

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P25101839A GLEN GODFREY

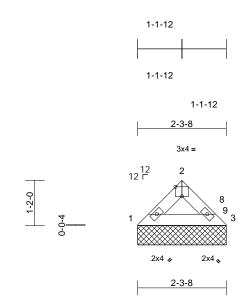
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Longleaf Truss Company.

Pages or sheets covered by this seal: I77100992 thru I77101030

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

October 16,2025


Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V12	Valley	1	1	Job Reference (optional)	177100992

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:49 ID:yFTp_gOxS0JE6mDNZ3C9NFyT77I-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

2-3-8

Scale = 1:29.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 7 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-3-8, 3=2-3-8 Max Horiz 1=-25 (LC 10)

Max Uplift 1=-8 (LC 12), 3=-3 (LC 12) Max Grav 1=90 (LC 2), 3=73 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-103/12, 2-3=-92/12 TOP CHORD

BOT CHORD 1-3=-7/78

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

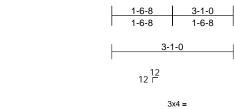
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1 and 3 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

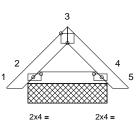
October 16,2025

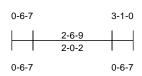
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB05	Piggyback	1	1	Job Reference (optional)	177100993


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:39 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-0,Edge], [4:0-2-6,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-1-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=2-0-2, 4=2-0-2 Max Horiz 2=-39 (LC 10)

Max Uplift 2=-21 (LC 12), 4=-21 (LC 12)

Max Grav 2=107 (LC 17), 4=107 (LC 18)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/17, 2-3=-48/12, 3-4=-48/12, 4-5=0/17 2-4=-9/40

BOT CHORD

TOP CHORD

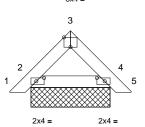
NOTES

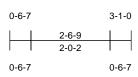
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 21 lb uplift at joint 4, 21 lb uplift at joint 2 and 21 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025


Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB06	Piggyback	3	1	Job Reference (optional)	177100994


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:39 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-0,Edge], [4:0-2-6,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-1-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=2-0-2, 4=2-0-2 Max Horiz 2=-39 (LC 10)

Max Uplift 2=-21 (LC 12), 4=-21 (LC 12)

Max Grav 2=107 (LC 17), 4=107 (LC 18)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=0/17, 2-3=-48/12, 3-4=-48/12, 4-5=0/17

BOT CHORD 2-4=-9/40

NOTES

TOP CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

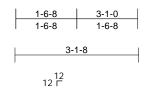
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 21 lb uplift at joint 4, 21 lb uplift at joint 2 and 21 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

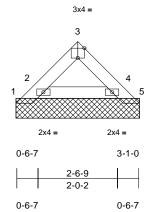
LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB07	Piggyback	1	3	Job Reference (optional)	177100995

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:39 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 29 lb	FT = 20%

LUMBER

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-1-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 1=3-1-8, 2=3-1-8, 4=3-1-8, 5=3-1-8 (size) Max Horiz 1=-39 (LC 10)

1=-51 (LC 24), 2=-12 (LC 12), 5=-7 Max Uplift

(LC 12) Max Grav 1=16 (LC 9), 2=180 (LC 24), 5=96

(LC 18)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-35/75, 2-3=-59/14, 3-4=-77/13,

4-5=-66/11

BOT CHORD 2-4=-22/57

NOTES

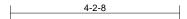
- 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

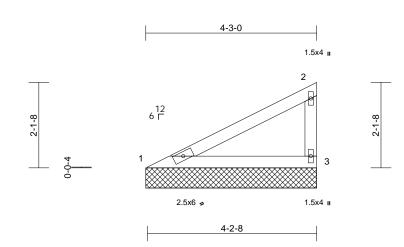
- 4) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 2, 51 lb uplift at joint 1, 7 lb uplift at joint 5 and 12 lb uplift at joint 2.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V04	Valley	2	1	Job Reference (optional)	177100996

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:47 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	l									Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS

BRACING

Structural wood sheathing directly applied or TOP CHORD 4-2-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=4-3-0, 3=4-3-0

Max Horiz 1=73 (LC 9) Max Uplift 1=-14 (LC 12), 3=-19 (LC 12)

Max Grav 1=199 (LC 16), 3=199 (LC 16) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-334/48, 2-3=-128/28

BOT CHORD 1-3=-32/292

NOTES

FORCES

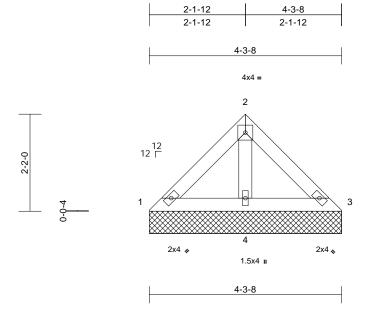
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 3 and 14 lb uplift at joint 1.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V11	Valley	1	1	Job Reference (optional)	177100997

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:49 Page: 1

Scale = 1:25.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-3-8, 3=4-3-8, 4=4-3-8

Max Horiz 1=-56 (LC 10) Max Uplift 4=-37 (LC 12)

Max Grav 1=74 (LC 16), 3=74 (LC 17), 4=238

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-63/70, 2-3=-63/64 **BOT CHORD** 1-4=-42/54, 3-4=-42/42

WEBS 2-4=-135/26

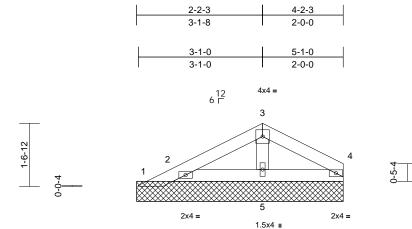
NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025



Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB01	Piggyback	1	3	Job Reference (optional)	177100998

Run: 8.83 E Nov 14 2024 Print: 8.830 E Nov 14 2024 MiTek Industries, Inc. Thu Oct 16 14:39:05 ID:XgohLeM395xfFJVouxeSldyT77L-TuOuDKr_B0UhQp?AA?09tT1J_YRkwJ1Fci0Ut6ySzha

Page: 1

0-10-13

0-10-13

Scale = 1:18.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 48 lb	FT = 20%

5-1-0 4-2-3

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-1-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS All bearings 5-1-8.

(lb) - Max Horiz 1=-28 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s)

1, 2, 4, 5, 6, 9

Max Grav All reactions 250 (lb) or less at joint (s) 1, 2, 4, 5, 6, 9

(lb) - Max. Comp./Max. Ten. - All forces 250

FORCES (lb) or less except when shown.

NOTES

- 1) 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD ${\sf CASE}({\sf S}) \ {\sf section}. \ {\sf Ply} \ {\sf to} \ {\sf ply} \ {\sf connections} \ {\sf have} \ {\sf been}$ provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

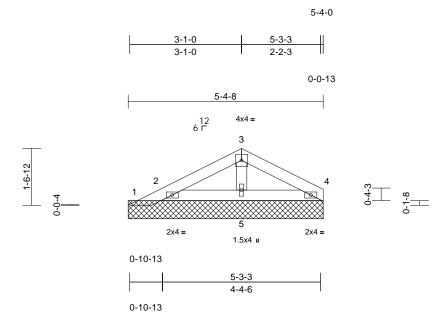
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 7) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 1, 4, 2, 5, 4, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB04	Piggyback	5	1	Job Reference (optional)	177100999

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:38 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 17 lb	FT = 20%

L	U	M	В	Е	R

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-4-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=5-4-8, 2=5-4-8, 4=5-4-8, 5=5-4-8

Max Horiz 1=-29 (LC 10)

1=-30 (LC 24), 2=-21 (LC 12), Max Uplift

4=-12 (LC 12), 5=-7 (LC 12) 1=11 (LC 9), 2=200 (LC 17), 4=98

Max Grav (LC 18), 5=167 (LC 2)

FORCES

(lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-29/52, 2-3=-44/20, 3-4=-45/19

BOT CHORD 2-5=-2/21, 4-5=-4/36

WFBS 3-5=-78/14

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

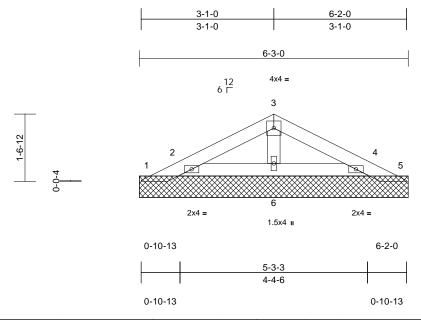
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 12 lb uplift at joint 4, 30 lb uplift at joint 1, 7 lb uplift at joint 5, 21 lb uplift at joint 2 and 12 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB02	Piggyback	12	1	Job Reference (optional)	177101000

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:38 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=6-3-0, 2=6-3-0, 4=6-3-0, 5=6-3-0, 6=6-3-0

Max Horiz 1=32 (LC 11)

1=-33 (LC 24), 2=-19 (LC 12), Max Uplift

4=-27 (LC 12), 5=-24 (LC 18)

Max Grav 1=10 (LC 11), 2=208 (LC 17), 4=195 (LC 18), 5=6 (LC 12), 6=152

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-32/56, 2-3=-45/24, 3-4=-45/23,

4-5=-2/36

BOT CHORD 2-6=-4/22, 4-6=-5/22

3-6=-75/10 WFBS

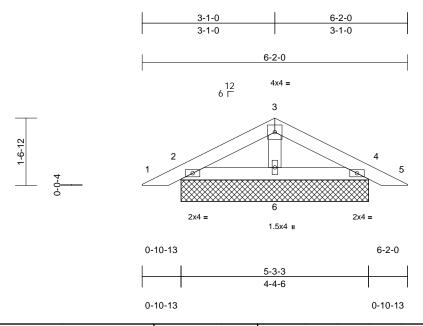
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 27 lb uplift at joint 4, 33 lb uplift at joint 1, 24 lb uplift at joint 5, 19 lb uplift at joint 2 and 27 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB03	Piggyback	2	1	Job Reference (optional)	177101001

