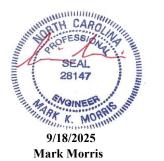
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 63378 JOB: 25-7436-R01

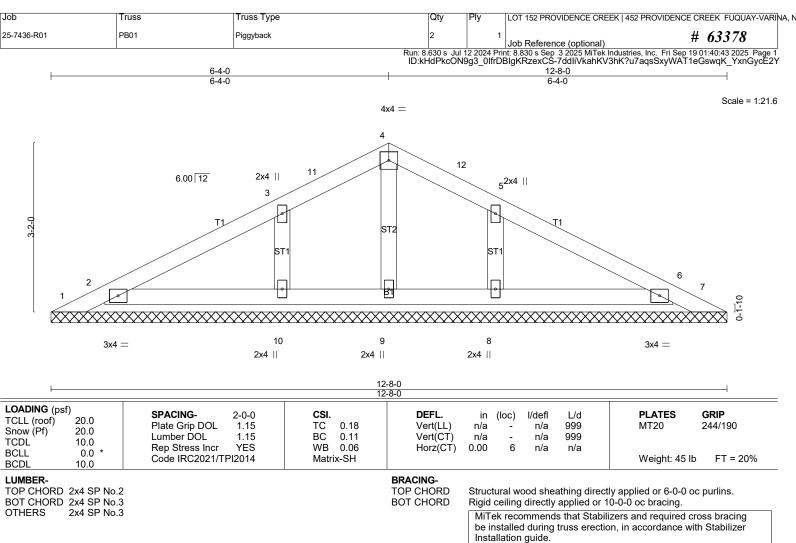
JOB NAME: LOT 152 PROVIDENCE CREEK


Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35

These truss designs comply with IRC 2015 as well as IRC 2018.

30 Truss Design(s)

Trusses:


PB01, PB02, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, SP01, SP02, SPJ01, SPJ02, SPJ03, VS01, VS02, VS03, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08

My license renewal date for the state of North Carolina is 12/31/2025

$Warning \ !--Verify \ design \ parameters \ and \ read \ notes \ before \ use.$

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSUTPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

REACTIONS. All bearings 12-8-0.

(lb) - Max Horz 1=45(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 9 except 2=335(LC 21), 6=335(LC 22), 10=349(LC 21),

8=349(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-10=-280/130, 5-8=-280/130

NOTES-(12-15)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 5-1-8, Exterior(2R) 5-1-8 to 7-6-8, Exterior(2E) 7-6-8 to 12-4-1 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

 * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

 * This truss has been designed for a 10.0 psf bottom chord live loads.

 * This truss has been designed for a 10.0 psf bottom chord live loads.

 * This truss has been designed for a 10.0 psf bottom chord live loads.

 * This truss has been designed for a live load for a live loads.

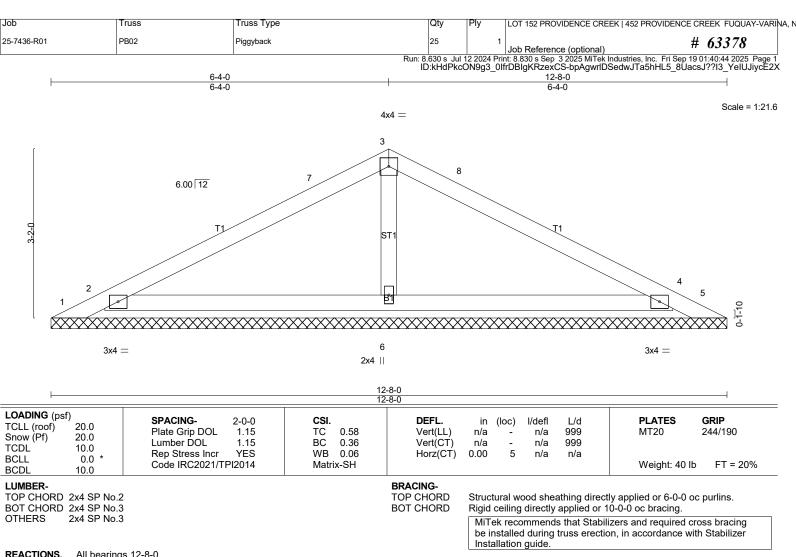
 * This truss has been designed for a live load for a live loads.

 * This truss has been designed for a live load for a live load for a live loads.

 * This truss has been designed for a live load for a live load for a live load for a live loads.

 * This truss has been designed for a live load 8) This truss has been designed for a fire.
 9) * This truss has been designed for a fire.
 between the bottom chord and any other members.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding.
 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consumption.
 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 12) Graphical representations of a possible bearing condition. Bearing symbols are not considered in the leade indicated.
 Pefer to BCSI - Guide to Good Practice for Handling, and all provided in the leader indicated.

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE


MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING WATONS IDENTIFY DESIGN parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded continued on page 2. The page 2. The page 2. The page 2. The page 3. The page of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

MORRIS I NOINEE

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PRO	OVIDENCE CREEK FUQUAY-VARINA,
25-7436-R01	PB01	Piggyback	2	1	Job Reference (optional)	# 63378
		Rur	: 8.630 s Jul ID:kHdPkcC	12 2024 Pri N9g3_0lfi	nt: 8.830 s Sep 3 2025 MiTek Industries, Inc rDBIgKRzexCS-bpAgwrlDSedwJTa5hH	. Fri Sep 19 01:40:44 2025 Page 2 IL5_8UhwsNt?JA_YeIUJiycE2X

LOAD CASE(S) Standard

All bearings 12-8-0.

(lb) - Max Horz 1=45(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 6 except 1=-362(LC 21), 5=-362(LC 22), 2=-164(LC 14), 4=-155(LC

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=757(LC 21), 4=757(LC 22), 6=399(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-6=-276/134

NOTES-(12-15)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mpn; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 5-1-8, Exterior(2R) 5-1-8 to 7-6-8, Exterior(2E) 7-6-8 to 12-4-1 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 4-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 *This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

 *Display the provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=362, 5=362, 2=164, 4=155.

 *See Standard Industry Piggyback Truss Connection Detail for Connection to beautiful to be a true to the see true.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb)
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9/18/2025

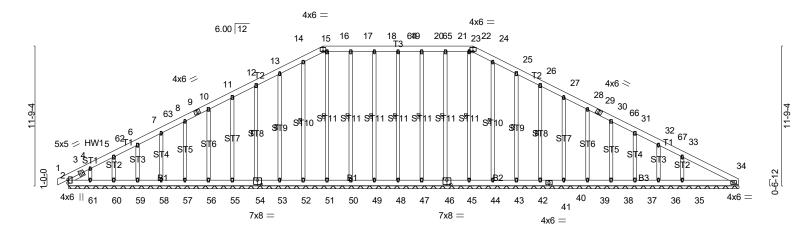
Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and roaded continued on page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	E CREEK FUQUAY-VARI	lΑ,
25-7436-R01	PB02	Piggyback	25	1	Job Reference (optional)	# 63378	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:44 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-bpAgwrlDSedwJTa5hHL5_8UacsJ??l3_YelUJiycE2X

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

Joh Truss Truss Type Qtv LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R01 Piggyback Base Supported Gable # *63378* Job Reference (optional) in: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:46 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-XCIRLXnTzFteYnjToiOZ3Za2gg3qTAJG0ynbObycE2V Run: 8 630 s. Jul 12 2024 Print 21-6-8 34-2-8 $-0_{T}10-8$ 56-7-8

12-8-0

Scale = 1:97.3

56-7-8 Plate Offsets (X,Y)-- [46:0-4-0,0-4-8], [54:0-4-0,0-4-8] LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) -0.00n/r 180 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.08 Vert(CT) -0.00 n/r 80 TCDL 10.0 WB 0.21 Rep Stress Incr YES Horz(CT) 0.01 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 558 lb Matrix-SH FT = 20%**BCDL** 10.0

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No 3 OTHERS

0-10-8

Left 2x4 SP No.3 1-6-4 SLIDER

BRACING-

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

22-5-0

1 Row at midpt

19-48, 18-49, 17-50, 16-51, 14-52, 13-53, 12-54, 20-47, 21-46, 22-45, 24-44, 25-43, 26-42

REACTIONS. All bearings 56-7-8

(lb) - Max Horz 2=-169(LC 19)

Max Uplift All uplift 100 lb or less at joint(s) 2, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 47, 46, 44, 43,

42, 40, 39, 38, 37, 36 except 61=-116(LC 14), 35=-114(LC 15)

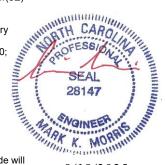
Max Grav All reactions 250 lb or less at joint(s) 2, 58, 59, 60, 61, 37, 36, 34 except 48=290(LC 44), 49=295(LC

44), 50=295(LC 44), 51=275(LC 52), 52=293(LC 47), 53=289(LC 45), 54=291(LC 45), 55=298(LC 45), 56=290(LC 45), 57=291(LC 45), 47=300(LC 44), 46=295(LC 44), 45=259(LC 52), 44=288(LC 45), 43=295(LC 49), 42=292(LC 45), 40=292(LC 45), 39=293(LC 45), 38=288(LC 45), 35=389(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

21-6-8

TOP CHORD 2-3=-255/81, 13-14=-119/284, 14-15=-131/309, 15-16=-123/299, 16-17=-123/299,


17-18=-123/299, 18-64=-123/299, 19-64=-123/299, 19-65=-123/299, 20-65=-123/299,

20-21=-123/299, 21-22=-123/299, 22-23=-123/299, 23-24=-130/309, 24-25=-119/284

WEBS 33-35=-263/240

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-9-7, Exterior(2N) 4-9-7 to 15-10-8, Corner(3R) 15-10-8 to 27-2-7, Exterior(2N) 27-2-7 to 28-6-9, Corner(3R) 28-6-9 to 39-10-8, Exterior(2N) 39-10-8 to 50-11-9, Corner(3E) 50-11-9 to 56-7-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9/18/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual outloing component to the indicated on page 2.

