-91/79, 5-6=-67/102 6-7=-57/125, 7-8=-57/165, 8-10=-75/210, 10-11=-94/258, 11-12=-112/299, 12-13=-112/299, 13-14=-94/258, 14-16=-75/210, 16-17=-57/165, 17-18=-39/120. 18-19=-39/75. 19-20=-61/42.

23=138 (LC 15), 24=128 (LC 35),

25=166 (LC 22), 26=159 (LC 35),

27=161 (LC 22), 28=160 (LC 35),

29=175 (LC 22), 30=228 (LC 22),

32=244 (LC 22), 33=187 (LC 27),

20-21=-88/35 21-22=-137/46 22-23=-91/25 42-43=-31/113, 41-42=-31/113, 40-41=-31/113, 39-40=-31/113, 38-39=-31/113, 37-38=-31/113, 36-37=-31/113, 34-36=-31/113, 33-34=-31/113, 32-33=-31/113, 30-32=-31/113, 29-30=-31/113, 28-29=-31/113, 27-28=-31/113, 26-27=-31/113, 25-26=-31/113, 24-25=-31/113, 23-24=-31/113 12-33=-196/38, 11-34=-204/67 10-36=-188/82, 8-37=-135/76, 7-38=-120/77, 6-39=-121/78, 5-40=-119/74, 4-41=-125/101,

3-42=-92/136, 13-32=-204/67, 14-30=-188/82, 16-29=-135/76,

17-28=-120/77, 18-27=-121/77, 19-26=-119/76, 20-25=-124/112,

21-24=-97/143

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-4-8 to 2-11-8, Exterior(2N) 2-11-8 to 13-6-13, Corner(3R) 13-6-13 to 20-4-3, Exterior(2N) 20-4-3 to 30-4-9, Corner(3E) 30-4-9 to 33-9-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI =1 60

Weight: 223 lb

FT = 20%

Page: 1

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	A05	Common Supported Gable	1	1	Job Reference (optional)	I74918059

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue. Jul 15 13:05:43 ID: wn7xdpie5KL23Dk?SZjFTcyUZQp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 43, 23 lb uplift at joint 23, 40 lb uplift at joint 34, 47 lb uplift at joint 36, 43 lb uplift at joint 37, 44 lb uplift at joint 38, 43 lb uplift at joint 39, 46 lb uplift at joint 40, 36 lb uplift at joint 41, 159 lb uplift at joint 42, 38 lb uplift at joint 32, 47 lb uplift at joint 30, 43 lb uplift at joint 29, 44 Ib uplift at joint 28, 43 lb uplift at joint 27, 45 lb uplift at joint 26, 38 lb uplift at joint 25 and 128 lb uplift at joint
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 16,2025

Page: 2

818 Soundside Road Edenton, NC 27932

 Job
 Truss
 Truss Type
 Qty
 Ply
 25 Cross Creek - Belhaven E - Roof

 25090187
 B01
 Common Girder
 1
 2
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID:WnV4j6haCc2BnuLulFaZMHyUZHo-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

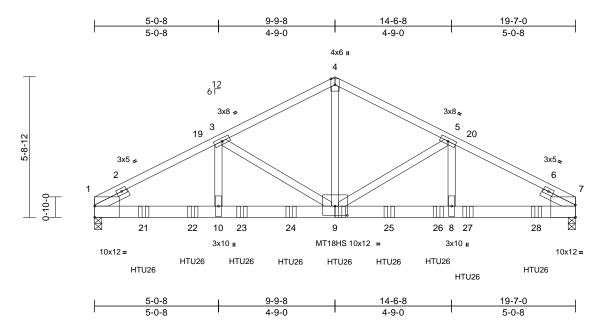


Plate Offsets (X, Y): [1:Edge,0-5-8], [7:Edge,0-6-1], [9:0-6-0,0-4-8]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.14	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.84	Vert(CT)	-0.29	8-9	>805	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	NO	WB	0.91	Horz(CT)	0.08	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							1	
BCDL	10.0										Weight: 228 lb	FT = 20%

LUMBER

Scale = 1:46.9

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 9-4:2x4 SP No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-9-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=75 (LC 37)

Max Uplift 1=-499 (LC 12), 7=-343 (LC 13)

Max Grav 1=7156 (LC 12), 7=-343 (LC 13)

