

Trenco 818 Soundside Rd Edenton, NC 27932

Re: CL 2862 CP 3 CAR CL 2862 CP 3 CAR

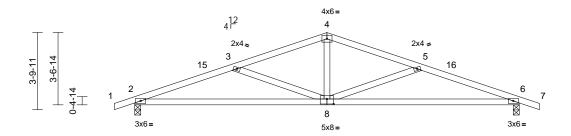
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I76728375 thru I76728400

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


October 1,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	3C1	Common	6	1	Job Reference (optional)	176728375

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:34 ID:EVzkaA_?4?SCw7klcBiir?yYRyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.9

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	-0.13	8-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.28	8-14	>806	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 80 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-3-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 9-3-9 oc

bracing.

REACTIONS 2=0-3-8, 6=0-3-8 (size)

Max Horiz 2=44 (LC 11)

Max Uplift 2=-119 (LC 12), 6=-119 (LC 12) Max Grav 2=820 (LC 1), 6=820 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-1698/464, 3-4=-1267/305,

4-5=-1267/305, 5-6=-1698/464, 6-7=0/19

BOT CHORD 2-6=-387/1588

WFBS 4-8=-33/545, 5-8=-483/241, 3-8=-483/241

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-6-6, Interior (1) 3-6-6 to 9-6-0, Exterior(2R) 9-6-0 to 14-2-4, Interior (1) 14-2-4 to 20-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

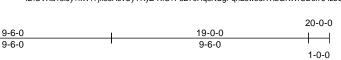
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 2 and 119 lb uplift at joint 6.

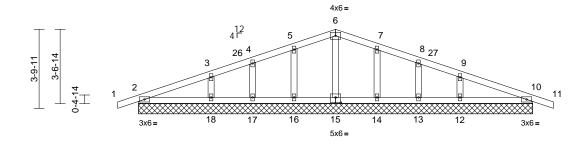
LOAD CASE(S) Standard

October 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	3C1E	Common Supported Gable	1	1	Job Reference (optional)	176728376

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:35 ID:UVXa13IJy?kW17jk8eAovUyYRyZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

19-0-0

19-0-0 Scale = 1:55.5

-1-0-0

1-0-0

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 81 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=19-0-0, 10=19-0-0, 12=19-0-0, 13=19-0-0, 14=19-0-0, 15=19-0-0, 16=19-0-0, 17=19-0-0, 18=19-0-0

Max Horiz 2=44 (LC 11)

Max Uplift 2=-53 (LC 12), 10=-53 (LC 12),

12=-34 (LC 12), 13=-21 (LC 12), 14=-27 (LC 12), 16=-27 (LC 12), 17=-21 (LC 12), 18=-34 (LC 12)

Max Grav 2=196 (LC 1), 10=196 (LC 1),

12=267 (LC 24), 13=117 (LC 1) 14=180 (LC 24), 15=126 (LC 1), 16=180 (LC 23), 17=117 (LC 1),

18=267 (LC 23)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-59/26, 3-4=-59/66,

4-5=-48/98, 5-6=-60/135, 6-7=-60/132, 7-8=-48/93, 8-9=-54/61, 9-10=-46/16,

10-11=0/19

BOT CHORD 2-18=-3/51, 17-18=-3/51, 16-17=-3/51, 14-16=-3/51, 13-14=-3/51, 12-13=-3/51,

10-12=-3/51

WFBS 6-15=-88/1, 5-16=-135/122, 4-17=-95/92,

3-18=-183/124, 7-14=-135/122, 8-13=-95/93,

9-12=-183/124

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 3-6-0, Exterior(2N) 3-6-0 to 9-6-0, Corner(3R) 9-6-0 to 14-0-6, Exterior(2N) 14-0-6 to 20-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2, 53 lb uplift at joint 10, 27 lb uplift at joint 16, 21 lb uplift at joint 17, 34 lb uplift at joint 18, 27 lb uplift at joint 14, 21 lb uplift at joint 13, 34 lb uplift at joint 12, 53 lb uplift at joint 2 and 53 lb uplift at joint 10.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10, 23.

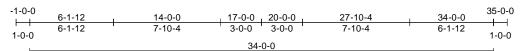
LOAD CASE(S) Standard

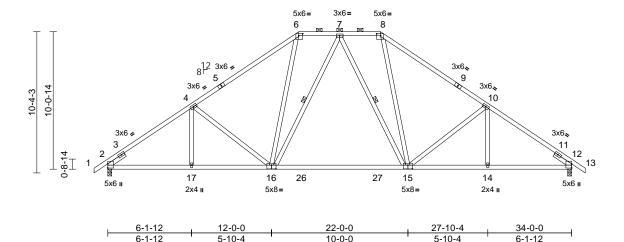
October 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Ply Job Truss Truss Type Qty CL 2862 CP 3 CAR 176728377 CL 2862 CP 3 CAR A01 Piggyback Base Job Reference (optional)

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:36 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?i

Page: 1

Scale = 1:84.4

Plate Offsets (X, Y): [6:0-3-8,0-1-12], [8:0-3-8,0-1-12], [15:0-4-0,0-3-4], [16:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.39	15-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.63	15-16	>649	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.43	Horz(CT)	0.09	12	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 212 lb	FT = 20%

LUMBER

BOT CHORD

TOP CHORD 2x4 SP DSS *Except* 6-8:2x4 SP No.2,

1-5,9-13:2x4 SP No.1 2x4 SP No.1

2x4 SP No 2 WFBS

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied.

except

2-0-0 oc purlins (4-10-5 max.): 6-8. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 7-16, 7-15

REACTIONS (size) 2=0-3-8, 12=0-3-8

Max Horiz 2=-224 (LC 10)

Max Uplift 2=-184 (LC 12), 12=-184 (LC 12)

Max Grav 2=1600 (LC 17), 12=1600 (LC 18)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/33, 2-4=-2175/256, 4-6=-1840/283, TOP CHORD