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

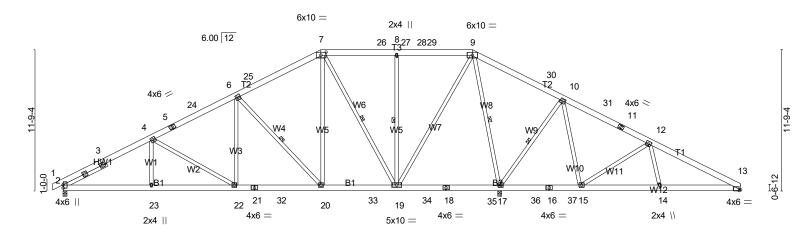
Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	CREEK FUQUAY-VARINA
25-7436-R01	R01	Piggyback Base Supported Gable	2	1	Job Reference (optional)	# 63378

Nob Reference (optional)

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MTek Industries, Inc. Fri Sep 19 01:40:46 2025 Page 2

ID:kHdPkcON9g3_0lfrDBlgKRzexCS-XCIRLXnTzFteYnjToiOZ3Za2gg3qTAJG0ynbObycE2V

NOTES- (14-17)


- 13) Provide mechánical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 47, 46, 44, 43, 42, 40, 39, 38, 37, 36 except (jt=lb) 61=116, 35=114.
- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R02 Piggyback Base # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.630 s. Sep. 3 2025 MiTek Industries, Inc. Fri Sep. 19 01:40:47 2025. Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-?OspYtn5kZ?VAxlfMQvocn65?4JzCR8QFcW8w1ycE2U 34-2-8 21-6-8 27-10-8 41-7-12 49-0-15 56-7-8 7-4-8 14-5-8 0-10-8 7-4-8 7-1-0 6-4-0 6-4-0 7-5-4 7-6-9

Scale: 1/8"=1"

1 1-4-0	14-5-0 1 2	-0-0 1 21-10-0	32-2-0 30-0-4	1 40-2-4	43-10-3	30-7-0
7-4-8	7-1-0	-1-0 6-4-0	4-3-14 4-3-14	6-8-0	6-8-0	6-9-5
Plate Offsets (X,Y) [7:0-5	5-4,0-3-0], [13:0-1-6,Edge]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.64 BC 0.47 WB 1.00 Matrix-SH	()	20-22 >999 24 20-22 >999 18	40 MT 30 /a	ATES GRIP T20 244/190 eight: 454 lb FT = 20%

22 2 6

27_10_8

LUMBER-BRACING-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except* B2: 2x6 SP DSS

7_4_8

WEBS 2x4 SP No.3 *Except* W8: 2x4 SP SS

SLIDER Left 2x4 SP No.3 4-0-10 TOP CHORD BOT CHORD

WFBS

Structural wood sheathing directly applied or 4-6-13 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 17-19,15-17. 6-20, 7-19, 8-19, 10-17, 9-17

40_10_3

56-7-8

1 Row at midpt

43-2-4

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 2=1316/0-3-8 (min. 0-1-12), 17=2813/0-3-8 (min. 0-3-7), 13=448/Mechanical

Max Horz 2=-169(LC 19)

Max Uplift2=-196(LC 14), 17=-196(LC 15), 13=-111(LC 15) Max Grav 2=1488(LC 39), 17=3411(LC 45), 13=545(LC 43)

14-5-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2424/288, 3-4=-2329/309, 4-5=-1933/298, 5-24=-1847/309, 6-24=-1820/327,

6-25=-1202/295, 7-25=-1100/323, 7-26=-668/280, 26-27=-667/280, 8-27=-667/280,

21-6-8

 $8-28-667/280,\ 28-29-667/280,\ 9-29-667/280,\ 9-30-0/1133,\ 10-30-0/822,\ 10-31--10/361,$

11-31=-43/303, 11-12=-136/262, 12-13=-767/169

BOT CHORD $2-23 = -336/2036, \ 22-23 = -336/2036, \ 21-22 = -188/1676, \ 21-32 = -188/1676, \ 20-32 =$

20-33=-76/1062, 19-33=-76/1062, 19-34=-439/248, 18-34=-439/248, 18-35=-439/248,

17-35=-439/248, 17-36=-335/119, 16-36=-335/119, 16-37=-335/119, 15-37=-335/119,

14-15=-82/555, 13-14=-71/597

WEBS 4-23=0/276, 4-22=-508/172, 6-22=-13/491, 6-20=-1148/249, 7-20=-119/1060,

7-19=-1121/155, 8-19=-728/175, 9-19=-221/1632, 10-17=-1122/276, 10-15=-48/496,

12-15=-677/206, 12-14=0/311, 9-17=-2234/365

NOTES-

1) Unbalanced roof live loads have been considered for this design.

NOUI; HIP Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 4-9-7, Interior(1) 4-9-7 to 15-10-9, Exterior(2R) 15-10-9 to 27-2-7, Interior(1) 27-2-7 to 28-6-9, Exterior(2R) 28-6-9 to 39-10-7, Interior(1) 39-10-7 to 50-10-13, Exterior(2E) 50-10-13 to 56-6-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1 60 place of the property 1) Unparameter.

2) Wind: ASCE 7-16; Vult=120mpn (3-3000)

Roof; Hip Truss; MWFRS (envelope) gable end zone and 0-0 2.000

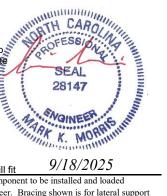
Roof; Hip Truss; MWFRS (envelope) gable end zone and 0-0 2.000

15-10-9 to 27-2-7, Interior(1) 27-2-7 to 28-6-9, Exterior(2R) 28-6-9 to 39-10-7, Interior(1) 000

56-6-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber 2.000

grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10


Table have been considered for this design.

7) All plates are 5x5 MT20 unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

Wishing 1-11/e-bit tass ignoral and terry and the rash embeds of (with StCID) started only upon parameters shown, and is for an individual building component to be installed and loaded continued on page vertically. Applies bitty of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE CREEK FUQUAY-VARINA	۹, N
25-7436-R01	R02	Piggyback Base	7	1	Job Reference (optional) # 63378	

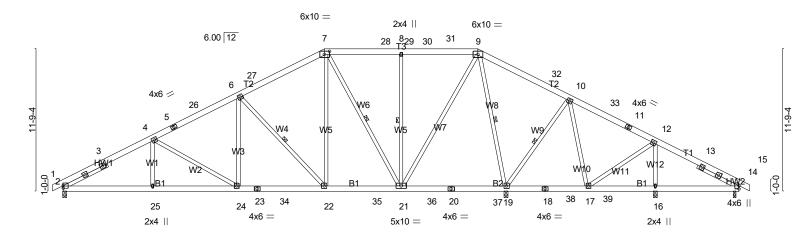
Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MITek Industries, Inc. Fri Sep 19 01:40:47 2025 Page 2 ID:kHdPkcON9g3_0IfrDBlgKRzexCS-?OspYtn5kZ?VAxIfMQvocn65?4JzCR8QFcW8w1ycE2U

NOTES- (12-15)

10) Refer to girder(s) for truss to truss connections.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=196, 17=196, 13=111.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R03 Piggyback Base # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:48 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-UbQBmDojVs7Mo5tsw7Q19_fGdUfmxvgZTGGiSTycE2T 21-6-8 27-10-8 34-2-8 41-7-12 48-10-4 55-9-0 14-5-8 0-10-8 0-10-8 7-4-8 7-1-0 7-1-0 6-4-0 6-4-0 7-5-4 7-2-8 6-10-12

Scale = 1:95.0

1	7-4-8	14-5-8	21-0-8	1 27-10-8	1 34-2-8	30-0-4	43-2-4	1 48-10		-8 ⊃⊃ _⊺ 9-∪
	7-4-8	7-1-0	7-1-0	6-4-0	6-4-0	'2-3-12'	6-8-0	5-8-	-0 ' 6-8-4	4 0-2-8
Plate Offse	ts (X,Y) [7:0-5	-4,0-3-0]								
LOADING (TCLL (roof) Snow (Pf) TCDL BCLL BCDL		SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.58 BC 0.49 WB 0.92 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 22-24 -0.20 22-24 0.05 19	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 457	GRIP 244/190

I UMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except* B2: 2x6 SP DSS

WFBS 2x4 SP No.3 *Except* W8: 2x4 SP SS

SLIDER Left 2x4 SP No.3 4-0-10, Right 2x4 SP No.3 3-9-7 BRACING-

TOP CHORD BOT CHORD WFBS

Structural wood sheathing directly applied or 4-4-7 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

6-22, 7-21, 8-21, 10-19, 9-19 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 0-3-8 except (jt=length) 14=0-3-0.

(lb) - Max Horz 2=-167(LC 19)

Max Uplift All uplift 100 lb or less at joint(s) 14, 16 except 2=-194(LC 14), 19=-168(LC 14)

Max Grav All reactions 250 lb or less at joint(s) except 2=1564(LC 39), 19=3045(LC 45), 14=343(LC 43), 16=579(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2579/300, 3-4=-2478/321, 4-5=-2069/311, 5-26=-1983/321, 6-26=-1956/339,

6-27=-1320/308, 7-27=-1173/336, 7-28=-761/296, 28-29=-761/296, 8-29=-760/296,

8-30=-761/296, 30-31=-761/296, 9-31=-761/296, 9-32=0/827, 10-32=0/560, 10-33=-12/329,

11-33=-113/257 **BOT CHORD**

2-25=-333/2166, 24-25=-333/2166, 23-24=-184/1774, 23-34=-184/1774, 22-34=-184/1774,

22-35=-55/1109, 21-35=-55/1109, 19-38=-272/104, 18-38=-272/104, 18-39=-272/104,

17-39=-272/104

4-25=0/274, 4-24=-493/172, 6-24=-13/486, 6-22=-1144/249, 7-22=-119/1057,

7-21=-1033/158, 8-21=-728/175, 9-21=-211/1589, 10-19=-852/227, 10-17=0/270,

9-19=-2050/344, 12-16=-414/150

WEBS

1) Unbalanced roof live loads have been considered for this design.