FORCES (lb) - Maximum Compression/Maximum

Tension

Tension

TOP CHORD 1-3=-11360/745, 3-4=-8842/484,

4-5=-8840/485, 5-7=-11906/557

BOT CHORD 1-10=-680/10036, 8-10=-680/10518,

7-8=-437/10518

WEBS 4-9=-339/7406, 5-9=-3119/192,

5-8=-36/2961, 3-9=-2813/390,

3-10=-224/2690

NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 3 rows staggered at 0-6-0 oc.
 - Web connected as follows: 2x4 1 row at 0-9-0 oc, Except member 4-9 2x4 1 row at 0-7-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) The Fabrication Tolerance at joint 9 = 12%
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-9-8 oc max. starting at 2-0-0 from the left end to 18-0-0 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we be and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932 Job Truss Truss Type Qty Ply 25 Cross Creek - Belhaven E - Roof 174918060 2 25090187 B01 Common Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:43 ID: WnV4j6haCc2BnuLulFaZMHyUZHo-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

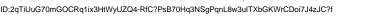
Page: 2

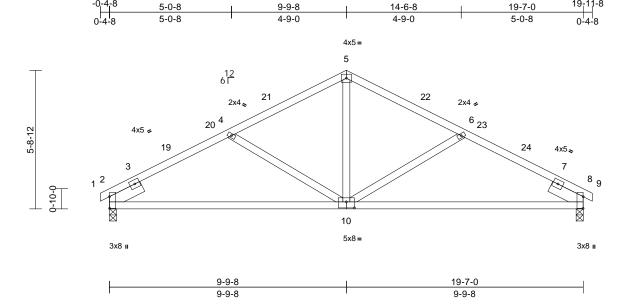
LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-58, 4-7=-58, 11-15=-19 Concentrated Loads (lb)

Vert: 9=-1538 (B), 21=-1326 (B), 22=-1326 (B), 23=-1326 (B), 24=-1538 (B), 25=-1538 (B), 26=-1538

(B), 27=-1538 (B), 28=-1538 (B)




818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	B02	Common	1	1	Job Reference (optional)	174918061

Run: 8.73 S. Feb 19 2025 Print: 8.730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44

Page: 1

Scale = 1:47.6

Plate Offsets (X, Y): [2:0-5-13,0-0-1], [8:0-5-13,0-0-1], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.11	10-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.22	10-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.04	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 94 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

4-6-1 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8. 8=0-3-8

Max Horiz 2=81 (LC 14)

Max Uplift 2=-81 (LC 14), 8=-81 (LC 15)

Max Grav 2=858 (LC 21), 8=858 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=0/10, 2-4=-1253/269, 4-5=-940/216,

5-6=-940/216, 6-8=-1253/269, 8-9=0/10

BOT CHORD 2-8=-186/1071

WEBS 5-10=-34/502, 6-10=-381/165, 4-10=-381/165

NOTES

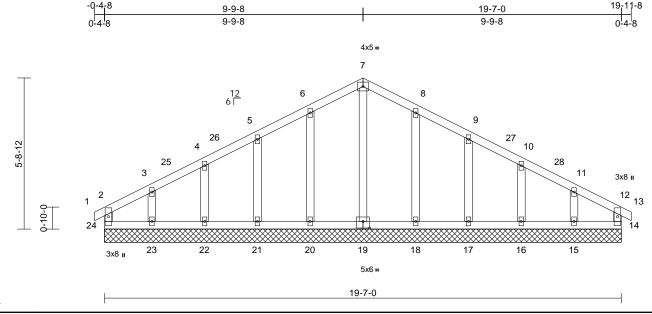
TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-8 to 2-7-8, Interior (1) 2-7-8 to 6-9-8, Exterior(2R) 6-9-8 to 12-9-8, Interior (1) 12-9-8 to 16-11-8, Exterior(2E) 16-11-8 to 19-11-8 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	B03	Common Supported Gable	1	1	Job Reference (optional)	I74918062

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44 ID:OnGbYbKGrluglCi?VUfSaayUZQ?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.7

Plate Offsets	(X, `	Y):	[19:0-3-	0,0-3-0]
---------------	-------	-----	----------	----------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 104 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size)

14=19-7-0, 15=19-7-0, 16=19-7-0, 17=19-7-0, 18=19-7-0, 19=19-7-0, 20=19-7-0, 21=19-7-0, 22=19-7-0, 23=19-7-0, 24=19-7-0