6-7=-1334/293, 7-8=-1334/293,

8-10=-1840/283, 10-12=-2175/256 12-13=0/33

BOT CHORD 2-17=-101/1897, 14-17=-101/1897,

12-14=-101/1729

WEBS 4-17=0/149, 4-16=-456/184, 6-16=-6/667,

7-16=-204/112, 7-15=-204/111, 8-15=-6/667,

10-15=-456/184, 10-14=0/149

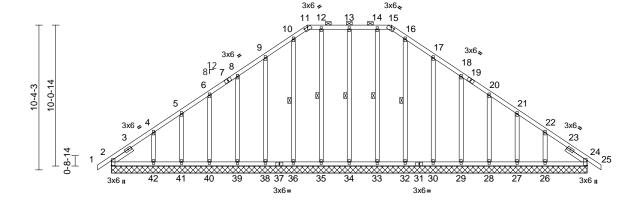
NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at joint 2 and 184 lb uplift at joint 12.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard




October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	A01E	GABLE	1	1	Job Reference (optional)	176728378

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:36 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:82.4

Plate Offsets (X, Y): [2:Edge,0-0-0], [11:0-3-0,0-0-2], [15:0-3-0,0-0-2], [24:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	24	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 260 lb	FT = 20%

34-0-0

LUMBER TOP CHORD	2x4 SP No.2		TOP CHORD	1-2=0/14, 2-4= 5-6=-146/106,	,	,		, .			() MT20 unless	otherwise indicate	∍d.
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 260 lb	FT = 20%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	24	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999			
1 CLL (1001)	20.0	Plate Grip DOL	1.15	110	0.11	vert(LL)	II/a	-	II/a	999	W1120	244/190	

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.2 SLIDER

Left 2x4 SP No.2 -- 1-9-4, Right 2x4 SP No.2 -- 1-9-4

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 11-15.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 13-34, 12-35, 10-36,

14-33, 16-32

REACTIONS (size) 2=34-0-0, 24=34-0-0, 26=34-0-0,

27=34-0-0, 28=34-0-0, 29=34-0-0, 30=34-0-0, 32=34-0-0, 33=34-0-0, 34=34-0-0, 35=34-0-0, 36=34-0-0,

38=34-0-0, 39=34-0-0, 40=34-0-0, 41=34-0-0, 42=34-0-0

Max Horiz 2=224 (LC 11)

Max Uplift 2=-8 (LC 8), 26=-87 (LC 12),

27=-35 (LC 12), 28=-50 (LC 12),

29=-43 (LC 12), 30=-63 (LC 12), 34=-47 (LC 12), 38=-63 (LC 12),

39=-43 (LC 12), 40=-50 (LC 12), 41=-35 (LC 12), 42=-87 (LC 12)

Max Grav 2=227 (LC 18), 24=201 (LC 1),

26=242 (LC 18), 27=142 (LC 18), 28=172 (LC 18), 29=164 (LC 18),

30=172 (LC 18), 32=150 (LC 24), 33=149 (LC 24), 34=165 (LC 24), 35=149 (LC 23), 36=160 (LC 17), 38=168 (LC 17), 39=165 (LC 17),

40=173 (LC 17), 41=141 (LC 1), 42=253 (LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension

9-10=-150/184, 10-11=-152/189,

11-12=-139/187, 12-13=-139/187, 13-14=-139/187, 14-15=-139/187, 15-16=-152/189, 16-17=-150/184, 17-18=-109/123, 18-20=-77/73,

20-21=-89/31, 21-22=-104/43, 22-24=-147/87, 24-25=0/14

BOT CHORD 2-42=-71/145, 41-42=-71/145, 40-41=-71/145, 39-40=-71/145

38-39=-71/145, 36-38=-71/145, 35-36=-71/145, 34-35=-71/145, 33-34=-71/145, 32-33=-71/145,

30-32=-71/145, 29-30=-71/145, 28-29=-71/145, 27-28=-71/145, 26-27=-71/145, 24-26=-71/145

WEBS 13-34=-125/71, 12-35=-109/0, 10-36=-120/7, 9-38=-127/87, 8-39=-125/67, 6-40=-130/74, 5-41=-109/58, 4-42=-187/114, 14-33=-109/0,

16-32=-110/0, 17-30=-131/87, 18-29=-125/67, 20-28=-130/74 21-27=-111/58, 22-26=-178/114

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.

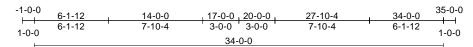
Page: 1

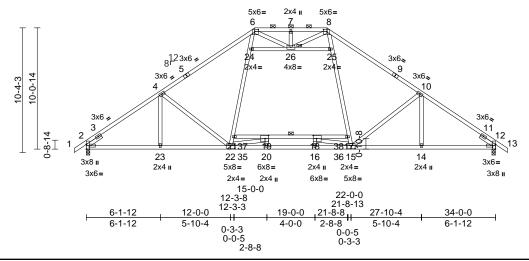
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 2, 47 lb uplift at joint 34, 63 lb uplift at joint 38, 43 lb uplift at joint 39, 50 lb uplift at joint 40, 35 lb uplift at joint 41, 87 lb uplift at joint 42, 63 lb uplift at joint 30, 43 lb uplift at joint 29, 50 lb uplift at joint 28, 35 lb uplift at joint 27 and 87 lb uplift at joint 26.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	A01M	ROOF TRUSS	7	1	Job Reference (optional)	176728379

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:36 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:95.7

Plate Offsets (X, Y): [2:0-3-0,0-2-11], [6:0-3-8,0-1-12], [8:0-3-8,0-1-12], [12:0-3-0,0-2-11], [15:0-4-0,0-3-0], [18:0-3-8,0-3-0], [19:0-3-8,0-3-0], [22:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	I /d	PLATES	GRIP
•		- - -						' '			-	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.21	17-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.34	16-20	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.65	Horz(CT)	0.13	12	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 226 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP DSS *Except* 6-8:2x4 SP No.2 **BOT CHORD** 2x4 SP No.1 *Except* 21-17:2x4 SP No.2 WEBS

2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-1-0 oc purlins, except

2-0-0 oc purlins (4-5-8 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 19-21,17-18

5-0-8 oc bracing: 18-19. JOINTS 1 Brace at Jt(s): 26

REACTIONS (size) 2=0-3-8, 12=0-3-8

Max Horiz 2=-224 (LC 10) Max Uplift 2=-126 (LC 12), 12=-126 (LC 12)

Max Grav 2=1847 (LC 18), 12=1847 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD

Tension

1-2=0/33, 2-4=-2596/159, 4-6=-2236/191, 6-7=-1543/225, 7-8=-1543/225,

8-10=-2236/191, 10-12=-2596/159,

12-13=0/33

BOT CHORD 2-23=-50/2240, 20-23=-23/2629,

16-20=0/2629, 14-16=-23/2629, 12-14=-44/2072, 19-21=-178/214

18-19=-1194/0, 17-18=-178/214 WEBS 4-23=0/174, 4-22=-474/183, 21-22=0/794,

21-24=0/874, 6-24=0/878, 8-25=0/878, 17-25=0/874, 15-17=0/794, 10-15=-475/183,

10-14=0/174, 19-20=0/146, 19-22=-1276/0, 16-18=0/146, 15-18=-1276/0, 24-26=-179/87,

25-26=-179/87, 7-26=-103/34

6-26=-116/252, 8-26=-116/252

1) Unbalanced roof live loads have been considered for

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 126 lb uplift at joint 2 and 126 lb uplift at joint 12.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) Standard

October 1,2025

NOTES

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	A02	Piggyback Base	3	1	Job Reference (optional)	176728380

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:37 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

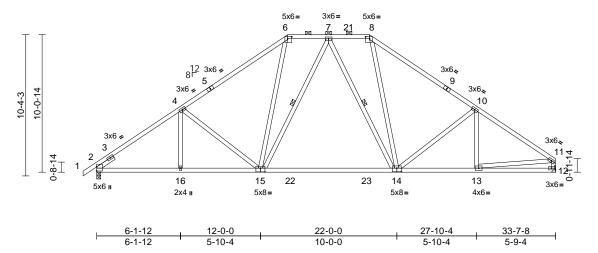


Plate Offsets (X, Y): [6:0-3-8,0-1-12], [8:0-3-8,0-1-12], [12:Edge,0-1-8], [14:0-4-0,0-3-0], [15:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	I /d	PLATES	GRIP
•	., ,	- - -						(/			_	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.38	14-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.62	14-15	>646	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.43	Horz(CT)	0.06	12	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 216 lb	FT = 20%

LUMBER

Scale = 1:84.4

TOP CHORD 2x4 SP DSS *Except* 6-8,9-11:2x4 SP No.2,

1-5:2x4 SP No.1 2x4 SP No.1

BOT CHORD 2x4 SP No 2 WFBS

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(4-10-15 max.): 6-8.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 7-15, 7-14 REACTIONS (size) 2=0-3-8, 12= Mechanical

Max Horiz 2=236 (LC 11)

Max Uplift 2=-183 (LC 12), 12=-145 (LC 12) Max Grav 2=1578 (LC 17), 12=1518 (LC 18)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/33, 2-4=-2139/253, 4-6=-1803/280,

6-7=-1308/291, 7-8=-1280/289,

8-10=-1771/277, 10-11=-2024/239,

11-12=-1410/177

BOT CHORD 2-16=-124/1862, 13-16=-124/1862,

12-13=-9/191

4-16=0/149, 4-15=-458/184, 6-15=-4/648,

7-15=-183/123, 7-14=-225/96, 8-14=-3/642,

10-14=-387/176, 10-13=-88/76,

11-13=-108/1428

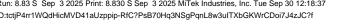
NOTES

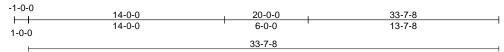
WEBS

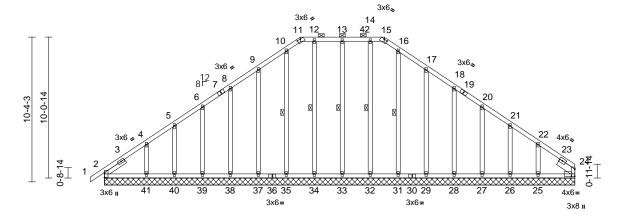
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 183 lb uplift at joint 2 and 145 lb uplift at joint 12.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Page: 1


October 1,2025



Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	A02E	GABLE	1	1	Job Reference (optional)	176728381

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:37 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?i

Scale = 1:82.4

Plate Offsets (X, Y): [2:Edge,0-0-0], [11:0-3-0,0-0-2], [15:0-3-0,0-0-2], [24:0-3-0,0-6-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	24	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 258 lb	FT = 20%

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.2
01.15.55	

SLIDER Left 2x4 SP No.2 -- 1-9-4, Right 2x6 SP No.2

-- 1-5-8 **BRACING**

TOP CHORD

FORCES

LUMBER

Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 11-15.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 13-33, 12-34, 10-35,

14-32, 16-31

REACTIONS (size) 2=33-7-8, 24=33-7-8, 25=33-7-8, 26=33-7-8, 27=33-7-8, 28=33-7-8,

29=33-7-8, 31=33-7-8, 32=33-7-8, 33=33-7-8, 34=33-7-8, 35=33-7-8, 37=33-7-8, 38=33-7-8, 39=33-7-8,

40=33-7-8, 41=33-7-8

Max Horiz 2=222 (LC 11)

Max Uplift 2=-12 (LC 8), 25=-110 (LC 12),

26=-29 (LC 12), 27=-51 (LC 12), 28=-43 (LC 12), 29=-64 (LC 12), 33=-48 (LC 12), 37=-64 (LC 12),

38=-43 (LC 12), 39=-50 (LC 12), 40=-35 (LC 12), 41=-85 (LC 12)

2=233 (LC 18), 24=142 (LC 17),

25=235 (LC 18), 26=147 (LC 1), 27=171 (LC 18), 28=164 (LC 18), 29=172 (LC 18), 31=148 (LC 24), 32=147 (LC 24), 33=166 (LC 24), 34=149 (LC 23), 35=160 (LC 17),

37=168 (LC 17), 38=165 (LC 17), 39=173 (LC 17), 40=142 (LC 1), 41=253 (LC 17)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD

BOT CHORD

1-2=0/14, 2-4=-215/171, 4-5=-166/120 5-6=-153/110, 6-8=-141/88, 8-9=-129/131, 9-10=-157/192, 10-11=-159/196,

