Job	Truss	Truss Type		Qty	Ply	Freedo	m Const\Campbell F	Plan
28460	G1	GABLE		1		1		
C&R Building	Supply, Autryville NC			8 430 6	lan 20 2	Job Refe	rence (optional) idustries, Inc. Sat Jan 18	8 00:38:27 2025 Page 1
Our Building						ZvS0ORyE18p-	-la102mU5Zb9wVXGwP6ggf	
	-1-2-8 1-2-8	12-0-0 12-0-0		-		24-0-0 12-0-0	25-2-8 1-2-8	
				Fu0 —				Scale = 1:61.1
				5x6 =				354.5
		10.00	12	10				
	4x4 /	4x6 // 7 8 6 7 8 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	ST4	\$\frac{12}{8}\$	11 12 ST4 B3	4x6 \\ 13 \\ 14 \\ 8 \\ ST3 \\ ST \\ 2 \\ \times \times \times \times \times \\ \times \times \times \times \times \times \times \\ \times \ti	ST1 & 18	1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	3x6	30 29 28	27 26	25 24	23	22 2	3x6	
		20 20	8v8 —		20		. 20	
	-		2	24-0-0 24-0-0				
Plate Offsets	(X,Y) [26:0-4-0,0-4-8]	ı						
LOADING (ps TCLL 20. TCDL 10. BCLL 0.	0 Plate Grip DOL	2-0-0 CSI. 1.15 TC 1.15 BC YES WB	0.04 0.02 0.13		-0.00	nc) l/defl 18 n/r 18 n/r 18 n/a	L/d PLATES 120 MT20 120 n/a	GRIP 244/190
BCDL 10.				, ,			Weight:	235 lb FT = 20%
LUMBER-				BRACING-				

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 OTHERS

SLIDER

Left 2x4 SP No.3 -È 1-7-5, Right 2x4 SP No.3 -È 1-7-5

TOP CHORD **BOT CHORD** WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

10-25, 9-26, 11-24 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 24-0-0.

(lb) - Max Horz 2=-261(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 26, 27, 28, 29, 24,

23, 22, 21 except 30=-106(LC 8), 20=-106(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 18, 25, 26, 27, 28, 29, 30, 24, 23, 22, 21, 20 except 2=255(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 26, 27, 28, 29, 24, 23, 22, 21 except (jt=lb) 30=106, 20=106.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

28460	G2	Common Supported Gab	le 1	1 Job Reference (opti	onal)
C&R Building Supply	, Autryville NC		8.430 s Ja		nc. Sat Jan 18 09:38:28 2025 Page 1
	-	10.0.10	ID:pFJVHx?bQQu	rmNPxZvS0ORyE18p-mnbOG6VjK	(vHn7hr7zpBvCtZ8vpFylSSGwg8w9XzuAWP
- 1- -1-	2-8 2-8	10-2-12 10-2-12	-	20-5-8 10-2-12	21-8-0
			4x4 =		Scale = 1:41.9
			7		
7-0-2	7.00 12 4 3 ST1 B1	ST3	ST5 ST4	8 9 9 10 1 ST3 ST2	11 ST1 12 13 00 100 100
	05	00 04 00	10 10	47 40	45 44
	25 24 3x8	23 22 21 20 3x6 =	19 18	17 16	15 14 3x8
	380				300
			20-5-8		
			20-5-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. 15 TC 0.13 15 BC 0.05 ES WB 0.10 14 Matrix-R	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	01 13 n/r 120	PLATES GRIP MT20 244/190 Weight: 121 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	SP No.2		BRACING- TOP CHORD	Structural wood sheathin	g directly applied or 6-0-0 oc purlins,

BOT CHORD

Qty

Freedom Const\Campbell Plan

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

MiTek recommends that Stabilizers and required cross

REACTIONS. All bearings 20-5-8.

2x4 SP No.3

2x4 SP No.3

BOT CHORD 2x4 SP No.2

(lb) - Max Horz 25=-167(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 20, 22, 23, 24, 18,

Truss Type

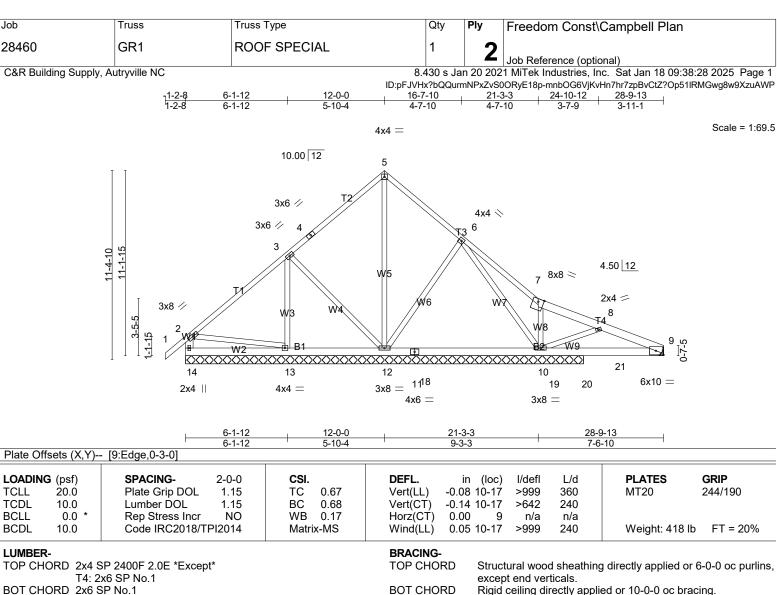
17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 25, 14, 19, 20, 22, 23,

24, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


WEBS

OTHERS

Job

Truss

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 20, 22, 23, 24, 18, 17, 16, 15.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD 2x6 SP No.1

2x4 SP No.3 *Except* **WEBS**

W1: 2x6 SP No.1

REACTIONS. All bearings 24-0-0 except (jt=length) 9=Mechanical.

(lb) - Max Horz 14=-286(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 14, 13, 12 except 9=-129(LC

8), 10=-174(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 9=1743(LC 2),

14=382(LC 19), 13=404(LC 19), 12=740(LC 14), 10=1998(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 8-9=-1187/85, 2-14=-337/83

BOT CHORD 13-14=-182/362, 10-20=-78/1344, 20-21=-78/1344, 9-21=-78/1344

WEBS 8-10=-1483/210

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.

Continued on page 2

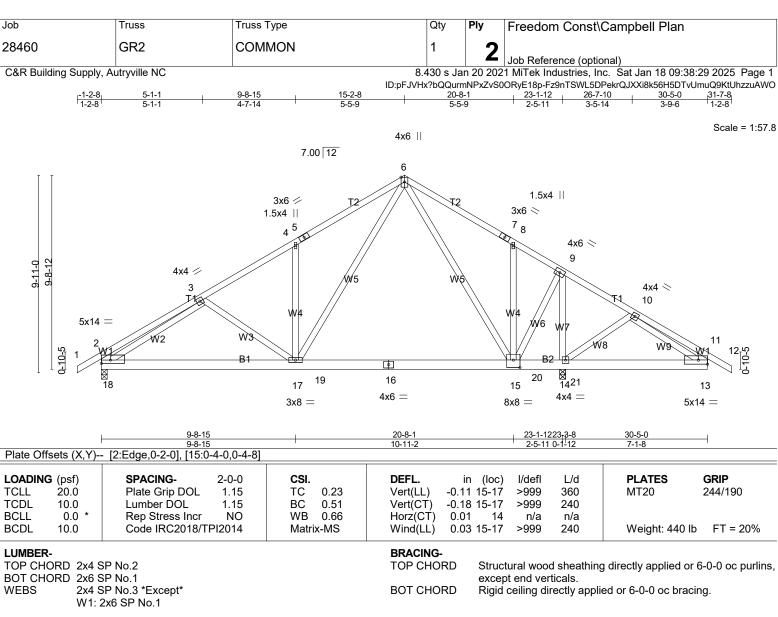
Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	GR1	ROOF SPECIAL	1	2	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:28 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-mnbOG6VjKvHn7hr7zpBvCtZ?Op51IRMGwg8w9XzuAWP

NOTES-

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 13, 12 except (jt=lb) 9=129, 10=174.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 880 lb down and 87 lb up at 24-0-12, and 877 lb down and 85 lb up at 26-0-12, and 879 lb down and 83 lb up at 28-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 Uniform Loads (plf)

Vert: 1-2=-60, 2-5=-60, 5-7=-60, 7-9=-60, 14-15=-20

Concentrated Loads (lb)

Vert: 17=-764(F) 20=-765(F) 21=-762(F)

BOT CHORD 2x6 SP No.1 WEBS

(lb/size) 14=4262/0-3-8 (min. 0-2-9). 14=4262/0-3-8 (min. 0-2-9). 18=1173/0-3-8 (min. 0-1-8) REACTIONS.