Max Horiz 24=77 (LC 13)

Max Uplift 14=-13 (LC 14), 15=-68 (LC 15), 16=-37 (LC 15), 17=-44 (LC 15),

18=-43 (LC 15), 20=-43 (LC 14), 21=-45 (LC 14), 22=-36 (LC 14), 23=-74 (LC 14), 24=-23 (LC 15)

Max Grav 14=94 (LC 22), 15=146 (LC 35),

16=172 (LC 22), 17=220 (LC 22), 18=238 (LC 22), 19=146 (LC 27), 20=238 (LC 21), 21=220 (LC 21), 22=172 (LC 21), 23=146 (LC 34),

24=95 (LC 29)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

2-24=-80/56, 1-2=0/14, 2-3=-67/46, 3-4=-49/64, 4-5=-42/111, 5-6=-52/158

6-7=-70/204, 7-8=-70/204, 8-9=-52/158, 9-10=-42/111, 10-11=-37/65, 11-12=-57/31, 12-13=0/14, 12-14=-80/51

BOT CHORD 23-24=-24/64, 22-23=-24/64, 21-22=-24/64,

20-21=-24/64, 18-20=-24/64, 17-18=-24/64, 16-17=-24/64, 15-16=-24/64, 14-15=-24/64 **WEBS**

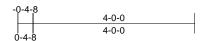
7-19=-117/6, 6-20=-199/78, 5-21=-182/82, 4-22=-133/81, 3-23=-108/113, 8-18=-199/78, 9-17=-182/82, 10-16=-133/80, 11-15=-108/119

NOTES

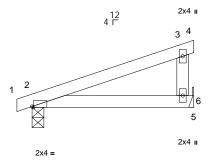
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-4-8 to 2-7-8, Exterior(2N) 2-7-8 to 6-9-8, Corner(3R) 6-9-8 to 12-9-8, Exterior(2N) 12-9-8 to 16-11-8, Corner(3E) 16-11-8 to 19-11-8 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 24, 13 lb uplift at joint 14, 43 lb uplift at joint 20, 45 lb uplift at joint 21, 36 lb uplift at joint 22, 74 lb uplift at joint 23, 43 lb uplift at joint 18, 44 lb uplift at joint 17, 37 lb uplift at joint 16 and 68 lb uplift at joint 15.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	D01	Monopitch	5	1	Job Reference (optional)	174918063

Run: 8.73 S. Feb 19 2025 Print: 8.730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44 ID:41gXd5WwPJBc0Fy6fAlCWLyUZFQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.5

Plate Offsets (X, Y): [2:0-0-6,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	0.04	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	0.03	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 6= Mechanical Max Horiz 2=55 (LC 13)

> Max Uplift 2=-66 (LC 10), 6=-62 (LC 10) Max Grav 2=233 (LC 21), 6=229 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/10, 2-3=-114/139, 3-4=-7/0,

3-6=-161/133 BOT CHORD 2-6=-144/97, 5-6=0/0

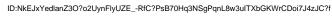
NOTES

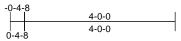
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

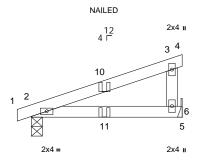
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	D02	Monopitch Girder	1	1	Job Reference (optional)	174918064


Run: 8.73 S. Feb 19 2025 Print: 8.730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44

Page: 1

NAILED

	4	-0-	0
3-8-12			
3-8-12	0	-3-	4

Scale = 1:30.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.02	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.03	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

Structural wood sheathing directly applied or TOP CHORD 4-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 6= Mechanical

Max Horiz 2=55 (LC 11)

Max Uplift 2=-44 (LC 8), 6=-42 (LC 12)

Max Grav 2=255 (LC 19), 6=252 (LC 19)

(lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/10, 2-3=-131/37, 3-4=-7/0, 3-6=-167/44

BOT CHORD 2-6=-21/110, 5-6=0/0

NOTES

FORCES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 8)
- bearing plate capable of withstanding 42 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

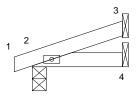
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 10=-6 (F), 11=-45 (F)

July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	D03	Jack-Open	1	1	Job Reference (optional)	I74918065

