Mark Morris, P.E.

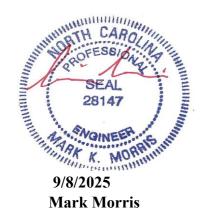
#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 60365 JOB: 25-7392-R01

JOB NAME: LOT 160 PROVIDENCE CREEK

Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B


Mean Roof Height (feet): 35

These truss designs comply with IRC 2015 as well as IRC 2018.

23 Truss Design(s)

Trusses:

PB01, PB02, R01, R02, R03, R03A, R04, R05, R07, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

My license renewal date for the state of North Carolina is 12/31/2025

Warning !—Verify design parameters and read notes before use.

Job LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI Truss Truss Type 25-7392-R01 PB01 GABLE # 60365 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:36 2025 Page 1 ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-WuSnLkeYH?NeT1Mlah3G11O8UE3lyBvZQf6GrTyfauz 7-6-0 15-0-0 7-6-0 7-6-0 Scale: 1/2"=1' 4x4 = 2x4 || 2x4 || 5.00 12 5 12 3 13 T1 ST2 14 9 8 10 3x4 =3x4 =2x4 || 2x4 || 2x4 || LOADING (psf) SPACING-GRIP 2-0-0 CSI. DEFL. in (loc) I/defl I/d **PLATES** 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.28 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Pf) 20.0 Lumber DOL ВС 0.21 Vert(CT) 999 1.15 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 6 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-S Weight: 51 lb FT = 20% BCDI 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No 3 OTHERS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Installation guide.

REACTIONS. All bearings 15-0-0. (lb) - Max Horz 1=-44(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 except 1=-129(LC 21), 7=-129(LC 22)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 9 except 2=410(LC 21), 6=410(LC 22), 10=429(LC 21), 8=429(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-10=-338/153. 5-8=-338/153 WFBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-9 to 5-2-2, Exterior(2R) 5-2-2 to 9-9-14, Exterior(2E) 9-9-14 to 14-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8 except

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

SEAL 28147 MORRIS INTERIOR STATE OF THE PARTY OF THE PA

9/8/2025

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	PB01	GABLE	2	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:37 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-_40AY4fA2JVV5Bxx7OaVaExIEeO_he8iflsqOvyfauy

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI .lob Truss Truss Type Qtv 25-7392-R01 PB02 Piggyback 19 # 60365 Job Reference (optional) : 8.630 s. Jul 12 2024 Print: 8.630 s. Jul 12 2024 MiTek Industries, Inc. Mon Sep. 8 21:13:37 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-_40AY4fA2JVV5Bxx7OaVaEx9feH0heriflsqOvyfauy 7-6-0 15-0-0 7-6-0 7-6-0 Scale = 1:24.7 4x6 =3 5.00 12 10 0-4-5 6 3x4 =3x4 = 2x4 || Plate Offsets (X,Y)-- [2:0-0-14,Edge], [4:0-0-14,Edge] LOADING (psf) SPACING-CSI DEFL. I/defl L/d **PLATES GRIP** (loc) 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.83 Vert(LL) MT20 244/190 0.03 n/r 180 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.65 Vert(CT) 0.06 5 n/r 80 TCDL 10.0 Rep Stress Incr WB 0.09 Horz(CT) 0.00 n/a n/a 00 * BCLL Code IRC2021/TPI2014 Matrix-S Weight: 46 lb FT = 20%BCDL 10.0 LUMBER-BRACING-Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD 2x4 SP No.2 TOP CHORD **BOT CHORD** BOT CHORD 2x4 SP No.3 Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS** MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. **REACTIONS.** (lb/size) 2=274/12-7-10 (min. 0-1-8), 4=274/12-7-10 (min. 0-1-8), 6=560/12-7-10 (min. 0-1-8) Max Horz 2=-44(LC 15) Max Uplift2=-62(LC 14), 4=-70(LC 15), 6=-34(LC 14) Max Grav 2=349(LC 21), 4=349(LC 22), 6=568(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WFBS 3-6=-379/195

NOTES-(11-14)

0-1-10

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-9 to 5-2-2, Exterior(2R) 5-2-2 to 9-9-14, Exterior(2E) 9-9-14 to 14-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Gable requires continuous bottom chord bearing.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

SEAL 2814"

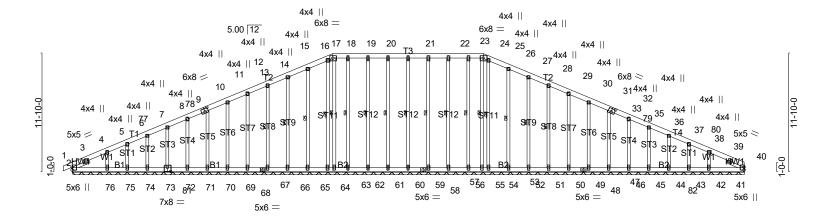
Continued on page 2

9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENCE	CREEK DRIVE FUQUAY-V
25-7392-R01	PB02	Piggyback	19	1	Job Reference (optional)	# 60365

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:37 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-_40AY4fA2JVV5Bxx7OaVaEx9feH0heriflsqOvyfauy

- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Truss Type LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI 25-7392-R01 R01 GABLE # 60365 Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.630 s. Jul 12 2024 MiTek Industries, Inc. Mon Sep. 8 21:13:40 2025. Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-OfilA6h2KEt4yfgWpW8CCtZt0rT3uzW8LG4U?Eyfauv -0₋10-8 26-0-0 41-0-0 67-0-0 26-0-0 15-0-0 26-0-0

Scale = 1:114.9

Plate Offsets (X,Y) [9:0-4-0,0-4-0], [33:0-4-0,0-4-0], [73:0-4-0,0-4-8]											
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TF	2-0-0 1.15 1.15 YES	CSI. TC BC WB Matri	0.06 0.06 0.22	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.01	(loc) 1 1 40	I/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 697 lb	GRIP 244/190

67-0-0

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WFBS 2x4 SP No.3 **OTHERS**

SLIDER Left 2x4 SP No.3 1-10-0, Right 2x4 SP No.3 1-10-0 **BRACING-**

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 21-59, 20-60, 19-61, 18-62, 16-64, 15-65,

14-66, 13-67, 17-63, 22-57, 23-56, 24-55, 26-53, 27-52, 28-51, 29-50, 25-54

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 67-0-0.

(lb) - Max Horz 2=-171(LC 15)

Max Uplift All uplift 100 b or less at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except 41=-105(LC 15), 76=-119(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 2, 40, 62, 64, 72, 73, 74, 75, 63,

55, 53, 45, 44, 43, 42, 54 except 59=287(LC 44), 60=287(LC 44), 61=295(LC 44), 65=293(LC 45), 66=289(LC 45), 67=287(LC 45), 69=286(LC 45), 70=288(LC 45), 71=284(LC 45), 57=287(LC 44), 56=295(LC 44), 52=293(LC 45), 51=289(LC 45),

50=287(LC 45), 49=286(LC 45), 47=288(LC 45), 46=284(LC 45), 41=274(LC 55), 76=261(LC 54)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-106/261, 14-15=-122/297, 15-16=-136/329, 16-17=-134/329, 17-18=-132/326, 18-19=-132/326, 19-20=-132/326, 20-21=-132/326, 21-22=-132/326, 22-23=-132/326, 23-24=-132/326, 24-25=-132/326, 25-26=-134/329, 26-27=-136/329, 27-28=-122/297,

28-29=-106/261

Continued on page 2

1) Unbalanced roof live loads have been considered for this design.

