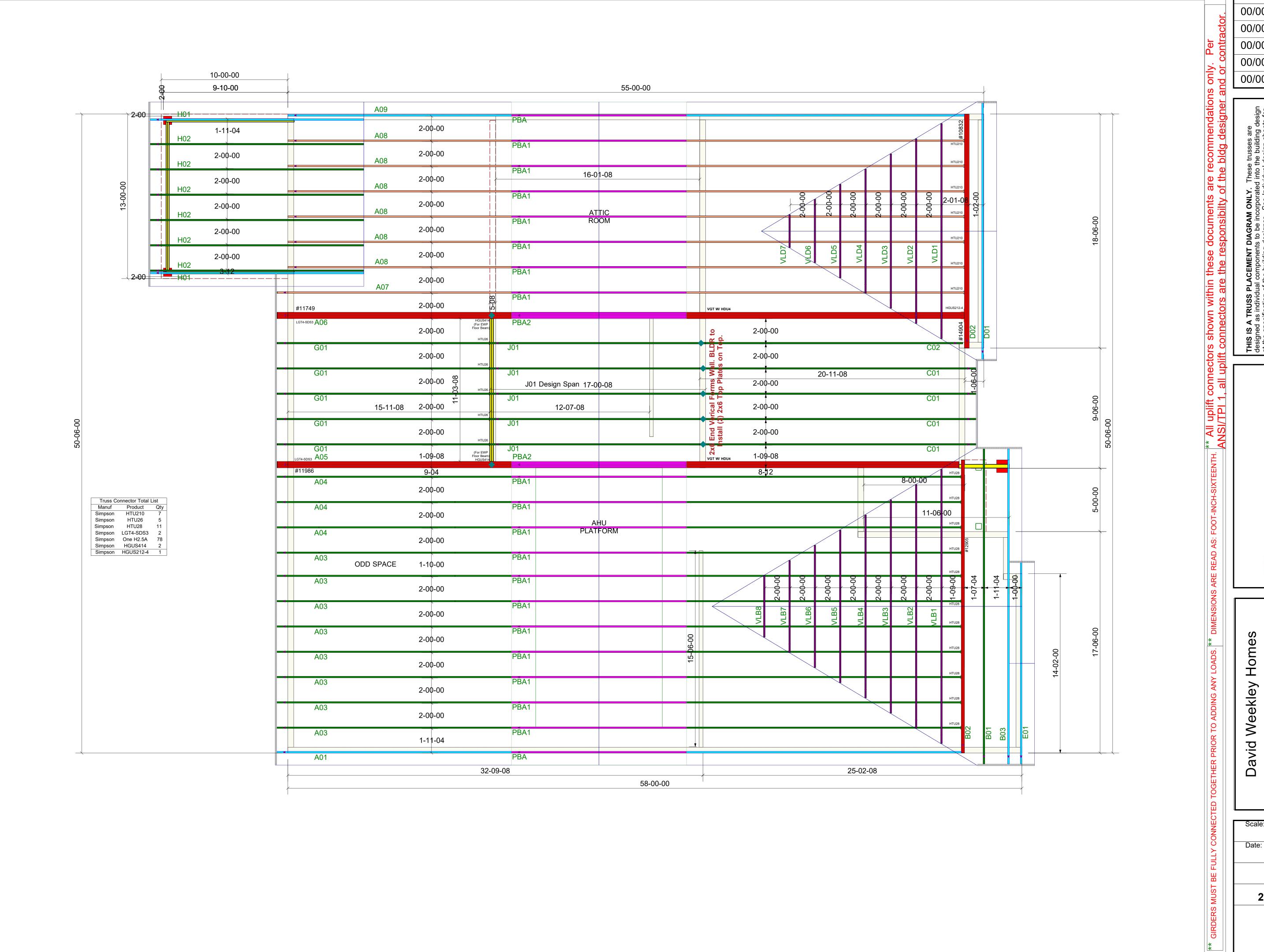


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450


Builder: David Weekly
Homes
Model: 927 Serenity
B326 "C"

THE PLACEMENT PLAN NOTES:

- 1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
- 2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.
- 3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
- 4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
- 5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
- 6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
- 7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
- 8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by:	Date:
-------------	-------

Revisions Name

00/00/00 Name 00/00/00 00/00/00

Name Name 00/00/00 Name

Serenity-Roof-B326 GRH

ACEMENT

ROOF

9/30/2025 Designer: Nick Darr Project Number: 25090087-01 Sheet Number:

927

Truss Drawing Left End Indicator

General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

RE: 25090087-01

927 Serenity-Roof-B326 C CP GRH

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: David Weekley Homes Project Name: 25090087-01 Lot/Block: 927 Model:

Address: 1232 Serenity Walk Parkway Subdivision: Serenity

City: Fuguay-Varina State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-16 Wind Speed: 130 mph Floor Load: N/A psf Roof Load: 40.0 psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	176436467	A01	9/22/2025	21	176436487	PBA	9/22/2025
2	176436468	A03	9/22/2025	22	176436488	PBA1	9/22/2025
3	176436469	A04	9/22/2025	23	176436489	PBA2	9/22/2025
4	176436470	A05	9/22/2025	24	176436490	VLB1	9/22/2025
5	176436471	A06	9/22/2025	25	176436491	VLB2	9/22/2025
6	176436472	A07	9/22/2025	26	176436492	VLB3	9/22/2025
7	176436473	A08	9/22/2025	27	176436493	VLB4	9/22/2025
8	176436474	A09	9/22/2025	28	176436494	VLB5	9/22/2025
9	176436475	B01	9/22/2025	29	176436495	VLB6	9/22/2025
10	176436476	B02	9/22/2025	30	176436496	VLB7	9/22/2025
11	176436477	B03	9/22/2025	31	176436497	VLB8	9/22/2025
12	176436478	C01	9/22/2025	32	176436498	VLD1	9/22/2025
13	176436479	C02	9/22/2025	33	176436499	VLD2	9/22/2025
14	176436480	D01	9/22/2025	34	176436500	VLD3	9/22/2025
15	176436481	D02	9/22/2025	35	176436501	VLD4	9/22/2025
16	176436482	E01	9/22/2025	36	176436502	VLD5	9/22/2025
17	176436483	G01	9/22/2025	37	176436503	VLD6	9/22/2025
18	176436484	H01	9/22/2025	38	176436504	VLD7	9/22/2025
19	176436485	H02	9/22/2025				
20	176436486	J01	9/22/2025				

1 of 1

The truss drawing(s) referenced above have been prepared by

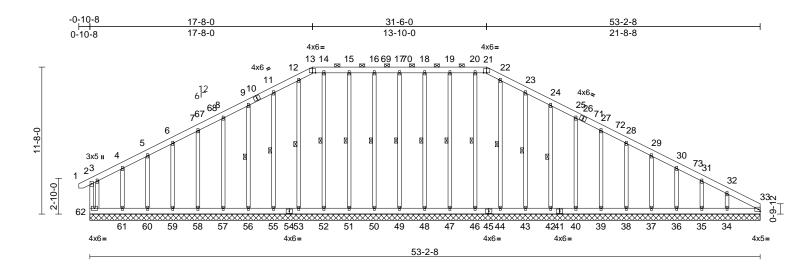
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	176436467

Run: $8.73\,\mathrm{S}$ Aug $13\,2025\,\mathrm{Print}$: $8.730\,\mathrm{S}$ Aug $13\,2025\,\mathrm{MiTek}$ Industries, Inc. Wed Sep $17\,13:40:02$ ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	:91	1.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	33	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 546 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3 *Ex

2x4 SP No.3 *Except*

49-17,48-18,47-19,46-20,44-22,50-16,51-15,

52-14,53-12:2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (10-0-0 max.): 13-21.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

WEBS 1 Row at midpt 17-49, 18-48, 19-47, 20-46, 22-44, 23-43, 24-42, 16-50, 15-51,

14-52, 12-53, 11-55, 9-56

33=53-2-8, 34=53-2-8, 35=53-2-8,

36=53-2-8, 37=53-2-8, 38=53-2-8, 39=53-2-8, 40=53-2-8, 42=53-2-8 43=53-2-8, 44=53-2-8, 46=53-2-8, 47=53-2-8, 48=53-2-8, 49=53-2-8, 50=53-2-8, 51=53-2-8, 52=53-2-8,

53=53-2-8, 55=53-2-8, 56=53-2-8, 57=53-2-8, 58=53-2-8, 59=53-2-8, 60=53-2-8, 61=53-2-8, 62=53-2-8

Max Horiz 62=-186 (LC 12)

Max Uplift 34=-67 (LC 14), 35=-170 (LC 15), 36=-15 (LC 14), 37=-50 (LC 15), 38=-42 (LC 15), 39=-44 (LC 15), 40=-43 (LC 15), 42=-46 (LC 15),

43=-50 (LC 15), 47=-29 (LC 11), 48=-28 (LC 15), 49=-25 (LC 10), 50=-29 (LC 14), 51=-29 (LC 14), 55=-51 (LC 14), 56=-46 (LC 14),

57=-43 (LC 14), 58=-44 (LC 14), 59=-46 (LC 14), 60=-22 (LC 14), 61=-137 (LC 14), 62=-88 (LC 15) 43=230 (LC 45), 44=217 (LC 45),

Max Grav 34=413 (LC 25), 35=84 (LC 13),

46=199 (LC 40), 47=220 (LC 40), 48=217 (LC 40), 49=216 (LC 40), 50=217 (LC 40), 51=220 (LC 40), 52=199 (LC 40), 53=217 (LC 43),

36=196 (LC 41), 37=153 (LC 59),

38=174 (LC 45), 39=221 (LC 45),

40=230 (LC 45), 42=229 (LC 45),

55=234 (LC 43), 56=233 (LC 43), 57=233 (LC 43), 58=233 (LC 43), 59=199 (LC 43), 60=151 (LC 58),

61=255 (LC 51), 62=134 (LC 58) (lb) - Maximum Compression/Maximum

Tension 2-62=-243/191, 1-2=0/23, 2-3=-100/92,

3-4=-74/120, 4-5=-49/116, 5-6=-59/144 6-7=-75/167, 7-8=-91/190, 8-9=-107/213, 9-11=-125/238, 11-12=-145/279,

12-13=-147/281. 13-14=-140/279. 14-15=-140/279, 15-16=-140/279, 16-17=-140/279, 17-18=-140/279,

18-19=-140/279, 19-20=-140/279, 20-21=-140/279, 21-22=-147/281, 22-23=-145/279, 23-24=-125/254

24-25=-107/230, 25-27=-91/206, 27-28=-75/183, 28-29=-60/160,

29-30=-64/137, 30-31=-72/112, 31-32=-124/100, 32-33=-134/115 BOT CHORD

61-62=-80/149, 60-61=-80/149, 59-60=-80/149, 58-59=-80/149, 57-58=-80/149, 56-57=-80/149, 55-56=-80/149, 53-55=-80/149,

52-53=-80/149, 51-52=-80/149, 50-51=-80/149, 49-50=-80/149, 48-49=-80/149, 47-48=-80/149,

46-47=-80/149, 44-46=-80/149, 43-44=-80/149, 42-43=-80/149, 40-42=-80/149, 39-40=-80/149, 38-39=-80/149, 37-38=-80/149,

36-37=-80/149, 35-36=-80/149, 34-35=-80/149, 33-34=-80/149

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

FORCES

TOP CHORD

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

JobTrussTruss TypeQtyPly927 Serenity-Roof-B326 C CP GRH25090087-01A01Piggyback Base Supported Gable11Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:02 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

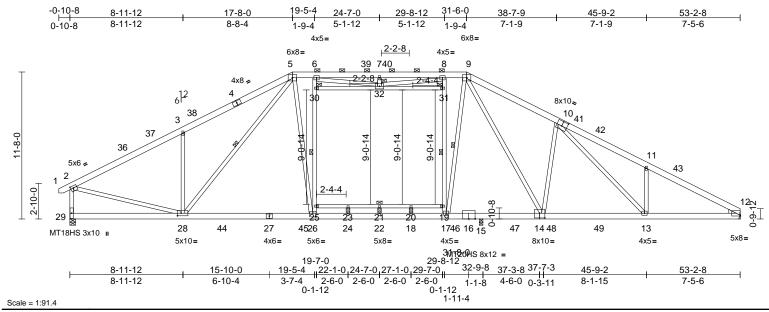
WEBS 17-49=-176/49, 18-48=-177/52,

19-47=-180/53, 20-46=-159/6, 22-44=-177/2, 23-43=-190/74, 24-42=-189/70, 25-40=-190/67, 27-39=-181/68, 28-38=-132/68, 29-37=-125/68, 30-36=-138/59, 31-35=-67/120, 32-34=-241/58, 16-50=-177/53,

15-51=-180/53, 14-52=-159/1, 12-53=-177/0, 11-55=-194/75, 9-56=-193/70, 8-57=-193/67, 7-58=-194/68, 6-59=-157/69, 5-60=-116/53,

4-61=-185/153, 3-62=-225/261

NOTES


- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-0, Interior (1) 4-7-0 to 10-1-11, Exterior(2R) 10-1-11 to 39-0-5, Interior (1) 39-0-5 to 47-10-10, Exterior(2E) 47-10-10 to 53-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A03	Piggyback Base	8	1	Job Reference (optional)	176436468

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:03 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.36	22-24	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.62	22-24	>631	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.10	12	n/a	n/a	MT20HS	187/143
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 470 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 **BOT CHORD**

2x6 SP 2400F 2.0E *Except* 25-19:2x4 SP

No.2

WEBS 2x4 SP No.3 *Except*

28-2,6-26,8-17,17-9,14-9,26-5,28-5:2x4 SP

No.2

WEDGE Right: 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

3-0-6 oc purlins, except end verticals, and

2-0-0 oc purlins (3-6-0 max.): 5-9.

Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 23-25,21-23,20-21,19-20.

WEBS 1 Row at midpt 26-30, 17-31, 9-17, 5-28

JOINTS 1 Brace at Jt(s): 30,

31, 32

REACTIONS (size) 12= Mechanical, 15=0-3-8,

29=0-5-8 Max Horiz 29=-186 (LC 12)

12=-58 (LC 14), 15=-210 (LC 15), Max Uplift

29=-206 (LC 14)

Max Grav 12=2290 (LC 47), 15=887 (LC 39),

29=2608 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/23, 2-3=-3591/268, 3-5=-3716/468,

5-6=-3156/293, 6-7=-3623/491,

7-8=-3623/491, 8-9=-3135/291

9-11=-4560/361, 11-12=-4604/251,

2-29=-2647/250

BOT CHORD 28-29=-120/230, 26-28=-87/2900,

24-26=-74/3065, 22-24=-74/3065, 18-22=-74/3065, 17-18=-74/3065,

15-17=-47/2883, 13-15=-101/3496,

12-13=-140/3993, 23-25=-74/35. 21-23=-74/35, 20-21=-74/35, 19-20=-74/35

2-28=-127/3075, 25-26=-521/205,

25-30=-483/245, 6-30=-469/250,

17-19=-927/203, 19-31=-842/223 8-31=-823/219, 9-17=-129/1185,

10-14=-910/320, 9-14=-168/879, 10-13=-221/767. 11-13=-332/232

5-26=-36/1179, 3-28=-842/342,

5-28=-253/512, 21-22=-70/0, 30-32=-12/43,

31-32=-139/25, 7-32=-255/87,

6-32=-289/705, 8-32=-276/815,

23-24=-191/0, 18-20=-169/0

NOTES

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-8, Interior (1) 4-7-8 to 10-1-11, Exterior(2R) 10-1-11 to 39-1-13, Interior (1) 39-1-13 to 47-10-10, Exterior(2E) 47-10-10 to 53-2-8 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 29 and 15. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 22,2025

ontinued on page 2

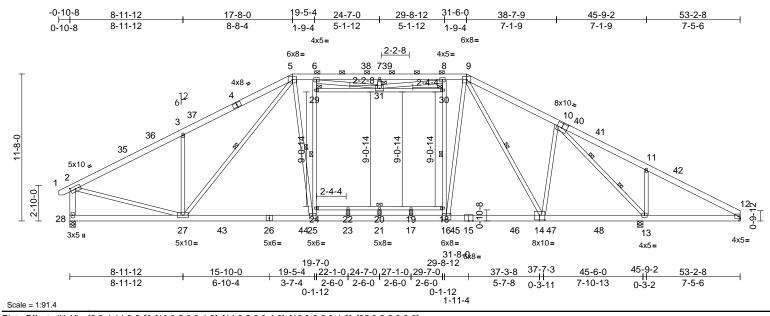
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A03	Piggyback Base	8	1	Job Reference (optional)	176436468

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:03 ID: OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC?ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4zJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7J4xJC.ffx3IDTxbGWxrCDoi7fx3IDT

Page: 2


15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A04	Piggyback Base	3	1	Job Reference (optional)	176436469

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:04 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.36	25-27	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.54	22-24	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.09	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 471 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 **BOT CHORD**

2x6 SP 2400F 2.0E *Except* 24-18:2x4 SP

No.2, 14-12,15-14:2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 28-2:2x6 SP No.2, 27-2,6-25,8-16,27-5,25-5,16-9,14-9,13-10:2x

4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-1-0 oc purlins, except end verticals, and

2-0-0 oc purlins (3-6-7 max.): 5-9. Rigid ceiling directly applied or 6-0-0 oc

BOT CHORD bracing.

WEBS 1 Row at midpt 25-29, 16-30, 5-27, 5-25,

9-14

WEBS 10-13 2 Rows at 1/3 pts

JOINTS 1 Brace at Jt(s): 29,

30, 31

REACTIONS (size) 12= Mechanical, 13=0-5-8.

28=0-5-8

Max Horiz 28=-187 (LC 12)

Max Uplift 12=-199 (LC 14), 13=-414 (LC 15),

28=-187 (LC 14)

Max Grav 12=876 (LC 37), 13=2647 (LC 39),

28=2524 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-3470/240, 3-5=-3585/434,

5-6=-3020/294, 6-7=-3544/494,

7-8=-3544/494, 8-9=-2997/293,

9-11=-3120/512, 11-12=-1458/442,

2-28=-2579/244

BOT CHORD 27-28=-136/289, 25-27=-52/2779,

23-25=-26/2939, 21-23=-26/2939,

17-21=-26/2939, 16-17=-26/2939, 13-16=-118/2665, 12-13=-334/1258,

22-24=-71/37, 20-22=-71/37, 19-20=-71/37,

18-19=-71/37

WEBS 2-27=-91/2883, 24-25=-515/251,

24-29=-478/316, 6-29=-465/319,

16-18=-898/232, 18-30=-835/250

8-30=-816/246, 3-27=-817/328, 5-27=-263/544, 5-25=-91/1106

9-16=-85/1683, 9-14=-451/6, 10-14=0/661,

10-13=-2539/304, 11-13=-456/259,

20-21=-61/0, 29-31=-48/92, 30-31=-173/44,

7-31=-262/86, 6-31=-302/731,

8-31=-282/841, 22-23=-187/0, 17-19=-200/0

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-8, Interior (1) 4-7-8 to 10-1-11, Exterior(2R) 10-1-11 to 39-1-13, Interior (1) 39-1-13 to 47-10-10, Exterior(2E) 47-10-10 to 53-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 199 lb uplift at joint
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28 and 13. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A04	Piggyback Base	3	1	Job Reference (optional)	176436469

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:04 ID: DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

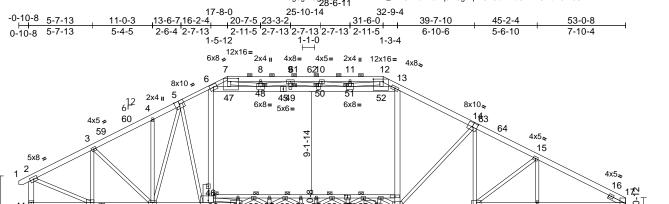
LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply 927 Serenity-Roof-B326 C CP GRH 176436470 25090087-01 A05 Attic Girder 4 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

4x5=


11-8-0

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:04 ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

69

19

8x10=

268

3x8=

2x4 || 3x5 = 3x10 = MT20HS 8x12 =

2423

3x5=

3x5=

6x10=

5x6= PROVIDE CONNECTION OF TRUSS TO BEARING PLATE AT JOINT 20 CAPABLE OF WITHSTANDING 4844 LBS UPLIFT REACTION DUE TO GRAVITY LOADING (5420 LBS NON-GRAVITY MAX.) APPLIED TO THE TRUSS. IT IS THE RESPONSIBILITY OF THE PROJECT ARCHITECT/ENGINEER TO DESIGN THE CONNECTION OF THE TRUSS TO THE BEARING PLATE, PROVIDE AND DESIGN CONNECTION SYSTEM FOR A CONTINUOUS LOAD PATH FROM THE TRUSS TO THE EDANING FEEL, FROM AND DESIGN FOOTING/FOUNDATION, AND DESIGN FOOTING/FOUNDATION TO RESIST SUCH UPLIFT. FAILURE TO DO SO WILL VOID THIS CONSTRUCTION.

18-7-4

66 4667

4x5 II

12x16=

37

MT20HS 8x12 =

34

3x5=

2x4 II

3x8=

3x5=

3x6 II

3x5=

41 65

4x8=

18-5-8 21-4-12 24-2-4 26-11-8 29-9-0 32 15-9-1116-5-0 20-0-0 22-9-8 25-6-12 28-4-4 31-1-12 5-7-13 6-6-0 11-0-3 39-9-6 45-2-4 53-0-8 4-9-9 0-7-5 0-1-12 5-4-14 5-7-13 0-10-3 4-6-3 7-0-2 7-10-4 2 - 0 - 8

32**Ö**29

2x4 || 3x5=

4x6 ıı

3x5=

Plate Offsets (X, Y): [7:0-8-0,0-3-4], [12:0-10-8,0-2-12], [14:0-5-0,0-4-8], [24:0-5-0,2-4], [27:0-3-0,0-3-0], [40:0-8-0,0-4-12], [43:0-3-8,0-3-0]

BOT CHORD

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.47	37-40	>831	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.71	37-40	>552	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.89	Horz(CT)	0.20	17	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.23	21-39	>841	360		
BCDL	10.0					1					Weight: 2048 lb	FT = 20%

43-44=-126/442, 41-43=-752/12262,

26-29=0/18445, 23-26=-258/15848

17-18=-728/14898, 38-39=-984/0,

36-38=-1073/0, 35-36=-3355/0,

33-35=-3355/0, 31-33=-3923/0,

30-31=-3923/0, 28-30=-3923/0

21-22=-64/4104

25-28=-2701/0, 22-25=-363/2827,

32-34=0/18770, 29-32=0/19319

40-41=-860/16348 34-40=-669/17577

20-23=-477/13749, 18-20=-796/16054,

LUMBER TOP CHORD 2x6 SP No.2 *Except* 5-7:2x4 SP 2400F

2.0E, 14-17:2x6 SP 2400F 2.0E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 42-37,19-17:2x6

4342

4x6=

6x8=

SP 2400F 2.0E, 27-21:2x4 SP No.2,

42-44:2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 13-20:2x6 SP 2400F

2.0E, 6-45,44-2,40-46,40-6,45-13:2x6 SP No.2, 43-2:2x4 SP No.2

Right 2x4 SP No.3 -- 1-6-0

SLIDER **BRACING**

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-12.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 48, 49, 50, 51, 39, 25,

36, 28, 33

REACTIONS 17=0-8-9, 20=0-5-8, 44=0-5-8 (size)

Max Horiz 44=-188 (LC 10)

Max Uplift 17=-452 (LC 12), 20=-5420 (LC

45), 44=-699 (LC 12)

17=9362 (LC 46), 20=787 (LC 12), Max Grav

44=11926 (LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/24, 2-3=-13709/800, 3-4=-17633/1055,

4-6=-18898/1143, 6-7=-6029/488, 7-8=-3161/530, 8-9=-3158/529, 9-10=-3739/714, 10-11=-1732/1388 11-12=-1732/1388, 12-13=-4707/432 13-15=-18124/1119, 15-17=-17068/898,

2-44=-11731/718

WEBS

3-43=-5380/377, 3-41=-242/4997, 4-41=-711/163, 5-40=-135/1580, 20-21=-541/7239, 13-21=-528/7413 6-47=-10957/709, 47-48=-10572/687,

48-49=-10887/657, 49-50=-10924/659, 50-51=-15823/958, 51-52=-12495/790, 13-52=-13137/827, 2-43=-691/12981,

39-40=-661/7366, 6-39=-545/8854, 7-47=-151/2356. 8-48=-479/64.

9-49=-132/2447, 10-50=-184/66, 11-51=-255/67, 12-52=-208/3474, 20-22=-1843/0 37-39=0/3041 22-23=0/520

37-38=-548/0. 23-25=-2625/0.

36-37=-953/55, 25-26=0/2962, 34-36=0/1715, 26-27=-722/8. 34-35=-910/20.

26-28=-377/114, 33-34=-130/265

28-29=0/1065, 32-33=0/653, 29-30=-529/0,

31-32=-274/6, 7-48=-4543/253 9-48=-4481/357, 9-50=-5058/310 10-51=-2517/281, 12-51=-5510/319,

14-19=-897/165, 15-19=-150/1539, 14-20=-330/601, 5-41=-2384/128,

15-18=-597/117 NOTES

1) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows:

18

2x4 II

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 -2 rows staggered at 0-9-0 oc, Except member 40-46 2x6 - 3 rows staggered at 0-4-0 oc, member 6-40 2x6 - 2 rows staggered at 0-4-0 oc.

