

RE: 251386-A

Lot 92 Magnolia Hills

Trenco 818 Soundside Rd Edenton, NC 27932

Truss Name

V4

V5

V6

Date

9/26/2025

9/26/2025

9/26/2025

Site Information:

Customer: Precision Custom Homes and Renovations Project Name: 251386-A

Lot/Block: 92 Model:

Address: Subdivision: Magnolia Hills

City: Cameron State: NC

## General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 25.2

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     |
|-----|-----------|------------|-----------|-----|-----------|
| 1   | 176645128 | A1         | 9/26/2025 | 21  | 176645148 |
| 2   | 176645129 | A1GE       | 9/26/2025 | 22  | 176645149 |
| 3   | 176645130 | A2         | 9/26/2025 | 23  | 176645150 |
| 4   | 176645131 | A3         | 9/26/2025 |     |           |
| 5   | 176645132 | A3GE       | 9/26/2025 |     |           |
| 6   | 176645133 | B1GE       | 9/26/2025 |     |           |
| 7   | 176645134 | B2         | 9/26/2025 |     |           |
| 8   | 176645135 | C1         | 9/26/2025 |     |           |
| 9   | 176645136 | C1-GR      | 9/26/2025 |     |           |
| 10  | 176645137 | C1GE       | 9/26/2025 |     |           |
| 11  | 176645138 | G1         | 9/26/2025 |     |           |
| 12  | 176645139 | G1GE       | 9/26/2025 |     |           |
| 13  | 176645140 | J1         | 9/26/2025 |     |           |
| 14  | 176645141 | J2         | 9/26/2025 |     |           |
| 15  | 176645142 | J2GE       | 9/26/2025 |     |           |
| 16  | 176645143 | J3         | 9/26/2025 |     |           |
| 17  | 176645144 | J3GE       | 9/26/2025 |     |           |
| 18  | 176645145 | V1         | 9/26/2025 |     |           |
| 19  | 176645146 | V2         | 9/26/2025 |     |           |
| 20  | 176645147 | V3         | 9/26/2025 |     |           |
|     |           |            |           |     |           |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

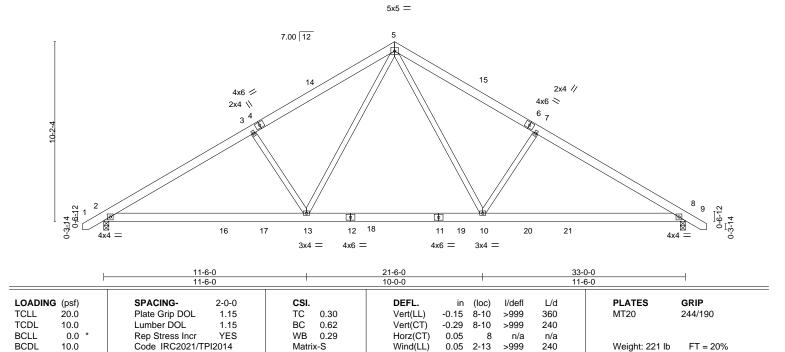
Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.




September 26, 2025

Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645128 251386-A COMMON 6 A1 Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:26 2025 Page 1 Comtech, Inc.

ID:aTXuLo?nW09qtpROz2WQ0wydkZW-o9mZwVQz7KCp6CFdCbf8GSQJlkG7hSXnbRWclqyZwb?

16-6-0 24-6-0 33-0-0 8-6-0 8-0-0 8-0-0 8-6-0

Scale = 1:65.4



BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 **WEBS** 

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=-245(LC 10)

Max Uplift 2=-91(LC 12), 8=-91(LC 13) Max Grav 2=1692(LC 19), 8=1692(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2490/416, 3-5=-2285/457, 5-7=-2286/457, 7-8=-2491/416 TOP CHORD **BOT CHORD** 2-13=-234/2241 10-13=-10/1464 8-10=-231/2057

**WEBS** 3-13=-508/299, 5-13=-140/1103, 5-10=-140/1103, 7-10=-508/300

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-6 to 3-4-7, Interior(1) 3-4-7 to 16-6-0, Exterior(2R) 16-6-0 to 20-10-13, Interior(1) 20-10-13 to 34-0-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 2 and 91 lb uplift at joint 8.



Structural wood sheathing directly applied or 4-8-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645129 251386-A **GABLE** A1GE Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:27 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-GLKx7rRbueKgkMqpmlANogzYb8lnQyMxq5F9HHyZwb\_ 16-6-0

11 7.00 12 12 10 13 4x6 / 14 4x6 🔷 15 <sub>6</sub>7 16 17 18 19 3x4 =36 35 34 33 3231 30 2928 27 26 25 23 4x6 =

5x5 =

|         |       | Ī                    |          | 33-0-0                    |                         |
|---------|-------|----------------------|----------|---------------------------|-------------------------|
| LOADING | (psf) | SPACING- 2-0-0       | CSI.     | DEFL. in (loc) I/defl L/d | PLATES GRIP             |
| TCLL    | 20.0  | Plate Grip DOL 1.15  | TC 0.04  | Vert(LL) -0.00 20 n/r 120 | MT20 244/190            |
| TCDL    | 10.0  | Lumber DOL 1.15      | BC 0.02  | Vert(CT) 0.00 20 n/r 120  |                         |
| BCLL    | 0.0 * | Rep Stress Incr YES  | WB 0.12  | Horz(CT) 0.01 20 n/a n/a  |                         |
| BCDL    | 10.0  | Code IRC2021/TPI2014 | Matrix-S |                           | Weight: 283 lb FT = 20% |

33-0-0

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 **OTHERS** 

**BRACING-**

4x6 =

TOP CHORD **BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 11-30, 10-31, 12-29

16-6-0

Scale: 3/16"=1"

REACTIONS. All bearings 33-0-0.

Max Horz 2=306(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 31, 33, 34, 35, 36, 37, 38, 29, 27, 26, 25, 24, 23, 22 Max Grav All reactions 250 lb or less at joint(s) 2, 20, 30, 31, 33, 34, 35, 36, 37, 38, 29, 27, 26, 25, 24,

16-6-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-277/226, 10-11=-173/277, 11-12=-173/277

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-6 to 3-4-7, Exterior(2N) 3-4-7 to 16-6-0, Corner(3R) 16-6-0 to 20-10-13, Exterior(2N) 20-10-13 to 34-0-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 31, 33, 34, 35, 36, 37, 38, 29, 27, 26, 25, 24, 23, 22.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645130 251386-A COMMON A2 Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:28 2025 Page 1 Comtech, Inc.

8-0-0

16-6-0


8-0-0

ID:aTXuLo?nW09qtpROz2WQ0wydkZW-kXuJLARDfySXMVO0K0hcLtVZsYxp9M143l?jpjyZwaz 24-6-0 33-0-0 34-2-8 1-2-8

8-6-0

Structural wood sheathing directly applied or 4-8-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 **WEBS** 2x4 SP No.2

WEDGE

Right: 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=-245(LC 10)

Max Uplift 2=-91(LC 12), 8=-91(LC 13)

Max Grav 2=1692(LC 19), 8=1692(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.  $2\hbox{-}3\hbox{--}2490/416,\ 3\hbox{-}5\hbox{--}2285/457,\ 5\hbox{-}7\hbox{--}2286/457,\ 7\hbox{-}8\hbox{--}2491/416}$ TOP CHORD

8-6-0

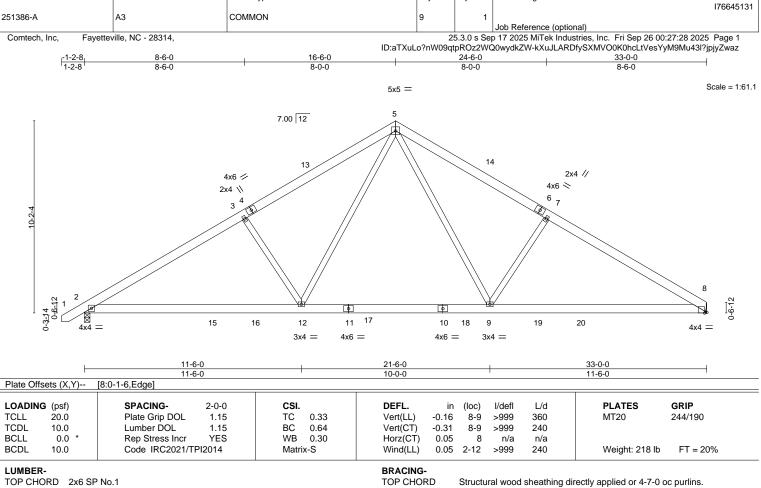
**BOT CHORD** 2-13=-234/2241, 10-13=-10/1464, 8-10=-231/2057

WEBS 3-13=-508/299, 5-13=-140/1103, 5-10=-140/1103, 7-10=-508/300

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-6 to 3-4-7, Interior(1) 3-4-7 to 16-6-0, Exterior(2R) 16-6-0 to 20-10-13, Interior(1) 20-10-13 to 34-0-6 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.




September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





**BOT CHORD** 

Qty

Ply

Lot 92 Magnolia Hills

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 8=Mechanical

Max Horz 2=241(LC 9)

Truss

Truss Type

Max Uplift 2=-91(LC 12), 8=-75(LC 13) Max Grav 2=1697(LC 19), 8=1629(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2499/418, 3-5=-2294/459, 5-7=-2309/465, 7-8=-2516/425

**BOT CHORD** 2-12=-269/2241, 9-12=-45/1465, 8-9=-261/2088

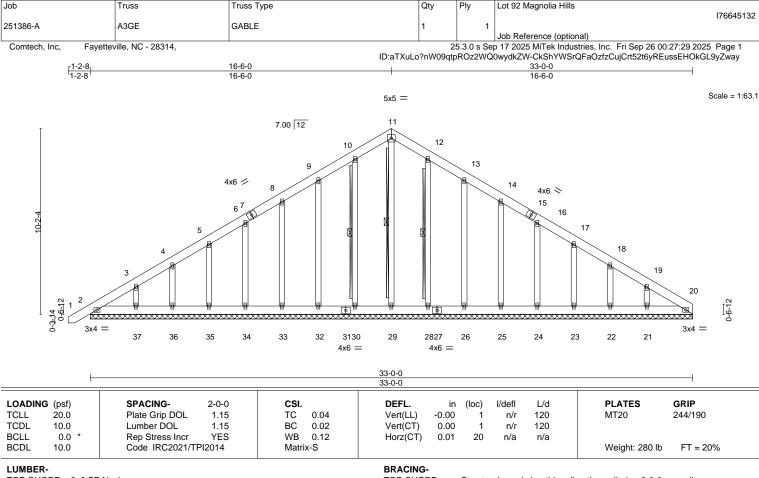
WFBS 3-12=-508/300, 5-12=-141/1101, 5-9=-144/1125, 7-9=-524/308

## NOTES-

Job

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-6 to 3-4-7, Interior(1) 3-4-7 to 16-6-0, Exterior(2R) 16-6-0 to 20-10-13, Interior(1) 20-10-13 to 32-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.




September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 **OTHERS** 

TOP CHORD BOT CHORD WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. 11-29, 10-30, 12-28 1 Row at midpt

REACTIONS. All bearings 33-0-0.

Max Horz 2=301(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 30, 32, 33, 34, 35, 36, 37, 28, 26, 25, 24, 23, 22 except 21=-107(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 20, 29, 30, 32, 33, 34, 35, 36, 37, 28, 26, 25, 24, 23, 22, 21

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-280/222, 10-11=-169/265, 11-12=-169/265

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-6 to 3-4-7, Exterior(2N) 3-4-7 to 16-6-0, Corner(3R) 16-6-0 to 20-10-13, Exterior(2N) 20-10-13 to 33-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 30, 32, 33, 34, 35, 36, 37, 28, 26, 25, 24, 23, 22 except (jt=lb) 21=107.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

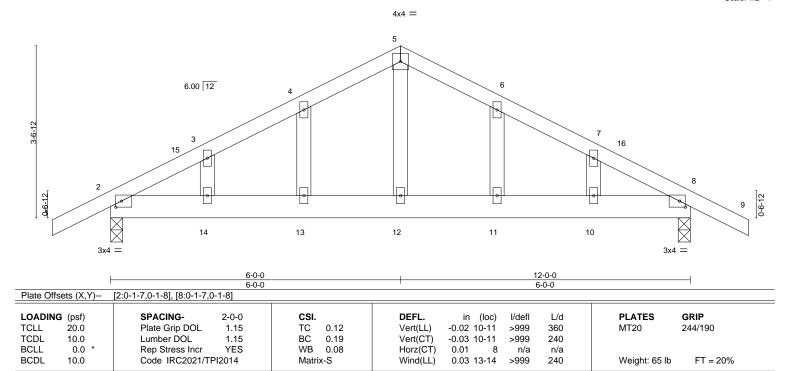


|                        |                    |           |          | ı.,        |                                                          | 170045400 |
|------------------------|--------------------|-----------|----------|------------|----------------------------------------------------------|-----------|
| 251386-A               | B1GE               | GABLE     | 1        | 1          |                                                          | 176645133 |
|                        |                    |           |          |            | Job Reference (optional)                                 |           |
| Comtech, Inc, Fayettev | rille, NC - 28314, |           | 2        | 5.3.0 s Se | p 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:29 202 | 25 Page 1 |
|                        |                    | ID:aTXuLo | ?nW09qtp | ROz2WQ     | OwydkZW-CkShYWSrQFaOzfzCujCrt52sxyPdusXEHOkG             | }L9yZway  |
| -1-2-8                 |                    | 6-0-0     |          |            | 12-0-0                                                   | -2-8      |

Qtv

Plv

Lot 92 Magnolia Hills


6-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale: 1/2"=1

1-2-8



**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

Job

1-2-8

TOP CHORD 2x4 SP No 1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 8=0-3-0

Max Horz 2=-73(LC 13)

Truss

Truss Type

6-0-0

Max Uplift 2=-143(LC 9), 8=-143(LC 8) Max Grav 2=550(LC 1), 8=550(LC 1)

FORCES. (lb) - Max, Comp./Max, Ten. - All forces 250 (lb) or less except when shown.

 $2\text{-}3\text{--}617/511,\ 3\text{-}4\text{--}570/540,\ 4\text{-}5\text{--}561/594,\ 5\text{-}6\text{--}561/594,\ 6\text{-}7\text{--}570/540,\ 7\text{-}8\text{--}617/511}$ TOP CHORD

**BOT CHORD** 2-14=-358/491, 13-14=-358/491, 12-13=-358/491, 11-12=-358/491, 10-11=-358/491,

8-10=-358/491

WEBS 5-12=-379/328

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 6-0-0, Exterior(2R) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 13-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=143, 8=143.