Max Horz 18=-230(LC 6)

Max Uplift14=-417(LC 8), 18=-124(LC 8)

Max Grav 14=4377(LC 2), 14=4262(LC 1), 18=1205(LC 31)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-473/57, 3-4=-1553/136, 4-5=-1574/215, 5-6=-1563/248, 6-7=-1354/208,

7-8=-1356/175, 8-9=-1354/108, 9-10=-120/614, 2-18=-444/116

17-18=-20/1485, 17-19=0/901, 16-19=0/901, 16-20=0/901, 15-20=0/901, **BOT CHORD** 15-21=-489/243, 14-21=-489/243, 13-14=-281/150

4-17=-340/155, 6-17=-102/955, 6-15=-563/610, 8-15=-293/147,

9-15=-240/3201, 9-14=-3831/342, 10-14=-260/115, 3-18=-1301/97,

10-13=-163/309

NOTES-

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

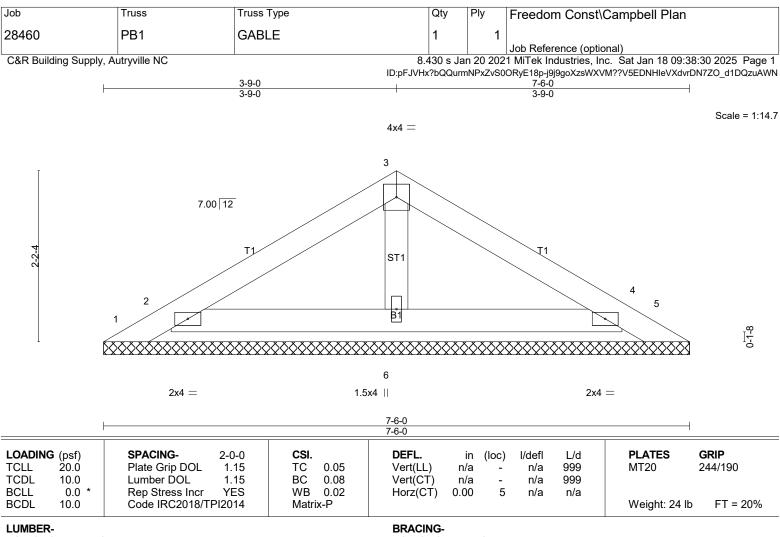
3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16: Vult=140mph (3-second gust) Vasd=111mph: TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	GR2	COMMON	1	2	Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:29 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-Fz9nTSWL5DPekrQJXXi8k56H5DTvUmuQ9KtUhzzuAWO

NOTES-


- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=417, 18=124.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1888 lb down and 165 lb up at 20-1-8, and 1130 lb down and 108 lb up at 22-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-6=-60, 6-11=-60, 11-12=-60, 13-18=-20

Concentrated Loads (lb)

Vert: 20=-1744(B) 21=-1121(B)

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

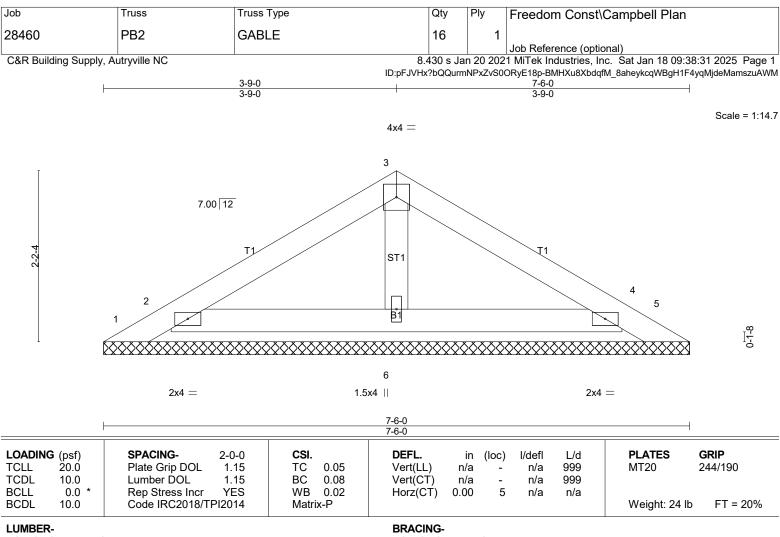
OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 7-6-0.

(lb) - Max Horz 1=-44(LC 6)


Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4
Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except

2=259(LC 13), 4=254(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 7-6-0.

(lb) - Max Horz 1=-44(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4
Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except
2=259(LC 13), 4=254(LC 1)

= ===(== :)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 WEBS 2x4 SP No.3 **OTHERS** WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied. Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 2=1471/0-3-8 (min. 0-1-13), 8=1471/0-3-8 (min. 0-1-13)

Max Horz 2=-238(LC 6)

Max Uplift2=-146(LC 8), 8=-146(LC 8) Max Grav 2=1513(LC 13), 8=1513(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2255/223, 3-4=-2052/235, 4-5=-1939/282, 5-6=-1939/282,

6-7=-2053/235, 7-8=-2256/223

BOT CHORD 2-13=-63/2003, 12-13=0/1334, 11-12=0/1334, 10-11=0/1334, 8-10=-63/1825

WEBS 3-13=-479/221, 5-13=-61/940, 5-10=-61/941, 7-10=-479/221

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=146, 8=146.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	SG1	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:31 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-BMHXu8XbdqfM_8aheykcqWBc2185ylBjdeMamszuAWM

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type		C	Qty	Ply	Freedom Cor	nst\Campbell Plar	า
28460	T1	Common		1	1	1	Job Reference (ontional)	
C&R Building Sup	poly Autryville NC			8 43	30 s Ja	⊥ n 20 202		es, Inc. Sat Jan 18 09	:38:32 2025 Page 1
Cart Bananing Cap	•						PxZvS0ORyE18p-fYi	v5UYEO8nDbl9uCfFrMjk	
	-1-2-8 1-2-8	6-1-12 6-1-12	12-0-0	1	17-10-4		24-0-0 6-1-12	25-2-8 1-2-8	
	1-2-8	6-1-12	5-10-4		5-10-4		6-1-12	7-2-8	
				5x6 =					Scale = 1:65.0
			10.00 12	6					
		4x	6 // T2/		T2		•		
		2x4 \\	5	// \\		4x6 \ 7	6 📏		
		2.84 \\	/ý /	// \\		Ø\	2x4 // 8		
	11-4-13	4		//	\		9		
	# =		\\	W	2	//			
	4x4 //	71/	\\				11	4x4 📏	
	3		w\1\ //			XV/1		9	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/HW1	\\ //		//	\mathcal{M}			
	51-1-1 12 12 12 12 12 12 12	B1				B2_		10 <u>v</u>	
	1 1 4 [/ 🖺		14 13			12		<u> </u>	
			4x4 = 4x6	_		x4 =		3x8	
	3x8	I	4A4 — 4A0	_	4.	AT —		5.5 11	
	_	8-1-3		15-10-13		1	24-0-0		
		8-1-3		7-9-11		1	8-1-3	7	
LOADING (psf)	SPACING-		CSI.	DEFL.	į	in (loc) I/defl L/d	PLATES	GRIP

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

-0.07 12-14

-0.11 12-14

0.02 12-14

10

0.02

>999

>999

>999

n/a

Rigid ceiling directly applied.

360

240

n/a

240

Structural wood sheathing directly applied.

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

MT20

MiTek recommends that Stabilizers and required cross

Weight: 191 lb

244/190

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3

20.0

10.0

10.0

0.0

SLIDER Left 2x4 SP No.3 -È 1-6-0, Right 2x4 SP No.3 -È 1-6-0

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

REACTIONS. (lb/size) 2=1025/0-3-8 (min. 0-1-8), 10=1025/0-3-8 (min. 0-1-8)

Max Horz 2=-261(LC 6)

Max Uplift2=-111(LC 8), 10=-111(LC 8) Max Grav2=1043(LC 13), 10=1043(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-478/0, 3-4=-1181/137, 4-5=-1091/209, 5-6=-998/250, 6-7=-999/250,

1.15

1.15

YES

TC

BC

WB

Matrix-AS

0.14

0.25

0.24

7-8=-1092/209, 8-9=-1181/137, 9-10=-478/0

BOT CHORD 2-14=0/980, 13-14=0/679, 12-13=0/679, 10-12=0/853

WEBS 6-12=-101/590, 8-12=-290/198, 6-14=-101/590, 4-14=-290/198

NOTES.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=111, 10=111.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss		Truss Type			Qty	Ply	Freedom Const\C	ampbell Plan
28460	T2		Common			10	1		
								Job Reference (option	al)
C&R Building Sup	oply, Autryville N	IC			8.	430 s Ja	n 20 202	21 MiTek Industries, Inc.	Sat Jan 18 09:38:33 2025 Page 1
					ID:pFJVH				DSk4mNn4vxG_Oqv_QgL04yrhqkzuAWK
		1-2-8 1-2-8	6-1-12	12-0-0	_	17-10-4		24-0-0	1
		1-2-8	6-1-12	5-10-4	'	5-10-4	'	6-1-12	'
					5x6 =				Scale = 1:65.0
					3X0 —				
			10	.00 12	6				
	II								
				T0//					
			4x6	// / /	// \\ `				
			0.4.1	5	/ \\				
			2x4 \\	3/s/ //	· \\			2x4 //	
	~ L		4 /	//	\	\		7	
	11-4-13		A	<i>'</i>		//	\\	3	
	4 -			, W/2		wk	//		
	٦)		_// \	.\ //		//	//		
		4x4 //	71/	\\ //		//	//		

		-	8-1-3 8-1-3		+	7-9-11		8-1-3)		
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC 0).14	Vert(LL)	-0.07 1Ò-1Ź	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0	.25	Vert(CT)	-0.11 10-12	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0	.25	Horz(CT)	0.02 9	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matrix-	AS	Wind(LL)	0.02 10-12	>999	240	Weight: 188 lb	FT = 20%

15 10 12

BRACING-

TOP CHORD

BOT CHORD

10

4x4 =

12

11

4x4 = 4x6 =

8

3x8 ||

Rigid ceiling directly applied.