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:38 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=4-4-6, 4=4-4-6, 6=4-4-6 **REACTIONS** (size)

Max Horiz 2=32 (LC 11)

Max Uplift 2=-41 (LC 12), 4=-41 (LC 12)

Max Grav 2=148 (LC 17), 4=148 (LC 18),

6=168 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-40/25, 3-4=-39/25, 4-5=0/19

BOT CHORD 2-6=-2/26, 4-6=-2/24 **WEBS** 3-6=-78/8

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

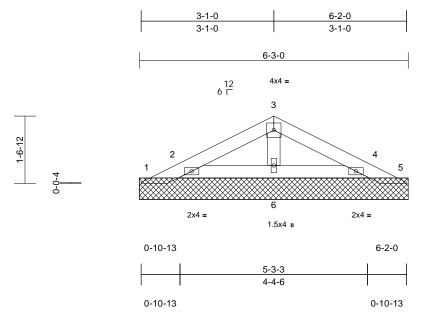
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 2, 41 lb uplift at joint 4, 41 lb uplift at joint 2 and 41 lb uplift at joint 4.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	PB08	Piggyback	1	3	Job Reference (optional)	177101002

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:39 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 54 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=6-3-0, 2=6-3-0, 4=6-3-0, 5=6-3-0, 6=6-3-0

Max Horiz 1=-32 (LC 10)

1=-29 (LC 24), 2=-18 (LC 12), Max Uplift

4=-26 (LC 12), 5=-19 (LC 18)

Max Grav 1=12 (LC 11), 2=201 (LC 17), 4=187 (LC 18), 5=5 (LC 12), 6=157

(LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-33/54, 2-3=-38/23, 3-4=-36/23,

4-5=-2/34

BOT CHORD 2-6=-6/20, 4-6=-5/20

WFBS 3-6=-80/11

NOTES

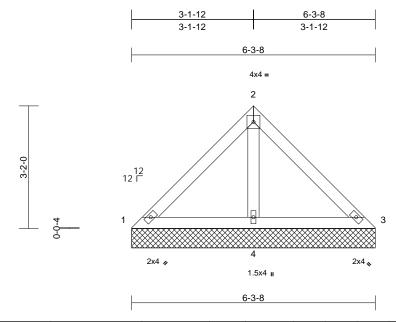
- 1) 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2, 26 lb uplift at joint 4, 29 lb uplift at joint 1, 19 lb uplift at joint 5, 18 lb uplift at joint 2 and 26 lb uplift at joint 4.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V10	Valley	1	1	Job Reference (optional)	177101003

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:49 ID:yFTp_gOxS0JE6mDNZ3C9NFyT77I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-3-8, 3=6-3-8, 4=6-3-8

Max Horiz 1=-85 (LC 10) Max Uplift 4=-80 (LC 12)

Max Grav 1=76 (LC 16), 3=76 (LC 17), 4=396

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-58/141, 2-3=-58/134

BOT CHORD 1-4=-86/76, 3-4=-86/76

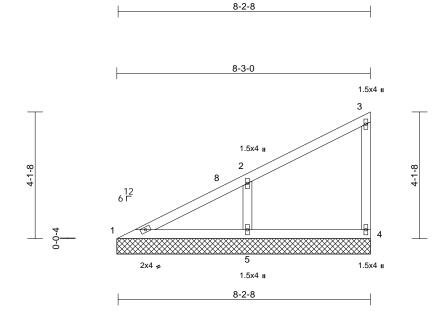
WEBS 2-4=-262/73

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V03	Valley	2	1	Job Reference (optional)	177101004

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:47 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	l		1							Weight: 32 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size)

BOT CHORD

1=8-3-0, 4=8-3-0, 5=8-3-0

Max Horiz 1=154 (LC 9)

Max Uplift 4=-24 (LC 9), 5=-73 (LC 12) Max Grav 1=134 (LC 24), 4=147 (LC 16),

5=449 (LC 16)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-230/95, 2-3=-106/48, 3-4=-121/42

BOT CHORD 1-5=-54/197, 4-5=-54/49

WEBS 2-5=-337/119

NOTES

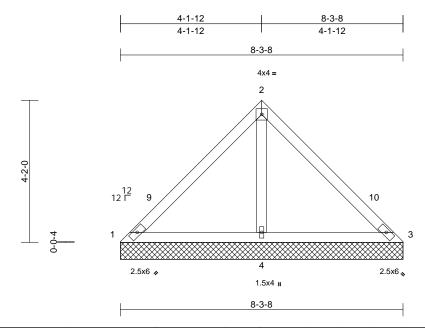
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 4 and 73 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V09	Valley	1	1	Job Reference (optional)	177101005

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:48 ID:yFTp_gOxS0JE6mDNZ3C9NFyT77I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	ļ		1							Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

8-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=8-3-8, 3=8-3-8, 4=8-3-8

Max Horiz 1=-114 (LC 10) Max Unlift

1=-15 (LC 17), 3=-15 (LC 16), 4=-142 (LC 12)

1=70 (LC 29), 3=70 (LC 30), 4=587 Max Grav

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-85/233, 2-3=-85/226

1-4=-146/120, 3-4=-146/120 **BOT CHORD**

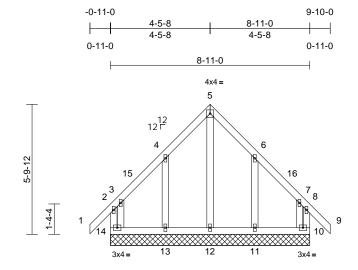
WEBS 2-4=-420/139

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 15 lb uplift at joint 3 and 142 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T01GE	Common Supported Gable	1	1	Job Reference (optional)	177101006

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:40 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	10	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR									
BCDI.	10.0	1									Majabti 61 lb	ET 200/	

8-11-0

П	ш	M	R	F	R

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing

REACTIONS (size)

10=8-11-0, 11=8-11-0, 12=8-11-0, 13=8-11-0, 14=8-11-0

Max Horiz 14=197 (LC 11)

Max Uplift 10=-114 (LC 12), 11=-94 (LC 8), 13=-97 (LC 9), 14=-114 (LC 12)

10=198 (LC 24), 11=264 (LC 25) Max Grav

12=263 (LC 12), 13=268 (LC 24),

14=206 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-14=-181/165, 1-2=0/45, 2-3=-81/119,

3-4=-126/108, 4-5=-89/204, 5-6=-89/204, 6-7=-117/108, 7-8=-80/119, 8-9=0/45,

8-10=-177/165

BOT CHORD 13-14=-94/97, 12-13=-94/97, 11-12=-94/97,

10-11=-94/97 5-12=-237/9, 4-13=-201/111, 3-14=-220/165,

6-11=-198/111, 7-10=-206/150

WFRS NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

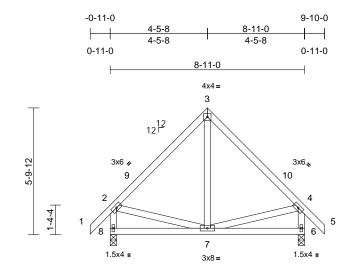
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are 1.5x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 14, 114 lb uplift at joint 10, 97 lb uplift at joint 13 and 94 lb uplift at joint 11.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T01	Common	1	1	Job Reference (optional)	177101007

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:40 ID:x2FnX88YL1SGgR1NyFfZVVyT8fl-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?floored and the property of the pro

Page: 1

4-5-8 8-11-0 4-5-8 4-5-8

Scale = 1:52.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.01	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 59 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-8, 8=0-3-8 Max Horiz 8=197 (LC 11)

Max Uplift 6=-73 (LC 12), 8=-73 (LC 12)

Max Grav 6=430 (LC 18), 8=430 (LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/45, 2-3=-299/62, 3-4=-299/62,

4-5=0/45, 2-8=-397/93, 4-6=-397/93

BOT CHORD 7-8=-192/180, 6-7=-17/15

WEBS 3-7=0/152, 2-7=-16/193, 4-7=-16/193

NOTES

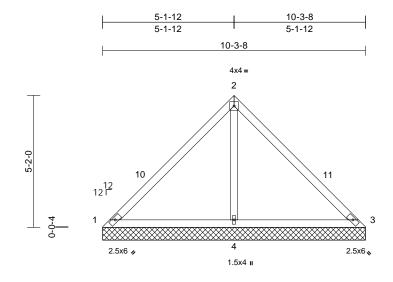
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 8 and 73 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V08	Valley	1	1	Job Reference (optional)	177101008

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:48 ID:yFTp_gOxS0JE6mDNZ3C9NFyT77I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.28	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.32	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 42 lb	FT = 20%

10-3-8

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=10-3-8, 3=10-3-8, 4=10-3-8

Max Horiz 1=-142 (LC 10)

Max Uplift 1=-106 (LC 30), 3=-2 (LC 12), 4=-81 (LC 12)

