

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3908438

Chamberlain Homes / 146 Montana

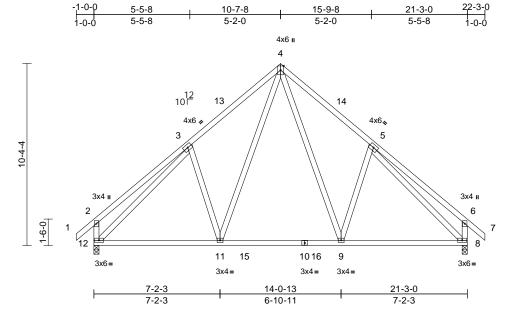
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T33374518 thru T33374561

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 28,2024


Velez, Joaquin

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	A1	Common	4	1	Job Reference (optional)	T33374518

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:36 ID:1Xlcr8XVFwevRO981b1quZzfH3k-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:65.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.08	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.12	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.02	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.01	9-11	>999	240	Weight: 150 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-10 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 8=0-3-8, 12=0-3-8

Max Horiz 12=228 (LC 11)

Max Uplift 8=-23 (LC 13), 12=-23 (LC 12)

Max Grav 8=997 (LC 20), 12=997 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/44, 2-3=-279/132, 3-4=-932/157, 4-5=-932/157, 5-6=-279/132, 6-7=0/44,

2-12=-334/130, 6-8=-334/130

BOT CHORD 11-12=-46/795, 9-11=0/571, 8-9=0/702

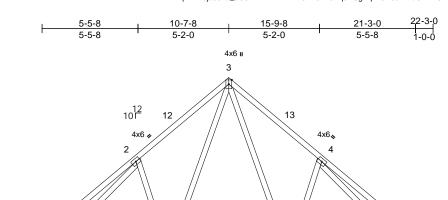
5-9=-197/208, 3-11=-197/208, 3-12=-867/0, **WEBS** 5-8=-867/0, 4-9=-115/498, 4-11=-115/498

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 10-7-8, Exterior(2R) 10-7-8 to 13-7-8, Interior (1) 13-7-8 to 22-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 8 and 23 lb uplift at joint 12.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	A2	Common	3	1	Job Reference (optional)	T33374519

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:Ep7BiPJje592a_uO9zAILZzfH1R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3x4 II 5

X

3x6=

Scale = 1:65.6

	-		-									-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.08	8-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.54	Vert(CT)	-0.12	10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.96	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.02	8-10	>999	240	Weight: 148 lb	FT = 20%

14-0-13

6-10-11

8

3x4=

21-3-0

9 15

3x4=

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 7=0-3-8, 11=0-3-8

Max Horiz 11=-222 (LC 8)

Max Uplift 7=-22 (LC 13), 11=-7 (LC 12) Max Grav 7=999 (LC 20), 11=933 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-250/98, 2-3=-939/156, 3-4=-934/156,

4-5=-279/132, 5-6=0/44, 1-11=-245/86,

4-7=-870/0, 3-8=-115/498, 3-10=-115/506

5-7=-334/130

BOT CHORD 10-11=-46/801, 8-10=0/573, 7-8=0/704 **WEBS** 4-8=-198/208, 2-10=-206/209, 2-11=-882/0,

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 10-7-8, Exterior(2R) 10-7-8 to 13-7-8, Interior (1) 13-7-8 to 22-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

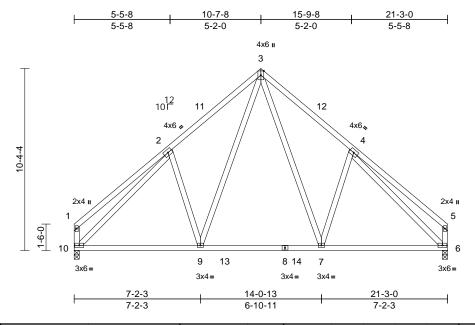
10 14

3x4=

3x6=

7-2-3

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 7 and 7 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	A3	Common	3	1	Job Reference (optional)	T33374520

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:exsAT3mwwSpoWgDWpEKzLMzfH0s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:65.6

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.08	7-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.12	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.96	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.02	7-9	>999	240	Weight: 146 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-12 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-8, 10=0-3-8

Max Horiz 10=-209 (LC 8)

Max Uplift 6=-6 (LC 13), 10=-6 (LC 12) Max Grav 6=934 (LC 20), 10=934 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-250/98, 2-3=-941/156, 3-4=-941/156, 4-5=-250/98, 1-10=-245/86, 5-6=-245/86 **BOT CHORD** 9-10=-58/794, 7-9=0/565, 6-7=-8/701

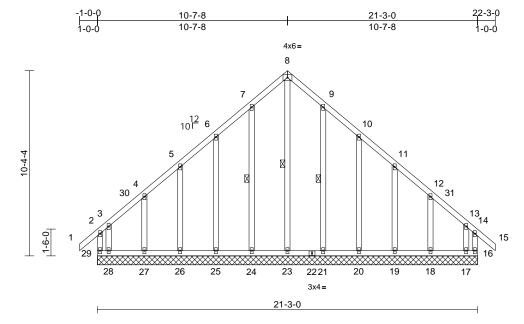
WFBS 4-7=-206/209 2-9=-206/209 2-10=-884/0 4-6=-884/0, 3-7=-116/506, 3-9=-116/506

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 10-7-8, Exterior(2R) 10-7-8 to 13-7-8, Interior (1) 13-7-8 to 21-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 6 and 6 lb uplift at joint 10.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	AG1	Common Supported Gable	1	1	Job Reference (optional)	T33374521

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:Xzd6tE05_vTpXuKYY9CvinzfH0X-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	:64.	4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	16	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 166 lb	FT = 20%

LUM	BER
TOP	CHO

2x4 SP No.2 RD 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 2x4 SP No.3 OTHERS

BRACING TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt

REACTIONS (size)

TOP CHORD

16=21-3-0, 17=21-3-0, 18=21-3-0, 19=21-3-0, 20=21-3-0, 21=21-3-0, 23=21-3-0, 24=21-3-0, 25=21-3-0, 26=21-3-0, 27=21-3-0, 28=21-3-0,

29=21-3-0

Max Horiz 29=-228 (LC 10)

Max Uplift 16=-284 (LC 11), 17=-290 (LC 8), 18=-56 (LC 13), 19=-56 (LC 13),

20=-62 (LC 13), 21=-46 (LC 13), 24=-47 (LC 12), 25=-62 (LC 12), 26=-56 (LC 12), 27=-55 (LC 12),

8-23, 7-24, 9-21

28=-331 (LC 9), 29=-340 (LC 10) Max Grav 16=346 (LC 8), 17=336 (LC 11),

18=170 (LC 20), 19=168 (LC 20) 20=167 (LC 20), 21=175 (LC 20), 23=276 (LC 13), 24=176 (LC 19), 25=167 (LC 19), 26=168 (LC 19),

27=170 (LC 19), 28=380 (LC 10), 29=399 (LC 9)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/44, 2-3=-215/201, 3-4=-122/123, 4-5=-102/129, 5-6=-89/177, 6-7=-128/249,

7-8=-161/308, 8-9=-161/308, 9-10=-128/249, 10-11=-89/177, 11-12=-83/120, 12-13=-102/104, 13-14=-184/168

14-15=0/44, 14-16=-211/157, 2-29=-235/187

BOT CHORD 28-29=-112/115, 27-28=-112/115, 26-27=-112/115, 25-26=-112/115, 24-25=-112/115, 23-24=-112/115, 21-23=-112/115, 20-21=-112/115, 19-20=-112/115, 18-19=-112/115, 17-18=-112/115, 16-17=-112/115

8-23=-334/123, 7-24=-136/71, 6-25=-127/91, 5-26=-127/80, 4-27=-133/90, 3-28=-166/163, 9-21=-135/70, 10-20=-128/91,

11-19=-127/80, 12-18=-133/90, 13-17=-147/145

NOTES

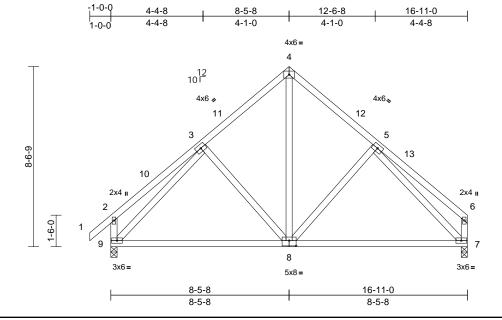
WFBS

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 10-7-8, Corner(3R) 10-7-8 to 13-7-8, Exterior(2N) 13-7-8 to 22-3-0 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
 - Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 - Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 284 lb uplift at joint 16, 340 lb uplift at joint 29, 47 lb uplift at joint 24, 62 lb uplift at joint 25, 56 lb uplift at joint 26, 55 lb uplift at joint 27, 331 lb uplift at joint 28, 46 lb uplift at joint 21, 62 Ib uplift at joint 20, 56 lb uplift at joint 19, 56 lb uplift at joint 18 and 290 lb uplift at joint 17.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	B1	Common	1	1	Job Reference (optional)	T33374522

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:3K7aoXQoC2d8_zMu_aleXlzfH00-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:54.7

Plate Offsets	(X, Y)	: [8:0-4-0,0-3-0]
---------------	--------	-------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.10	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.19	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.42	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.01	8	>999	240	Weight: 111 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 7=0-3-8, 9=0-3-8

Max Horiz 9=186 (LC 9)

Max Uplift 7=-4 (LC 13), 9=-20 (LC 12)

Max Grav 7=663 (LC 1), 9=736 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/44, 2-3=-196/92, 3-4=-553/103,

4-5=-554/103, 5-6=-185/69, 2-9=-263/94, 6-7=-186/55

7-9=-51/477

BOT CHORD

WEBS 4-8=-50/402, 3-8=-152/151, 3-9=-546/4,

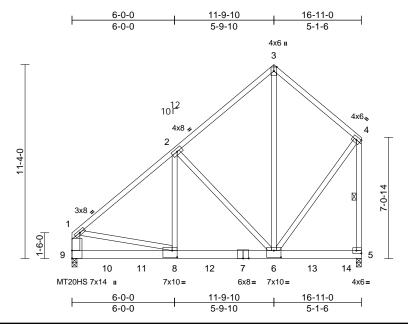
5-8=-160/151, 5-7=-553/38

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 8-5-8, Exterior(2R) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 16-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 9 and 4 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job Truss Truss Type Qty Ply Chamberlain Homes / 146 Montana T33374523 3908438 B2 Common Girder 2 Job Reference (optional)

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:6cCD_4EDWPtxjHsu9RWUBrzfE6K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.4

Plate Offsets (X, Y): [5:Edge,0-2-0], [6:0-5-0,0-4-12], [8:0-3-8,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.08	6-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.13	6-8	>999	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	NO	WB	0.74	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.04	6-8	>999	240	Weight: 282 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1

BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP DSS 2x4 SP No.2 *Except* 9-1:2x6 SP 2400F WEBS 2.0E or 2x6 SP DSS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-8-2 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing WEBS 1 Row at midpt

REACTIONS 5=0-3-8, 9=0-3-8 (size)

Max Horiz 9=284 (LC 7)

Max Uplift 5=-146 (LC 8), 9=-83 (LC 8)

4-5

Max Grav 5=6139 (LC 15), 9=5455 (LC 16) **FORCES** (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-5348/108, 2-3=-2842/138,

