

RE: 25-3406-B

CLB-LOT#4

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 25-3406-B

Lot/Block: Model:
Address: Subdivision:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 32 individual, dated Truss Design Drawings and 0 Additional Drawings.

NI-	01"	T N	D-4-	NI-	01"	T N	D-1-
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	175644190	M01	8/15/2025	21	175644210	V05	8/15/2025
2	175644191	M01A	8/15/2025	22	175644211	V06	8/15/2025
3	175644192	PB01	8/15/2025	23	175644212	V07	8/15/2025
4	175644193	PB01GE	8/15/2025	24	175644213	V08	8/15/2025
5	175644194	T01	8/15/2025	25	175644214	V09GE	8/15/2025
6	175644195	T01G	8/15/2025	26	175644215	V10	8/15/2025
7	175644196	T01GE	8/15/2025	27	175644216	V11	8/15/2025
8	175644197	T02	8/15/2025	28	175644217	V12	8/15/2025
9	175644198	T02G	8/15/2025	29	175644218	V13	8/15/2025
10	175644199	T02GE	8/15/2025	30	175644219	V14	8/15/2025
11	175644200	T03	8/15/2025	31	175644220	V15	8/15/2025
12	175644201	T03GE	8/15/2025	32	175644221	V16	8/15/2025
13	175644202	T03S	8/15/2025				
14	175644203	T05	8/15/2025				
15	175644204	T05A	8/15/2025				

8/15/2025

8/15/2025

8/15/2025

8/15/2025

8/15/2025

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

T06

V01

V02

V03

V04

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

175644205

175644206

175644207

175644208

175644209

16

17

18

19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply CLB-LOT #4 175644190 M01 3 25-3406-B Monopitch Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:39:56 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-7M0eTmLZTYqDhW1s1RPC0tGW6Nld8pL08HKhtjynxmX 6-9-12 12-10-14 19-3-8 6-9-12 6-1-2 6-4-10 Scale = 1:59.1 4x6 =6 6.00 12 15 5 4x8 / 3 3x5 || 13 0 10 9 16 2x4 || 3x5 = 6-9-12 12-10-14 19-3-8 6-7-4 6-1-2 6-4-10 LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.54 Vert(LL) -0.06 7-8 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.36 Vert(CT) -0.10 7-8 >999 180 10.0 WB Rep Stress Incr YES 0.34 Horz(CT) -0.02 13 n/a n/a Matrix-MS

TCDL **BCLL** 0.0 BCDL 10.0

Code IRC2018/TPI2014

Weight: 142 lb FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 3 WFBS

2x4 SP No.3

BRACING-TOP CHORD

WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins

5-7 6-13

except end verticals.

1 Row at midpt

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

(size) 11=0-3-0, 10=0-3-8, 13=0-3-8

Max Horz 11=312(LC 16)

Max Uplift 10=-40(LC 16), 13=-108(LC 16)

Max Grav 11=335(LC 2), 10=905(LC 28), 13=556(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-371/179, 3-5=-373/0, 7-12=-86/423, 6-12=-86/423, 2-11=-380/200

BOT CHORD 7-8=-103/294

WFBS 3-11=-310/286, 3-10=-666/185, 3-8=0/278, 5-7=-419/149, 6-13=-556/165

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 18-10-4 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 3x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 10 and 108 lb uplift at joint 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644191 25-3406-B M01A Monopitch 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:39:57 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-bYa0g6MBEsy3Jgc2b8xRZ5ofQnYUt9lANx3FP9ynxmW 6-6-11 6-6-11 12-9-13 19-4-8

6-3-3

Scale = 1:59.1 3x10 =5 6.00 12 4x4 🖊 0-11-8 7 14 8 15 6

19-4-8

9-8-4

except end verticals.

1 Row at midpt

3x8 =

Structural wood sheathing directly applied or 5-8-7 oc purlins,

4-6, 5-11

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [5:0-6-8,Edge]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.70 BC 0.76 WB 0.81	DEFL. in (loc) l/defl L/d Vert(LL) -0.31 6-8 >732 240 Vert(CT) -0.48 6-8 >475 180 Horz(CT) -0.05 11 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS	11012(01) -0.03 11 11/4 11/4	Weight: 132 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except* 7-9: 2x4 SP No.1

WFBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS.

(size) 9=Mechanical, 11=0-3-8

Max Horz 9=287(LC 16) Max Uplift 11=-122(LC 16)

Max Grav 9=864(LC 28), 11=890(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $1\hbox{-}2\hbox{--}426/99, 2\hbox{-}4\hbox{--}989/14, 6\hbox{--}10\hbox{--}121/762, 5\hbox{--}10\hbox{--}121/762, 1\hbox{--}9\hbox{--}321/106}$ TOP CHORD

3x6 =

BOT CHORD 8-9=-294/1020, 6-8=-150/567

WEBS 2-8=-299/207, 4-8=-29/688, 4-6=-799/218, 2-9=-770/0, 5-11=-891/201

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 18-11-4 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

9-8-4

9-8-4

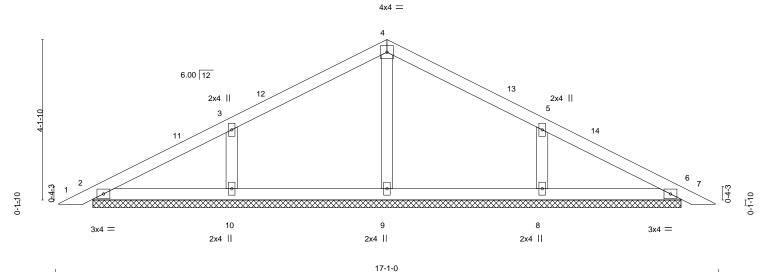
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Ply CLB-LOT #4 175644192 PB01 25-3406-B 24 Piggyback Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

8-6-8

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:39:57 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-bYa0g6MBEsy3Jgc2b8xRZ5om1nictL_ANx3FP9ynxmW 17-1-0 8-6-8

Scale = 1:29.7

		17-1-0							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.12 WB 0.06 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-1-14.

Max Horz 2=-67(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=268(LC 2), 10=355(LC 34), 8=355(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-10=-266/177. 5-8=-266/177

NOTES-

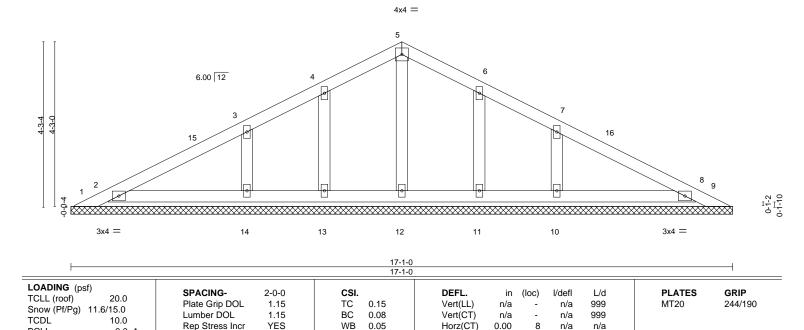
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-11 to 3-4-11, Interior(1) 3-4-11 to 8-6-8, Exterior(2R) 8-6-8 to 11-6-8, Interior(1) 11-6-8 to 16-8-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply CLB-LOT #4 175644193 PB01GE **GABLE** 2 25-3406-B Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:39:58 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-4l7PuSNp?94wwqBE9rSg5lLygB2NcoSJbbpoxbynxmV 17-1-0

8-6-8

Scale = 1:29.7

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-1-0.