33-7-8

11-12=-145/193, 12-13=-145/193, 13-14=-145/193, 14-15=-145/193, 15-16=-159/196, 16-17=-157/192, 17-18=-116/131, 18-20=-84/81,

20-21=-89/29, 21-22=-101/36, 22-24=-141/81

2-41=-63/127, 40-41=-63/127, 39-40=-63/127, 38-39=-63/127,

37-38=-63/127, 35-37=-63/127, 34-35=-63/127, 33-34=-63/127,

32-33=-63/127, 31-32=-63/127, 29-31=-63/127, 28-29=-63/127,

27-28=-63/127, 26-27=-63/127 25-26=-63/127, 24-25=-63/127

13-33=-126/72, 12-34=-109/0, 10-35=-120/8, 9-37=-127/88, 8-38=-125/67, 6-39=-130/74, 5-40=-110/58, 4-41=-187/113, 14-32=-107/1, 16-31=-108/0, 17-29=-132/88,

18-28=-125/67, 20-27=-129/75 21-26=-113/54, 22-25=-174/129

NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 (||) MT20 unless otherwise indicated.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

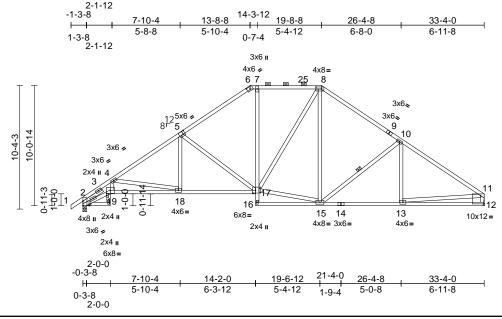
Page: 1

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 2, 48 lb uplift at joint 33, 64 lb uplift at joint 37, 43 lb uplift at joint 38, 50 lb uplift at joint 39, 35 lb uplift at joint 40, 85 lb uplift at joint 41, 64 lb uplift at joint 29, 43 lb uplift at joint 28, 51 lb uplift at joint 27, 29 lb uplift at joint 26 and 110 lb uplift at joint 25.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	A02T	Piggyback Base	6	1	Job Reference (optional)	176728382

Run: 8 83 F. Nov 14 2024 Print: 8 830 F. Nov 14 2024 MiTek Industries. Inc. Wed Oct 01 14:38:13 ID:tctjP4rr1WQdHicMVD41aUzppip-K1HtaY8hjrLFkx8vQhycy8PgUIvNHUXSSGX0dNyXw6Q

Page: 1

Scale = 1:81.3

Plate Offsets (X, Y): [2:0-4-11,Edge], [5:0-2-0,0-3-4], [6:0-3-0,0-2-3], [8:0-5-12,0-2-0], [12:Edge,0-8-2], [17:0-2-12,0-2-12], [19:0-2-1,0-0-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.13	18-19	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.29	17-18	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.76	Horz(CT)	0.17	12	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		` ′					Weight: 226 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

2x4 SP No.2 *Except* 19-17:2x4 SP No.1, BOT CHORD

2-19:2x4 SP DSS

WFBS 2x4 SP No 2 **SLIDER** Left 2x4 SP No.2 -- 2-0-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-6-7 oc purlins, except end verticals, and

2-0-0 oc purlins (3-8-6 max.): 6-8. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 15-16.

WFBS 1 Row at midpt 10-15

REACTIONS (size) 2=0-3-8, 12= Mechanical

Max Horiz 2=236 (LC 11)

Max Uplift 2=-182 (LC 12), 12=-146 (LC 12)

Max Grav 2=1400 (LC 1), 12=1338 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/33, 2-3=-1738/213, 3-4=-3660/395,

4-5=-2163/267, 5-6=-1579/282,

6-7=-1232/276, 7-25=-1246/279 8-25=-1246/279, 8-9=-1350/282,

9-10=-1472/242, 10-11=-1823/233, 11-12=-1272/181

BOT CHORD 18-19=-283/2818, 17-18=-88/1738,

16-17=0/91, 7-17=-34/522, 15-16=-10/7, 14-15=-90/1432, 13-14=-90/1432,

12-13=-45/238, 2-19=-296/3151

4-18=-1092/200, 5-18=0/440, 5-17=-680/159, 15-17=0/1136, 8-17=-44/337, 8-15=-28/274,

10-15=-438/157, 10-13=0/186,

11-13=-45/1202, 4-19=-36/1124

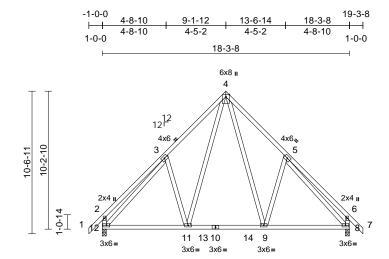
NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 425 psi.
- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 12 and 182 lb uplift at joint 2.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	B1	Common	1	1	Job Reference (optional)	176728383

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:38 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-1-3 18-3-8 6-2-5 5-10-13 6-2-5

Scale = 1:85.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.04	9-11	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.07	11-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.54	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 138 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 8=0-3-8, 12=0-3-8

Max Horiz 12=-288 (LC 10)

Max Uplift 8=-120 (LC 12), 12=-120 (LC 12) Max Grav 8=864 (LC 18), 12=864 (LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/49, 2-3=-328/182, 3-4=-789/261, 4-5=-789/261, 5-6=-328/182, 6-7=0/49,

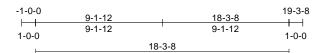
2-12=-374/198, 6-8=-374/198

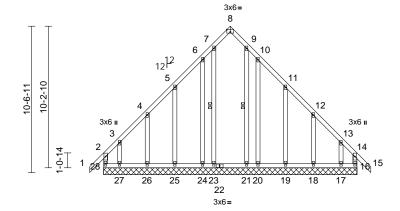
BOT CHORD 11-12=-28/676, 9-11=0/469, 8-9=0/571 WEBS 4-9=-134/481, 5-9=-228/213, 4-11=-134/481,

3-11=-227/213, 3-12=-678/0, 5-8=-677/0

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 12 and 120 lb uplift at joint 8.