Run: 8.73 S. Feb 19 2025 Print: 8.730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44 ID:nDpkIJrs2cbnmOXIkLHX61yUZF?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 6 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-10-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4=

Mechanical Max Horiz 2=29 (LC 10)

2=-39 (LC 10), 3=-20 (LC 10), Max Uplift

4=-11 (LC 10)

2=126 (LC 21), 3=56 (LC 21), 4=33 Max Grav

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/9, 2-3=-48/47

BOT CHORD 2-4=-61/34

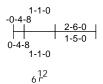
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 User Defined .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 4 and 20 lb uplift at joint 3.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

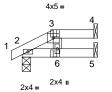
LOAD CASE(S) Standard

July 16,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	D04	Jack-Open Girder	1	1	Job Reference (optional)	I74918066

Run: 8.73 S. Feb 19 2025 Print: 8.730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44 ID:JrqenQSDHzuhm4LvgrBG8ayUZED-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

NAII FD

1-2-12 | 2-6-0 1-2-12 | 1-3-4

Scale = 1:40.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.01	6	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

Structural wood sheathing directly applied or TOP CHORD

2-6-0 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical, 5=

Mechanical

Max Horiz 2=26 (LC 12) Max Uplift 2=-27 (LC 12), 4=-17 (LC 8), 5=-10

(LC 12)

2=154 (LC 34), 4=60 (LC 33), 5=65 Max Grav

(LC 33)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/15, 2-3=-46/9, 3-4=0/0

BOT CHORD 2-6=-11/22, 5-6=0/0 3-6=-100/32

WFBS

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 4 and 10 lb uplift at joint 5.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

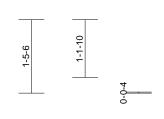
Vert: 1-3=-60, 3-4=-60, 5-7=-20

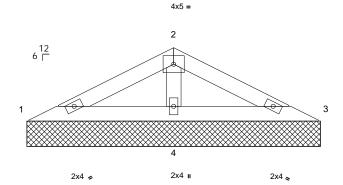
Concentrated Loads (lb)

Vert: 6=-15 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	V05	Valley	1	1	Job Reference (optional)	174918067

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:44 ID:AqhBgPdRO3Puh7Sxyi_OfEyUZHt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-10-4	5-1-9	5-8-8
2-10-4	2-3-5	0-6-15

5-8-8

Scale = 1:2:	2.7	22.7
--------------	-----	------

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-8-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=5-9-8, 3=5-9-8, 4=5-9-8

Max Horiz 1=20 (LC 18)

Max Uplift 1=-10 (LC 14), 3=-15 (LC 15),

4=-25 (LC 14)

Max Grav 1=98 (LC 20), 3=98 (LC 21), 4=347

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-107/152, 2-3=-107/152

BOT CHORD 1-4=-110/98, 3-4=-110/98

WEBS 2-4=-215/123

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 15 lb uplift at joint 3 and 25 lb uplift at joint 4.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

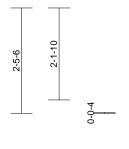
Page: 1

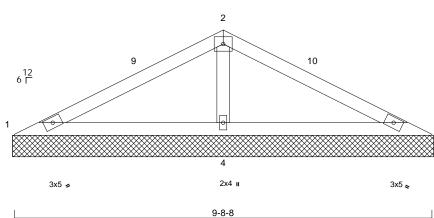
RENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

ſ	Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
	25090187	V09	Valley	1	1	Job Reference (optional)	174918068


Run: 8.73 S. Feb 19.2025 Print: 8.730 S. Feb 19.2025 MiTek Industries. Inc. Tue Jul 15.13:05:44 ID:84QVPayJ?4CUn5jK0K8UeFyUZT3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


9-1-9

Page: 1

4-10-4

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 31 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-8-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-8, 3=9-9-8, 4=9-9-8

Max Horiz 1=-36 (LC 19) Max Unlift

1=-28 (LC 21), 3=-28 (LC 20). 4=-58 (LC 14)

Max Grav 1=127 (LC 20), 3=127 (LC 21), 4=720 (LC 20)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-147/398, 2-3=-147/398