Structural wood sheathing directly applied.

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

MiTek recommends that Stabilizers and required cross

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 **WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -È 1-6-0, Right 2x4 SP No.3 -È 1-6-0

3x8 II

REACTIONS. (lb/size) 9=959/0-3-8 (min. 0-1-8), 2=1027/0-3-8 (min. 0-1-8)

Max Horz 2=254(LC 7)

Max Uplift9=-74(LC 8), 2=-112(LC 8) Max Grav 9=981(LC 14), 2=1044(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-479/0, 3-4=-1183/137, 4-5=-1093/210, 5-6=-1000/251, 6-7=-1097/252,

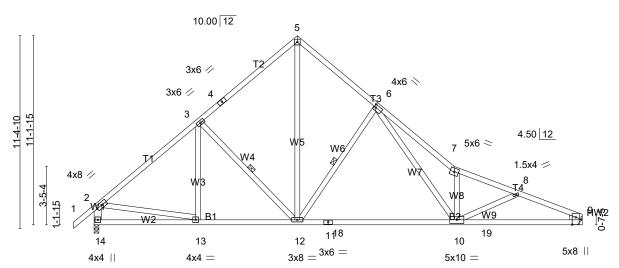
7-8=-1184/138, 8-9=-494/0

BOT CHORD 2-12=-12/970, 11-12=0/669, 10-11=0/669, 9-10=-14/846 **WEBS** 6-10=-104/596, 7-10=-294/200, 6-12=-101/589, 4-12=-290/198

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=112.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	Т3	ROOF SPECIAL	1	1	
					Job Reference (optional)


4x4 =

C&R Building Supply, Autryville NC

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:34 2025 Page 1 ID:pFJVHx?bQQurmNPxZvS00RyE18p-bwygWAaUwl1xrcIGK4IJR8p53EBW9_D9JcbFMBzuAWJ 16-7-10 21-3-3 24-10-12 28-9-13

ID:pFJVHx?bQQurmNPxZvS0ORyE18p-bwygWAaUwl1xrcIGK4IJR8p53EBW9_D9Jcb -2-8 6-1-12 12-0-0 16-7-10 21-3-3 24-10-12 28-9-13 2-8 6-1-12 5-10-4 4-7-10 3-7-9 3-11-1

Scale = 1:68.0

6-1-12 12-0-0 21-3-3 28-9-13 6-1-12 5-10-4 9-3-3 7-6-10

Plate Offsets (X,Y)-- [6:0-1-4,0-2-0], [9:0-5-3,0-2-8]

LOADING (pst	, ,	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.40	DEFL. Vert(LL)	in (lo	,	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0)	Lumber DOL	1.15	ВС	0.49	Vert(CT)	-0.55 10-	12 >619	240		
BCLL 0.0) *	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.04	9 n/a	n/a		
BCDL 10.0)	Code IRC2018/TP	I2014	Matri	x-AS	Wind(LL)	0.10 10-	12 >999	240	Weight: 181 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.1

WEDGE

Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt 3-12, 6-12

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 14=1232/0-3-8 (min. 0-1-8), 9=1141/Mechanical

Max Horz 14=-288(LC 6)

Max Uplift14=-138(LC 8), 9=-88(LC 8) Max Grav 14=1232(LC 1), 9=1173(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1322/150, 3-4=-1176/177, 4-5=-1082/218, 5-6=-1144/228,

6-7=-3073/339, 7-8=-2408/179, 8-9=-2464/214, 2-14=-1165/173

13-14=-147/419, 12-13=-3/1082, 12-18=-11/1249, 11-18=-11/1249, 11-19=-11/1249, 10-19=-11/1249, 9-10=-164/2230

WEBS 3-12=-285/146, 5-12=-172/1103, 6-12=-826/198, 6-10=-174/1974,

7-10=-1331/223, 2-13=0/791

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 14=138.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	Т3	ROOF SPECIAL	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:34 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-bwygWAaUwl1xrcIGK4IJR8p53EBW9_D9JcbFMBzuAWJ

NOTES-

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T4	ROOF SPECIAL	4 1		
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:35 2025 Page 1 ID:pFJVHx?bQQurmNPxZvS00RyE18p-37W2kVa6h39oSmtTtopY MMHxeYguTflXGLovdzuAWI

-2-8 6-1-12 12-0-0 14-9-15 21-3-3 24-9-2 26-0-5 28-9-13 2-9-8 6-1-12 5-10-4 2-9-15 6-5-5 3-5-15 1-3-3 2-9-8

4x4 = Scale = 1:68.6

6-1-12	13-6-12	14-9-15	21-3-3	24-9-2	26-0-5 28-9-13	3 ,
6-1-12	7-5-0	1-3-3	6-5-5	3-5-15	1-3-3 2-9-8	

Plate Offsets (X,Y)-- [7:0-7-0,0-2-4], [10:0-5-7,Edge], [11:0-3-0,0-2-1], [12:0-5-4,Edge], [14:0-5-4,0-3-0], [15:0-4-4,0-1-8]

LOADIN TCLL	G (psf) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.33	()	/d PLATES GRIP 60 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.43 13-14 >795 2	40
BCLL	0.0 *	Rep Stress Incr YES	WB 0.64	Horz(CŤ) 0.16 10 n/a r	ı/a
BCDL	10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.15 13-14 >999 2	40 Weight: 195 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except*

W12: 2x4 SP No.2, W1: 2x6 SP No.1

WEDGE

Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt 3-15, 7-14, 6-15

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 17=1232/0-3-8 (min. 0-1-8), 10=1141/0-3-8 (min. 0-1-8)

Max Horz 17=-288(LC 6)

Max Uplift17=-138(LC 8), 10=-88(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1330/143, 3-4=-1049/173, 4-5=-929/213, 5-6=-1188/298, 6-7=-1554/184,

7-8=-4657/376, 8-9=-4691/355, 9-10=-2230/186, 2-17=-1173/167

16-17=-163/394, 15-16=0/985, 14-15=0/1363, 13-14=-193/3060, 12-13=-188/3074, 11-12=-173/2307, 10-11=-148/2017

5-15=-246/1081, 7-13=0/303, 7-12=-118/1508, 9-12=-156/2558,

9-11=-1420/127, 6-14=-1/1475, 3-15=-348/132, 7-14=-2063/245,

6-15=-1585/180, 2-16=0/764

NOTES-

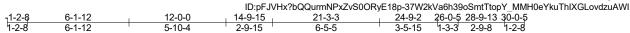
WEBS

BOT CHORD

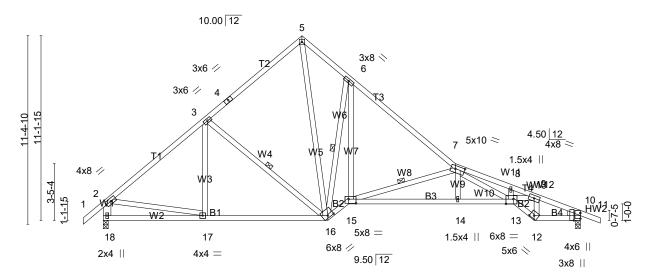
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 17=138.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T4	ROOF SPECIAL	4	1	
					Job Reference (optional)


8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:35 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-37W2kVa6h39oSmtTtopY_MMHxeYguTflXGLovdzuAWI

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T5	Roof Special	1	1	
		·			Job Reference (optional)


4x4 =

C&R Building Supply, Autryville NC

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:35 2025 Page 1

Scale = 1:69.6

, 6	S-1-12 ₁ 13-6-12	14-9-15 21-3-3	24-9-2 26-0-5	28-9-13
	5-1-12 7-5-0	1-3-3 6-5-5	3-5-15 1-3-3	2-9-8
	1 F40 0 0 0 0 0 11		0 0 0 1 1 1 0 0 0 1 0 1 0 1	