3-4=-2785/172 1-9=-4205/93 4-5=-4683/154

BOT CHORD 8-9=-280/983, 6-8=-174/4132, 5-6=-64/63

WEBS 2-8=-25/3363, 3-6=-113/3220,

2-6=-2896/206, 4-6=-92/3537, 1-8=-18/3320

NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),
- unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP 2400F 2.0E or DSS crushing capacity of 660 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 5 and 83 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1294 lb down and 23 lb up at 2-0-12, 1294 lb down and 23 lb up at 4-0-12, 1294 lb down and 23 lb up at 6-0-12, 1294 lb down and 23 lb up at 8-0-12, 1294 lb down and 23 lb up at 10-0-12, 1294 lb down and 23 lb up at 12-0-12, and 1294 lb down and 23 lb up at 14-0-12, and 1297 lb down and 21 lb up at 16-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

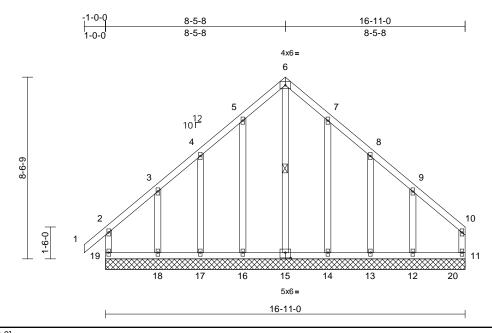
Uniform Loads (lb/ft) Vert: 1-3=-60, 3-4=-60, 5-9=-20

Concentrated Loads (lb)

Vert: 7=-1097 (B), 8=-1097 (B), 6=-1097 (B), 10=-1097 (B), 11=-1097 (B), 12=-1097 (B), 13=-1097

(B), 14=-1100 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	BG1	Common Girder	1	1	Job Reference (optional)	T33374524

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:37 ID:3TQ?QXaefFQYjaVyVmTmLozfGvL-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.2

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.11	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 117 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

WFBS 1 Row at midpt 6-15

REACTIONS (size)

11=16-11-0, 12=16-11-0, 13=16-11-0, 14=16-11-0,

15=16-11-0, 16=16-11-0, 17=16-11-0, 18=16-11-0, 19=16-11-0

Max Horiz 19=186 (LC 5)

11=-95 (LC 5), 12=-114 (LC 9), Max Uplift 13=-45 (LC 28), 14=-54 (LC 9),

16=-55 (LC 27), 17=-42 (LC 8) 18=-119 (LC 27), 19=-89 (LC 4)

Max Grav 11=157 (LC 15), 12=258 (LC 16), 13=147 (LC 22), 14=181 (LC 16),

15=238 (LC 9), 16=181 (LC 15), 17=158 (LC 1), 18=240 (LC 15),

19=225 (LC 16)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/44, 2-3=-137/127, 3-4=-84/130, 4-5=-83/171, 5-6=-68/203, 6-7=-56/196,

7-8=-67/163, 8-9=-80/122, 9-10=-108/99,

2-19=-179/74, 10-11=-102/62 **BOT CHORD**

18-19=-81/81, 17-18=-81/81, 16-17=-81/81, 14-16=-81/81, 13-14=-81/81, 12-13=-81/81,

11-12=-81/81

WEBS 6-15=-213/13, 5-16=-138/77, 4-17=-119/74,

3-18=-165/119, 7-14=-138/76, 8-13=-114/75,

9-12=-176/113

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 11, 89 lb uplift at joint 19, 55 lb uplift at joint 16, 42 lb uplift at joint 17, 119 lb uplift at joint 18, 54 lb uplift at joint 14, 45 lb uplift at joint 13 and 114 lb uplift at joint
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 37 lb down and 30 lb up at 16-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-6=-60, 6-10=-60, 11-19=-20 Concentrated Loads (lb)

Vert: 20=-37

March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qtv Chamberlain Homes / 146 Montana T33374525 3908438 BG2 Common Girder Job Reference (optional)

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557.

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:37 ID:qOdacXr?d_bbIVbhz48s1vzfGgp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

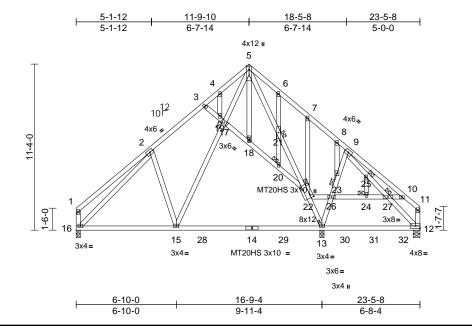


Plate Offsets (X, Y): [22:0-2-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.33	13-15	>600	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.41	13-15	>483	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	NO	WB	0.63	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.14	12-13	>561	240	Weight: 208 lb	FT = 20%

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

LUMBER

Scale = 1:78.6

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-11-2 oc

bracing.

JOINTS 1 Brace at Jt(s): 17, 18, 20, 21, 22, 23,

24, 25, 27

REACTIONS (size) 12=0-5-8, 13=0-3-8, 16=0-3-8

Max Horiz 16=227 (LC 7)

Max Uplift 12=-33 (LC 8), 13=-141 (LC 9) Max Grav 12=582 (LC 22), 13=1371 (LC 16),

16=728 (LC 15)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-219/109, 2-3=-678/102, 3-4=-528/89, TOP CHORD 4-5=-492/123, 5-6=-81/159, 6-7=-108/116.

7-8=-107/56, 8-9=-93/23, 9-10=-302/118, 10-11=-370/108, 1-16=-227/97,

11-12=-310/104

BOT CHORD 15-16=-88/624, 13-15=-61/346,

12-13=-45/138

WEBS 13-26=-285/201, 23-26=-276/195, 9-23=-205/141, 2-15=-159/176,

15-17=-75/545, 5-17=-92/552, 5-21=-390/20, 21-22=-419/16, 13-22=-636/123, 9-25=-164/161, 25-27=-162/161 12-27=-189/190, 2-16=-647/0, 3-19=-166/85, 17-19=-171/104, 17-18=-152/97,

18-20=-142/91, 20-22=-164/103, 5-18=-37/49, 4-19=-30/37, 6-21=-91/45, 20-21=-58/41, 7-22=-127/73, 8-23=-74/57, 24-25=-4/6, 22-26=-50/41, 24-26=-49/31,

24-27=-49/31, 10-27=-67/44

NOTES

Unbalanced roof live loads have been considered for this design

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- All plates are MT20 plates unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Vertical gable studs spaced at 2-0-0 oc and horizontal gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf
- 10) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 13 and 33 lb uplift at joint 12.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 207 lb down and 41 lb up at 18-4-4, and 207 lb down and 41 lb up at 20-4-4, and 208 lb down and 41 lb up at 22-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

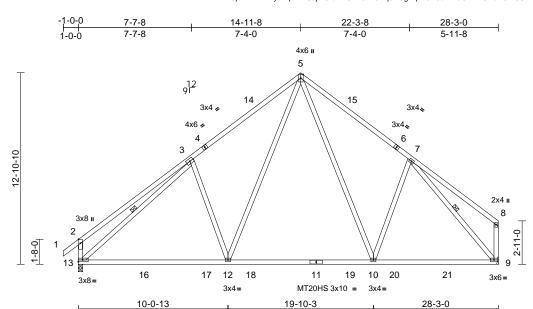
Vert: 1-5=-60, 5-11=-60, 12-16=-20

Concentrated Loads (lb)

Vert: 30=-207 (F), 31=-207 (F), 32=-208 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	C1	Common	8	1	Job Reference (optional)	T33374526

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:38 ID:8pfxLAl2z12yn1q6tK?SajzfGfe-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-4-13

Scale = 1:77.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.28	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.48	12-13	>703	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.04	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.03	10-12	>999	240	Weight: 191 lb	FT = 20%

9-9-5

LUMBER

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.1

2x4 SP No.3 *Except* 10-5,12-5:2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-10-3 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt

7-9. 3-13 REACTIONS 9= Mechanical, 13=0-3-8 (size) Max Horiz 13=285 (LC 11)

Max Uplift 9=-11 (LC 13), 13=-34 (LC 12) Max Grav 9=1314 (LC 20), 13=1387 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/41, 2-3=-461/178, 3-5=-1389/189, 5-7=-1265/181, 7-8=-183/113, 8-9=-200/78,

2-13=-479/167 BOT CHORD

12-13=-87/1214, 10-12=0/821, 9-10=-34/918

WEBS 5-10=-120/536, 7-10=-152/240, 5-12=-128/799, 3-12=-310/264,

7-9=-1352/26. 3-13=-1202/0

NOTES

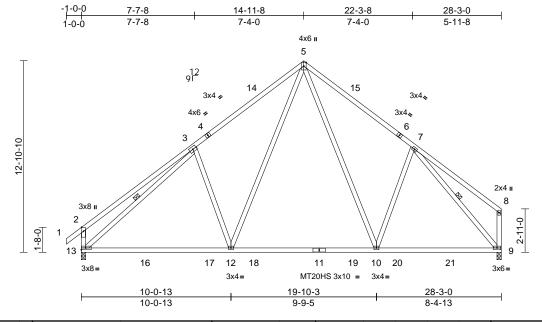
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 14-11-8, Exterior(2R) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 28-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: Joint 13 SP No.1 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 9 and 34 lb uplift at joint 13.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

10-0-13

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	C2	Common	3	1	Job Reference (optional)	T33374527

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:38 ID:5eWXtAdGTfZyusAuSNHoMPzfGdD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale		4.	77	_
ocale	=	т:	11	.o

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.28	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.48	12-13	>696	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.04	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.03	10-12	>999	240	Weight: 191 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD 2x4 SP No.1 **BOT CHORD**

2x4 SP No.3 *Except* 10-5,12-5:2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-10-3 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 7-9. 3-13 1 Row at midpt REACTIONS (size) 9=0-3-8, 13=0-3-8

Max Horiz 13=285 (LC 11)

Max Uplift 9=-11 (LC 13), 13=-34 (LC 12) Max Grav 9=1314 (LC 20), 13=1388 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/41, 2-3=-462/178, 3-5=-1390/189, 5-7=-1265/181, 7-8=-183/113, 8-9=-200/78,

2-13=-479/167

BOT CHORD

12-13=-87/1215, 10-12=0/821, 9-10=-34/918

WEBS 5-10=-120/535, 7-10=-152/240, 5-12=-128/800, 3-12=-310/264,

7-9=-1352/26. 3-13=-1202/0

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 14-11-8, Exterior(2R) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 28-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 9 and 34 lb uplift at joint 13.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	C3	Roof Special	3	1	Job Reference (optional)	T33374528

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:38

Page: 1 ID:y6JdDE_e?4bWEaQKkmG_d1zfGYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

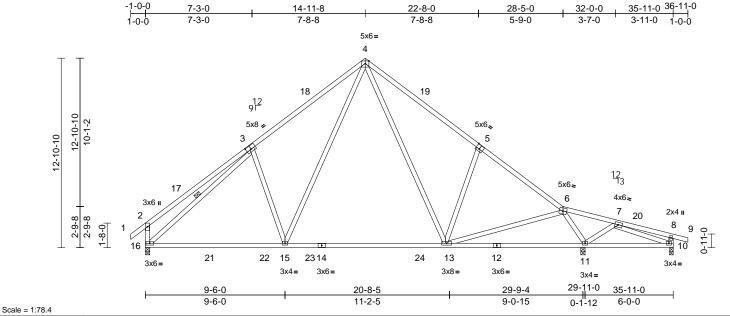


Plate Offsets (X, Y): [3:0-4-0,0-3-0], [5:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.47	13-15	>768	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.69	13-15	>516	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.63	Horz(CT)	0.03	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.03	13-15	>999	240	Weight: 224 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 BOT CHORD

SP SS

WFBS 2x4 SP No.3 *Except* 15-4,13-4:2x4 SP No.2

BRACING

Structural wood sheathing directly applied, TOP CHORD

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 10-11.