15-11-10 to 27-1-6, Interior(1) 27-1-6 to 28-7-10, Exterior(2R) 28-7-10 to 39-9-6, Interior(1) 39-9-6 to 51-0-10, Exterior(2E) 51-0-10 to 56-7-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.45 DOL=1.05); Pf=20.0 psf (Lum DOL=1.05); Pf=20.0 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0;

4) Unbalanced snow loads have been considered for this design

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

All plates are 5x5 MT20 unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

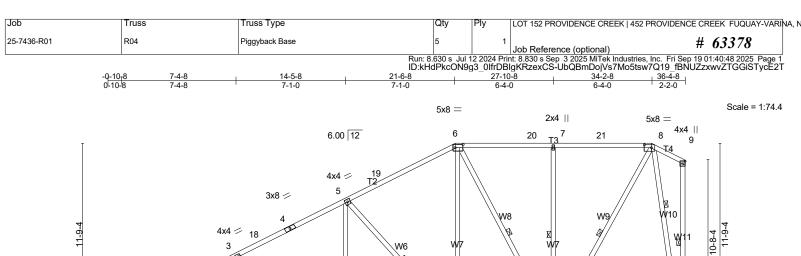
MORRES Tand NOINE K. MORR

9/18/2025

WEIWING! IN COMPANY OF A STREET OF THE TOTAL PROPERTY AND PLANTAGES OF THE TEST OF THE TES Continued on page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE CREEK FUQUAY-VA	RINA, N
25-7436-R01	R03	Piggyback Base	5	1	Job Reference (optional) # 63378	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:48 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-UbQBmDojVs7Mo5tsw7Q19_fGdUfmxvgZTGGiSTycE2T


NOTES- (11-14)

10) Provide mechánical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 16 except (jt=lb) 2=194, 19=168.

- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
 OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

			6.00 12	O	20	тз ′	21	8
11-9-4	5x8 = 14	3x8 = 4x4 = 18 3 W4 W4 WB	4x4 = 19 5	W7	W8	K W7	W9/	M11 10-8-4
	≅ 17	16	15 ¹⁴ 22	13	12 23	11	24	²⁵ 10
	3x4	6x6 =	3x8 =	4x4 =	3x8 =	5x8 =		4x6 =
			4x4 =					00.0.4
	7-4-8 7-4-8	14-5-8 7-1-0	+	27-10-8 13-5-0		-	34-2-8 6-4-0	36-6-4 36-4-8 2-2-0 0-1-12
s (X,Y)	[6:0-6-0,0-2-8], [8:0-5-8,0-	-2-4]						

Plate Offsets	(X Y)	[6:0-6-0,0-2-8], [8:0-5-8,0-2-4]
i late ellecte	(*, ' /	[0.0 0 0,0 2 0], [0.0 0 0,0 2 1]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.92 BC 0.86 WB 0.84 Matrix-SH	DEFL. in (loc) I/defl L/d Vert(LL) -0.34 10-11 >999 240 Vert(CT) -0.49 10-11 >880 180 Horz(CT) 0.07 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 274 lb FT = 20%
BCDL 10.0	Code IRC2021/TPI2014	Matrix-SH		Weight: 274 lb FT = 20%

I UMBER-

TOP CHORD 2x4 SP No.2 *Except*

T2: 2x4 SP No.1

BOT CHORD 2x4 SP No.2 *Except* B3: 2x4 SP No 1

WFBS 2x4 SP No.3 *Except*

W11: 2x4 SP No.2, W1: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals

BOT CHORD WERS

Rigid ceiling directly applied or 9-3-0 oc bracing

3-15, 5-13, 6-11, 9-10, 7-11, 8-11 1 Row at midpt 2 Rows at 1/3 pts 8-10

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 17=1507/0-3-8 (min. 0-2-1), 10=1439/Mechanical

Max Horz 17=385(LC 11)

Max Uplift17=-206(LC 14), 10=-184(LC 11) Max Grav 17=1734(LC 39), 10=1791(LC 44)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2694/309, 3-18=-2337/315, 4-18=-2239/326, 4-5=-2127/343, 5-19=-1623/324,

6-19=-1476/345, 6-20=-1023/317, 7-20=-1022/317, 7-21=-1023/318, 8-21=-1023/318,

2-17=-1660/252

16-17=-402/640, 15-16=-355/2324, 14-15=-287/2003, 14-22=-287/2003, 13-22=-287/2003, **BOT CHORD**

12-13=-239/1332, 12-23=-239/1332, 11-23=-239/1332, 11-24=-123/299, 24-25=-123/299,

10-25=-123/299

WEBS 3-15=-425/157, 5-15=-10/457, 5-13=-1091/246, 6-13=-116/1025, 6-11=-828/141,

7-11=-742/181, 8-11=-205/1513, 8-10=-1619/309, 2-16=-126/1942

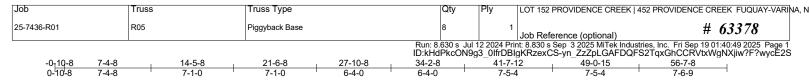
(11-14)

1) Unbalanced roof live loads have been considered for this design.

CARO

CARO Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded continued on page 2 vertically. Applies bility of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	E CREEK FUQUAY-VARIN
25-7436-R01	R04	Piggyback Base	5	1	Job Reference (optional)	# 63378


Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:48 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-UbQBmDojVs7Mo5tsw7Q19_fBNUZzxwvZTGGiSTycE2T

- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

⊢ 7-4-8 7-4-8	14-5-8 21-6-8 7-1-0 7-1-0	27-10-8 6-4-0	32-2-6 36-6-4 43-2-4 49-10-3 4-3-14 4-3-14 6-8-0 6-8-0	56-7-8 6-9-5
	5-4,0-3-0], [13:0-1-6,Edge], [17:0-2-12		4-5-14 4-5-14 0-0-0 0-0-0	0-9-0
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.64 BC 0.72 WB 0.88 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.18 19-20 >999 240 Vert(CT) -0.26 20 >999 180 Horz(CT) 0.05 13 n/a n/a	PLATES GRIP MT20 244/190 Weight: 466 lb FT = 20%

LUMBER-BRACING-TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except* B4: 2x4 SP No.2

WFBS 2x4 SP No.3 *Except* W9: 2x4 SP SS

SLIDER Left 2x4 SP No.3 4-0-10 TOP CHORD BOT CHORD

WFBS

Structural wood sheathing directly applied or 4-5-11 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 6-0-0 oc bracing: 19-21

1 Row at midpt

6-24, 7-22, 8-22, 10-17

2 Rows at 1/3 pts

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=1336/0-3-8 (min. 0-1-12), 17=2953/0-3-8 (min. 0-1-8), 13=450/Mechanical

Max Horz 2=-169(LC 15)

Max Uplift2=-189(LC 14), 17=-118(LC 15), 13=-114(LC 15) Max Grav 2=1508(LC 39), 17=3742(LC 45), 13=546(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2465/274, 3-4=-2368/295, 4-5=-2014/283, 5-28=-1928/293, 6-28=-1901/311,

6-29=-1277/280, 7-29=-1174/308, 7-30=-778/259, 30-31=-777/259, 8-31=-777/259,

8-32=-778/259, 32-33=-778/259, 9-33=-778/259, 9-34=0/1132, 10-34=0/821, 10-35=-6/361,

11-35=-46/295, 11-12=-139/255, 12-13=-768/177

2-27=-323/2070, 26-27=-323/2070, 25-26=-173/1747, 25-36=-173/1747, 24-36=-173/1747,

24-37=-61/1126, 23-37=-61/1126, 22-23=-61/1126, 22-38=-435/253, 18-38=-435/253,

18-39=-435/253, 17-39=-435/253, 17-40=-330/112, 16-40=-330/112, 16-41=-330/112,

15-41=-330/112, 14-15=-89/556, 13-14=-77/598

4-27=0/272, 4-26=-503/174, 6-26=-12/498, 6-24=-1150/248, 7-24=-128/1012,

7-22=-1078/173, 8-22=-727/176, 21-22=-203/1758, 9-21=-179/1811, 10-17=-1130/276, 10-15=-47/513, 12-15=-674/206, 12-14=0/308, 9-19=-2399/324, 17-19=-2506/300,

NOTES-

BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 4-9-7, Interior(1) 4-9-7 to 15-10-9, Exterior(2R) 15-10-9 to 27-2-7, Interior(1) 27-2-7 to 28-6-9, Exterior(2R) 28-6-9 to 39-10-7, Interior(1) 39-10-7 to 50-10-13, Exterior(2E) 50-10-13 to 56-6-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions observed and the control of the contro 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Provide adequate drainage to prevent water ponding.

7) All plates are 5x5 MT20 unless otherwise indicated.