	Plate Offsets (X,Y)-	<u>- [7:0-6-12,0-2-4], [</u>	10:0-5-7,Eage	<u> , [12:0-3-0,0-2-1]</u>	, [13:0-5-4,Eage], [¹	15:0-5-4,0-3-0], [16:0-4	1-4,0-1-8]
LOADING (psf) SPACING 2.0.0 CSI DEEL in (loc) I/deft I/d								

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	-0.20 14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.43 14-15	>799	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.16 10	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI	2014	Matri	x-AS	Wind(LL)	0.15 14-15	>999	240	Weight: 197 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E 2x4 SP No.3 *Except* WEBS

W12: 2x4 SP No.2, W1: 2x6 SP No.1

WEDGE

Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt 3-16, 7-15, 6-16

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 18=1230/0-3-8 (min. 0-1-8), 10=1215/0-3-8 (min. 0-1-8)

Max Horz 18=-295(LC 6)

Max Uplift18=-137(LC 8), 10=-130(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1328/142, 3-4=-1046/171, 4-5=-927/212, 5-6=-1186/296, 6-7=-1550/179,

7-8=-4616/331, 8-9=-4647/308, 9-10=-2194/166, 2-18=-1172/166 17-18=-162/401, 16-17=0/990, 15-16=0/1359, 14-15=-154/3045,

13-14=-149/3058, 12-13=-127/2266, 10-12=-108/1981

WEBS 5-16=-244/1078, 7-14=0/302, 7-13=-90/1482, 9-13=-130/2553,

9-12=-1404/105, 6-15=0/1469, 3-16=-348/133, 7-15=-2050/231,

6-16=-1580/160, 2-17=0/763

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=137, 10=130.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T5	Roof Special	1	1	
		•			Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:35 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-37W2kVa6h39oSmtTtopY_MMH0eYkuThIXGLovdzuAWI

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan	
28460	Т6	Roof Special	2	1	·	
					Job Reference (optional)	
C&R Building Supply, Autryville NC			8.430 s Ja	n 20 202	1 MiTek Industries, Inc. Sat Jan 18 09:38:36 2025 Page 1	
			ID:pFJVHx?bQQurmNPxZvS0ORyE18p-XJ4QxrbkSMHf4wSfRVKnXZuRI2s dunSmw4LR3zuAWH			
	₇ 1-2-8	6-1-12 12-0-0	16-7-10	21-3-	3 24-10-12 28-9-13 30-0-5	
	1-2-8	6-1-12 5-10-4	4-7-10	4-7-1	0 3-7-9 3-11-1 1-2-8	

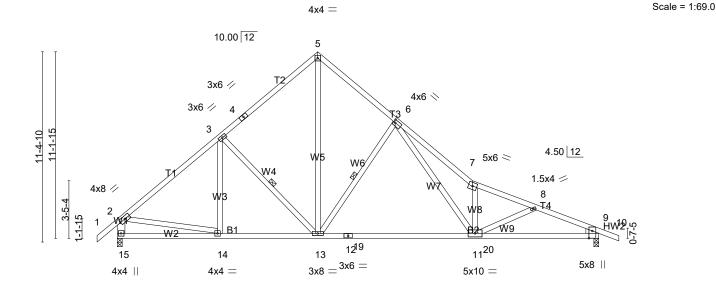


Plate Offsets (X,Y)-- [6:0-1-4,0-2-0], [9:0-5-3,0-2-8]

	7			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.42	Vert(LL) -0.34 11-13 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.49	Vert(CT) -0.55 11-13 >618 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.78	Horz(CT) 0.04 9 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.10 11-13 >999 240	Weight: 182 lb FT = 20%

12-0-0

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.1

WEDGE

Right: 2x4 SP No.3

BRACING-

TOP CHORD

21-3-3

9-3-3

BOT CHORD WEBS Structural wood sheathing directly applied, except end verticals.

28-9-13

Rigid ceiling directly applied.

1 Row at midpt 3-13, 6-13

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 15=1230/0-3-8 (min. 0-1-8), 9=1215/0-3-8 (min. 0-1-8)

Max Horz 15=-295(LC 6)

Max Uplift15=-137(LC 8), 9=-130(LC 8) Max Grav15=1230(LC 1), 9=1233(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1320/148, 3-4=-1174/176, 4-5=-1081/217, 5-6=-1143/227,

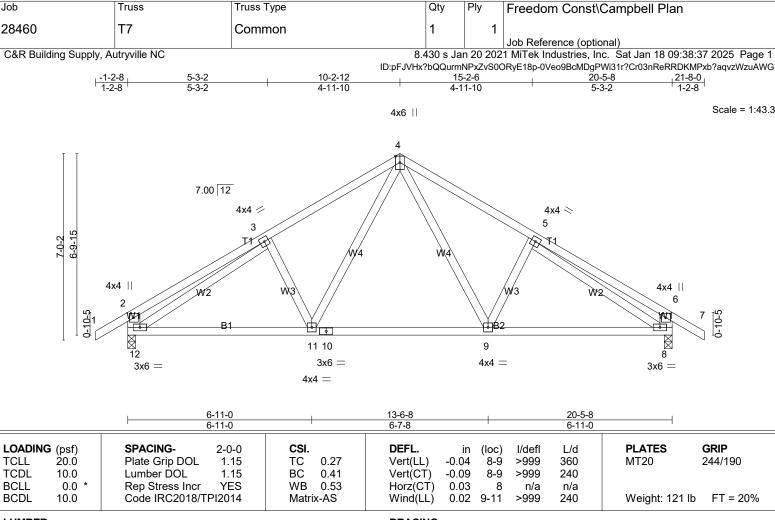
6-7=-3061/332, 7-8=-2398/173, 8-9=-2445/202, 2-15=-1163/173

BOT CHORD 14-15=-147/425, 13-14=0/1086, 13-19=0/1252, 12-19=0/1252, 12-20=0/1252,

11-20=0/1252, 9-11=-130/2210

WEBS 3-13=-285/146, 5-13=-170/1101, 6-13=-823/196, 6-11=-167/1963,

7-11=-1329/221, 2-14=0/790


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=137, 9=130.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	Т6	Roof Special	2	1	
		•			Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:36 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-XJ4QxrbkSMHf4wSfRVKnXZuRl2s_dunSmw4LR3zuAWH

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.1

BRACING-

TOP CHORD

verticals.

BOT CHORD Rigid ceiling

Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

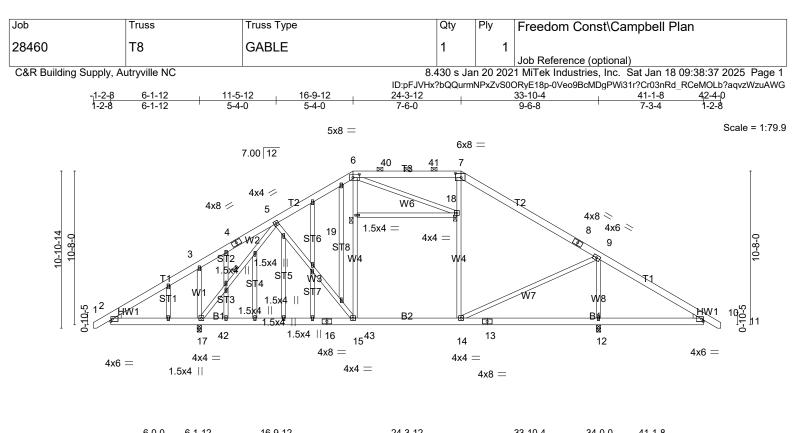
Structural wood sheathing directly applied, except end

REACTIONS. (lb/size) 12=886/0-3-8 (min. 0-1-8), 8=886/0-3-8 (min. 0-1-8)

Max Horz 12=-169(LC 6)

Max Uplift12=-111(LC 8), 8=-111(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 2-3=-345/67, 3-4=-963/157, 4-5=-963/157, 5-6=-345/67, 2-12=-375/118,

6-8=-375/118

BOT CHORD 11-12=0/855, 10-11=0/614, 9-10=0/614, 8-9=0/846 WEBS 4-9=-30/356, 4-11=-30/356, 3-12=-758/52, 5-8=-758/52

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 12=111, 8=111.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Plate Offsets (X,Y)	6-0-0 6-1/12 6-0-0 0-1-12 - [6:0-5-4,0-2-12], [7:0	10-	9-12 -8-0 	7-6-0		9-6-8	0-1-12	7-1-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES	CSI. TC 0.36 BC 0.46 WB 0.63 Matrix-AS	Vert(CT)	in (loc) -0.26 15-17 -0.35 15-17 0.01 12 0.10 15-17	I/defI >999 >938 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 365 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 WEBS 2x4 SP No.3 **OTHERS** WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS JOINTS

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 6-7. Rigid ceiling directly applied.