WEBS 1 Row at midpt 3-16

REACTIONS (size) 10=0-3-0, 11=0-3-8, 16=0-3-8 Max Horiz 16=-276 (LC 10)

Max Uplift 10=-94 (LC 9), 11=-58 (LC 13), 16=-34 (LC 12)

Max Grav 10=140 (LC 26), 11=1843 (LC 2),

16=1416 (LC 19)

(lb) - Maximum Compression/Maximum

Tension

1-2=0/41, 2-4=-1476/299, 4-6=-1426/291,

6-7=-82/595, 7-8=-68/26, 8-9=0/17,

2-16=-420/224, 8-10=-178/99

BOT CHORD 15-16=-82/1279, 13-15=0/858, 11-13=0/306,

10-11=-339/49

5-13=-426/245, 3-16=-1332/0, 7-10=-35/401,

3-15=-298/267, 4-15=-128/824, 4-13=-128/632, 6-13=-25/861,

7-11=-359/103, 6-11=-1613/202

NOTES

WFRS

FORCES

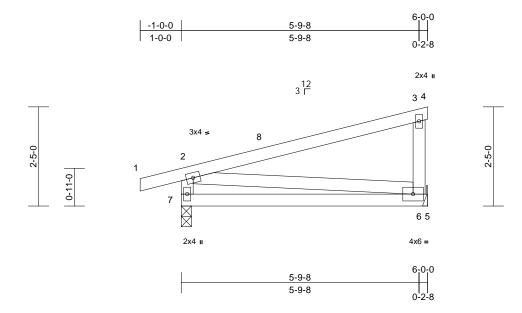
TOP CHORD

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-7-2, Interior (1) 2-7-2 to 14-11-8, Exterior(2R) 14-11-8 to 18-6-10, Interior (1) 18-6-10 to 36-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 16, 94 lb uplift at joint 10 and 58 lb uplift at joint 11
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 28,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908	8438	C4	Jack-Open	3	1	Job Reference (optional)	T33374529

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:38 ID:6tzYnoivaiFJVqUIPAZV7UzfGq1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.06	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.12	6-7	>558	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 31 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6= Mechanical, 7=0-3-0

Max Horiz 7=48 (LC 8)

Max Uplift 6=-29 (LC 12), 7=-44 (LC 8) Max Grav 6=227 (LC 1), 7=301 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-53/31, 3-4=-1/0, 2-7=-245/174

BOT CHORD 6-7=-105/45, 5-6=0/0 WEBS 2-6=-45/105, 3-6=-167/153

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 7 and 29 lb uplift at joint 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

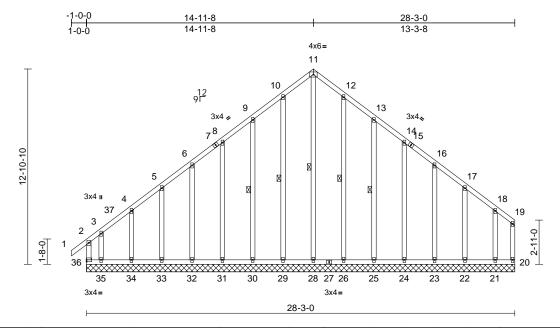
LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	CG1	Common Supported Gable	1	1	Job Reference (optional)	T33374530

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:38 ID:Rx2ZrSEFkjZu5Po7Guc8llzfGXG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale	=	1:7	c

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.00	20	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 250 lb	FT = 20%

LONDLIN	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 28-11:2x4 SP No.2

BRACING

LUMBER

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

> 11-28, 10-29, 9-30, 1 Row at midpt

WEBS

12-26 13-25

REACTIONS (size) 20=28-3-0, 21=28-3-0, 22=28-3-0, 23=28-3-0, 24=28-3-0, 25=28-3-0,

> 26=28-3-0, 28=28-3-0, 29=28-3-0, 30=28-3-0, 31=28-3-0, 32=28-3-0, 33=28-3-0, 34=28-3-0, 35=28-3-0,

36=28-3-0

Max Horiz 36=285 (LC 9)

Max Uplift 20=-105 (LC 9), 21=-123 (LC 8), 22=-43 (LC 13), 23=-50 (LC 13), 24=-46 (LC 13), 25=-57 (LC 13), 26=-30 (LC 13), 28=-58 (LC 11),

29=-35 (LC 12), 30=-55 (LC 12), 31=-47 (LC 12), 32=-47 (LC 12), 33=-52 (LC 12), 34=-31 (LC 12), 35=-461 (LC 9), 36=-494 (LC 8)

Max Grav 20=130 (LC 10), 21=233 (LC 20),

22=165 (LC 26), 23=167 (LC 20), 24=165 (LC 20), 25=168 (LC 20), 26=167 (LC 26), 28=350 (LC 13),

29=177 (LC 19), 30=164 (LC 19), 31=167 (LC 19), 32=165 (LC 19), 33=169 (LC 19), 34=168 (LC 1), 35=495 (LC 10), 36=579 (LC 11)

FORCES (lb) - Maximum Compression/Maximum

Tension

BOT CHORD

TOP CHORD 2-36=-362/308, 1-2=0/41, 2-3=-370/339, 3-4=-236/226, 4-5=-226/226, 5-6=-208/221 6-8=-193/227, 8-9=-176/261, 9-10=-199/320, 10-11=-224/362, 11-12=-224/362, 12-13=-199/320, 13-14=-164/261

14-16=-134/207, 16-17=-102/153, 17-18=-70/98, 18-19=-71/68, 19-20=-67/55

35-36=-68/60, 34-35=-68/60, 33-34=-68/60, 32-33=-68/60, 31-32=-68/60, 30-31=-68/60, 29-30=-68/60, 28-29=-68/60, 26-28=-68/60, 25-26=-68/60, 24-25=-68/60, 23-24=-68/60, 22-23=-68/60, 21-22=-68/60, 20-21=-68/60

11-28=-374/173, 10-29=-137/59, 9-30=-124/79, 8-31=-126/71, 6-32=-126/72, 5-33=-126/73, 4-34=-126/70, 3-35=-242/241, 12-26=-127/54, 13-25=-128/81,

14-24=-126/71, 16-23=-126/73, 17-22=-127/72. 18-21=-144/96

NOTES

WEBS

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16: Vult=115mph (3-second aust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 14-11-8, Corner(3R) 14-11-8 to 17-11-8, Exterior(2N) 17-11-8 to 28-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- Truss to be fully sheathed from one face or securely 6) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 494 lb uplift at joint 36, 105 lb uplift at joint 20, 58 lb uplift at joint 28, 35 Ib uplift at joint 29, 55 lb uplift at joint 30, 47 lb uplift at joint 31, 47 lb uplift at joint 32, 52 lb uplift at joint 33, 31 Ib uplift at joint 34, 461 lb uplift at joint 35, 30 lb uplift at joint 26, 57 lb uplift at joint 25, 46 lb uplift at joint 24, 50 lb uplift at joint 23, 43 lb uplift at joint 22 and 123 lb uplift at joint 21.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

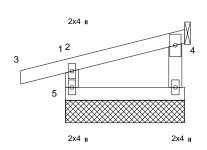
LOAD CASE(S) Standard

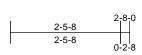
March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	CG2	Jack-Open Supported Gable	1	1	Job Reference (optional)	T33374531


Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:38 ID:bHtdCBa0uxlh5Rwmx2xXoazfGvM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:25.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 12 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **WEBS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-8-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size)

3=2-8-0, 4=2-8-0, 5=2-8-0

Max Horiz 5=16 (LC 12)

Max Uplift 3=-10 (LC 8), 4=-26 (LC 8), 5=-30

(LC 10)

Max Grav 3=54 (LC 11), 4=37 (LC 11), 5=29

(LC 9)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/0, 2-3=-13/15, 3-4=-43/34, 2-5=-32/66

BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 2-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.
- Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 3, 26 lb uplift at joint 4 and 30 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D1	Roof Special	2	1	Job Reference (optional)	T33374532

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39

Page: 1 ID:i9sm5OrECSv5CwRopYwqCtzfFqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

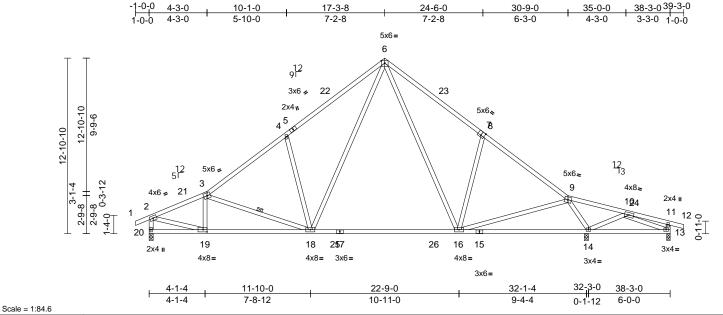


Plate Offsets (X, Y): [7:0-3-0,Edge], [19:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.53	16-18	>733	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.92	Vert(CT)	-0.78	16-18	>492	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.04	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.05	18-19	>999	240	Weight: 238 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.1

2x4 SP No.3 *Except* 18-6,6-16:2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 3-18

13=0-3-0, 14=0-3-8, 20=0-3-8 REACTIONS (size)

Max Horiz 20=-217 (LC 10)

Max Uplift 13=-101 (LC 9), 14=-59 (LC 13),

20=-47 (LC 12)

Max Grav 13=97 (LC 26), 14=2009 (LC 2),

20=1420 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/26, 2-3=-1926/156, 3-4=-1712/194,

4-6=-1693/328, 6-8=-1460/302, 8-9=-1497/166, 9-10=-116/780,

10-11=-29/45, 11-12=0/17, 2-20=-1350/181,

11-13=-136/86

19-20=-179/238, 18-19=-137/1912,

16-18=0/939, 14-16=0/215, 13-14=-414/55 WFRS

8-16=-426/244, 9-16=-28/1003,

10-14=-451/121, 9-14=-1800/234

3-18=-471/86, 4-18=-418/238,

6-18=-153/1078, 6-16=-134/611

3-19=-309/93, 2-19=-80/1721, 10-13=-32/464

NOTES

BOT CHORD

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-9-14, Interior (1) 2-9-14 to 17-3-8, Exterior(2R) 17-3-8 to 21-1-6, Interior (1) 21-1-6 to 39-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 20, 59 lb uplift at joint 14 and 101 lb uplift at joint 13
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D2	Attic	3	1	Job Reference (optional)	T33374533

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39 ID:vWL2DvS5aW_bVzN6vCHEQDzfFnD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

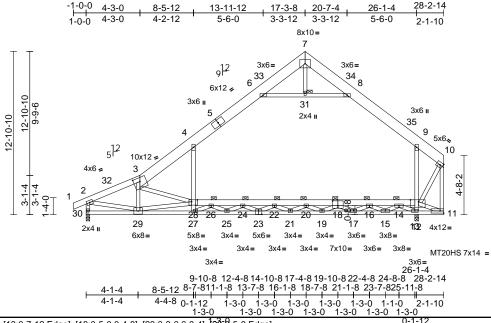


Plate Offsets (X, Y): [3:0-6-0,0-3-12], [13:0-7-12,Edge], [18:0-5-0,0-4-8], [23:0-3-0,0-3-4], [28:8-5-8,Edge]

			-	_	-		-					-
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.27	22-24	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.53	24	>588	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.05	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.11	25-27	>999	240	Weight: 311 lb	FT = 20%

LUMBER

TOP CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-3:2x6 SP No.2

BOT CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4

SP SS *Except* 18-13,18-28:2x6 SP 2400F 2.0E or 2x6 SP DSS

2x4 SP No.3 *Except* 4-27.29-28.6-8:2x4 SP

WFBS No.2, 9-12,11-10,10-13,11-13:2x4 SP 2400F

2.0E or 2x4 SP DSS or 2x4 SP SS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-3-14 oc purlins. except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 15-17

3-6-9 oc bracing: 12-15 2-7-13 oc bracing: 11-12.