LOAD CASE(S) Standard

October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	B1E	GABLE	1	1	Job Reference (optional)	176728384

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:38 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-3-8

Scale = 1:83.2

Plate Offsets (X, Y): [8:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	16	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-R							Weight: 153 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

WFBS 1 Row at midpt 7-23. 9-21 REACTIONS (size) 16=18-3-8, 17=18-3-8, 18=18-3-8,

19=18-3-8, 20=18-3-8, 21=18-3-8, 23=18-3-8, 24=18-3-8, 25=18-3-8, 26=18-3-8, 27=18-3-8, 28=18-3-8

Max Horiz 28=-288 (LC 10)

Max Uplift 16=-169 (LC 11), 17=-236 (LC 12),

18=-66 (LC 12), 19=-96 (LC 12), 20=-126 (LC 12), 24=-126 (LC 12), 25=-96 (LC 12), 26=-66 (LC 12),

27=-236 (LC 12), 28=-198 (LC 10)

Max Grav 16=265 (LC 8), 17=237 (LC 11), 18=214 (LC 18), 19=226 (LC 18),

20=134 (LC 18), 21=163 (LC 18), 23=180 (LC 17), 24=128 (LC 17),

25=226 (LC 17), 26=213 (LC 17), 27=253 (LC 10), 28=286 (LC 18)

FORCES TOP CHORD (lb) - Maximum Compression/Maximum Tension

2-28=-218/133, 1-2=0/49, 2-3=-241/222, 3-4=-145/151, 4-5=-127/109, 5-6=-106/83, 6-7=-124/189, 7-8=-84/104, 8-9=-84/104,

9-10=-124/189, 10-11=-90/83, 11-12=-111/89, 12-13=-130/131, 13-14=-240/197, 14-15=0/49, 14-16=-202/124

BOT CHORD 27-28=-147/224, 26-27=-147/224, 25-26=-147/224, 24-25=-147/224,

23-24=-147/224, 21-23=-147/224, 20-21=-147/224, 19-20=-147/224,

18-19=-147/224, 17-18=-147/224, 16-17=-147/224

WFBS 7-23=-135/40, 9-21=-135/40, 6-24=-123/140,

5-25=-150/118, 4-26=-148/102, 3-27=-162/153, 10-20=-123/140, 11-19=-151/118, 12-18=-148/102,

13-17=-161/153

NOTES

Unbalanced roof live loads have been considered for 1) this design

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft: L=45ft: eave=2ft: Cat. II: Exp B: Enclosed: MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

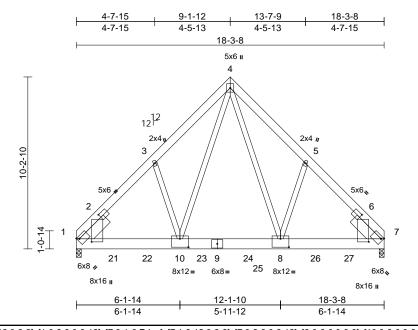
Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint 28, 169 lb uplift at joint 16, 126 lb uplift at joint 24, 96 lb uplift at joint 25, 66 lb uplift at joint 26, 236 lb uplift at joint 27, 126 lb uplift at joint 20, 96 lb uplift at joint 19, 66 Ib uplift at joint 18 and 236 lb uplift at joint 17.

Page: 1

LOAD CASE(S) Standard


October 1,2025

Job Truss Truss Type Qty Ply CL 2862 CP 3 CAR 176728385 3 CL 2862 CP 3 CAR **BGR** Common Girder Job Reference (optional)

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:38 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?i

Page: 1

Scale = 1:68.5

Plate Offsets (X, Y): [1:0-1-6,Edge], [1:1-9-12,0-2-8], [1:0-2-3,0-8-12], [7:0-1-6,Edge], [7:1-9-12,0-2-8], [7:0-2-3,0-8-12], [8:0-6-0,0-6-0], [10:0-6-0,0-6-0]

-			-		-		-					-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.05	8-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.10	8-10	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.35	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 519 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x8 SP DSS 2x4 SP No.2 WEBS

SLIDER Left 2x8 SP DSS -- 2-0-0, Right 2x8 SP DSS

-- 2-0-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-3-8, 7=0-3-8

Max Horiz 1=-229 (LC 10)

Max Uplift 1=-855 (LC 12), 7=-711 (LC 12)

Max Grav 1=7376 (LC 18), 7=6033 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-3=-6090/768, 3-4=-5925/886,

4-5=-5979/893, 5-7=-6138/774

BOT CHORD 1-10=-472/4180. 8-10=-288/2965.

7-8=-451/4221

WEBS 4-8=-600/4234, 5-8=-160/298,

4-10=-585/4108. 3-10=-160/305

NOTES

1) 3-ply truss to be connected together with 10d (0.148"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows

staggered at 0-6-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

unless otherwise indicated.

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 855 lb uplift at joint 1 and 711 lb uplift at joint 7.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1497 lb down and 153 lb up at 0-0-0, 1483 lb down and 157 lb up at 2-2-12, 1318 lb down and 158 lb up at 4-2-12, 1318 lb down and 158 lb up at 6-2-12, 1318 lb down and 158 lb up at 8-2-12, 1318 lb down and 158 lb up at 10-2-12, 1318 lb down and 158 lb up at 12-2-12, and 1318 lb down and 158 lb up at 14-2-12, and 1483 lb down and 157 lb up at 16-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

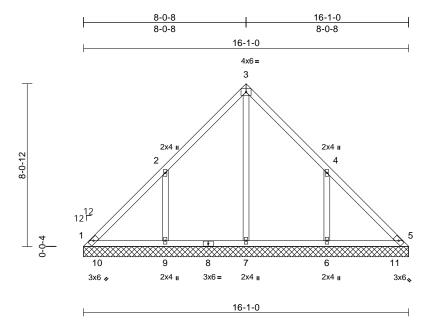
Vert: 4-13=-60, 4-18=-60, 1-7=-20 Concentrated Loads (lb)

Vert: 1=-1326 (B), 9=-1318 (B), 8=-1318 (B), 10=-1318 (B), 21=-1318 (B), 22=-1318 (B), 24=-1318

(B), 26=-1318 (B), 27=-1318 (B)

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV1	Valley	1	1	Job Reference (optional)	176728386

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:39 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 78 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=16-1-0, 5=16-1-0, 6=16-1-0, 7=16-1-0, 9=16-1-0