Page: 1

6x10 II

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A05	Attic Girder	1	4	Job Reference (optional)	176436470

ID:VIY0g5gMUgwQZRyxiBXYltzRA_f-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:04

Page: 2

Wind: ASCE 7-16: Vult=130mph (3-second aust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 6-47, 47-48, 48-49, 49-50, 50-51, 51-52, 13-52; Wall dead load (5.0psf) on member(s).13-21, 6-39
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 38-39, 36-38, 35-36, 33-35, 31-33, 30-31, 28-30, 27-28, 25-27, 22-25, 21-22
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5420 lb uplift at joint 20.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 44. This connection is for uplift only and does not consider lateral forces.
- 17) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 19) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) LGT4 Hurricane ties must have four studs in line below
- 22) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 23) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

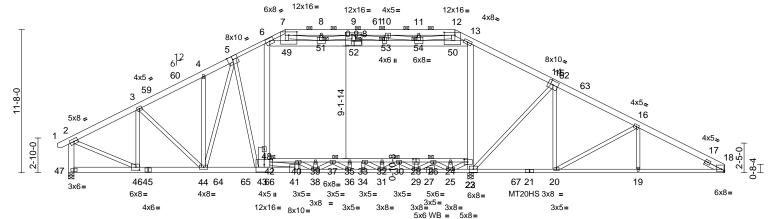
Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-17=-60, 44-53=-20, 21-39=-30, 6-47=-10, 47-48=-10,

45-48=-10, 45-49=-10, 49-50=-10, 50-51=-10,

51-52=-10, 13-52=-10

Drag: 13-21=-10, 39-46=-10, 6-46=-10

Concentrated Loads (lb)


Vert: 40=-4881 (F), 68=-326 (F)

Job Truss Truss Type Qtv Ply 927 Serenity-Roof-B326 C CP GRH 176436471 25090087-01 A06 Attic Girder 4 Job Reference (optional) Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:05 ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-10-14 32-9-4 17-8-0 20-7-5 23-3-2 31-6-0 1 2-11-5 2-7-13 2-7-13 2-7-13 2-11-5 1-3-4 -0-10-8 13-6-7 16-2-4 5-7-13 11-0-3 39-7-10 46-5-3 53-5-8 0-10-8 5-4-5 2-6-4 2-7-13 6-10-6 6-9-9 7-0-5 , 1-5-12

PROVIDE CONNECTION OF TRUSS TO BEARING PLATE AT JOINT 22 CAPABLE OF WITHSTANDING 4789 LBS UPLIFT REACTION DUE TO GRAVITY LOADING (5383 LBS NON-GRAVITY MAX.) APPLIED TO THE TRUSS. IT IS THE RESPONSIBILITY OF THE PROJECT ARCHITECT/ENGINEER TO DESIGN THE CONNECTION OF THE TRUSS TO THE BEARING PLATE, PROVIDE AND DESIGN CONNECTION SYSTEM FOR A CONTINUOUS LOAD PATH FROM THE TRUSS TO THE FOUNDATION, AND DESIGN FOOTING/FOUNDATION TO RESIST SUCH UPLIFT. FAILURE TO DO SO WILL VOID THIS CONSTRUCTION.

25-6-12 20-1-12 18-5-8 29-9-0 32-9-4 28-4-4 31-1-12 15-9-11 16-5-0 18-7-421-6-8 24-0-4 26-11-8 29-5-0 32-6-8 4-9-9 0-7-5 0-1-121-4-12 1-1-0 1-4-12 1-0-12 1-4-12 2-0-81-6-8 1-4-12 1-6-8 1-4-12 1-4-12 1-4-12 6-6-0 5-7-13 11-0-3 37-7-0 46-5-3 53-5-8 0-10-3 4-6-3 5-2-5 4-9-12 6-9-9 7-0-5 0-5-8 Scale = 1:93.9

Plate Offsets (X, Y): [7:0-8-0,0-3-4], [9:0-8-0,0-2-4], [12:0-10-8,0-2-12], [18:Edge,0-2-0], [23:0-3-8,0-2-8], [28:0-3-0,0-3-0], [43:0-8-0,0-4-12], [46:0-3-8,0-3-0]

BOT CHORD

WFBS

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.49	41-43	>800	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.74	41-43	>530	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.87	Horz(CT)	0.21	18	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.24	23-42	>809	360		
BCDL	10.0										Weight: 2020 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.2 *Except* 5-7:2x4 SP 2400F
	2.0E
BOT CHORD	2x4 SP 2400F 2.0E *Except* 47-45:2x6 SP
	No.2, 42-28,28-23:2x4 SP No.2, 45-41:2x6
	SP 2400F 2.0E
WEBS	2x4 SP No.3 *Except*
	6-43,6-52,47-2,43-48,52-13:2x6 SP No.2,
	13-22:2x6 SP 2400F 2.0E, 46-2:2x4 SP No.2
OTHERS	2x4 SP No.3
SLIDER	Right 2x4 SP No.3 1-6-0

TOP CHORD Structural wood sheathing directly applied or 4-4-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-12.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

JOINTS 1 Brace at Jt(s): 42,

51, 52, 53, 54, 26, 30, 37

BRACING

REACTIONS (size) 18= Mechanical, 22=0-5-8,

47=0-5-8 Max Horiz 47=-190 (LC 10)

Max Uplift 18=-421 (LC 12), 22=-5383 (LC

45), 47=-683 (LC 12)

Max Grav 18=8904 (LC 46), 22=793 (LC 12),

47=11748 (LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/24, 2-3=-13498/782, 3-4=-17368/1033,

4-6=-18572/1120, 6-7=-6007/480, 7-8=-3098/528, 8-9=-3095/527, 9-10=-3730/713, 10-11=-1716/1437 11-12=-1716/1437, 12-13=-4562/424

13-15=-17758/1088, 15-16=-17909/1006, 16-18=-17623/896, 2-47=-11551/702

46-47=-124/440, 44-46=-731/12075, 43-44=-832/16083, 38-43=-686/16693, 36-38=0/17735, 34-36=0/18049, 31-34=0/18049, 29-31=0/16737 25-29=-154/14351, 22-25=-775/12144, 20-22=-780/16080, 19-20=-737/15458, 18-19=-737/15458, 40-42=-790/31, 39-40=-2303/0, 37-39=-2303/0, 35-37=-3084/0. 33-35=-3084/0 32-33=-2967/0, 30-32=-2967/0 26-30=-1186/728, 24-26=-366/3070, 23-24=-366/3070

3-46=-5311/373, 3-44=-238/4930, 4-44=-697/163, 5-43=-124/1464, 42-43=-614/7199, 6-42=-531/8734 22-23=-712/6597, 13-23=-513/7232, 6-49=-10641/684, 49-51=-10263/662, 51-53=-11084/660, 53-54=-15528/928, 50-54=-12362/771, 13-50=-12999/808, 2-46=-673/12779, 7-49=-147/2360, 12-50=-204/3452, 7-51=-4776/262, 8-51=-469/63, 9-51=-4230/346,

9-52=-120/2270, 9-53=-4656/281, 10-53=-108/93, 10-54=-2535/279, 11-54=-269/67, 12-54=-5373/307,

15-22=-629/212, 15-20=-254/167,

23-25=0/1635, 24-25=-569/0, 25-26=-1727/0, 26-29=0/2288, 38-40=0/1572, 28-29=-733/20, 38-39=-499/9, 29-30=-799/0,

37-38=-363/251, 30-31=0/1377, 36-37=0/559, 31-32=-542/0, 35-36=-323/0, 31-33=-172/5 33-34=-22/125, 41-42=0/2662, 40-41=-885/0,

16-20=-135/835, 16-19=-34/151, 5-44=-2270/112

NOTES

4-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 -2 rows staggered at 0-4-0 oc, Except member 43-48 2x6 - 3 rows staggered at 0-4-0 oc, member 13-22 2x6 - 2 rows staggered at 0-9-0 oc.

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A06	Attic Girder	1	4	Job Reference (optional)	I76436471

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:05 ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- Wind: ASCE 7-16: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 6-49, 49-51, 51-52, 52-53, 53-54, 50-54, 13-50; Wall dead load (5.0psf) on member(s).6-42, 13-23
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-42, 39-40, 37-39, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- 16) Bearing at joint(s) 47 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5383 lb uplift at joint 22 and 421 lb uplift at joint 18.
- 18) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 47. This connection is for uplift only and does not consider lateral forces.
- 19) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 20) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 21) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 22) LGT4 Hurricane ties must have four studs in line below
- 23) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 24) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-18=-60, 47-55=-20, 23-42=-30, 6-49=-10, 49-51=-10, 51-52=-10, 52-53=-10, 53-54=-10, 50-54=-10, 13-50=-10

Drag: 42-48=-10, 6-48=-10, 13-23=-10

Concentrated Loads (lb) Vert: 43=-4881 (F)

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qtv Ply 927 Serenity-Roof-B326 C CP GRH 176436472 25090087-01 A07 Attic Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332 Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:06 Page: 1 ID:1d5INYb_SnpjgifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 20-7-5 25-10-14 32-10-7 17-8-0 -0-10-8 8-4-0 16-2-4 31-6-0 39-4-14 46-3-13 8-4-0 7-10-4 2-7-13 2-7-13 2-7-13 2-11-51-4-7 6-10-14 7-1-11 0-10-8 1-5-12 6-6-7 6x**2**₌11-5 6x8 4x8 ≤ 4x8 =4x5 =6x8= 56579 612 6 8 10 11 12 4x6 = 43 45 46 47 48 44 4x5 = 8x10> 3⁵⁴ 5 583₅₉ 5x8= 5x8= 3x6 60 53 9-1-14 4x5 52 14 5x8 -2 2-10-0 23 20 2119 41 62 40 39 36 17 16 33 31 28 25 18 MT18HS 3x10 = 5x8= 5x8= 4x6= 4x6= 3x5 =3x5= 3x8= 5x6= 3x6= 12x16= 5x8 II 3x10= 3x5= 4x5 II 4x8= 8x10= 5x6 ı 3x8= 6x10= 5x10= 29-10-0 32-9-4 26-11-8 29-9-0 32-6-8 16-5-0 20-7-4 23-4-12 19-2-8 22-0-0 25-6-12 28-4-4 31-1-12 8-4-0 13-11-0 37-6-8 46-3-13 53-5-8 8-4-0 1-4-12 1-4-12 1-4-12 5-7-0 1-4-12 1-4-12 4-9-4 1-10-6 6-10-14 7-1-11 0 - 2 - 12Scale = 1:97.7 2-2-0 1-4-120-1-0 0-2-12 [2:0-2-12,0-2-0], [6:0-5-8,0-3-0], [11:0-5-8,0-3-0], [1½:0-5-0,0-4-8], [15:Edge,0-0-9], [17:9-242,0-3-4], [19:0-6-8,0-3-0], [26:0-3-0,0-3-0], [28:0-3-8,0-1-8],

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.47	31-33	>832	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.77	31-33	>509	180	MT18HS	244/190
TCDL 10.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.15	15	n/a	n/a		
BCLL 0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.32	21-38	>604	360		
BCDL 10.0										Weight: 454 lb	FT = 20%

LUMBER

BOT CHORD

TOP CHORD

TOP CHORD 2x6 SP No.2

BOT CHORD 2x4 SP No.1 *Except* 38-26,23-18:2x4 SP No.2, 18-15,40-23:2x4 SP 2400F 2.0E WEBS

2x4 SP No.3 *Except* 5-39,12-19:2x6 SP No.2. 5-46.41-2.20-21.36-38.20-24.36-35.25-24.33-

35,25-27,33-32,28-27,31-32,46-12:2x4 SP No 2 21-17:2x4 SP No 1

[38:Edge,0-2-4], [41:0-3-8,0-2-8]

Right: 2x4 SP No.3

WEDGE **BRACING**

TOP CHORD Structural wood sheathing directly applied or 2-9-9 oc purlins, except end verticals, and

2-0-0 oc purlins (3-9-8 max.): 6-11.

Rigid ceiling directly applied or 2-2-0 oc

bracing. WFRS

1 Row at midpt 3-39, 13-21, 12-48

1 Brace at Jt(s): 45, JOINTS 46, 47, 48, 24, 35,

27.32

REACTIONS (size) 15= Mechanical, 19=0-5-8,

42=0-5-8

Max Horiz 42=-190 (LC 12)

Max Uplift 19=-53 (LC 15), 42=-29 (LC 14) Max Grav 15=2298 (LC 48), 19=1791 (LC

40), 42=3001 (LC 38)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/22, 2-3=-3960/13, 3-5=-4083/4, 5-6=-2145/100, 6-7=-2982/360,

7-8=-2982/360, 8-9=-3607/504 9-10=-2740/396, 10-11=-2740/396, 11-12=-1776/151, 12-14=-4107/52, 14-15=-4661/41, 2-42=-2998/72

BOT CHORD

WEBS

41-42=-107/219. 39-41=-18/3431. 36-39=0/3348, 33-36=0/5184, 31-33=0/6301, 28-31=0/6096, 25-28=0/4799, 20-25=0/1815,

19-20=-2308/0, 17-19=-2112/0, 16-17=0/4042, 15-16=-63/4042 37-38=-1137/0, 35-37=-1137/0,

34-35=-3123/0, 32-34=-3123/0, 30-32=-3174/0, 29-30=-3174/0,

27-29=-3174/0, 24-27=-686/960, 22-24=0/3308, 21-22=0/3308

3-41=-681/78, 3-39=-149/358, 38-39=-27/336, 5-38=0/1190,

19-21=-1401/162, 12-21=-46/1140, 13-21=-575/314, 13-17=-270/90,

14-17=-554/207, 14-16=0/243, 5-43=-2080/21 43-45=-2006/21

45-47=-1596/1329, 47-48=-1798/1222 44-48=-2469/25 12-44=-2566/25

2-41=0/3475, 6-43=0/354, 11-44=0/450, 6-45=-342/1277, 7-45=-138/122,

8-45=-874/122, 8-46=0/62, 8-47=-287/59,

9-47=-6/131. 9-48=-923/115. 10-48=-170/78. 11-48=-314/1439, 20-21=0/2701,

36-38=0/1559, 20-22=-352/0, 36-37=-230/0, 20-24=-2166/0, 35-36=-1293/0,

24-25=0/2106, 33-35=0/1051, 25-26=-320/0

33-34=-185/0, 25-27=-1406/0,

32-33=-302/182, 27-28=0/1531 31-32=-365/27, 28-29=-534/0, 30-31=-6/96,

17-21=0/5333

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-2 to 4-8-1, Interior (1) 4-8-1 to 10-1-4, Exterior(2R) 10-1-4 to 39-0-12, Interior (1) 39-0-12 to 48-1-6, Exterior(2E) 48-1-6 to 53-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A07	Attic	1	1	I7 Job Reference (optional)	76436472