JOINTS 1 Brace at Jt(s): 18,

31, 14, 16, 20, 22,

24, 26

REACTIONS (size) 12=0-3-8, 30=0-3-8

Max Horiz 30=237 (LC 11)

Max Grav 12=1837 (LC 20), 30=1299 (LC 2) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/21 2-3=-1903/0 3-4=-1475/0

4-6=-914/30, 6-7=-82/251, 7-8=-216/113, 8-9=-1067/12, 9-10=-1077/0, 2-30=-1263/0,

10-11=-2042/0

BOT CHORD 29-30=-201/203, 27-29=-82/2705,

25-27=0/3050, 21-25=0/3693, 19-21=0/3144, 17-19=0/1840, 15-17=-939/197,

12-15=-3266/0, 11-12=-5188/0, 26-28=-1845/219, 24-26=-2425/0, 22-24=-2847/0, 20-22=-2668/0, 16-20=-1734/967, 14-16=0/3139,

13-14=0/6245

WEBS 3-29=-245/5, 3-28=-986/5, 27-28=-76/425, 4-28=0/948, 12-13=-543/109, 9-13=-498/335,

7-31=0/133, 2-29=0/1690, 28-29=-906/201, 6-31=-1060/0, 8-31=-1060/0, 12-14=-2406/0,

14-15=0/1416, 15-16=-1686/0, 16-17=0/1283, 17-18=-1162/0, 18-19=0/868,

19-20=-814/0, 20-21=0/501, 21-22=-426/24, 22-23=-81/245, 23-24=-188/141,

24-25=-567/67, 25-26=0/639 26-27=-748/191, 10-13=0/1733, 11-13=0/5534

NOTES

Unbalanced roof live loads have been considered for 1) this design

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 17-3-8, Exterior(2R) 17-3-8 to 20-3-8, Interior (1) 20-3-8 to 28-1-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

All plates are MT20 plates unless otherwise indicated.

All plates are 3x4 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Ceiling dead load (5.0 psf) on member(s). 3-4, 4-6, 8-9, 6-31, 8-31; Wall dead load (5.0psf) on member(s).4-28, 9-13

Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 26-28, 24-26, 22-24, 20-22, 18-20, 16-18, 14-16, 13-14

All bearings are assumed to be SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply Chamberlain Homes / 146 Montana T33374534 3 3908438 D3 Attic Girder Job Reference (optional)

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557.

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39 ID:vWL2DvS5aW_bVzN6vCHEQDzfFnD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

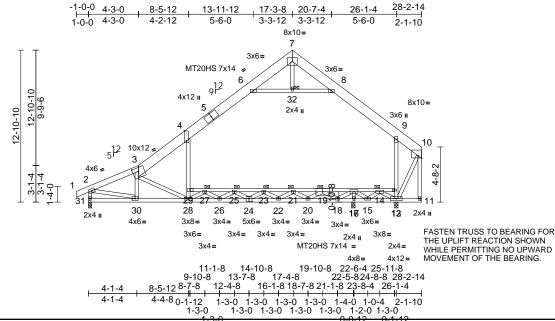


Plate Offsets (X, Y): [3:0-6-0,0-3-12], [4:0-9-15,Edge], [10:Edge,0-2-4], [24:0-3-0,0-3-0]

											,	-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.35	28-30	>759	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.78	28-30	>343	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	NO	WB	0.82	Horz(CT)	-0.01	12	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.09	28	>999	240	Weight: 870 lb	FT = 20%

LUMBER	
TOP CHORD	2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-3:2x6 SP No.2 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4

BOT CHORD SP SS

Scale = 1:97.7

BRACING

WEBS 2x4 SP No.3 *Except* 4-28:2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP SS, 9-12:2x4

SP No.1, 6-8:2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 19, 32, 14, 21, 23, 25,

27

REACTIONS (size) 12=0-3-8, 17=0-3-8, 31=0-3-8

Max Horiz 31=296 (LC 5) Max Uplift 12=-1236 (LC 24)

Max Grav 12=-259 (LC 5), 17=4892 (LC 16),

31=2746 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-4281/0, 3-4=-3333/0,

4-6=-940/31, 6-7=0/846, 7-8=-422/87

8-9=-1965/0 9-10=0/412 2-31=-2768/0

10-11=-433/0

BOT CHORD 30-31=-243/259, 28-30=0/4034,

26-28=0/3632, 22-26=-898/2638 20-22=-3539/0. 18-20=-6860/0. 17-18=-11242/0, 15-17=-11242/0,

12-15=-4429/0, 11-12=-48/29 27-29=-2038/0, 25-27=-2242/0,

23-25=-940/1046, 21-23=0/3487 16-21=0/10532, 14-16=0/9618, 13-14=0/910 **WEBS**

3-30=-510/0, 3-28=-2809/0, 28-29=0/3414, 4-29=0/3549, 12-13=-3835/0, 9-13=-3892/0, 10-12=0/3054, 6-32=-1786/0, 8-32=-1786/0, 7-32=0/208, 2-30=0/3891, 12-14=0/5811,

14-15=-4986/0, 15-16=0/3784, 16-18=0/2495, 18-19=-2768/0,

19-20=0/2471, 20-21=-2335/0, 21-22=0/1933, 22-23=-1796/0, 23-24=0/1426, 24-25=-1650/0, 25-26=0/1503, 26-27=-259/324

27-28=-688/306, 16-17=-3988/0

NOTES

1) N/A

3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 2 rows staggered at 0-4-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- All plates are MT20 plates unless otherwise indicated.
- 7) All plates are 3x4 MT20 unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 3-4, 4-6, 8-9, 6-32, 8-32; Wall dead load (5.0psf) on member(s).4-29, 9-13
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 27-29, 25-27, 23-25, 21-23, 19-21, 16-19, 14-16, 13-14
- 12) All bearings are assumed to be SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1236 lb uplift at ioint 12.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D3	Attic Girder	1	3	Job Reference (optional)	T33374534

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39 Page: 2

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2762 lb down at 8-5-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-60, 2-3=-60, 3-6=-70, 6-7=-60, 7-8=-60, 8-9=-70, 9-10=-60, 11-31=-20, 13-29=-30, 6-32=-10, 8-32=-10 Drag: 4-29=-10, 9-13=-10

Concentrated Loads (lb) Vert: 28=-2762 (B)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D4	Roof Special Girder	1	3	Job Reference (optional)	T33374535

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39 ID:Y1QVGOSi?ZL8XmDcEUgXHZzfEUa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

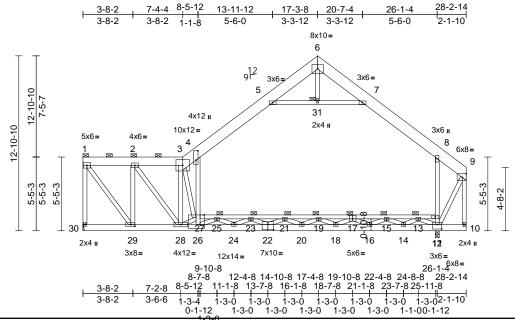


Plate Offsets (X, Y): [4:0-8-5,0-1-12], [9:Edge,0-3-4], [11:0-4-0,0-4-0], [17:0-3-0,0-3-0], [22:0-5-0,0-4-8], [26:0-3-12,Edge], [29:0-3-8,0-1-8]

WEBS

NOTES

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.30	22-24	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.65	22-24	>478	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.80	Horz(CT)	0.04	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.05	24-26	>999	240	Weight: 994 lb	FT = 20%

14-15=-3478/0, 15-16=0/3045,

16-17=-2050/0, 17-18=0/1680,

18-19=-1808/0, 19-20=0/1446,

20-21=-1308/0, 21-22=0/1172,

Top chords connected as follows: 2x4 - 1 row at 0-9-0

oc, 2x8 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows

Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc, 2x4 - 2 rows staggered at 0-4-0

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies,

CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for

except if noted as front (F) or back (B) face in the LOAD

27-28=-10163/0

(0.131"x3") nails as follows:

unless otherwise indicated.

staggered at 0-9-0 oc.

3-ply truss to be connected together with 10d

22-23=-1264/0, 23-24=-314/1118,

24-25=-324/664, 25-26=-963/544,

2-29=-2956/0, 3-28=0/3070, 9-11=0/3286,

26-27=0/2269, 4-27=0/6410, 11-12=-1906/0,

8-12=-1943/0, 5-31=-1989/0, 7-31=-1989/0,

3-27=-9219/0, 11-13=0/1192, 13-14=-1233/0,

6-31=0/227, 1-29=0/4050, 2-28=0/2877,

Scale = 1:84.9

TOP CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-3:2x8 SP 2400F 2.0E or 2x8 SP

DSS

BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP DSS *Except* 17-12.17-27:2x4 SP 2400F 2.0E or 2x4 SP

DSS or 2x4 SP SS

WFBS 2x4 SP No.3 *Except* 4-26,28-27:2x4 SP

No.1, 8-11,5-7,27-3:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-3.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 11-14,10-11.

JOINTS 1 Brace at Jt(s): 1,

17, 31, 13, 15, 19,

21, 23, 25

REACTIONS (size) 11=0-3-8, 30= Mechanical Max Horiz 30=-286 (LC 4)

Max Grav 11=3165 (LC 16), 30=3372 (LC 17)

FORCES

TOP CHORD

(lb) - Maximum Compression/Maximum Tension

1-30=-3360/0, 1-2=-2370/0, 2-3=-4052/0, 3-4=-4371/0 4-5=-1250/0 5-6=0/679

6-7=-297/144, 7-8=-1903/0, 8-9=-833/0,

9-10=-2422/0

BOT CHORD 29-30=-249/261, 28-29=0/2498,

26-28=0/12752, 24-26=0/12915, 20-24=0/12642, 18-20=0/8897,

16-18=0/5950, 14-16=0/2140, 11-14=-706/78,

10-11=-52/28, 25-27=-11307/0, 23-25=-11481/0, 21-23=-10255/0, 19-21=-8472/0, 15-19=-5780/0,

13-15=0/3095, 12-13=0/1246

this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.
- All plates are 3x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 3-4, 4-5, 7-8, 5-31, 7-31; Wall dead load (5.0psf) on member(s).4-27, 8-12
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 25-27, 23-25, 21-23, 19-21, 17-19, 15-17, 13-15, 12-13
- 11) Bearings are assumed to be: , Joint 11 SP 2400F 2.0E or DSS crushing capacity of 660 psi.
- 12) Refer to girder(s) for truss to truss connections.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D4	Roof Special Girder	1	3	Job Reference (optional)	T33374535

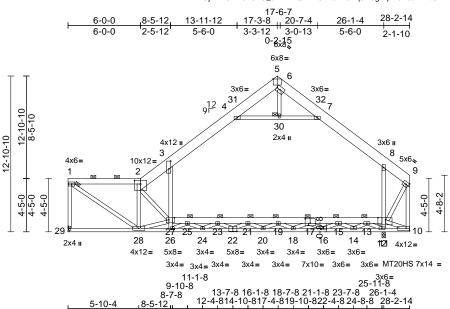
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:39