(lb) -Max Horz 1=67(LC 15)

0.0

10.0

Max Uplift All uplift 100 lb or less at joint(s) 9, 2, 8, 13, 14, 11, 10 except 1=-110(LC 28)

All reactions 250 lb or less at joint(s) 1, 9, 12, 13, 11 except 2=288(LC 2), 8=288(LC 2), 14=251(LC 2), 10=251(LC 2)

Matrix-S

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

8-6-8

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-4-11 to 3-4-11, Exterior(2N) 3-4-11 to 8-6-8, Corner(3R) 8-6-8 to 11-6-8, Exterior(2N) 11-6-8 to 16-8-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2, 8, 13, 14, 11, 10 except (jt=lb) 1=110.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Weight: 68 lb

FT = 20%

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644194 25-3406-B T01 2 Common Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:39:59 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-Yxhn5oORmTCnY_mRiZzveWu?ZbKWLE3TqFYLT2ynxmU -1-0-0 1-0-0 6-4-0 12-8-0 13-8-0 6-4-0 1-0-0 Scale = 1:30.7 4x4 = 3 7.00 12 12 5x5 🗸 5x5 > \bowtie X 7 4x8 = 2x4 | 2x4 || 6-4-0 12-8-0 6-4-0 6-4-0 Plate Offsets (X,Y)--[2:0-2-0,0-1-12], [4:0-2-0,0-1-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.03 7-8 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.34 Vert(CT) -0.06 7-8 >999 180 TCDL 10.0 WB Rep Stress Incr YES 0.09 Horz(CT) 0.00 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 70 lb FT = 20% BCDL 10.0 BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.2 2x4 SP No 2

BOT CHORD 2x4 SP No.3 WFBS

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-113(LC 14)

Max Uplift 8=-66(LC 16), 6=-66(LC 16)

Max Grav 8=564(LC 2), 6=564(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-535/107, 3-4=-535/107, 2-8=-508/163, 4-6=-508/164

BOT CHORD 7-8=-119/309

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-4-0, Exterior(2R) 6-4-0 to 9-4-0, Interior(1) 9-4-0 to 13-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644195 T01G 25-3406-B Common Girder 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:00 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-07F9J8P4XnKeA8LdGGU9BjQDF_gL4cnc3vlv0UynxmT 6-4-0 12-8-0 3-0-4 3-0-4 3-3-12 Scale = 1:29.5 4x4 = 3 7.00 12 3x5 🖊 3x5 <> 2 12 1-9-5 3x5 <> 3x5 / 5 1-1-0 13 14 15 16 9 73x6 = 3x8 = LUS26 LUS26 LUS26 LUS26 3x6 = LUS26 4x4 || 4x4 | LUS26 3-3-12 6-4-0 12-8-0 3-0-4 3-3-12 3-3-12 3-0-4 Plate Offsets (X,Y)--[6:Edge,0-3-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP

BCDL LUMBER-

TCLL (roof)

TCDL

BCLL

WFBS

Snow (Pf/Pg)

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No 2

20.0

10.0

10.0

0.0

11.6/15.0

2x4 SP No.3

BRACING-

Vert(LL)

Vert(CT)

Horz(CT)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

>999

>999

n/a

240

180

n/a

MT20

ORTH CAR

Weight: 171 lb

244/190

FT = 20%

except end verticals.

8-9

8-9

6

-0.02

-0.04

0.01

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 10=0-3-8, 6=0-3-8

Max Horz 10=-97(LC 35) Max Uplift 6=-127(LC 12)

Max Grav 10=2634(LC 3), 6=2350(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2868/0, 2-3=-2145/95, 3-4=-2145/94, 4-5=-2689/143, 1-10=-2026/0,

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

1.15

1.15

NO

TC

BC

WB

Matrix-MS

0.47

0.37

0.44

5-6=-1907/104

BOT CHORD 9-10=-14/395, 8-9=0/2434, 7-8=-73/2280, 6-7=-18/313

WEBS $3-8=-44/1958,\ 4-8=-613/129,\ 4-7=-95/558,\ 2-8=-812/0,\ 2-9=0/784,\ 1-9=0/2141,$

5-7=-56/2024

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=127.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-2-12 from the left end to 11-2-12 to connect truss(es) to back face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

August 15,2025

LOAP CASE(S) verification of the control of the con

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

CLB-LOT #4 Job Truss Truss Type Qty Ply 175644195 25-3406-B T01G Common Girder 2 Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:00 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-07F9J8P4XnKeA8LdGGU9BjQDF_gL4cnc3vlv0UynxmT

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-43, 3-5=-43, 6-10=-20

Concentrated Loads (lb)

Vert: 7=-474(B) 9=-595(B) 13=-595(B) 14=-474(B) 15=-474(B) 16=-474(B)

ain Dun

818 Soundside Road Edenton, NC 27932

175644196 25-3406-B T01GE Common Supported Gable Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:01 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-UKpXWUPil4SVnlwpq_?OjxzTuO5np9IIIZ1SYwynxmS 12-8-0 13-8-0 6-4-0 6-4-0 1-0-0 Scale = 1:30.3 4x4 = 5 7.00 12 3 18 17 3x5 / 3x5 <> 2 \bowtie 13 12 10 16 15 14 11 3x4 = 3x4 =12-8-0 12-8-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) -0.00 n/r 120 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.04 Vert(CT) -0.00 n/r 120 TCDL 10.0 WB Rep Stress Incr YES 0.04 Horz(CT) 0.00 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 73 lb FT = 20% BCDL 10.0 LUMBER-

Qty

Ply

CLB-LOT #4

OTHERS

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No 3 WFBS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins

except end verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 12-8-0.

2x4 SP No.3

(lb) -Max Horz 16=-113(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 6-4-0, Corner(3R) 6-4-0 to 9-4-0, Exterior(2N) 9-4-0 to 13-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12. 11.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644197 T02 25-3406-B Common Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:02 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-yWNvjqQK3OaMPRV?OhWdG8VXgoFyYTsvWDn04MynxmR 5-3-12 5-3-12 10-4-0 15-4-4 20-8-0 21-8-0 5-0-4 5-3-12 Scale = 1:44.9 4x4 = 4 7.00 12 13 12 4x4 / 4x4 > 5 3x4 II 3x4 II Ø 9 10 5x8 = 3x6 = 3x6 = 20-8-0 10-4-0 10-4-0 Plate Offsets (X,Y)--[9:0-4-0,0-3-4] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.54 Vert(LL) -0.19 8-9 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0

BCLL 0.0 BCDL 10.0

TCDL

LUMBER-2x4 SP No.2

10.0

TOP CHORD BOT CHORD 2x4 SP No.1 WFBS 2x4 SP No.3 BRACING-

Vert(CT)

Horz(CT)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

>649

n/a

180

n/a

except end verticals.