Root; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 5-9-14, Exterior(2N) 5-9-14 to 19-3-10, Corner(3R) 19-3-10 to 32-8-6, Exterior(2N) 32-8-6 to 34-3-10, Corner(3R) 34-3-10 to 47-6-0, Exterior(2N) 47-6-0 to 60-3-10, Corner(3E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFR9 reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the trust of Gable End Dot*: 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B: Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

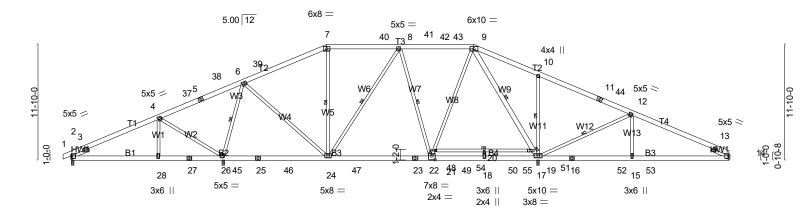
9/8/2025

NOINEE

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENCE	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R01	GABLE	2	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:41 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-srGgOSig5Y?xaoFiMEfRk452lFpIdQmlawq1Xgyfauu

NOTES- (15-18)


- 7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 3x6 MT20 unless otherwise indicated.
- 10) Gable requires continuous bottom chord bearing.
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except (jt=lb) 41=105, 76=119.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss		Truss Type		Qty	Ply	LOT 160 PROVIDENCE CREEK	K 558 PROVIDENCE CREE	K DRIVE FUQUAY-VA
25-7392-R01	R02		Piggyback Base		8	1	Job Reference (optional)	# 6	0365
							t: 8.630 s Jul 12 2024 MiTek Indi JakfxRI2BEyzqFZ-K1p3bojls		
-0 ₁ 1Q-8 8-10	0-5	17-5-3	26-0-0	33-6-0	41-0-0	47-6-12	57-1-10	67-0-0	
0-10-8 8-1)-5	8-6-13	8-6-13	7-6-0	7-6-0	6-6-12	9-6-14	9-10-6	

Scale = 1:117.4

	8-10-5	15-5-12	26-0-0	36-6-12	1 42-0-12	₁ 47-6-12	₋ 57-1-10	67-0-0	
ı	8-10-5	6-7-7	10-6-4	10-6-12	¹ 5-6-0	5-6-0	9-6-14	9-10-6	1
Plate Offsets (X	,Y) [22:0-4-0	0,0-4-8]							
Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.69 BC 0.67 WB 0.93 Matrix-MSH		in (loc) -0.31 20-21 -0.43 20-21 0.03 17	l/defl L/d >999 240 >893 180 n/a n/a	PLATES MT20 Weight: 525 lb	GRIP 244/190 o FT = 20%

BRACING-

WFBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

6-26, 7-24, 8-24, 8-22, 9-19, 10-17, 12-17

28147

VOINEE

K. MORR

Rigid ceiling directly applied or 9-8-5 oc bracing. Except:

6-0-0 oc bracing: 19-21

1 Row at midpt

Installation guide

LUMBER-TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS, B5: 2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical.

(lb) -Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14),

17=-146(LC 15), 14=-126(LC 15)

Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=2357(LC 45),

17=3149(LC 45), 14=664(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-394/0, 3-4=-694/117, 6-38=0/293, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327,

40-41=-1040/327, 8-41=-1040/327, 8-42=-1182/289, 42-43=-1182/289, 9-43=-1182/289,

9-10=-29/454, 10-11=0/479, 11-44=0/261, 12-13=-863/204, 13-14=-401/0

2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415

25-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-47=-19/1310, 23-48=-19/1310, 22-48=-19/1310, 22-49=0/839, 18-49=0/839, 18-50=0/839, 50-51=0/839, 17-51=0/839,

16-17=-101/731, 16-52=-101/731, 15-52=-101/731, 15-53=-101/731, 14-53=-101/731 4-28=0/286, 4-26=-816/239, 6-26=-1684/299, 6-24=-17/1003, 8-24=-455/59, 8-22=-553/197,

21-22=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263,

12-17=-1114/287, 12-15=0/280, 18-20=-360/0

BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for this design.

Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 57-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for rooting shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Continued on page 2 9/8/2025

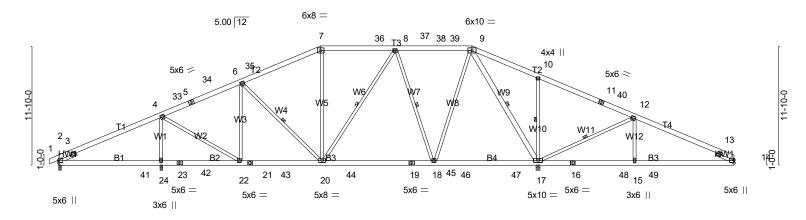
MORALE TO THE PARTY OF THE PART Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R02	Piggyback Base	8	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:42 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-K1p3bojlsr7oCyquwxAgHle3df??MiuRoaZb36yfaut

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 229 lb uplift at joint 26, 146 lb uplift at joint 17 and 126 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss		Truss Type		Qty	Ply	LOT 160 PROVIDENCE CREEK	558 PROVIDENCE CREEK I	DRIVE FUQUAY-VAI
25-7392-R01	R03		PIGGYBACK BASE		1	1	Job Reference (optional)	# 60	365
							it: 8.630 s Jul 12 2024 MiTek Indust fxRI2BEyzqFZ-oENRp8kxd9Ft		
)-1-12	18-0-14	26-0-0	33-6-0	41-0-0	47-6-1	2 57-1-10	67-0-0	1
0-10-8 10)-1-12	7-11-2	7-11-2	7-6-0	7-6-0	6-6-1	2 9-6-14	9-10-6	1

Scale = 1:114.3

	10-1-12	18-0-14	26-0-0	37-2-12		47-6-12	57-1-10	67-0-0	—
LOADING TCLL (roc Snow (Pf) TCDL BCLL	10-1-12 i (psf) if) 20.0 20.0 10.0 0.0 *	7-11-2 SPACING- Plate Grip DOL Lumber DOL	7-11-2 2-0-0 1.15 1.15 YES	CSI. TC 0.71 BC 0.64 WB 1.00 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 24-27 -0.29 18-20 0.04 17	9-6-14 I/defl L/d >904 240 >999 180 n/a n/a	9-10-6 PLATES	GRIP 244/190
BCDL	10.0	Code IRC202 I/TFI	2014	IVIAUIX-IVION				Weight. 312 lb	F1 - 20%

LUMBER-

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except* B4: 2x6 SP DSS

WFBS 2x4 SP No.3 *Except*

W9: 2x6 SP No.2

Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0 SLIDER

BRACING-TOP CHORD

BOT CHORD WFBS

Structural wood sheathing directly applied or 5-1-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

6-20, 8-20, 8-18, 9-17, 10-17, 12-17 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

28147

NOINEE

K. MORR

REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-194(LC 10), 24=-187(LC 14), 17=-245(LC 11), 14=-125(LC

15)