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:06 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- 8) All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Ceiling dead load (5.0 psf) on member(s). 5-43, 43-45, 45-46, 46-47, 47-48, 44-48, 12-44; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 42 and 19. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Job Truss Truss Type Qty Ply 927 Serenity-Roof-B326 C CP GRH 176436473 25090087-01 A08 Attic 6 Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:07 Page: 1 ID:h5TFO2tIZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 20-7-5 17-8-0 25-10-14 32-10-7 17-6-14 8-4-0 16-2-4 31-6-0 39-4-14 46-3-13 2-7-13 2-7-13 2-7-13 2-11-5 8-4-0 7-10-4 6-6-7 6-10-14 1-4-10 0₁1-2 122411-5 1-4-7 6x8= 6x8 4x8 ڃ 4x8= 4x5= 6x8= 59 558 10 -10-8 4x6 = 42 45 46 43 4x5 8x10 2⁵³54β 5x8= 5x8= 3x6 56₂₅₇ 58 51 ⁵² 11-8-0 9-1-14 4x5 13 5x8 = 2-10-0 29 24 22 19 2108 40 60 39 38 35 32 30 27 17 16 15 4x5= 5x8= 3x5= 3x8= 5x8= 4x6 =4x6 =3x5 =5x6 =3x6 =12x16= 3x5= 4x5 II 4x8= 8x10= 5x8 II 3x10= 5x8= 5x6 II 3x8= 6x10= 5x10= 29-10-032-9-4 17-9-12 16-5-0 20-7-423-4-12 26-11-829-9% 532-6-8 16-2-4 19-2-8 22-0-0 25-6-12 28-4-431-1-12 <u>37-6-8</u> 39-4-14 13-11-0 46-3-13 53-5-8 8-4-0 5-7-0 1-4-12 1-4-12 1-4-12 -0 1-4-12 1-3-12 4-9-4 1-10-6 6-10-14 1-4-12 1-4-12 1-4-12 2-Scale = 1:105.6

[5:0-5-8,0-3-0], [10:0-5-8,0-3-0], [12:0-5-0,0-4-8], [14:<u>Edge</u>₂0-0-9], [16:0-3-12,0-3-4], **[18:0-60+2;0-3**-0], [25:0-3-0,0-3-0], [27:0-3-8,0-1-8], [37:Edge,0-2-4], Plate Offsets (X, Y): [40:0-3-8,0-2-8], [47:0-4-0,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.47	30-32	>836	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.76	30-32	>512	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.93	Horz(CT)	0.15	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.32	20-37	>605	360		
BCDL	10.0										Weight: 453 lb	FT = 20%

LUMBER TOP CHORD 2x6 SP No.2

BOT CHORD

BOT CHORD 2x4 SP No.1 *Except* 37-25,22-17:2x4 SP

No.2, 17-14,39-22:2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except* 4-38,11-18,41-1:2x6

SP No.2. 4-45.40-1.19-20.35-37.19-23.35-34.24-23.32-

34,24-26,32-31,27-26,30-31,45-11:2x4 SP No.2. 20-16:2x4 SP No.1

WEDGE Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-9-12 oc purlins, except end verticals, and 2-0-0 oc purlins (3-9-9 max.): 5-10.

Rigid ceiling directly applied or 2-6-0 oc

bracing.

WFRS 1 Row at midpt 2-38, 12-20, 11-47

1 Brace at Jt(s): 44, JOINTS

45, 46, 47, 23, 34,

26, 31

REACTIONS (size) 14= Mechanical, 18=0-5-8, 41=0-5-8

41=-222 (LC 15)

Max Horiz

14=2293 (LC 47), 18=1786 (LC Max Grav

39), 41=2957 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-3909/0, 2-4=-4057/0, 4-5=-2341/100,

5-6=-3002/359, 6-7=-2993/361, 7-8=-3600/503, 8-9=-2737/395, 9-10=-2737/395, 10-11=-1774/149, 11-13=-4089/46, 13-14=-4643/46,

1-41=-2957/19

BOT CHORD

WEBS

40-41=-104/246, 38-40=0/3385 35-38=0/3320, 32-35=0/5160, 30-32=0/6293, 27-30=0/6093, 24-27=0/4802, 19-24=0/1826,

18-19=-2291/0, 16-18=-2098/0, 15-16=0/4026, 14-15=-64/4026

36-37=-1129/0, 34-36=-1129/0, 33-34=-3123/0, 31-33=-3123/0, 29-31=-3183/0, 28-29=-3183/0,

26-28=-3183/0, 23-26=-704/942, 21-23=0/3270, 20-21=0/3270

2-40=-705/62, 2-38=-131/400,

37-38=-45/325, 4-37=0/1181, 18-20=-1397/105, 11-20=-46/1135,

12-20=-570/324, 12-16=-271/93, 13-16=-555/210. 13-15=0/243.

4-42=-1878/67 42-44=-1804/66

44-46=-1587/1326, 46-47=-1783/1225 43-47=-2448/0 11-43=-2544/0 1-40=0/3450

5-42=0/324. 10-43=0/447. 5-44=-341/1085. 6-44=-46/157, 7-44=-845/121, 7-45=0/60,

7-46=-279/3, 8-46=0/129, 8-47=-919/115, 9-47=-170/78, 10-47=-314/1436,

19-20=0/2696, 35-37=0/1556, 19-21=-351/0, 35-36=-230/0, 19-23=-2163/0,

34-35=-1298/0, 23-24=0/2102, 32-34=0/1056, 24-25=-319/0, 32-33=-185/0, 24-26=-1402/0,

31-32=-307/178, 26-27=0/1523 30-31=-356/12, 27-28=-531/0, 29-30=-2/94,

16-20=0/5300

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 to 10-1-4, Exterior(2R) 10-1-4 to 39-0-12, Interior (1) 39-0-12 to 48-1-6, Exterior(2E) 48-1-6 to 53-5-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	A08	Attic	6	1	Job Reference (optional)	176436473

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:07

Page: 2

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 44-45, 45-46, 46-47, 43-47, 11-43; Wall dead load (5.0psf) on member(s).4-37, 11-20
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Job Truss Truss Type Qtv Ply 927 Serenity-Roof-B326 C CP GRH 176436474 25090087-01 A09 Attic Supported Gable Job Reference (optional) Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:07 Page: 1 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 28-6-11 32-10-7 17-8-0₂₀₋₇₋₄ ₂₃₋₃₋₂25-10-14 <u>, 31-6-0</u> 16-2-4 38-6-0 1-5-122-11-4 2-7-14 2-7-13 2-7-13 2-11-5 1-4-7 16-2-4 7-9-0 6x8= 6x8 4x8 ۽ 4x8= 4x5= 6x8= 11 12 13 848514 15 16 10 17 4x6≥ 4x6 = 9 612 71 4x5 76 72 73 74 75 8 18₈₆₉₈₇ 5x8= 5x8 II 5x8= 4x5 II 8 5 ⁸³ 88 **₄**82 11-8-0 81 4x5≤ 20 2 3x5 II 89 4x5 21 61 60 59 58 57 56 55 5512 50 49 **48** 46 45 42 41 39 38 363435 32 313029 28 26 25 24 23 3x5 II 3x6= 3x8= 3x8= 3x5= 3x5= 5x6= 3x6= 3x5= 4x5= 4x5 II 3x5= 3x5= 4x6= 4x5= 32⁻³/₂-4 17-9-12 322=6-8 26-11-8 29-9-031-10-0 20-7-4 23-4-12 16-5-0-2-4 19-2-8 22-0-0 25-6-12 28-4-4 31-1-12 1-4-12 0-8-4 36-6-0 37-6-8 15-11-0 44-6-0 2-2-0 0-3-4 1-4-12 1-4-12 3-8-12 1-0-8 15-11-0 6-11-8 8-11-8 1-4-12 0 - 2 - 121-4-12 1-4-12 1-4-120-2-12 Scale = 1:92.2 1-4-12 Plate Offsets (X, Y): [7:0-2-6,Edge], [11:0-6-0,0-3-0], [16:0-5-8,0-3-0], [22:0-2-2,0-0-8], [35:0-4-0,0-2-4], [40:0-3-0,0-3-0], [52:0-4-0,0-2-4], [54:0-2-4,0-1-8], [68:0-2-0,0-0-4], [76:0-2-8,0-2-8] 2-0-0 CSI DEFL I/defl L/d **PLATES** Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.45 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.17 Vert(TL) n/a n/a 999 TCDL Rep Stress Incr WB 22 10.0 YES 0.67 Horiz(TL) 0.01 n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 534 lb BCDL 10.0 FT = 20%LUMBER Max Grav 22=302 (LC 45), 23=197 (LC 41), **BOT CHORD** 61-62=-99/214, 60-61=-99/214, 24=55 (LC 15), 25=83 (LC 7), 59-60=-99/214, 58-59=-99/214, 2x6 SP No.2 TOP CHORD 26=420 (LC 45), 27=85 (LC 7), 57-58=-99/214, 56-57=-99/214, **BOT CHORD** 2x4 SP No.2 *Except* 30-22:2x6 SP No.2 28=80 (LC 7), 29=77 (LC 7), 55-56=-99/214, 53-55=-99/214, **WEBS** 2x4 SP No.3 *Except* 10-53,17-33:2x6 SP 31=570 (LC 45), 32=83 (LC 7) No.2, 10-72,72-17:2x4 SP No.2 50-53=-105/212, 47-50=-57/139, 33=948 (LC 40), 37=206 (LC 7), 45-47=-39/111, 42-45=-56/106, **OTHERS** 2x4 SP No.3

SLIDER Right 2x4 SP No.3 -- 1-6-0

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (4-0-12 max.): 11-16.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 42-45.

WEBS 1 Row at midpt 10-52, 17-35, 9-55, 8-56

JOINTS 1 Brace at Jt(s): 49, 46, 41, 38, 72, 73,

74, 76

REACTIONS (size)

22=53-5-8, 23=53-5-8, 24=53-5-8, 25=53-5-8, 26=53-5-8, 27=53-5-8, 28=53-5-8, 29=53-5-8, 31=53-5-8, 32=53-5-8, 33=53-5-8, 37=53-5-8, 39=53-5-8, 42=53-5-8, 45=53-5-8, 47=53-5-8, 50=53-5-8, 53=53-5-8,

55=53-5-8, 56=53-5-8, 57=53-5-8, 58=53-5-8, 59=53-5-8, 60=53-5-8, 61=53-5-8, 62=53-5-8

Max Horiz 62=-221 (LC 15)

Max Uplift 22=-84 (LC 14), 23=-63 (LC 15), 24=-16 (LC 41), 26=-183 (LC 15),

31=-198 (LC 15), 33=-28 (LC 10), 53=-19 (LC 10), 55=-131 (LC 40),

56=-48 (LC 14), 57=-45 (LC 14), 58=-43 (LC 14), 59=-44 (LC 14),

60=-38 (LC 14), 61=-73 (LC 14),

62=-16 (LC 15)

39=229 (LC 7), 42=194 (LC 7), 45=194 (LC 7), 47=228 (LC 7)

50=205 (LC 7), 53=1126 (LC 40), 55=124 (LC 51), 56=223 (LC 43), 57=239 (LC 43), 58=231 (LC 43),

59=184 (LC 43), 60=164 (LC 21),

61=172 (LC 41), 62=119 (LC 21) (lb) - Maximum Compression/Maximum

Tension 1-62=-86/27, 1-2=-60/31, 2-3=-61/67,

TOP CHORD

FORCES

3-4=-72/104, 4-5=-84/139, 5-6=-97/180 6-8=-117/222, 8-9=-132/263, 9-10=-112/288, 10-11=-911/238, 11-12=-2174/452, 12-13=-2174/452, 13-14=-2874/593

14-15=-2224/461, 15-16=-2224/461, 16-17=-994/233, 17-18=-195/310,

18-20=-276/259, 20-22=-414/214

39-42=-39/111, 37-39=-56/139,

33-37=-88/202, 32-33=-92/211, 31-32=-92/211, 29-31=-97/212,

28-29=-97/210, 27-28=-97/210, 26-27=-97/210. 25-26=-138/327

24-25=-138/327, 23-24=-138/327, 22-23=-138/327, 51-52=-12/75,

49-51=-12/75, 48-49=-36/103, 46-48=-36/103, 44-46=-43/107 43-44=-43/107, 41-43=-43/107,

38-41=-37/104, 36-38=-11/61, 35-36=-11/61

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 Job
 Truss
 Truss Type
 Qty
 Ply
 927 Serenity-Roof-B326 C CP GRH

 25090087-01
 A09
 Attic Supported Gable
 1
 1
 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