September 26,2025



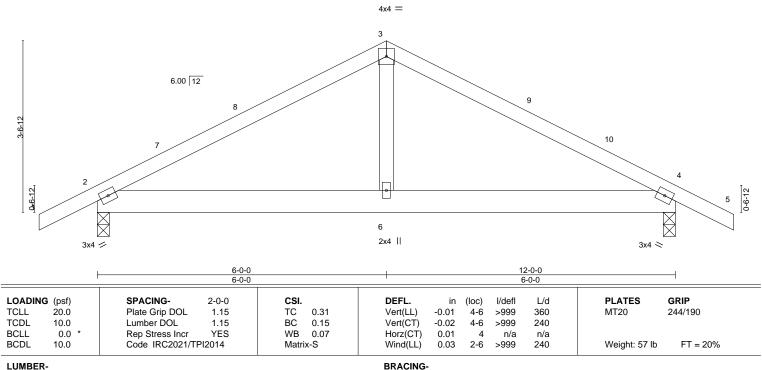
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job               | Truss                  | Truss Type | Qty           | Ply                     | Lot 92 Magnolia Hills                                            |
|-------------------|------------------------|------------|---------------|-------------------------|------------------------------------------------------------------|
|                   |                        |            |               |                         | 176645134                                                        |
| 251386-A          | B2                     | COMMON     | 4             | 1                       |                                                                  |
|                   |                        |            |               |                         | Job Reference (optional)                                         |
| Comtech, Inc, Fay | etteville, NC - 28314, |            | 2             | 5.3.0 s Se <sub>l</sub> | o 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:30 2025 Page 1 |
|                   |                        | ID:a       | TXuLo?nW09qtp | ROz2WQ0                 | DwydkZW-hw03lsTTBZiEbpYORRk4QIb eMlQdJ?NW2UptbyZwax              |


12-0-0

6-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale: 1/2"=1



TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

1-2-8

REACTIONS. (size) 2=0-3-0, 4=0-3-0

Max Horz 2=-47(LC 10)

Max Uplift 2=-109(LC 9), 4=-109(LC 8) Max Grav 2=550(LC 1), 4=550(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-640/555, 3-4=-640/555 **BOT CHORD** 2-6=-338/485, 4-6=-338/485

**WEBS** 3-6=-213/296

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 6-0-0, Exterior(2R) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 13-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6-0-0

6-0-0

- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=109, 4=109.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645135 C1 COMMON 251386-A 5 Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:30 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-hw03lsTTBZiEbpYORRk4QlbxpMfqdH\_NW2UptbyZwax 10-0-0 20-0-0 10-0-0 10-0-0 Scale = 1:58.2 5x8 || 10.00 12 10 6 11 5x8 || 5x8 || 4x6 =10-0-0 20-0-0 10-0-0 10-0-0

| LOADIN | G (psf) | SPACING- 2-0-0       | CSI.     | DEFL.      | in (loc)  | I/defl L/d | PLATES GRIP             |
|--------|---------|----------------------|----------|------------|-----------|------------|-------------------------|
| TCLL   | 20.0    | Plate Grip DOL 1.15  | TC 0.49  | Vert(LL) - | -0.12 4-7 | >999 360   | MT20 244/190            |
| TCDL   | 10.0    | Lumber DOL 1.15      | BC 0.58  | Vert(CT) - | -0.18 4-7 | >999 240   |                         |
| BCLL   | 0.0 *   | Rep Stress Incr YES  | WB 0.20  | Horz(CT)   | 0.01 4    | n/a n/a    |                         |
| BCDL   | 10.0    | Code IRC2021/TPI2014 | Matrix-S | Wind(LL)   | 0.06 2-7  | >999 240   | Weight: 129 lb FT = 20% |

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 4=0-3-8, 2=0-3-8

Max Horz 2=-221(LC 10) Max Uplift 4=-48(LC 13), 2=-48(LC 12) Max Grav 4=1105(LC 20), 2=1105(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1144/207, 3-4=-1143/207

**BOT CHORD** 2-7=0/804, 4-7=0/804

WEBS 3-7=0/864

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-8 to 3-4-4, Interior(1) 3-4-4 to 10-0-0, Exterior(2R) 10-0-0 to 14-4-13, Interior(1) 14-4-13 to 21-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.



Structural wood sheathing directly applied or 5-11-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



JobTrussTruss TypeQtyPlyLot 92 Magnolia Hills251386-AC1-GRCOMMON GIRDER12
Job Reference (optional)

10-0-0

5-0-0

5-0-0 5-0-0

Comtech, Inc, Fayetteville, NC - 28314,

Scale = 1:58.2

Structural wood sheathing directly applied or 5-3-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

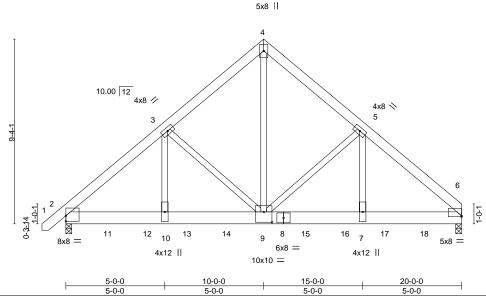



Plate Offsets (X,Y)-- [2:0-0-0,0-3-5], [6:Edge,0-0-9], [9:0-5-0,0-6-4]

| LOADING | G (psf) | SPACING- 2-0-        | -0 | CSI.  |      | DEFL.    | in    | (loc) | I/defI | L/d | PLATES         | GRIP     |
|---------|---------|----------------------|----|-------|------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL    | 20.0    | Plate Grip DOL 1.1   | 5  | TC    | 0.68 | Vert(LL) | -0.09 | 9-10  | >999   | 360 | MT20           | 244/190  |
| TCDL    | 10.0    | Lumber DOL 1.1       | 5  | BC    | 0.51 | Vert(CT) | -0.15 | 9-10  | >999   | 240 |                |          |
| BCLL    | 0.0 *   | Rep Stress Incr N    | 0  | WB    | 0.94 | Horz(CT) | 0.04  | 6     | n/a    | n/a |                |          |
| BCDL    | 10.0    | Code IRC2021/TPI2014 | 1  | Matri | x-S  | Wind(LL) | 0.05  | 9-10  | >999   | 240 | Weight: 341 lb | FT = 20% |

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SP No.2

**REACTIONS.** (size) 6=0-3-8, 2=0-3-8

Max Horz 2=217(LC 28)

Max Uplift 6=-424(LC 9), 2=-437(LC 8) Max Grav 6=7605(LC 2), 2=7590(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-9332/550, 3-4=-6323/462, 4-5=-6321/461, 5-6=-9348/547 BOT CHORD 2-10=-410/6760. 9-10=-410/6761. 7-9=-340/6764. 6-7=-340/6764

WEBS 4-9=-485/7700, 5-9=-2629/286, 5-7=-162/3903, 3-9=-2624/282, 3-10=-164/3877

## NOTES-

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-6-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=424, 2=437.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1528 lb down and 95 lb up at 2-0-12, 1528 lb down and 95 lb up at 4-0-12, 1528 lb down and 95 lb up at 6-0-12, 1528 lb down and 95 lb up at 10-0-12, 1528 lb down and 95 lb up at 10-0-12, 1528 lb down and 95 lb up at 16-0-12, and 1528 lb down and 95 lb up at 16-0-12, and 1528 lb down and 95 lb up at 16-0-12, and 1528 lb down and 95 lb up at 18-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (olf)

Vert: 1-4=-60, 4-6=-60, 2-6=-20



September 26,2025

## Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type    | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|---------------|-----|-----|--------------------------|
| 251386-A | C1-GR | COMMON GIRDER | 1   | _   | 176645136                |
| 231300-A | C1-GK | COMMON GIRDER |     | 2   | Job Reference (optional) |

Comtech, Inc,

Fayetteville, NC - 28314,

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:32 2025 Page 2 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-dl8qAYUjjAyyq7inZrmYVjgEP9LK50mg\_MzwyUyZwav

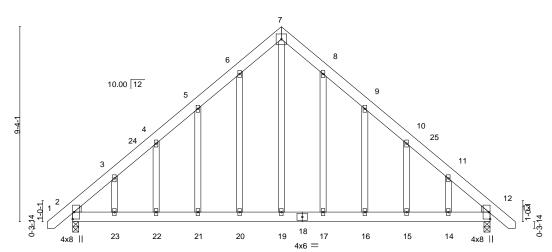
LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 9=-1290(F) 11=-1290(F) 12=-1290(F) 13=-1290(F) 14=-1290(F) 15=-1290(F) 16=-1290(F) 17=-1290(F) 18=-1290(F)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645137 C1GE **GABLE** 251386-A Job Reference (optional) Fayetteville, NC - 28314, Comtech, Inc.

> 10-0-0 10-0-0


25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:31 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-96aSzCU5ytq5Dz7b?8FJzW7A7l1qMgmWliDNP2yZwaw

10-0-0

Scale = 1:55.2 6x6 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



20-0-0 10-0-0 10-0-0

BRACING-

TOP CHORD

BOT CHORD

| LOADING (psf)   SPACING- 2-0-0   CSI.   DEFL. in (loc) I/defl L/d   PLATES   | S GRIP          |
|------------------------------------------------------------------------------|-----------------|
| TCLL 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) -0.09 15-16 >999 360 MT20     | 244/190         |
| TCDL 10.0 Lumber DOL 1.15 BC 0.40 Vert(CT) -0.14 15-16 >999 240              |                 |
| BCLL 0.0 * Rep Stress Incr YES WB 0.48 Horz(CT) 0.01 12 n/a n/a              |                 |
| BCDL 10.0 Code IRC2021/TPI2014 Matrix-S Wind(LL) 0.15 21-22 >999 240 Weight: | 180 lb FT = 20% |

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 WFBS OTHERS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 12=0-3-8, 2=0-3-8

Max Horz 2=-276(LC 10)

Max Uplift 12=-169(LC 13), 2=-169(LC 12) Max Grav 12=860(LC 1), 2=860(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD  $2-3=-870/144,\ 3-4=-749/218,\ 4-5=-698/287,\ 5-6=-668/367,\ 6-7=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=-633/454,\ 7-8=$ 8-9=-668/367, 9-10=-698/287, 10-11=-749/218, 11-12=-870/144

2-23=-39/567, 22-23=-39/567, 21-22=-39/567, 20-21=-39/567, 19-20=-39/567,

**BOT CHORD** 17-19=-39/567, 16-17=-39/567, 15-16=-39/567, 14-15=-39/567, 12-14=-39/567

**WEBS** 7-19=-371/539

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-8 to 3-4-4, Exterior(2N) 3-4-4 to 10-0-0, Corner(3R) 10-0-0 to 14-4-13, Exterior(2N) 14-4-13 to 21-0-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=169, 2=169.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645138 6 251386-A G1 COMMON Job Reference (optional)

23-0-0

5-1-6

Fayetteville, NC - 28314, Comtech, Inc.

4-10-10

4-10-10

8-8-12

3-10-2

10-10-10 2-1-14

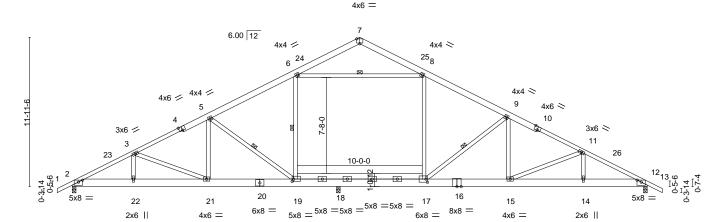
17-10-10

7-0-0

17-10-10

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:32 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-dl8qAYUjjAyyq7inZrmYVjgKt9LP578g\_MzwyUyZwav 27-10-10 34-10-10 40-10-10 46-0-0 4-10-10 7-0-0 6-0-0 5-1-6

40-10-10


Structural wood sheathing directly applied or 3-9-2 oc purlins.

9-17, 6-19, 5-19, 6-8

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

46-0-0

Scale = 1:92.2



|             |           | 4-10-10 6-0-               | )             | 7-0-0            | 3-3-0       | 6-11-11              | 6-9-5              | ' (             | 6-0-0 | 5-1-6          |          |
|-------------|-----------|----------------------------|---------------|------------------|-------------|----------------------|--------------------|-----------------|-------|----------------|----------|
| Plate Offse | ets (X,Y) | [2:0-4-0,0-1-15], [4:0-3-0 | ,Edge], [7:0- | 3-0,Edge], [10:0 | -3-0,Edge], | [12:0-4-0,0-1-15], [ | 17:0-1-8,0-3-0], [ | 19:0-1-8,0-2-4] |       |                |          |
| LOADING     | (psf)     | SPACING-                   | 2-0-0         | CSI.             |             | DEFL.                | in (loc) I/        | /defl L/d       |       | PLATES         | GRIP     |
| TCLL        | 20.0      | Plate Grip DOL             | 1.15          | TC               | 0.26        | Vert(LL)             | -0.28 15-17 >      | 999 360         |       | MT20           | 244/190  |
| CDL         | 10.0      | Lumber DOL                 | 1.15          | BC               | 0.50        | Vert(CT)             | -0.44 15-17 >      | 675 240         |       |                |          |
| BCLL        | 0.0 *     | Rep Stress Incr            | YES           | WB               | 0.47        | Horz(CT)             | 0.03 12            | n/a n/a         |       |                |          |
| BCDL        | 10.0      | Code IRC2021/T             | PI2014        | Matrix           | -S          | Wind(LL)             | 0.16 15-17 >       | 999 240         |       | Weight: 376 lb | FT = 20% |

28-1-5

TOP CHORD

**BOT CHORD** 

WEBS

34-10-10

7-2-6 oc bracing: 18-19

1 Row at midpt

6-8-13 oc bracing: 17-18.

21-1-10

LUMBER-**BRACING-**

TOP CHORD 2x6 SP No.1 \*Except\* 1-4.10-13: 2x4 SP No.1

**BOT CHORD** 2x8 SP 2400F 2.0E \*Except\*

17-19: 2x6 SP No.1 2x4 SP No.2

REACTIONS.

(size) 2=0-3-8, 12=0-3-8, 18=0-3-8

Max Horz 2=156(LC 11)

4-10-10

Max Uplift 2=-66(LC 12), 12=-168(LC 13), 18=-120(LC 12) Max Grav 2=1329(LC 2), 12=1480(LC 20), 18=1598(LC 19)

10-10-10

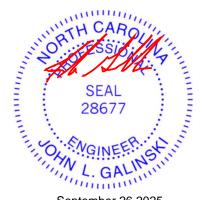
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2350/446, 3-5=-1886/443, 5-6=-1372/414, 6-7=-378/186, 7-8=-350/181,

8-9=-1360/383, 9-11=-2287/470, 11-12=-2610/452

**BOT CHORD** 2-22=-293/2068, 21-22=-293/2068, 19-21=-192/1662, 18-19=-53/1159, 17-18=-49/1144,

15-17=-246/2000, 14-15=-326/2270, 12-14=-326/2270


**WEBS** 8-17=0/289, 9-17=-1133/260, 9-15=-26/728, 5-19=-875/234, 5-21=-23/483,

3-21=-438/108, 11-15=-294/94, 6-8=-957/320

## NOTES-

**WEBS** 

- 1) Unbalanced roof live loads have been considered for this design.
- MWFRS (envelope) and C-C Exterior(2E) -1-2-7 to 3-2-5, Interior(1) 3-2-5 to 23-0-0, Exterior(2R) 23-0-0 to 27-4-13, Interior(1) 27-4-13 to 47-2-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 12=168, 18=120.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645139 G1GE COMMON SUPPORTED GAB 251386-A Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:33 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-5VhCOuVMUU4pSHHz7ZHn2xDYVZo1qfOpC0iUUwyZwau

Scale = 1:81.6

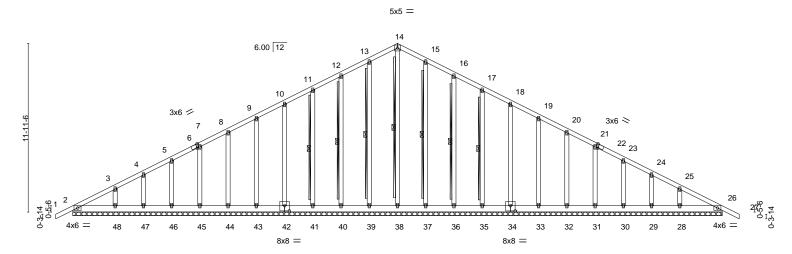



Plate Offsets (X,Y)--[6:0-1-9,Edge], [22:0-1-9,Edge], [34:0-4-0,0-4-8], [42:0-4-0,0-4-8] LOADING (psf) SPACING-2-0-0 DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) -0.00 27 n/r 120 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) -0.00 27 120 n/r WB **BCLL** 0.0 Rep Stress Incr YES 0.15 Horz(CT) 0.01 26 n/a n/a

46-0-0

LUMBER-TOP CHORD 2x4 SP No 1

10.0

BCDL

**BOT CHORD** 2x6 SP No.1 2x4 SP No 2 **OTHERS** 

**BRACING-**TOP CHORD

**BOT CHORD** WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 14-38, 13-39, 12-40, 11-41, 15-37, 16-36,

<u>46-0-0</u>

23-0-0

17-35

Weight: 376 lb

FT = 20%

REACTIONS. All bearings 46-0-0.