1-4=-303/182, 3-4=-303/182 BOT CHORD

WFBS 2-4=-557/296

NOTES

FORCES

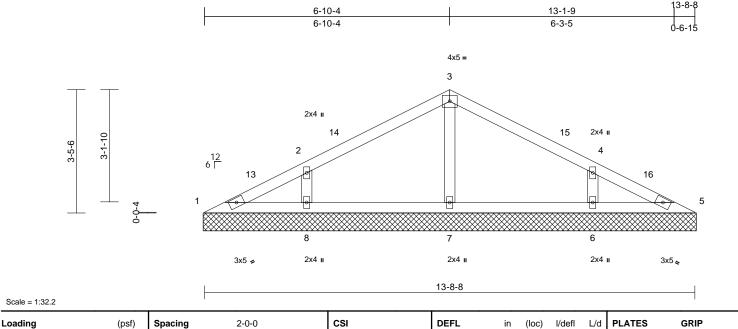
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-9-8, Exterior(2E) 6-9-8 to 9-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1, 28 lb uplift at joint 3 and 58 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 16,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	V13	Valley	1	1	Job Reference (optional)	174918069

Run: 8.73 S. Feb 19.2025 Print: 8.730 S. Feb 19.2025 MiTek Industries. Inc. Tue Jul 15.13:05:44 ID:84QVPayJ?4CUn5jK0K8UeFyUZT3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

BCDL
LUMBER

TCLL (roof)

Snow (Pf)

TCDL

BCLL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

20.0

20.0

10.0

10.0

0.0

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Code

1.15

1 15

YES

IRC2018/TPI2014

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=13-9-8, 5=13-9-8, 6=13-9-8, 7=13-9-8, 8=13-9-8

Max Horiz 1=-52 (LC 15)

1=-8 (LC 15), 5=-2 (LC 15), 6=-89 Max Uplift

(LC 15), 8=-90 (LC 14)

Max Grav 1=78 (LC 1), 5=78 (LC 1), 6=456 (LC 21), 7=315 (LC 20), 8=456 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-99/72, 2-3=-100/91, 3-4=-100/91, 4-5=-99/72

1-8=-22/84, 7-8=-22/40, 6-7=-22/40,

5-6=-22/81 WEBS

3-7=-233/80, 2-8=-385/181, 4-6=-385/181

NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 2-10-12, Interior (1) 2-10-12 to 3-10-12, Exterior(2R) 3-10-12 to 9-10-12, Interior (1) 9-10-12 to 10-9-8, Exterior(2E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

0.29

0.12

0.08

Vert(LL)

Vert(TL)

Horiz(TL)

n/a

n/a

0.00

n/a 999

n/a 999

n/a n/a

5

MT20

Weight: 48 lb

244/190

FT = 20%

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

TC

BC

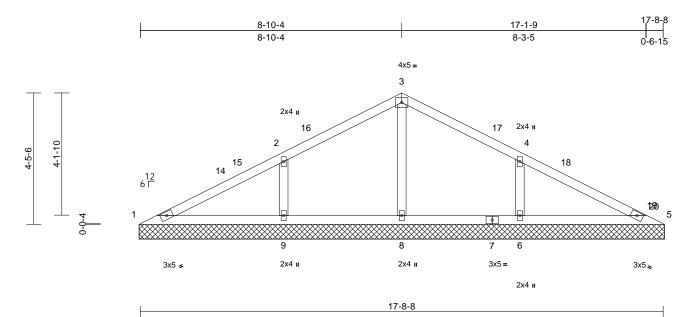
WB

Matrix-MSH

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 2 lb uplift at joint 5, 90 lb uplift at joint 8 and 89 lb uplift at ioint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	25 Cross Creek - Belhaven E - Roof	
25090187	V17	Valley	1	1	Job Reference (optional)	174918070

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:44 ID:cG_tcwzxmOKLPEIWa1fjASyUZT2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	_	1.00

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 65 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=17-9-8, 5=17-9-8, 6=17-9-8, 8=17-9-8, 9=17-9-8

Max Horiz 1=73 (LC 14) 1=-2 (LC 15), 6=-113 (LC 15), Max Uplift

9=-116 (LC 14)

1=108 (LC 35), 5=75 (LC 36), Max Grav

6=546 (LC 21), 8=401 (LC 1),

9=549 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-151/232, 2-3=0/210, 3-4=0/210,