Max Grav All reactions 250 lb or less at joint(s) except 2=594(LC 54), 24=2081(LC 45), 17=3134(LC 45), 14=646(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-356/455, 3-4=-559/466, 4-33=-1719/447, 5-33=-1650/451, 5-34=-1638/456, TOP CHORD

6-34=-1526/474, 6-35=-1632/452, 7-35=-1551/480, 7-36=-1433/488, 36-37=-1433/488,

8-37=-1433/488, 8-38=-1161/386, 38-39=-1161/386, 9-39=-1161/386, 9-10=0/576,

10-11=0/576, 11-40=0/384, 12-40=0/327, 12-13=-828/198, 13-14=-438/0

BOT CHORD 2-41=-363/443, 24-41=-363/443, 24-42=-363/443, 23-42=-363/443, 22-23=-363/443,

21-22=-263/1492, 21-43=-263/1492, 20-43=-263/1492, 20-44=-144/1412, 19-44=-144/1412,

19-45=-144/1412, 18-45=-144/1412, 18-46=-20/780, 46-47=-20/780, 17-47=-20/780,

16-17=-96/699, 16-48=-96/699, 15-48=-96/699, 15-49=-96/699, 14-49=-96/699 4-24=-1706/255, 4-22=0/1338, 6-22=-485/72, 6-20=-328/311, 7-20=0/281, 8-20=-80/485,

8-18=-871/258, 9-18=-137/1383, 9-17=-2048/276, 10-17=-865/262, 12-17=-1141/276,

12-15=0/397

WEBS

1) Unbalanced roof live loads have been considered for this design.

viina: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1 15 Plate DOL=1.45) Ps conditions. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

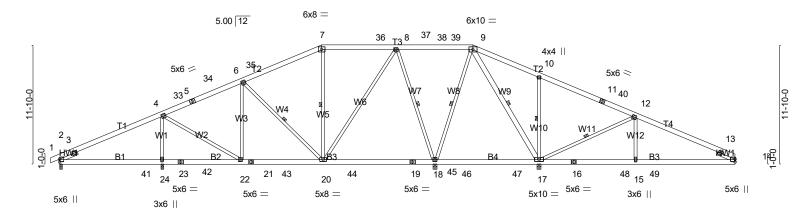
Continued on page 2 9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R03	PIGGYBACK BASE	1	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:43 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-oENRp8kxd9Ffp6P5UfhvpVBD72Kc571b1EJ8bZyfaus

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 194 lb uplift at joint 2, 187 lb uplift at joint 24, 245 lb uplift at joint 17 and 125 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Type Truss LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI 25-7392-R01 R03A Piggyback Base # 60365 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Mon Sep 8 21:13:44 2025 Page 1 ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-HQxp0TkZOTNVRGzH2MC8MjjPASi8qahkGu2i8?yfaur -0₋10-8 0-10-8 10-1-12 18-0-14 26-0-0 33-6-0 41-0-0 47-6-12 57-1-10 67-0-0 10-1-12 7-11-2 7-6-0 7-6-0 6-6-12 9-6-14 9-10-6

Scale = 1:114.3

10-1-12	18-0-14	26-0-0	37-2-12	47-6-12	57-1-10	67-0-0	—
10-1-12	7-11-2	7-11-2	11-2-12	10-4-0	9-6-14	9-10-6	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. 1.15 TC 1.15 BC YES WB	0.69 V 0.56 V	PEFL. in (loc) 'ert(LL) 0.13 24-27	9-6-14 I/defi L/d >903 240 >999 180 n/a n/a	PLATES	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS

WFBS 2x4 SP No.3 *Except*

W9: 2x6 SP No.2

Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0 SLIDER

BRACING-TOP CHORD WFBS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 17-18.

1 Row at midpt

6-20, 7-20, 8-18, 9-18, 9-17, 10-17, 12-17

NOINEE

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Structural wood sheathing directly applied or 5-10-15 oc purlins.

REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 24=-168(LC 14), 18=-162(LC 10), 17=-272(LC

15), 14=-124(LC 15)

Max Grav All reactions 250 lb or less at joint(s) except 2=619(LC 54), 24=1555(LC 45), 18=2078(LC 44), 17=1811(LC 39), 14=676(LC 55)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-373/459, 3-4=-612/475, 4-33=-1279/380, 5-33=-1194/384, 5-34=-1179/388,

6-34=-1042/407, 6-35=-892/352, 7-35=-762/379, 7-36=-701/395, 36-37=-701/395,

8-37=-701/395, 8-38=-39/300, 38-39=-39/300, 9-39=-39/300, 9-10=-29/465, 10-11=0/480,

11-40=0/271, 12-13=-896/195, 13-14=-464/0

BOT CHORD 2-41=-372/491, 24-41=-372/491, 24-42=-372/491, 23-42=-372/491, 22-23=-372/491,

21-22=-201/1067, 21-43=-201/1067, 20-43=-201/1067, 20-44=-8/379, 19-44=-8/379,

19-45=-8/379, 18-45=-8/379, 16-17=-93/761, 16-48=-93/761, 15-48=-93/761,

15-49=-93/761. 14-49=-93/761

WEBS 4-24=-1246/236, 4-22=0/755, 6-20=-576/193, 8-20=-119/1002, 8-18=-1365/330, 9-18=-253/62, 9-17=-319/51, 10-17=-863/262, 12-17=-1138/276, 12-15=0/397

NOTES-(13-16)

1) Unbalanced roof live loads have been considered for this design.

PR) HITHERTH CARO 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

Continued on page 2 9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	-V
25-7392-R01	R03A	Piggyback Base	1	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:44 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-HQxp0TkZOTNVRGzH2MC8MjjPASi8qahkGu2i8?yfaur

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 168 lb uplift at joint 24, 162 lb uplift at joint 18, 272 lb uplift at joint 17 and 124 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply LOT	T 160 PROVIDENCE CREEK 5	558 PROVIDENCE CR	EEK DRIVE FUQUAY-VA
25-7392-R01	R04	PIGGYBACK BASE		2	1 Job	b Reference (optional)	#	60365
						630 s Jul 12 2024 MiTek Industri BEyzqFZ-IcVBDpIB9mVM30		
-0 ₁ 1Q-8 10	0-1-12 18-0-14	26-0-0	33-6-0	41-0-0	47-6-12	57-1-10	67-0-0	67 _г 10-8
0-10-8 10	0-1-12 7-11-2	7-11-2	7-6-0	7-6-0	6-6-12	9-6-14	9-10-6	0-10-8

Scale = 1:115.3

	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2	37-2-12 11-2-12		47-6-12 10-4-0	-	59-4-4 11-9-8	67-0-0 7-7-12	
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0 0.0 * 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.63 BC 0.56 WB 0.99 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 25-28 -0.23 19-21 0.03 16	I/defl >904 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 515 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS 2x4 SP No.3 *Except*

WFBS W9: 2x6 SP No.2

Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0 SLIDER

BRACING-

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 5-11-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

6-21, 7-21, 8-19, 9-19, 10-18, 12-18 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

28147

NOINEE K. MORR

REACTIONS. All bearings 0-3-8.