Max Horz 2=245(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26

Matrix-S

Max Grav All reactions 250 lb or less at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

TOP CHORD 2-3=-322/96, 11-12=-106/287, 12-13=-127/349, 13-14=-146/399, 14-15=-146/399,

23-0-0 23-0-0

15-16=-127/349, 16-17=-106/287

BOT CHORD 2-48=-82/298, 47-48=-82/298, 46-47=-82/298, 45-46=-82/298, 44-45=-82/298,

43-44=-82/298, 42-43=-82/298, 41-42=-82/298, 40-41=-82/298, 39-40=-82/298, 38-39=-82/298, 37-38=-82/298, 36-37=-82/298, 35-36=-82/298, 34-35=-82/298, 33-34=-82/298, 32-33=-82/298, 31-32=-82/298, 30-31=-82/298, 29-30=-82/298,

28-29=-82/298, 26-28=-82/298

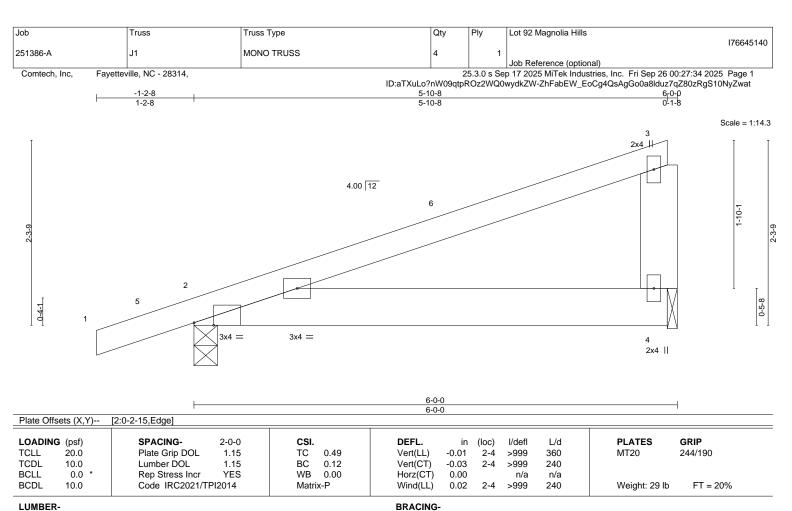
**WEBS** 14-38=-255/50

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-2-7 to 3-0-0, Exterior(2N) 3-0-0 to 23-0-0, Corner(3R) 23-0-0 to 27-4-13, Exterior(2N) 27-4-13 to 47-2-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26.



September 26,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1

BOT CHORD WFBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=83(LC 8)

Max Uplift 2=-132(LC 8), 4=-90(LC 8)

Max Grav 2=316(LC 1), 4=215(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-159/252

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=132.

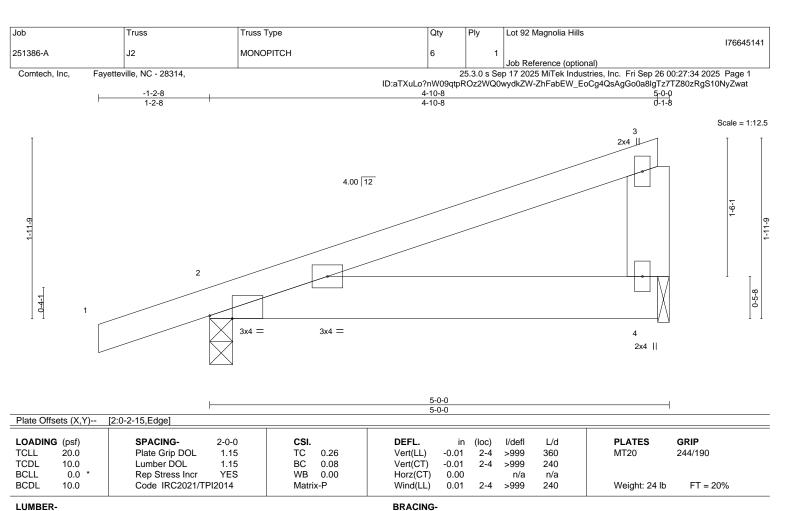


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

**WEBS** 2x6 SP No.1

> (size) 2=0-3-0, 4=0-1-8 Max Horz 2=72(LC 8)

Max Uplift 2=-119(LC 8), 4=-72(LC 8)

Max Grav 2=277(LC 1), 4=174(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=119.



Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

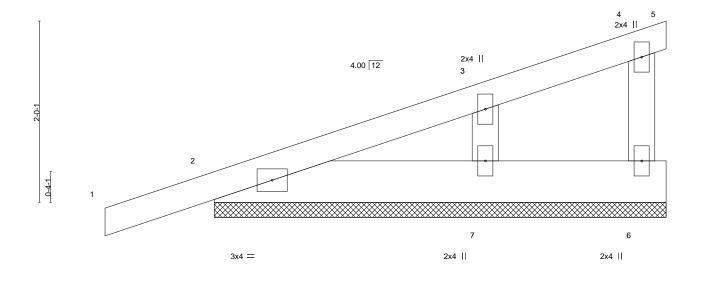
September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645142 251386-A J2GE MONOPITCH SUPPORTED Job Reference (optional)

Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:35 2025 Page 1 Comtech, Inc.

ID:aTXuLo?nW09qtpROz2WQ0wydkZW-1tpypaXc?5KXiaRME\_JF7LltCNUdlbO6gKBaYpyZwas

Scale = 1:12.7



LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(LL) -0.00 n/r 120 MT20 244/190 TCDL Lumber DOL 1.15 вс 0.02 Vert(CT) -0.00 n/r 120 WB **BCLL** 0.0 Rep Stress Incr YES 0.06 Horz(CT) -0.00 5 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-P Weight: 24 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 WFBS OTHERS 2x4 SP No.2

**BRACING-**

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 5-0-0.

(lb) -Max Horz 2=104(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 5, 6, 2, 7 Max Grav All reactions 250 lb or less at joint(s) 5, 6, 2, 7

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

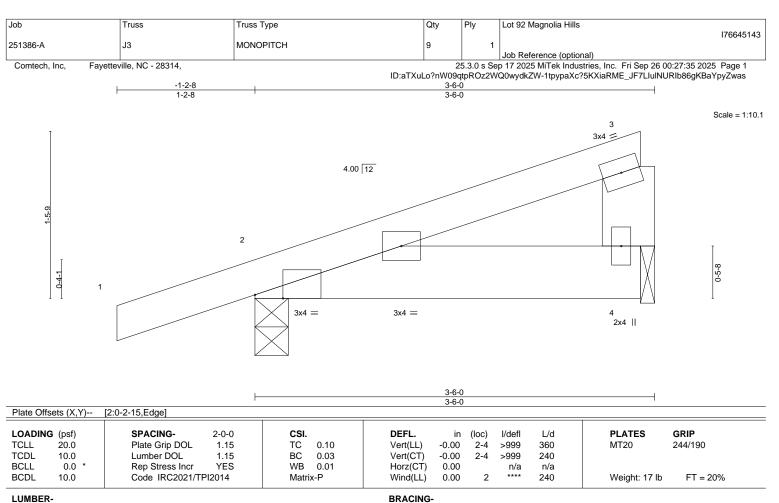
**WEBS** 3-7=-160/319

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-2-8 to 3-0-0, Exterior(2N) 3-0-0 to 5-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 2, 7.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.



September 26,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x6 SP No.1

(size) 2=0-3-8, 4=0-1-8 Max Horz 2=56(LC 8)

Max Uplift 2=-69(LC 8), 4=-14(LC 12)

Max Grav 2=224(LC 1), 4=107(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

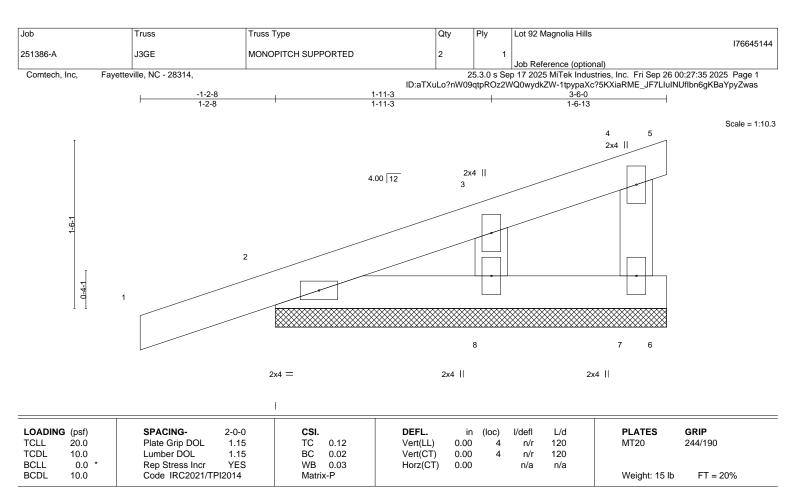
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



Structural wood sheathing directly applied or 3-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 26,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-TOP CHORD **BOT CHORD** 

REACTIONS.

WFBS

2x4 SP No.1 2x4 SP No.1

2x4 SP No.2

(size) 7=3-6-0, 2=3-6-0, 8=3-6-0 Max Horz 2=79(LC 8)

Max Uplift 7=-26(LC 8), 2=-91(LC 8), 8=-38(LC 12) Max Grav 7=52(LC 1), 2=164(LC 1), 8=125(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8.



Structural wood sheathing directly applied or 3-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645145 V1 VALLEY 251386-A Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:36 2025 Page 1 Comtech, Inc. Scale: 1/4"=1' 4x4 = 3 10.00 12 2x4 | 2x4 || 11 10 3x4 🚿 9 6 3x4 =2x4 II 2x4 || 2x4 II 18-6-3

Plate Offsets (X,Y)-- [4:0-0-0,0-0-0]

| LOADING | \(\(\frac{1}{2}\) | SPACING- 2-0-        |   | CSI.  | 0.00 | DEFL.    | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------|-------------------|----------------------|---|-------|------|----------|------|-------|--------|-----|---------------|----------|
| TCLL    | 20.0              | Plate Grip DOL 1.1   | ) | IC    | 0.23 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL    | 10.0              | Lumber DOL 1.1       | 5 | BC    | 0.17 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL    | 0.0 *             | Rep Stress Incr YES  | 3 | WB    | 0.13 | Horz(CT) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL    | 10.0              | Code IRC2021/TPI2014 |   | Matri | x-S  |          |      |       |        |     | Weight: 84 lb | FT = 20% |

**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

2x4 SP No.2 **OTHERS** 

REACTIONS. All bearings 18-5-5. (lb) -Max Horz 1=177(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-172(LC 12), 6=-172(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=391(LC 22), 9=612(LC 19), 6=612(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

**WEBS** 2-9=-364/291, 4-6=-363/291

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 9-3-1, Exterior(2R) 9-3-1 to 13-7-14, Interior(1) 13-7-14 to 18-1-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=172, 6=172.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645146 V2 VALLEY 251386-A Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:36 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-V4NL0wYEmPTOJk0YohrUgZr2dmof10yGv\_x85FyZwar 7-10-5 7-10-5 15-8-9 7-10-4 Scale = 1:39.7 4x4 = 3 10.00 12 2x4 || 2x4 || 2 10 9 5 9-0-0 3x4 / 8 6 12 2x4 || 2x4 || 2x4 || 15-8-2 15-8-9 0-0-7 15-8-2 Plate Offsets (X,Y)--[4:0-0-0,0-0-0]

| LOADIN | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in   | (loc) | I/defI | L/d | PLATES        | GRIP     |
|--------|---------|-----------------|--------|-------|------|----------|------|-------|--------|-----|---------------|----------|
| TCLL   | 20.0    | Plate Grip DOL  | 1.15   | TC    | 0.15 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL   | 10.0    | Lumber DOL      | 1.15   | BC    | 0.16 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL   | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.10 | Horz(CT) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL   | 10.0    | Code IRC2021/Ti | PI2014 | Matri | x-S  |          |      |       |        |     | Weight: 69 lb | FT = 20% |

LUMBER-TOP CHORD

**OTHERS** 

2x4 SP No 1

BOT CHORD 2x4 SP No.1 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-7-11.

(lb) -Max Horz 1=149(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-143(LC 12), 6=-142(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=407(LC 19), 8=478(LC 19), 6=478(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 2-8=-301/274, 4-6=-301/274

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-10-5, Exterior(2R) 7-10-5 to 12-3-1, Interior(1) 12-3-1 to 15-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=143, 6=142.



September 26,2025





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645147 251386-A V3 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:37 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-zGxjDFYsXjbFxuakMPMjCmNDjA92mTgP7eghdhyZwaq 6-5-8 6-5-8 6-5-8 Scale = 1:33.5 4x4 = 3 10.00 12 2x4 || 4<sup>2x4</sup> || 2 10 9 3x4 // 8 7 6 2x4 || 2x4 || 2x4 || 12-11-0 12-10-9 Plate Offsets (X,Y)-- [4:0-0-0,0-0-0]

| LOADIN | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in   | (loc) | I/defl | L/d | PLATES        | GRIP     |
|--------|---------|-----------------|--------|-------|------|----------|------|-------|--------|-----|---------------|----------|
| TCLL   | 20.0    | Plate Grip DOL  | 1.15   | TC    | 0.13 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL   | 10.0    | Lumber DOL      | 1.15   | BC    | 0.09 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL   | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.07 | Horz(CT) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL   | 10.0    | Code IRC2021/TF | PI2014 | Matri | x-S  |          |      |       |        |     | Weight: 54 lb | FT = 20% |

LUMBER-TOP CHORD BOT CHORD

**OTHERS** 

2x4 SP No 1

2x4 SP No.1 2x4 SP No.2 **BRACING-**

TOP CHORD **BOT CHORD**  Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-1.

(lb) -Max Horz 1=-121(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-124(LC 12), 6=-124(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=330(LC 19), 6=330(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

**WEBS** 2-8=-264/289, 4-6=-263/289

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-5-8, Exterior(2R) 6-5-8 to 10-10-5, Interior(1) 10-10-5 to 12-6-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=124, 6=124.
- 6) Non Standard bearing condition. Review required.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



176645148 251386-A V4 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:37 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-zGxjDFYsXjbFxuakMPMjCmNC8A8xmUuP7eghdhyZwaq 5-0-11 5-0-11 5-0-11 Scale = 1:26.0 4x4 = 2 10.00 12 4 2x4 // 2x4 💸 2x4 || 10-0-15 10-1-6 0-0-7 10-0-15 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a n/a 999 MT20 244/190 TCDL Lumber DOL 1.15 вс 0.16 Vert(CT) n/a n/a 999 WB 0.06 **BCLL** 0.0 Rep Stress Incr YES Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-S Weight: 38 lb FT = 20% **BRACING-**

TOP CHORD

BOT CHORD

Qty

Ply

Lot 92 Magnolia Hills

LUMBER-

Job

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS** 

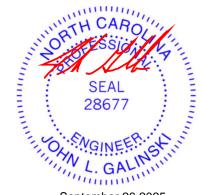
REACTIONS.

(size) 1=10-0-8, 3=10-0-8, 4=10-0-8

Max Horz 1=93(LC 11)

Truss

Truss Type


Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=199(LC 1), 3=199(LC 1), 4=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645149 251386-A V5 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:38 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-SSV5RbZUI0j6Z29xv6tyl\_wNNaURVxgYMIQF98yZwap 3-7-14 3-7-14 Scale = 1:21.1 4x4 =2 10.00 12 9-0-0 9-0-0 2x4 // 2x4 📏 2x4 || 7-3-13 LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) n/a n/a 999 MT20 244/190 TCDL Lumber DOL 1.15 вс 0.08 Vert(CT) n/a n/a 999 WB 0.02 **BCLL** 0.0 Rep Stress Incr YES Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-P Weight: 27 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.1 2x4 SP No.2 **OTHERS** 

REACTIONS.