1 Row at midpt 5-17

1 Brace at Jt(s): 18, 19

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 17=231(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) except 17=-306(LC 8),

12=-156(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 17=1807(LC 16), 17=1641(LC 1), 12=1780(LC 1), 12=1780(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-227/527, 3-4=-92/338, 4-5=-72/483, 5-6=-878/128, 6-40=-640/149,

40-41=-640/149, 7-41=-640/149, 7-8=-770/112, 8-9=-894/60, 9-10=-163/629 **BOT CHORD**

2-17=-360/256, 17-42=0/684, 16-42=0/684, 16-43=0/684, 15-43=0/684, 14-15=0/755, 13-14=-420/180, 12-13=-420/180, 10-12=-420/180

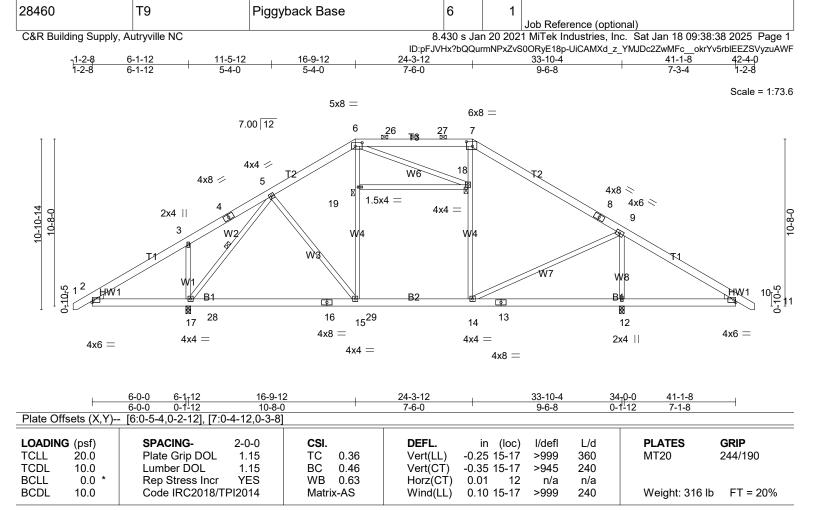
3-17=-407/205, 5-17=-1288/173, 5-15=-19/308, 15-19=-40/338, 6-19=-39/340,

14-18=-258/98, 7-18=-251/102, 9-14=-12/1171, 9-12=-1565/252

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	Т8	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:37 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-0Veo9BcMDgPWi31r?Cr03nRd RCeMOLb?aqvzWzuAWG

NOTES-

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 306 lb uplift at joint 17 and 156 lb uplift at joint 12.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Qty

Ply

LUMBER-

Job

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 *Except*

W4: 2x4 SP No.2

Truss

Truss Type

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS JOINTS Structural wood sheathing directly applied, except

Freedom Const\Campbell Plan

2-0-0 oc purlins (6-0-0 max.): 6-7. Rigid ceiling directly applied.

1 Row at midpt 5-17

1 Brace at Jt(s): 18, 19

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 17=231(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) except 17=-306(LC 8),

12=-156(LC 8)

Max Grav All reactions 250 lb or less at joint(s) except 17=1807(LC 16), 17=1641(LC 1), 12=1780(LC 1), 12=1780(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-227/527, 3-4=-92/338, 4-5=-72/483, 5-6=-878/128, 6-26=-639/150,

26-27=-639/150, 7-27=-639/150, 7-8=-769/113, 8-9=-893/60, 9-10=-163/629

2-17=-360/256, 17-28=0/684, 16-28=0/684, 16-29=0/684, 15-29=0/684, 14-15=0/755, 13-14=-420/180, 12-13=-420/180, 10-12=-420/180

3-17=-407/205, 5-17=-1288/173, 5-15=-19/309, 15-19=-40/339, 6-19=-39/341,

14-18=-258/98, 7-18=-251/103, 9-14=-12/1169, 9-12=-1564/252

NOTES-

WEBS

BOT CHORD

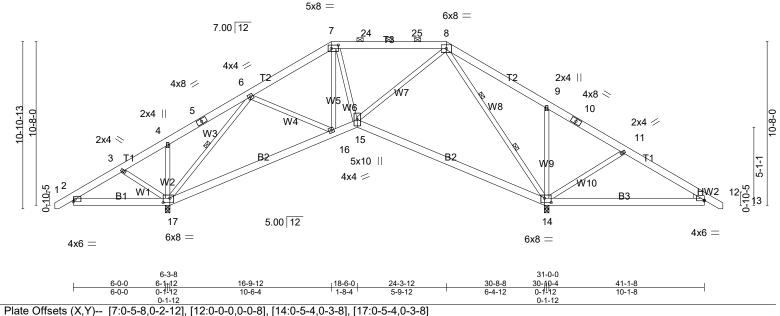
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 306 lb uplift at joint 17 and 156 lb uplift at joint 12. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	Т9	Piggyback Base	6	1	11.5 (((((((
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:38 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-UiCAMXd_z_YMJDc2ZwMFc__okrYv5rbIEEZSVyzuAWF

NOTES-


- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Type Qty Truss Ply Freedom Const\Campbell Plan 28460 T10 8 1 Piggyback Base Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:39 2025 Page 1

1-2-8 3-3-1 6-3-8 1-2-8 3-3-1 3-0-7

ID:pFJVHx?bQQurmNPxZvS0ORyE18p-yumYZtedkHgDxNBE6dtU8CW?PFwyqFluStJ?2OzuAWE 35-9-11 5-1-3

Scale = 1:75.1

LOADING TCLL	G (psf) 20.0		-0-0 1.15	CSI.	0.24	DEFL. Vert(LL)	in (loc) -0.14 14-15	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL 1	1.15	ВС	0.34	Vert(CT)	-0.29 14-15	>999	240		
BCLL	0.0 *	Rep Stress Incr	/ES	WB	0.79	Horz(CT)	0.06 14	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2	014	Matri	x-AS	Wind(LL)	-0.04 14-15	>999	240	Weight: 310 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 WEBS WEDGE

Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 7-8. Rigid ceiling directly applied.

1 Row at midpt 6-17 2 Rows at 1/3 pts 8-14

MiTek recommends that Stabilizers and required cross

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 17=-231(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) except 17=-291(LC 8),

14=-192(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 17=1496(LC 19), 17=1421(LC 1), 14=1999(LC 1), 14=1999(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-164/380, 3-4=-201/551, 4-5=-128/424, 5-6=-113/571, 6-7=-805/0,

7-24=-661/0, 24-25=-661/0, 8-25=-661/0, 8-9=-125/934, 9-10=-163/904,

10-11=-191/764, 11-12=-166/578

BOT CHORD 2-17=-274/174, 16-17=-115/582, 15-16=0/757, 14-15=-80/342,

12-14=-403/165

WEBS 4-17=-315/114, 6-17=-1300/55, 6-16=0/320, 8-15=0/688, 9-14=-374/174,

11-14=-366/128, 8-14=-1443/14

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

Continued on page 2

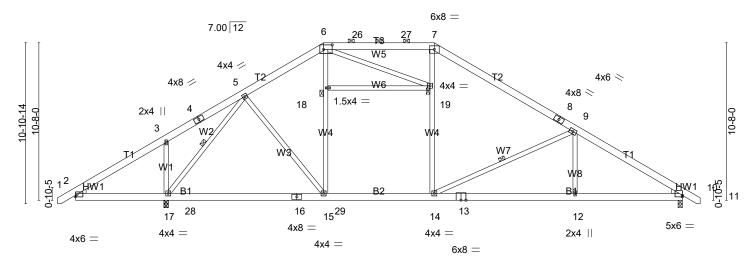
Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T10	Piggyback Base	8	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:39 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS00RyE18p-yumYZtedkHgDxNBE6dtU8CW?PFwyqFluStJ?2OzuAWE

NOTES-

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 291 lb uplift at joint 17 and 192 lb uplift at joint 14.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:40 2025 Page 1 ID:pFJVHx?bQQurmNPxZvS00RyE18p-Q4KxnDeFVbo4ZXmQgLPjhP358fBIZjX2hX2ZarzuAWD 24-3-12 33-10-3 41-1-8 42-4-0

Scale = 1:78.1

7x10 MT18HS=

16-9-12

5-4-0

	Г	6-0-0 0-1-12	10-	-8-0	1	7-6-0		9-6-7		7-3-5	٦
Plate Off	fsets (X,Y)-	- [6:0-7-0,0-3-12], [10:	Edge,0-1-4	<u>[</u>							
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.32 12-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.69	Vert(CT)	-0.61 12-14	>684	240	MT18HS	244/190
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.04 10	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matrix-	-AS	Wind(LL)	0.24 12-14	>999	240	Weight: 316 lb	FT = 20%

24-3-12

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 *Except*

W4: 2x4 SP No.2

6-0-0

6-1-12

6-1-12

11-5-12

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-

JOINTS

TOP CHORD

BOT CHORD WEBS 2-0-0 oc purlins (6-0-0 max.): 6-7.

Rigid ceiling directly applied.