(lb) - Max Horz 2=167(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 25=-163(LC 14), 19=-246(LC 11), 14=-180(LC

11), 16=-110(LC 15)

Max Grav All reactions 250 lb or less at joint(s) except 2=617(LC 54), 25=1536(LC 45), 19=2712(LC 45), 14=452(LC 55), 16=1234(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-372/461, 3-4=-608/480, 4-34=-1244/378, 5-34=-1174/383, 5-6=-1030/406, TOP CHORD

6-35=-874/346, 7-35=-745/374, 7-36=-686/390, 36-37=-686/390, 8-37=-686/390,

8-38=0/335, 38-39=0/335, 9-39=0/335, 9-10=-941/395, 10-11=-793/283, 11-40=-854/259,

12-40=-933/249, 12-13=-362/352, 13-14=-60/277

BOT CHORD 2-41=-359/487, 25-41=-359/487, 25-42=-359/487, 24-42=-359/487, 23-24=-359/487,

22-23=-181/1052, 22-43=-181/1052, 21-43=-181/1052, 21-44=-6/375, 20-44=-6/375,

20-45=-6/375, 19-45=-6/375, 17-18=-270/664, 17-48=-270/664, 48-49=-270/664,

16-49=-270/664, 14-16=-241/266

WEBS 4-25=-122/231, 4-23=0/737, 6-21=-592/197, 8-21=-122/1025, 8-19=-1383/333,

9-19=-1164/230, 9-18=-262/1203, 10-18=-858/263, 12-16=-1078/211

NOTES-(12-15)

1) Unbalanced roof live loads have been considered for this design.

19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15): Pf=20.0 psf (lum DOL)

Cat B; Partially Exp.; Ce=1.0: Cs=1.00. Ct-1.40 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Continued on page 2 9/8/2025

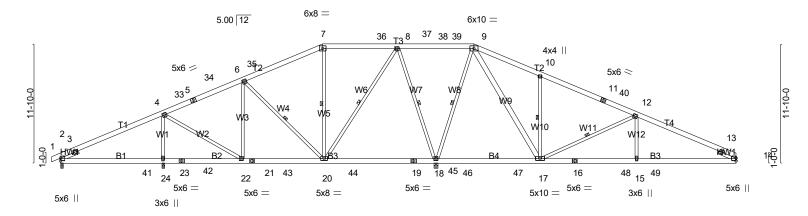
MORARE NOTATION OF THE PARTY OF Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	۱Y-V
25-7392-R01	R04	PIGGYBACK BASE	2	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:45 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-lcVBDplB9mVM3QYTb4kNvwGbos2PZ1ktVYoFgRyfauq

NOTES- (12-15)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 163 lb uplift at joint 25, 246 lb uplift at joint 19, 180 lb uplift at joint 14 and 110 lb uplift at joint 16.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	(Qty Ply	LOT 160 PROVIDENCE CREEK	558 PROVIDENCE CREEK DRIV	/E FUQUAY-VAF
25-7392-R01	R05	Piggyback Base	-	7 1	Job Reference (optional)	# 6036	5
					nt: 8.630 s Jul 12 2024 MiTek Indust xRI2BEyzqFZ-Dp3ZR9mpw4dD		
-0 _T 1Q-8 10-1-12	! 18-0-14	26-0-0 33-	6-0 , 41-0-	-0 , 47-6-	12 57-1-10	67-0-0	
0-10-8 10-1-12	7-11-2	7-11-2 7-6	6-0 7-6-	0 6-6-1	12 9-6-14	9-10-6	

Scale = 1:114.3

10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 37-2-12 7-11-2 11-2-12		57-1-10 9-6-14	9-10-6
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.65 BC 0.52 WB 0.98	DEFL. in (loc) I Vert(LL) 0.14 24-27 >	9-6-14 //defl L/d -894 240 -999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 512 lb FT = 20%

LUMBER-

WFBS

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B4: 2x6 SP DSS

2x4 SP No.3 *Except*

W7: 2x4 SP No.2, W8: 2x4 SP No.1, W9: 2x6 SP No.2

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-1-9 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 18-20,17-18.

WFBS 6-20, 7-20, 8-20, 8-18, 9-18, 10-17, 12-17 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing

28147

NOINEE

K. MORR

be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 0-3-8 except (jt=length) 18=0-4-0, 14=Mechanical.

(lb) - Max Horz 2=172(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-195(LC 10), 24=-164(LC 14), 18=-277(LC 11), 14=-176(LC

Max Grav All reactions 250 lb or less at joint(s) except 2=605(LC 54), 24=1360(LC 35), 18=3525(LC 45), 14=1016(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-358/456, 3-4=-580/464, 4-33=-1082/331, 5-33=-1012/335, 5-34=-1003/339,

6-34=-868/358, 6-35=-665/286, 7-35=-517/314, 7-36=-474/334, 36-37=-474/334,

8-37=-474/334, 8-38=0/927, 38-39=0/927, 9-39=0/927, 9-10=-739/334, 10-11=-590/207,

11-40=-649/183, 12-40=-725/174, 12-13=-1664/313, 13-14=-631/0

BOT CHORD 2-41=-361/462, 24-41=-361/462, 24-42=-361/462, 23-42=-361/462, 22-23=-361/462, 21-22=-157/899, 21-43=-157/899, 20-43=-157/899, 20-44=-495/256, 19-44=-495/256,

19-45=-495/256, 18-45=-495/256, 18-46=-383/198, 46-47=-383/198, 17-47=-383/198,

16-17=-201/1461, 16-48=-201/1461, 15-48=-201/1461, 15-49=-201/1461, 14-49=-201/1461

4-24=-1052/233, 4-22=0/561, 6-20=-731/202, 7-20=-368/83, 8-20=-165/1324,

8-18=-1531/372, 9-18=-1754/267, 9-17=-321/1759, 10-17=-869/263, 12-17=-1064/265,

12-15=0/382

WEBS

1) Unbalanced roof live loads have been considered for this design.

vviiiu. ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & TCLL: ASCE 7-16: Pc-20.0 = 56.0 Exterior(2R) 34-3-10 to 47-6-12 to 60-3-10 to 67-0-10 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Continued on page 2 9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENCE	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R05	Piggyback Base	7	1	Job Reference (optional)	# 60365	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:46 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-Dp3ZR9mpw4dDga7g9nFcR8pIHGO9IU61jCXoCuyfaup

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2, 164 lb uplift at joint 24, 277 lb uplift at joint 18 and 176 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job Truss Type LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI Truss Qtv 25-7392-R01 R07 Common Supported Gable # 60365 Job Reference (optional) Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:47 2025 Page 1 ID:2OYuXCSZgcKAUakfxRI2BEyzqFZ-h?dyeVnRhNm4ljisjUmr_LL3Egrp18HAysHMkKyfauo 21-0-8 0-10-8 -0-10-8 0-10-8 10-1-0 20-2-0 10-1-0 10-1-0 Scale = 1:45.0 4x4 = 8 6 7.00 12 9 26 25 10 2-0-9 11 3x4 || 3x4 || 12 13 1-2-0 1-2-0 21 23 22 20 17 16 24 19 18 15 14 5x5 = 3x4 || 3x4 II 20-2-0 Plate Offsets (X,Y)-- [18:0-2-8,0-3-0] LOADING (psf) SPACING-2-0-0 CSI DEFL. I/defl L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.12 Vert(LL) MT20 244/190 -0.0013 n/r 180 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.11 Vert(CT) -0.0013 n/r 80 TCDL 10.0 Rep Stress Incr WB 0.16 Horz(CT) 0.00 14 n/a n/a

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

2x4 SP No.3 WFBS 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

Weight: 123 lb

NOINEE

FT = 20%

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 20-2-0.