1=102 (LC 29), 3=4 (LC 17), 4=850 Max Grav

(LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-63/362, 2-3=-183/437

1-4=-233/105, 3-4=-293/129 **BOT CHORD**

WFBS 2-4=-694/94

NOTES

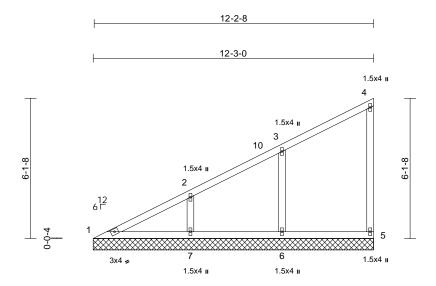
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 1, 2 lb uplift at joint 3, 81 lb uplift at joint 4 and 2 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V02	Valley	2	1	Job Reference (optional)	01009

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:47 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:50.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0	ļ									Weight: 53 lb	FT = 20%

12-2-8

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

REACTIONS (size) 1=12-3-0, 5=12-3-0, 6=12-3-0,

7=12-3-0

Max Horiz 1=234 (LC 9)

Max Uplift 5=-33 (LC 9), 6=-68 (LC 12), 7=-62 (I C 12)

Max Grav 1=169 (LC 24), 5=190 (LC 23), 6=433 (LC 23), 7=433 (LC 23)

(lb) - Maximum Compression/Maximum

Tension

1-2=-305/115, 2-3=-151/87, 3-4=-128/74, TOP CHORD

4-5=-130/44

BOT CHORD 1-7=-83/241. 6-7=-83/76. 5-6=-83/76

3-6=-305/109, 2-7=-262/106 WFBS

NOTES

FORCES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

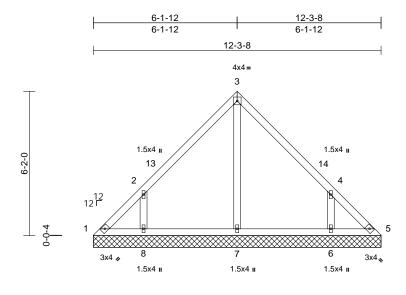
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 5, 68 lb uplift at joint 6 and 62 lb uplift at joint 7
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V07	Valley	1	1	Job Reference (optional)	177101010

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:48 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 56 lb	FT = 20%

12-3-8

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-3-8, 5=12-3-8, 6=12-3-8, 7=12-3-8, 8=12-3-8

Max Horiz 1=-171 (LC 10)

Max Uplift 1=-57 (LC 10), 5=-17 (LC 11), 6=-138 (LC 12), 8=-138 (LC 12)

Max Grav 1=131 (LC 24), 5=101 (LC 23),

6=359 (LC 24), 7=222 (LC 2),

8=366 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-155/153, 2-3=-190/99, 3-4=-190/99,

4-5=-124/106

BOT CHORD 1-8=-63/106, 7-8=-62/84, 6-7=-62/84,

5-6=-62/89

WEBS 3-7=-138/0, 2-8=-304/191, 4-6=-303/191

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

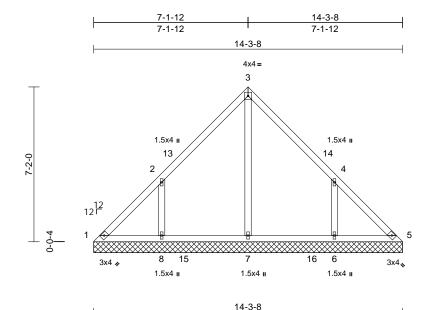
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 1, 17 lb uplift at joint 5, 138 lb uplift at joint 8 and 138 lb
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V06	Valley	1	1	Job Reference (optional)	177101011

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:48 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0	l									Weight: 67 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-3-8, 5=14-3-8, 6=14-3-8, 7=14-3-8, 8=14-3-8

Max Horiz 1=-200 (LC 10) Max Uplift 1=-43 (LC 10), 6=-155 (LC 12).

8=-155 (LC 12)

Max Grav 1=160 (LC 24), 5=126 (LC 23),

6=471 (LC 24), 7=390 (LC 23),

8=478 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-182/181, 2-3=-162/106, 3-4=-162/106,

4-5=-148/125

BOT CHORD 1-8=-89/146, 7-8=-89/98, 6-7=-89/98,

5-6=-89/106

WEBS 3-7=-188/0. 2-8=-314/195. 4-6=-312/195

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 1, 155 lb uplift at joint 8 and 155 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	S01	Scissor	4	1	Job Reference (optional)	177101012

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:39 ID:?sM3Z_NhwP3WtT4?SeAhlqyT77K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

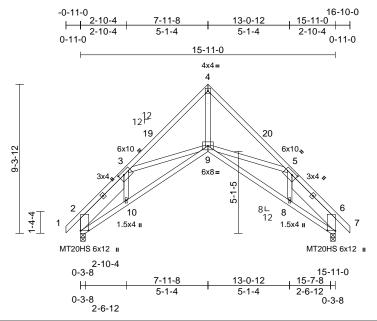


Plate Offsets (X, Y): [2:0-0-5,0-6-0], [3:0-3-12,0-2-4], [5:0-3-12,0-2-4], [6:0-0-5,0-6-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.04	9-10	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.11	9-10	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.14	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 120 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 2x4 SP No.1 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x8 SP DSS -- 4-4-10, Right 2x8 SP

2400F 2.0E -- 4-4-10

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-7-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-3-8. 6=0-3-8

Max Horiz 2=-255 (LC 10)

Max Uplift 2=-97 (LC 12), 6=-97 (LC 12)

Max Grav 2=692 (LC 2), 6=692 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/39, 2-3=0/483, 3-4=-1117/0,

4-5=-1180/0, 5-6=0/484, 6-7=0/39

BOT CHORD 2-10=-201/1149, 9-10=-126/1193, 8-9=0/912,

6-8=0/872

WEBS 4-9=0/1236, 3-9=-147/260, 3-10=0/145,

5-9=-286/260, 5-8=0/146

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 2 and 97 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	S02	Scissor	1	1	Job Reference (optional)	177101013

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:40 ID:Tsb3unZ6dZTn4NFaRY76h2yT7u8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

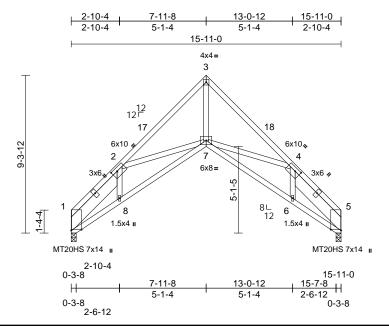


Plate Offsets (X, Y): [1:0-0-10,Edge], [2:0-3-12,0-2-4], [4:0-3-12,0-2-4], [5:0-0-10,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.04	7-8	>999	240	MT20HS	187/143
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.11	7-8	>999	180	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.14	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 116 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 2x4 SP No.1 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x8 SP DSS -- 4-4-10, Right 2x8 SP DSS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-7-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=-228 (LC 10)

Max Uplift 1=-63 (LC 12), 5=-63 (LC 12)

Max Grav 1=637 (LC 2), 5=637 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-8/554, 2-3=-1102/10, 3-4=-1165/17,

4-5=-8/540 **BOT CHORD** 1-8=-175/1134, 7-8=-168/1178, 6-7=-67/926,

5-6=-45/886

WEBS 3-7=0/1214, 4-7=-281/237, 4-6=0/145,

2-7=-157/232, 2-8=0/145

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10

- Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 1 and 63 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	S03	Scissor	10	1	Job Reference (optional)	177101014

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:40 ID:Tsb3unZ6dZTn4NFaRY76h2yT7u8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

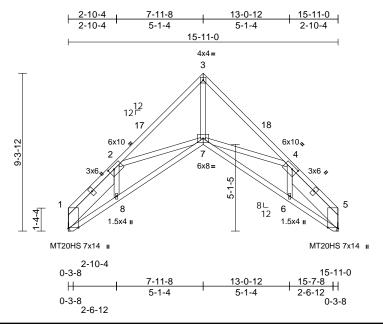


Plate Offsets (X, Y): [1:0-0-10,Edge], [2:0-3-12,0-2-4], [4:0-3-12,0-2-4], [5:0-0-10,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.04	7-8	>999	240	MT20HS	187/143
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.11	7-8	>999	180	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.14	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 116 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 2x4 SP No.1 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x8 SP DSS -- 4-4-10, Right 2x8 SP

2400F 2.0E -- 4-4-10

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-7-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1= Mechanical, 5= Mechanical

Max Horiz 1=-228 (LC 10)

Max Uplift 1=-63 (LC 12), 5=-63 (LC 12) Max Grav 1=637 (LC 2), 5=637 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-8/554, 2-3=-1102/10, 3-4=-1165/17,

4-5=-8/542

BOT CHORD 1-8=-175/1135, 7-8=-168/1178, 6-7=-67/927, 5-6=-45/887

3-7=0/1214, 2-7=-157/232, 2-8=0/145, 4-7=-281/237, 4-6=0/146

WEBS NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10

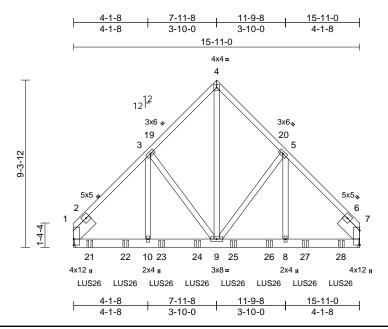
- 4) Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 1 and 63 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	G01	Common Girder	1	3	Job Reference (optional)	177101015

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:36 ID:Tsb3unZ6dZTn4NFaRY76h2yT7u8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.1

Plate Offsets (X, Y): [1:Edge,0-0-0], [7:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.02	9-10	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.04	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 375 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 2x6 SP No.1 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x8 SP DSS -- 1-6-0, Right 2x8 SP DSS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1= Mechanical, 7= Mechanical

> Max Horiz 1=-228 (LC 10)