1 Row at midpt 5-17, 9-14

1 Brace at Jt(s): 18, 19

33-10-3

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied, except

41-1-8

REACTIONS. (lb/size) 17=2011/0-3-8 (min. 0-2-9), 17=2011/0-3-8 (min. 0-2-9), 10=1410/0-3-8 (min. 0-1-11)

16-9-12

Max Horz 17=231(LC 7)

Max Uplift17=-338(LC 8), 10=-124(LC 8)

Max Grav 17=2152(LC 16), 17=2011(LC 1), 10=1454(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-231/569, 3-4=-92/344, 4-5=-72/473, 5-6=-1375/172, 6-26=-1289/207,

26-27=-1289/207, 7-27=-1289/207, 7-8=-1390/171, 8-9=-1526/118,

9-10=-2252/170

BOT CHORD 2-17=-386/259, 17-28=0/942, 16-28=0/942, 16-29=0/942, 15-29=0/942,

14-15=0/1239, 13-14=-43/1849, 12-13=-43/1849, 10-12=-43/1849

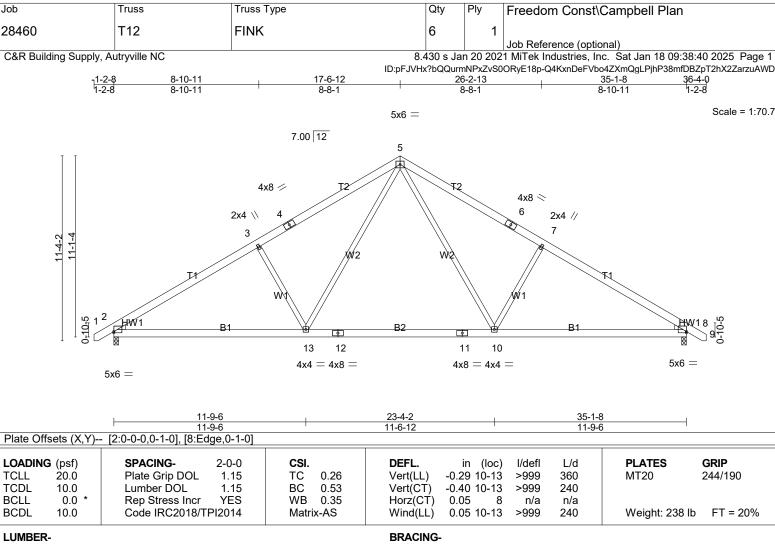
3-17=-479/211, 5-17=-1763/218, 5-15=-1/657, 15-18=-89/302, 6-18=-93/302,

14-19=0/455, 7-19=0/405, 9-14=-830/188, 9-12=0/385

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 338 lb uplift at joint 17 and 124 lb uplift at joint 10. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T11	Piggyback Base	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:40 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-Q4KxnDeFVbo4ZXmQgLPjhP358fBlZjX2hX2ZarzuAWD

NOTES-

- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 *Except* WEBS

W2: 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied. Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation quide.

REACTIONS. (lb/size) 2=1471/0-3-8 (min. 0-1-13), 8=1471/0-3-8 (min. 0-1-13)

Max Horz 2=-238(LC 6)

Max Uplift2=-146(LC 8), 8=-146(LC 8) Max Grav 2=1513(LC 13), 8=1513(LC 14)

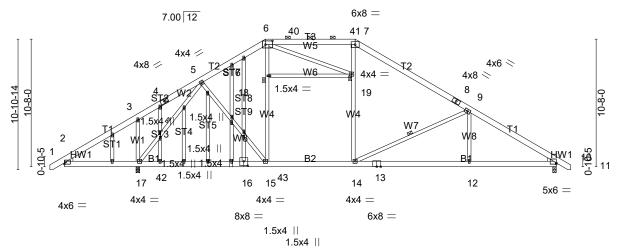
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2256/223, 3-4=-2053/235, 4-5=-1939/282, 5-6=-1939/282,

6-7=-2053/235, 7-8=-2256/223

BOT CHORD 2-13=-63/2003, 12-13=0/1334, 11-12=0/1334, 10-11=0/1334, 8-10=-63/1825

WEBS 3-13=-479/221, 5-13=-61/941, 5-10=-61/941, 7-10=-479/221


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 2 and 146 Ib uplift at joint 8.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T13	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:41 2025 Page 1

ID:pFJVHx?bQQurmNPxZvS0ORyE18p-uHtJ ZftGvwxBhLcE2wyDdcGu3X IAnBwBo66HzuAWC 6-1-12 11-5-12 16-9-12 24-3-12 33-10-3 41-1-8 5-4-0

> Scale: 1/8"=1' 7x10 MT18HS=

			6-1 _T 12	16-9-12		24-3-12	33-10			-1-8		
		' 6-0-0	0-1 -12	10-8-0	1	7-6-0	9-6-7	7	7-	3-5		
Plate Off	Plate Offsets (X,Y) [6:0-7-0,0-3-12], [10:Edge,0-1-4], [16:0-4-0,0-4-8]											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.32 12-14	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.61 12-14	>684	240	MT18HS	244/190	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.04 10	n/a	n/a			
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-AS	Wind(LL)	0.24 12-14	>999	240	Weight: 366	lb FT = 20%	
						1 ' '				_		

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.3 *Except* WFBS

W4: 2x4 SP No.2

OTHERS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-

TOP CHORD

BOT CHORD

WEBS JOINTS

1 Row at midpt 5-17, 9-14

Rigid ceiling directly applied.

2-0-0 oc purlins (6-0-0 max.): 6-7.

1 Brace at Jt(s): 18, 19

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied, except

REACTIONS. (lb/size) 17=2011/0-3-8 (min. 0-2-9), 17=2011/0-3-8 (min. 0-2-9), 10=1410/0-3-8 (min. 0-1-11)

Max Horz 17=231(LC 7)

Max Uplift17=-338(LC 8), 10=-124(LC 8)

Max Grav 17=2152(LC 16), 17=2011(LC 1), 10=1454(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-231/569, 3-4=-92/344, 4-5=-72/473, 5-6=-1375/172, 6-40=-1289/207,

40-41=-1289/207, 7-41=-1289/207, 7-8=-1390/171, 8-9=-1526/118,

9-10=-2252/170

BOT CHORD 2-17=-386/259, 17-42=0/942, 16-42=0/942, 16-43=0/942, 15-43=0/942,

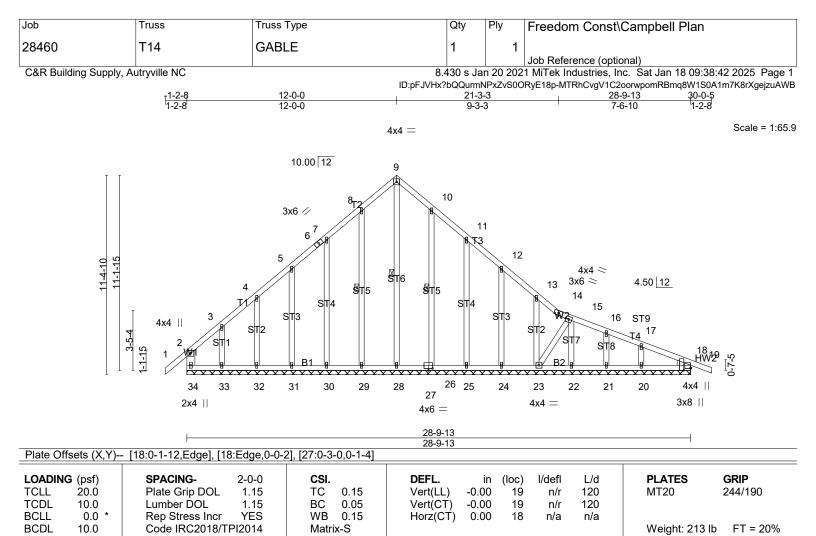
14-15=0/1239, 13-14=-43/1849, 12-13=-43/1849, 10-12=-43/1849

WEBS 3-17=-479/211. 5-17=-1763/218. 5-15=-1/657. 15-18=-89/302. 6-18=-93/302.

14-19=0/455, 7-19=0/405, 9-14=-830/188, 9-12=0/385

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T13	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:41 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS00RyE18p-uHtJ ZftGvwxBhLcE2wyDdcGu3X IAnBwBo66HzuAWC

NOTES-

- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 338 lb uplift at joint 17 and 124 lb uplift at joint 10.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E 2x4 SP No.3 *Except* WEBS

W1: 2x6 SP No.1

OTHERS

2x4 SP No.3 WEDGE

Right: 2x4 SP No.3

REACTIONS. All bearings 28-9-13.