0.0 *

10.0

(lb) - Max Horz 24=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 21, 22, 23, 17, 16, 15 except 19=262(LC 27), 20=305(LC 5), 18=302(LC 6)

Matrix-R

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

NOTES-(14-17)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-0, Exterior(2N) 4-1-0 to 5-3-6, Corner(3R) 5-3-6 to 14-10-10, Exterior(2N) 14-10-10 to 16-1-0, Corner(3E) 16-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

10) Gable studs spaced at 2-0-0 oc.

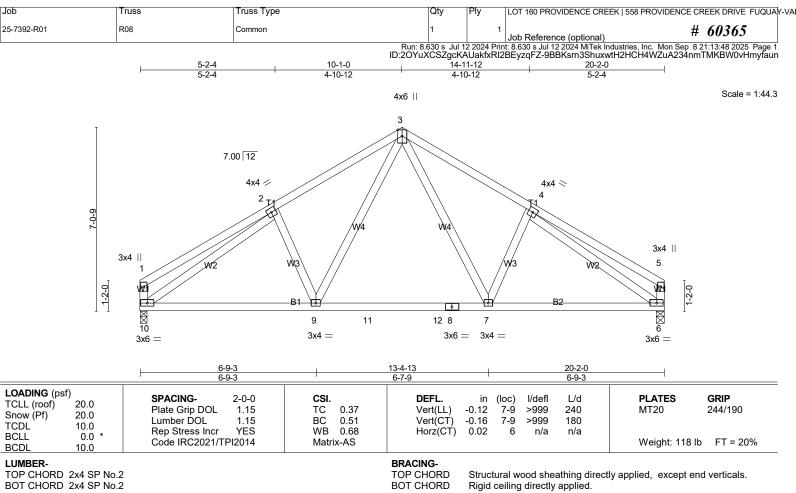
11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

COPESO COPESO 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23 , 18, 17, 16, 15.

Continued on page 2 9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R07	Common Supported Gable	1	1	Job Reference (optional)	# 60365	


Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:47 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-h?dyeVnRhNm4ljisjUmr_LL3Egrp18HAysHMkKyfauo

- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

2x4 SP No 3 WFBS

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 10=795/0-3-8 (min. 0-1-8), 6=795/0-3-8 (min. 0-1-8)

Max Horz 10=-158(LC 10)

Max Uplift10=-90(LC 14), 6=-90(LC 15) Max Grav 10=839(LC 20), 6=839(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-265/79, 2-3=-1021/178, 3-4=-1021/178, 4-5=-265/80

BOT CHORD 9-10=-128/902, 9-11=-19/647, 11-12=-19/647, 8-12=-19/647, 7-8=-19/647, 6-7=-69/873 WFBS

3-7=-92/411, 3-9=-91/411, 2-10=-908/72, 4-6=-908/64

NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 5-0-11, Exterior(2R) 5-0-11 to 15-1-5 Exterior(2E) 15-1-5 to 20-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B: Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.
- Sineetrock be applied directly to the bottom chord.

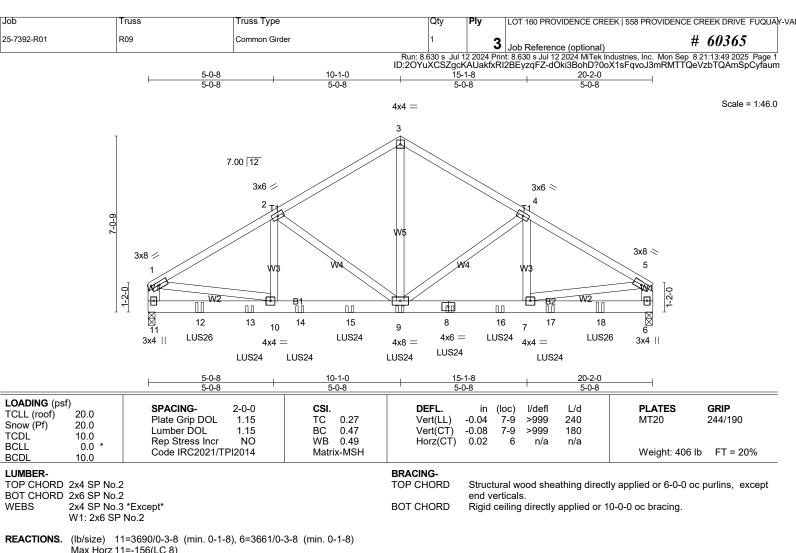
 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

 10) Bearing symbols are only graphical representations of a possible bearing symbols are only graphical representations of a possible bearing symbols.

- structural design of the truss to support the loads indicated.

 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to GCCC.

 Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.


 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE

 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITIONAL BRACING

LOAD CASE(S) Standard

9/8/2025

Max Horz 11=-156(LC 8)

Max Uplift11=-704(LC 12), 6=-700(LC 13) Max Grav 11=3735(LC 18), 6=3706(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-4821/913, 2-3=-3661/743, 3-4=-3661/743, 4-5=-4807/911, 1-11=-3179/619,

5-6=-3171/618

BOT CHORD 11-12=-245/646, 12-13=-245/646, 10-13=-245/646, 10-14=-804/4106, 14-15=-804/4106,

9-15=-804/4106, 8-9=-743/4094, 8-16=-743/4094, 7-16=-743/4094, 7-17=-141/634,

17-18=-141/634, 6-18=-141/634

WEBS 3-9=-647/3260, 4-9=-1293/335, 4-7=-213/1032, 2-9=-1308/337, 2-10=-215/1050,

1-10=-615/3532, 5-7=-615/3531

NOTES-(13-16)

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

ugh HILL CARO 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fix between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 11=794, 6=700
- 10) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 16-0-0 oc max. starting at 2-0-12 from the left end to 18-0-12 to connect truss(es) R02 (1 ply 2x6 SP), R03 (1 ply 2x6 SP) to front face of bottom chord.
- NOINE K. MORE 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 4-0-12 from the left end to 16-0-12 to connect truss(es) R02 (1 ply 2x6 SP) to front face of bottom chord.

பே நாய்கு நாடுக்கு where hanger is in contact with lumber.

9/8/2025

POFESSIO

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	′-V
25-7392-R01	R09	Common Girder	1	3	Job Reference (optional)	# 60365	

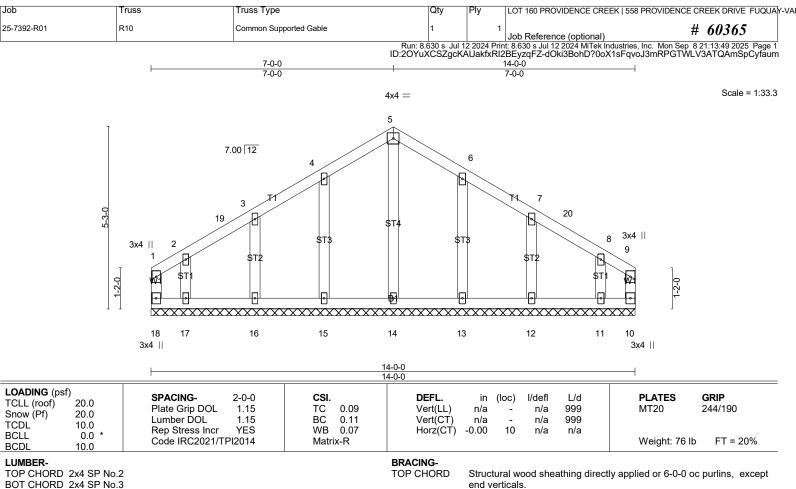
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:49 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-dOki3BohD?0oX1sFqvoJ3mRMTTQeVzbTQAmSpCyfaum

- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 8=-644(F) 9=-644(F) 12=-644(F) 13=-644(F) 14=-644(F) 15=-644(F) 16=-644(F) 17=-644(F) 18=-626(F)

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 14-0-0.