-0.38

0.02

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

8-9

8

REACTIONS. 10=0-3-8, 8=0-3-8 (size)

Max Horz 10=-160(LC 14)

Max Uplift 10=-85(LC 16), 8=-85(LC 16) Max Grav 10=884(LC 2), 8=884(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

TOP CHORD 2-3=-315/70, 3-4=-832/123, 4-5=-832/123, 5-6=-315/70, 2-10=-337/100, 6-8=-337/100

BOT CHORD 9-10=-63/811. 8-9=-51/811

WFBS 4-9=-16/514, 3-10=-760/97, 5-8=-760/97

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 21-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.15

YES

BC

WB

Matrix-MS

0.74

0.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

FT = 20%

Weight: 118 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644198 25-3406-B T02G Common Girder 3 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:03 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-QixlxARyqiiD1b4CxP1soM2hcCflHyK2ltWZcpynxmQ 10-4-0 <u>15-4-4</u> 20-8-0 21-8-0 5-0-4 5-0-4 5-3-12 Scale = 1:45.1 4x4 = 3 7.00 12 14 3x5 // 13 3x5 < 2 3x5 / 3x5 <> \mathbb{R} 23 15 16 17 10 18 19 20 21 22 11 9 8 12 LUS26 LUS26 4x6 = LUS26 LUS26 LUS26 LUS26 4x4 = 3x8 = 4x4 = 4x4 || 4x4 || LUS26 LUS26 LUS26 LUS26 5-3-12 10-4-0 20-8-0 5-0-4 5-0-4 5-3-12 5-3-12 Plate Offsets (X,Y)--[7:Edge,0-3-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP

LUMBER-**BOT CHORD**

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

Snow (Pf/Pg)

TOP CHORD 2x4 SP No 2 2x6 SP No 2

20.0

10.0

10.0

0.0

11.6/15.0

2x4 SP No.3

BRACING-

BOT CHORD

Vert(LL)

Vert(CT)

Horz(CT)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

>999

>999

n/a

240

180

n/a

MT20

ORTH CAR

Weight: 417 lb

244/190

FT = 20%

except end verticals.

8-9

8-9

-0.05

-0.09

0.02

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 12=0-3-8, 7=0-3-8

Max Horz 12=-154(LC 36)

Max Uplift 12=-298(LC 12), 7=-372(LC 12) Max Grav 12=3462(LC 2), 7=3964(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

1.15

1.15

NO

TC

BC

WB

Matrix-MS

0.59

0.45

0.46

TOP CHORD 1-2=-4620/419, 2-3=-3448/365, 3-4=-3446/364, 4-5=-4660/419, 1-12=-2933/275,

5-7=-3029/312

BOT CHORD 11-12=-130/735, 9-11=-261/3921, 8-9=-258/3947, 7-8=-58/744

3-9=-278/3122, 4-9=-1324/169, 4-8=-75/1183, 2-9=-1292/173, 2-11=-74/1129, **WEBS**

1-11=-226/3302, 5-8=-203/3237

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=298, 7=372.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left

August 15,2025

Job Truss Truss Type Qty Ply CLB-LOT #4 175644198 25-3406-B T02G Common Girder Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:03 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-QixlxARyqiiD1b4CxP1soM2hcCflHyK2ltWZcpynxmQ

NOTES-

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-43, 3-5=-43, 5-6=-43, 7-12=-20

Concentrated Loads (lb)

Vert: 9=-469(B) 15=-474(B) 16=-469(B) 17=-469(B) 18=-469(B) 19=-469(B) 20=-469(B) 21=-469(B) 22=-469(B) 23=-480(B)

hin The

August 15,2025

Job Truss Truss Type Qty Ply CLB-LOT #4 175644199 25-3406-B T02GE Common Supported Gable Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:04 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-uvVg8VSaa?q4elfOV6Z5LZb_7c6S0VCC_XG69FynxmP 10-4-0 20-8-0 10-4-0 10-4-0 Scale = 1:45.8 4x4 = 8 6 7.00 12 10 11 3 26 3x5 <> 12 23 22 24 21 20 19 18 17 16 15 14 5x5 = 3x4 = 3x4 =

		20-8-	0				1		
Plate Offsets (X,Y) [19:0-2-8,0-3-0]									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.04 WB 0.10	Vert(CT) -0.	in (loc) 00 13 00 13 00 14	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 131 lb	FT = 20%	

20-8-0

LUMBER-TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 WFBS

2x4 SP No.3 2x4 SP No.3 **BRACING-**TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 23-24,14-15.

REACTIONS. All bearings 20-8-0.

(lb) -Max Horz 24=-160(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=2ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644200 T03 6 25-3406-B Piggyback Base Job Reference (optional)

27-10-0

8-6-8

Riverside Roof Truss, LLC, Danville, Va - 24541,

19-3-8

9-6-0

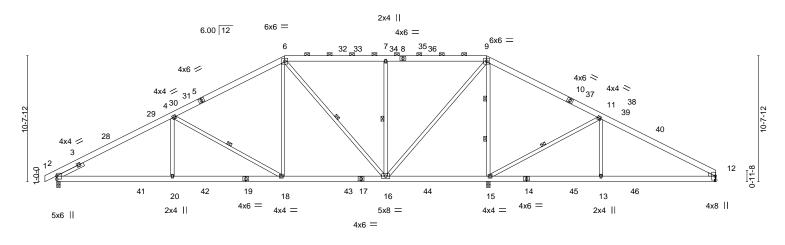
9-9-8

9-9-8

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:05 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-M522MrSCLJyxGvDa3q4Kun70J?lWlmeLCB?ghhynxmO 36-4-8 46-0-10 55-9-0 8-6-8 9-8-2 9-8-6

Structural wood sheathing directly applied or 4-4-13 oc purlins,

4-18, 6-16, 7-16, 9-15


ORT

SEAL

036322

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

Scale = 1:97.5

9-9-8	19-3-8	27-10-0	36-4-8	პნუნ-4	46-0-10	1 55-9-0	1
9-9-8	9-6-0	8-6-8	8-6-8	0-1 12	9-6-6	9-8-6	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.70 BC 0.69 WB 0.85 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 18-20 -0.23 18-20 0.05 15	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 407 lb	GRIP 244/190 FT = 20%

TOP CHORD

BOT CHORD

WEBS

except

2-0-0 oc purlins (6-0-0 max.): 6-9.

6-0-0 oc bracing: 15-16.