Max Horiz 1=-196 (LC 10)

Max Uplift 1=-12 (LC 10), 6=-191 (LC 12),

9=-191 (LC 12)

1=203 (LC 18), 5=178 (LC 17), Max Grav 6=517 (LC 18), 7=337 (LC 17),

9=518 (LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-180/157, 2-3=-169/127, 3-4=-147/127,

4-5=-144/109 1-9=-77/114, 7-9=-77/114, 6-7=-77/114,

5-6=-77/114 3-7=-137/1, 2-9=-331/234, 4-6=-330/234

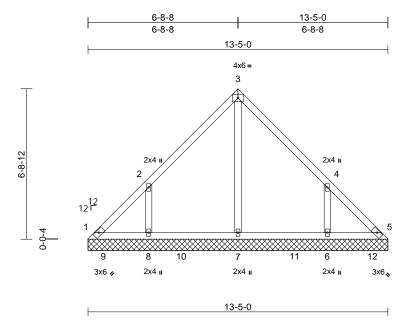
WEBS

BOT CHORD

- NOTES 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 191 lb uplift at joint 9 and 191 lb uplift at joint 6.

LOAD CASE(S) Standard


October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV2	Valley	1	1	Job Reference (optional)	76728387

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:39 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 62 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=13-5-0, 5=13-5-0, 6=13-5-0,

7=13-5-0, 8=13-5-0 Max Horiz 1=-162 (LC 10)

Max Uplift 1=-42 (LC 10), 5=-14 (LC 11),

6=-162 (LC 12), 8=-162 (LC 12) 1=144 (LC 18), 5=123 (LC 17), Max Grav 6=420 (LC 18), 7=346 (LC 17),

8=421 (LC 17)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-152/136, 2-3=-165/102, 3-4=-147/102,

4-5=-122/96

BOT CHORD 1-8=-60/86, 7-8=-60/86, 6-7=-60/86,

5-6=-60/86

WEBS 3-7=-145/0, 2-8=-286/203, 4-6=-286/203

NOTES

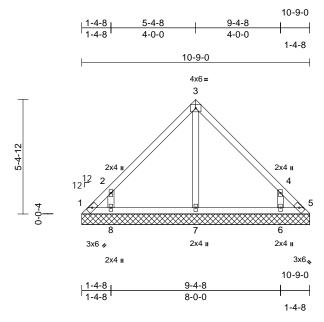
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 1, 14 lb uplift at joint 5, 162 lb uplift at joint 8 and 162 lb uplift at joint 6.

LOAD CASE(S) Standard

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV3	Valley	1	1	Job Reference (optional)	176728388

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:39 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 47 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=10-9-0, 5=10-9-0, 6=10-9-0,

7=10-9-0, 8=10-9-0 Max Horiz 1=-128 (LC 10)

Max Uplift 1=-118 (LC 10), 5=-96 (LC 11),

6=-166 (LC 12), 8=-166 (LC 12) 1=97 (LC 9), 5=92 (LC 12), 6=362

Max Grav (LC 18), 7=227 (LC 1), 8=362 (LC

FORCES (lb) - Maximum Compression/Maximum

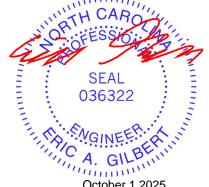
TOP CHORD 1-2=-131/143, 2-3=-161/78, 3-4=-149/78,

4-5=-118/112

1-8=-43/71, 7-8=-43/71, 6-7=-43/71,

5-6=-43/71 WEBS

3-7=-142/0, 4-6=-305/217, 2-8=-305/217

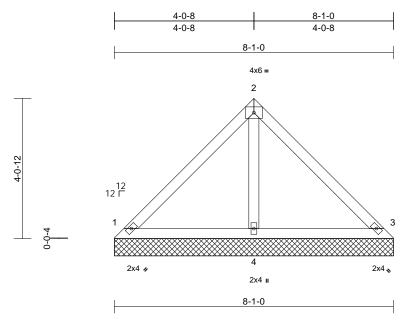

NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 1, 96 lb uplift at joint 5, 166 lb uplift at joint 6 and 166 lb uplift at joint 8.

LOAD CASE(S) Standard


October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV4	Valley	1	1	Job Reference (optional)	176728389

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:39 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 33 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=8-1-0, 3=8-1-0, 4=8-1-0

Max Horiz 1=94 (LC 11)

Max Uplift 1=-45 (LC 12), 3=-45 (LC 12) Max Grav 1=177 (LC 1), 3=177 (LC 1), 4=239

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-134/53, 2-3=-117/53 BOT CHORD

1-4=-29/59, 3-4=-29/59

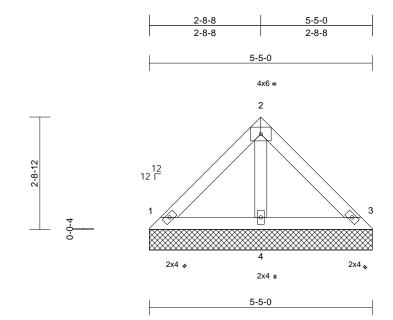
WFBS 2-4=-146/39

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 1 and 45 lb uplift at joint 3.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV5	Valley	1	1	Job Reference (optional)	176728390

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:39 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-5-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=5-5-0, 3=5-5-0, 4=5-5-0

Max Horiz 1=-60 (LC 10)

Max Uplift 1=-29 (LC 12), 3=-29 (LC 12)

Max Grav 1=114 (LC 1), 3=114 (LC 1), 4=153

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-86/31, 2-3=-75/29 BOT CHORD 1-4=-18/38, 3-4=-18/38

WFBS 2-4=-94/19

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

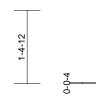
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 29 lb uplift at joint 3.