MORRIS INTERIOR OF THE PARTY OF NOINEE ARK K. MORR

9/18/2025

8) Wahiaitrus's National 20 difference and October indexed in the installed and loaded Continued on page 2

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	CREEK FUQUAY-VARIN
25-7436-R01	R05	Piggyback Base	8	1	Job Reference (optional)	# 63378

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:49 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-yn_ZzZpLGAFDQFS2TqxGhCCRVtxWgNXjiw?F?wycE2S

NOTES- (14-17)

- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 17=118, 13=114.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 17.
- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Joh Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R06 Monopitch # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep. 3 2025 MiTek Industries, Inc. Fri Sep. 19 01:40:49 2025. Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-yn_ZzZpLGAFDQFS2TqxGhCCPit0TgX0jiw?F?wycE2S -0-10₇8 0-10-8 6-10-12 12-7-8 19-1-0 6-10-12 5-8-12 6-5-8 Scale = 1:59.0 3x4 || 6.00 12 3x4 / 5 3x6 / 3x4 / 3 3x10 / 0-0-閗 B2 W2 ₫ ⊠ 10 <u>₩</u> 8 13 9 3x4 || 4x4 = 3x6 =3x6 =6-10-12 3x4 12-7-8 19-1-0 6-8-4 5-8-12 6-5-8 LOADING (psf) SPACING-GRIP CSI DEFL. L/d PLATES 2-0-0 I/defl (loc) TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.75 Vert(LL) -0.077-9 >999 240 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.40 Vert(CT) -0.127-9 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.21 Horz(CT) -0.01n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 127 lb Matrix-SH FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x4 SP No.2 end verticals. Rigid ceiling directly applied or 9-0-9 oc bracing. WFBS 2x4 SP No.3 *Except* BOT CHORD W7: 2x4 SP No.2, W1: 2x6 SP No.2 WFBS 1 Row at midpt 6-7, 5-7 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=495/Mechanical, 11=363/0-3-0 (min. 0-1-8), 10=705/0-3-8 (min. 0-1-8)

Max Horz 11=363(LC 13)

Max Uplift7=-148(LC 14), 11=-56(LC 10), 10=-96(LC 14) Max Grav 7=633(LC 21), 11=369(LC 21), 10=732(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-457/120, 4-5=-342/143, 6-7=-252/68, 2-11=-308/135

BOT CHORD 10-11=-418/505, 9-10=-218/265, 8-9=-130/325, 8-13=-130/325, 7-13=-130/325

WFBS 3-10=-578/142, 3-9=0/284, 5-7=-443/174

NOTES-(10-13)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 14-1-10, Exterior(2E) 14-1-10 to 18-11-4 zone; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

*This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

*This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the botrom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 10 except (jt=lb

MORRES Tand SEAL 28147 NOINEE K. MORR

9/18/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters snown, and is not an individual outloing component to component of page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	E CREEK FUQUAY-VARIN
25-7436-R01	R06	Monopitch	3	1	Job Reference (optional)	# 63378

Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:49 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-yn_ZzZpLGAFDQFS2TqxGhCCPit0TgX0jiw?F?wycE2S

- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 12) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

.lob Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R07 Jack-Closed # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:50 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-QzYyAvqz1UN31O1E1YSVEPkZLHIqPxEsxaloXMycE2R . 19-11-8 6-6-4 6-9-12 Scale = 1:59.8 3x4 / 6.00 12 3x4 / 8 3_{T2} 8-9-0 5x5 / 2 HW1 0-6-12 6 9 3x4 =3x4 =3x6 =3x8 =3x8 || 10-0-13 9-10-11 Plate Offsets (X,Y)-- [1:0-0-0,0-0-15], [1:0-2-13,Edge], [2:0-2-8,0-3-4], [4:0-0-13,0-1-8] LOADING (psf) SPACING-CSI DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.82 Vert(LL) -0.475-7 >504 240 MT20 244/190 20.0 Snow (Pf) Lumber DOL 1.15 вс 0.58 Vert(CT) -0.65 5-7 >363 180 **TCDL** 10.0 WB 0.40 Rep Stress Incr YES Horz(CT) 0.02 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

WERS

end verticals

1 Row at midpt

BCDL LUMBER-

BCLL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP SS

WEBS 2x4 SP No.3 *Except*

0.0

10.0

W4: 2x4 SP No.2 WFDGF

Left: 2x4 SP No.3

REACTIONS. (lb/size) 5=790/Mechanical, 1=790/Mechanical

Max Horz 1=357(LC 11)

Max Uplift5=-188(LC 14), 1=-96(LC 14)

Max Grav 5=939(LC 20), 1=812(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

TOP CHORD 1-2=-1263/232, 2-3=-1025/212, 4-5=-263/71

1-7=-249/1056, 6-7=-135/595, 6-9=-135/595, 5-9=-135/595 **BOT CHORD**

2-7=-352/200, 3-7=-55/644, 3-5=-832/250 WFBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; End Jack Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-12 to 4-10-6, Interior(1) 4-10-6 to 13-0-5, Exterior(2R) 13-0-5 to 19-9-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-SH

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

6) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of trust to tr

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=188

9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling,

Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

9/18/2025

NOINEE

Weight: 110 lb

Structural wood sheathing directly applied or 4-0-12 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-5. 3-5

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

FT = 20%

MORRIS INTERIOR OF THE PARTY OF -Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded LOAD CHASE(S) in standardlesign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Truss Type Truss Qtv LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R08 Common Supported Gable # *63378* Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:51 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-uA5KOEqconWwfYcRbF_kmdHv6hmX8SL?9EUM3oycE2C -0-10-8 0-10-8 10-4-0 21-6-8 0-10-8 20-8-0 10-4-0 10-4-0 Scale = 1:45.2 4x4 = 7 8 6 7.00 12 28 27 ¹⁰29 26 11 3x4 || 3x4 || 12 ST 13 1-1-0 W 1-1-0 25 24 23 22 21 20 19 18 17 16 15 14 3x6 =3x4 || 3x4 || 20-8-0 LOADING (psf) SPACING-GRIP CSI. DEFL. PLATES 2-0-0 I/defl L/d (loc) TCLL (roof) 20.0 244/190 1.15 Snow (Pf) 20.0

TCDL 10.0 **BCLL** 0.0 BCDL 10.0

TOP CHORD 2x4 SP No.2

LUMBER-

WFBS

OTHERS

BOT CHORD

Plate Grip DOL Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014

TC 0.12 вс 0.11 WB 0.16 Matrix-R

Vert(LL) -0.00 13 n/r 180 Vert(CT) -0.0013 n/r 80 Horz(CT) 0.00 14 n/a n/a

MT20

Weight: 125 lb FT = 20%

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 20-8-0.

2x4 SP No.3

2x4 SP No.3

2x4 SP No 3

(lb) - Max Horz 25=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 25, 14, 22, 23, 24, 17, 16, 15 except 20=265(LC 27), 21=303(LC 5), 18=303(LC 6)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(14-17)

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 5-6-6, Corner(3R) 5-6-6 to 15-1-10, Exterior(2N) 15-1-10 to 16-8-14, Corner(3E) 16-8-14 to 21-6-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

8) Gable requires continuous bottom chord bearing.

9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

10) Gable studs spaced at 2-0-0 oc.

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 25, 24 , 18, 17, 16, 15.

ROFESS OF ESS MORRIGIUM 118/202: VOINEE

9/18/2025

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for all more parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	E CREEK FUQUAY-VARIN	lΑ,
25-7436-R01	R08	Common Supported Gable	1	1	Job Reference (optional)	# 63378	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:51 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-uA5KOEqconWwfYcRbF_kmdHv6hmX8SL?9EUM3oycE2Q

- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Joh Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R09 Common Girder # *63378* 3 Job Reference (optional) : 8.630 s. Jul 12 2024 Print: 8.630 s. Sep. 3 2025 MTek Industries, Inc. Fri Sep. 19 01:40:52 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-MMfibarEZ5enHiBd9zVzJqqy_5yNtrE9OuEvbEycE2F Run: 8.630 s Jul 12 2024 21-6-8 0-10-8 0-10-8 10-4-0 15-4-4 20-8-0 5-3-12 5-0-4 5-0-4 5-3-12 Scale = 1:41.8 4x4 = 5 7.00 12 3x6 / 3x6 < 4 4x4 / 4x4 < 3 нŴН 89 T × 10 20 14 17 11 15 16 19 22 13 12 6x8 || 6x8 || 4x6 = 4x8 = 2x4 || 2x4 || 10-4-0 20-8-0 5-3-12 5-0-4 5-0-4 LOADING (psf) SPACING-GRIP CSI. DEFL. PLATES 2-0-0 in (loc) I/defl L/d TCLL (roof) 20.0 -0.06 1Ò-1Ź 244/190 Plate Grip DOL 1.15 TC 0.62 Vert(LL) >999 240 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.71 Vert(CT) -0.11 10-12 >999 180 TCDL 10.0 Rep Stress Incr NO WB 0.44 Horz(CT) 0.03 n/a n/a **BCLL** 0.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WFBS 2x4 SP No.3

10.0

SLIDER Left 2x6 SP No.2 3-1-10, Right 2x6 SP No.2 3-1-10

REACTIONS. (lb/size) 2=3841/0-3-8 (min. 0-1-8), 8=3703/0-3-8 (min. 0-1-8)

Max Horz 2=-147(LC 8)

Max Uplift2=-807(LC 12), 8=-771(LC 13) Max Grav 2=3882(LC 19), 8=3743(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

2-3=-4848/968, 3-4=-4781/1001, 4-5=-3617/798, 5-6=-3615/798, 6-7=-5097/1071, TOP CHORD

7-8=-5165/1038

BOT CHORD 2-14=-854/3996, 14-15=-854/3996, 15-16=-854/3996, 13-16=-854/3996, 13-17=-854/3996, 17-18=-854/3996, 12-18=-854/3996, 12-19=-816/4256, 11-19=-816/4256, 10-11=-816/4256,

10-20=-816/4256, 20-21=-816/4256, 21-22=-816/4256, 8-22=-816/4256

WEBS 5-12=-684/3155, 6-12=-1496/409, 6-10=-323/1600, 4-12=-1171/338, 4-13=-238/1216

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Matrix-SH

3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design.

7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide w🏨 fit between the bottom chord and any other members

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=807.