4-5=-125/232

1-9=-165/130, 8-9=-165/82, 6-8=-165/82,

5-6=-165/113

3-8=-347/74, 2-9=-425/168, 4-6=-423/169

WEBS NOTES

BOT CHORD

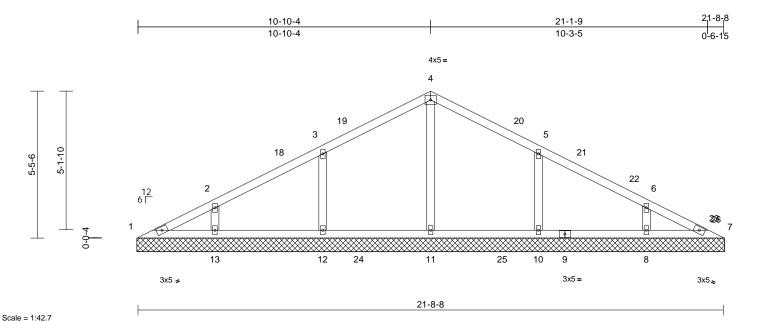
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-10-12, Exterior(2R) 5-10-12 to 11-10-12, Interior (1) 11-10-12 to 14-2-1, Exterior(2E) 14-2-1 to 17-2-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 1.
- 11) N/A
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.5.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply 25 Cross Creek - Belhaven F - Roof 174918071 25090187 V21 Valley Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:45 ID:20OHqh868bp8HpLAAfY?S0yUZd9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading 2-0-0 CSI **DEFL** I/defI L/d **PLATES** GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a n/a 999 MT20 244/190 BC Snow (Pf) 20.0 1 15 Lumber DOL 0.16 Vert(TL) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.12 Horiz(TL) 0.00 7 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MSH BCDL 10.0 Weight: 85 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=21-9-8, 7=21-9-8, 8=21-9-8, 10=21-9-8, 11=21-9-8, 12=21-9-8,

13=21-9-8 Max Horiz 1=88 (LC 14)

Max Uplift 1=-9 (LC 15), 8=-67 (LC 15), 10=-101 (LC 15), 12=-101 (LC 14),

13=-71 (LC 14)

Max Grav 1=88 (LC 20), 7=56 (LC 21), 8=308

(LC 3), 10=474 (LC 21), 11=389 (LC 5), 12=473 (LC 20), 13=312

(LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-130/64, 2-3=-68/89, 3-4=-103/122, 4-5=-104/118. 5-6=-56/72. 6-7=-93/51

BOT CHORD 1-13=-26/112, 12-13=-26/66, 11-12=-26/66,

10-11=-26/66, 8-10=-26/66, 7-8=-26/84

4-11=-226/7, 3-12=-394/151, 2-13=-225/111,

5-10=-394/151, 6-8=-222/110

WFRS NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 2-10-12, Interior (1) 2-10-12 to 7-10-12, Exterior(2R) 7-10-12 to 13-10-12, Interior (1) 13-10-12 to 18-2-1, Exterior(2E) 18-2-1 to 21-2-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1.
- 12) N/A
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply 25 Cross Creek - Belhaven F - Roof 174918072 25090187 V24 Roof Special Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jul 15 13:05:45 ID:j6_xFxgy9vL9a0XHsE8xRUyUZMz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

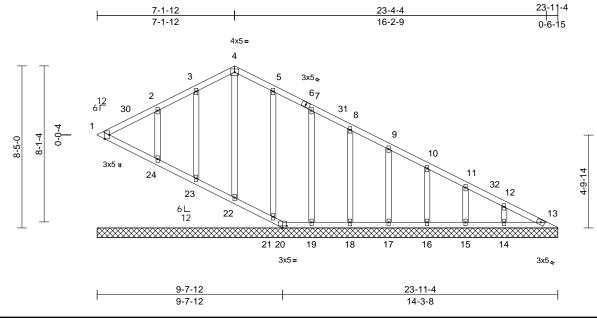


Plate Offsets (X, Y): [1:0-2-8,Edge], [20:0-2-8,0-1-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.00	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 136 lb	FT = 20%

LUMBER

Scale = 1:59.9

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=23-11-4, 13=23-11-4, 14=23-11-4, 15=23-11-4, 16=23-11-4, 17=23-11-4,

18=23-11-4, 19=23-11-4, 20=23-11-4. 21=23-11-4. 22=23-11-4, 23=23-11-4,

24=23-11-4

Max Horiz 1=-226 (LC 15)