(size) 1=7-2-14, 3=7-2-14, 4=7-2-14

Max Horz 1=-65(LC 8)

Max Uplift 1=-23(LC 13), 3=-29(LC 13)

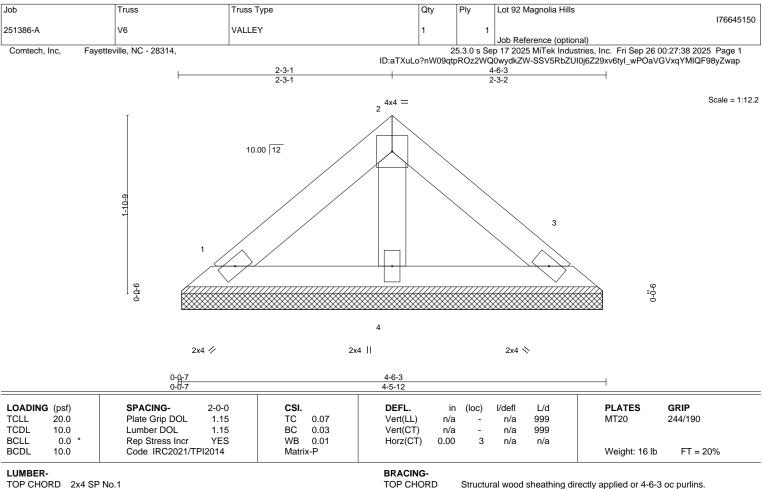
Max Grav 1=151(LC 1), 3=151(LC 1), 4=220(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.




September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

2x4 SP No.2 **OTHERS** 

REACTIONS. (size) 1=4-5-5, 3=4-5-5, 4=4-5-5

Max Horz 1=-37(LC 8)

Max Uplift 1=-13(LC 13), 3=-16(LC 13) Max Grav 1=86(LC 1), 3=86(LC 1), 4=125(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



## Symbols

## PLATE LOCATION AND ORIENTATION



offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

\* Plate location details available in MiTek software or upon request

## PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

## LATERAL BRACING LOCATION



by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

## **BEARING**



Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

## Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

# Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

# Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

## MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.



RE: 251386-B

Lot 92 Magnolia Hills

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Precision Custom Homes and Renovations Project Name: 251386-B

Lot/Block: 92 Model:

Address: Subdivision: Magnolia Hills

City: Cameron State: NC

## General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 25.2

Wind Code: N/A Wind Speed: N/A mph Roof Load: N/A psf Floor Load: 55.0 psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|
| 1   | 176645151 | ET1        | 9/26/2025 |
| 2   | 176645152 | ET2        | 9/26/2025 |
| 3   | 176645153 | ET3        | 9/26/2025 |
| 4   | 176645154 | F1         | 9/26/2025 |
| 5   | 176645155 | F2         | 9/26/2025 |
| 6   | 176645156 | F3         | 9/26/2025 |
| 7   | 176645157 | F4         | 9/26/2025 |
| 8   | 176645158 | F4A        | 9/26/2025 |
| 9   | 176645159 | F5         | 9/26/2025 |
| 10  | 176645160 | FG1        | 9/26/2025 |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Galinski, John

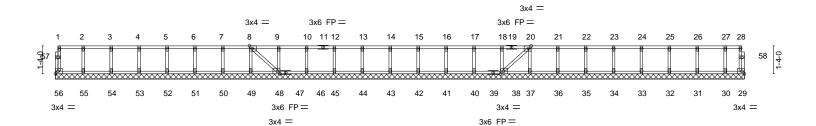
My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



September 26, 2025


| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | ET1   | GABLE      | 1   | 1   | 176645151                |
| 251300-D |       | GABLE      | '   | '   | Job Reference (optional) |

0-1<sub>1</sub>-8

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:58 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-GUfLZnYpcLkM2iPvxgt0wylrWeKGB\_TVyPGls\_yZwaV

0-<u>1</u>-8

Scale = 1:55.0



| Plate Off | fsets (X,Y) | [8:0-1-8,Edge], [20:0-1-8 | ,Edge], [38:0- | 1-8,Edge], [4 | 8:0-1-8,Edg | e]       |       |       |        |     |                |                 |
|-----------|-------------|---------------------------|----------------|---------------|-------------|----------|-------|-------|--------|-----|----------------|-----------------|
| LOADIN    | G (psf)     | SPACING-                  | 2-0-0          | CSI.          |             | DEFL.    | in    | (loc) | l/defl | L/d | PLATES         | GRIP            |
| TCLL      | 40.0        | Plate Grip DOL            | 1.00           | TC            | 0.06        | Vert(LL) | n/a   |       | n/a    | 999 | MT20           | 244/190         |
| TCDL      | 10.0        | Lumber DOL                | 1.00           | BC            | 0.01        | Vert(CT) | n/a   | -     | n/a    | 999 |                |                 |
| BCLL      | 0.0         | Rep Stress Incr           | YES            | WB            | 0.03        | Horz(CT) | -0.00 | 38    | n/a    | n/a |                |                 |
| BCDL      | 5.0         | Code IRC2021/T            | PI2014         | Matri         | x-S         |          |       |       |        |     | Weight: 147 lb | FT = 20%F, 11%E |

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. **WEBS** 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 32-11-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 56, 29, 55, 54, 53, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 31, 30

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

**OTHERS** 

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



September 26,2025



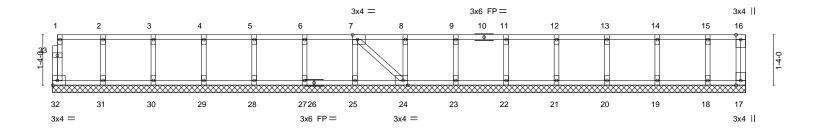
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | 7 |
|----------|-------|------------|-----|-----|--------------------------|---|
| 054000 B | FTO   | OARI F     |     |     | I76645152                |   |
| 251386-B | ET2   | GABLE      | 1   | 1   |                          |   |
|          |       |            |     |     | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:59 2025 Page 1  $ID:aTXuLo?nW09qtpROz2WQ0wydkZW-kgDjm7YRNesDgs\_5VNOFS9I?92gUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUur$ 


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-11-8

Scale = 1:30.5



| 1-4-0               | 2-8-0                           |          | -4-0 10-8-0 12-0<br>-4-0 1-4-0 1-4 |              |                   | <del>'-4-0   18-4-0                                    </del> |
|---------------------|---------------------------------|----------|------------------------------------|--------------|-------------------|---------------------------------------------------------------|
| Plate Offsets (X,Y) | [7:0-1-8,Edge], [24:0-1-8,Edge] |          |                                    |              |                   |                                                               |
| LOADING (psf)       | SPACING- 2-0-0                  | CSI.     | DEFL. in                           | (loc) I/defl | L/d <b>PLATES</b> | GRIP                                                          |
| TCLL 40.0           | Plate Grip DOL 1.00             | TC 0.07  | Vert(LL) n/a                       | . n/a        | 999 MT20          | 244/190                                                       |
| TCDL 10.0           | Lumber DOL 1.00                 | BC 0.01  | Vert(CT) n/a                       | - n/a        | 999               |                                                               |
| BCLL 0.0            | Rep Stress Incr NO              | WB 0.03  | Horz(CT) 0.00                      | 17 n/a       | n/a               |                                                               |
| BCDL 5.0            | Code IRC2021/TPI2014            | Matrix-S |                                    |              | Weight: 84 lb     | FT = 20%F, 11%E                                               |
| LUMBER-             |                                 |          | BRACING-                           |              |                   |                                                               |

TOP CHORD

**BOT CHORD** 

2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat)

All bearings 18-4-0.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

**OTHERS** 

REACTIONS.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

7) CAUTION, Do not erect truss backwards.



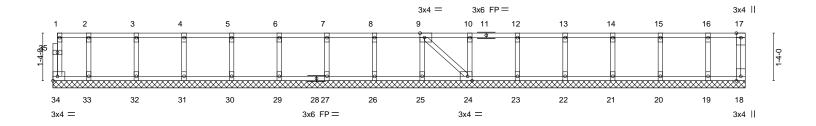
September 26,2025





| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | 7 |
|----------|-------|------------|-----|-----|--------------------------|---|
| 054000 D | FT2   | CARLE      |     |     | I76645153                |   |
| 251386-B | ET3   | GABLE      | 1   | 1   | lab Defenses (autional)  |   |
|          |       |            |     |     | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:59 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-kgDjm7YRNesDgs\_5VNOFS9I0H2gVwRjeB3?sPQyZwaU


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-<u>11</u>-8

Scale: 3/8"=1"



| 1-0-0 2-4<br>1-0-0 1-4 |                                 | 7-8-0 9-0-0<br>1-4-0 1-4-0 | 10-4-0 11-8-0<br>1-4-0 1-4-0 | 13-0-0<br>1-4-0 | 14-4-0<br>1-4-0<br>1-4-0<br>1-4-0 |               | -4-0 19-4-8<br>4-0 1-0-8 |
|------------------------|---------------------------------|----------------------------|------------------------------|-----------------|-----------------------------------|---------------|--------------------------|
| Plate Offsets (X,Y)    | [9:0-1-8,Edge], [24:0-1-8,Edge] |                            |                              |                 |                                   |               |                          |
| LOADING (psf)          | SPACING- 2-0-0                  | CSI.                       | DEFL. in                     | (loc)           | l/defl L/d                        | PLATES        | GRIP                     |
| TCLL 40.0              | Plate Grip DOL 1.00             | TC 0.06                    | Vert(LL) n/a                 |                 | n/a 999                           | MT20          | 244/190                  |
| TCDL 10.0              | Lumber DOL 1.00                 | BC 0.01                    | Vert(CT) n/a                 | -               | n/a 999                           |               |                          |
| BCLL 0.0               | Rep Stress Incr YES             | WB 0.03                    | Horz(CT) 0.00                | 18              | n/a n/a                           |               |                          |
| BCDL 5.0               | Code IRC2021/TPI2014            | Matrix-S                   |                              |                 |                                   | Weight: 89 lb | FT = 20%F, 11%E          |
| LUMBER-                |                                 | 1                          | BRACING-                     |                 |                                   |               |                          |

TOP CHORD

**BOT CHORD** 

2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat)

> All bearings 19-4-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) 34, 18, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22, 21, 20,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

TOP CHORD

REACTIONS.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



September 26,2025





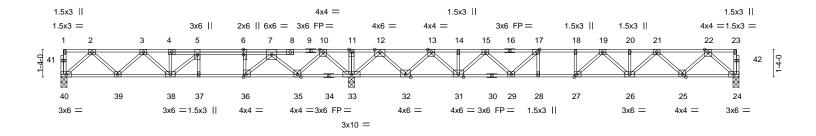
| Job      | Truss | Truss Type | Qty      | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|----------|-----|--------------------------|
| 054206 D | [     | FLOOR      | 7        | 1   | 176645154                |
| 251386-B |       | FLOOR      | <b>'</b> | '   | Job Reference (optional) |

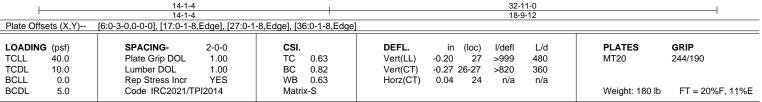
Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:00 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-Csn5zTZ48y\_4H0ZH35vU?Nq23Sq2flhoQjlPxsyZwaT

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.


except end verticals.


0-1-8 HI 1-3-0

2-1-4

1-8-4

0-1-8 Scale = 1:55.9





TOP CHORD

**BOT CHORD** 

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 40=0-3-8, 24=0-3-8, 33=0-3-8

Max Grav 40=662(LC 3), 24=882(LC 4), 33=2190(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1110/36, 3-4=-1659/212, 4-5=-1659/219, 5-6=-1602/621, 6-7=-1602/621, 7-10=-392/1404, 10-11=0/2571, 11-12=0/2571, 12-13=-40/475, 13-14=-1631/0,

14-15=-1631/0, 15-17=-2564/0, 17-18=-2931/0, 18-19=-2931/0, 19-20=-2592/0,

20-21=-2592/0, 21-22=-1586/0

BOT CHORD 39-40=0/704, 38-39=-106/1489, 37-38=-621/1602, 36-37=-621/1602, 35-36=-1086/1024,

33-35=-1709/0, 32-33=-1291/0, 31-32=-200/935, 29-31=0/2220, 28-29=0/2931,

27-28=0/2931, 26-27=0/2856, 25-26=0/2193, 24-25=0/952

2-40=-935/0, 2-39=-59/564, 3-39=-528/98, 4-38=-325/0, 5-38=0/648, 22-24=-1266/0,

22-25=0/881, 21-25=-845/0, 21-26=0/542, 19-26=-358/0, 19-27=-253/331,

12-33=-1704/0, 12-32=0/1314, 10-33=-1399/0, 10-35=0/993, 7-35=-1033/0, 7-36=0/1214, 6-36=-690/0, 13-32=-1288/0, 13-31=0/991, 15-31=-835/0, 15-29=0/579, 17-29=-718/0

## NOTES-

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.



September 26,2025



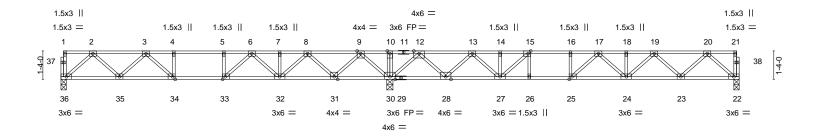
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | E2    | FLOOR      | 2   | 1   | 176645155                |
| 231300-В | FZ    | FLOOR      | 3   | '   | Job Reference (optional) |


25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:00 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-Csn5zTZ48y\_4H0ZH35vU?Nq\_dSoafm0oQjlPxsyZwaT



2-2-12

1-9-12

0-1-8 Scale = 1:54.2



|                                                     | 15-5-12                                                                                     |                                                   |        | 31-11-0                                           |                               |                          |                                  |                                      |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------|---------------------------------------------------|-------------------------------|--------------------------|----------------------------------|--------------------------------------|--|
|                                                     | 15-5-12                                                                                     |                                                   | 16-5-4 |                                                   |                               |                          |                                  |                                      |  |
| Plate Offsets (X,Y)                                 | [15:0-1-8,Edge], [25:0-1-8,Edge], [33:0-                                                    | 1-8,Edge], [34:0-1-8,Edge]                        |        |                                                   |                               |                          |                                  |                                      |  |
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 | SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014 | CSI.<br>TC 0.85<br>BC 0.91<br>WB 0.54<br>Matrix-S | ( )    | in (loc)<br>-0.18 24-25<br>-0.25 24-25<br>0.04 22 | l/defl<br>>999<br>>776<br>n/a | L/d<br>480<br>360<br>n/a | PLATES<br>MT20<br>Weight: 167 lb | <b>GRIP</b> 244/190  FT = 20%F, 11%E |  |

LUMBER-TOP CHORD

2x4 SP No.1(flat) 2x4 SP No.1(flat)

BOT CHORD WEBS 2x4 SP No.3(flat) BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 36=0-3-0, 30=0-3-8, 22=0-3-0

Max Grav 36=719(LC 3), 30=2079(LC 1), 22=795(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1229/0, 3-4=-1941/0, 4-5=-1941/0, 5-6=-1941/0, 6-7=-1408/202, 7-8=-1408/202,

8-9=-241/659, 9-10=0/2218, 10-12=0/2218, 12-13=-523/817, 13-14=-1712/332, 14-15=-1712/332, 15-16=-2291/0, 16-17=-2291/0, 17-18=-2225/0, 18-19=-2225/0,

19-20=-1395/0

35-36=0/769, 34-35=0/1668, 33-34=0/1941, 32-33=-35/1748, 31-32=-414/927, BOT CHORD

30-31=-1214/0, 28-30=-1129/0, 27-28=-547/1232, 26-27=0/2291, 25-26=0/2291,

24-25=0/2385, 23-24=0/1918, 22-23=0/852

WEBS 2-36=-1022/0, 2-35=0/640, 3-35=-610/0, 3-34=-83/372, 9-30=-1439/0, 9-31=0/1062,

20-22=-1132/0, 20-23=0/755, 19-23=-728/0, 19-24=-1/417, 17-25=-477/33, 12-30=-1508/0, 8-31=-1027/0, 8-32=0/734, 6-32=-547/0, 6-33=0/628, 5-33=-320/0,

12-28=0/1134, 13-28=-1085/0, 13-27=0/740, 15-27=-1088/0, 15-26=0/273

## NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | 7 |
|----------|-------|------------|-----|-----|--------------------------|---|
| 054000 B | F0    | El OOD     |     |     | I76645156                |   |
| 251386-B | F3    | FLOOR      | 9   | 1   | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:01 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-g3LTBpaivG6xvA8UdoQjXaNDwr8EOD4xeNUyTlyZwaS

Structural wood sheathing directly applied or 5-9-6 oc purlins,

0-1-8 H <del>- 1-3-0</del>

1-5-0

0-1-8 Scale = 1:32.8

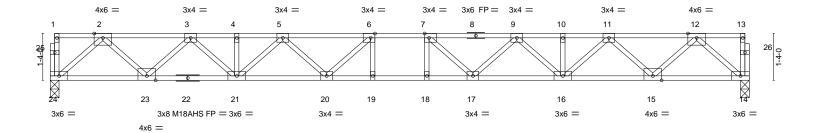



Plate Offsets (X,Y)--[6:0-1-8,Edge], [7:0-1-8,Edge] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** TCLL 40.0 Plate Grip DOL 1.00 TC 0.56 Vert(LL) -0.33 18-19 >724 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.95 Vert(CT) -0.45 18-19 >526 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.55 0.08 Horz(CT) 14 n/a n/a Code IRC2021/TPI2014 Weight: 106 lb **BCDL** 5.0 FT = 20%F. 11%E Matrix-S

TOP CHORD

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc bracing.