Max Uplift 1=-498 (LC 12), 7=-515 (LC 12) Max Grav 1=3225 (LC 24), 7=1644 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-2526/494, 3-4=-1415/472 4-5=-1417/472, 5-7=-1605/508

BOT CHORD 1-10=-311/1827, 9-10=-311/1827,

8-9=-273/1080, 7-8=-273/1080 **WEBS** 3-10=-136/1635, 5-8=-275/184,

4-9=-571/1704, 3-9=-1319/224, 5-9=-250/240

NOTES

- 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-8-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 498 lb uplift at joint 1 and 515 lb uplift at joint 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-10-12 from the left end to 4-10-12 to connect truss(es) to front face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-10-12 from the left end to 14-10-12 to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

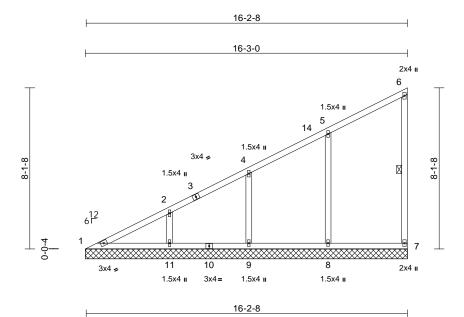
Vert: 1-4=-51, 4-7=-51, 11-15=-20

Concentrated Loads (lb)

Vert: 21=-671 (F), 22=-670 (F), 23=-670 (F), 24=-191 (F), 25=-186 (F), 26=-186 (F), 27=-186 (F), 28=-186

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V01	Valley	2	1	Job Reference (optional)	177101016

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:47 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0			1							Weight: 77 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WERS 1 Row at midpt 6-7

REACTIONS (size) 1=16-3-0, 7=16-3-0, 8=16-3-0,

9=16-3-0, 11=16-3-0 Max Horiz 1=315 (LC 9)

7=-42 (LC 9), 8=-69 (LC 12), 9=-63 Max Uplift

(LC 12), 11=-60 (LC 12) Max Grav 1=185 (LC 24), 7=185 (LC 23),

8=489 (LC 23), 9=389 (LC 23), 11=442 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-340/148, 2-4=-212/115, 4-5=-183/100,

5-6=-147/99 6-7=-129/46

1-11=-112/243, 9-11=-112/102, 8-9=-112/102, **BOT CHORD**

7-8=-112/102

5-8=-312/94, 4-9=-232/118, 2-11=-268/101

WFBS NOTES

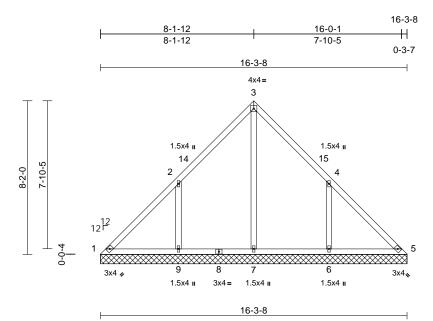
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 7, 69 lb uplift at joint 8, 63 lb uplift at joint 9 and 60 lb uplift at joint 11.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	V05	Valley	1	1	Job Reference (optional)	177101017

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:48 ID:T3vRmKNJhjBNVdeB0Mhwq2yT77J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.31	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0	1		1							Weight: 79 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-3-8, 5=16-3-8, 6=16-3-8, 7=16-3-8, 9=16-3-8

Max Horiz 1=-228 (LC 10)

Max Uplift 1=-46 (LC 10), 6=-179 (LC 12),

9=-179 (LC 12)

Max Grav 1=165 (LC 24), 5=127 (LC 23),

6=553 (LC 24), 7=457 (LC 23), 9=559 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-180/251, 2-3=-121/146, 3-4=-121/118,

4-5=-140/202

BOT CHORD 1-9=-125/158, 7-9=-125/133, 6-7=-125/133,

5-6=-125/133

3-7=-267/0. 2-9=-349/215. 4-6=-346/215

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

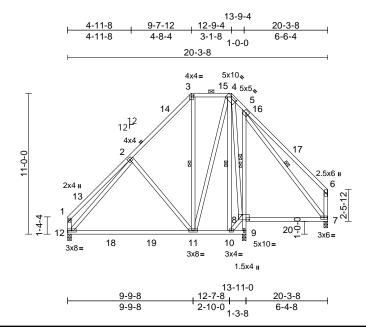
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 1, 179 lb uplift at joint 9 and 179 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	Т03	Piggyback Base	3	1	Job Reference (optional)	177101018

Run; 8.83 S Sep 3 2025 Print; 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:41 ID:whceh46DMwlK_N12TuddZayT8h4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:89.9

Plate Offsets (X, Y): [3:0-2-4,0-1-12], [4:0-6-0,0-0-12], [8:0-6-8,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.29	11-12	>574	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.47	11-12	>347	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 190 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1

BOT CHORD 2x4 SP No.1 *Except* 9-5:2x4 SP No.3

WEBS 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 9-10.

1 Row at midpt 5-8

WEBS 3-11, 4-10, 4-8, 5-7 1 Row at midpt

REACTIONS 7=0-3-8, 9=0-3-8, 12=0-3-8 (size)

Max Horiz 12=313 (LC 11) Max Uplift 7=-52 (LC 12), 9=-43 (LC 12),

12=-63 (LC 12) Max Grav 7=474 (LC 42), 9=1016 (LC 42),

12=808 (LC 44)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-440/115, 2-3=-557/188, 3-4=-276/187,

4-5=-439/372, 5-6=-389/228, 1-12=-398/104,

6-7=-427/196

BOT CHORD 11-12=-150/604, 10-11=-97/169, 9-10=-85/0,

8-9=-937/68, 5-8=-748/380, 7-8=-75/156 **WEBS** 2-11=-386/202, 3-11=-66/97, 4-11=-39/725,

4-10=-341/5, 8-10=-97/325, 4-8=-251/110,

2-12=-494/69, 5-7=-174/152

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 9, 63 lb uplift at joint 12 and 52 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPI 1
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

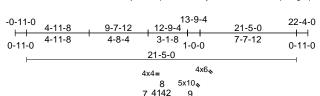
LOAD CASE(S) Standard

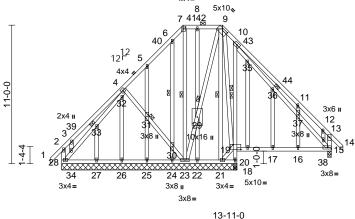
October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T02	Piggyback Base Structural Gable	1	1	Job Reference (optional)	177101019

Run; 8.83 S Sep 3 2025 Print; 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:41 ID:mPr4EjTi1s4NqhhXwKJZdWyT77C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-5-0

7-6-0

Scale = 1:91.5

Plate Offsets (X, Y): [7:0-2-4,0-1-12], [9:0-6-0,0-0-12], [19:0-7-4,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.09	16-17	>964	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.14	16-17	>639	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.01	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 275 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1

2x4 SP No.1 *Except* 20-10:2x4 SP No.3 BOT CHORD

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 7-9.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. Except:

1 Row at midpt 10-19 WEBS

1 Row at midpt 7-23, 9-21, 9-19, 6-30

JOINTS 1 Brace at Jt(s): 29,

31, 33, 36

REACTIONS (size) 15=0-3-8, 20=13-11-0, 21=13-11-0, 22=13-11-0, 23=13-11-0,

24=13-11-0, 25=13-11-0, 26=13-11-0, 27=13-11-0,

28=13-11-0

Max Horiz 28=-337 (LC 10)

Max Uplift 15=-136 (LC 12), 20=-50 (LC 12), 21=-83 (LC 43), 23=-59 (LC 11),

24=-34 (LC 12), 25=-43 (LC 12), 26=-9 (LC 8), 27=-3 (LC 12),

28=-148 (LC 12)

15=466 (LC 35), 20=759 (LC 35), Max Grav 21=46 (LC 11), 22=201 (LC 34),

23=218 (LC 43), 24=218 (LC 43), 25=175 (LC 35), 26=215 (LC 45),

27=120 (LC 35), 28=308 (LC 35)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/45, 2-3=-93/109, 3-4=-212/208, 4-5=-175/191, 5-6=-127/259, 6-7=-83/305,

9-9-8

9-9-8

7-8=-50/240, 8-9=-50/240, 9-10=-261/390,

12-7-8

2-10-0

10-11=-599/383, 11-12=-533/218, 12-13=-698/251. 13-14=0/45. 2-28=-138/132.

13-15=-735/282

BOT CHORD 27-28=-209/232, 26-27=-209/232,

25-26=-209/232, 24-25=-209/232, 23-24=-209/232, 22-23=-137/125

21-22=-137/125, 20-21=-134/20, 19-20=-764/58, 10-19=-710/298,

18-19=-115/104, 17-18=-115/104, 16-17=-115/104, 15-16=-115/104

4-31=-235/146, 30-31=-243/152, 23-30=-240/150, 7-23=-146/27,

23-29=-42/46, 9-29=-39/45, 9-21=-101/48, 19-21=-69/215, 9-19=-140/156,

28-34=-174/65, 33-34=-126/151, 32-33=-145/137, 4-32=-302/153, 10-35=-211/582, 35-36=-207/568,

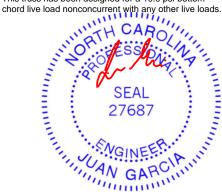
36-37=-211/547, 37-38=-166/451, 15-38=-219/593, 8-29=-172/12,

22-29=-170/12, 6-30=-181/51, 24-30=-185/55, 5-31=-141/76,

25-31=-133/68, 26-32=-176/38, 27-33=-70/27. 3-34=-195/91. 18-35=-10/27.