2x4 SP No 3

2x4 SP No.3

(lb) - Max Horz 18=-118(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 18, 10, 15, 16, 17, 13, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 18, 10, 14, 15, 16, 17, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(13-16)

WFBS

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 5-0-0, Corner(3R) 5-0-0 to 9-0-0, Corner(3E) 9-0-0 to 13-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B: Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

9) Gable studs spaced at 2-0-0 oc.

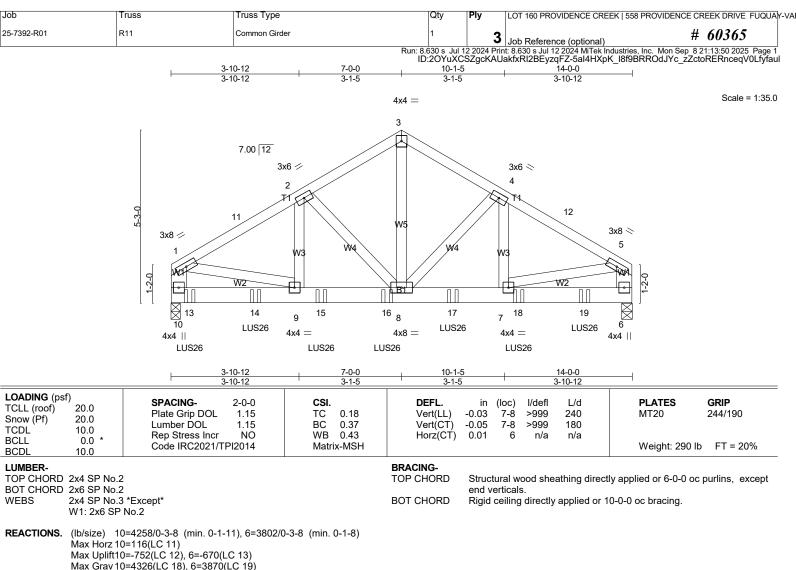
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 10, 15, 16, 17 , 12, 11.

WHITH CAR WATH CARO William Manual M William Market Street SEAL 28147 VOINEE K. MORR

Continued on page 2

9/8/2025

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENC	E CREEK DRIVE FUQUA	Y-V
25-7392-R01	R10	Common Supported Gable	1	1	Job Reference (optional)	# 60365	


Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:50 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-5al4HXpK_l8f9BRROdJYc_za0tsaEWPceqV0Lfyfaul

- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Max Grav 10=4326(LC 18), 6=3870(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-11=-4261/729, 2-11=-4190/739, 2-3=-3359/627, 3-4=-3359/627, 4-12=-4216/744,

5-12=-4287/735, 1-10=-2990/531, 5-6=-3003/533

BOT CHORD 10-13=-199/620, 13-14=-199/620, 9-14=-199/620, 9-15=-637/3620, 15-16=-637/3620,

8-16=-637/3620, 8-17=-609/3642, 7-17=-609/3642, 7-18=-127/642, 18-19=-127/642, 6-19=-127/642

3-8=-567/3077, 4-8=-1121/253, 4-7=-203/1005, 2-8=-1090/246, 2-9=-195/970,

1-9=-503/3090, 5-7=-504/3090

WEBS

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

ugh HILL CARO 4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6) Unbalanced snow loads have been considered for this design.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fix between the bottom chord and any other members.

between the bottom cnoru and any one.

9) Provide mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing plate capable or with standing 100 mechanical connection (by others) of truss to bearing 100 mechanical connection (by others) of truss to bearing 100 mechanical connection (by others) of truss to be a standing 100 mechanical connection (by others) of truss to be a standing 100 mechanical connection (by others) of truss to be a standing 1

Continued on page 2 9/8/2025

MORPHS INTERIOR SOF Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

POFESSIO

Job	Truss	Truss Type	Qty	Ply	LOT 160 PROVIDENCE CREEK 558 PROVIDENCE CREE	K DRIVE FUQUAY-
25-7392-R01	R11	Common Girder	1	3	Job Reference (optional) # 6	0365

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Sep 8 21:13:50 2025 Page 2 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-5al4HXpK_l8f9BRROdJYc_zZctoRERnceqV0Lfyfaul

- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

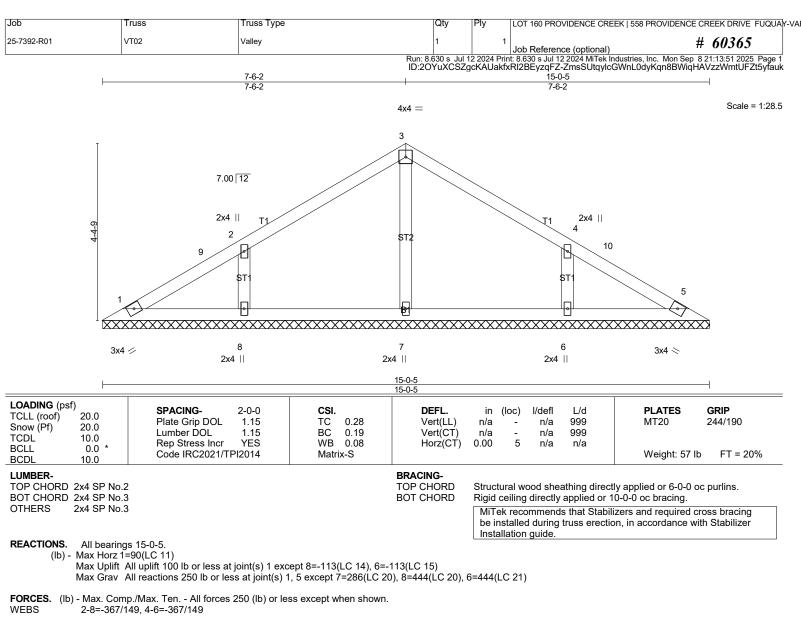
Vert: 1-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb)

Vert: 13=-1002(F) 14=-996(F) 15=-996(F) 16=-996(F) 17=-996(F) 18=-996(F) 19=-996(F)