REACTIONS. (size) 24=0-3-0, 14=0-3-0

Max Grav 24=1075(LC 1), 14=1075(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2005/0, 3-4=-3408/0, 4-5=-3408/0, 5-6=-4160/0, 6-7=-4391/0, 7-9=-4160/0, TOP CHORD

9-10=-3408/0, 10-11=-3408/0, 11-12=-2005/0

BOT CHORD 23-24=0/1172, 21-23=0/2810, 20-21=0/3918, 19-20=0/4391, 18-19=0/4391, 17-18=0/4391,

16-17=0/3918, 15-16=0/2810, 14-15=0/1172

2-24=-1557/0, 2-23=0/1160, 3-23=-1119/0, 3-21=0/814, 5-21=-693/0, 5-20=0/469, WFBS

6-20=-575/87, 12-14=-1557/0, 12-15=0/1160, 11-15=-1119/0, 11-16=0/814, 9-16=-693/0,

9-17=0/469, 7-17=-575/87

## NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B |       | FLOOR      | 10  | _   | 176645157                |
| 251300-D |       | FLOOR      | 10  | '   | Job Reference (optional) |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:01 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-g3LTBpaivG6xvA8UdoQjXaNGpr9RODHxeNUyTlyZwaS



Scale = 1:32.7

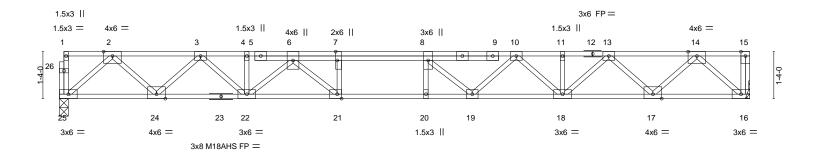



Plate Offsets (X,Y)--[7:0-3-0,Edge], [21:0-1-8,Edge] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** TCLL 40.0 Plate Grip DOL 1.00 TC 0.38 Vert(LL) -0.28 20 >818 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.87 Vert(CT) -0.39 20 >595 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.54 0.08 16 Horz(CT) n/a n/a Code IRC2021/TPI2014 **BCDL** 5.0 FT = 20%F. 11%E Matrix-S Weight: 112 lb

19-7-0

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals.

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 25=0-3-0, 16=Mechanical Max Grav 25=1057(LC 1), 16=1063(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1966/0, 3-4=-3330/0, 4-6=-3334/0, 6-7=-4400/0, 7-8=-4400/0, 8-10=-4108/0,

10-11=-3335/0, 11-13=-3335/0, 13-14=-1966/0

BOT CHORD 24-25=0/1151, 22-24=0/2750, 21-22=0/3935, 20-21=0/4400, 19-20=0/4400, 18-19=0/3798,

17-18=0/2749, 16-17=0/1152

2-25=-1530/0, 2-24=0/1133, 3-24=-1090/0, 3-22=0/788, 6-22=-803/0, 6-21=0/943, WFBS

7-21=-540/0, 14-16=-1534/0, 14-17=0/1132, 13-17=-1090/0, 13-18=0/796, 10-18=-629/0,

10-19=0/571, 8-19=-610/0

## NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | F4A   | FLOOR      | 4   | _   | 176645158                |
| 251300-D | F4A   | FLOOR      | '   | '   | Job Reference (optional) |

Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:02 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-9FvsO8bKfZEoXKjgAWxy4owQ9FdK7jE4t1EW?lyZwaR




| 1 | 1-6-12 | 1-3-0 | 2-4-12 | $Q_{1}4-Q1-3-0$ | ı              |
|---|--------|-------|--------|-----------------|----------------|
|   |        |       |        |                 | Scale = 1:34.0 |

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

6-0-0 oc bracing: 19-20,18-19.



|                                                     |                                                                                             | 13-11-4<br>13-11-4                                |            |                                           | -                             | 15-5-4<br>1-6-0          |                                  | 0-4-0 19-8 <sub>7</sub> 0<br>-6-0 0-4-0 |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|------------|-------------------------------------------|-------------------------------|--------------------------|----------------------------------|-----------------------------------------|
| Plate Offsets (X,Y)                                 | [13:0-1-8,Edge], [15:0-3-0,Edge], [18:0-                                                    | 1-8,Edge]                                         |            |                                           |                               |                          |                                  |                                         |
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 | SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014 | CSI.<br>TC 0.40<br>BC 0.38<br>WB 0.37<br>Matrix-S | Vert(CT) - | in (loc)<br>0.08 26<br>0.11 26<br>0.03 20 | l/defl<br>>999<br>>999<br>n/a | L/d<br>480<br>360<br>n/a | PLATES<br>MT20<br>Weight: 115 lb | <b>GRIP</b> 244/190 FT = 20%F, 11%E     |

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 31=0-3-0, 16=0-3-8, 20=0-3-8

Max Grav 31=730(LC 8), 16=275(LC 4), 20=1157(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1331/0, 3-4=-1331/0, 4-5=-1969/0, 5-6=-1969/0, 6-7=-1961/0, 7-8=-1961/0,

8-9=-1306/0, 9-11=-1306/0, 11-12=0/365, 12-13=0/364, 13-15=-276/99, 15-16=-253/96 BOT CHORD  $30 - 31 = 0/775,\ 29 - 30 = 0/775,\ 28 - 29 = 0/1732,\ 27 - 28 = 0/1732,\ 26 - 27 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2$ 

23-24=0/1717, 22-23=0/1717, 21-22=0/750, 20-21=0/750, 19-20=-96/253, 18-19=-96/253

16-18=-125/330, 2-31=-1021/0, 2-29=0/751, 4-29=-541/0, 4-27=0/319, 8-24=0/345,

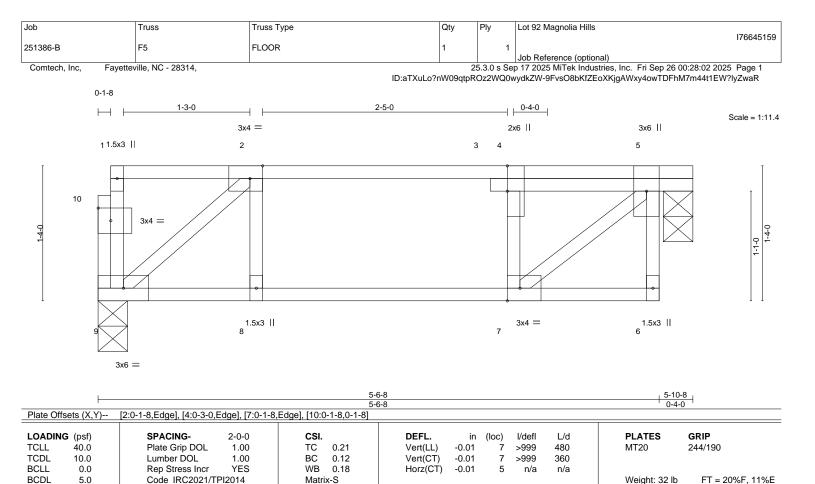
8-22=-569/0, 11-22=0/769, 11-20=-1229/0, 13-20=-575/0

## NOTES-

WFBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 6) CAUTION, Do not erect truss backwards.




September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 9=0-3-8, 5=0-3-8 Max Grav 9=288(LC 1), 5=294(LC 1)

FORCES. (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown. TOP CHORD 2-4=-322/0, 4-5=-298/0 8-9=0/298, 7-8=0/298 2-9=-386/0, 5-7=0/387 WEBS

## NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 5) CAUTION, Do not erect truss backwards.



Structural wood sheathing directly applied or 5-10-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645160 251386-B FG1 **FLOOR** Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:03 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-dRSEcUbyQtMf9UlskDTBd?SgGf0xsDFE6hz3YByZwaQ 0-1-8 2-3-0 1-3-0 0-1-8 Scale = 1:10.3 3x4 || 3x6 || 3x6 || 3x4 || 2 4 11 3 1 10 9 3x4 = 1.5x3 || 1.5x3 || Plate Offsets (X,Y)--[1:Edge,0-1-8], [9:0-1-8,0-1-8], [10:0-1-8,0-1-8] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 40.0 Plate Grip DOL 1.00 TC 0.12 Vert(LL) -0.01 6 >999 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 ВС 0.17 Vert(CT) -0.01 6-7 >999 360 **BCLL** 0.0 Rep Stress Incr NO WB 0.19 0.01 5 Horz(CT) n/a n/a Code IRC2021/TPI2014 FT = 20%F, 11%E **BCDL** 5.0 Matrix-S Weight: 34 lb **BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 8=0-3-8, 5=0-3-8 Max Grav 8=456(LC 1), 5=478(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-685/0

**BOT CHORD** 7-8=0/685, 6-7=0/685, 5-6=0/685

2-8=-806/0, 3-5=-804/0 WEBS

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

### LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10. 1-4=-100

Concentrated Loads (lb)

Vert: 3=-175 11=-194



Structural wood sheathing directly applied or 5-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



### Symbols

## PLATE LOCATION AND ORIENTATION



offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

\* Plate location details available in MiTek software or upon request

### PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

## LATERAL BRACING LOCATION



by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

### **BEARING**



Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

### Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

# Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

# Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

## MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.



RE: 251386-B

Lot 92 Magnolia Hills

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Precision Custom Homes and Renovations Project Name: 251386-B

Lot/Block: 92 Model:

Address: Subdivision: Magnolia Hills

City: Cameron State: NC

### General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 25.2

Wind Code: N/A Wind Speed: N/A mph Roof Load: N/A psf Floor Load: 55.0 psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|
| 1   | 176645151 | ET1        | 9/26/2025 |
| 2   | 176645152 | ET2        | 9/26/2025 |
| 3   | 176645153 | ET3        | 9/26/2025 |
| 4   | 176645154 | F1         | 9/26/2025 |
| 5   | 176645155 | F2         | 9/26/2025 |
| 6   | 176645156 | F3         | 9/26/2025 |
| 7   | 176645157 | F4         | 9/26/2025 |
| 8   | 176645158 | F4A        | 9/26/2025 |
| 9   | 176645159 | F5         | 9/26/2025 |
| 10  | 176645160 | FG1        | 9/26/2025 |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Galinski, John

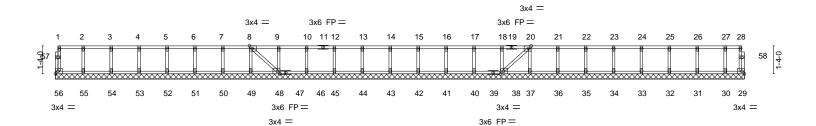
My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



September 26, 2025


| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | ET1   | GABLE      | 1   | 1   | 176645151                |
| 251300-D |       | GABLE      | '   | '   | Job Reference (optional) |

0-1<sub>1</sub>-8

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:58 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-GUfLZnYpcLkM2iPvxgt0wylrWeKGB\_TVyPGls\_yZwaV

0-<u>1</u>-8

Scale = 1:55.0



| Plate Off | fsets (X,Y) | [8:0-1-8,Edge], [20:0-1-8 | ,Edge], [38:0- | 1-8,Edge], [4 | 8:0-1-8,Edg | e]       |       |       |        |     |                |                 |
|-----------|-------------|---------------------------|----------------|---------------|-------------|----------|-------|-------|--------|-----|----------------|-----------------|
| LOADIN    | G (psf)     | SPACING-                  | 2-0-0          | CSI.          |             | DEFL.    | in    | (loc) | l/defl | L/d | PLATES         | GRIP            |
| TCLL      | 40.0        | Plate Grip DOL            | 1.00           | TC            | 0.06        | Vert(LL) | n/a   |       | n/a    | 999 | MT20           | 244/190         |
| TCDL      | 10.0        | Lumber DOL                | 1.00           | BC            | 0.01        | Vert(CT) | n/a   | -     | n/a    | 999 |                |                 |
| BCLL      | 0.0         | Rep Stress Incr           | YES            | WB            | 0.03        | Horz(CT) | -0.00 | 38    | n/a    | n/a |                |                 |
| BCDL      | 5.0         | Code IRC2021/T            | PI2014         | Matri         | x-S         |          |       |       |        |     | Weight: 147 lb | FT = 20%F, 11%E |

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. **WEBS** 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 32-11-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 56, 29, 55, 54, 53, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 31, 30

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

**OTHERS** 

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



September 26,2025



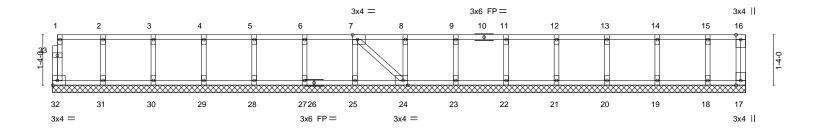
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | 7 |
|----------|-------|------------|-----|-----|--------------------------|---|
| 054000 B | FTO   | OARI F     |     |     | I76645152                |   |
| 251386-B | ET2   | GABLE      | 1   | 1   |                          |   |
|          |       |            |     |     | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:59 2025 Page 1  $ID:aTXuLo?nW09qtpROz2WQ0wydkZW-kgDjm7YRNesDgs\_5VNOFS9I?92gUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUurdesDgsUwRjeB3?sPQyZwaUur$ 


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-11-8

Scale = 1:30.5



| 1-4-0               | 2-8-0                           |          | <u>-4-0                                   </u> |              |                   | <del>'-4-0   18-4-0                                    </del> |
|---------------------|---------------------------------|----------|------------------------------------------------|--------------|-------------------|---------------------------------------------------------------|
| Plate Offsets (X,Y) | [7:0-1-8,Edge], [24:0-1-8,Edge] |          |                                                |              |                   |                                                               |
| LOADING (psf)       | SPACING- 2-0-0                  | CSI.     | DEFL. in                                       | (loc) I/defl | L/d <b>PLATES</b> | GRIP                                                          |
| TCLL 40.0           | Plate Grip DOL 1.00             | TC 0.07  | Vert(LL) n/a                                   | . n/a        | 999 MT20          | 244/190                                                       |
| TCDL 10.0           | Lumber DOL 1.00                 | BC 0.01  | Vert(CT) n/a                                   | - n/a        | 999               |                                                               |
| BCLL 0.0            | Rep Stress Incr NO              | WB 0.03  | Horz(CT) 0.00                                  | 17 n/a       | n/a               |                                                               |
| BCDL 5.0            | Code IRC2021/TPI2014            | Matrix-S |                                                |              | Weight: 84 lb     | FT = 20%F, 11%E                                               |
| LUMBER-             |                                 |          | BRACING-                                       |              |                   |                                                               |

TOP CHORD

**BOT CHORD** 

2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat)

All bearings 18-4-0.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

**OTHERS** 

REACTIONS.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.