17-36=0/34, 11-37=-298/176, 16-37=-169/116, 12-38=-72/193

NOTES


WEBS

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. All plates are 1.5x4 (||) MT20 unless otherwise
- indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom

October 16,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

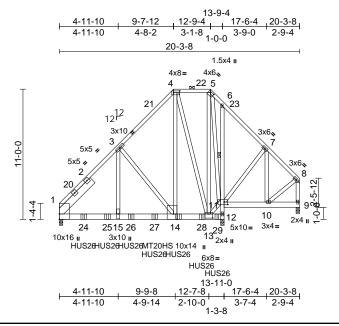
Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T02	Piggyback Base Structural Gable	1	1	Job Reference (optional)	177101019

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:41

Page: 2

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 20, 59 lb uplift at joint 23, 83 lb uplift at joint 21, 148 lb uplift at joint 28, 136 lb uplift at joint 15, 34 lb uplift at joint 24, 43 lb uplift at joint 25, 9 lb uplift at joint 26 and 3 lb uplift at joint 27.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T04	Piggyback Base Girder	1	3	Job Reference (optional)	177101020

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:42 ID:XxJ6wSZj9K4Fowl3O?SSxCyT774-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.4

Plate Offsets (X, Y): [4:0-6-4,0-1-12], [5:0-3-12,0-1-0], [11:0-3-12,0-2-8], [13:0-4-0,0-4-4], [14:0-5-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.11	14-15	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.18	14-15	>915	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.95	Horz(CT)	-0.03	1	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 657 lb	FT = 20%

LUMBER

2x4 SP No.1 TOP CHORD

2x6 SP No.1 *Except* 12-6:2x4 SP No.3 BOT CHORD

WEBS 2x4 SP No.3

SLIDER Left 2x8 SP DSS -- 4-0-0

BRACING TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 12-13.

1 Row at midpt 6-11

REACTIONS (size) 1=0-3-8, 9=0-3-8, 12=0-3-8

Max Horiz 1=302 (LC 11)

Max Uplift 1=-659 (LC 12), 9=-220 (LC 12),

12=-498 (LC 12)

Max Grav 1=7876 (LC 42), 9=2549 (LC 42),

12=6219 (LC 44)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-7893/720, 3-4=-4554/537,

4-5=-2025/342, 5-6=-2608/467,

6-7=-2530/342, 7-8=-1903/213,

8-9=-2454/225

BOT CHORD 1-15=-554/5531, 14-15=-554/5531,

13-14=-324/3363, 12-13=-534/44, 11-12=-4752/388, 6-11=-514/163,

10-11=-129/1318, 9-10=-21/43

3-15=-377/4976, 3-14=-3580/435,

4-14=-645/7340, 4-13=-4676/395, 5-13=-442/4313, 11-13=-318/3402,

5-11=-2477/155, 7-11=-109/839,

7-10=-1232/152, 8-10=-140/1668

NOTES

WEBS

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC.

Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 659 lb uplift at joint 1, 498 lb uplift at joint 12 and 220 lb uplift at joint 9.

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 13-4-12 to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

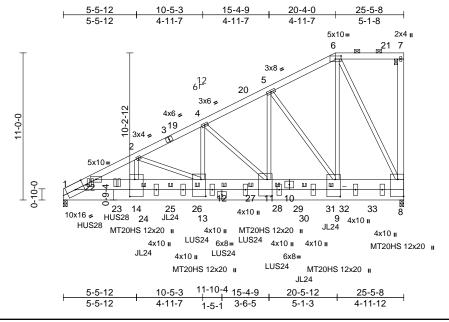
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-51, 4-5=-61, 5-8=-51, 12-16=-20, 9-11=-20

Concentrated Loads (lb)

Vert: 14=-1842 (B), 24=-1842 (B), 25=-1842 (B), 26=-1842 (B), 27=-1842 (B), 28=-1842 (B), 29=-1842


VAN GARCIA

October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T08	Piggyback Base Girder	1	3	Job Reference (optional)	177101021

Run: 8.83 F. Nov.14.2024 Print: 8.830 F. Nov.14.2024 MiTek Industries. Inc. Thu Oct 16.15:02:52 ID:QFipJTbM9AjVKhPzZz9amTyT7u6-BQ6LiG658TGC76bQGC7nDPe92mQ4mYOllCBVTvySzLH Page: 1

Scale = 1:77.4

Plate Offsets (X, Y): [1:0-8-0,Edge], [6:0-5-4,0-2-12], [8:1-3-5,0-5-6], [9:1-3-8,0-4-8], [11:1-2-14,0-4-8], [13:1-3-4,0-4-6], [14:1-3-7,0-4-6]

Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.07	11-13	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.14	11-13	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.70	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	20.0										Weight: 1075 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP DSS *Except* 6-7:2x6 SP No.1

BOT CHORD 2x10 SP DSS

WEBS 2x4 SP No.3 *Except* 7-8:2x6 SP No.1

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (10-0-0 max.): 6-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=4825/0-3-8, 8=5124/0-3-8

Max Horiz 1=323 (LC 12)

Max Uplift 1=-323 (LC 12), 8=-735 (LC 12)

Max Grav 1=5146 (LC 23), 8=5444 (LC 23)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-8763/610, 2-3=-7217/517,

3-19=-7175/519, 4-19=-7162/532

4-20=-4986/409, 5-20=-4878/422,

5-6=-2431/270

BOT CHORD 1-22=-506/3220, 1-22=-506/3220,

1-23=-799/7792, 14-23=-800/7878

14-24=-803/7875, 24-25=-803/7875

25-26=-803/7875, 13-26=-803/7875,

12-13=-665/6498, 12-27=-665/6498,

11-27=-665/6498, 11-28=-484/4418, 10-28=-484/4418, 10-29=-484/4418,

29-30=-484/4418, 30-31=-484/4418,

9-31=-484/4418, 9-32=-277/2191,

32-33=-277/2191, 8-33=-277/2191

2-14=-55/1275, 4-13=-130/2800,

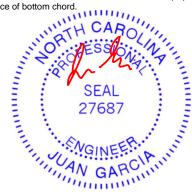
2-13=-1548/155, 5-11=-285/4236, 4-11=-2998/258 6-9=-578/5245

5-9=-4098/383, 6-8=-4982/630

NOTES

WEBS

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:


Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-8-0 oc.

Web connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10. Lu=50-0-0: Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 20.0psf.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 323 lb uplift at joint 1 and 735 lb uplift at joint 8.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-4 from the left end to 4-0-4 to connect truss(es) to front face of bottom chord.
- 15) Use MiTek JL24 (With 4-16d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent spaced at 10-0-0 oc max. starting at 6-0-4 from the left end to 20-0-4 to connect truss(es) to front face of bottom chord.
- 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 10-0-4 from the left end to 16-0-4 to connect truss(es) to front face of bottom chord.

October 16,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T08	Piggyback Base Girder	1	3	Job Reference (optional)	177101021

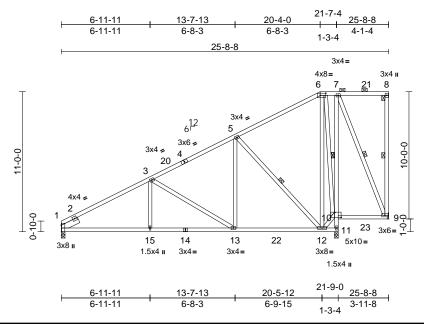
Run: 8.83 E Nov 14 2024 Print: 8.830 E Nov 14 2024 MiTek Industries, Inc. Thu Oct 16 15:02:52 ID: QFipJTbM9AjVKhPzZz9amTyT7u6-BQ6LiG658TGC76bQGC7nDPe92mQ4mYOIICBVTvySzLHight Start St

Page: 2

17) N/A

18) Fill all nail holes where hanger is in contact with lumber.

19) N/A


20) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-6=-51, 6-7=-61, 8-15=-40 Concentrated Loads (lb) Vert: 12=-602 (F), 22=-602 (F), 23=-602 (F), 24=-602 (F), 25=-602 (F), 26=-602 (F), 27=-602 (F), 28=-602 (F), 30=-602 (F), 31=-602 (F), 32=-1607 (F)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T12	Piggyback Base	1	1	Job Reference (optional)	177101022

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:46 ID:QR1BB0PZDKR5kwoZ7njOwTyT77H-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:90.5

Plate Offsets (X, Y): [1:0-6-1, Edge], [6:0-5-4,0-2-0], [10:0-6-4,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.09	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.15	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.71	Horz(CT)	0.03	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 202 lb	FT = 20%

LUMBER

2x4 SP No.1 TOP CHORD

2x4 SP No.1 *Except* 11-7:2x4 SP No.3 BOT CHORD

WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No.1 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-2 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-8.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. Except:

1 Row at midpt 7-10

WEBS 1 Row at midpt 8-9, 5-12, 6-10, 7-9

REACTIONS (size) 1=0-3-8, 9= Mechanical, 11=0-3-8

Max Horiz 1=401 (LC 9)

Max Uplift 1=-76 (LC 12), 9=-104 (LC 9),

11=-75 (LC 12)

Max Grav 1=992 (LC 35), 9=211 (LC 30),

11=1549 (LC 35)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-3=-1470/142, 3-5=-986/144, 5-6=-305/143,