Page: 2

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2952 lb down at 8-7-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-60, 3-5=-70, 5-6=-60, 6-7=-60, 7-8=-70, 8-9=-60, 10-30=-20, 12-27=-30, 5-31=-10, 7-31=-10 Drag: 4-27=-10, 8-12=-10 Concentrated Loads (lb) Vert: 26=-2952 (F)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D5	Attic	1	1	Job Reference (optional)	T33374536

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:40 ID:AnBCjNiRfCEzI6HJVU_chHzfEQN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:95.3 Plate Offsets (X, Y): [2:0-6-0,0-3-8], [3:0-7-13,0-1-12], [5:0-4-0,Edge], [12:0-7-8,Edge], [4:7;0-5-0,0-4-8], [22:0-4-0,0-3-0], [27:0-5-8,Edge], [12:0-7-8,Edge], [12:0-7-8,Edge

5-10-4

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.27	21-23	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.52	21-23	>598	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.04	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.09	24-26	>999	240	Weight: 309 lb	FT = 20%

1-3-0

1-3-0

1-3-0

1-3-0

LUMBER

TOP CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-2:2x6 SP No.2

BOT CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP SS *Except* 17-12,17-27:2x6 SP 2400F

2.0E or 2x6 SP DSS

WFBS 2x4 SP No.3 *Except* 10-9,8-11:2x4 SP No.1, 12-9,3-26,4-7:2x4 SP No.2, 12-10:2x4

SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP SS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-8-10 max.): 1-2.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 14-16 3-7-9 oc bracing: 11-14

2-8-7 oc bracing: 10-11. JOINTS 1 Brace at Jt(s): 1,

30, 25, 23, 21, 19, 17, 15, 13

REACTIONS (size) 11=0-3-8, 29= Mechanical

Max Horiz 29=224 (LC 9)

Max Grav 11=1831 (LC 20), 29=1241 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

BOT CHORD

1-29=-1196/0. 1-2=-1542/0. 2-3=-1597/0.

3-4=-900/9, 4-5=-89/241, 5-6=-84/172, 6-7=-231/98, 7-8=-1047/2, 8-9=-1041/0,

9-10=-1982/0

28-29=-203/204, 26-28=-48/2726,

24-26=0/3057, 20-24=0/3715, 18-20=0/3188, 16-18=0/1820, 14-16=-855/172,

11-14=-3118/0, 10-11=-5042/0, 25-27=-1864/191, 23-25=-2478/0, 21-23=-2871/0, 19-21=-2715/0, 15-19=-1802/859, 13-15=0/2978

12-13=0/6052

WEBS

1-28=0/1870, 2-28=-786/0, 2-27=-1225/0, 9-12=0/1690, 6-30=0/132, 26-27=-122/403, 3-27=0/1339, 11-12=-553/77, 8-12=-508/307, 27-28=-1185/222, 4-30=-1026/0, 7-30=-1038/0, 25-26=-774/195, 24-25=0/663,

23-24=-575/70, 22-23=-189/151, 21-22=-91/240, 20-21=-413/17, 19-20=0/487,

18-19=-800/0, 17-18=0/930, 16-17=-1081/0, 15-16=0/1291, 14-15=-1661/0,

13-14=0/1400. 11-13=-2388/0. 10-12=0/5381

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12. Interior (1) 3-1-12 to 17-3-8, Exterior(2R) 17-3-8 to 20-3-8, Interior (1) 20-3-8 to 28-1-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 3x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 2-3, 3-4, 7-8, 4-30, 7-30; Wall dead load (5.0psf) on member(s).3-27, 8-12
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 25-27, 23-25, 21-23, 19-21, 17-19, 15-17, 13-15, 12-13
- 10) Bearings are assumed to be: , Joint 11 SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.

- 11) Refer to girder(s) for truss to truss connections
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D6	Attic	1	1	Job Reference (optional)	T33374537

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:40 ID:QgR08yTOWmVPCOsBVR5c3szfEO6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

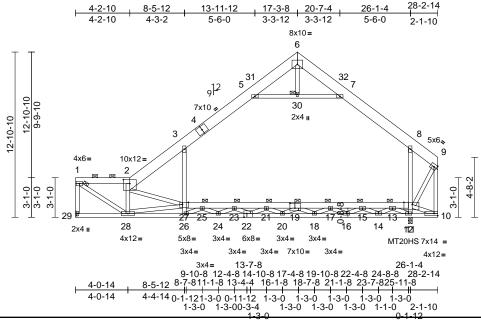


Plate Offsets (X, Y): [2:0-6-0,0-3-12], [12:0-7-12,Edge], [19:0-4-12,0-4-8], [22:0-2-12,Edge], [27:0-5-8,Edge]

				1	-							
Loading	(psf)	Spacing	1-7-3	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.28	21-23	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.54	23	>577	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.82	Horz(CT)	0.05	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.11	24-26	>999	240	Weight: 310 lb	FT = 20%

LUMBER	
TOP CHORD	2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-2:2x6 SP No.2

BOT CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP SS *Except* 27-19,19-12:2x6 SP 2400F

2.0E or 2x6 SP DSS

WFBS 2x4 SP No.3 *Except* 10-9.8-11.12-10:2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP

SS, 3-26:2x4 SP No.1, 9-12,5-7:2x4 SP No.2 BRACING

BOT CHORD

Scale = 1:89.8

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-9-6 max.): 1-2.

Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 14-16

3-6-7 oc bracing: 11-14 2-7-13 oc bracing: 10-11.

JOINTS 1 Brace at Jt(s): 1, 30, 25, 23, 21, 19,

17, 15, 13

REACTIONS (size) 11=0-3-8, 29= Mechanical

Max Horiz 29=225 (LC 9)

Max Grav 11=1839 (LC 20), 29=1253 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-29=-1223/0, 1-2=-1630/0, 2-3=-1481/0,

3-5=-916/10, 5-6=-80/251, 6-7=-217/112,

7-8=-1072/8, 8-9=-1081/0, 9-10=-2048/0

BOT CHORD 28-29=-208/199, 26-28=-37/2701,

24-26=0/3027, 20-24=0/3653, 18-20=0/3222, 16-18=0/1858, 14-16=-960/187, 11-14=-3284/0, 10-11=-5205/0, 25-27=-1863/179, 23-25=-2407/0, 21-23=-2816/0, 17-21=-2651/0, 15-17=-255/987, 13-15=0/3164,

12-13=0/6271

WEBS 1-28=0/1982, 2-28=-986/0, 2-27=-974/0, 11-12=-544/80, 8-12=-499/335,

26-27=-98/411, 3-27=0/947, 27-28=-896/188, 10-12=0/5554, 9-12=0/1738, 5-30=-1062/0, 7-30=-1062/0, 6-30=0/133, 25-26=-718/233, 24-25=0/650, 23-24=-582/62, 22-23=-166/105, 21-22=-84/289

20-21=-403/26, 19-20=0/400, 18-19=-894/0, 17-18=0/837, 16-17=-1182/0, 15-16=0/1296, 14-15=-1680/0, 13-14=0/1414, 11-13=-2407/0

NOTES

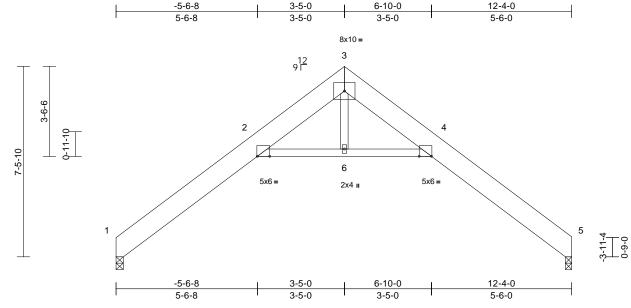
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 17-3-8, Exterior(2R) 17-3-8 to 20-3-8, Interior (1) 20-3-8 to 28-1-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 3x6 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 2-3, 3-5, 7-8, 5-30, 7-30; Wall dead load (5.0psf) on member(s).8-12, 3-27
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 25-27, 23-25, 21-23, 19-21, 17-19, 15-17, 13-15, 12-13

- 10) Bearings are assumed to be: , Joint 11 SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.
- 11) Refer to girder(s) for truss to truss connections.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Jo	ob	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
39	908438	D7	Common	5	1	Job Reference (optional)	T33374538

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:40 ID:NJHeawYIVC4sldFXR0VIIPzdz4j-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.2 Plate Offsets (X, Y): [2:0-5-13,Edge], [4:0-5-13,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	-0.25	6-9	>850	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.58	Vert(CT)	-0.52	6-9	>408	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.74	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP		Wind(LL)	0.16	6-9	>999	240	Weight: 105 lb	FT = 20%

LUMBER

TOP CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS

BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 1=0-3-7, 5=0-2-15 (size)

Max Horiz 1=130 (LC 9)

Max Grav 1=738 (LC 1), 5=734 (LC 1) **FORCES** (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-440/174, 2-3=-1135/197,

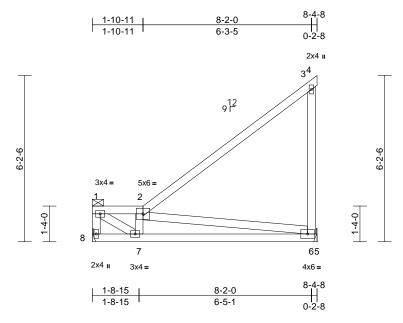
3-4=-1128/198, 4-5=-413/174 2-6=-21/1136, 4-6=-22/1136

BOT CHORD WEBS 3-6=0/220

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -5-4-13 to -2-4-13, Interior (1) -2-4-13 to 3-5-0, Exterior(2R) 3-5-0 to 6-5-7, Interior (1) 6-5-7 to 12-2-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP DSS or 2400F 2.0E crushing capacity of 660 psi.

- 6) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	D8	Roof Special	5	1	Job Reference (optional)	T33374539

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:41 ID:5qM6uW0OjdSv8OgwkdKbXozdvmU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.06	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.13	6-7	>765	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.01	6-7	>999	240	Weight: 49 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 1-2.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

REACTIONS (size) 6= Mechanical, 8= Mechanical

Max Horiz 8=137 (LC 12) Max Uplift 6=-91 (LC 12)

Max Grav 6=337 (LC 19), 8=321 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-8=-340/0, 1-2=-554/4, 2-3=-150/89,

3-4=-3/0

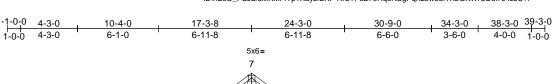
BOT CHORD 7-8=-195/109, 6-7=-208/588, 5-6=0/0 WEBS 1-7=-13/670, 2-7=-244/104, 3-6=-182/147,

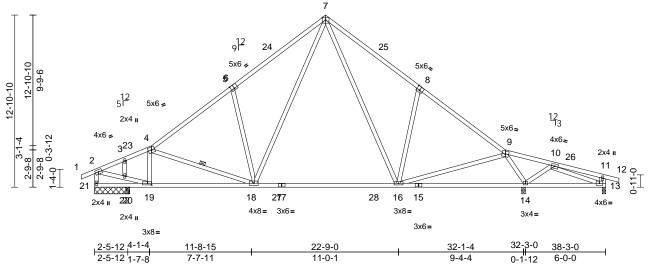
2-6=-596/211

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 1-10-11, Interior (1) 1-10-11 to 8-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	DG1	Roof Special	1	1	Job Reference (optional)	T33374540

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:41 ID:hBsO_PSJLfdMKMFfTp1XayzfEKF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:86.2

Plate Offsets (X, Y): [6:0-3-0,Edge], [8:0-3-0,0-3-4], [19:0-3-8,0-1-8]

				1	-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.54	16-18	>663	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.92	Vert(CT)	-0.80	16-18	>448	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.79	Horz(CT)	0.03	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.06	18-19	>999	240	Weight: 241 lb	FT = 20%

LUMBER

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.1

2x4 SP No.3 *Except* 13-11:2x6 SP No.2,

18-7.16-7:2x4 SP No.2

OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-7-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing. WEBS

1 Row at midpt 4-18

REACTIONS (size) 13=0-3-0, 14=0-3-8, 20=0-3-8,

21=2-7-8

Max Horiz 21=-217 (LC 10)

Max Uplift 13=-103 (LC 9), 14=-59 (LC 13), 20=-22 (LC 12), 21=-27 (LC 12)

Max Grav 13=109 (LC 26), 14=1958 (LC 2), 20=397 (LC 19), 21=1069 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-1591/122, 3-4=-1548/136,

4-5=-1644/187, 5-7=-1632/331, 7-9=-1467/304, 9-10=-101/716,

10-11=-55/30. 11-12=0/18. 2-21=-1158/168.