2x4 SP No.3(flat)

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

7) CAUTION, Do not erect truss backwards.



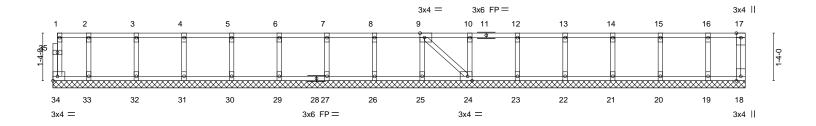
September 26,2025





| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | 7 |
|----------|-------|------------|-----|-----|--------------------------|---|
| 054000 D | FT2   | CARLE      |     |     | I76645153                |   |
| 251386-B | ET3   | GABLE      | 1   | 1   | lab Defenses (autional)  |   |
|          |       |            |     |     | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:27:59 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-kgDjm7YRNesDgs\_5VNOFS9I0H2gVwRjeB3?sPQyZwaU


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-<u>11</u>-8

Scale: 3/8"=1"



| 1-0-0 2-4<br>1-0-0 1-4 |                                 | 7-8-0 9-0-0<br>1-4-0 1-4-0 | 10-4-0 11-8-0<br>1-4-0 1-4-0 | 13-0-0<br>1-4-0 | 14-4-0<br>1-4-0<br>1-4-0<br>1-4-0 |               | -4-0 19-4-8<br>4-0 1-0-8 |
|------------------------|---------------------------------|----------------------------|------------------------------|-----------------|-----------------------------------|---------------|--------------------------|
| Plate Offsets (X,Y)    | [9:0-1-8,Edge], [24:0-1-8,Edge] |                            |                              |                 |                                   |               |                          |
| LOADING (psf)          | SPACING- 2-0-0                  | CSI.                       | DEFL. in                     | (loc)           | l/defl L/d                        | PLATES        | GRIP                     |
| TCLL 40.0              | Plate Grip DOL 1.00             | TC 0.06                    | Vert(LL) n/a                 |                 | n/a 999                           | MT20          | 244/190                  |
| TCDL 10.0              | Lumber DOL 1.00                 | BC 0.01                    | Vert(CT) n/a                 | -               | n/a 999                           |               |                          |
| BCLL 0.0               | Rep Stress Incr YES             | WB 0.03                    | Horz(CT) 0.00                | 18              | n/a n/a                           |               |                          |
| BCDL 5.0               | Code IRC2021/TPI2014            | Matrix-S                   |                              |                 |                                   | Weight: 89 lb | FT = 20%F, 11%E          |
| LUMBER-                |                                 | 1                          | BRACING-                     |                 |                                   |               |                          |

TOP CHORD

**BOT CHORD** 

2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat) **WEBS** 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat)

> All bearings 19-4-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) 34, 18, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22, 21, 20,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

TOP CHORD

REACTIONS.

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



September 26,2025





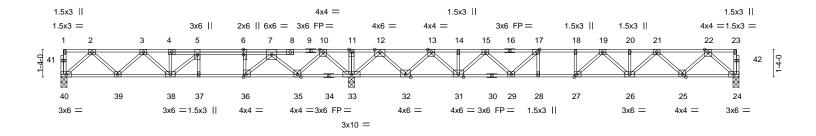
| Job      | Truss | Truss Type | Qty      | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|----------|-----|--------------------------|
| 254206 D | [     | FLOOR      | 7        | 1   | 176645154                |
| 251386-B |       | FLOOR      | <b>'</b> | '   | Job Reference (optional) |

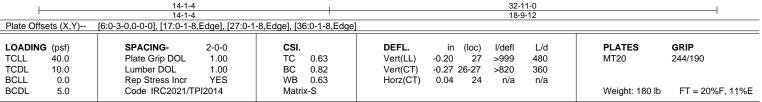
Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:00 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-Csn5zTZ48y\_4H0ZH35vU?Nq23Sq2flhoQjlPxsyZwaT

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.


except end verticals.


0-1-8 HI 1-3-0

2-1-4

1-8-4

0-1-8 Scale = 1:55.9





TOP CHORD

**BOT CHORD** 

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 40=0-3-8, 24=0-3-8, 33=0-3-8

Max Grav 40=662(LC 3), 24=882(LC 4), 33=2190(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1110/36, 3-4=-1659/212, 4-5=-1659/219, 5-6=-1602/621, 6-7=-1602/621, 7-10=-392/1404, 10-11=0/2571, 11-12=0/2571, 12-13=-40/475, 13-14=-1631/0,

14-15=-1631/0, 15-17=-2564/0, 17-18=-2931/0, 18-19=-2931/0, 19-20=-2592/0,

20-21=-2592/0, 21-22=-1586/0

BOT CHORD 39-40=0/704, 38-39=-106/1489, 37-38=-621/1602, 36-37=-621/1602, 35-36=-1086/1024,

33-35=-1709/0, 32-33=-1291/0, 31-32=-200/935, 29-31=0/2220, 28-29=0/2931,

27-28=0/2931, 26-27=0/2856, 25-26=0/2193, 24-25=0/952

2-40=-935/0, 2-39=-59/564, 3-39=-528/98, 4-38=-325/0, 5-38=0/648, 22-24=-1266/0,

22-25=0/881, 21-25=-845/0, 21-26=0/542, 19-26=-358/0, 19-27=-253/331,

12-33=-1704/0, 12-32=0/1314, 10-33=-1399/0, 10-35=0/993, 7-35=-1033/0, 7-36=0/1214, 6-36=-690/0, 13-32=-1288/0, 13-31=0/991, 15-31=-835/0, 15-29=0/579, 17-29=-718/0

### NOTES-

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.



September 26,2025



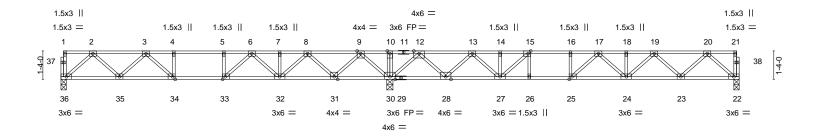
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | E2    | FLOOR      | 2   | 1   | 176645155                |
| 231300-В | FZ    | FLOOR      | 3   | '   | Job Reference (optional) |


25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:00 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-Csn5zTZ48y\_4H0ZH35vU?Nq\_dSoafm0oQjlPxsyZwaT



2-2-12

1-9-12

0-1-8 Scale = 1:54.2



|                                                     | 15-5-12                                                                                     |                                                   |        | 31-11-0                                           |                               |                          |                                  |                                      |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------|---------------------------------------------------|-------------------------------|--------------------------|----------------------------------|--------------------------------------|--|--|
|                                                     | 15-5-12                                                                                     |                                                   | 16-5-4 |                                                   |                               |                          |                                  |                                      |  |  |
| Plate Offsets (X,Y)                                 | [15:0-1-8,Edge], [25:0-1-8,Edge], [33:0-                                                    | 1-8,Edge], [34:0-1-8,Edge]                        |        |                                                   |                               |                          |                                  |                                      |  |  |
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 | SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014 | CSI.<br>TC 0.85<br>BC 0.91<br>WB 0.54<br>Matrix-S | ( )    | in (loc)<br>-0.18 24-25<br>-0.25 24-25<br>0.04 22 | l/defl<br>>999<br>>776<br>n/a | L/d<br>480<br>360<br>n/a | PLATES<br>MT20<br>Weight: 167 lb | <b>GRIP</b> 244/190  FT = 20%F, 11%E |  |  |

LUMBER-TOP CHORD

2x4 SP No.1(flat) 2x4 SP No.1(flat)

BOT CHORD WEBS 2x4 SP No.3(flat) BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 36=0-3-0, 30=0-3-8, 22=0-3-0

Max Grav 36=719(LC 3), 30=2079(LC 1), 22=795(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1229/0, 3-4=-1941/0, 4-5=-1941/0, 5-6=-1941/0, 6-7=-1408/202, 7-8=-1408/202,

8-9=-241/659, 9-10=0/2218, 10-12=0/2218, 12-13=-523/817, 13-14=-1712/332, 14-15=-1712/332, 15-16=-2291/0, 16-17=-2291/0, 17-18=-2225/0, 18-19=-2225/0,

19-20=-1395/0

35-36=0/769, 34-35=0/1668, 33-34=0/1941, 32-33=-35/1748, 31-32=-414/927, BOT CHORD

30-31=-1214/0, 28-30=-1129/0, 27-28=-547/1232, 26-27=0/2291, 25-26=0/2291,

24-25=0/2385, 23-24=0/1918, 22-23=0/852

WEBS 2-36=-1022/0, 2-35=0/640, 3-35=-610/0, 3-34=-83/372, 9-30=-1439/0, 9-31=0/1062,

20-22=-1132/0, 20-23=0/755, 19-23=-728/0, 19-24=-1/417, 17-25=-477/33, 12-30=-1508/0, 8-31=-1027/0, 8-32=0/734, 6-32=-547/0, 6-33=0/628, 5-33=-320/0,

12-28=0/1134, 13-28=-1085/0, 13-27=0/740, 15-27=-1088/0, 15-26=0/273

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    | ٦ |
|----------|-------|------------|-----|-----|--------------------------|---|
|          |       |            | _   |     | I76645156                | ١ |
| 251386-B | F3    | FLOOR      | 9   | 1   |                          |   |
|          |       |            |     | 1   | Job Reference (optional) |   |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:01 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-g3LTBpaivG6xvA8UdoQjXaNDwr8EOD4xeNUyTlyZwaS

Structural wood sheathing directly applied or 5-9-6 oc purlins,

0-1-8 H <del>- 1-3-0</del>

1-5-0

0-1-8 Scale = 1:32.8

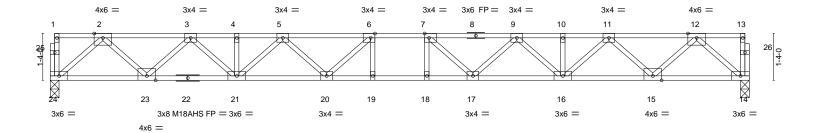



Plate Offsets (X,Y)--[6:0-1-8,Edge], [7:0-1-8,Edge] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** TCLL 40.0 Plate Grip DOL 1.00 TC 0.56 Vert(LL) -0.33 18-19 >724 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 ВС 0.95 Vert(CT) -0.45 18-19 >526 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.55 0.08 Horz(CT) 14 n/a n/a Code IRC2021/TPI2014 Weight: 106 lb **BCDL** 5.0 FT = 20%F, 11%E Matrix-S

TOP CHORD

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc bracing.

REACTIONS. (size) 24=0-3-0, 14=0-3-0

Max Grav 24=1075(LC 1), 14=1075(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2005/0, 3-4=-3408/0, 4-5=-3408/0, 5-6=-4160/0, 6-7=-4391/0, 7-9=-4160/0, TOP CHORD 9-10=-3408/0, 10-11=-3408/0, 11-12=-2005/0

BOT CHORD 23-24=0/1172, 21-23=0/2810, 20-21=0/3918, 19-20=0/4391, 18-19=0/4391, 17-18=0/4391,

16-17=0/3918, 15-16=0/2810, 14-15=0/1172

2-24=-1557/0, 2-23=0/1160, 3-23=-1119/0, 3-21=0/814, 5-21=-693/0, 5-20=0/469, WFBS

6-20=-575/87, 12-14=-1557/0, 12-15=0/1160, 11-15=-1119/0, 11-16=0/814, 9-16=-693/0,

9-17=0/469, 7-17=-575/87

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B |       | FLOOR      | 10  | _   | 176645157                |
| 251300-D |       | FLOOR      | 10  | '   | Job Reference (optional) |

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:01 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-g3LTBpaivG6xvA8UdoQjXaNGpr9RODHxeNUyTlyZwaS



Scale = 1:32.7

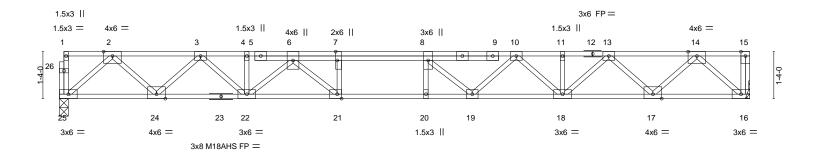



Plate Offsets (X,Y)--[7:0-3-0,Edge], [21:0-1-8,Edge] **GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** TCLL 40.0 Plate Grip DOL 1.00 TC 0.38 Vert(LL) -0.28 20 >818 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.87 Vert(CT) -0.39 20 >595 360 M18AHS 186/179 **BCLL** 0.0 Rep Stress Incr YES WB 0.54 0.08 16 Horz(CT) n/a n/a Code IRC2021/TPI2014 **BCDL** 5.0 FT = 20%F, 11%E Matrix-S Weight: 112 lb

19-7-0

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals.

WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 25=0-3-0, 16=Mechanical Max Grav 25=1057(LC 1), 16=1063(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1966/0, 3-4=-3330/0, 4-6=-3334/0, 6-7=-4400/0, 7-8=-4400/0, 8-10=-4108/0,

10-11=-3335/0, 11-13=-3335/0, 13-14=-1966/0

BOT CHORD 24-25=0/1151, 22-24=0/2750, 21-22=0/3935, 20-21=0/4400, 19-20=0/4400, 18-19=0/3798,

17-18=0/2749, 16-17=0/1152

2-25=-1530/0, 2-24=0/1133, 3-24=-1090/0, 3-22=0/788, 6-22=-803/0, 6-21=0/943, WFBS

7-21=-540/0, 14-16=-1534/0, 14-17=0/1132, 13-17=-1090/0, 13-18=0/796, 10-18=-629/0,

10-19=0/571, 8-19=-610/0

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.



September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | Lot 92 Magnolia Hills    |
|----------|-------|------------|-----|-----|--------------------------|
| 251386-B | F4A   | FLOOR      | 4   | _   | 176645158                |
| 251300-D | r4A   | FLOOR      | '   | '   | Job Reference (optional) |

Fayetteville, NC - 28314, Comtech, Inc.