6-7=-113/143, 7-8=-142/127, 8-9=-148/71 1-15=-344/1399, 13-15=-215/1399,

BOT CHORD 12-13=-158/886, 11-12=-160/24,

10-11=-1613/41, 7-10=-285/5, 9-10=-176/124

3-15=0/247, 3-13=-619/121, 5-13=0/616,

5-12=-1135/166, 6-12=-93/825,

10-12=-92/341, 6-10=-1099/151, 7-9=-38/190

NOTES

WEBS

TOP CHORD

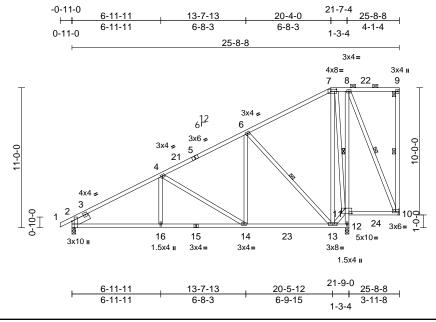
Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 9, 76 lb uplift at joint 1 and 75 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T13	Piggyback Base	4	1	Job Reference (optional)	177101023

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:46 ID:uebZOMQB_eZyM4NmhUEdSgyT77G-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:90.5

Plate Offsets (X, Y): [2:0-6-1,Edge], [7:0-5-4,0-2-0], [11:0-6-4,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.09	13-14	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.15	13-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.03	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 203 lb	FT = 20%

LUMBER

2x4 SP No.1 TOP CHORD

BOT CHORD 2x4 SP No.1 *Except* 12-8:2x4 SP No.3

WEBS 2x4 SP No.3

SLIDER Left 2x6 SP No.1 -- 1-6-0

BRACING TOP CHORD

Structural wood sheathing directly applied or 4-7-15 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 7-9

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. Except:

1 Row at midpt 8-11

WEBS 1 Row at midpt 9-10, 6-13, 7-11, 8-10

REACTIONS (size) 2=0-3-8, 10= Mechanical, 12=0-3-8 Max Horiz 2=409 (LC 9)

Max Uplift 2=-110 (LC 12), 10=-104 (LC 32),

12=-78 (LC 12)

2=1035 (LC 36), 10=206 (LC 31),

12=1556 (LC 36)

FORCES (lb) - Maximum Compression/Maximum Tension

1-2=0/25, 2-4=-1464/139, 4-6=-983/143, 6-7=-303/142, 7-8=-112/142, 8-9=-142/127,

9-10=-148/71

BOT CHORD 2-16=-344/1392, 14-16=-215/1392,

13-14=-158/883, 12-13=-160/25,

11-12=-1619/44, 8-11=-289/5,

10-11=-178/125

WEBS 4-16=0/246, 4-14=-614/120, 6-14=0/614,

6-13=-1134/166, 7-13=-93/826,

11-13=-92/338, 7-11=-1101/152,

8-10=-34/195

NOTES

TOP CHORD

1) Unbalanced roof live loads have been considered for this design.

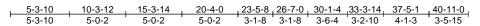
- 2) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 10, 110 lb uplift at joint 2 and 78 lb uplift at joint 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

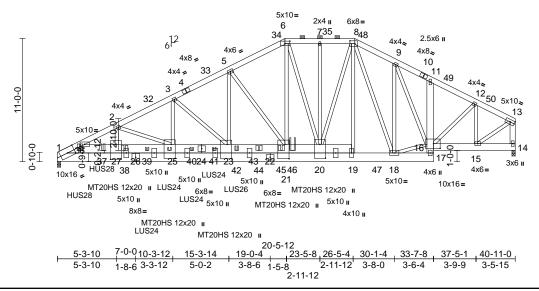
LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T07	Piggyback Base Girder	1	3	Job Reference (optional)	177101024

Run: 8.83 F. Nov.14.2024 Print: 8.830 F. Nov.14.2024 MiTek Industries. Inc. Thu Oct 16.15:27:12 ID:B_WDsIVaKnSyh9P6bSsHE9yT779-RJKI7VnuI2D2HUC1oqJ9OH6duJfrrsICTMsmiHySz_T

Page: 1

Scale = 1:89.4

Plate Offsets (X, Y): [1:0-8-0,Edge], [6:0-5-4,0-2-12], [8:0-5-4,0-3-0], [16:0-7-0,0-5-0], [20:1-2-14,0-6-0], [21:1-3-6,0-4-6], [23:1-3-8,0-4-14], [25:1-3-2,0-4-6], [27:1-4-1,0-4-14]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.14	23-25	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.29	23-25	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.67	Horz(CT)	0.05	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	20.0										Weight: 1685 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 1 **BOT CHORD**

2x10 SP DSS *Except* 17-11,16-14:2x8 SP

DSS

WEBS 2x4 SP No.3 *Except* 14-13:2x6 SP No.1

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 6-8 Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=7499/0-3-8, 14=4804/0-3-8

Max Horiz 1=283 (LC 11)

Max Uplift 1=-660 (LC 12), 14=-504 (LC 12)

Max Grav 1=8294 (LC 23), 14=5625 (LC 44)

FORCES TOP CHORD (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-14880/1241, 2-32=-14251/1242, 3-32=-14189/1257, 3-4=-12056/1139, 4-33=-11990/1150, 5-33=-11981/1163,

5-34=-9441/1025, 6-34=-9339/1027, 6-7=-8088/917, 7-35=-8088/917,

8-35=-8088/917, 13-14=-5492/515, 8-48=-6856/824, 9-48=-6937/822,

9-10=-6804/761, 10-11=-6825/746,

11-49=-6892/714, 12-49=-6969/703

12-50=-4989/496, 13-50=-5047/487

BOT CHORD 1-36=-510/5492, 1-36=-510/5492, 1-37=-1065/13213, 27-37=-1066/13304,

27-38=-1079/13402, 26-38=-1079/13402,

26-39=-1079/13402, 25-39=-1079/13402, 25-40=-1029/12889, 24-40=-1029/12889,

24-41=-1029/12889, 23-41=-1029/12889,

23-42=-860/10836, 42-43=-860/10836,

43-44=-860/10836, 22-44=-860/10836,

22-45=-860/10836, 21-45=-860/10836,

21-46=-662/8538, 20-46=-662/8538,

19-20=-504/6741, 19-47=-501/6676

18-47=-501/6676, 17-18=-224/2533,

16-17=-20/501, 15-16=-347/4410

2-27=-6/582, 2-25=-650/55, 3-25=-114/2610,

3-23=-2889/238, 5-23=-260/4328,

5-21=-4177/360, 6-21=-466/5159,

6-20=-1406/165, 8-20=-471/4857, 9-18=-326/293, 12-16=-191/2485,

12-15=-2734/300, 13-15=-447/5253,

9-16=-330/96, 16-18=-252/3747,

8-18=-1854/238

NOTES

WEBS

1) 3-ply truss to be connected together with 10d

(0.131"x3") nails as follows:

unless otherwise indicated.

Top chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-5-0 oc, 2x8 - 2 rows staggered at 0-9-0

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 20.0psf.

October 16,2025

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
	P25101839A	T07	Piggyback Base Girder	1	3	Job Reference (optional)	177101024

Run: 8.83 F. Nov 14 2024 Print: 8.830 F. Nov 14 2024 MiTek Industries. Inc. Thu Oct 16.15:27:12 ID:B_WDsIVaKnSyh9P6bSsHE9yT779-RJKI7Vnul2D2HUC1oqJ9OH6duJfrrsICTMsmiHySz_T

Page: 2

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 504 lb uplift at joint 14 and 660 lb uplift at joint 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-4 from the left end to 4-0-4 to connect truss(es) to back face of bottom chord.
- 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-0-4 from the left end to 14-0-4 to connect truss(es) to back face of bottom chord.
- 17) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 16-0-4 from the left end to connect truss(es) to back face of bottom chord.
- 18) N/A
- 19) Fill all nail holes where hanger is in contact with lumber.
- 20) N/A
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

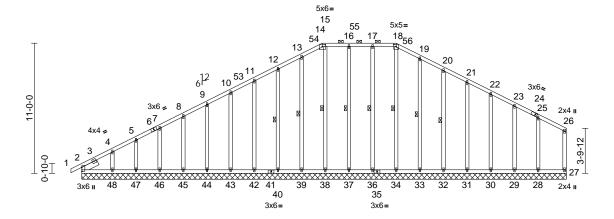
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-51, 6-8=-61, 17-28=-40, 14-16=-40, 8-13=-51

Concentrated Loads (lb)

Vert: 25=-602 (B), 36=-602 (B), 37=-602 (B), 38=-602 (B), 39=-602 (B), 40=-602 (B), 41=-602 (B), 42=-602 (B), 44=-602 (B), 45=-602 (B), 46=-2543 (B)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	177101025

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:42 ID:jnyrfPUyZUK54?qw1lL2ixyT77A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97.4

Plate Offsets (X, Y): [2:0-4-1,0-0-1], [14:0-3-0,0-2-0], [18:0-2-8,0-2-4], [24:0-1-11,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.00	27	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 337 lb	FT = 20%

40-11-8

LU	M	В	E	R	

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 **SLIDER** Left 2x6 SP No.1 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-18.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 18-34, 17-36, 16-37, 15-38, 13-39, 12-40,

19-33, 20-32 2=40-11-8, 27=40-11-8,

REACTIONS (size)

28=40-11-8, 29=40-11-8, 30=40-11-8, 31=40-11-8, 32=40-11-8, 33=40-11-8,

34=40-11-8, 36=40-11-8, 37=40-11-8, 38=40-11-8,

39=40-11-8, 40=40-11-8, 42=40-11-8, 43=40-11-8, 44=40-11-8, 45=40-11-8, 46=40-11-8, 47=40-11-8,

48=40-11-8 Max Horiz 2=326 (LC 11)

Max Uplift 2=-85 (LC 10), 27=-32 (LC 12), 28=-44 (LC 12), 29=-28 (LC 12),

30=-33 (LC 12), 31=-31 (LC 12), 32=-35 (LC 12), 33=-27 (LC 12), 36=-9 (LC 12), 37=-21 (LC 12), 38=-1 (LC 11), 39=-12 (LC 12),