11-13=-184/104

20-21=-189/188, 19-20=-189/188,

18-19=-124/1604, 16-18=0/909,

14-16=0/239, 13-14=-453/74

WFBS 2-22=-77/1496, 19-22=-74/1501,

4-19=-497/102, 9-14=-1728/222 10-14=-360/96, 10-13=-66/512,

4-18=-258/77, 5-18=-423/242,

7-18=-160/1017, 7-16=-138/636 8-16=-429/246, 9-16=-19/951, 3-22=-8/19

NOTES

BOT CHORD

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-9-14, Interior (1) 2-9-14 to 17-3-8, Exterior(2R) 17-3-8 to 21-1-6, Interior (1) 21-1-6 to 39-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 21, 59 lb uplift at joint 14, 103 lb uplift at joint 13 and 22 lb uplift at joint 20.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	DG2	Attic Girder	1	1	Job Reference (optional)	T33374541

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:41 ID:RSv?ArtCwl9L9hos_14g?QzfEFr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

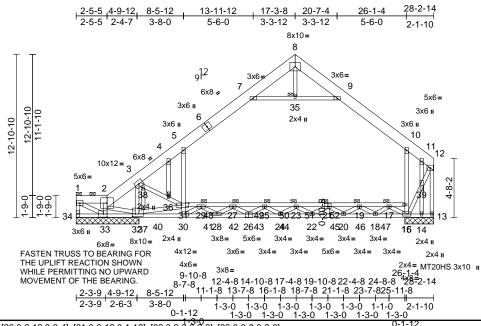


Plate Offsets (X, Y): [21:0-3-0,0-3-0], [26:0-2-12,0-3-4], [31:0-6-12,0-1-12], [32:0-2-8,0-4-8], [33:0-3-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.26	23-25	>972	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.47	23-25	>539	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	NO	WB	0.94	Horz(CT)	0.05	13	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.07	22-24	>999	240	Weight: 312 lb	FT = 20%

LUMBER

TOP CHORD 2x10 SP 2400F 2.0E or 2x10 SP DSS

Except 1-2:2x8 SP 2400F 2.0E or 2x8 SP

DSS

BOT CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 SP SS

WFBS

2x4 SP No 3 *Except*

33-2,5-30,10-15,7-9,31-32:2x4 SP No.2, 13-12:2x4 SP No.1, 3-31:2x4 SP 2400F 2.0E

or 2x4 SP DSS or 2x4 SP SS

2x4 SP No 3

OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 1-2.

BOT CHORD Rigid ceiling directly applied or 3-11-3 oc

bracing.

JOINTS 1 Brace at Jt(s): 1,

21, 35, 29, 27, 25, 23, 19, 17, 36

REACTIONS (size)

13=2-3-6, 14=2-3-6, 15=2-3-6, 32=4-11-8, 33=4-11-8, 34=4-11-8

Max Horiz 34=283 (LC 27)

Max Uplift 13=-31 (LC 8), 14=-438 (LC 14),

15=-269 (LC 4), 33=-1386 (LC 14), 34=-510 (LC 16)

Max Grav 13=1557 (LC 16), 14=4 (LC 21),

15=1155 (LC 14), 32=4419 (LC 16), 33=-22 (LC 5), 34=32 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-34=-20/530, 1-2=-48/750, 2-3=-7/2555,

> 3-4=-908/22, 4-5=-996/14, 5-7=-803/113, 7-8=-304/70. 8-9=-356/57, 9-10=-863/120

10-11=-783/87, 11-12=-501/74,

12-13=-1338/74

BOT CHORD

33-34=-281/230, 32-33=-929/0, 30-32=-2668/0, 28-30=-365/82,

24-28=0/3990, 22-24=0/4704, 20-22=0/4460, 18-20=0/3223, 15-18=0/1493, 14-15=-40/37, 13-14=-40/37, 29-31=0/3155, 27-29=-637/0,

25-27=-2866/0, 23-25=-4055/0,

19-23=-4280/0, 17-19=-1708/0, 16-17=0/315 1-33=-849/63, 2-33=0/1849, 30-31=0/1696,

5-31=-79/411, 15-16=-430/154, 10-16=-406/210, 7-35=-399/127,

9-35=-399/127, 15-39=-7/1294, 12-39=-6/1416, 8-35=0/82, 3-32=-4076/0, 2-32=-1261/0, 32-37=0/855, 31-37=0/686. 3-38=0/3120, 36-38=0/2953, 31-36=0/2798

29-30=-2845/0, 28-29=0/1641 27-28=-1613/0, 26-27=0/1108. 25-26=-955/0. 24-25=0/519, 23-24=-374/0, 22-23=-100/31,

21-22=0/220, 20-21=-659/0, 19-20=0/904 18-19=-1380/0, 17-18=0/937, 15-17=-1518/0,

4-36=-327/7, 37-38=0/440, 11-39=-527/7, 14-39=-401/8

NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 5)
- All plates are 3x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 5-7, 9-10, 7-35, 9-35; Wall dead load (5.0psf) on member(s).5-31, 10-16
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 29-31, 27-29, 25-27, 23-25, 21-23, 19-21, 17-19, 16-17
- 13) All bearings are assumed to be SP DSS or SS or 2400F 2.0E crushing capacity of 565 psi.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 510 lb uplift at joint 34, 1386 lb uplift at joint 33, 31 lb uplift at joint 13, 269 lb uplift at joint 15 and 438 lb uplift at joint 14.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	DG2	Attic Girder	1	1	Job Reference (optional)	T33374541

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:41 ID:RSv?ArtCwl9L9hos_14g?QzfEFr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 61 lb down and 23 lb up at 6-5-8, 61 lb down and 23 lb up at 8-5-12, 61 lb down and 23 lb up at 10-5-8, 61 lb down and 23 lb up at 12-5-8, 61 lb down and 23 lb up at 14-5-8, 61 lb down and 23 lb up at 16-5-8, 61 lb down and 23 lb up at 18-5-8, 61 lb down and 23 lb up at 20-5-8, and 61 lb down and 23 lb up at 22-5-8, and 61 lb down and 23 lb up at 24-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 19) Attic room checked for L/360 deflection.
- 20) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

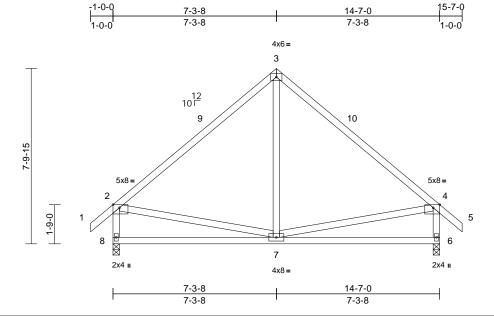
LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-5=-60, 5-7=-70, 7-8=-60, 8-9=-60, 9-10=-70, 10-12=-60, 13-34=-20, 29-31=-30, 16-29=-30, 7-35=-10, 9-35=-10

Drag: 5-31=-10, 10-16=-10 Concentrated Loads (lb)


Vert: 30=-61 (B), 15=-61 (B), 32=-61 (B), 22=-61 (B), 40=-61 (B), 41=-61 (B), 42=-61 (B), 43=-61 (B), 44=-61 (B), 45=-61 (B), 46=-61 (B), 47=-61 (B)

818 Soundside Road Edenton, NC 27932

J	ob	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3	908438	E1	Common	4	1	Job Reference (optional)	T33374542

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:41 ID: QHhadLDvyV0eroPj0TenUkzfEHz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Scale = 1:51.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.05	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.11	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.00	6-7	>999	240	Weight: 90 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 6=0-3-8, 8=0-3-8 (size)

Max Horiz 8=-181 (LC 10) Max Uplift 6=-18 (LC 13), 8=-18 (LC 12)

Max Grav 6=640 (LC 1), 8=640 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/44, 2-3=-537/94, 3-4=-537/94,

4-5=0/44, 2-8=-577/113, 4-6=-577/113

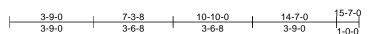
BOT CHORD 7-8=-191/306, 6-7=-95/178

WFBS 3-7=0/265, 2-7=-50/216, 4-7=-52/217

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 7-3-8, Exterior(2R) 7-3-8 to 10-3-8, Interior (1) 10-3-8 to 15-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 8 and 18 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	E2	Common Girder	1	2	Job Reference (optional)	T33374543

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:41 ID:yAEvhF1wA5S7O41bR2LUiszfEGw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

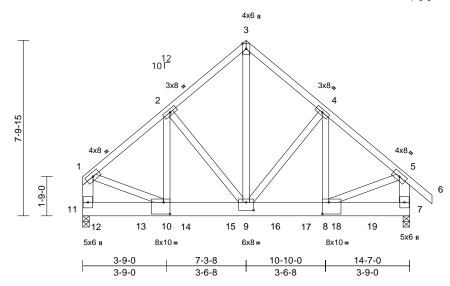


Plate Offsets (X, Y): [8:0-3-8,0-6-4], [9:0-4-0,0-4-4], [10:0-3-8,0-6-4]

-		1		i e	-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.03	8-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.07	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.42	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.00	8-9	>999	240	Weight: 257 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E or 2x8 SP DSS WEBS 2x4 SP No.2 *Except* 11-1,7-5:2x6 SP No.2

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 7=0-3-8, 11=0-3-8 (size)

Max Horiz 11=-171 (LC 4)

Max Grav 7=5382 (LC 16), 11=2956 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=-2606/0, 2-3=-2750/0, 3-4=-2736/0,

4-5=-4744/0, 5-6=0/47, 1-11=-2463/0,

5-7=-4505/0

BOT CHORD 10-11=-94/285, 9-10=0/1988, 8-9=0/3611,

7-8=0/345

WEBS 1-10=0/1914, 5-8=0/3532, 2-10=-518/0,

2-9=0/344, 3-9=0/3236, 4-9=-2458/0,

4-8=0/3028

NOTES

- 2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows

staggered at 0-3-0 oc

- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP 2400F 2.0E or DSS crushing capacity of 660 psi.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 307 lb down at 0-7-4, 301 lb down at 2-7-4, 301 lb down at 4-7-4, 301 lb down at 6-7-4, 301 lb down at 8-7-4, 3431 lb down at 9-11-12, and 1225 lb down at 11-3-14, and 1237 lb down at 12-11-1 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

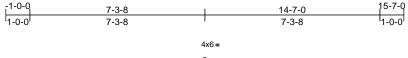
Vert: 1-3=-60, 3-5=-60, 5-6=-60, 7-11=-20