10) Provide mechanical connection (by others) of truss to bearing plate capable of militarians, 100 is a provided sufficient to support concentrated load(s) 530 lb down and 130 lb up at 0-7-4.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 530 lb down and 130 lb up at 0-7-4. 526 lb down and 134 lb up at 6-7-4. 526 lb down and 134 lb up at 6-7-4. 526 lb down and 134 lb up at 6-7-4. 526 lb down and 134 lb up at 6-7-4. , 526 lb down and 134 lb up at 2-7-4, 526 lb down and 134 lb up at 4-7-4, 526 lb down and 134 lb up at 6-7-4, 526 lb down and 134 lb up at 8-7-4, 526 lb down and 134 lb up at 10-7-4, 526 lb down and 134 lb up at 12-7-4, 526 lb down and 134 lb up at 13-10-8, 525 lb down and 131 lb up at 15-10-8, and 525 lb down and 131 lb up at 16-7-4, and 525 lb down and 131 lb up at 18-7-4 on bottom chord.

THE CAROLINATION OF THE PROPERTY OF THE PROPER MORRIS MO NOINE AK K MORR

Weight: 418 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

9/18/2025

WINTINGS WERE CHARGE THE CONTINUED SWIFE THE CONTINUED SWIFE THE CONTINUED SWIFE THE CONTINUED OF PAGE 2. WHITE CONTINUED OF PAGE 3. WHITE CONTINUED OF PAGE of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE CREEK FUQUAY-VARI	NA, N
25-7436-R01	R09	Common Girder	1	3	Job Reference (optional) # 63378	

Run: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:52 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-MMfibarEZ5enHiBd9zVzJqqy_5yNtrE9OuEvbEycE2P

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-60, 5-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 11=-526(B) 12=-526(B) 14=-530(B) 15=-526(B) 16=-526(B) 17=-526(B) 18=-526(B) 19=-526(B) 20=-525(B) 21=-525(B) 22=-525(B)

Job Truss Type Truss LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R10 GABLE # *63378* Job Reference (optional) : 8.630 s. Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:52 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-MMfibarEZ5enHiBd9zVzJqq4s56Jtx99OuEvbEycE2P Run: 8.630 s Jul 12 2024 Prin -0-10-8 0-10-8 6-4-0 12-8-0 13-6-8 6-4-0 6-4-0 0-10-8 Scale = 1:29.8 4x4 = 5 7.00 12 6 19 18 7 4-9-5 3 20 17 \$72 3x4 || 3x4 II 8 M 16 15 14 13 12 11 10 3x4 || 3x4 || 12-8-0 12-8-0 LOADING (psf) GRIP SPACING-CSI. DEFL. L/d PLATES 2-0-0 (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.12 Vert(LL) -0.00 ģ n/r 180 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.07 Vert(CT) -0.009 n/r 80 TCDL 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 10 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 67 lb FT = 20% Matrix-R BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS

2x4 SP No 3 OTHERS

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 12-8-0.

(lb) - Max Horz 16=120(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Corner(3R) 3-11-2 to 8-8-14, Corner(3E) 8-8-14 to 13-6-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb unlift of licentification. 8) Gable requires co....
 9) Truss to be fully sheathed from one race of co...
 10) Gable studs spaced at 2-0-0 oc.
 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any co....
 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-b-u tall by confit between the bottom chord and any other members.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.

MORRIGIUM 118/2025 d and NOINEE

9/18/2025

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for all more parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE	CREEK FUQUAY-VARIN	lΑ,
25-7436-R01	R10	GABLE	1	1	Job Reference (optional)	# 63378	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:52 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-MMfibarEZ5enHiBd9zVzJqq4s56Jtx99OuEvbEycE2P

- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

.lob Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 R11 Common # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.830 s Sep. 3 2025 MiTek Industries, Inc. Fri Sep. 19 01:40:52 2025. Page 1 ID:kHdPkcON9g3_0IfrDBlgKRzexCS-MMfibarEZ5enHiBd9zVzJqqwR52qtwZ9OuEvbEycE2P -0-10-8 0-10-8 13-6-8 0-10-8 6-4-0 12-8-0 6-4-0 6-4-0 Scale = 1:30.2 4x4 = 3 7.00 12 4-9-5 10 5x5 || 5x5 || W 7 2x4 || 3x4 || 3x4 || 6-4-0 6-4-0 Plate Offsets (X,Y)-- [2:0-2-8,0-1-12], [4:0-2-8,0-1-12] LOADING (psf) SPACING-CSI. DEFL. I/d **PLATES** GRIP 2-0-0 in (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.72 Vert(LL) -0.047-8 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.36 Vert(CT) -0.08 7-8 >999 180 **TCDL** 10.0 WB 0.09 Rep Stress Incr YES Horz(CT) 0.01 6 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 52 lb FT = 20% Matrix-R **BCDL** 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x4 SP No.2 end verticals 2x4 SP No.2 *Except* BOT CHORD WFBS Rigid ceiling directly applied or 10-0-0 oc bracing W2: 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 8=556/0-3-8 (min. 0-1-8), 6=556/0-3-8 (min. 0-1-8)

Max Hórz 8=-120(LC 12)

Max Uplift8=-76(LC 14), 6=-76(LC 15) Max Grav 8=632(LC 21), 6=632(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-583/94. 3-9=-475/118. 3-10=-475/117. 4-10=-583/93. 2-8=-570/169. 4-6=-570/167

BOT CHORD 7-8=-5/378, 6-7=-5/378

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Exterior(2R) 3-11-2 to 8-8-14, Exterior(2E) 8-8-14 to 13-6-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 *This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

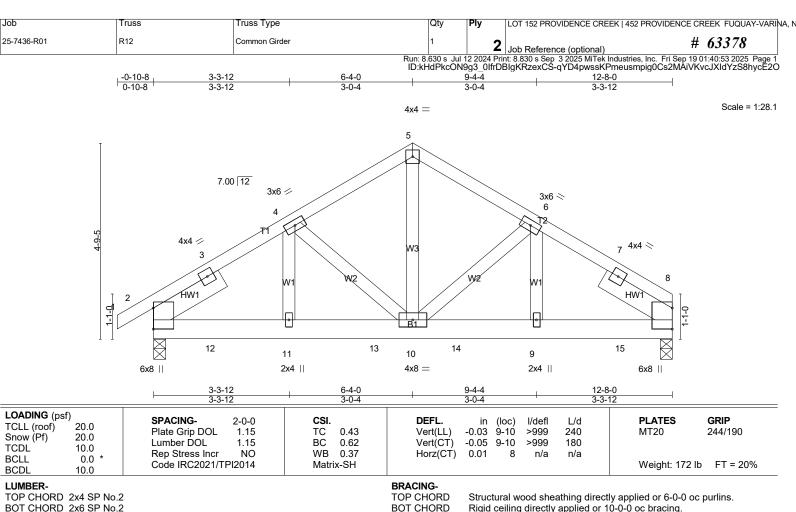
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

 Graphical bracing representation does not depict the size, type or the orientation of the house of 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that

the member must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the

11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling,

Paraphical bracing representation does not depict the size, type of the Size of the size of the member must be braced.


Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing and the process of the size of the process of the size of th MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

MORRIS MO NOINE AK K MORR

9/18/2025

LOADIGASE(S)rBianding parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

BOT CHORD 2x6 SP No.2 WFBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 1-11-12, Right 2x6 SP No.2 1-11-12

REACTIONS. (lb/size) 8=2536/0-3-8 (min. 0-1-9), 2=2215/0-3-8 (min. 0-1-8)

Max Horz 2=-98(LC 8)

Max Uplift8=-399(LC 13), 2=-427(LC 12) Max Grav 8=2613(LC 20), 2=2291(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2715/477, 3-4=-2676/501, 4-5=-2119/417, 5-6=-2119/416, 6-7=-2949/491, TOP CHORD

7-8=-2979/467

BOT CHORD 2-12=-413/2175, 11-12=-413/2175, 11-13=-413/2175, 10-13=-413/2175, 10-14=-349/2408,

9-14=-349/2408, 9-15=-349/2408, 8-15=-349/2408

WFRS 5-10=-342/1778, 6-10=-796/152, 6-9=-112/946, 4-10=-489/164, 4-11=-127/603

(12-15) NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design.

7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

116 lb up at 9-5-4, and 792 lb down and 116 lb up at 11-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

OF OF ESS MORPHS INTERIOR OF THE PARTY OF NOINEE ARK K MORR

Rigid ceiling directly applied or 10-0-0 oc bracing.

9/18/2025

Warning!—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is not an increased and read notes before use. This design is based only upon parameters shown, and is not an increased and increased and proper incorporation of component is responsibility of building designer — not truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of the erector. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENCE CREEK FUQUAY-VAR	INA, N
25-7436-R01	R12	Common Girder	1	2	Job Reference (optional) # 63378	

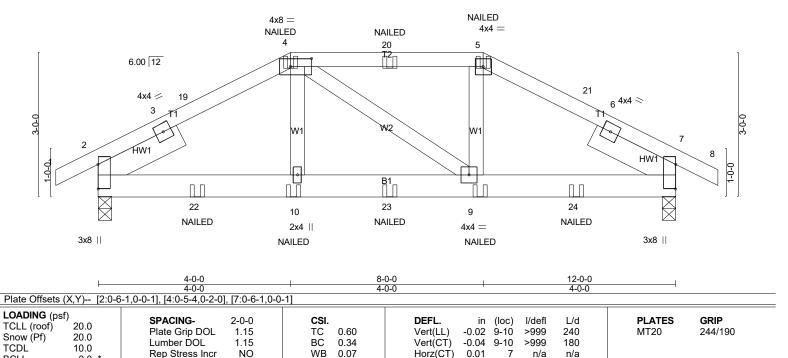
Run: 8.630 s. Jul 12 2024 Print: 8.830 s. Sep. 3 2025 MiTek Industries, Inc. Fri Sep. 19 01:40:53 2025 Page 2 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-qYD4pwssKPmeusmpig0Cs2MAiVKvcJXldYzS8hycE2O

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-5=-60, 5-8=-60, 2-8=-20


Concentrated Loads (lb)

Vert: 9=-792(B) 11=-525(B) 12=-525(B) 13=-525(B) 14=-525(B) 15=-792(B)

Job Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 SP01 Hip Girde # *63378* Job Reference (optional) Run: 8.430 s Feb 12 2021 Print: 8.630 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:54 2025 Page 1 ID:97bQtTowZ8dTuLxBq9ksq7zUUzD-IInS0GtU5iuVW0L0GOXROFvIqukdLqNSsBj0g7ycE2N 12-10-8 -0-10-8 4-0-0 8-0-0 12-0-0 0-10-8 4-0-0 4-0-0 4-0-0 0-10-8

Scale: 1/2"=1'

BRACING-

TOP CHORD

BOT CHORD

Installation guide.