Max Uplift 1=-41 (LC 15), 14=-19 (LC 15),

15=-65 (LC 15), 16=-38 (LC 15), 17=-45 (LC 15), 18=-42 (LC 15),

19=-48 (LC 15), 20=-31 (LC 15),

21=-42 (LC 15), 23=-34 (LC 14), 24=-70 (LC 14)

Max Grav 1=61 (LC 35), 14=257 (LC 21),

15=108 (LC 1), 16=175 (LC 21), 17=156 (LC 1), 18=177 (LC 21),

19=225 (LC 21), 20=56 (LC 1), 21=238 (LC 21), 22=282 (LC 27),

23=213 (LC 20), 24=323 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

1-2=-53/219, 2-3=-51/227, 3-4=-66/254, 4-5=-66/255, 5-7=-48/212, 7-8=-29/175, 8-9=-11/154, 9-10=0/132, 10-11=0/130,

11-12=-29/119, 12-13=-111/143

BOT CHORD 1-24=-140/137, 23-24=-123/125,

22-23=-130/129, 21-22=-127/129, 20-21=-119/129, 19-20=-107/110, 18-19=-107/110, 17-18=-107/110,

16-17=-107/110, 15-16=-107/110, 14-15=-107/110. 13-14=-107/110

4-22=-238/0, 3-23=-190/61, 2-24=-241/140,

5-21=-208/71, 7-19=-186/81, 8-18=-136/77, 9-17=-125/78. 10-16=-131/75

11-15=-107/85, 12-14=-161/107

NOTES

WEBS

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-4 to 3-2-0, Exterior(2N) 3-2-0 to 4-2-0, Corner(3R) 4-2-0 to 10-2-0, Exterior(2N) 10-2-0 to 20-4-9, Corner(3E) 20-4-9 to 23-4-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1, 31 lb uplift at joint 20, 34 lb uplift at joint 23, 70 lb uplift at joint 24, 42 lb uplift at joint 21, 48 lb uplift at joint 19, 42 lb uplift at joint 18, 45 lb uplift at joint 17, 38 lb uplift at joint 16, 65 lb uplift at joint 15 and 19 lb uplift at joint 14.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 22, 23, 24, 21, 29.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply 25 Cross Creek - Belhaven F - Roof 174918073 25090187 V25 Valley Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:45 ID:20OHqh868bp8HpLAAfY?S0yUZd9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

in

n/a

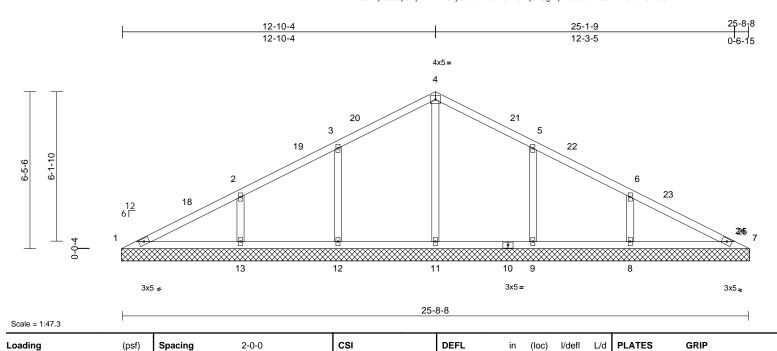
n/a

0.00

(loc)

7

n/a 999


n/a 999

n/a n/a MT20

Weight: 105 lb

244/190

FT = 20%

LUMBER

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

(psf)

20.0

20.0

10.0

0.0

10.0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

1.15

1 15

YES

IRC2018/TPI2014

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=25-9-8, 7=25-9-8, 8=25-9-8, 9=25-9-8, 11=25-9-8, 12=25-9-8,

13=25-9-8

Max Horiz 1=104 (LC 14) Max Uplift 1=-6 (LC 15), 8=-99 (LC 15), 9=-93

(LC 15), 12=-93 (LC 14), 13=-102

(LC 14)

Max Grav 1=125 (LC 35), 7=92 (LC 36),

8=418 (LC 38), 9=454 (LC 6), 11=514 (LC 24), 12=453 (LC 5),

13=422 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-188/212, 2-3=-31/199, 3-4=-6/215, 4-5=-6/205. 5-6=0/171. 6-7=-161/211

BOT CHORD 1-13=-148/173, 12-13=-148/92,

11-12=-148/92, 9-11=-148/92, 8-9=-148/92,

7-8=-148/146

WFBS 4-11=-326/14, 3-12=-376/144.