LOT 160 PROVIDENCE CREEK | 558 PROVIDENCE CREEK DRIVE FUQUAY-VAI .lob Truss Truss Type VT01 25-7392-R01 Valley # 60365 Job Reference (optional) Run: 8.630 s. Jul 12 2024 Print: 8.630 s. Jul 12 2024 MiTek Industries, Inc. Mon Sep. 8 21:13:51 2025 Page 1 ID:2OYuXCSZgcKAUakfxRl2BEyzqFZ-ZmsSUtqylcGWnL0dyKqn8BWhqH9PzzEmtUFZt5yfauk 8-11-5 17-10-9 8-11-5 8-11-5 Scale = 1:34.1 4x4 = 3 7.00 12 2x4 || 2x4 || 11 3x4 / 3x4 > 9 12 8 7 13 6 2x4 || 2x4 || 2x4 || 3x6 =17-10-9 LOADING (psf) SPACING-**PLATES** GRIP 2-0-0 CSI. DEFL. in (loc) I/defl I/d 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.34 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 Lumber DOL ВС 0.26 Vert(CT) 999 1.15 n/a n/a TCDL 10.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 5 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-S Weight: 69 lb FT = 20% BCDI 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No 3 OTHERS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. All bearings 17-10-9 (lb) - Max Horz 1=-108(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-136(LC 14), 6=-136(LC 15) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=372(LC 5), 9=514(LC 20), 6=514(LC 21) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-410/177, 4-6=-410/177

NOTES-(9-12)

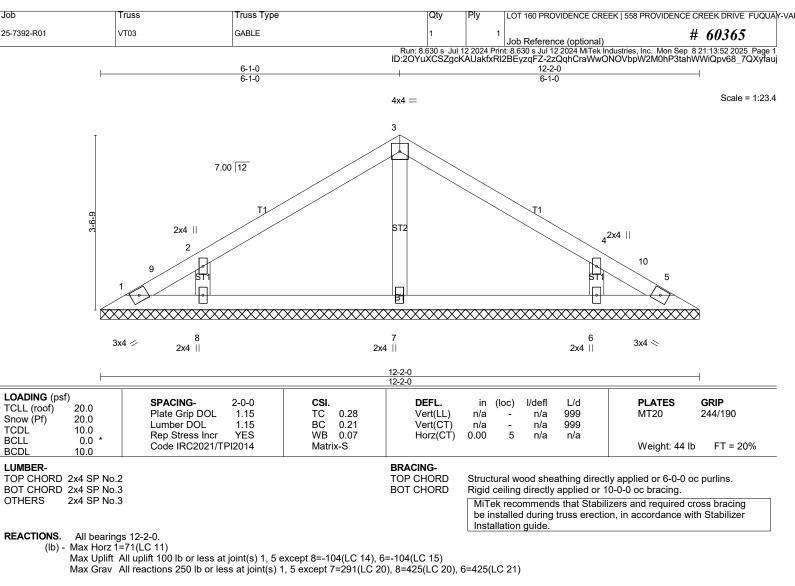

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 12-6-8, Exterior(2E) 12-6-8 to 17-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=136, 6=136,
- ROFESE, 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDE MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

LOAD CASE(S) Standard

9/8/2025

WOINER

A K. MORR


NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 9-8-3, Exterior(2E) 9-8-3 to 14-5-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=113, 6=113
- ROFESE, 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BČŠI-B3 SUMMĀRY SHĒĒT- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDE MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

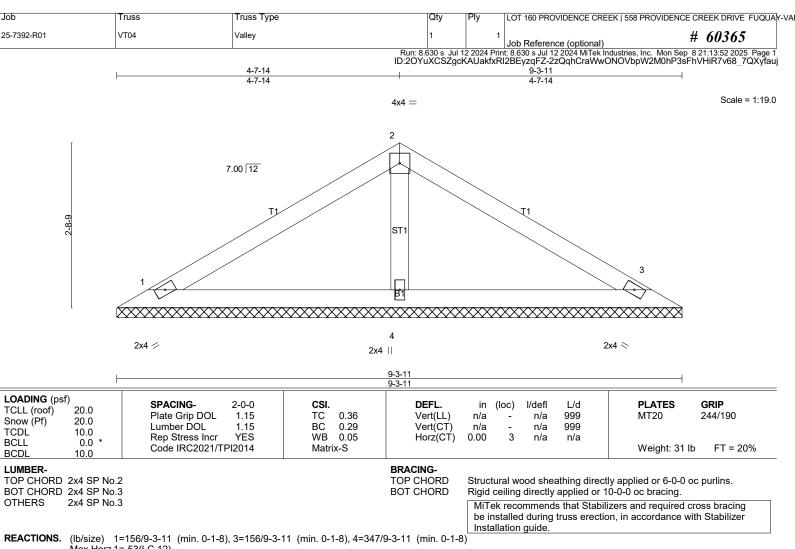
CONSIDERATIONS LOAD CASE(S) Standard

9/8/2025

WOINER

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-368/141, 4-6=-368/141


NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 6-9-15, Exterior(2E) 6-9-15 to 11-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=104, 6=104,
- at CAROUS OROFESE 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 12) SEE BČŠI-B3 SUMMĀRY SHĒET- PERMANENT RESTRAING/BRACING OF CHORDS & WĒB MEMBERS FOR ŘECŎMMENDE MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

LOAD CASE(S) Standard

9/8/2025

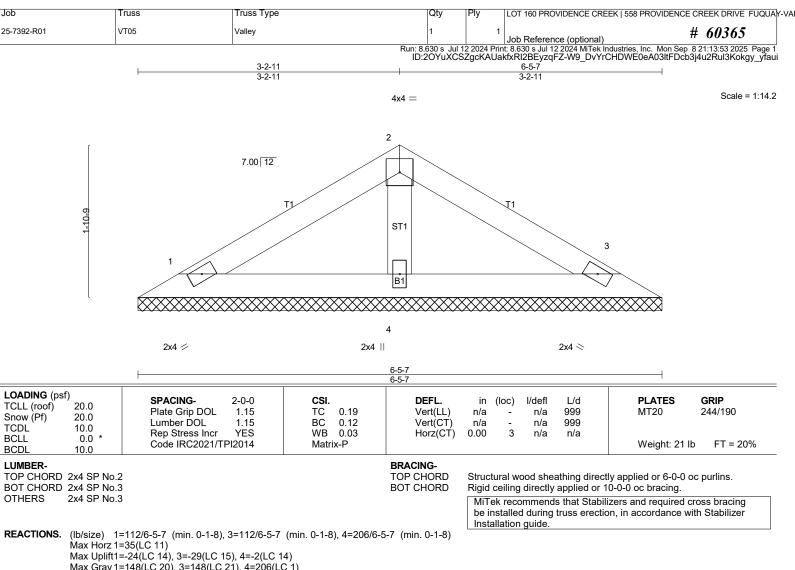
WOINER

Max Horz 1=-53(LC 12)

Max Uplift1=-30(LC 14), 3=-37(LC 15), 4=-18(LC 14)

Max Grav 1=223(LC 20), 3=223(LC 21), 4=358(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF ENGINEERATIONS CONSIDERATIONS.