40=-38 (LC 12), 42=-31 (LC 12), 43=-32 (LC 12), 44=-32 (LC 12), 45=-31 (LC 12), 46=-34 (LC 12), 47=-25 (LC 12), 48=-74 (LC 9)

28=206 (LC 45), 29=213 (LC 35), 30=216 (LC 35), 31=215 (LC 35), 32=214 (LC 35), 33=226 (LC 35), 34=162 (LC 18), 36=225 (LC 34), 37=222 (LC 34), 38=187 (LC 42), 39=218 (LC 35), 40=215 (LC 35),

Max Grav 2=256 (LC 25), 27=95 (LC 25),

42=215 (LC 35), 43=214 (LC 35), 44=219 (LC 35), 45=179 (LC 43), 46=174 (LC 24), 47=148 (LC 2),

48=268 (LC 24) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/25, 2-4=-308/282, 4-5=-278/236, 5-7=-271/229, 7-8=-258/211, 8-9=-245/196,

9-10=-233/180. 10-11=-220/189. 11-12=-208/224, 12-13=-197/262, 13-14=-179/289. 14-15=-151/272. 15-16=-151/272, 16-17=-151/272,

17-18=-151/272, 18-19=-171/291, 19-20=-155/257, 20-21=-138/220, 21-22=-123/184, 22-23=-106/148,

23-25=-92/113, 25-26=-75/76, 26-27=-84/54 2-48=-54/49, 47-48=-54/49, 46-47=-54/49, 45-46=-54/49, 44-45=-54/49, 43-44=-54/49,

42-43=-54/49, 40-42=-54/49, 39-40=-54/49, 38-39=-54/49, 37-38=-54/49, 36-37=-54/49, 34-36=-54/49, 33-34=-54/49, 32-33=-54/49, 31-32=-54/49, 30-31=-54/49, 29-30=-54/49,

28-29=-54/49, 27-28=-54/49

WEBS 18-34=-122/16, 17-36=-185/33, 16-37=-182/45, 15-38=-147/41,

13-39=-178/36, 12-40=-175/62, 11-42=-175/55, 10-43=-174/56,

9-44=-179/56. 8-45=-140/56. 7-46=-130/57. 5-47=-114/52, 4-48=-186/74, 19-33=-186/51,

Page: 1

20-32=-174/59, 21-31=-175/55, 22-30=-175/56, 23-29=-174/55,

25-28=-147/59

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=41ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

October 16,2025

Continued on page 2

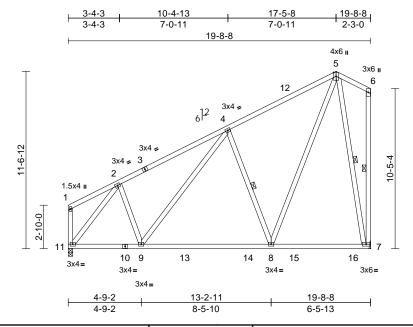
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

BOT CHORD

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T05	Piggyback Base Supported Gable	1	1	Job Reference (optional)	77101025

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:42 ID:jnyrfPUyZUK54?qw1IL2ixyT77A-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Page: 2

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 1.5x4 (||) MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 27, 85 lb uplift at joint 2, 9 lb uplift at joint 36, 21 lb uplift at joint 37, 1 lb uplift at joint 38, 12 lb uplift at joint 39, 38 lb uplift at joint 40, 31 lb uplift at joint 42, 32 lb uplift at joint 43, 32 lb uplift at joint 44, 31 lb uplift at joint 45, 34 lb uplift at joint 46, 25 lb uplift at joint 47, 74 lb uplift at joint 48, 27 lb uplift at joint 33, 35 lb uplift at joint 32, 31 lb uplift at joint 31, 33 lb uplift at joint 30, 28 lb uplift at joint 29, 44 lb uplift at joint 28 and 85 lb uplift at joint 2.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 49.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T11	Common	3	1	Job Reference (optional)	177101026

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:45 ID:yFTp_gOxS0JE6mDNZ3C9NFyT77I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.16	8-9	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.26	8-9	>914	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 154 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

2x4 SP No.3 *Except* 7-6:2x4 SP No.1 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

WFBS 1 Row at midpt

REACTIONS (size)

7= Mechanical, 11=0-3-8

Max Horiz 11=427 (LC 11)

Max Uplift 7=-91 (LC 12), 11=-62 (LC 12) Max Grav 7=1009 (LC 23), 11=897 (LC 23)

4-8, 6-7, 5-7

(lb) - Maximum Compression/Maximum **FORCES**

Tension

TOP CHORD 1-2=-57/66, 2-4=-864/162, 4-5=-640/202,

5-6=-220/195, 6-7=-184/141, 1-11=-60/36

BOT CHORD 9-11=-288/784, 8-9=-187/710, 7-8=-144/217 WEBS 5-8=-128/913, 4-8=-526/210, 4-9=-82/201,

2-9=0/253, 5-7=-945/202, 2-11=-1013/51

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 7 and 62 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T06	Piggyback Base	7	1	Job Reference (optional)	177101027

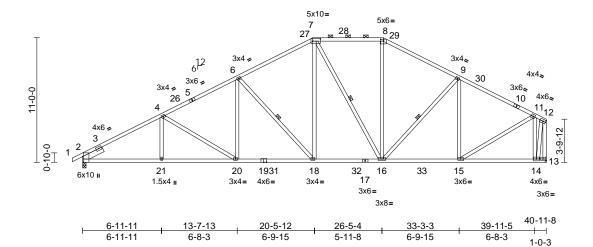
6-8-3

Longleaf Truss Company, West End, NC - 27376,


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:42 ID:q0jKp2RSWFqgbOX8ovG5X5yT77E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-3

6-8-3


1-0-3

Page: 1

6-3-0

40-11-8

Scale = 1:101.8

Plate Offsets (X, Y): [2:0-6-1,Edge], [7:0-8-0,0-2-8], [8:0-3-0,0-2-0], [13:Edge,0-1-8]

-0-11-0

 \vdash

0-11-0

6-11-11

6-11-11

13-7-13

6-8-3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.23	20-21	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.40	20-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.11	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 276 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-5:2x4 SP DSS 2x4 SP No.1 *Except* 2-19:2x4 SP DSS BOT CHORD

WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No.1 -- 2-0-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (3-8-6 max.): 7-8

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 6-18, 7-16, 9-16

REACTIONS 2=0-3-8. 13= Mechanical (size)

Max Horiz 2=326 (LC 11) Max Uplift 2=-195 (LC 12), 13=-162 (LC 12)

Max Grav 2=2056 (LC 43), 13=2051 (LC 45)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-4=-3395/302, 4-6=-3025/318,

6-7=-2309/323, 7-8=-1778/308,

8-9=-2087/308, 9-11=-2108/244 11-12=-465/65, 12-13=-2037/121

2-21=-197/3123, 20-21=-197/3123,

BOT CHORD 18-20=-109/2796, 16-18=-1/2065,

15-16=-44/1804, 14-15=-1/496, 13-14=-37/53 4-21=0/192, 4-20=-420/102, 6-20=0/529,

6-18=-1096/159, 7-18=-41/1066,

7-16=-462/54, 8-16=-11/620, 9-16=-150/198,

9-15=-567/116, 11-15=-61/1543,

11-14=-1801/230, 12-14=-143/1953

NOTES

WEBS

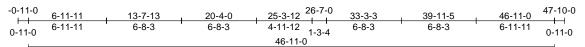
Unbalanced roof live loads have been considered for 1) this design.

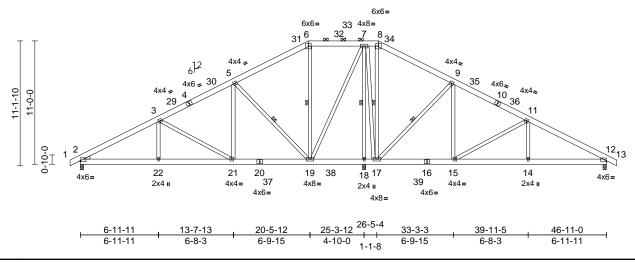
- 2) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2 and 162 lb uplift at joint 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

October 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T09	Piggyback Base	4	1	Job Reference (optional)	177101028

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:44 ID:7MezHRXrsPigxTZUjtulKayT777-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:102.7

Plate Offsets (X, Y): [2:Edge,0-0-15]

		-										
Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.06	19-21	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	19-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.03	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 393 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 6-8.

Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 18-19,17-18.

WEBS 6-19, 8-17, 9-17, 5-19, 1 Row at midpt

7-18

REACTIONS (size) 2=0-3-8, 12=0-3-8, 18=0-3-8

Max Horiz 2=274 (LC 11)

2=-125 (LC 12), 12=-109 (LC 12),

18=-205 (LC 12)

Max Grav 2=1089 (LC 43), 12=903 (LC 25),

18=2709 (LC 43)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-1623/168, 3-5=-1055/173,

5-6=-287/171, 6-7=-157/185, 7-8=0/382, 8-9=0/499, 9-11=-658/139, 11-12=-1246/136,

12-13=0/25

BOT CHORD 2-22=-129/1574, 21-22=-55/1574,

19-21=-1/1023, 18-19=-449/195,

17-18=-449/195, 15-17=0/461,

14-15=-27/1036, 12-14=-54/1036 WFBS 3-22=0/251, 5-21=0/645, 6-19=-260/39,

8-17=-349/23, 9-15=0/683, 9-17=-1224/168,

11-14=0/258, 3-21=-655/118, 11-15=-679/120, 5-19=-1192/167, 1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=47ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

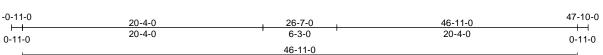
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 12, 125 lb uplift at joint 2 and 205 lb uplift at joint 18.