1 Row at midpt

2 Rows at 1/3 pts

LUMBER-**BRACING-**

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

WFBS 2x4 SP No.3 WEDGE

Right: 2x4 SP No.3

SLIDER Left 2x4 SP No.3 2-6-0

REACTIONS. (size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=206(LC 15)

Max Uplift 2=-124(LC 16), 15=-124(LC 16), 12=-53(LC 16) Max Grav 2=1668(LC 28), 15=2954(LC 29), 12=688(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2540/258, 4-6=-1636/263, 6-7=-858/260, 7-9=-858/260, 9-11=0/718,

11-12=-726/143

BOT CHORD 2-20=-144/2329, 18-20=-144/2329, 16-18=0/1435, 15-16=-511/138, 13-15=-25/577,

12-13=-25/577

WEBS 4-20=0/448, 4-18=-1055/175, 6-18=0/920, 6-16=-984/46, 7-16=-741/173,

9-16=-137/1927, 9-15=-2081/217, 11-15=-1209/188, 11-13=0/493

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 4-6-14, Interior(1) 4-6-14 to 19-3-8, Exterior(2R) 19-3-8 to 27-2-2, Interior(1) 27-2-2 to 36-4-8, Exterior(2R) 36-4-8 to 44-3-2, Interior(1) 44-3-2 to 55-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb)

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

August 15,2025

Job	Truss	Truss Type	Qty	Ply	CLB-LOT #4	٦
					175644200	
25-3406-B	T03	Piggyback Base	6	1		
					Inh Reference (ontional)	

Riverside Roof Truss, LLC,

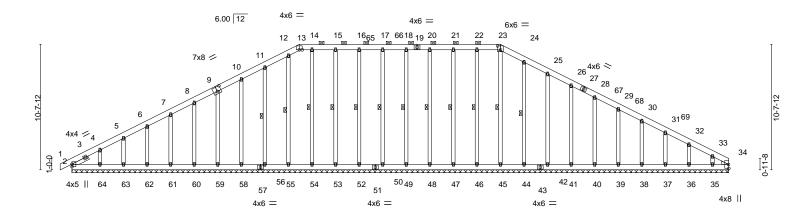
Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:05 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-M522MrSCLJyxGvDa3q4Kun70J?lWlmeLCB?ghhynxmO

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ain Thin


Job Truss Truss Type Qty Ply CLB-LOT #4 175644201 T03GE 2 25-3406-B Piggyback Base Supported Gable Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:07 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-JUAonXUTtwDfWDNzAE6ozCDVkp8HDrUegVUmmaynxmM

55-9-0 19-3-8 19-4-8

Scale = 1:97.8

55-9-0 55-9-0 Plate Offsets (X,Y)-- [9:0-4-0,0-4-8], [23:0-3-0,0-4-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Pop Stress large VES	CSI. TC 0.07 BC 0.03	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 1 n/r 120 Vert(CT) -0.00 1 n/r 120 Horr(CT) 0.04 24 n/c n/c	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.19 Matrix-S	Horz(CT) 0.01 34 n/a n/a	Weight: 542 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No 2

OTHERS 2x4 SP No.3 WEDGE

Right: 2x4 SP No.3

SLIDER Left 2x4 SP No.3 1-6-4

All bearings 55-9-0. REACTIONS.

Max Horz 2=-208(LC 14) (lb) -

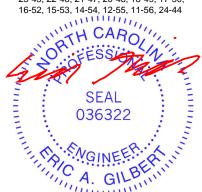
Max Uplift All uplift 100 lb or less at joint(s) 2, 46, 47, 48, 49, 50, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 44, 42, 41, 40, 39, 38, 37, 36, 35, 34

Max Grav All reactions 250 lb or less at joint(s) 2, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 42, 41, 40, 39, 38, 37, 36, 35,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 11-12=-113/285, 12-13=-115/286, 13-14=-111/287, 14-15=-111/287, 15-16=-111/287,

16-17=-111/287, 17-18=-111/287, 18-20=-111/287, 20-21=-111/287, 21-22=-111/287,


22-23=-111/287, 23-24=-118/299, 24-25=-102/259

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=56ft; \ eave=2ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 4-4-8, Exterior(2N) 4-4-8 to 19-3-8, Corner(3R) 19-3-8 to 24-10-6, Exterior(2N) 24-10-6 to 36-4-8, Corner(3R) 36-4-8 to 41-11-6, Exterior(2N) 41-11-6 to 55-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 13-23. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt

23-45, 22-46, 21-47, 20-48, 18-49, 17-50,

August 15,2025

Job	Truss	Truss Type	Qty	Ply	CLB-LOT #4
					175644201
25-3406-B	T03GE	Piggyback Base Supported Gable	2	1	
					Inh Reference (ontional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

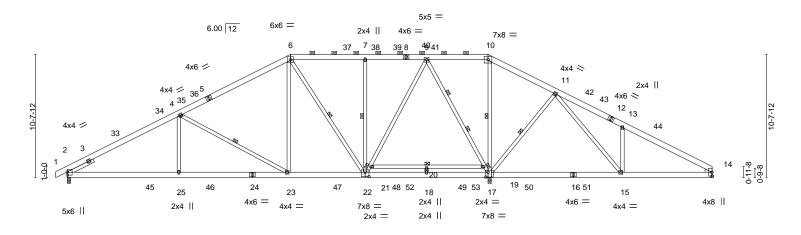
8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:07 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-JUAonXUTtwDfWDNzAE6ozCDVkp8HDrUegVUmmaynxmM

NOTES-

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 46, 47, 48, 49, 50, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 44, 42, 41, 40, 39, 38, 37, 36, 35, 34.

 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ain This


Job Truss Truss Type Qty Ply CLB-LOT #4 175644202 T03S 8 25-3406-B Piggyback Base Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:09 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-FsIZBDVjPXTMIWXMIf8G2dIh9dbjgYbx7pztqSynxmK

25-9-0 31-0-12 36-4-8 42-2-4 48-0-0 6-5-8 5-3-12 5-3-12 5-9-12 5-9-12

Scale = 1:99.6

9-7-12	9-7-12	6-5-8 5-3-	12 ¹ 5-3-12 0-1 ^{!!} 12	11-5-12	7-9-0
Plate Offsets (X,Y) [17:0-2-8	3,0-5-0], [22:0-4-0,0-4-8]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.71 BC 0.93 WB 0.92	DEFL. in Vert(LL) -0.30 Vert(CT) -0.48 Horz(CT) 0.05	(loc) I/defl L/d 20 >999 240 20 >913 180 17 n/a n/a	PLATES GRIP MT20 244/190
BCDI 10.0	Code IRC2018/TPI2014	Matrix-MS			Weight: 443 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

31-0-12

36-4-8 36-6-4

48-0-0

2-0-0 oc purlins (6-0-0 max.): 6-10.

6-0-0 oc bracing: 19-21

1 Row at midpt

2 Rows at 1/3 pts

Structural wood sheathing directly applied or 4-6-1 oc purlins, except

4-23, 6-22, 7-22, 10-17, 11-17

OR FESSI

Rigid ceiling directly applied or 2-2-0 oc bracing. Except:

55-9-0

25-9-0

LUMBER-

TOP CHORD 2x6 SP No 2

BOT CHORD 2x6 SP No.2 *Except*

9-7-12

19-21: 2x4 SP No.2 **WEBS** 2x4 SP No.3 *Except*

9-17: 2x4 SP No.1

WEDGE

Right: 2x4 SP No.3

SLIDER Left 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 14=Mechanical, 17=0-3-8

Max Horz 2=206(LC 15)

Max Uplift 2=-106(LC 16), 14=-53(LC 16), 17=-24(LC 16) Max Grav 2=1600(LC 28), 14=444(LC 55), 17=3699(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2424/210, 4-6=-1478/220, 6-7=-901/200, 7-9=-901/200, 9-10=0/939, 10-11=0/1122,