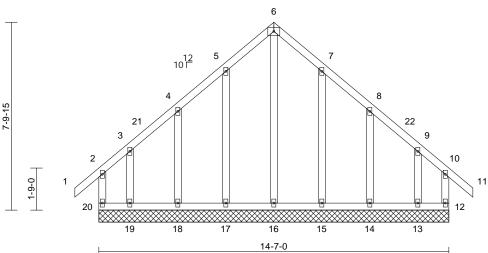
Concentrated Loads (lb)

Vert: 12=-307 (F), 13=-301 (F), 14=-301 (F), 15=-301 (F), 16=-301 (F), 17=-3293 (F), 18=-1041 (F),

19=-1053 (F)

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	EG1	Common Supported Gable	1	1	Job Reference (optional)	T33374544

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:42 ID:j_FMxoKcIncauwROPoILD8zfEGX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 104 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

12=14-7-0, 13=14-7-0, 14=14-7-0, 15=14-7-0, 16=14-7-0, 17=14-7-0, 18=14-7-0, 19=14-7-0, 20=14-7-0

Max Horiz 20=-181 (LC 10)

Max Uplift 12=-140 (LC 9), 13=-134 (LC 8), 14=-53 (LC 13), 15=-54 (LC 13),

17=-54 (LC 12), 18=-53 (LC 12), 19=-142 (LC 9), 20=-152 (LC 8)

12=205 (LC 19), 13=217 (LC 11), Max Grav 14=166 (LC 26), 15=177 (LC 20), 16=214 (LC 22), 17=178 (LC 19), 18=166 (LC 25), 19=226 (LC 10),

20=214 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

2-20=-160/118, 1-2=0/44, 2-3=-122/128, 3-4=-70/125, 4-5=-89/214, 5-6=-127/289, 6-7=-128/289, 7-8=-89/214, 8-9=-63/127 9-10=-112/119, 10-11=0/44, 10-12=-153/116

BOT CHORD 19-20=-94/88, 18-19=-94/88, 17-18=-94/88,

16-17=-94/88. 15-16=-94/88. 14-15=-94/88.

13-14=-94/88, 12-13=-94/88

6-16=-302/74, 5-17=-136/93, 4-18=-128/116, 3-19=-132/95, 7-15=-136/93, 8-14=-128/116,

9-13=-129/93

NOTES

WEBS

Unbalanced roof live loads have been considered for this design.

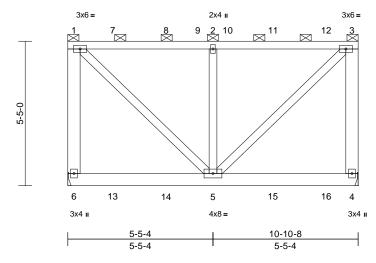
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 7-3-8, Corner(3R) 7-3-8 to 10-3-8, Exterior(2N) 10-3-8 to 15-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb uplift at joint 20, 140 lb uplift at joint 12, 54 lb uplift at joint 17, 53 lb uplift at joint 18, 142 lb uplift at joint 19, 54 lb uplift at joint 15, 53 lb uplift at joint 14 and 134 lb uplift at joint 13.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	FL1	Flat Girder	1	2	Job Reference (optional)	T33374545

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:42 ID:jmXXe3f8ObwzluKqWPEjMmzdvj4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.02	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.05	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.33	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS		Wind(LL)	0.02	5-6	>999	240	Weight: 181 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4

SP SS

BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.2 *Except* 6-1,3-4:2x6 SP No.2

BRACING

TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 1-3. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 4= Mechanical, 6= Mechanical Max Grav 4=2972 (LC 1), 6=2782 (LC 1)

FORCES

(lb) - Maximum Compression/Maximum

Tension

1-2=-1906/0, 2-3=-1906/0

TOP CHORD BOT CHORD 5-6=0/0, 4-5=0/0

WEBS 1-6=-2483/0, 3-4=-2613/0, 2-5=-2592/0,

1-5=0/2652, 3-5=0/2652

NOTES

2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 317 lb down and 103 lb up at 1-8-4, 317 lb down and 103 lb up at 3-8-4, 317 lb down and 103 lb up at 5-8-4, and 317 lb down and 103 lb up at 7-8-4, and 317 lb down and 102 lb up at 9-8-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-60, 4-6=-20 Concentrated Loads (lb)

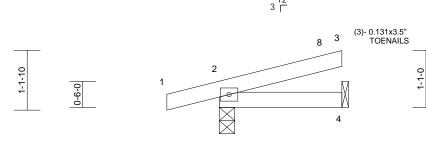
Vert: 2=-674, 5=-309 (B), 7=-674, 8=-674, 11=-674,

12=-676, 13=-309 (B), 14=-309 (B), 15=-309 (B),

16=-310 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	M1	Jack-Open	12	1	Job Reference (optional)	T33374546

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:42 ID:zjlmqtRFAYIJTJd7RByS41zfEGO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0	2-4-0
1-0-0	2-4-0

Scale = 1:21.9

	2-4-0		
'			

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.01	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.01	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP		Wind(LL)	0.01	4-7	>999	240	Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-4-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical

Max Horiz 2=26 (LC 8)

Max Uplift 2=-36 (LC 8), 4=-11 (LC 9) Max Grav 2=164 (LC 1), 4=81 (LC 1) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/15, 2-3=-129/124

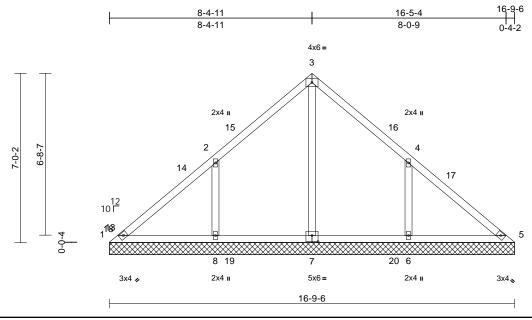
BOT CHORD 2-4=-45/33

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 User Defined crushing capacity of 565 psiJoint 2 SP No.2 crushing capacity of 565 psi, Joint 4 User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2 and 11 lb uplift at joint 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSB Building Component Safety Information, available from the Structural Building Component Safety Information and Safety Information, available from the Structural Building Component Safety Information and Safety In and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V1	Valley	1	1	Job Reference (optional)	T33374547

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:42 ID:h2x41gBTcgEyZV6b6c2H?vzfIF3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.7

Plate Offsets (X,	Y):	[7:0-3-0,0-3-0]
-------------------	-----	-----------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.26	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-9-6, 5=16-9-6, 6=16-9-6,

7=16-9-6, 8=16-9-6 Max Horiz 1=-134 (LC 8)

Max Uplift 1=-20 (LC 8), 6=-134 (LC 13),

8=-135 (LC 12)

1=101 (LC 20), 5=101 (LC 26), Max Grav 6=502 (LC 20), 7=491 (LC 19),

8=503 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-123/234, 2-3=-28/181, 3-4=-27/164,

4-5=-113/199

BOT CHORD 1-8=-108/114, 6-8=-108/109, 5-6=-108/109

WEBS 3-7=-308/0. 2-8=-301/174. 4-6=-301/173

NOTES

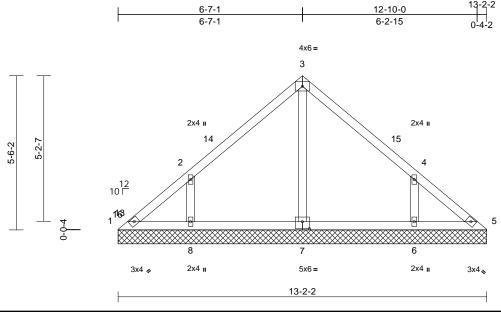
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 8-5-0, Exterior(2R) 8-5-0 to 11-5-0, Interior (1) 11-5-0 to 16-9-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1, 135 lb uplift at joint 8 and 134 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	russ Type Qty Ply Chamberlai		Chamberlain Homes / 146 Montana		
3908438	V2	Valley	1	1	Job Reference (optional)	T33374548

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:42 ID:LvjTgPIJno1Q4adQpGs3sczfIEL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.2

Plate Offsets	(X,	Y):	[7:0-3-0,0-3-0]
---------------	-----	-----	-----------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 56 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=13-2-2, 5=13-2-2, 6=13-2-2,

7=13-2-2, 8=13-2-2 Max Horiz 1=-104 (LC 8)

1=-25 (LC 8), 6=-106 (LC 13), Max Uplift

8=-107 (LC 12)

1=87 (LC 20), 5=83 (LC 19), 6=327 Max Grav

(LC 20), 7=265 (LC 1), 8=328 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-115/96, 2-3=-123/101, 3-4=-115/97,

4-5=-103/65

BOT CHORD 1-8=-35/89, 6-8=-35/71, 5-6=-35/78 3-7=-182/0, 2-8=-254/158, 4-6=-254/159 **WEBS**

NOTES

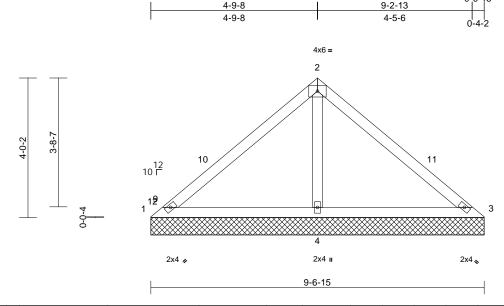
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 6-7-6, Exterior(2R) 6-7-6 to 9-7-6, Interior (1) 9-7-6 to 13-2-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 107 lb uplift at joint 8 and 106 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana			
3908438	V3	Valley	1	1	Job Reference (optional)	T33374549		

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:42 ID:ml_t0tPB3OrlYtlpzcqk2_zfIDV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 36 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-6-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-6-15, 3=9-6-15, 4=9-6-15

Max Horiz 1=-75 (LC 8)

Max Uplift 1=-34 (LC 26), 3=-26 (LC 25),

4=-55 (LC 12)

1=48 (LC 25), 3=69 (LC 26), 4=706 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=-97/301, 2-3=-92/302

BOT CHORD 1-4=-194/143, 3-4=-194/143

2-4=-539/206 WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 4-9-12, Exterior(2R) 4-9-12 to 7-9-12, Interior (1) 7-9-12 to 9-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

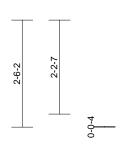
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1, 26 lb uplift at joint 3 and 55 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

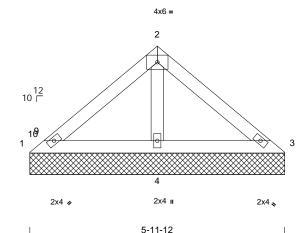
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V4	Valley	1	1	Job Reference (optional)	T33374550

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:42 ID:INywNLbDIJsUTKztvz7UiMzfIDF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-7-10 2-11-14

Scale = 1:27

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%

LUMBER

2x4 SP No.3 TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-11-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=5-11-12, 3=5-11-12, 4=5-11-12

1=-45 (LC 8) Max Horiz

Max Uplift 1=-1 (LC 26), 3=-1 (LC 13), 4=-22 (LC 12)

1=45 (LC 25), 3=65 (LC 26), 4=380 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=-51/132, 2-3=-57/132

BOT CHORD 1-4=-104/99, 3-4=-104/99

2-4=-254/122 WEBS

NOTES

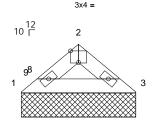
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 1, 1 lb uplift at joint 3 and 22 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V5	Valley	1	1	Job Reference (optional)	T33374551

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:IeUMx9ouHX?40xm9P1wTuyzfID_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.9

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 7 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-4-9 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-4-9, 3=2-4-9

Max Horiz 1=-16 (LC 8) Max Uplift 3=-2 (LC 13)