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No 3 WFBS

0.0

10.0

SLIDER Left 2x6 SP No.2 1-11-0, Right 2x6 SP No.2 1-11-0

REACTIONS. (lb/size) 2=916/0-3-8 (min. 0-1-8), 7=918/0-3-8 (min. 0-1-8)

Max Horz 2=36(LC 16)

Max Uplift2=-286(LC 9), 7=-287(LC 8) Max Grav 2=1074(LC 37), 7=1075(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

TOP CHORD 2-3=-364/178, 3-19=-1213/389, 4-19=-1105/377, 4-20=-991/351, 5-20=-991/351,

5-21=-1105/377, 6-21=-1214/389, 6-7=-366/179

BOT CHORD 2-22=-319/986, 10-22=-319/986, 10-23=-322/992, 9-23=-322/992, 9-24=-301/985,

7-24=-301/985

NOTES-(13)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MSH

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate consider the consideration of truss to bearing plate consideration.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=286 7=287

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 141 lb down and 53 lb up at 2-0-0, and 141 lb down and 53 lb up at 10-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

9/18/2025

NOINEE

ART K MORRING

Weight: 72 lb

Structural wood sheathing directly applied or 4-10-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing

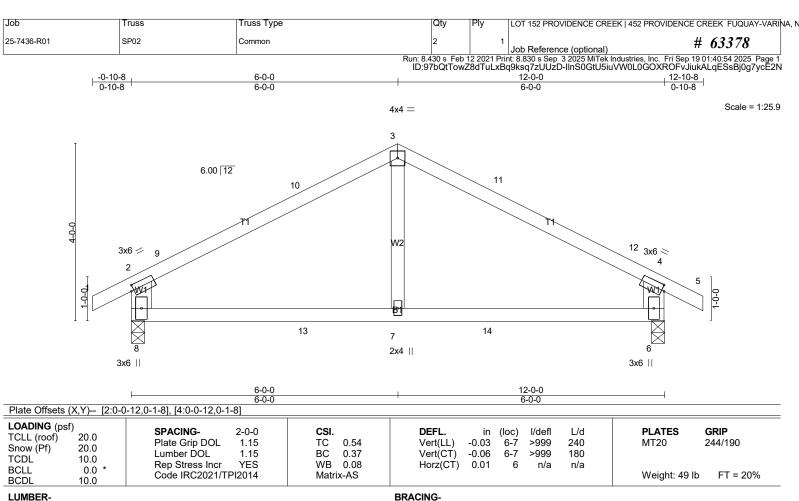
be installed during truss erection, in accordance with Stabilizer

FT = 20%

MORRIS INTERIOR OF THE PARTY OF Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an incomposition of all parameters and proper incorporation of component is responsibility of building designer — not truss designer or truss designer or truss engineer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer—not truss designer or truss engineer. Bracing shown is for lateral support vertically. Additional permanent bracing of the overall structure is the of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 152 PROVIDENCE CREEK 452 PROVIDENC	E CREEK FUQUAY-VARINA,
25-7436-R01	SP01	Hip Girder	1	1	Job Reference (optional)	# 63378

Run: 8.430 s Feb 12 2021 Print: 8.630 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:54 2025 Page 2 ID:97bQtTowZ8dTuLxBq9ksq7zUUzD-IInS0GtU5iuVW0L0GOXROFvIqukdLqNSsBj0g7ycE2N


LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-8=-60, 11-15=-20

Concentrated Loads (lb)

Vert: 4=-94(B) 5=-94(B) 10=-27(B) 9=-27(B) 19=-139(F) 20=-94(B) 21=-139(F) 22=-64(B) 23=-27(B) 24=-64(B)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x6 SP No.2 *Except* WFBS

W2: 2x4 SP No.3

REACTIONS. (lb/size) 8=528/0-3-8 (min. 0-1-8), 6=528/0-3-8 (min. 0-1-8)

Max Horz 8=63(LC 13)

Max Uplift8=-85(LC 11), 6=-85(LC 10) Max Grav 8=612(LC 21), 6=612(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-568/352, 9-10=-496/363, 3-10=-424/375, 3-11=-424/374, 11-12=-496/362,

4-12=-568/351, 2-8=-551/362, 4-6=-551/360

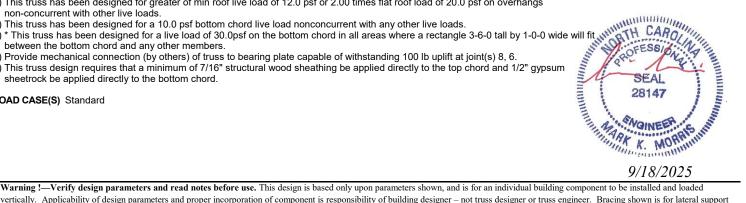
BOT CHORD 8-13=-169/393, 7-13=-169/393, 7-14=-169/393, 6-14=-169/393

(10)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Corner(3R) 3-11-2 to 8-0-14, Corner(3E) 8-0-14 to 12-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.


5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

LOAD CASE(S) Standard

Structural wood sheathing directly applied, except end verticals.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied.

Installation guide.

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Truss Truss Type Qtv LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 SPJ01 Jack-Open # *63378* Job Reference (optional) Run: 8.430 s Feb 12 2021 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:54 2025 Page 1 ID:97bQtTowZ8dTuLxBq9ksq7zUUzD-IInS0GtU5iuVW0L0GOXROFvPyupDLrXSsBj0g7ycE2N -0-10-8 0-10-8 2-0-0 Scale = 1:12.7 6.00 12 2x4 || 2 1-0-0 В1 2x4 || 2-0-0 2-0-0

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.14 BC 0.04 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 5 >999 240 Vert(CT) -0.00 4-5 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190			
BCDI 10.0	Code IRC2021/TPI2014	Matrix-MR		Weight: 9 lb FT = 20%			

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

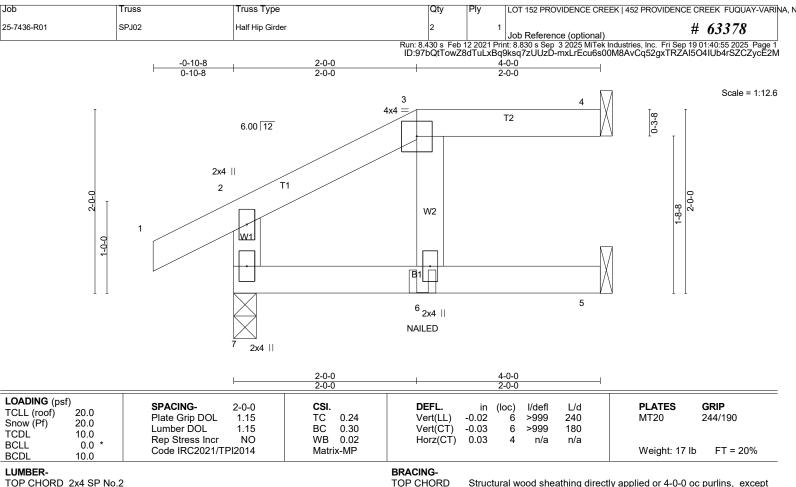
> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 5=152/0-3-8 (min. 0-1-8), 3=41/Mechanical, 4=16/Mechanical

Max Horz 5=41(LC 11)

Max Uplift5=-15(LC 14), 3=-31(LC 14), 4=-13(LC 11) Max Grav 5=208(LC 21), 3=57(LC 21), 4=34(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

LOAD CASE(S) Standard

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 4=96/Mechanical, 7=250/0-3-0 (min. 0-1-8), 5=75/Mechanical Max Horz 7=42(LC 9) Max Uplift4=-41(LC 9), 7=-51(LC 9), 5=-33(LC 9)

Max Grav 4=139(LC 33), 7=343(LC 34), 5=84(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-265/45

NOTES- (14)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 22 lb up at 2-0-6 on top chord. The design/selection of such connection device(s) is the responsibility of others.