19-3-8

11-13=-462/218, 13-14=-470/184

BOT CHORD 2-25=-105/2228, 23-25=-105/2228, 22-23=0/1295, 18-22=-84/277, 17-18=-84/277,

15-17=-555/52, 14-15=-129/341

WEBS 4-25=0/477, 4-23=-1088/173, 6-23=-11/780, 6-22=-794/99, 7-22=-459/126,

21-22=-34/1604, 9-21=0/1726, 9-19=-2068/126, 17-19=-2191/91, 10-17=-708/50,

11-17=-846/192, 11-15=-96/1099, 13-15=-419/185, 18-20=-255/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 4-6-14, Interior(1) 4-6-14 to 19-3-8, Exterior(2R) 19-3-8 to 27-2-2, Interior(1) 27-2-2 to 36-4-8, Exterior(2R) 36-4-8 to 44-3-2, Interior(1) 44-3-2 to 55-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CLB-LOT #4
					175644202
25-3406-B	T03S	Piggyback Base	8	1	
					Llob Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:09 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-FsIZBDVjPXTMIWXMIf8G2dIh9dbjgYbx7pztqSynxmK

NOTES-

- 10) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 17 except (jt=lb) 2=106.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

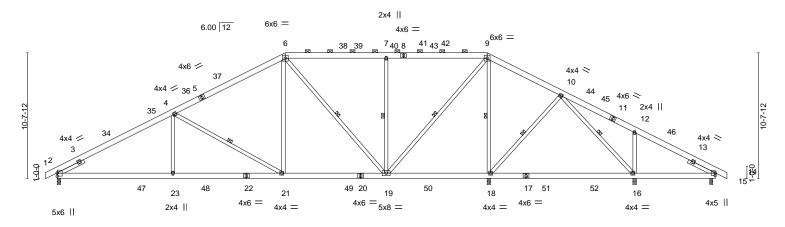
hin Fin

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply CLB-LOT #4 175644203 T05 4 25-3406-B Piggyback Base Job Reference (optional) 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:10 2025 Page 1

Riverside Roof Truss, LLC, Danville, Va - 24541,

27-10-0


8-6-8

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-j2sxPZWLArbDNg6YsNfVbqrsw0?WP_Z4MTjRMvynxmJ 36-4-8 42-7-6 48-10-4 55-8-0 8-6-8 6-2-14 6-2-14 6-9-12

Structural wood sheathing directly applied or 4-5-1 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 6-9.

Scale = 1:97.5

9-9-8	19-3-8	27-10-0	36-4-8	36 ₇ 6-4	48-10-4	1 55-5-8	55 ₁ β-0
9-9-8	9-6-0	8-6-8	8-6-8	0-1 12	12-4-0	6-7-4	0-2-8
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.71 BC 0.70 WB 1.00 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 16-18 -0.29 16-18 0.05 18	l/defl L/d >784 240 >505 180 n/a n/a	PLATES MT20 Weight: 420 lb	GRIP 244/190 FT = 20%

LUMBER-BRACING-

9-6-0

TOP CHORD 2x6 SP No.2 TOP CHORD

BOT CHORD 2x6 SP No.2 WFBS 2x4 SP No 3

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing. SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WFBS 1 Row at midpt 4-21, 6-19, 7-19, 9-19, 9-18, 10-18, 10-16

REACTIONS. All bearings 0-3-8 except (jt=length) 14=0-3-0.

(lb) -Max Horz 2=-208(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 16, 14 except 2=-128(LC 16), 18=-104(LC 16)

Max Grav All reactions 250 lb or less at joint(s) except 2=1669(LC 28), 18=2747(LC 28), 16=685(LC 29),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2540/261, 4-6=-1638/268, 6-7=-841/267, 7-9=-841/267, 9-10=0/624

BOT CHORD 2-23=-122/2335, 21-23=-122/2335, 19-21=0/1442, 18-19=-436/151, 16-18=-255/72

WEBS 4-23=0/445, 4-21=-1051/175, 6-21=0/928, 6-19=-976/41, 7-19=-743/180,

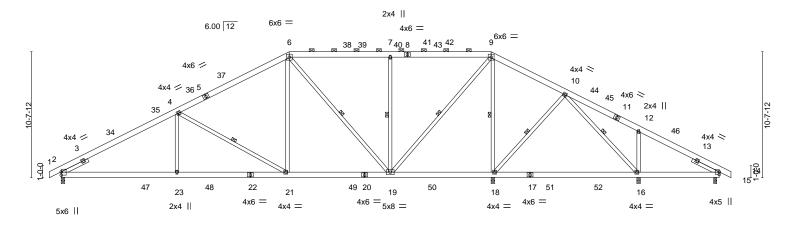
9-19=-148/1896, 9-18=-1993/191, 10-18=-505/187, 10-16=-51/263, 12-16=-385/166

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; b=25ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 4-6-13, Interior(1) 4-6-13 to 19-3-8, Exterior(2R) 19-3-8 to 27-2-0, Interior(1) 27-2-0 to 36-4-8, Exterior(2R) 36-4-8 to 44-3-0, Interior(1) 44-3-0 to 56-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 14 except (jt=lb) 2=128, 18=104.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply CLB-LOT #4 175644204 PIGGYBACK BASE 25-3406-B T05A Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:11 2025 Page 1

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-BFQJcvXzx9j4_qhkP4Bk72N1fQLl8RpEb7S_vLynxml 27-10-0 36-4-8 42-7-6 48-10-4 55-8-0 19-3-8 9-6-0 8-6-8 8-6-8 6-2-14 6-2-14 6-9-12

Scale = 1:97.5

9-9-8	19-3-8	27-10-0	36-4-8	36 ₁ 6-4	48-10-4	1 55-5-8	55 ₁ β-0
9-9-8	9-6-0	8-6-8	8-6-8	0-1 ^{!!} 12	12-4-0	6-7-4	0-2-8
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.71 BC 0.70 WB 1.00 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 16-18 -0.29 16-18 0.05 18	l/defl L/d >784 240 >505 180 n/a n/a	PLATES MT20 Weight: 420 lb	GRIP 244/190 FT = 20%

LUMBER-BRACING-

TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-5-1 oc purlins, except

BOT CHORD 2x6 SP No.2 2-0-0 oc purlins (6-0-0 max.): 6-9. BOT CHORD WFBS 2x4 SP No 3 Rigid ceiling directly applied or 6-0-0 oc bracing.

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0 WFBS 1 Row at midpt 4-21, 6-19, 7-19, 9-19, 9-18, 10-18, 10-16

REACTIONS. All bearings 0-3-8 except (jt=length) 14=0-3-0.