Max Grav 1=74 (LC 1), 3=93 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-103/41, 2-3=-115/44

BOT CHORD 1-3=-22/84

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V6	Valley	1	1	Job Reference (optional)	T33374552

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:utNV0ZO?_H2GmJRND6nkq4zflCE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Sca	le	=	1	:31	1.1	ı

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-1-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

(size) REACTIONS 1=5-1-11, 4=5-1-11, 5=5-1-11

Max Horiz 1=118 (LC 9)

Max Uplift 4=-25 (LC 9), 5=-80 (LC 12) 1=122 (LC 20), 4=47 (LC 19), Max Grav

5=272 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-280/191, 2-3=-106/96, 3-4=-85/97

BOT CHORD 1-5=-133/159. 4-5=-56/75

WFBS 2-5=-182/244

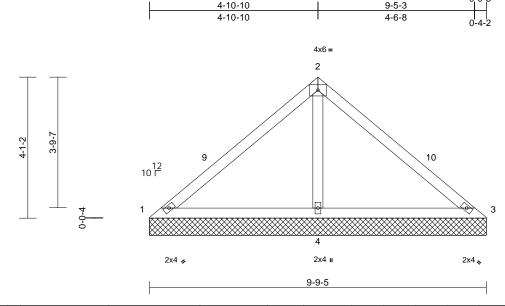
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-5 to 3-2-0, Exterior(2N) 3-2-0 to 5-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 4 and 80 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V7	Valley	1	1	Job Reference (optional)	T33374553

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:bJwvCt9QMu_6IN4PfYAcg0zYcmX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	:3	3	
oca	ıe	=	п	:3	J	٠

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-9-5 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-5, 3=9-9-5, 4=9-9-5

Max Horiz 1=77 (LC 9)

Max Uplift 1=-31 (LC 26), 3=-31 (LC 25),

4=-60 (LC 12)

1=67 (LC 25), 3=67 (LC 26), 4=731 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-101/316, 2-3=-97/316

BOT CHORD 1-4=-202/147, 3-4=-202/147

2-4=-561/212 WEBS

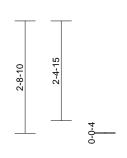
NOTES

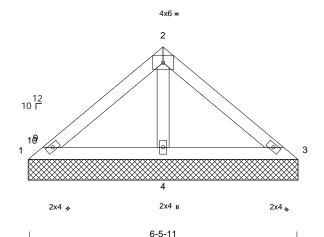
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-10-15, Exterior(2R) 4-10-15 to 7-10-15, Interior (1) 7-10-15 to 9-9-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1, 31 lb uplift at joint 3 and 60 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V8	Valley	1	1	Job Reference (optional)	T33374554

Run: 8 63 S. Nov. 1 2023 Print: 8 630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 11:29:43 ID:Iv?nVz0YHm8fYZaQv6kS4XzflCj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.9

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-5-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-6-5, 3=6-6-5, 4=6-6-5

1=-49 (LC 8) Max Horiz

Max Uplift 1=-8 (LC 26), 3=-1 (LC 8), 4=-28

(LC 12)

1=43 (LC 25), 3=65 (LC 26), 4=432 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-65/160, 2-3=-60/161 **BOT CHORD** 1-4=-124/112, 3-4=-124/112

2-4=-299/142 WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

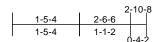
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 1 lb uplift at joint 3 and 28 lb uplift at joint 4.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

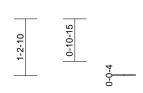
LOAD CASE(S) Standard

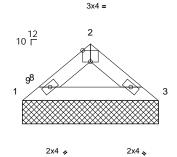
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V9	Valley	1	1	Job Reference (optional)	T33374555

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:q_zqsRCbWg9OT0oUrT0CjvzflCT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2-10-8

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-10-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 1=2-11-2, 3=2-11-2 (size)

Max Horiz 1=-20 (LC 8) Max Uplift 3=-2 (LC 13)

Max Grav 1=94 (LC 1), 3=115 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-136/51, 2-3=-150/56

BOT CHORD 1-3=-32/112

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V10	Valley	1	1	Job Reference (optional)	T33374556

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:UZDoyMYnhapHSTW32310P1zfiC0-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26	3.1
--------------	-----

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-0-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=4-0-11, 3=4-0-11

Max Horiz 1=85 (LC 12) Max Uplift 3=-44 (LC 12)

Max Grav 1=156 (LC 1), 3=161 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension
OP CHORD 1-2=-202/

TOP CHORD 1-2=-202/52 BOT CHORD 1-3=-112/164 WEBS 2-3=-102/95

NOTES

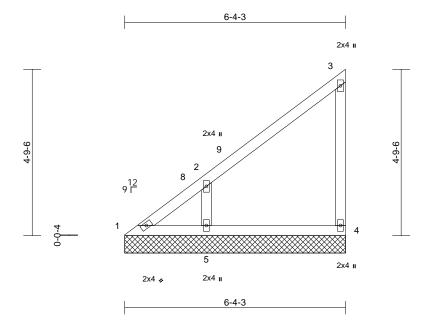
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply Chamberlain Homes / 146 Montana		
3908438	V11	Valley	1	1	Job Reference (optional)	T33374557

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:XWEipW2ENM2_e7Y6KhwVJ9zdwOT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 28 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

(size) REACTIONS 1=6-4-3, 4=6-4-3, 5=6-4-3

Max Horiz 1=133 (LC 9)

Max Uplift 1=-17 (LC 8), 4=-26 (LC 9), 5=-86

(LC 12)

1=81 (LC 20), 4=139 (LC 19), Max Grav

5=334 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

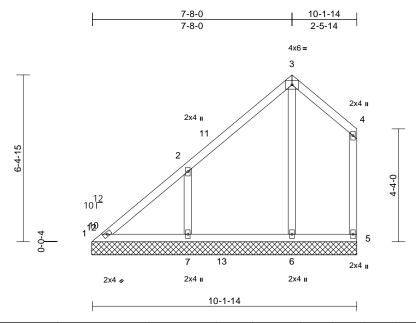
TOP CHORD 1-2=-288/183, 2-3=-138/103, 3-4=-115/126

BOT CHORD 1-5=-68/84, 4-5=-62/67 **WEBS** 2-5=-258/232

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 4, 17 lb uplift at joint 1 and 86 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V12	Valley	1	1	Job Reference (optional)	T33374558

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:qs9MHv8djWw?_CaSFfY85dzdwOM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 53 lb	FT = 20%

LUMBER

2x4 SP No.3 TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=10-2-3, 5=10-2-3, 6=10-2-3,

7=10-2-3 Max Horiz

1=162 (LC 11) Max Uplift 1=-32 (LC 8), 5=-40 (LC 8), 6=-22

(LC 9), 7=-119 (LC 12)

Max Grav 1=148 (LC 20), 5=133 (LC 20),

6=377 (LC 19), 7=455 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-205/162, 2-3=-151/113, 3-4=-111/130,

4-5=-107/103 **BOT CHORD**

1-7=-83/136, 6-7=-55/60, 5-6=-55/60 WEBS 3-6=-208/117, 2-7=-278/206

NOTES

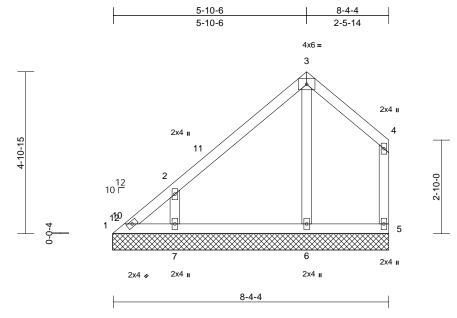
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-8-5, Interior (1) 3-8-5 to 7-8-5, Exterior(2E) 7-8-5 to 10-0-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 5, 32 lb uplift at joint 1, 22 lb uplift at joint 6 and 119 lb uplift at joint 7.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana	
3908438	V13	Valley	1	1	Job Reference (optional)	T33374559

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:e0XdYyCNJMh8i71cbwfYLuzdwOG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1	1:35

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MS							Weight: 40 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

(size) REACTIONS 1=8-4-9, 5=8-4-9, 6=8-4-9, 7=8-4-9

Max Horiz 1=116 (LC 11)

Max Uplift 1=-53 (LC 10), 5=-32 (LC 8), 6=-8 (LC 9), 7=-96 (LC 12)

1=81 (LC 9), 5=103 (LC 20), 6=274 Max Grav (LC 19), 7=307 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-191/138, 2-3=-136/95, 3-4=-88/106,

4-5=-91/89

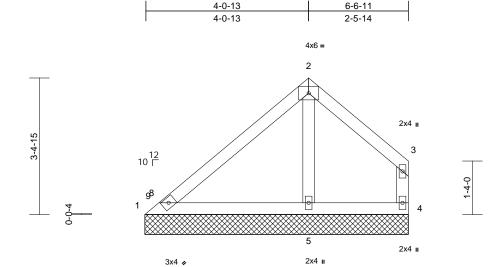
BOT CHORD 1-7=-37/38, 6-7=-33/38, 5-6=-33/38 WEBS 3-6=-201/98, 2-7=-259/239

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 5-10-11, Exterior(2E) 5-10-11 to 8-2-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5, 53 lb uplift at joint 1, 8 lb uplift at joint 6 and 96 lb uplift at joint 7.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply Chamberlain Homes / 146 Montana		Chamberlain Homes / 146 Montana		
3908438	V14	Valley	1	1	Job Reference (optional)	T33374560

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:3bCIA_FGcH3jZamBG2CFzXzdwOD-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 28 lb	FT = 20%

6-6-11

LUMBER

2x4 SP No.3 TOP CHORD 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=6-7-0, 4=6-7-0, 5=6-7-0

Max Horiz 1=71 (LC 11)

Max Uplift 1=-6 (LC 13), 4=-30 (LC 13)

1=129 (LC 20), 4=85 (LC 20), Max Grav

5=306 (LC 19)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-173/76, 2-3=-65/87, 3-4=-86/90

BOT CHORD 1-5=-106/146, 4-5=-16/17

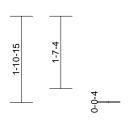
2-5=-175/54 WFBS

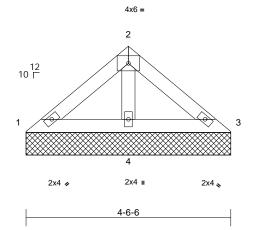
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 4-1-2, Exterior(2E) 4-1-2 to 6-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 4 and 6 lb uplift at joint 1.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty	Ply	Chamberlain Homes / 146 Montana			
3908438	V15	Valley	1	1	Job Reference (optional)	T33374561		

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 11:29:43 ID:PY0eDhJPQph0fLe83coQgazdwO8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.3 2x4 SP No.3 **BOT CHORD** 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-6-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-6-6, 3=4-6-6, 4=4-6-6

Max Horiz 1=-34 (LC 8)

Max Uplift 3=-4 (LC 13), 4=-12 (LC 12)

1=59 (LC 25), 3=59 (LC 26), 4=265 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-53/79, 2-3=-53/78

BOT CHORD 1-4=-63/65, 3-4=-63/65

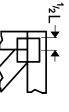
WFBS 2-4=-160/71

NOTES

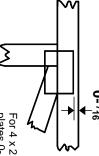
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.3 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 3 and 12 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

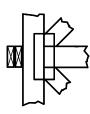
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

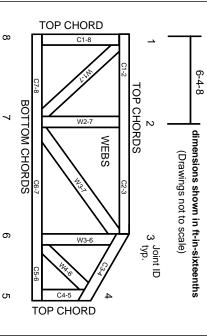

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.