2-13=-293/138, 5-9=-377/145, 6-8=-291/137

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 9-10-12, Exterior(2R) 9-10-12 to 15-10-12, Interior (1) 15-10-12 to 22-2-1, Exterior(2E) 22-2-1 to 25-2-1 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0.30

0.22

0.24

Vert(LL)

Vert(TL)

Horiz(TL)

TC

BC

WB

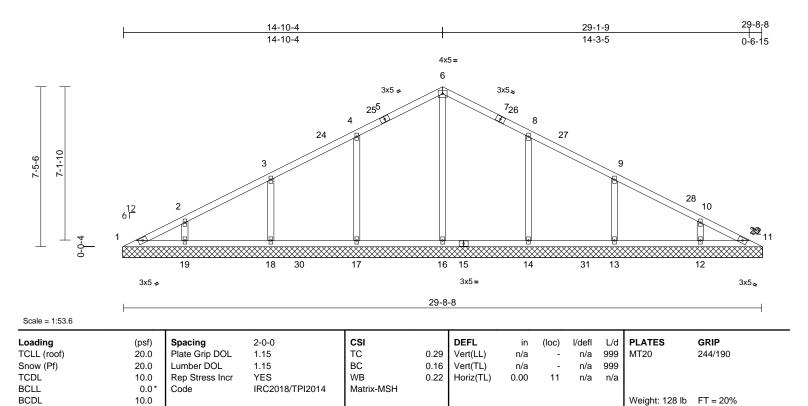
Matrix-MSH

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1, 93 lb uplift at joint 12, 102 lb uplift at joint 13, 93 lb uplift at joint 9 and 99 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 16,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
25090187	V29	Valley	1	1	Job Reference (optional)	174918074

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Jul 15 13:05:45 ID:W?yg119kvvx?vzvMkM3E?EyUZd8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

LUMBER

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

1=29-9-8, 11=29-9-8, 12=29-9-8, 13=29-9-8, 14=29-9-8, 16=29-9-8, 17=29-9-8, 18=29-9-8, 19=29-9-8

Max Horiz 1=120 (LC 14)

Max Uplift 1=-11 (LC 15), 12=-66 (LC 15), 13=-89 (LC 15), 14=-96 (LC 15), 17=-97 (LC 14), 18=-88 (LC 14),

19=-70 (LC 14)

1=93 (LC 26), 11=59 (LC 27) Max Grav 12=315 (LC 6), 13=355 (LC 3),

14=511 (LC 6), 16=396 (LC 27), 17=511 (LC 5), 18=354 (LC 3),

19=319 (LC 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-157/69 2-3=-103/89 3-4=-73/124 4-6=-109/170, 6-8=-109/156, 8-9=-73/77,

9-10=-67/53. 10-11=-106/54

BOT CHORD 1-19=-34/130, 18-19=-34/95, 17-18=-34/95, 16-17=-34/95, 14-16=-34/95, 13-14=-34/95,

12-13=-34/95, 11-12=-34/96

WEBS 6-16=-223/0, 4-17=-386/145, 3-18=-254/137,

2-19=-232/114, 8-14=-386/144,

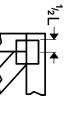
9-13=-255/138, 10-12=-229/112

NOTES

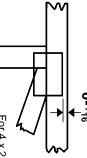
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 2-10-12, Interior (1) 2-10-12 to 11-10-12, Exterior(2R) 11-10-12 to 17-10-12, Interior (1) 17-10-12 to 26-2-1, Exterior(2E) 26-2-1 to 29-2-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 97 lb uplift at joint 17, 88 lb uplift at joint 18, 70 lb uplift at joint 19, 96 lb uplift at joint 14, 89 lb uplift at joint 13 and 66 lb uplift at joint 12.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 11.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

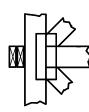
₹

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

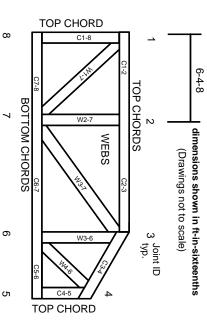

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

Milek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
 The design does not take into account any dynamic

or other loads other than those expressly stated.