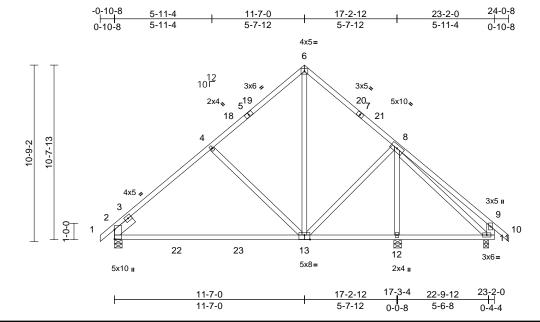
Run: 8.73 S. Aug 13 2025 Print: 8.730 S. Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:07 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WEBS

52-53=-1097/36. 10-52=-1109/113. 33-35=-922/44, 17-35=-941/125, 10-71=-41/650, 71-76=-39/643. 73-76=-451/2775, 73-74=-460/2847. 74-75=-63/753, 17-75=-66/765, 9-55=-85/171, 8-56=-183/72, 6-57=-199/69, 5-58=-191/68, 4-59=-144/68, 3-60=-126/64, 2-61=-139/91, 50-51=-75/0, 47-48=-66/0, 44-45=-79/0, 50-52=-72/17, 49-50=-50/29, 47-49=-38/3, 46-47=-44/0, 45-46=-36/0, 42-43=-80/0, 39-40=-66/0, 36-37=-74/0, 41-42=-36/0, 39-41=-43/0, 38-39=-41/0, 37-38=-44/29, 35-37=-74/9, 11-71=-20/19, 13-72=-1/26, 14-73=-30/47, 15-74=-232/65, 16-75=-43/20, 16-74=-284/1519, 14-74=-692/141, 13-73=-70/171, 13-76=-673/146, 11-76=-296/1582, 12-76=-257/67, 18-31=-550/221, 20-26=-437/232

NOTES


- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-5-14, Interior (1) 5-5-14 to 10-1-4, Exterior(2R) 10-1-4 to 39-0-12, Interior (1) 39-0-12 to 48-1-6, Exterior(2E) 48-1-6 to 53-5-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 8) Gable requires continuous bottom chord bearing
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Ceiling dead load (5.0 psf) on member(s). 10-71, 71-76, 72-76, 72-73, 73-74, 74-75, 17-75; Wall dead load (5.0psf) on member(s).10-52, 17-35
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 62, 84 lb uplift at joint 22, 19 lb uplift at joint 53, 28 lb uplift at joint 33, 198 lb uplift at joint 31, 183 lb uplift at joint 26, 16 lb uplift at joint 24, 63 lb uplift at joint 23, 131 lb uplift at joint 55, 48 lb uplift at joint 56, 45 lb uplift at joint 57, 43 lb uplift at joint 58, 44 lb uplift at joint 59, 38 lb uplift at joint 60, 73 lb uplift at joint 61 and 84 lb uplift at joint 22.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	B01	Common	1	1	Job Reference (optional)	176436475

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:08 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.3

Plate Offsets (X, Y): [13:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.47	13-16	>443	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.76	13-16	>273	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.47	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.3 *Except* 11-9:2x6 SP No.2 SLIDER Left 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-5-2 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size) 2=0-5-8, 11=0-3-8, 12=0-5-8

Max Horiz 2=265 (LC 13)

Max Uplift 2=-72 (LC 14), 11=-22 (LC 14),

12=-89 (LC 15)

2=927 (LC 25), 11=568 (LC 39),

12=774 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34. 2-4=-1146/138. 4-6=-779/163.

6-8=-773/173, 8-9=-386/248, 9-10=0/42,

9-11=-410/225

BOT CHORD 2-12=-254/780, 11-12=0/336 **WEBS**

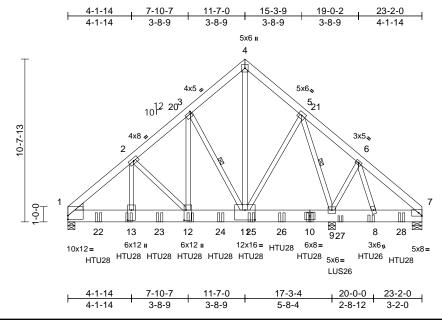
8-11=-256/41, 6-13=-83/537, 8-13=-16/360, 8-12=-684/136, 4-13=-394/238

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-7-0, Exterior(2R) 8-7-0 to 14-7-0, Interior (1) 14-7-0 to 21-0-8, Exterior(2E) 21-0-8 to 24-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, and 12. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job Truss Truss Type Qty Ply 927 Serenity-Roof-B326 C CP GRH 176436476 25090087-01 B02 2 Common Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

Plate Offsets (X, Y): [1:Edge,0-2-13], [3:0-0-12,0-1-8], [11:0-8-0,0-7-12], [12:0-8-0,0-1-8], [13:0-8-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	-0.10	12-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.17	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.75	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 482 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 BOT CHORD 2x10 SP 2400F 2.0E **WEBS** 2x4 SP No.2 WEDGE Left: 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-6-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 3-11, 5-9 REACTIONS 1=0-5-8, 7=0-7-12, 9=0-5-8

(size) Max Horiz 1=-227 (LC 35)

Max Uplift 1=-288 (LC 12), 7=-190 (LC 12),

9=-863 (LC 13)

Max Grav 1=9134 (LC 5), 7=639 (LC 19),

9=12950 (LC 6)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-10863/356, 2-3=-8108/309, 3-4=-5131/267, 4-5=-5078/283, 5-6=-64/179,

6-7=-150/560

1-13=-347/8235, 12-13=-347/8235,

11-12=-219/6214, 9-11=-48/1902,

8-9=-182/82, 7-8=-355/52 **WEBS** 2-13=-94/3732, 2-12=-2894/219,

3-12=-220/5944, 3-11=-4828/324

4-11=-266/6114, 5-11=-155/4320,

5-9=-7328/323, 6-9=-249/300, 6-8=-627/6

NOTES

BOT CHORD

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 3 rows staggered at 0-4-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. Except member 2-13 2x4 - 1 row at 0-3-0 oc. member 3-12 2x4 - 1 row at 0-6-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16: Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.

- 10) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use Simpson Strong-Tie HTU28 (20-16d Girder, 26-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 15-10-0 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent at 17-10-0 from the left end to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent at 19-10-0 from the left end to connect truss(es) to back face of bottom

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Ply Job Truss Truss Type Qty 927 Serenity-Roof-B326 C CP GRH 176436476 2 25090087-01 B02 Common Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 $ID: iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 2

15) Use Simpson Strong-Tie HTU28 (20-16d Girder, 26-10dx1 1/2 Truss) or equivalent at 21-10-0 from the left end to connect truss(es) to back face of bottom chord.

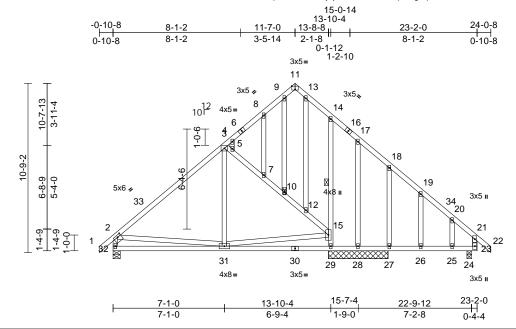
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 14-17=-20

Concentrated Loads (lb)


Vert: 10=-1890 (B), 13=-1890 (B), 12=-1890 (B), 8=-828 (B), 22=-1890 (B), 23=-1890 (B), 24=-1890 (B), 25=-1890 (B), 26=-1890 (B), 27=-828 (B), 28=-828 (B)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	B03	Common Supported Gable	1	1	Job Reference (optional)	176436477

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:uUwM_aoZ3YpsXsr8APfPREycjWu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.3

Plate Offsets (X, Y): [2:0-2-12,0-1-8], [11:0-2-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	0.06	25-26	>946	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	0.05	25-26	>999	180	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	24	n/a	n/a	1	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 192 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. WEBS

1 Row at midpt 14-29

JOINTS 1 Brace at Jt(s): 10

REACTIONS (size) 24=0-3-8, 27=3-9-8, 28=3-9-8,

> 29=3-9-8, 32=0-5-8 Max Horiz 32=-262 (LC 12)

Max Uplift 24=-3 (LC 11), 27=-298 (LC 15),

28=-58 (LC 7), 29=-49 (LC 14),

32=-30 (LC 14)

24=361 (LC 22), 27=380 (LC 26), Max Grav 28=37 (LC 22), 29=552 (LC 25),

32=716 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-32=-655/141, 1-2=0/38, 2-3=-718/76 3-4=-273/82, 4-8=-275/99, 8-9=-203/148,

9-11=-119/114, 11-13=-140/114, 13-14=-202/110, 14-17=-174/113 17-18=-199/46, 18-19=-171/62,

19-20=-240/66, 20-21=-267/74, 21-22=0/38, 21-23=-224/19, 3-5=-406/160, 5-7=-408/159,

7-10=-459/195, 10-12=-443/177,

12-15=-438/171

BOT CHORD 31-32=-297/479, 29-31=-82/245,

28-29=-91/271, 27-28=-91/271, 26-27=-91/271, 25-26=-91/271,

24-25=-91/271, 23-24=-91/271

WEBS

9-10=-61/32, 12-13=-22/46, 7-8=-106/63, 4-5=-33/5, 17-28=-101/94, 18-27=-237/218, 19-26=-87/72, 20-25=-93/47, 3-31=0/250, 15-29=-452/110, 14-15=-229/0,

2-31=-92/286. 15-31=-124/332

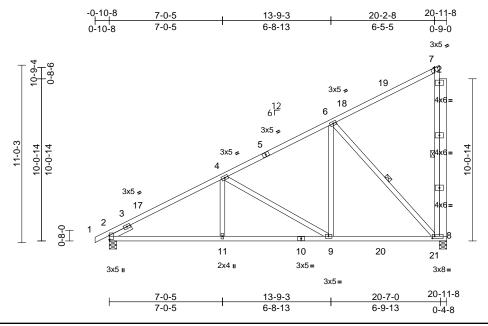
NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 8-7-0, Corner(3R) 8-7-0 to 14-7-0, Exterior(2N) 14-7-0 to 21-0-8, Corner(3E) 21-0-8 to 24-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) N/A
- 13) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24. This connection is for uplift only and does not consider lateral forces
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	C01	Half Hip	4	1	Job Reference (optional)	176436478

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.5

Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.08	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.14	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.79	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 148 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 *Except* 7-8:2x4 SP No.2

OTHERS 2x6 SP No.2 **SLIDER**

Left 2x4 SP No.3 -- 1-6-0 BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

WEBS 1 Row at midpt 2=0-5-8, 8=0-5-8 REACTIONS (size)

Max Horiz 2=387 (LC 14)

Max Uplift 2=-49 (LC 14), 8=-342 (LC 14)

Max Grav 2=954 (LC 5), 8=1731 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/23, 2-4=-1437/30, 4-6=-824/0,

6-7=-166/102, 7-8=-270/93

BOT CHORD 2-11=-399/1321, 9-11=-320/1321,

8-9=-159/721

4-11=0/263, 4-9=-691/185, 6-9=0/637, **WEBS**

6-8=-1026/227

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 752 lb down and 128 lb up at 20-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

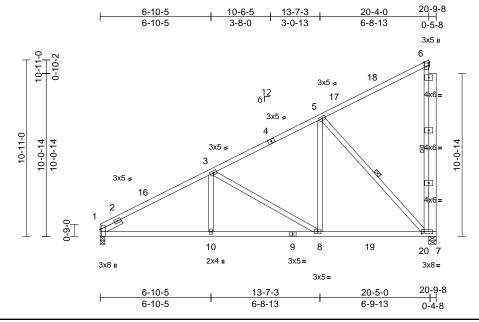
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-7=-60, 8-13=-20 Concentrated Loads (lb)

Vert: 8=-747

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	C02	Half Hip	1	1	Job Reference (optional)	176436479

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [1:0-5-1,Edge], [7:0-1-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.08	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.14	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 146 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 *Except* 6-7:2x4 SP No.2

OTHERS 2x6 SP No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-7-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

bracing. **WEBS** 1 Row at midpt

6-7, 5-7 REACTIONS 1=0-3-8, 7=0-5-8 (size)

Max Horiz 1=370 (LC 14)

Max Uplift 1=-30 (LC 14), 7=-342 (LC 14) Max Grav 1=900 (LC 5), 7=1714 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-1401/30, 3-5=-812/0, 5-6=-162/100,

6-7=-265/93

BOT CHORD 1-10=-405/1286, 8-10=-319/1286,

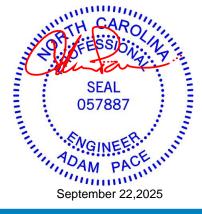
7-8=-159/716

3-10=0/254, 3-8=-658/185, 5-8=0/624,

5-7=-1018/227

WEBS NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-0 to 3-2-0. Interior (1) 3-2-0 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 1. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 752 lb down and 129 lb up at 20-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

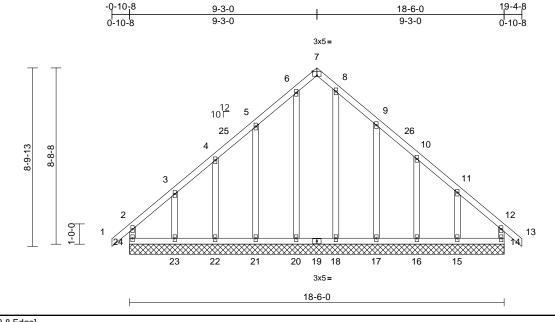
LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-6=-60, 7-12=-20 Concentrated Loads (lb)