25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:02 2025 Page 1 ID:aTXuLo?nW09qtpROz2WQ0wydkZW-9FvsO8bKfZEoXKjgAWxy4owQ9FdK7jE4t1EW?lyZwaR




| 1 | 1-6-12 | 1-3-0 | 2-4-12 | $Q_{1}4-Q1-3-0$ | i              |
|---|--------|-------|--------|-----------------|----------------|
|   |        |       |        | 11111           | Scale = 1:34.0 |

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

6-0-0 oc bracing: 19-20,18-19.



|                                                     |                                                                                             |                                                   | 0-4-0 19-8 <sub>7</sub> 0<br>-6-0 0-4-0 |                                           |                               |                          |                                  |                                     |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------|--------------------------|----------------------------------|-------------------------------------|--|
| Plate Offsets (X,Y)                                 | Plate Offsets (X,Y) [13:0-1-8,Edge], [15:0-3-0,Edge], [18:0-1-8,Edge]                       |                                                   |                                         |                                           |                               |                          |                                  |                                     |  |
| LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 | SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014 | CSI.<br>TC 0.40<br>BC 0.38<br>WB 0.37<br>Matrix-S | Vert(CT) -(                             | in (loc)<br>0.08 26<br>0.11 26<br>0.03 20 | l/defl<br>>999<br>>999<br>n/a | L/d<br>480<br>360<br>n/a | PLATES<br>MT20<br>Weight: 115 lb | <b>GRIP</b> 244/190 FT = 20%F, 11%E |  |

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 31=0-3-0, 16=0-3-8, 20=0-3-8

Max Grav 31=730(LC 8), 16=275(LC 4), 20=1157(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1331/0, 3-4=-1331/0, 4-5=-1969/0, 5-6=-1969/0, 6-7=-1961/0, 7-8=-1961/0,

8-9=-1306/0, 9-11=-1306/0, 11-12=0/365, 12-13=0/364, 13-15=-276/99, 15-16=-253/96 BOT CHORD  $30 - 31 = 0/775,\ 29 - 30 = 0/775,\ 28 - 29 = 0/1732,\ 27 - 28 = 0/1732,\ 26 - 27 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2047,\ 24 - 26 = 0/2$ 

23-24=0/1717, 22-23=0/1717, 21-22=0/750, 20-21=0/750, 19-20=-96/253, 18-19=-96/253

16-18=-125/330, 2-31=-1021/0, 2-29=0/751, 4-29=-541/0, 4-27=0/319, 8-24=0/345,

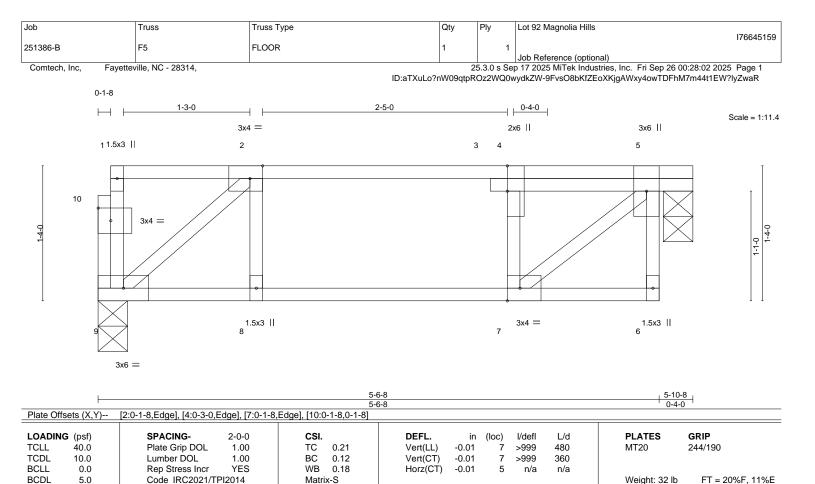
8-22=-569/0, 11-22=0/769, 11-20=-1229/0, 13-20=-575/0

### NOTES-

WFBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 6) CAUTION, Do not erect truss backwards.




September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





**BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 9=0-3-8, 5=0-3-8 Max Grav 9=288(LC 1), 5=294(LC 1)

FORCES. (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown. TOP CHORD 2-4=-322/0, 4-5=-298/0 8-9=0/298, 7-8=0/298 2-9=-386/0, 5-7=0/387 WEBS

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 5) CAUTION, Do not erect truss backwards.



Structural wood sheathing directly applied or 5-10-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 92 Magnolia Hills 176645160 251386-B FG1 **FLOOR** Job Reference (optional) Fayetteville, NC - 28314, 25.3.0 s Sep 17 2025 MiTek Industries, Inc. Fri Sep 26 00:28:03 2025 Page 1 Comtech, Inc. ID:aTXuLo?nW09qtpROz2WQ0wydkZW-dRSEcUbyQtMf9UlskDTBd?SgGf0xsDFE6hz3YByZwaQ 0-1-8 2-3-0 1-3-0 0-1-8 Scale = 1:10.3 3x4 || 3x6 || 3x6 || 3x4 || 2 4 11 3 1 10 9 3x4 = 1.5x3 || 1.5x3 || Plate Offsets (X,Y)--[1:Edge,0-1-8], [9:0-1-8,0-1-8], [10:0-1-8,0-1-8] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 40.0 Plate Grip DOL 1.00 TC 0.12 Vert(LL) -0.01 6 >999 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 BC 0.17 Vert(CT) -0.01 6-7 >999 360 **BCLL** 0.0 Rep Stress Incr NO WB 0.19 0.01 5 Horz(CT) n/a n/a Code IRC2021/TPI2014 FT = 20%F, 11%E **BCDL** 5.0 Matrix-S Weight: 34 lb **BRACING-**

TOP CHORD

**BOT CHORD** 

LUMBER-

2x4 SP No.1(flat) TOP CHORD BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 8=0-3-8, 5=0-3-8 Max Grav 8=456(LC 1), 5=478(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-685/0

**BOT CHORD** 7-8=0/685, 6-7=0/685, 5-6=0/685

2-8=-806/0, 3-5=-804/0 WEBS

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

### LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10. 1-4=-100

Concentrated Loads (lb)

Vert: 3=-175 11=-194



Structural wood sheathing directly applied or 5-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 26,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



### Symbols

## PLATE LOCATION AND ORIENTATION



offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

\* Plate location details available in MiTek software or upon request

### PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

## LATERAL BRACING LOCATION



by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

### **BEARING**



Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

### Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

# Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

# Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

## MiTek



MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

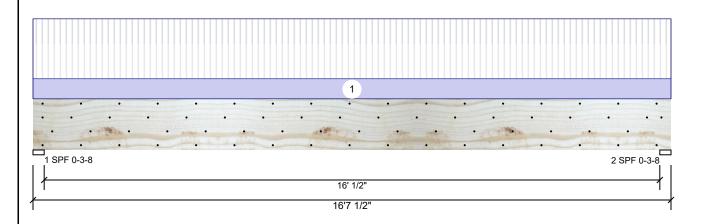
- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.



Client: Project: Address: **Precision Custom Homes** 


Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills

Project #: 251386-B

1.750" X 16.000" **Kerto-S LVL** 2-Ply - PASSED BM<sub>1</sub>

Level: Level



Floor

ASD

No

IBC 2012

Not Checked



Page 1 of 10

### Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 240 Importance: Normal - II

Temperature: Temp <= 100°F

### Reactions UNPATTERNED Ib (Uplift)

| Brg | Direction | Live | Dead | Snow | Wind | Const |
|-----|-----------|------|------|------|------|-------|
| 1   | Vertical  | 3333 | 1217 | 0    | 0    | 0     |
| 2   | Vertical  | 3333 | 1217 | 0    | 0    | 0     |

### **Bearings**

| Bearing Length | Dir. | Сар. | React D/L lb | Total | Ld. Case | Ld. Comb. |
|----------------|------|------|--------------|-------|----------|-----------|
| 1 - SPF 3.500" | Vert | 87%  | 1217 / 3333  | 4551  | L        | D+L       |
| 2 - SPF 3.500" | Vert | 87%  | 1217 / 3333  | 4551  | L        | D+L       |

### Analysis Results

| Analysis     | Actual        | Location   | Allowed       | Capacity | Comb. | Case |
|--------------|---------------|------------|---------------|----------|-------|------|
| Moment       | 17931 ft-lb   | 8'3 3/4"   | 34565 ft-lb   | 52%      | D+L   | L    |
| Unbraced     | 17931 ft-lb   | 8'3 3/4"   | 17951 ft-lb   | 100%     | D+L   | L    |
| Shear        | 4374 lb       | 15'        | 11947 lb      | 37%      | D+L   | L    |
| LL Defl inch | 0.286 (L/678) | 8'3 13/16" | 0.405 (L/480) | 71%      | L     | L    |
| TL Defl inch | 0.391 (L/497) | 8'3 13/16" | 0.809 (L/240) | 48%      | D+L   | L    |

Application:

Design Method:

**Building Code:** 

Load Sharing:

Deck:

### **Design Notes**

- 1 Provide support to prevent lateral movement and rotation at the end bearings.
- 2 Fasten all plies using 4 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on bottom edge only and across their full width.
- 5 Top must be laterally braced at a maximum of 6'5 3/4" o.c.
- 6 Bottom must be laterally braced at end bearings.
- 7 Lateral slenderness ratio based on single ply width.

| ID | Load Type | Location | Trib Width | Side | Dead 0.9 | Live 1 | Snow 1.15 | Wind 1.6 | Const. 1.25 | Comments |
|----|-----------|----------|------------|------|----------|--------|-----------|----------|-------------|----------|

Self Weight 12 PLF

### Uniform Near Face 134 PLF 401 PLF 0 PLF 0 PLF

1

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code

approvals

Damaged Beams must not be used

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

**Manufacturer Info** 

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

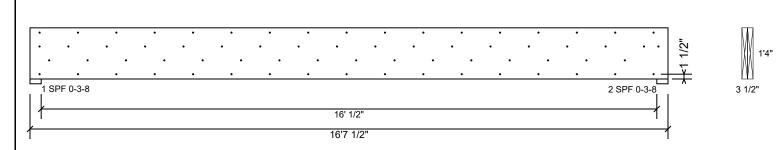




0 PLF F4

Client:

Project: Address: **Precision Custom Homes** 


Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills Page 2 of 10

Project #: 251386-B

1.750" X 16.000" **Kerto-S LVL** 2-Ply - PASSED BM<sub>1</sub>

Level: Level



### Multi-Ply Analysis

Fasten all plies using 4 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

| Capacity                 | 81.7 %    |  |
|--------------------------|-----------|--|
| Load                     | 267.5 PLF |  |
| Yield Limit per Foot     | 327.4 PLF |  |
| Yield Limit per Fastener | 81.9 lb.  |  |
| См                       | 1         |  |
| Yield Mode               | IV        |  |
| Edge Distance            | 1 1/2"    |  |
| Min. End Distance        | 3"        |  |
| Load Combination         | D+L       |  |
| Duration Factor          | 1.00      |  |

### Notes

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

- IARIGUING & INSTALLATION

  LVL beams must not be cut or drilled

  Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beams trength values, and code approvals

  Damaged Beams must not be used

  Design assumes top edge is laterally restrained.

  Provide lateral support at bearing points to avoid lateral displacement and rotation

- For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

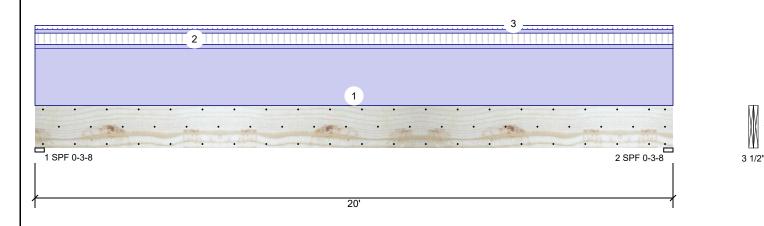


This design is valid until 2/28/2028



Client:

**Precision Custom Homes** 


Project: Address: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills Page 3 of 10

Project #: 251386-B

1.750" X 16.000" 2-Ply - PASSED **Kerto-S LVL** BM<sub>2</sub>

Level: Level



| Member Infor       | mation        |                |             | Rea | ctions UNP   | ATTERN | ED lb (Uplift) |          |          |             |
|--------------------|---------------|----------------|-------------|-----|--------------|--------|----------------|----------|----------|-------------|
| Туре:              | Girder        | Application:   | Floor       | Brg | Direction    | Live   | Dead           | Snow     | Wind     | Const       |
| Plies:             | 2             | Design Method: | ASD         | 1   | Vertical     | 400    | 2409           | 135      | 0        | 0           |
| Moisture Condition | n: Dry        | Building Code: | IBC 2012    | 2   | Vertical     | 400    | 2409           | 135      | 0        | 0           |
| Deflection LL:     | 480           | Load Sharing:  | No          |     |              |        |                |          |          |             |
| Deflection TL:     | 240           | Deck:          | Not Checked |     |              |        |                |          |          |             |
| Importance:        | Normal - II   |                |             |     |              |        |                |          |          |             |
| Temperature:       | Temp <= 100°F |                |             |     |              |        |                |          |          |             |
|                    |               |                |             | Bea | rings        |        |                |          |          |             |
|                    |               |                |             | Bea | aring Length | Dir.   | Cap. React D/L | lb Total | Ld. Case | Ld. Comb.   |
|                    |               |                |             | 1 - | SPF 3.500"   | Vert   | 54% 2409 / 4   | 01 2811  | L        | D+0.75(L+S) |
|                    |               |                |             | 2 - | SPF 3.500"   | Vert   | 54% 2409 / 4   | 01 2811  | L        | D+0.75(L+S) |

### Analysis Results

| Analysis     | Actual         | Location  | Allowed       | Capacity | Comb.       | Case |
|--------------|----------------|-----------|---------------|----------|-------------|------|
| Moment       | 13439 ft-lb    | 10'       | 34565 ft-lb   | 39%      | D+L         | L    |
| Unbraced     | 13439 ft-lb    | 10'       | 13492 ft-lb   | 100%     | D+L         | L    |
| Shear        | 2444 lb        | 18'4 1/2" | 11947 lb      | 20%      | D+L         | L    |
| LL Defl inch | 0.059 (L/3960) | 10' 1/16" | 0.489 (L/480) | 12%      | 0.75(L+S)   | L    |
| TL Defl inch | 0.415 (L/565)  | 10' 1/16" | 0.978 (L/240) | 42%      | D+0.75(L+S) | L    |

### **Design Notes**

- 1 Provide support to prevent lateral movement and rotation at the end bearings.
- 2 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on bottom edge only and across their full width.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at a maximum of 8'9 7/16" o.c.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width.

| o zatorar oroma | e Lateral cicinatiness ratio passa on enigle pry main |                 |            |           |          |        |           |          |             |                  |  |
|-----------------|-------------------------------------------------------|-----------------|------------|-----------|----------|--------|-----------|----------|-------------|------------------|--|
| ID              | Load Type                                             | Location        | Trib Width | Side      | Dead 0.9 | Live 1 | Snow 1.15 | Wind 1.6 | Const. 1.25 | Comments         |  |
| 1               | Uniform                                               |                 |            | Тор       | 200 PLF  | 0 PLF  | 0 PLF     | 0 PLF    | 0 PLF       | Wall Above, C1GE |  |
| 2               | Tie-In                                                | 0-0-0 to 20-0-0 | 1-0-0      | Far Face  | 15 PSF   | 40 PSF | 0 PSF     | 0 PSF    | 0 PSF       | Floor Load       |  |
| 3               | Tie-In                                                | 0-0-0 to 20-0-0 | 0-6-0      | Near Face | 27 PSF   | 0 PSF  | 27 PSF    | 0 PSF    | 0 PSF       | J3               |  |
|                 | Self Weight                                           |                 |            |           | 12 PLF   |        |           |          |             |                  |  |

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- I. LVL beams must not be cut or drilled
   Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals
   Damagee Beams must not be used

- Design assumes top edge is laterally restrained
  Provide lateral support at bearing points to avoid
  lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

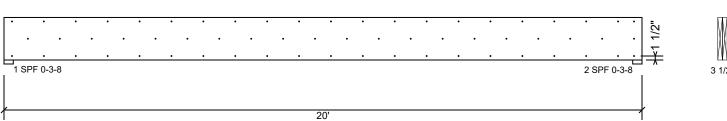
Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS



This design is valid until 2/28/2028 CSD DESIGN

Client:

Project: Address: **Precision Custom Homes** 


Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills

Project #: 251386-B

1.750" X 16.000" **Kerto-S LVL** 2-Ply - PASSED BM<sub>2</sub>

Level: Level





Page 4 of 10

### Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

| Capacity                 | 11.2 %    |  |
|--------------------------|-----------|--|
| Load                     | 27.5 PLF  |  |
| Yield Limit per Foot     | 245.6 PLF |  |
| Yield Limit per Fastener | 81.9 lb.  |  |
| CM                       | 1         |  |
| Yield Mode               | IV        |  |
| Edge Distance            | 1 1/2"    |  |
| Min. End Distance        | 3"        |  |
| Load Combination         | D+L       |  |
| Duration Factor          | 1 00      |  |

### Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

- Informing & Installation

  I. VIL beams must not be cut or drilled

  Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

  Damaged Beams must not be used

  Design assumes top edge is laterally restrained

  Design assumes top edge is laterally restrained is provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

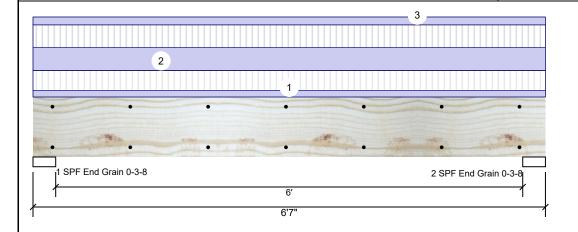
Manufacturer Info





Client:

Project: Address: **Precision Custom Homes** 


Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills

Project #: 251386-B

1.750" X 9.250" **Kerto-S LVL** 2-Ply - PASSED BM4

Level: Level





Page 5 of 10

### Member Information

| Type:               | Girder        |
|---------------------|---------------|
| Plies:              | 2             |
| Moisture Condition: | Dry           |
| Deflection LL:      | 480           |
| Deflection TL:      | 360           |
| Importance:         | Normal - II   |
| Temperature:        | Temp <= 100°F |

Application: Design Method: ASD **Building Code:** IBC 2012 Load Sharing: No

Deck: Not Checked

### Reactions UNPATTERNED Ib (Uplift)

| Brg | Direction | Live | Dead | Snow | Wind | Const |
|-----|-----------|------|------|------|------|-------|
| 1   | Vertical  | 2149 | 1903 | 0    | 0    | 0     |
| 2   | Vertical  | 2149 | 1903 | 0    | 0    | 0     |

### **Bearings**

Grain

| Bearing                 | Length | Dir. | Cap. F | React D/L lb | Total | Ld. Case | Ld. Comb. |
|-------------------------|--------|------|--------|--------------|-------|----------|-----------|
| 1 - SPF<br>End<br>Grain | 3.500" | Vert | 39%    | 1903 / 2149  | 4053  | L        | D+L       |
| 2 - SPF<br>End          | 3.500" | Vert | 39%    | 1903 / 2149  | 4053  | L        | D+L       |

### Analysis Results

| Analysis     | Actual         | Location | Allowed       | Capacity | Comb. | Case |
|--------------|----------------|----------|---------------|----------|-------|------|
| Moment       | 5774 ft-lb     | 3'3 1/2" | 12542 ft-lb   | 46%      | D+L   | L    |
| Unbraced     | 5774 ft-lb     | 3'3 1/2" | 9934 ft-lb    | 58%      | D+L   | L    |
| Shear        | 2745 lb        | 1' 3/4"  | 6907 lb       | 40%      | D+L   | L    |
| LL Defl inch | 0.056 (L/1320) | 3'3 1/2" | 0.153 (L/480) | 36%      | L     | L    |
| TL Defl inch | 0.105 (L/700)  | 3'3 1/2" | 0.204 (L/360) | 51%      | D+L   | L    |
|              |                |          |               |          |       |      |

### **Design Notes**

- 1 Provide support to prevent lateral movement and rotation at the end bearings.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on bottom edge only and across their full width.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width.

| ID | Load Type   | Location | Trib Width | Side | Dead 0.9 | Live 1  | Snow 1.15 | Wind 1.6 | Const. 1.25 | Comments   |
|----|-------------|----------|------------|------|----------|---------|-----------|----------|-------------|------------|
| 1  | Uniform     |          |            | Тор  | 102 PLF  | 304 PLF | 0 PLF     | 0 PLF    | 0 PLF       | F2         |
| 2  | Uniform     |          |            | Тор  | 349 PLF  | 349 PLF | 0 PLF     | 0 PLF    | 0 PLF       | A1         |
| 3  | Uniform     |          |            | Тор  | 120 PLF  | 0 PLF   | 0 PLF     | 0 PLF    | 0 PLF       | Wall Above |
|    | Self Weight |          |            |      | 7 PLF    |         |           |          |             |            |

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive
- Handling & Installation
- LVL beams must not be cut or drilled
  Refer to manufacturer's product information
  regarding installation requirements, multi-ply
  fastening details, beam strength values, and code approvals

  Damaged Beams must not be used

- Design assumes top edge is laterally restrained
  Provide lateral support at bearing points to avoid
  lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info



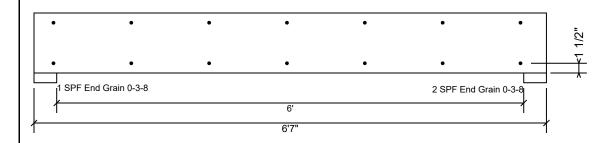


Client: **Precision Custom Homes** 

Project: Address:

Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills


Project #: 251386-B

**Kerto-S LVL** BM4

1.750" X 9.250"

2-Ply - PASSED

Level: Level





Page 6 of 10

### Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

|                          | ,         |
|--------------------------|-----------|
| Capacity                 | 0.0 %     |
| Load                     | 0.0 PLF   |
| Yield Limit per Foot     | 163.7 PLF |
| Yield Limit per Fastener | 81.9 lb.  |
| См                       | 1         |
| Yield Mode               | IV        |
| Edge Distance            | 1 1/2"    |
| Min. End Distance        | 3"        |
| Load Combination         |           |
| Duration Factor          | 1.00      |

### Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

- Handling & Installation

  1. UVI beams must not be cut or drilled

  2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

  3. Damaged Beams must not be used

  4. Design assumes top edge is laterally restrained

  5. Provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

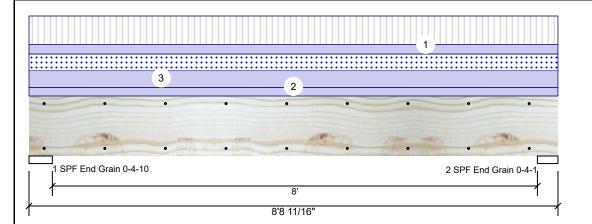






Client:

Project: Address: **Precision Custom Homes** 


Date: 9/26/2025

Input by: Hampton Horrocks Lot 92 Magnolia Hills

evel: Level

Project #: 251386-B

### 1.750" X 11.875" 2-Ply - PASSED Kerto-S LVL BM<sub>5</sub>





Page 7 of 10

### Member Information

Type: Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 240 Importance:

Normal - II Temperature: Temp <= 100°F

Application: Design Method: ASD **Building Code:** IBC 2012

Load Sharing: No

Deck: Not Checked

### Reactions UNPATTERNED Ib (Uplift)

| Brg | Direction | Live | Dead | Snow | Wind | Const |
|-----|-----------|------|------|------|------|-------|
| 1   | Vertical  | 1772 | 2203 | 1044 | 0    | 0     |
| 2   | Vertical  | 1753 | 2179 | 1033 | 0    | 0     |

### Bearings

Bearing Length Dir. Cap. React D/L lb Total Ld. Case Ld. Comb. D+0.75(L+S) 1 - SPF 4.625" Vert 2203 / 2112 4314 L End

Grain

Grain

2179 / 2089 D+0.75(L+S) 2 - SPF 4.063" Vert 4268 L End

### Analysis Results

| Analysis     | Actual         | Location   | Allowed       | Capacity | Comb.       | Case |
|--------------|----------------|------------|---------------|----------|-------------|------|
| Moment       | 7478 ft-lb     | 4'4 5/8"   | 19911 ft-lb   | 38%      | D+L         | L    |
| Unbraced     | 8118 ft-lb     | 4'4 5/8"   | 11006 ft-lb   | 74%      | D+0.75(L+S) | L    |
| Shear        | 2728 lb        | 1'4 1/2"   | 8867 lb       | 31%      | D+L         | L    |
| LL Defl inch | 0.059 (L/1643) | 4'4 11/16" | 0.203 (L/480) | 29%      | 0.75(L+S)   | L    |
| TL Defl inch | 0.121 (L/804)  | 4'4 11/16" | 0.406 (L/240) | 30%      | D+0.75(L+S) | L    |

### **Design Notes**

- 1 Provide support to prevent lateral movement and rotation at the end bearings.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on bottom edge only and across their full width.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.
- 7 Bottom must be laterally braced at end bearings.
- 8 Lateral slenderness ratio based on single ply width

| to exceed 6". |  |  |  |
|---------------|--|--|--|
|               |  |  |  |

### ID Load Type Location Trib Width Side Dead 0.9 Live 1 Snow 1.15 Wind 1.6 Const. 1.25 Comments Part. Uniform 135 PLF 404 PLF 0-0-0 to 8-8-11 Top 0 PLF 0 PLF 0 PLF F3 2 Uniform Top 120 PLF 0 PI F 0 PI F 0 PI F 0 PI F Wall Above Uniform 238 PLF 0 PLF 238 PLF 0 PLF 0 PLF C1 3 Top Self Weight 9 PI F

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

- Handling & Installation
- LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code
- Damaged Beams must not be used
- Design assumes top edge is laterally restrained
  Provide lateral support at bearing points to avoid
  lateral displacement and rotation
- 6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

**Manufacturer Info** 



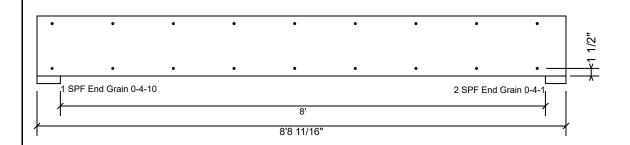


Client: **Precision Custom Homes** 

Project: Address:

Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills


Project #: 251386-B

**Kerto-S LVL** BM5

1.750" X 11.875"

2-Ply - PASSED

evel: Level





Page 8 of 10

### Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

|                          | •         |
|--------------------------|-----------|
| Capacity                 | 0.0 %     |
| Load                     | 0.0 PLF   |
| Yield Limit per Foot     | 163.7 PLF |
| Yield Limit per Fastener | 81.9 lb.  |
| CM                       | 1         |
| Yield Mode               | IV        |
| Edge Distance            | 1 1/2"    |
| Min. End Distance        | 3"        |
| Load Combination         |           |
| Duration Factor          | 1 00      |

### Notes

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

- Handling & Installation

  1. UVI beams must not be cut or drilled

  2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

  3. Damaged Beams must not be used

  4. Design assumes top edge is laterally restrained

  5. Provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info

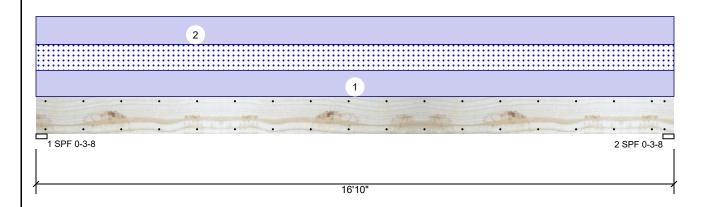






Client:

**Precision Custom Homes** 


Project: Address: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills

Project #: 251386-B

**Kerto-S LVL** 2-Ply - PASSED 1.750" X 11.875" **GDH** 

Level: Level





Page 9 of 10

### **Member Information**

| Type:               | Girder      |
|---------------------|-------------|
| Plies:              | 2           |
| Moisture Condition: | Dry         |
| Deflection LL:      | 480         |
| Deflection TL:      | 240         |
| Importance:         | Normal - II |
|                     |             |

Temp <= 100°F

Application: Floor Design Method: ASD **Building Code:** IBC 2012

Load Sharing: No Deck: Not Checked

### Reactions UNPATTERNED Ib (Uplift)

| Brg | Direction | Live | Dead | Snow | Wind | Const |
|-----|-----------|------|------|------|------|-------|
| 1   | Vertical  | 0    | 1054 | 471  | 0    | 0     |
| 2   | Vertical  | 0    | 1054 | 471  | 0    | 0     |

### **Bearings**

| Bearing | Length | Dir. | Cap. | React D/L lb | Total | Ld. Case | Ld. Comb. |
|---------|--------|------|------|--------------|-------|----------|-----------|
| 1 - SPF | 3.500" | Vert | 29%  | 1054 / 471   | 1525  | L        | D+S       |
| 2 - SPF | 3.500" | Vert | 29%  | 1054 / 471   | 1525  | L        | D+S       |

### Analysis Results

Temperature:

| Analysis     | Actual         | Location  | Allowed       | Capacity | Comb. | Case |
|--------------|----------------|-----------|---------------|----------|-------|------|
| Moment       | 6075 ft-lb     | 8'5"      | 22897 ft-lb   | 27%      | D+S   | L    |
| Unbraced     | 6075 ft-lb     | 8'5"      | 6086 ft-lb    | 100%     | D+S   | L    |
| Shear        | 1404 lb        | 1'3 3/8"  | 10197 lb      | 14%      | D+S   | L    |
| LL Defl inch | 0.098 (L/2006) | 8'5 1/16" | 0.409 (L/480) | 24%      | S     | L    |
| TL Defl inch | 0.317 (L/620)  | 8'5 1/16" | 0.819 (L/240) | 39%      | D+S   | L    |

### **Design Notes**

- 1 Provide support to prevent lateral movement and rotation at the end bearings.
- 2 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not
- 3 Refer to last page of calculations for fasteners required for specified loads.
- 4 Girders are designed to be supported on bottom edge only and across their full width.
- 5 Top loads must be supported equally by all plies.
- 6 Top must be laterally braced at end bearings.
- 7 Bottom must be laterally braced at end bearings.
- 8. Lateral slenderness ratio based on single ply width

| o Eutoral olona | ornoco rado bacca on olingio | pry width. |            |           |          |        |           |          |             |            |  |
|-----------------|------------------------------|------------|------------|-----------|----------|--------|-----------|----------|-------------|------------|--|
| ID              | Load Type                    | Location   | Trib Width | Side      | Dead 0.9 | Live 1 | Snow 1.15 | Wind 1.6 | Const. 1.25 | Comments   |  |
| 1               | Uniform                      |            |            | Near Face | 56 PLF   | 0 PLF  | 56 PLF    | 0 PLF    | 0 PLF       | J3         |  |
| 2               | Uniform                      |            |            | Тор       | 60 PLF   | 0 PLF  | 0 PLF     | 0 PLF    | 0 PLF       | Wall Above |  |
|                 | Self Weight                  |            |            |           | 9 PLF    |        |           |          |             |            |  |

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

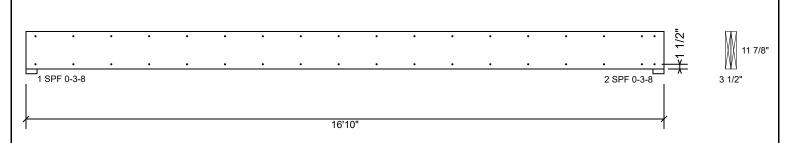
Manufacturer Info





Client:

**Precision Custom Homes** 


Project: Address: Date: 9/26/2025

Input by: Hampton Horrocks Job Name: Lot 92 Magnolia Hills Page 10 of 10

Project #: 251386-B

**Kerto-S LVL** 1.750" X 11.875" 2-Ply - PASSED **GDH** 

Level: Level



### Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

| Capacity                 | 29.7 %    |  |
|--------------------------|-----------|--|
| Load                     | 56.0 PLF  |  |
| Yield Limit per Foot     | 188.3 PLF |  |
| Yield Limit per Fastener | 94.1 lb.  |  |
| См                       | 1         |  |
| Yield Mode               | IV        |  |
| Edge Distance            | 1 1/2"    |  |
| Min. End Distance        | 3"        |  |
| Load Combination         | D+S       |  |
| Duration Factor          | 1 15      |  |

### Notes

NOtes
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
   LVL not to be treated with fire retardant or corrosive

### Handling & Installation

- Informing & Installation

  I. VIL beams must not be cut or drilled

  Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

  Damaged Beams must not be used

  Design assumes top edge is laterally restrained

  Design assumes top edge is laterally restrained is provide lateral support at bearing points to avoid lateral displacement and rotation

For flat roofs provide proper drainage to prevent ponding

This design is valid until 2/28/2028

Metsä Wood

301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us

Manufacturer Info