Max Horz 2=208(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16, 14 except 2=-128(LC 16), 18=-104(LC 16)

Max Grav All reactions 250 lb or less at joint(s) except 2=1669(LC 28), 18=2747(LC 28), 16=685(LC 29),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2540/261, 4-6=-1638/268, 6-7=-841/267, 7-9=-841/267, 9-10=0/624

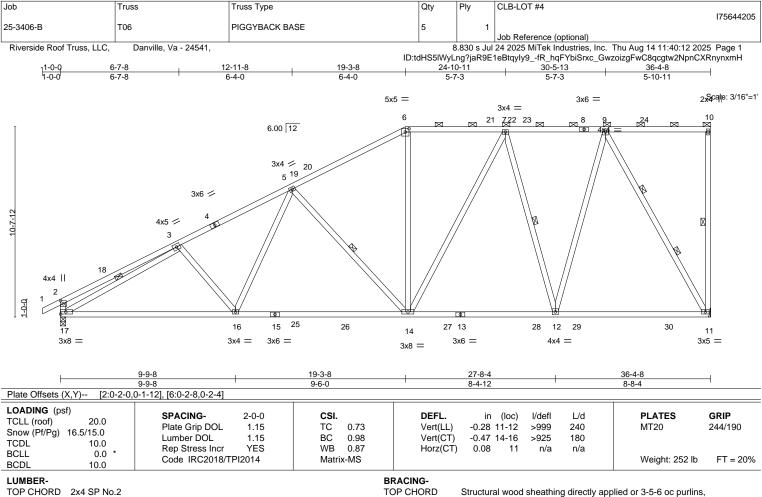
BOT CHORD 2-23=-122/2335, 21-23=-122/2335, 19-21=0/1442, 18-19=-436/151, 16-18=-255/72

WEBS 4-23=0/445, 4-21=-1051/175, 6-21=0/928, 6-19=-976/41, 7-19=-743/180,

9-19=-148/1896, 9-18=-1993/191, 10-18=-505/187, 10-16=-51/263, 12-16=-385/166

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; b=25ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 4-6-13, Interior(1) 4-6-13 to 19-3-8, Exterior(2R) 19-3-8 to 27-2-0. Interior(1) 27-2-0 to 36-4-8. Exterior(2R) 36-4-8 to 44-3-0. Interior(1) 44-3-0 to 56-8-0 zone; cantilever left and right exposed: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 14 except (jt=lb) 2=128, 18=104.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

WEBS

BOT CHORD 2x4 SP No.1 *Except*

11-13: 2x4 SP No.2 WFBS

2x4 SP No.3

REACTIONS. (size) 11=Mechanical, 17=0-3-8

Max Horz 17=319(LC 16)

Max Uplift 11=-130(LC 16), 17=-81(LC 16) Max Grav 11=1752(LC 39), 17=1758(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-623/115, 3-5=-2550/141, 5-6=-1790/152, 6-7=-1545/171, 7-9=-1120/97,

2-17=-498/155

BOT CHORD 16-17=-353/2333, 14-16=-275/2033, 12-14=-138/1314, 11-12=-86/814

WEBS 5-16=0/543, 5-14=-797/154, 6-14=0/474, 7-14=-71/581, 7-12=-746/162, 9-12=-49/1173,

9-11=-1654/179, 3-17=-2107/36

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=36ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-7-10, Interior(1) 2-7-10 to 19-3-8, Exterior(2R) 19-3-8 to 24-5-4, Interior(1) 24-5-4 to 36-2-12 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17 except (jt=lb) 11=130
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

except end verticals, and 2-0-0 oc purlins (4-6-5 max.): 6-10.

9-11

10-11, 5-14, 7-12, 3-17

Rigid ceiling directly applied or 2-2-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

25-3406-B V01 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:13 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-7dX41aZDTmzoE8r7XVDCCTTUqE9XcZeW2Rx5zEynxmG 9-1-14 18-3-11 9-1-14 Scale = 1:35.2 4x4 = 3 7.00 12 2x4 || 2x4 13 10 3x4 / 9 8 7 6 2x4 || 3x4 = 2x4 || 2x4 || 18-3-11 LOADING (psf) **PLATES** SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.17 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.08 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 71 lb FT = 20% BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

Qty

Ply

CLB-LOT #4

175644206

REACTIONS.

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

All bearings 18-2-14. Max Horz 1=-100(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 9=419(LC 27), 6=418(LC 34)

Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-309/142, 4-6=-309/142

NOTES-

LUMBER-

OTHERS

TOP CHORD

BOT CHORD

Job

Truss

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 9-1-14, Exterior(2R) 9-1-14 to 12-1-14, Interior(1) 12-1-14 to 17-9-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

25-3406-B	V02	Valley		1	1	Reference (o	ntional)		
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.8					025 Page 1
,,	,		ID					5DkRlg?gteVcL08gH5	
L	7	'-5-5				14-10-9			
'	7	'-5-5	'			7-5-5		'	
			4x4 =						Scale = 1:28.5
	7.00 12	9	3			0			
1 4	2x4					4	2x4	5	
4	 					<u> </u>			4
3									
3x4 🖊	. 8		7			6		3x4 <>	
	2x4		2x4			2x4			
0- <u>0-</u> 7 0-0-7			14-10-9 14-10-2						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/1	2-0-0 CSI. 1.15 TC 1.15 BC YES WB TPI2014 Matrix	0.20 0.11 0.07 c-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc n/a n/a 0.00	n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2	2		BRACIN TOP CH		Structural woo	od sheathin	g directly app	lied or 6-0-0 oc purlir	ıs.

BOT CHORD

Qty

Ply

CLB-LOT #4

Rigid ceiling directly applied or 10-0-0 oc bracing.

175644207

REACTIONS. All bearings 14-9-11.

2x4 SP No.2

2x4 SP No.3

Max Horz 1=80(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=269(LC 2), 8=328(LC 33), 6=328(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BOT CHORD

OTHERS

Job

Truss

Truss Type

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-5-5, Interior(1) 3-5-5 to 7-5-5, Exterior(2R) 7-5-5 to 10-5-5, Interior(1) 10-5-5 to 14-4-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

175644208 25-3406-B V03 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:14 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-cq5SFwZsE45frIPJ5DkRlg?dMeSDL02gH5heVgynxmF 5-8-11 5-8-11 5-8-11 Scale = 1:22.5 4x5 = 2 7.00 12 3x4 / 3x4 > 2x4 || 11-5-7 11-5-0 LOADING (psf) **PLATES** GRIP SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.43 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.27 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.07 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 39 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS**

Qty

Ply

CLB-LOT #4

REACTIONS. (size) 1=11-4-9, 3=11-4-9, 4=11-4-9

Truss

Truss Type

Max Horz 1=-60(LC 14)

Max Uplift 1=-25(LC 16), 3=-25(LC 16)

Max Grav 1=196(LC 2), 3=196(LC 2), 4=437(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-284/106

NOTES-

Job

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 5-8-11, Exterior(2R) 5-8-11 to 8-8-11, Interior(1) 8-8-11 to 10-10-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644209 25-3406-B V04 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:15 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-40fqSGaU?NDWTR_VewFgluYry1rk4UqpWlQC26ynxmE 4-0-2 4-0-2 8-0-5 4-0-2 Scale: 3/4"=1" 4x4 = 2 7.00 12 63 7-0-0 0-0-4 2x4 / 2x4 || 2x4 < 8-0-5 7-11-14 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.04 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 26 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS**

REACTIONS.