Vert: 7=-747

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	D01	Common Supported Gable	1	1	Job Reference (optional)	176436480

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.9 Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0	1									Weight: 127 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

REACTIONS (size)

14=18-6-0, 15=18-6-0, 16=18-6-0, 17=18-6-0, 18=18-6-0, 20=18-6-0, 21=18-6-0, 22=18-6-0, 23=18-6-0, 24=18-6-0

Max Horiz 24=-225 (LC 12)

Max Uplift 14=-48 (LC 11), 15=-163 (LC 15),

16=-46 (LC 15), 17=-117 (LC 15), 21=-114 (LC 14), 22=-47 (LC 14),

23=-168 (LC 14), 24=-71 (LC 10)

Max Grav 14=190 (LC 30), 15=223 (LC 26), 16=173 (LC 22), 17=255 (LC 22),

18=222 (LC 22), 20=227 (LC 21), 21=252 (LC 21), 22=172 (LC 21), 23=226 (LC 25), 24=206 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

2-24=-168/64, 1-2=0/39, 2-3=-165/141

3-4=-106/91, 4-5=-93/111, 5-6=-117/176, 6-7=-96/129, 7-8=-93/122, 8-9=-119/167

9-10=-76/102, 10-11=-89/71, 11-12=-151/116,

12-13=0/39, 12-14=-155/46 **BOT CHORD**

23-24=-105/143, 22-23=-105/143, 21-22=-105/143, 20-21=-105/143, 18-20=-105/143, 17-18=-105/143,

16-17=-105/143, 15-16=-105/143, 14-15=-105/143

WEBS

6-20=-187/8, 8-18=-183/11, 5-21=-212/135, 4-22=-142/82, 3-23=-172/152, 9-17=-214/138, 10-16=-142/81,

11-15=-170/151

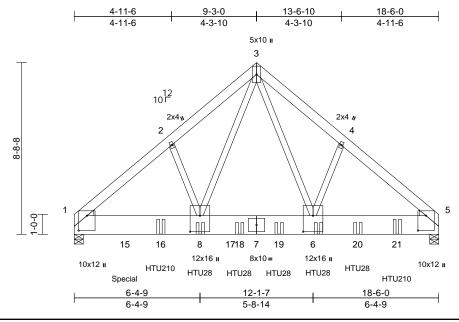
NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-2-12, Interior (1) 2-2-12 to 6-2-12, Exterior(2R) 6-2-12 to 12-2-4, Interior (1) 12-2-4 to 16-2-4, Exterior(2E) 16-2-4 to 19-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	D02	Common Girder	1	3	Job Reference (optional)	176436481

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:09 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.5

Plate Offsets (X, Y): [1:0-9-0,0-5-0], [5:0-9-0,0-5-0], [6:0-9-12,0-6-0], [8:0-9-12,0-6-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.09	8-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.15	8-11	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.87	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 546 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x12 SP 2400F 2.0E

WEBS 2x4 SP No.2 *Except* 8-2,6-4:2x4 SP No.3

WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-5-8, 5=0-5-8

1=181 (LC 11) Max Horiz

Max Grav 1=14963 (LC 21), 5=10831 (LC 6) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-14218/0, 2-3=-14152/0, 3-4=-12497/0,

4-5=-12624/0

BOT CHORD 1-8=0/10921, 6-8=0/7222, 5-6=0/9610

3-8=0/10693, 2-8=-243/269, 3-6=0/6972,

4-6=-157/266

WEBS NOTES

FORCES

- 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc Bottom chords connected with Simpson SDS 1/4 x 4-1/2 screws as follows: 2x12 - 3 rows staggered at 0-4-0 oc. Web chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie HTU210 (20-16d Girder, 32-10dx1 1/2 Truss) or equivalent spaced at 12-0-0 oc max. starting at 4-4-12 from the left end to 16-4-12 to connect truss(es) to back face of bottom chord.
- 11) Use Simpson Strong-Tie HTU28 (20-16d Girder, 26-10dx1 1/2 Truss. Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-4-12 from the left end to 14-4-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 8869 lb down and 536 lb up at 2-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

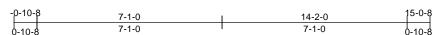
LOAD CASE(S) Standard

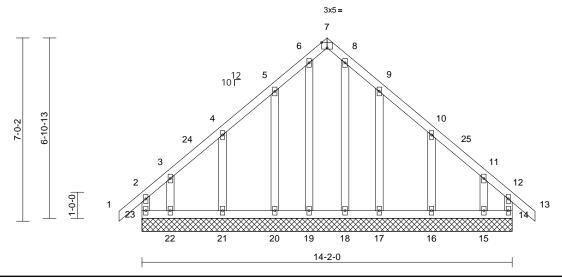
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-5=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 8=-1893 (B), 6=-1893 (B), 15=-5509 (B), 16=-1897 (B), 18=-1893 (B), 19=-1893 (B), 20=-1893


(B), 21=-1893 (B)



September 22,2025

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	E01	Common Supported Gable	1	1	Job Reference (optional)	176436482

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:0onYPTZj?DtmDhkRwspQ1kycjVu-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:44.1

Plate Offsets	(X,	Y):	[7:0-2-8,Edge	,
---------------	-----	-----	---------------	---

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 98 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc

BOT CHORD

REACTIONS (size) 14=14-2-0, 15=14-2-0, 16=14-2-0, 17=14-2-0, 18=14-2-0, 19=14-2-0,

> 20=14-2-0, 21=14-2-0, 22=14-2-0, 23=14-2-0

Max Horiz 23=177 (LC 13)

Max Uplift 14=-77 (LC 11), 15=-142 (LC 15),

16=-70 (LC 15), 17=-85 (LC 15), 20=-84 (LC 14), 21=-70 (LC 14), 22=-149 (LC 14), 23=-103 (LC 10)

Max Grav 14=152 (LC 25), 15=162 (LC 26), 16=216 (LC 22), 17=212 (LC 22), 18=139 (LC 22), 19=139 (LC 21),

20=212 (LC 21), 21=216 (LC 21), 22=174 (LC 12), 23=174 (LC 31)

FORCES (lb) - Maximum Compression/Maximum

Tension

2-23=-136/76, 1-2=0/38, 2-3=-135/122,

3-4=-83/89, 4-5=-69/136, 5-6=-94/234, 6-7=-71/159, 7-8=-71/159, 8-9=-94/234,

9-10=-68/136, 10-11=-65/74, 11-12=-120/97,

12-13=0/38, 12-14=-120/57 **BOT CHORD**

22-23=-86/155, 21-22=-86/155, 20-21=-86/155, 19-20=-86/155,

18-19=-86/155, 17-18=-86/155,

16-17=-86/155, 15-16=-86/155,

14-15=-86/155

WEBS

6-19=-126/12, 8-18=-126/12, 5-20=-180/138, 4-21=-174/136, 3-22=-126/126, 9-17=-180/138, 10-16=-174/135,

11-15=-117/139

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 4-1-0, Corner(3R) 4-1-0 to 10-1-0, Exterior(2N) 10-1-0 to 12-0-8, Corner(3E) 12-0-8 to 15-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

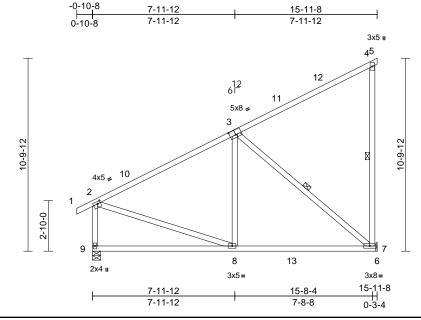
Page: 1

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 23, 77 lb uplift at joint 14, 84 lb uplift at joint 20, 70 lb uplift at joint 21, 149 lb uplift at joint 22, 85 lb uplift at joint 17, 70 lb uplift at joint 16 and 142 lb uplift at joint
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	G01	Monopitch	5	1	Job Reference (optional)	176436483

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.6

Plate Offsets (X, Y): [2:0-2-0,0-1-8], [3:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.12	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.20	7-8	>923	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	-0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-3:2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 4-7:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 4-7, 3-7

REACTIONS (size)

7= Mechanical, 9=0-5-8 Max Horiz 9=273 (LC 14)

Max Uplift 7=-221 (LC 14) Max Grav 7=831 (LC 5), 9=754 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-4=-677/119, 4-5=-12/0,

4-7=-328/122, 2-9=-655/84 **BOT CHORD** 8-9=-334/218, 7-8=-195/603, 6-7=0/0

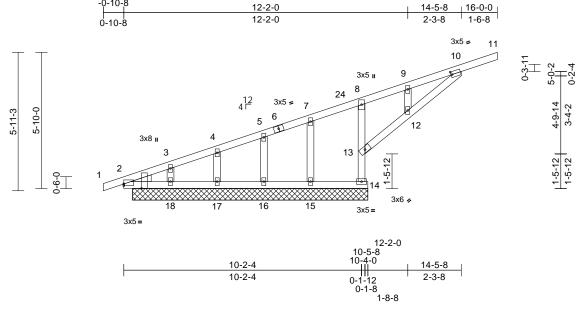
WEBS 3-8=0/313, 3-7=-768/250, 2-8=0/486

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-11-8, Exterior(2E) 12-11-8 to 15-11-8 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	176436484

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.4

Plate Offsets (X, Y): [[2:Edge,0-0-14], [2:0-2-	5,Edge], [10:0-0-8,0-1-8]
-------------------------	--------------------------	---------------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	-0.07	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 68 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.1 *Except* 9-12:2x4 SP No.2 **OTHERS** 2x4 SP No.3

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Except:

10-0-0 oc bracing: 13-14

BOT CHORD Rigid ceiling directly applied or 5-6-15 oc

bracing.

REACTIONS (size) 2=10-1-0. 13=10-1-0. 14=10-1-0.

15=10-1-0, 16=10-1-0, 17=10-1-0,

18=10-1-0

Max Horiz 2=230 (LC 11)

Max Uplift 2=-81 (LC 21), 13=-241 (LC 11),

14=-68 (LC 21), 15=-25 (LC 10), 16=-37 (LC 14), 17=-27 (LC 10),

18=-92 (LC 14)

Max Grav 2=159 (LC 11), 13=954 (LC 21),

14=30 (LC 10), 15=144 (LC 1),

16=166 (LC 21), 17=157 (LC 1),

18=232 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/17, 2-3=-650/493, 3-4=-601/485,

TOP CHORD 4-5=-570/488, 5-7=-527/472, 7-8=-523/532,

8-9=-549/663, 9-10=-546/709, 10-11=-45/0,

13-14=0/0, 8-13=-315/203

BOT CHORD 2-18=-443/294, 17-18=-443/294, 16-17=-443/294, 15-16=-443/294,

14-15=-443/294, 12-13=-891/527,

10-12=-831/556

WEBS 3-18=-147/145, 4-17=-128/74,

5-16=-159/113, 7-15=-56/29, 9-12=-72/42

NOTES

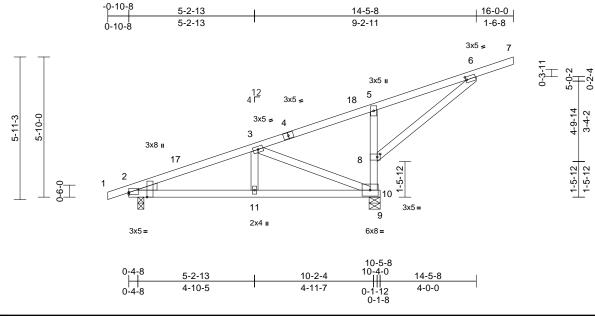
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-0-0. Interior (1) 2-0-0 to 16-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 14 and 92 lb uplift at joint 18.

12) N/A

- 13) Non Standard bearing condition. Review required.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	H02	Monopitch	6	1	Job Reference (optional)	176436485

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries. Inc. Thu Sep 18 13:49:05 ID:nLPVeuW3K4TytrtY3lLLguzRRHK-Sn21Ou5PTPxpgo7rxlCQaHKtFq64E5r_TkNzBVycY8U

Page: 1

Scale = 1:47.9

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [6:0-0-8,0-1-8], [8:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	0.03	10-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.05	10-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.30	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 66 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 5-10:2x4 SP No.1

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Except:

4-7-0 oc bracing: 8-10

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 5-11-5 oc bracing: 6-8.