 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (R)

 LOAD CASE(S) Standard

 1) Dead + Section

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

Concentrated Loads (lb) Vert: 3=-57(F) 6=0(F)

K. MORR 9/18/2025

VOINEE

MORRES Tand Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Joh Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 SPJ03 Jack-Open # *63378* Job Reference (optional) Run: 8.430 s Feb 12 2021 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:55 2025 Page 1 ID:97bQtTowZ8dTuLxBq9ksq7zUUzD-mxLrEcu6s00M8AvCq52gxTRXwl7k4Inb4rSZCZycE2M -0-10-8 0-10-8 4-0-0 Scale = 1:17.6 6.00 12 2x4 || W1 1-0-0 2x4 4-0-0

	'		4-0-0	
CADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.32 BC 0.15 WB 0.00 Matrix-MR	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 4-5 >999 240 Vert(CT) -0.02 4-5 >999 180 Horz(CT) -0.02 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 15 lb FT = 20%

LUMBER-

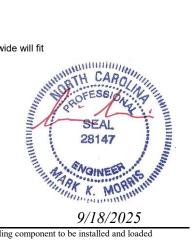
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals

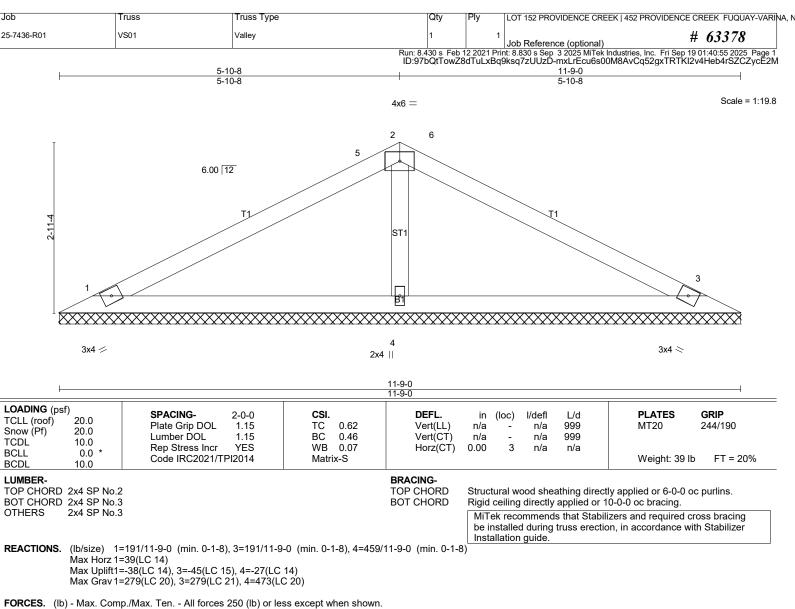
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide


REACTIONS. (lb/size) 5=221/0-3-0 (min. 0-1-8), 3=101/Mechanical, 4=43/Mechanical Max Horz 5=71(LC 14) Max Uplift5=-20(LC 11), 3=-60(LC 14), 4=-19(LC 11) Max Grav 5=322(LC 21), 3=154(LC 21), 4=72(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-293/128

NOTES- (10)


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

LOAD CASE(S) Standard

9/18/2025

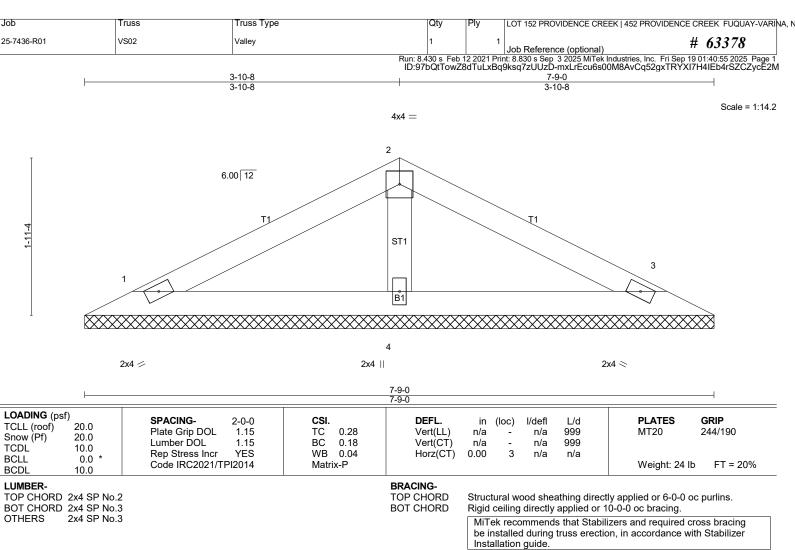
Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WEBS 2-4=-319/164

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-7 to 5-5-0, Exterior(2R) 5-5-0 to 6-4-0, Exterior(2E) 6-4-0 to 11-1-9 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit at RTH CARO between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECŎMMENDE MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS


LOAD CASE(S) Standard

9/18/2025

K. MORR

28147

NOINEE

REACTIONS. (lb/size) 1=132/7-9-0 (min. 0-1-8), 3=132/7-9-0 (min. 0-1-8), 4=258/7-9-0 (min. 0-1-8)

Max Horz 1=24(LC 18)

Max Uplift1=-29(LC 14), 3=-34(LC 15), 4=-5(LC 14)

Max Grav 1=176(LC 20), 3=176(LC 21), 4=258(LC 1)

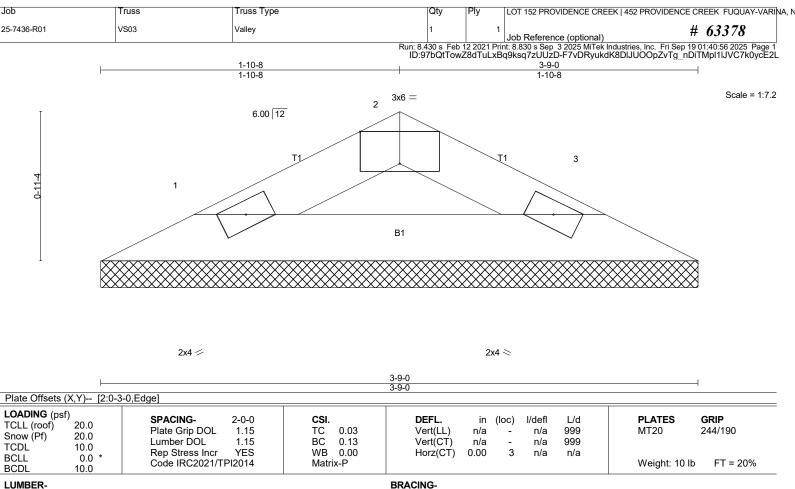
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.

 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN CONSIDERATIONS

 CONSIDERATIONS


 CONSIDERATIONS 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-9-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=101/3-9-0 (min. 0-1-8), 3=101/3-9-0 (min. 0-1-8)

Max Horz 1=9(LC 14)

Max Uplift1=-12(LC 14), 3=-12(LC 15) Max Grav 1=108(LC 20), 3=108(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS.

LOAD CASE(S) Standard

MORRELINATION 18/202: NOINEE K. MORR

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Joh Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 VT01 Valley # *63378* Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.630 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:56 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-F7vDRyukdK8DIJUOOpZvTg_hXiPspkJIJVC7k0ycE2L 19-6-5 9-9-2 0_0_2 Scale = 1:36.9 4x4 = 3 7.00 12 2x4 || 2x4 || 2 T1 11 10 TJ 3x4 🖊 3x4 < 8 9 7 13 6 12 2x4 || 2x4 || 3x6 =2x4 || 19-6-5 19-6-5 LOADING (psf) SPACING-GRIP CSI. DEFL. PLATES 2-0-0 in I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.40Vert(LL) n/a n/a 999 MT20 Snow (Pf) 20.0 вс Lumber DOL 1.15 0.35 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.11 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 77 lb FT = 20% Matrix-SH BCDL 10.0 BRACING-LUMBER-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD 2x4 SP No.3 BOT CHORD OTHERS 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

All bearings 19-6-5. REACTIONS.

(lb) - Max Horz 1=-118(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-152(LC 14), 6=-152(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=388(LC 5), 9=565(LC 20), 6=565(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-437/188, 4-6=-437/188

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 14-2-3, Exterior(2E) 14-2-3 to 18-11-13 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb)
- 9=152, 6=152.

 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines in additional bracing guidelines.
- 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

CONSIDERATIONS. LOAD CASE(S) Standard MOINEER S 9/18/2025

18/2025

d and lo Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Truss Truss Type LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N 25-7436-R01 VT02 Valley # 63378 Job Reference (optional) in: 8.630 s Jul 12 2024 Print: 8.830 s Sep 3 2025 MiTek Industries, Inc. Fri Sep 19 01:40:56 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-F7vDRyukdK8DlJUOOpZvTg_jCiSNpknlJVC7k0ycE2L 8-0-9 16-1-2 8-0-9 8-0-9 Scale = 1:30.5 4x4 = 3 7.00 12 2x4 || 2x4 || T1 4 2 10 P XXXXX \times 3x4 < 3x4 // 8 7 6 2x4 || 2x4 || 5x5 = 16-1-2 Plate Offsets (X,Y)-- [6:0-2-8,0-3-0] LOADING (psf) DEFL. **PLATES** GRIP SPACING-2-0-0 CSI. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.19 Vert(CT) n/a n/a 999 **TCDL** 10.0 WB 0.08 Rep Stress Incr YES Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Weight: 61 lb FT = 20% Matrix-SH **BCDL** 10.0 LUMBER-BRACING-Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. TOP CHORD 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No 3 **OTHERS**

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

NOINEE

REACTIONS. All bearings 16-1-2.

(lb) - Max Horz 1=96(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-121(LC 14), 6=-119(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=279(LC 21), 8=467(LC 20), 6=462(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-378/154, 4-6=-374/152

NOTES-(9-12)

1) Unbalanced roof live loads have been considered for this design.

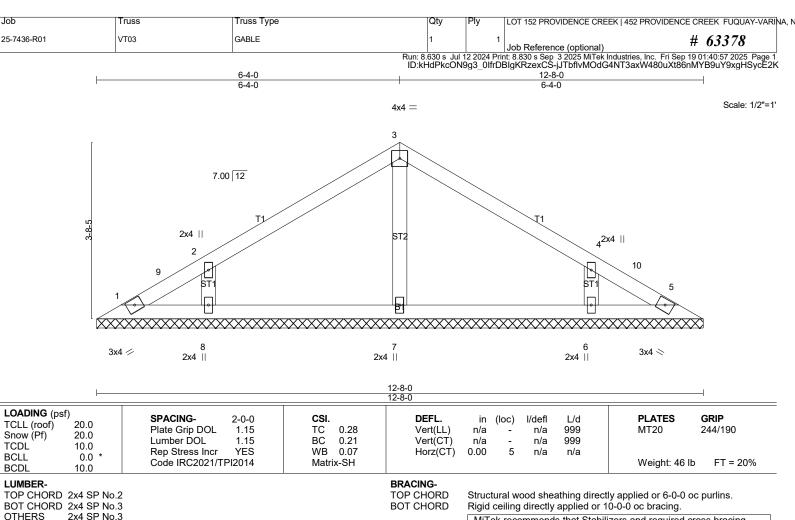
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 10-9-1, Exterior(2E) 10-9-1 to 15-6-11 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

- o=121, b=119.