(size) 1=7-11-7, 3=7-11-7, 4=7-11-7

Max Horz 1=40(LC 15)

Max Uplift 1=-24(LC 16), 3=-24(LC 16)

Max Grav 1=145(LC 2), 3=145(LC 2), 4=265(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-0-2, Exterior(2R) 4-0-2 to 7-0-2, Interior(1) 7-0-2 to 7-5-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644210 25-3406-B V05 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:15 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-40fqSGaU?NDWTR_VewFgluYuw1qG4UPpWlQC26ynxmE Scale = 1:9.4 3x4 =2 7.00 12 3 0-0-4 50-2x4 / 2x4 > 4-6-11 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 вс Lumber DOL 1.15 0.15 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 13 lb FT = 20% BCDL 10.0

LUMBER-TOP CHORD BOT CHORD

2x4 SP No.2 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-7-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-6-5, 3=4-6-5

Max Horz 1=-20(LC 14)

Max Uplift 1=-9(LC 16), 3=-9(LC 16) Max Grav 1=141(LC 2), 3=141(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644211 25-3406-B V06 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:16 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-YCDCfcb6mhLN5bZiCdmvq55?eR9hpxnzkPAlaYynxmD 5-0-9 10-1-2 5-0-9 5-0-9 Scale = 1:19.1 4x4 = 2 7.00 12 4 2x4 // 2x4 💸 2x4 | 10-1-2 10-0-11 LOADING (psf) CSI. **PLATES** GRIP SPACING-2-0-0 DEFL. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.20 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.06 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 34 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

BOT CHORD OTHERS

2x4 SP No.3

(size) 1=10-0-5, 3=10-0-5, 4=10-0-5 Max Horz 1=-52(LC 14)

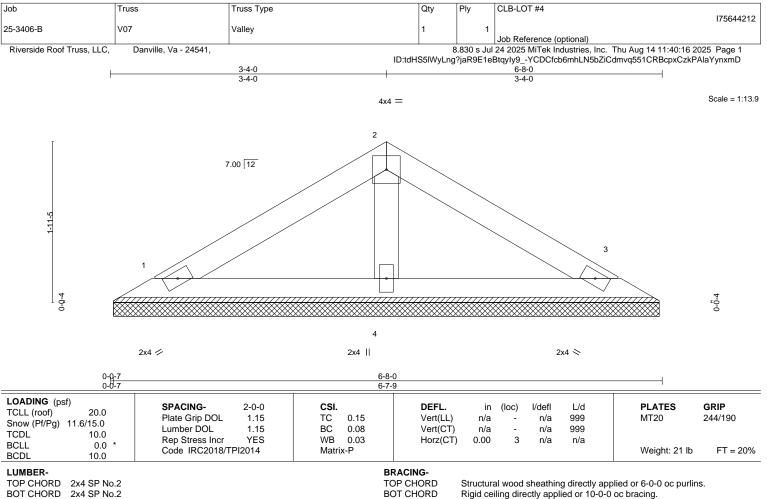
Max Uplift 1=-22(LC 16), 3=-22(LC 16)

Max Grav 1=171(LC 2), 3=171(LC 2), 4=380(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 5-0-9, Exterior(2R) 5-0-9 to 8-0-9, Interior(1) 8-0-9 to 9-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS.

TOP CHORD BOT CHORD 2x4 SP No.2 **OTHERS**

2x4 SP No.3

Max Horz 1=33(LC 15)

(size) 1=6-7-2, 3=6-7-2, 4=6-7-2

Max Uplift 1=-19(LC 16), 3=-19(LC 16)

Max Grav 1=118(LC 20), 3=118(LC 21), 4=213(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

CLB-LOT #4 Job Truss Truss Type Qty Ply 175644213 25-3406-B V08 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:17 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-0PnatyckW?TEil8umLl8NJdDurYEYOv6z3vl6?ynxmC Scale = 1:7.4 3x4 = 2 7.00 12 3 0-D-4 0-0-4 2x4 / 2x4 > 3-2-7 3-2-14 0-0-7

Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES GRIP** TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.02 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL вс 1.15 0.05 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 8 lb FT = 20% BCDL 10.0

LUMBER-TOP CHORD BOT CHORD

2x4 SP No.2 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-2-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=3-2-0, 3=3-2-0

Max Horz 1=-13(LC 14)

Max Uplift 1=-5(LC 16), 3=-5(LC 16) Max Grav 1=86(LC 2), 3=86(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Type Qty Truss Ply CLB-LOT #4 V09GE GABLE 25-3406-B

3x4 =

Riverside Roof Truss, LLC, Danville, VA. 24541

| Job Reference (optional)

8.830 s Feb 18 2025 MiTek Industries, Inc. Fri Aug 15 14:03:39 2025 Page 1
ID:tdHS5IWyLng?jaR9E1eBtqyly9_-iJkCP3qX5rgkzG1_4nRm5Y6m7YThrnmvpQKSGTynl60 1-0-0 12-0-0 1-0-0 5-6-0 11-0-0 5-6-0 5-6-0

Scale = 1:46.3

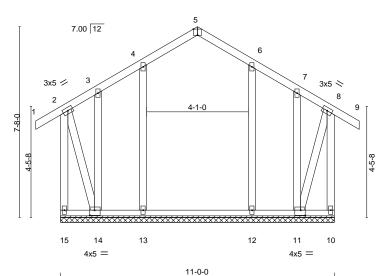


Plate Offsets (X,Y)-- [5:0-2-0,Edge], [11:0-2-3,0-2-8], [14:0-2-3,0-2-8]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.17 WB 0.15	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 9 n/r 120 Vert(CT) -0.01 8-9 n/r 120 Horz(CT) -0.00 10 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 95 lb $FT = 20^{\circ}$

11-0-0

LUMBER-**BRACING-**

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS

REACTIONS. All bearings 11-0-0.

(lb) - Max Horz 15=213(LC 15)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) except 15=-138(LC 14), 10=-126(LC 15), 14=-259(LC 16),

11=-259(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 11 except 15=428(LC 29), 10=418(LC 28), 13=362(LC 28), 12=359(LC 29), 14=255(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-15=-388/131, 8-10=-379/119 TOP CHORD **WEBS** 2-14=-216/383, 8-11=-206/371

NOTES-

OTHERS

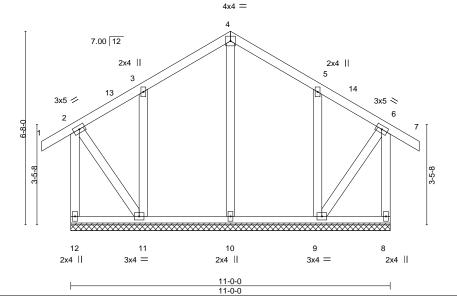
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-6-0, Exterior(2R) 5-6-0 to 8-6-0, Interior(1) 8-6-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 15, 126 lb uplift at joint 10, 259 lb uplift at joint 14 and 259 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644215 25-3406-B V10 **GABLE** Job Reference (optional)


Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:18 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-UbLz4lcMHlb5Kvj4K2pNvWANBFtmHp_GCjfseRynxmB

5-6-0 11-0-0 12-0-0 5-6-0 5-6-0

Scale = 1:39.7

LOADING (psf) TCLL (roof) 20.0	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
Snow (Pf/Pg) 11.6/15.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.00 7 n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT) -0.01 7 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) -0.00 8 n/a n/a	W-1-1-1-04 II- FT 000/
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 81 lb FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 11-0-0.