(lb) - Max Horz 34=-293(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 34, 18, 29, 30, 31, 32, 26,

25, 24, 22, 21, 20 except 33=-133(LC 8), 23=-112(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 34, 18, 29, 30, 31, 32,

33, 26, 25, 24, 23, 22, 21, 20 except 28=278(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 9-28=-254/25

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 18, 29, 30, 31, 32, 26, 25, 24, 22, 21, 20 except (jt=lb) 33=133, 23=112.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 18. Continued on page 2

BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

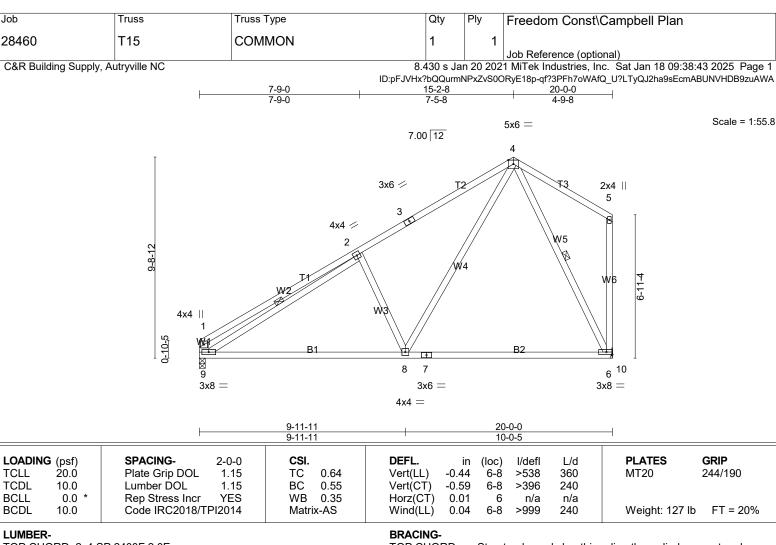
except end verticals.

BOT CHORD

WEBS

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 22-23,21-22,20-21,18-20. 1 Row at midpt 9-28, 8-29, 10-26


MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Job	Truss	Truss Type	Qty	Ply	Freedom Const\Campbell Plan
28460	T14	GABLE	1	1	
					Job Reference (optional)

8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:42 2025 Page 2 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-MTRhCvgV1C2oorwpomRBmq8W1S0A1m7K8rXgejzuAWB

NOTES-

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E **WEBS** 2x4 SP No.2 *Except*

W3,W2: 2x4 SP No.3, W1: 2x6 SP No.1

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

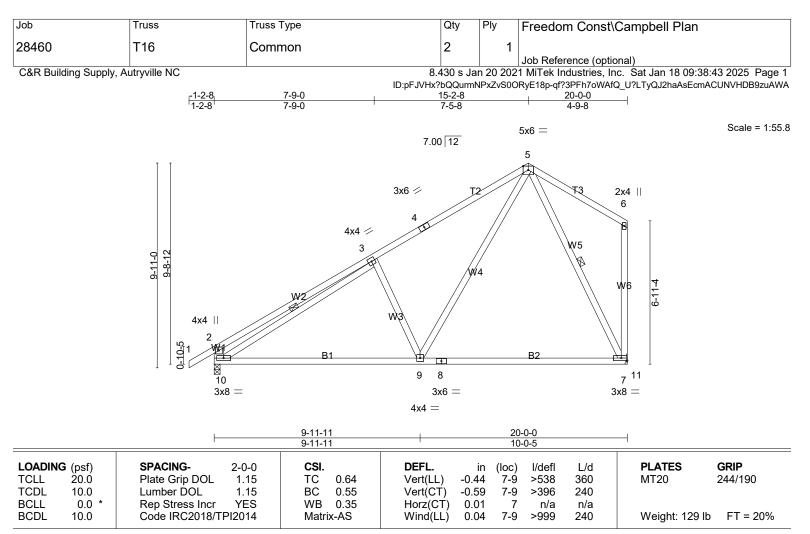
1 Row at midpt 4-6, 2-9

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(lb/size) 6=785/Mechanical, 9=785/0-3-8 (min. 0-1-8)

Max Horz 9=312(LC 7)


Max Uplift6=-67(LC 8), 9=-54(LC 8) Max Grav 6=950(LC 13), 9=800(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-612/123, 2-3=-935/144, 3-4=-829/185, 1-9=-460/109 8-9=-139/964, 7-8=-89/375, 7-10=-89/375, 6-10=-89/375 **BOT CHORD WEBS** 2-8=-404/205, 4-8=-69/861, 4-6=-725/98, 2-9=-650/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LUMBER-

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.2 *Except*

W3,W2: 2x4 SP No.3, W1: 2x6 SP No.1

BRACING-

TOP CHORD

BOT CHORD WEBS Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt 5-7, 3-10

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=782/Mechanical, 10=874/0-3-8 (min. 0-1-8)

Max Horz 10=326(LC 7)

Max Uplift7=-65(LC 8), 10=-105(LC 8) Max Grav 7=947(LC 13), 10=881(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-624/128, 3-4=-926/140, 4-5=-822/181, 2-10=-561/165 BOT CHORD 9-10=-138/953, 8-9=-89/374, 8-11=-89/374, 7-11=-89/374 WEBS 3-9=-394/200, 5-9=-64/851, 5-7=-723/98, 3-10=-623/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 10=105.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

ob	Truss	Truss Type	Qt	y P	ly	Freedom Const	\Campbell Plan	
8460	T17	Common	1		1			
&R Building Supply,	Autryville NC				0 2021	Job Reference (opti	nc. Sat Jan 18 09:3	
-1-2-8 1-2-8	5-1-1	9-8-15 15-2	2-8	20-8-1	1NPxZV	S0ORyE18p-IsZRdahlZ 23-1-1226-7	7-10 30-5-0	₁ 31-7-8 ₁
1-2-8	5-1-1	4-7-14 5-5	-9	5-5-9		2-5-11 3-5	-14 3-9-6	1-2-8
			4x6					Scale = 1:5
		7.00 12	420 11					
		7.00 12	6					
		3х6 🗸 т	2///\\	T2		1.5x4		
		1.5x4				3x6 <>		
		45	// \\	\	\\Z	7 ₈ 4x6 >		
			//	\w5		9		
9-11-0	4x4 🥢			1/8				
9 9	3 /	// /W	5				4x4 <>	
	The				\ .]]. //] `	T1 10	
4x4		W4 //			// /	W4 W6 W7		2x4
2	₩ 2	W3 //					V8 W9	_ 11
1 2-01		B1 6	Q 1			B2 B	vo vv9	12 49
			16			20 🛭 15 14		
1: 3:	8 =	17	5x8 WB=			444 —		13
		3x8 =			5	5x8 = 4x4 —		3x6 =
	9-8-15		20-8-1			23-1-1223+3-8	30-5-0	
-	9-8-15 9-8-15		10-11-2			23-1-1223-3-8 2-5-11 0-1-12	7-1-8	
OADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in	(loc)	l/defl L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15 TC 0.28	Vert(LL)	-0.46	1 5 -17	>592 360	MT20	244/190
CDL 10.0 CLL 0.0 *	Lumber DOL Rep Stress Incr	1.15 BC 0.59 YES WB 0.74	Vert(CT) Horz(CT)	-0.66 0.01	15-1 <i>7</i> 14	>418 240 n/a n/a		
CDL 10.0	Code IRC2018/TP		Wind(LL)	0.03		>999 240	Weight: 198	lb FT = 20%
UMBER-			BRACING	_			1	
OP CHORD 2x4 SF	No.2		TOP CHO		Struct	ural wood sheathir	ng directly applied.	except end
					vertica	als.		•
	P No.3 *Except* k4 SP No.2, W1: 2x6 S	P No 1	BOT CHO WEBS	RD	Rigid	ceiling directly app v at midpt	lied. 6-15	

bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(lb/size) 14=1679/0-3-8 (min. 0-1-8), 14=1679/0-3-8 (min. 0-1-8), 18=890/0-3-8 (min. 0-1-8) REACTIONS.

Max Horz 18=-233(LC 6)

Max Uplift14=-185(LC 8), 18=-98(LC 8)

Max Grav 14=1679(LC 1), 14=1679(LC 1), 18=946(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-397/35, 3-4=-1031/92, 4-5=-1078/168, 5-6=-1067/201, 6-7=-276/181, TOP CHORD