REACTIONS (lb/size) 2=358/0-3-0, 10=948/0-5-8

Max Horiz 2=209 (LC 11)

Max Uplift 2=-111 (LC 10), 10=-309 (LC 10) Max Grav 2=358 (LC 1), 10=1186 (LC 21)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown. TOP CHORD 2-17=-325/83, 3-17=-297/29, 3-4=-513/430,

4-18=-497/501, 5-18=-496/521,

5-6=-548/744, 8-10=-947/558, 5-8=-325/177

BOT CHORD 2-11=-212/302, 10-11=-212/302,

6-8=-900/551 **WEBS** 3-10=-627/485

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 16-0-0 zone; cantilever left and right exposed; porch left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

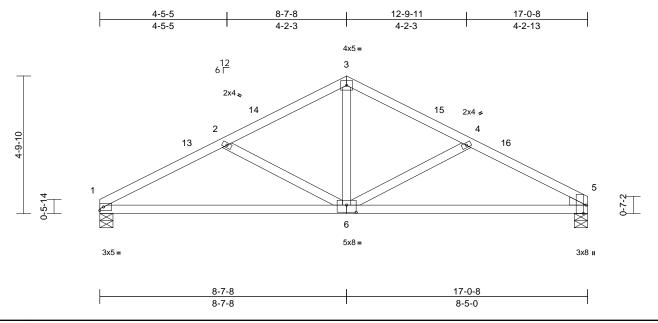
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 309 lb uplift at joint 10 and 111 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	J01	Common	5	1	Job Reference (optional)	176436486

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

Plate Offsets (X, Y): [5:0-3-8,Edge], [6:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.09	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.19	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-1-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

1=0-5-8, 5=0-5-8 REACTIONS (size)

Max Horiz 1=71 (LC 14)

Max Uplift 1=-66 (LC 14), 5=-64 (LC 15)

Max Grav 1=747 (LC 20), 5=746 (LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=-1256/309, 2-3=-879/232, 3-4=-871/231,

4-5=-1211/300 **BOT CHORD** 1-5=-221/1083

WEBS 3-6=-51/474, 4-6=-401/159, 2-6=-439/174

NOTES

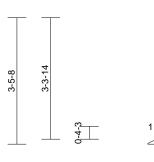
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-7-8, Exterior(2R) 5-7-8 to 11-7-8, Interior (1) 11-7-8 to 14-0-8, Exterior(2E) 14-0-8 to 17-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

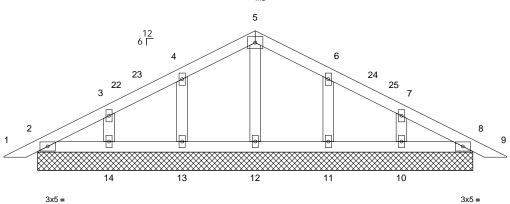
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	PBA	Piggyback	2	1	Job Reference (optional)	176436487

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

4x5 =

11-10-14

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=11-10-14, 8=11-10-14,

10=11-10-14, 11=11-10-14, 12=11-10-14, 13=11-10-14,

14=11-10-14

Max Horiz 2=52 (LC 18)

Max Uplift 2=-9 (LC 15), 8=-12 (LC 15),

10=-45 (LC 15), 11=-47 (LC 15), 13=-47 (LC 14), 14=-46 (LC 14)

Max Grav 2=125 (LC 21), 8=125 (LC 22),

10=240 (LC 22), 11=243 (LC 22), 12=143 (LC 22), 13=243 (LC 21),

14=240 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/17, 2-3=-46/33, 3-4=-56/49,

4-5=-64/107, 5-6=-64/107, 6-7=-56/42,

7-8=-30/26, 8-9=0/17

BOT CHORD 2-14=-9/58, 13-14=-9/58, 12-13=-9/58,

11-12=-9/58, 10-11=-9/58, 8-10=-9/58 WFBS 5-12=-102/0, 4-13=-207/121, 3-14=-183/88,

6-11=-207/121, 7-10=-183/88

NOTES

TOP CHORD

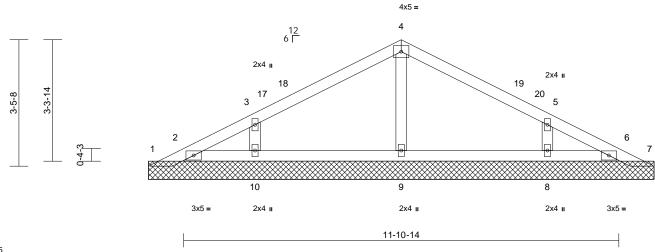
Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


R802.10.2 and referenced standard ANSI/TPI 1.



Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	PBA1	Piggyback	18	1	Job Reference (optional)	176436488

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 47 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=13-10-0, 2=13-10-0, 6=13-10-0, 7=13-10-0, 8=13-10-0, 9=13-10-0,

10=13-10-0

Max Horiz 1=52 (LC 18)

1=-26 (LC 15), 7=-11 (LC 15), Max Uplift 8=-92 (LC 15), 10=-91 (LC 14)

Max Grav 1=45 (LC 21), 2=69 (LC 1), 6=57

(LC 1), 7=47 (LC 22), 8=439 (LC 22), 9=299 (LC 21), 10=440 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-56/65, 2-3=-54/48, 3-4=-124/94,

4-5=-124/94, 5-6=-36/48, 6-7=-19/15

BOT CHORD 2-10=-8/45, 9-10=-8/45, 8-9=-8/45, 6-8=-8/45 4-9=-213/92, 3-10=-385/205, 5-8=-384/205 WEBS

NOTES

TOP CHORD

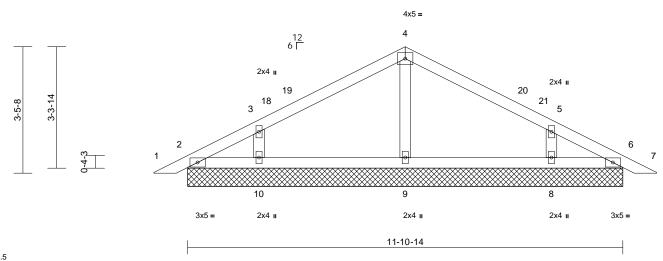
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1 and 11 lb uplift at joint 7.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Ply 927 Serenity-Roof-B326 C CP GRH Job Truss Truss Type Qty 176436489 25090087-01 PBA2 2 4 Piggyback Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:10 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 188 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=11-10-14, 6=11-10-14, 8=11-10-14, 9=11-10-14,

10=11-10-14 Max Horiz 2=52 (LC 18)

Max Uplift 2=-11 (LC 15), 6=-4 (LC 11), 8=-87 (LC 15), 10=-87 (LC 14) Max Grav

2=86 (LC 1), 6=86 (LC 1), 8=423 (LC 22), 9=302 (LC 21), 10=423

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-53/45, 3-4=-123/96,

4-5=-123/96, 5-6=-33/45, 6-7=0/17

BOT CHORD 2-10=-8/47, 9-10=-2/46, 8-9=-2/46, 6-8=-8/47 4-9=-215/91, 3-10=-375/198, 5-8=-375/198

WEBS NOTES

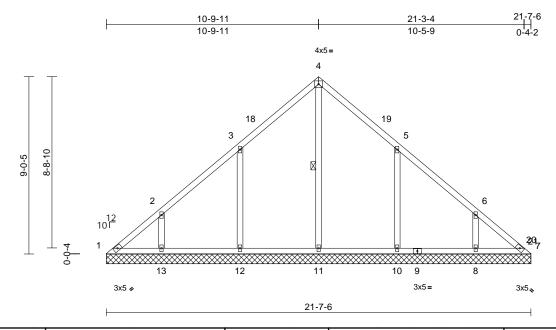
- 4-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 4-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB1	Valley	1	1	Job Reference (optional)	176436490

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:11 ID:uRu6rMLa1rlmrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 106 lb	FT = 20%

LUMBER

Scale = 1:58.7

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt

REACTIONS (size) 1=21-7-6, 7=21-7-6, 8=21-7-6, 10=21-7-6, 11=21-7-6, 12=21-7-6,

13=21-7-6 Max Horiz 1=207 (LC 11)

Max Uplift 1=-48 (LC 10), 7=-6 (LC 11),

8=-114 (LC 15), 10=-174 (LC 15), 12=-173 (LC 14), 13=-120 (LC 14)

Max Grav 1=149 (LC 25), 7=109 (LC 27), 8=362 (LC 25), 10=473 (LC 6)

11=414 (LC 27), 12=473 (LC 5),

13=370 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-213/174, 2-3=-164/132, 3-4=-188/181, TOP CHORD 4-5=-188/154, 5-6=-116/82, 6-7=-168/107

BOT CHORD 1-13=-76/154, 12-13=-76/154,

11-12=-76/154, 10-11=-76/154, 8-10=-76/154,

7-8=-76/154

WFBS 4-11=-208/3. 3-12=-376/222. 2-13=-265/163.

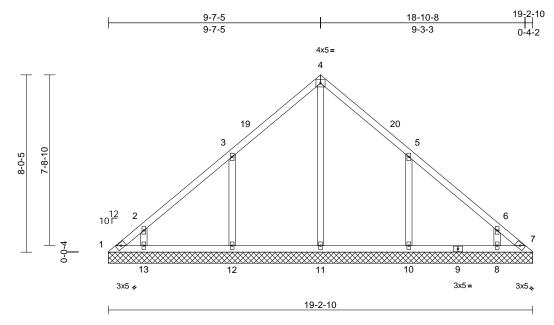
5-10=-376/222, 6-8=-264/161

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-10-0, Interior (1) 2-10-0 to 7-10-0, Exterior(2R) 7-10-0 to 13-10-0, Interior (1) 13-10-0 to 18-3-3, Exterior(2E) 18-3-3 to 21-3-3 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 6 lb uplift at joint 7, 173 lb uplift at joint 12, 120 lb uplift at joint 13, 174 lb uplift at joint 10 and 114 lb uplift at joint
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB2	Valley	1	1	Job Reference (optional)	I76436491

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:11 ID:yJln_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.29	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 90 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=19-2-10, 7=19-2-10, 8=19-2-10,

10=19-2-10, 11=19-2-10, 12=19-2-10, 13=19-2-10

Max Horiz 1=184 (LC 11)

Max Uplift 1=-96 (LC 10), 8=-53 (LC 15),

10=-193 (LC 15), 12=-174 (LC 14),

13=-102 (LC 14)

Max Grav 1=123 (LC 13), 7=0 (LC 13), 8=303

(LC 25), 10=477 (LC 25), 11=463 (LC 27), 12=480 (LC 5), 13=317

(LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-218/205, 2-3=-217/187, 3-4=-207/267, 4-5=-207/241, 5-6=-124/66, 6-7=-72/42

BOT CHORD 1-13=-45/64, 12-13=-18/55, 11-12=-18/55, 10-14-

10-11=-18/55, 8-10=-18/55, 7-8=-18/55

WEBS 4-11=-255/59, 3-12=-379/222, 2-13=-260/173, 5-10=-376/229, 6-8=-252/154

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-7-10, Exterior(2R) 6-7-10 to 12-7-10, Interior (1) 12-7-10 to 15-10-6, Exterior(2E) 15-10-6 to 18-10-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 1, 174 lb uplift at joint 12, 102 lb uplift at joint 13, 193 lb uplift at joint 10 and 53 lb uplift at joint 8.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

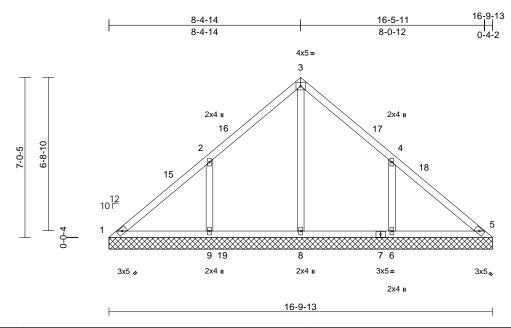
LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB3	Valley	1	1	Job Reference (optional)	76436492

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:11 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING TOP CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-9-13, 5=16-9-13, 6=16-9-13, 8=16-9-13, 9=16-9-13

Max Horiz 1=160 (LC 11)

Max Uplift 1=-58 (LC 10), 6=-183 (LC 15),

9=-188 (LC 14)

1=82 (LC 35), 5=1 (LC 25), 6=510 Max Grav

(LC 6), 8=654 (LC 24), 9=510 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-105/370, 2-3=-25/319, 3-4=-2/298,

4-5=-139/301

1-9=-197/76, 8-9=-197/74, 6-8=-197/74,

5-6=-197/74 WEBS

3-8=-470/0. 2-9=-392/220. 4-6=-392/218

NOTES

BOT CHORD

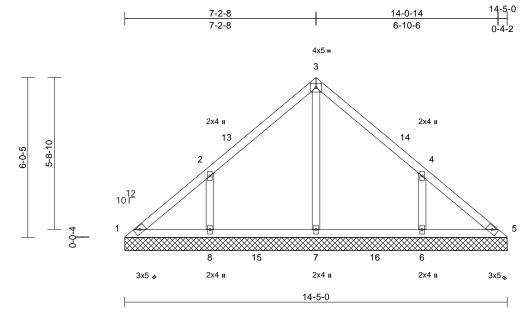
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-3, Exterior(2R) 5-5-3 to 11-5-3, Interior (1) 11-5-3 to 13-5-9, Exterior(2E) 13-5-9 to 16-5-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 1, 188 lb uplift at joint 9 and 183 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB4	Valley	1	1	Job Reference (optional)	176436493

Run: 8,73 E Nov 16 2023 Print: 8,730 E Nov 16 2023 MiTek Industries, Inc. Thu Sep 18 13:50:22 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-e_Jvzv2ysgucfxf03O7yGx6Vkg6_FrxddW0fTQycY7F

Page: 1

Scale = $1:43$.	Scal	le	=	1	:43	۷.
------------------	------	----	---	---	-----	----

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 62 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS All bearings 14-5-0.