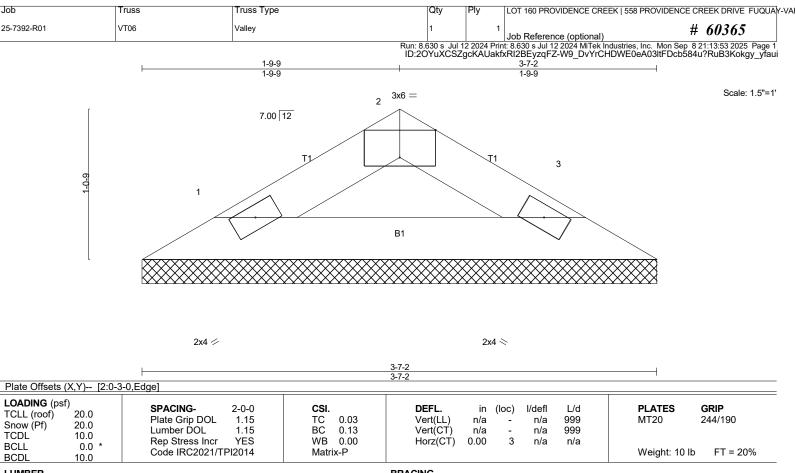
LOAD CASE(S) Standard

MORRIS INTERIOR STATE OF THE PARTY OF THE PA NOINEE

9/8/2025

Max Grav 1=148(LC 20), 3=148(LC 21), 4=206(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 22 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE CONSIDERATIONS CONSIDERATIONS.

LOAD CASE(S) Standard

9/8/2025

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-7-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=101/3-7-2 (min. 0-1-8), 3=101/3-7-2 (min. 0-1-8)

Max Horz 1=-16(LC 12)

Max Uplift1=-12(LC 14), 3=-12(LC 15) Max Grav 1=109(LC 20), 3=109(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-12)

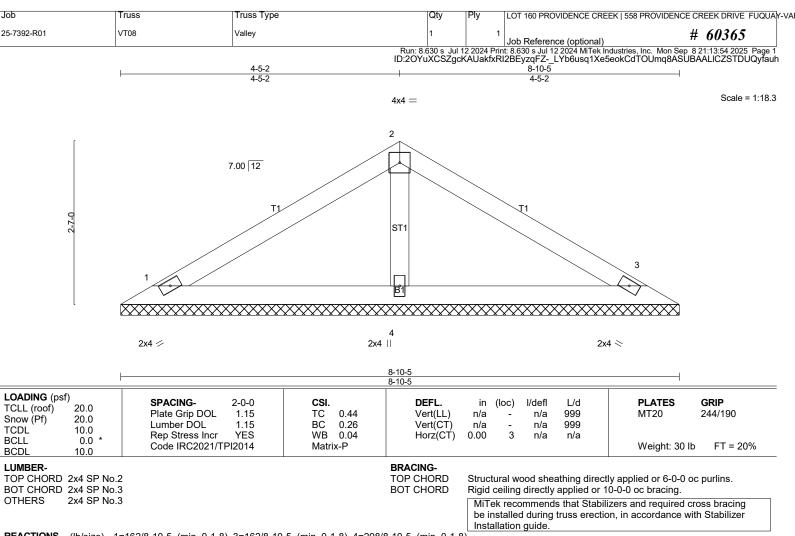
- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- vveo bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WER PLANES IN THE PROJECT ON SIDERATIONS. 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

MORRES Tand NOINE K. MORR

9/8/2025

NOTES-(9-12)


- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 5-4-1, Exterior(2R) 5-4-1 to 6-4-8, Exterior(2E) 6-4-8 to 11-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED.

 MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITIONAL CONSIDERATIONS.

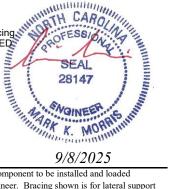
LOAD CASE(S) Standard

MORRIS d and NOINEE

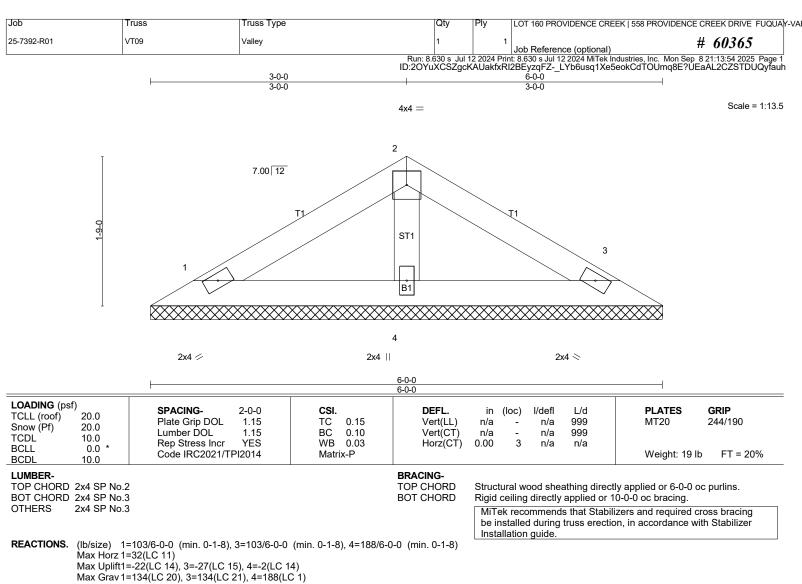
9/8/2025

REACTIONS. (lb/size) 1=162/8-10-5 (min. 0-1-8), 3=162/8-10-5 (min. 0-1-8), 4=298/8-10-5 (min. 0-1-8)

Max Horz 1=50(LC 13)


Max Uplift1=-35(LC 14), 3=-42(LC 15), 4=-3(LC 14) Max Grav 1=225(LC 20), 3=225(LC 21), 4=305(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-(9-12)

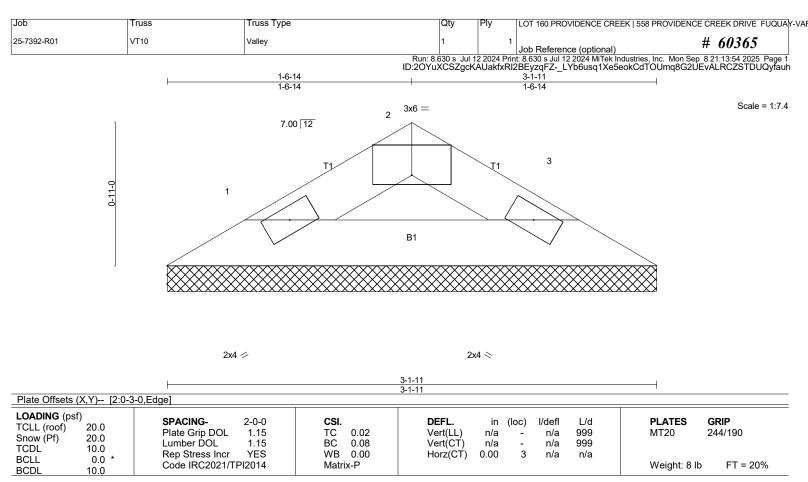
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- vveo pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 22 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF ENGINEER TO CONSIDERATIONS

CONSIDERATIONS. LOAD CASE(S) Standard

9/8/2025

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-12)


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDs & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER TOPS CONSIDERATIONS.

LOAD CASE(S) Standard

MORRIS INTERIOR STATE OF THE PARTY OF THE PA NOINEE

9/8/2025

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-1-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=83/3-1-11 (min. 0-1-8), 3=83/3-1-11 (min. 0-1-8)

Max Horz 1=13(LC 13)

Max Uplift1=-10(LC 14), 3=-10(LC 15) Max Grav 1=88(LC 20), 3=88(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-12)

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- web pracing shown is for lateral support the loads indicated.

 web pracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES BLACE BL 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECŎMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

MORRES Tand NOINE K. MORR