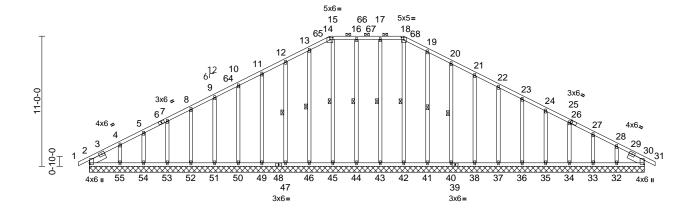
10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

7-18=-1756/141, 7-17=-16/580, 7-19=-79/1273




October 16,2025

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	l77101029

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:45 ID:bZCLVnYTdiqXZc8hGbQ_snyT776-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97.4

BOT CHORD

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	30	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0			l							Weight: 367 lb	FT = 20%

46-11-0

BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS	' '		
BCDL	10.0						Weight: 367 lb FT = 20%
LUMBER				Max Uplift 2=-40 (LC 10),	32=-65 (LC 12).	BOT CHORD	2-55=-83/113, 54-55=-83/113, 53-54=-83/113,
TOP CHORD	2x4 SP No.1			' '), 34=-34 (LC 12),		52-53=-83/113, 51-52=-83/113,
BOT CHORD	2x4 SP No.1			35=-31 (LC 12)	, 36=-32 (LC 12),		50-51=-83/113, 49-50=-83/113,
OTHERS	2x4 SP No.3			37=-32 (LC 12)), 38=-31 (LC 12),		47-49=-83/113, 46-47=-83/113,
SLIDER	Left 2x6 SP No.1 1	1-6-0. Right 2x6	SP No.1	40=-34 (LC 12)), 41=-28 (LC 12),		45-46=-83/113, 44-45=-83/113,
	1-6-0	,		43=-10 (LC 12)), 44=-20 (LC 12),		43-44=-83/113, 42-43=-83/113,
BRACING				46=-15 (LC 12)), 47=-37 (LC 12),		41-42=-83/113, 40-41=-83/113,
TOP CHORD	Structural wood cho	athing directly	applied or	49=-31 (LC 12)), 50=-32 (LC 12),		38-40=-83/113, 37-38=-83/113,
TOF CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except			51=-32 (LC 12)), 52=-31 (LC 12),		36-37=-83/113, 35-36=-83/113,
	2-0-0 oc purlins, exc		3	53=-34 (LC 12)	, 54=-21 (LC 12),		34-35=-83/113, 33-34=-83/113,

2-0-0 oc purlins (6-0-0 max.): 14-18.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 18-42, 17-43, 16-44,

FORCES

TOP CHORD

WEBS 1 Row at midpt 18-42, 17-43, 16-44, 15-45, 13-46, 12-47, 19-41, 20-40

REACTIONS (size) 2=46-11-0, 30=46-11-0, 32=46-11-0, 33=46-11-0, 34=46-11-0, 35=46-11-0, 36=46-11-0, 37=46-11-0, 38=46-11-0, 40=46-11-0, 41=46-11-0, 42=46-11-0, 43=46-11-0, 46=46-11-0, 47=46-11-0, 49=46-11-0, 50=46-11-0, 51

52=46-11-0, 53=46-11-0, 54=46-11-0, 55=46-11-0 Max Horiz 2=-274 (LC 10) 35=-31 (LC 12), 36=-32 (LC 12), 37=-32 (LC 12), 38=-31 (LC 12), 40=-34 (LC 12), 41=-28 (LC 12), 43=-10 (LC 12), 44=-20 (LC 12), 46=-15 (LC 12), 52=-31 (LC 12), 51=-32 (LC 12), 52=-31 (LC 12), 53=-34 (LC 12), 54=-21 (LC 12), 55=-68 (LC 12), 54=-21 (LC 12), 55=-68 (LC 12), 53=-34 (LC 25), 33=155 (LC 25), 34=170 (LC 25), 33=155 (LC 25), 36=219 (LC 35), 37=214 (LC 35), 41=225 (LC 35), 42=155 (LC 18), 43=224 (LC 34), 44=222 (LC 34), 45=167 (LC 17), 46=217 (LC 35), 50=214 (LC 35), 50=214 (LC 35), 50=214 (LC 35), 55=2180 (LC 43), 53=174 (LC 24), 54=149 (LC 2), 55=252 (LC 24) (lb) - Maximum Compression/Maximum Tension

WFBS

NOTES

Tension
1-2=0/25, 2-4=-210/212, 4-5=-188/172,
5-7=-179/162, 7-8=-166/144, 8-9=-154/128,
9-10=-143/112, 10-11=-134/146,
11-12=-124/181, 12-13=-116/219,
13-14=-106/247, 14-15=-69/234,

15-16=-69/234, 16-17=-69/234, 17-18=-69/234, 18-19=-100/248, 19-20=-83/214, 20-21=-71/177, 21-22=-62/142, 22-23=-63/106,

23-24=-71/70, 24-25=-73/38, 25-27=-82/55, 27-28=-91/68, 28-30=-95/97, 30-31=0/25

3, 49-50=-83/113, 46-47=-83/113, 3. 44-45=-83/113. 42-43=-83/113 40-41=-83/113. 37-38=-83/113. 35-36=-83/113. 33-34=-83/113. 32-33=-83/113, 30-32=-83/113 18-42=-115/0, 17-43=-184/34, 16-44=-182/44, 15-45=-127/3, 13-46=-177/39, 12-47=-176/61 11-49=-175/55, 10-50=-174/56, 9-51=-179/56, 8-52=-141/55, 7-53=-130/57, 5-54=-115/50, 4-55=-175/78, 19-41=-185/52, 20-40=-174/58, 21-38=-175/55, 22-37=-174/56, 23-36=-179/56, 24-35=-141/56, 25-34=-129/57,

Page: 1

24-35=-141/56, 25-34=-129/57, 24-35=-141/56, 25-34=-129/57, 27-33=-122/51, 28-32=-149/75 CARO SEAL 27687

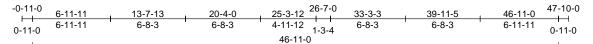
October 16,2025

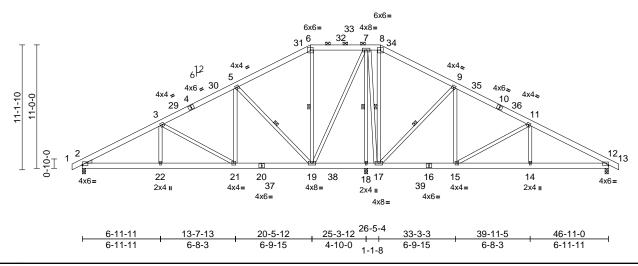
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY		
P25101839A	T10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	177101029	

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:45 ID:bZCLVnYTdiqXZc8hGbQ_snyT776-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=47ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2, 10 lb uplift at joint 43, 20 lb uplift at joint 44, 15 lb uplift at joint 46, 37 lb uplift at joint 47, 31 lb uplift at joint 49, 32 lb uplift at joint 50, 32 lb uplift at joint 51, 31 lb uplift at joint 52, 34 lb uplift at joint 53, 21 lb uplift at joint 54, 68 Ib uplift at joint 55, 28 lb uplift at joint 41, 34 lb uplift at joint 40, 31 lb uplift at joint 38, 32 lb uplift at joint 37, 32 Ib uplift at joint 36, 31 lb uplift at joint 35, 34 lb uplift at joint 34, 23 lb uplift at joint 33, 65 lb uplift at joint 32 and 40 lb uplift at joint 2.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 56.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	GLEN GODFREY	
P25101839A	T14	Piggyback Base	1	1	Job Reference (optional)	177101030

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 15 18:09:46 ID:3Imki7Y5O0yOAmjtqIxDP?yT775-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:102.7

Plate Offsets (X, Y): [2:Edge,0-0-15]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.06	19-21	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	19-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.03	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0			1							Weight: 393 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 6-8.

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing, Except:

6-0-0 oc bracing: 18-19,17-18.

WEBS 5-19, 6-19, 8-17, 9-17, 1 Row at midpt 7-18

REACTIONS (size) 2=0-3-8, 12=0-3-8, 18=0-3-8

Max Horiz 2=-274 (LC 10)

2=-125 (LC 12), 12=-109 (LC 12),

18=-205 (LC 12)

Max Grav 2=1089 (LC 43), 12=903 (LC 25),

18=2709 (LC 43)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-1623/168, 3-5=-1055/173,

5-6=-287/171, 6-7=-157/185, 7-8=0/382, 8-9=0/499, 9-11=-658/139, 11-12=-1246/136,

12-13=0/25

BOT CHORD 2-22=-129/1574, 21-22=-55/1574,

19-21=-1/1023, 18-19=-449/195,

17-18=-449/195, 15-17=0/461, 14-15=-27/1036, 12-14=-54/1036

WFBS 3-22=0/251, 3-21=-655/118, 5-21=0/645,

5-19=-1192/167, 6-19=-260/39, 8-17=-349/23, 9-17=-1224/168, 9-15=0/683,

11-15=-679/120, 11-14=0/258,

7-18=-1756/141, 7-17=-16/580,

7-19=-79/1273

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=12ft; B=45ft; L=47ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 2, 109 lb uplift at joint 12 and 205 lb uplift at joint 18.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

October 16,2025

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.