2x4 SP No.3

(lb) -Max Horz 12=-180(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9

Max Grav All reactions 250 lb or less at joint(s) 12, 8 except 10=317(LC 30), 11=379(LC 28), 9=365(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-6-0, Exterior(2R) 5-6-0 to 8-6-0, Interior(1) 8-6-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644216 25-3406-B V11 **GABLE** Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:19 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ynvLled_2cjyy3lHtmKcSkjY2fD00HwPQMOPBtynxmA 1-0-0 5-6-0 11-0-0 12-0-0 5-6-0 5-6-0 1-0-0 Scale = 1:34.1 4x4 = 7.00 12 2x4 || 2x4 || 5 14 3x5 / 3x5 < 12 10 16 9 11 15 2x4 || 2x4 || 3x4 = 3x4 =

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.11 BC 0.10 WB 0.10	DEFL. in Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) -0.00	(loc) 7 7 8	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	, ,				Weight: 71 lb	FT = 20%

11-0-0 11-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 11-0-0.

(lb) -Max Horz 12=-148(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9

Max Grav All reactions 250 lb or less at joint(s) 12, 8 except 10=304(LC 30), 11=336(LC 28), 9=324(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-6-0, Exterior(2R) 5-6-0 to 8-6-0, Interior(1) 8-6-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

175644217 25-3406-B V12 GABLE Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:19 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-ynvLled_2cjyy3lHtmKcSkjY2fEZ0lSPQMOPBtynxmA 12-0-0 -1-0-0 1-0-0 11-0-0 1-0-0 Scale = 1:28.0 4x4 = 7.00 12 2x4 || 2x4 || 14 13 3x5 / 3x5 <> -5-8 12 10 2x4 || 2x4 || 3x4 =2x4 II 3x4 =11-0-0 11-0-0 LOADING (psf) CSI. SPACING-2-0-0 DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) -0.00 n/r 120 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.06 Vert(CT) -0.00 n/r 120 TCDL 10.0 WB Rep Stress Incr YES 0.06 Horz(CT) -0.00 8 n/a n/a 0.0 * **BCLL** Code IRC2018/TPI2014 Matrix-S Weight: 62 lb FT = 20% BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins **BOT CHORD** 2x4 SP No.2 except end verticals

BOT CHORD

Qty

Ply

CLB-LOT #4

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 11-0-0.

2x4 SP No.3

2x4 SP No 3

Max Horz 12=-116(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9 Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

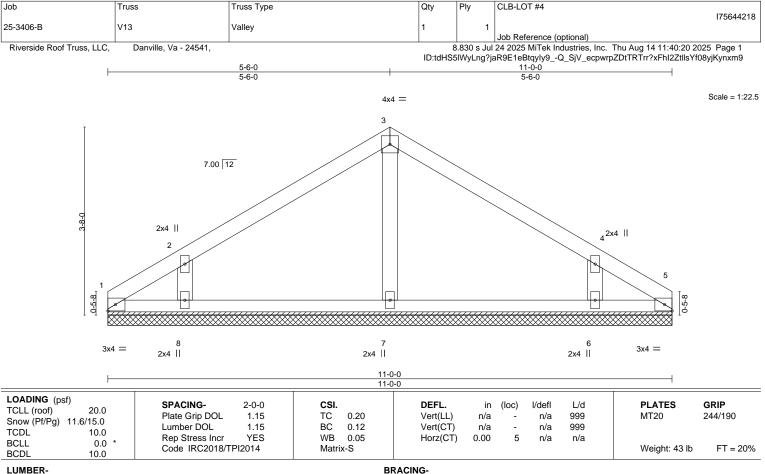
WFBS OTHERS

Job

Truss

Truss Type

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-6-0, Exterior(2R) 5-6-0 to 8-6-0, Interior(1) 8-6-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-0-0.

Max Horz 1=67(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=274(LC 2), 8=308(LC 20), 6=308(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-250/161, 4-6=-250/161

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-6-0, Exterior(2R) 5-6-0 to 8-6-0, Interior(1) 8-6-0 to 11-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

175644219 25-3406-B V14 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:20 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-Q_SjV_ecpwrpZDtTRTrr?xFhi2YFllvYf08yjKynxm9 4-6-14 4-6-14 4-6-14 Scale = 1:18.9 4x4 = 2 7.00 12 6 4-0-0 9-0-4 2x4 // 2x4 || 2x4 ≥ 9-1-11 9-1-5 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 вс 0.16 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.05 Rep Stress Incr YES Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 30 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS**

Qty

Ply

CLB-LOT #4

REACTIONS. (size) 1=9-0-14, 3=9-0-14, 4=9-0-14

Truss

Truss Type

Max Horz 1=47(LC 15)

Max Uplift 1=-19(LC 16), 3=-19(LC 16)

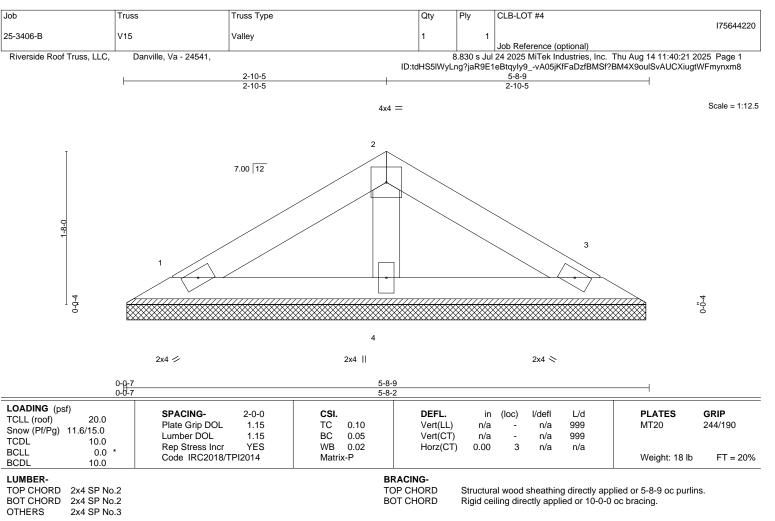
Max Grav 1=153(LC 2), 3=153(LC 2), 4=340(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

Job

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-6-14, Exterior(2R) 4-6-14 to 7-6-14, Interior(1) 7-6-14 to 8-7-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 1=5-7-11, 3=5-7-11, 4=5-7-11

Max Horz 1=27(LC 15)

Max Uplift 1=-16(LC 16), 3=-16(LC 16)

Max Grav 1=97(LC 2), 3=97(LC 2), 4=177(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply CLB-LOT #4 175644221 25-3406-B V16 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Jul 24 2025 MiTek Industries, Inc. Thu Aug 14 11:40:21 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-vA05jKfFaDzfBMSf?BM4X9ov6SvmUCuiugtWFmynxm8 1-1-11 1-1-11 Scale = 1:6.0 7.00 12 3 0-0-4 0-01 4x6 // 2x4 💸 2-3-0 Plate Offsets (X,Y)-- [1:0-2-1,Edge]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.01 BC 0.02 WB 0.00	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- 1 -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	, ,				Weight: 5 lb	FT = 20%

LUMBER-TOP CHORD BOT CHORD

2x4 SP No 2 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-3-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=2-2-9, 3=2-2-9

Max Horz 1=-7(LC 14)

Max Uplift 1=-3(LC 16), 3=-3(LC 16) Max Grav 1=48(LC 2), 3=48(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=103mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.