(lb) - Max Horiz 1=-137 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s) 1

except 6=-155 (LC 15), 8=-158 (LC

14)

Max Grav All reactions 250 (lb) or less at joint (s) 1, 5 except 6=455 (LC 21),

7=403 (LC 24), 8=455 (LC 20)

(lb) - Max. Comp./Max. Ten. - All forces 250 **FORCES** (lb) or less except when shown.

WEBS 2-8=-374/196. 4-6=-374/195

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

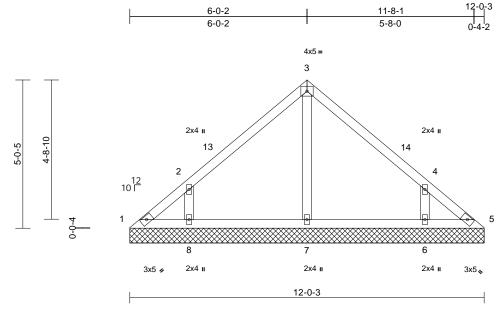
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 1 except (jt=lb) 8=157, 6=154.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB5	Valley	1	1	Job Reference (optional)	176436494

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Sep 18 13:50:33 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-p5U3HfAsG2H2Td?8CBqXDF3Ox6u5KrdE9kAkMHycY74

Page: 1

Scale = 1:39.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 50 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS All bearings 12-0-3.

(lb) - Max Horiz 1=114 (LC 11)

Max Uplift All uplift 100 (lb) or less at joint(s)

1, 5 except 6=-136 (LC 15), 8=-140

(LC 14)

Max Grav All reactions 250 (lb) or less at joint (s) 1, 5 except 6=435 (LC 21),

7=260 (LC 20), 8=435 (LC 20) (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown. 2-8=-401/220. 4-6=-401/220

WEBS NOTES

FORCES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 1, 5 except (jt=lb) 8=139, 6=136.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

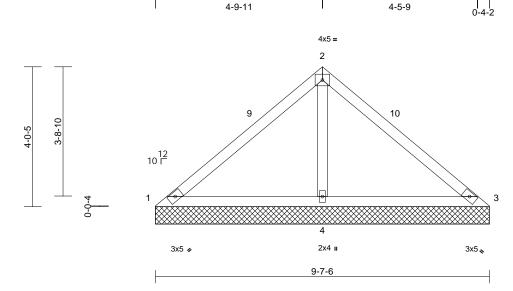
LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB6	Valley	1	1	Job Reference (optional)	176436495


4-9-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries. Inc. Thu Sep 18 13:50:44 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-_DeDaQJlgRgUIJLFM?W6Aa0E4YZzPolshxLqE8ycY6v

9-3-4

Page: 1

Scale = 1:33.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.42	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

9-7-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=31/9-7-6, 3=31/9-7-6,

4=707/9-7-6 Max Horiz 1=90 (LC 11)

1=-49 (LC 21), 3=-49 (LC 20), Max Uplift

4=-108 (LC 14)

Max Grav 1=95 (LC 20), 3=95 (LC 21), 4=771

(LC 21)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

TOP CHORD 1-9=-114/264, 2-9=-97/372, 2-10=-97/372,

3-10=-114/264 **WEBS** 2-4=-636/271

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-7-11, Exterior(2E) 6-7-11 to 9-7-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

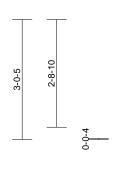
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

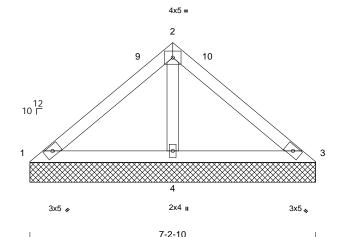
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 1, 49 lb uplift at joint 3 and 108 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB7	Valley	1	1	Job Reference (optional)	176436496

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries. Inc. Thu Sep 18 13:51:00 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-WlcGxuVovLhDDnZKHMpspyg00?2C92CDNRDgoDycY6f

Page: 1

Scale = 1:29.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-2-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=41/7-2-10, 3=41/7-2-10,

4=495/7-2-10 Max Horiz 1=-67 (LC 10)

Max Uplift 1=-17 (LC 21), 3=-17 (LC 20),

4=-73 (LC 14)

Max Grav 1=105 (LC 20), 3=105 (LC 21),

4=530 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

WEBS 2-4=-419/199

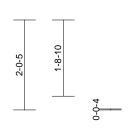
NOTES

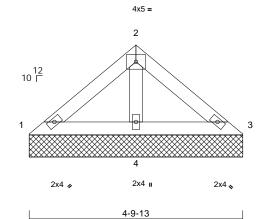
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-2-14, Exterior(2E) 4-2-14 to 7-2-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 17 lb uplift at joint 3 and 73 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLB8	Valley	1	1	Job Reference (optional)	176436497

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries. Inc. Thu Sep 18 13:51:12 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-AcLoS?eJ41CWfdUd_u0gIUA5eqBRzVz_7I7IDWycY6T

Page: 1

Scale = 1:26

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-9-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=50/4-9-13, 3=50/4-9-13,

4=285/4-9-13 Max Horiz 1=-43 (LC 10)

Max Uplift 3=-7 (LC 15), 4=-33 (LC 14)

Max Grav 1=88 (LC 20), 3=88 (LC 21), 4=292

(LC 20)

(lb) - Max. Comp./Max. Ten. - All forces 250

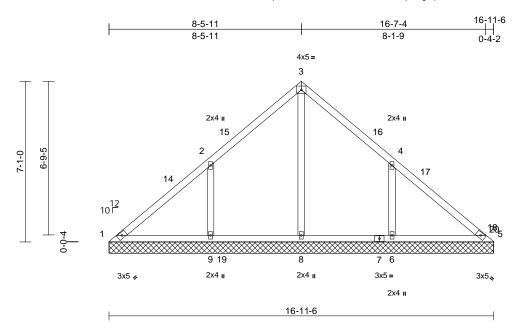
(lb) or less except when shown.

FORCES NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 33 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


September 22,2025

ſ	Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
	25090087-01	VLD1	Valley	1	1	Job Reference (optional)	I76436498

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:11 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	=	1	:5	n.	8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 76 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=16-11-6, 5=16-11-6, 6=16-11-6, 8=16-11-6, 9=16-11-6

Max Horiz 1=161 (LC 11)

1=-21 (LC 10), 6=-183 (LC 15), Max Uplift

9=-187 (LC 14)

Max Grav 1=123 (LC 25), 5=86 (LC 21),

6=520 (LC 25), 8=496 (LC 24),

9=526 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-145/253, 2-3=-108/190, 3-4=-109/170,

4-5=-111/218 **BOT CHORD**

1-9=-130/131, 8-9=-130/131, 6-8=-130/131,

5-6=-130/131 WEBS

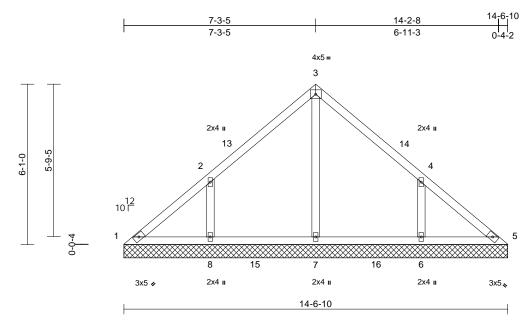
3-8=-312/0. 2-9=-397/221. 4-6=-396/219

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-0, Exterior(2R) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 13-7-3, Exterior(2E) 13-7-3 to 16-7-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1, 187 lb uplift at joint 9 and 183 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD2	Valley	1	1	Job Reference (optional)	176436499

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12

Page: 1

Scale = 1:43.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 63 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-6-10, 5=14-6-10, 6=14-6-10, 7=14-6-10, 8=14-6-10

Max Horiz 1=-138 (LC 10) 1=-24 (LC 10), 6=-156 (LC 15), Max Uplift

8=-159 (LC 14)

Max Grav 1=124 (LC 30), 5=99 (LC 24),

6=456 (LC 21), 7=407 (LC 24),

8=456 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-153/145, 2-3=-173/121, 3-4=-173/111,

4-5=-121/110

BOT CHORD 1-8=-61/127, 7-8=-61/101, 6-7=-61/101,

5-6=-61/101 WEBS

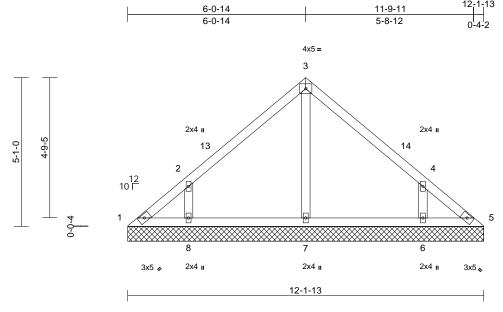
3-7=-227/0. 2-8=-375/197. 4-6=-375/196

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-3-10, Interior (1) 3-3-10 to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 159 lb uplift at joint 8 and 156 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


September 22,2025

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD3	Valley	1	1	Job Reference (optional)	176436500

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 50 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-1-13, 5=12-1-13, 6=12-1-13, 7=12-1-13, 8=12-1-13

Max Horiz 1=-115 (LC 12)

Max Uplift 1=-33 (LC 10), 5=-5 (LC 11).

6=-136 (LC 15), 8=-140 (LC 14)

1=94 (LC 25), 5=73 (LC 24), 6=434 Max Grav (LC 21), 7=261 (LC 21), 8=434 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-117/101, 2-3=-216/116, 3-4=-216/116,

4-5=-91/63

1-8=-32/79, 7-8=-32/74, 6-7=-32/74,

5-6=-32/74 WEBS

3-7=-174/0, 2-8=-397/217, 4-6=-397/217

NOTES

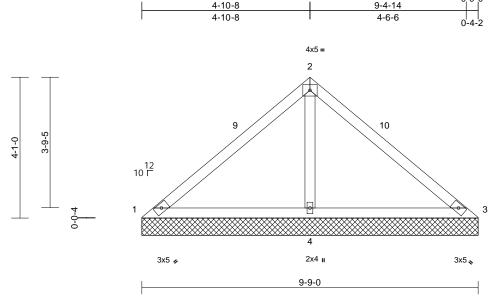
BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 5 lb uplift at joint 5, 140 lb uplift at joint 8 and 136 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD4	Valley	1	1	Job Reference (optional)	176436501

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-9-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-0, 3=9-9-0, 4=9-9-0

Max Horiz 1=-91 (LC 10)

Max Uplift 1=-52 (LC 21), 3=-52 (LC 20),

4=-111 (LC 14)

1=94 (LC 20), 3=94 (LC 21), 4=788 Max Grav

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-117/382, 2-3=-117/382

1-4=-249/175, 3-4=-249/175 **BOT CHORD**

WEBS 2-4=-650/275

NOTES

TOP CHORD

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-9-5, Exterior(2E) 6-9-5 to 9-9-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

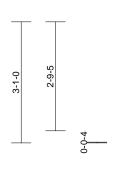
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 1, 52 lb uplift at joint 3 and 111 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

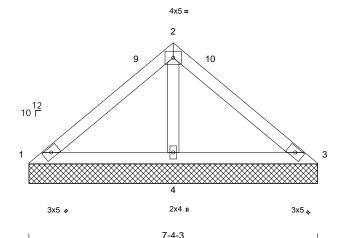
LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD5	Valley	1	1	Job Reference (optional)	76436502

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-4-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-4-3, 3=7-4-3, 4=7-4-3

Max Horiz 1=68 (LC 11)

Max Uplift 1=-19 (LC 21), 3=-19 (LC 20),

4=-76 (LC 14)

Max Grav 1=105 (LC 20), 3=105 (LC 21),

4=545 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-92/236, 2-3=-92/236

1-4=-184/155, 3-4=-184/155 **BOT CHORD**

WEBS 2-4=-432/204

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

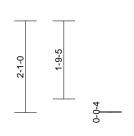
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1, 19 lb uplift at joint 3 and 76 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

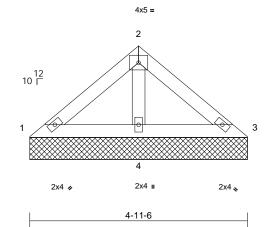
LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD6	Valley	1	1	Job Reference (optional)	176436503

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	1		1							Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-11-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-11-6, 3=4-11-6, 4=4-11-6

Max Horiz 1=-44 (LC 10) Max Uplift 3=-7 (LC 15), 4=-35 (LC 14)

Max Grav 1=89 (LC 20), 3=89 (LC 21), 4=303

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-82/108, 2-3=-82/108

BOT CHORD 1-4=-87/91, 3-4=-87/91

WEBS 2-4=-218/101

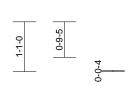
NOTES

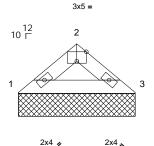
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 35 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 22,2025




Job	Truss	Truss Type	Qty	Ply	927 Serenity-Roof-B326 C CP GRH	
25090087-01	VLD7	Valley	1	1	Job Reference (optional)	176436504

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Wed Sep 17 13:40:12 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-10

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 7 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

2-6-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-6-10, 3=2-6-10 Max Horiz 1=-21 (LC 12)

Max Uplift 1=-9 (LC 14), 3=-9 (LC 15)

Max Grav 1=115 (LC 20), 3=115 (LC 21)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-146/63, 2-3=-146/63

BOT CHORD 1-3=-34/104

NOTES

FORCES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1 and 9 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.