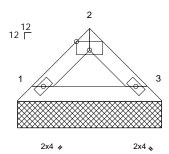
LOAD CASE(S) Standard

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	BV6	Valley	1	1	Job Reference (optional)	176728391


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:40 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-4-8	2-9-0
1-4-8	1-4-8

2-9-0

3x6 =

2-9-0

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-9-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-9-0, 3=2-9-0

Max Horiz 1=27 (LC 11)

Max Uplift 1=-9 (LC 12), 3=-9 (LC 12) Max Grav 1=84 (LC 1), 3=84 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-62/24, 2-3=-62/24

BOT CHORD 1-3=-3/36

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

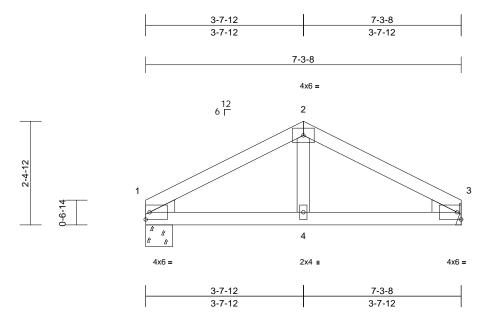
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1 and 9 lb uplift at joint 3.

LOAD CASE(S) Standard

Page: 1

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	C1	Common	1	1	Job Reference (optional)	176728392

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:40 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	-0.01	4-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.01	4-10	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	1	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 28 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2 Right: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-7-8, 3= Mechanical

Max Horiz 1=-36 (LC 10)

Max Uplift 1=-32 (LC 12), 3=-32 (LC 12) Max Grav 1=292 (LC 1), 3=292 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-353/53, 2-3=-353/53 BOT CHORD 1-4=-19/276, 3-4=-19/276

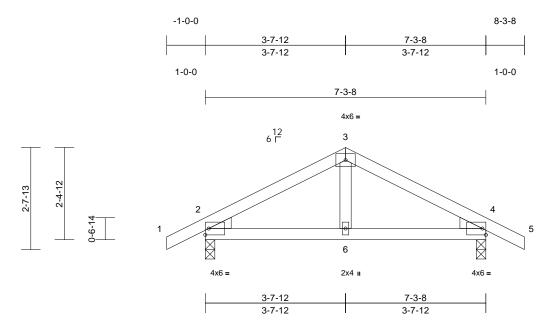
BOT CHORD 1-4=-19/276, 3-4=-19/3 WEBS 2-4=0/153

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 1 and 32 lb uplift at joint 3.

LOAD CASE(S) Standard


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	C1E	Common	1	1	Job Reference (optional)	176728393

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:40 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	-0.01	6-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.01	6-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 31 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS Left: 2x4 SP No.2 WEDGE Right: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 4=0-3-0

Max Horiz 2=-46 (LC 10) Max Uplift 2=-68 (LC 12), 4=-68 (LC 12)

Max Grav 2=352 (LC 1), 4=352 (LC 1) (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/27, 2-3=-334/42, 3-4=-334/42,

4-5=0/27

BOT CHORD 2-6=0/258, 4-6=0/258

WEBS 3-6=0/149

NOTES

FORCES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 2 and 68 lb uplift at joint 4.

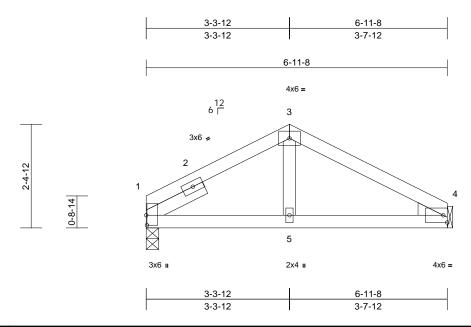
LOAD CASE(S) Standard

October 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Ply Truss Type Job Truss Qty CL 2862 CP 3 CAR 176728394 CL 2862 CP 3 CAR C2 Common 2 Job Reference (optional)

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:40 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.6

Plate Offsets (X, Y): [1:0-2-12,0-0-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	5-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.01	5-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	1	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 28 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS Right: 2x4 SP No.2 WEDGE **SLIDER** Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 4= Mechanical

Max Horiz 1=-35 (LC 10)

Max Uplift 1=-31 (LC 12), 4=-30 (LC 12)

Max Grav 1=278 (LC 1), 4=278 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-3=-279/51, 3-4=-322/50 **BOT CHORD** 1-5=-34/249, 4-5=-18/249

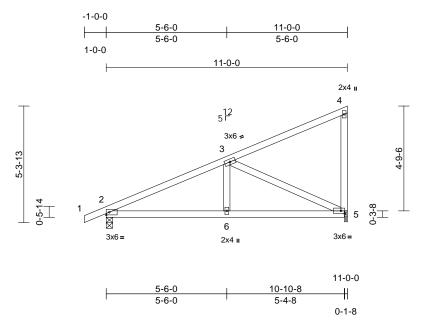
WEBS 3-5=0/141

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1 and 30 lb uplift at joint 4.

LOAD CASE(S) Standard



October 1,2025

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	M1	Monopitch Supported Gable	20	1	Job Reference (optional)	176728395

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:40 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.02	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.05	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 54 lb	FT = 20%

LUMBER

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 5=0-1-8

Max Horiz 2=178 (LC 11)

Max Uplift 2=-76 (LC 12), 5=-54 (LC 12) Max Grav 2=497 (LC 1), 5=431 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/23, 2-3=-661/65, 3-4=-128/97,

4-5=-131/41

BOT CHORD 2-6=-101/561, 5-6=-51/561

WEBS 3-6=0/241, 3-5=-603/111

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 N/A
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

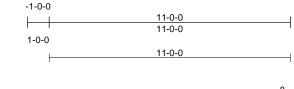
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 2 and 54 lb uplift at joint 5.