7-8=-286/81, 9-10=-92/661, 2-18=-401/104

BOT CHORD 17-18=0/1092, 17-19=0/497, 16-19=0/497, 16-20=0/497, 15-20=0/497,

14-15=-530/219, 13-14=-299/135

 $4-17=-331/150,\ 6-17=-99/933,\ 6-15=-661/81,\ 8-15=-283/127,\ 9-15=-70/1275,$ **WEBS**

9-14=-1594/148, 10-14=-288/105, 3-18=-888/76, 10-13=-125/428

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18 except (jt=lb) 14=185.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Ply Freedom Const\Campbell Plan 28460 T18 1 Common 1 Job Reference (optional) C&R Building Supply, Autryville NC 8.430 s Jan 20 2021 MiTek Industries, Inc. Sat Jan 18 09:38:45 2025 Page 1 ID:pFJVHx?bQQurmNPxZvS0ORyE18p-n27qqwiNK7QNfleOTu uOTm?CgvNE inrpmKF2zuAW8 Scale = 1:57.8 4x6 || 7.00 12 6 1.5x4 || 3x6 / 3x6 1.5x4 || 7 ₈ 4 5 4x6 < 9 9-8-12 4x4 🥢 3 4x4 < 10 W4 4x4 || **₩**6 2x4 || 11 ₩8 B1 R2 **⊠** 14 20 16 19 18 17 15 13 3x8 = 5x8 WB= 4x4 =3x8 =5x8 = 3x6 =30-5-0 7-1-8 LOADING (psf) CSI. SPACING-**PLATES GRIP** 2-0-0 DEFL. in (loc) I/defl L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.46 15-17 >592 360 MT20 244/190 Lumber DOL ВС 0.59 240 **TCDL** 10.0 1.15 Vert(CT) -0.66 15-17 >418 **BCLL** 0.0 Rep Stress Incr YES WB 0.74 Horz(CT) 0.01 14 n/a n/a Code IRC2018/TPI2014 Wind(LL) 0.03 15-17 240 Weight: 198 lb **BCDL** 10.0 Matrix-AS >999 FT = 20% LUMBER-**BRACING-**Structural wood sheathing directly applied, except end TOP CHORD 2x4 SP No.2 TOP CHORD verticals. BOT CHORD 2x4 SP 2400F 2.0E Rigid ceiling directly applied. **WEBS** 2x4 SP No.3 *Except* **BOT CHORD** 1 Row at midpt W5: 2x4 SP No.2, W1: 2x6 SP No.1 6-15 WEBS 2x4 SP No.3 **OTHERS** MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. (lb/size) 14=1679/0-3-8 (min. 0-1-8), 14=1679/0-3-8 (min. 0-1-8), 18=890/0-3-8 (min. 0-1-8)

Max Horz 18=-233(LC 6)

Max Uplift14=-185(LC 8), 18=-98(LC 8)

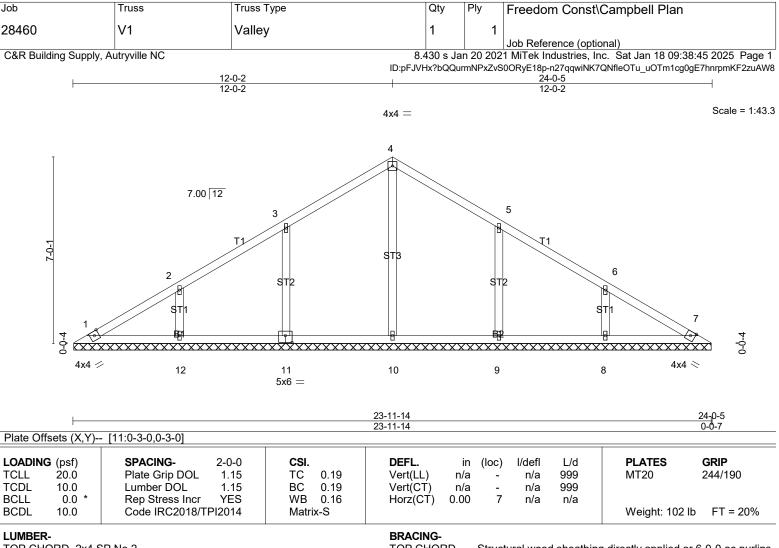
Max Grav 14=1679(LC 1), 14=1679(LC 1), 18=946(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-397/35, 3-4=-1031/92, 4-5=-1078/168, 5-6=-1067/201, 6-7=-276/181,

7-8=-286/81, 9-10=-92/661, 2-18=-401/104

BOT CHORD 17-18=0/1092, 17-19=0/497, 16-19=0/497, 16-20=0/497, 15-20=0/497,


14-15=-530/219. 13-14=-299/135

WEBS 4-17=-331/150, 6-17=-99/933, 6-15=-661/81, 8-15=-283/127, 9-15=-70/1275,

9-14=-1594/148, 10-14=-288/105, 3-18=-888/76, 10-13=-125/428

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18 except (jt=lb) 14=185.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

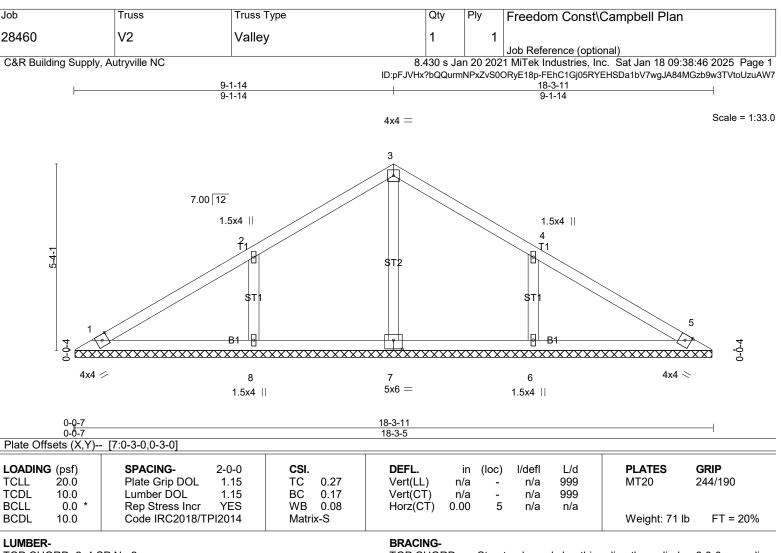
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 23-11-7.

(lb) - Max Horz 1=146(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=393(LC


13), 11=400(LC 13), 12=330(LC 1), 9=398(LC 14), 8=330(LC 1)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 3-11=-263/120, 5-9=-262/120

WEBS NOTES-

FORCES.

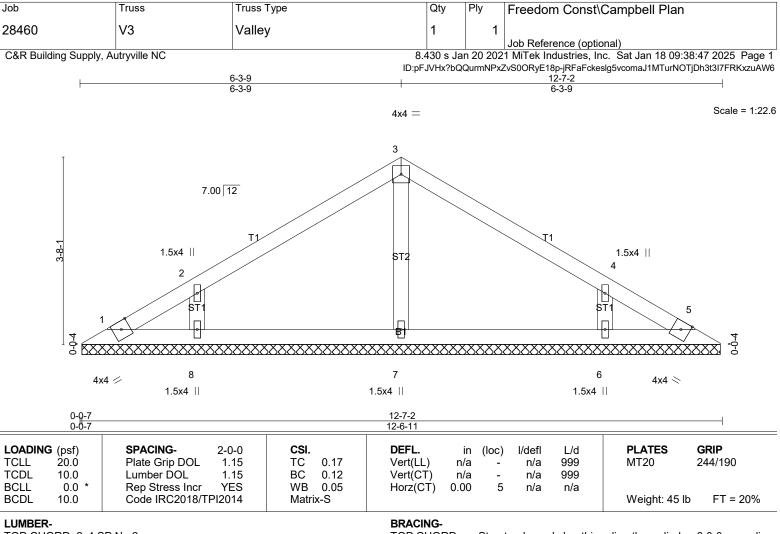
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 1.5x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 9.8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 18-2-14.

(lb) - Max Horz 1=-109(LC 6)


Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except

8=424(LC 13), 6=424(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-314/141, 4-6=-314/141

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 12-6-5.

(lb) - Max Horz 1=-73(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=277(LC 1),

8=297(LC 13), 6=297(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	Freedom (Const\Campbell	Plan		
28460	V4	Valley		1	1					
						Job Reference	e (optional)			
C&R Building Supply, A	utryville NC						tries, Inc. Sat Jan 1			
		0.5.5	ID:pF	ID:pFJVHx?bQQurmNPxZvS0ORyE18p-jRFaFckeslg5vcomaJ1MTurNiTjoh3D						
H		3-5-5 3-5-5	-	6-10-9 3-5-5						
		0-0-0				J-J-J				
								Sc	ale = 1:13.6	
			4x4 =							
Ī			2							
	7	.00 12								
2-0-1		T1				Ţ1				
2-6			ST1							
							3			
	1									
4			B ¹ 1						4	
40-0		***************	******		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**********	∞	0-0-4	
							*****	<u> </u>		
			4							
	2x4 🥢	1.8	5x4				2x4 📎			
0-0	1-7		6-10-9					1		
0-ç 0-c	-7		6-10-2							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.	0-0 CSI. 15 TC 0.15 15 BC 0.09 ES WB 0.03	DEFL. Vert(LL Vert(C1 Horz(C) n/ -) n/	a -	n/a 9 n/a 9	_/d	GRIP 244/19	90	
BCDL 10.0	Code IRC2018/TPI20			, 3.0			Weigh	t: 22 lb FT	= 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2	,	BRACII TOP CI BOT CI	HORD			eathing directly ap ly applied or 10-0-0		oc purlins.	
OTHERS 2x4 SP	No.3						nds that Stabilizers ed during truss ere		cross	

accordance with Stabilizer Installation guide. REACTIONS. (lb/size) 1=121/6-9-11 (min. 0-1-8), 3=121/6-9-11 (min. 0-1-8), 4=221/6-9-11 (min. 0-1-8)

Max Horz 1=-37(LC 6)

Max Uplift1=-22(LC 8), 3=-22(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.