 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible booring structural design.
- structural design of the truss to support the loads indicated.


 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to STATE Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED ANNIAM IMBRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE

 AMNIAM IMBRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITIONAL BRACING

ARK K. MORRI LOAD CASE(S) Standard 9/18/2025

MORPHER HANDEN TO SERVICE TO SERV Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

All bearings 12-8-0. REACTIONS.

(lb) - Max Horz 1=-74(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-104(LC 14), 6=-104(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=292(LC 20), 8=421(LC 20), 6=421(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-366/140, 4-6=-366/140

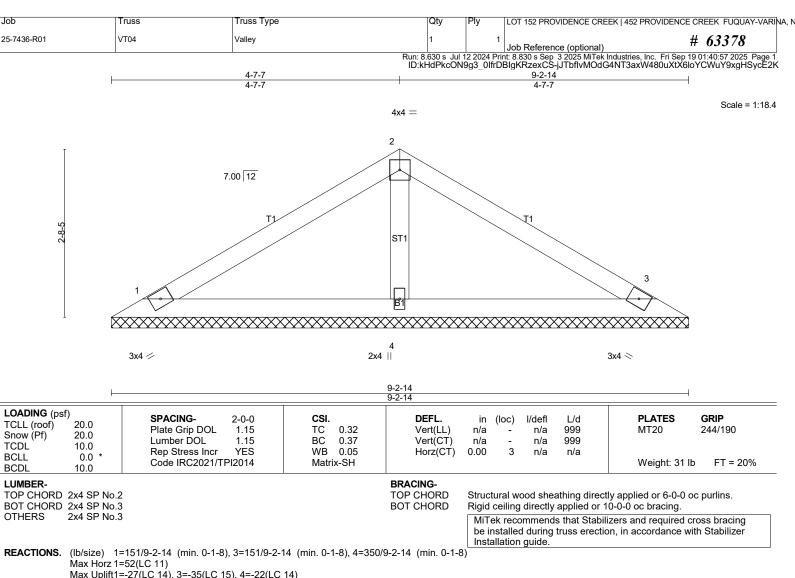
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 7-3-15, Exterior(2E) 7-3-15 to 12-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8=104, 6=104.

 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

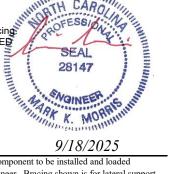

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines installing. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb)

- 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

MOINEER S 9/18/2025

MORRIS dand Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719


Max Uplift1=-27(LC 14), 3=-35(LC 15), 4=-22(LC 14) Max Grav 1=218(LC 20), 3=218(LC 21), 4=360(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof, Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- vveo pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WER PLANES IN ACCUMENTATION CONSIDERATIONS. 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Truss Type .lob Truss LOT 152 PROVIDENCE CREEK | 452 PROVIDENCE CREEK FUQUAY-VARINA, N VT05 25-7436-R01 Valley # *63378* Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.630 s. Sep. 3 2025 MiTek Industries, Inc. Fri Sep. 19 01:40:57 2025 Page 1 ID:kHdPkcON9g3_0lfrDBlgKRzexCS-jJTbflvMOdG4NT3axW480uXvH6j3YCHuY9xgHSycE2K 2-10-14 5-9-11 2-10-14 2-10-14 Scale = 1:12.8 3x6 = 2 7.00 12 B1 2x4 // 2x4 < 5-9-11 Plate Offsets (X,Y)-- [2:0-3-0,Edge] LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.14 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 вс 0.48 Vert(CT) n/a n/a 999 **TCDL** 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2021/TPI2014 Matrix-P Weight: 17 lb FT = 20% BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-9-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

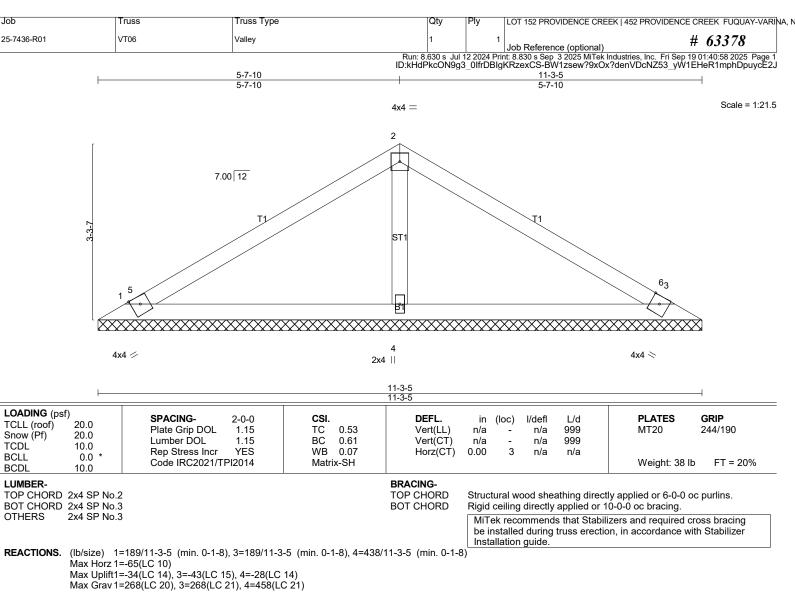
REACTIONS. (lb/size) 1=189/5-9-11 (min. 0-1-8), 3=189/5-9-11 (min. 0-1-8)

Max Horz 1=-30(LC 12)

Max Uplift1=-22(LC 14), 3=-22(LC 15) Max Grav 1=217(LC 20), 3=217(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.


 MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

MORRELINATION 18/202: NOINEE K. MORR

9/18/2025

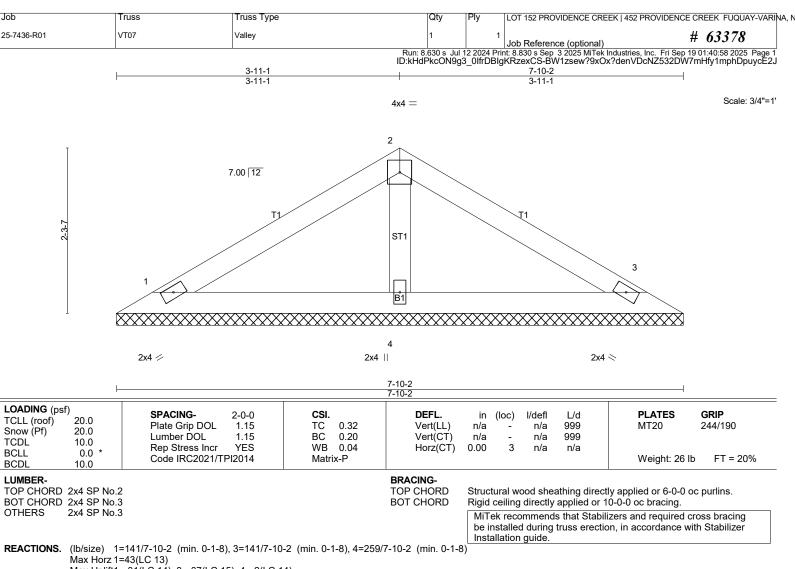
Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-286/92

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

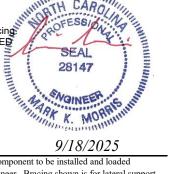

 MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS.

LOAD CASE(S) Standard

MORRELINATION 18/202: NOINEE K. MORR

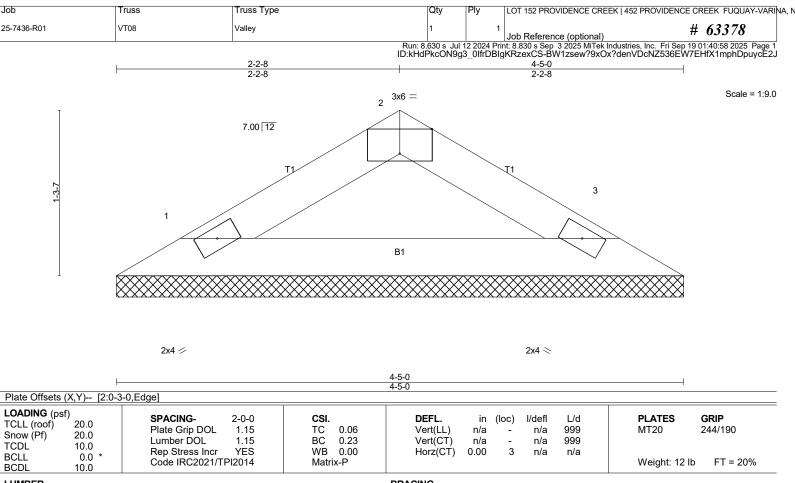
9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Max Uplift1=-31(LC 14), 3=-37(LC 15), 4=-2(LC 14) Max Grav 1=192(LC 20), 3=192(LC 21), 4=262(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof, Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- vveo pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WER PLANES IN ACCUMENTATION CONSIDERATIONS. 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-5-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=134/4-5-0 (min. 0-1-8), 3=134/4-5-0 (min. 0-1-8)

Max Horz 1=-21(LC 12) Max Uplift1=-16(LC 14), 3=-16(LC 15) Max Grav 1=148(LC 20), 3=148(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling,
- 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS.

LOAD CASE(S) Standard

MORRES INTERIOR IN 18/202: NOINEE K. MORR

9/18/2025

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.