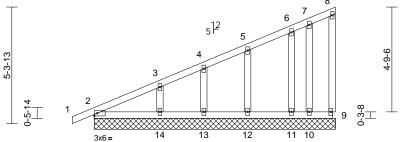
LOAD CASE(S) Standard

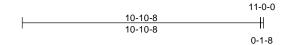
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932


١	Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
	CL 2862 CP 3 CAR	M1E	GABLE	2	1	Job Reference (optional)	176728396

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:41 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 63 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=11-0-0, 9=11-0-0, 10=11-0-0, 11=11-0-0, 12=11-0-0, 13=11-0-0,

14=11-0-0 Max Horiz 2=177 (LC 9)

Max Uplift 2=-18 (LC 12), 9=-20 (LC 9), 10=-23 (LC 12), 11=-13 (LC 12), 12=-32 (LC 12), 13=-27 (LC 12),

14=-39 (LC 12)

2=171 (LC 1), 9=45 (LC 19), 10=64 Max Grav (LC 1), 11=121 (LC 1), 12=172 (LC

1), 13=135 (LC 1), 14=228 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/13, 2-3=-142/177, 3-4=-109/136, 4-5=-97/124, 5-6=-89/104, 6-7=-88/100,

7-8=-78/84, 8-9=-28/16

BOT CHORD 2-14=-86/94, 13-14=-86/94, 12-13=-86/94,

11-12=-86/94, 10-11=-86/94, 9-10=-86/94 7-10=-70/30, 6-11=-90/42, 5-12=-129/57,

4-13=-104/47, 3-14=-165/73

WEBS NOTES

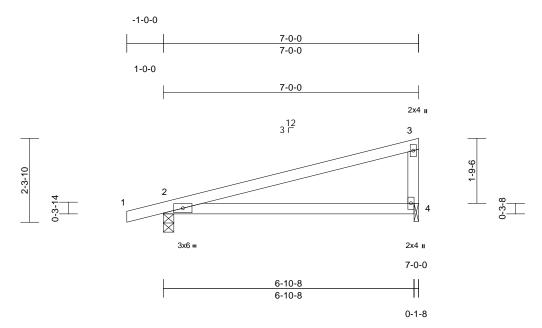
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 9, 18 lb uplift at joint 2, 23 lb uplift at joint 10, 13 lb uplift at joint 11, 32 lb uplift at joint 12, 27 lb uplift at joint 13 and 39 lb uplift at joint 14.

LOAD CASE(S) Standard

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	M2	Monopitch Supported Gable	12	1	Job Reference (optional)	176728397

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:41 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	e	=	1	:31	١.	e
ocai	æ	=		:3	١.	۱

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	-0.12	2-4	>663	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.24	2-4	>331	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 4=0-1-8

Max Horiz 2=64 (LC 11)

Max Uplift 2=-72 (LC 12), 4=-28 (LC 12) Max Grav 2=343 (LC 1), 4=262 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/13, 2-3=-58/61, 3-4=-195/68

BOT CHORD 2-4=-32/34

NOTES

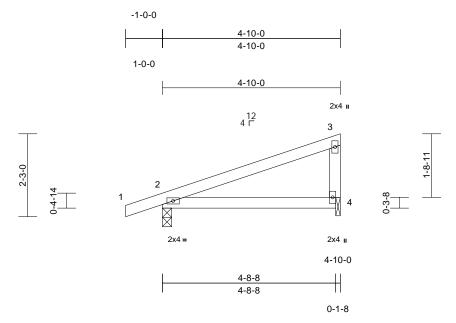
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 2 and 28 lb uplift at joint 4.

LOAD CASE(S) Standard

October 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	M3	Monopitch	6	1	Job Reference (optional)	176728398

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:41 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.02	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.05	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 4=0-1-8

Max Horiz 2=65 (LC 11)

Max Uplift 2=-58 (LC 12), 4=-19 (LC 12) Max Grav 2=254 (LC 1), 4=181 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

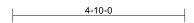
TOP CHORD 1-2=0/19, 2-3=-61/56, 3-4=-121/34

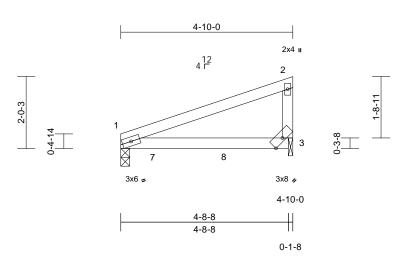
BOT CHORD 2-4=-30/104

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 2 and 19 lb uplift at joint 4.


LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	M3G	MONOPITCH GIRDER	1	1	Job Reference (optional)	176728399

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:41 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.08	3-6	>718	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.15	3-6	>364	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.01	1	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-0, 3=0-1-8

Max Horiz 1=59 (LC 11)

Max Uplift 1=-69 (LC 12), 3=-93 (LC 12) Max Grav 1=507 (LC 1), 3=668 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-280/63, 2-3=-170/44

BOT CHORD 1-3=-43/230

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1 and 93 lb uplift at joint 3.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 273 lb down and 43 lb up at 0-10-12, and 258 lb down and 42 lb up at 2-10-12, and 269 lb down and 36 lb up at 4-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

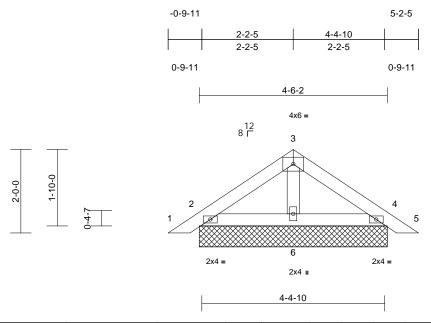
Vert: 1-2=-60, 3-4=-20 Concentrated Loads (lb)

Vert: 3=-269 (B), 7=-273 (B), 8=-258 (B)

October 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 2862 CP 3 CAR	
CL 2862 CP 3 CAR	PB1	PIGGYBACK	22	1	Job Reference (optional)	176728400

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Tue Sep 30 12:18:41 ID:tctjP4rr1WQdHicMVD41aUzppip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

= 1	:27.6
	e = 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=4-6-2, 4=4-6-2, 6=4-6-2

Max Horiz 2=-41 (LC 10)

Max Uplift 2=-47 (LC 12), 4=-47 (LC 12) Max Grav 2=130 (LC 1), 4=130 (LC 1), 6=156

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/16, 2-3=-62/27, 3-4=-59/27, 4-5=0/16

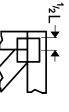
BOT CHORD 2-6=-9/25, 4-6=-9/25 WFBS 3-6=-101/16

NOTES

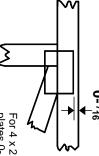
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2 and 47 lb uplift at joint 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

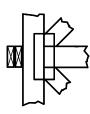
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

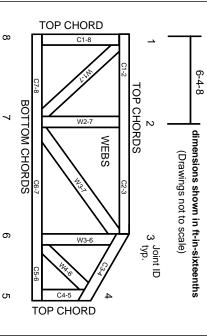

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.