

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25-4768-A

RVF-LOT #31 ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I76040528 thru I76040552

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

September 2,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040528 25-4768-A T01 COMMON 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:54 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-Sb7LfHPVLVkH4HlpnuQdeWDF4_dWwOSvpwzZMqyhjsJ 50-11-0 0-11-0 41-8-0 50-0-0 -0-11-0 0-11-0

8-4-0

8-4-0

39-7-6

10-4-10

16

(loc)

-0.14 18-20

-0.25 18-20

1 Row at midpt

2 Rows at 1/3 pts

0.03

I/defI

>999

>999

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

L/d

240

180

n/a

Structural wood sheathing directly applied or 5-5-2 oc purlins.

7-16

8-16, 6-18

8-4-0

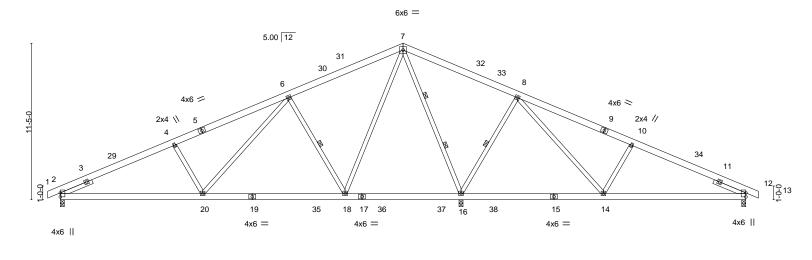
Scale = 1:84.0

8-4-0

50-0-0

10-4-10

PLATES


Weight: 354 lb

MT20

GRIP

244/190

FT = 20%

29-2-12

CSI.

TC

ВС

WB

Matrix-MS

0.47

0.56

0.93

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

8-4-0

8-4-0

2x4 SP No.3 WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 16=0-3-8, 12=0-3-8

Max Horz 2=190(LC 15)

10-4-10

10-4-10

20.0

10.0

10.0

0.0

Max Uplift 2=-89(LC 16), 16=-146(LC 16), 12=-64(LC 16) Max Grav 2=1167(LC 28), 16=2839(LC 30), 12=695(LC 29)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1764/183, 4-6=-1638/205, 6-7=-562/200, 7-8=0/846, 8-10=-628/135,

10-12=-772/114

BOT CHORD 2-20=-75/1742, 18-20=0/936, 14-16=-333/95, 12-14=-7/713

WEBS 7-16=-1838/142, 8-16=-966/214, 8-14=-32/1055, 10-14=-467/168, 7-18=-80/1305,

6-18=-931/212, 6-20=-26/960, 4-20=-415/164

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 25-0-0, Exterior(2R) 25-0-0 to 30-0-0, Interior(1) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

20-9-4

10-4-10

2-0-0

1.15

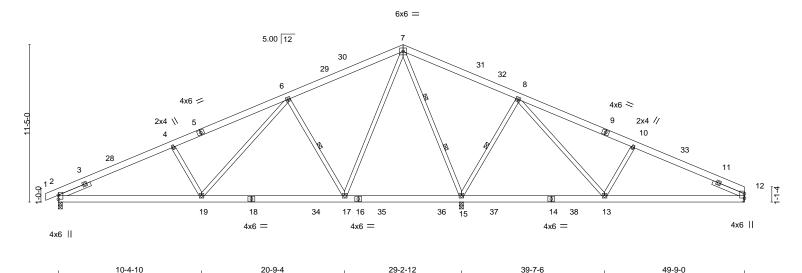
1.15

YES

- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 16=146.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040529 COMMON 2 25-4768-A T01A Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:55 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-wohjsdP86ps8iRs?LbxsAjlQmNzkfql32aj7vGyhjsI 41-8-0 49-9-0 -0-11-0 0-11-0 8-4-0 8-4-0 8-4-0 8-4-0 8-4-0 8-1-0

Scale = 1:83.5

10-4-10 10-4-10 10-1-10 LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES** GRIP CSI. (loc) I/defl TCLL (roof) 20.0 Vert(LL) -0.14 17-19 240 244/190 Plate Grip DOL 1.15 TC 0.48 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.57 Vert(CT) -0.25 17-19 >999 180 TCDI 10.0 Rep Stress Incr YES WB 0.93 Horz(CT) 0.03 15 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 351 lb FT = 20% **BCDL** 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3

WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=188(LC 15)

Max Uplift 2=-88(LC 16), 15=-150(LC 16), 12=-32(LC 16) Max Grav 2=1168(LC 28), 15=2834(LC 30), 12=633(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $2-4=-1768/181,\ 4-6=-1641/203,\ 6-7=-566/198,\ 7-8=0/840,\ 8-10=-604/137,$

10-12=-742/116

BOT CHORD 2-19=-96/1740, 17-19=-16/934, 13-15=-328/79, 12-13=-33/685 WEBS

7-17=-79/1303, 6-17=-931/212, 6-19=-26/960, 7-15=-1832/144, 4-19=-415/164,

8-15=-959/214, 8-13=-37/1032, 10-13=-455/172

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (it=lb) 15=150.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-5-0 oc purlins.

7-15

6-17, 8-15

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040530 COMMON 25-4768-A T01B Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:56 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-O_F54zQmt6_?JbRBvJT5jxlbWnJzOH?CGESgRjyhjsH 33-4-0 41-8-0 49-9-0 -0-11-0 0-11-0

8-4-0

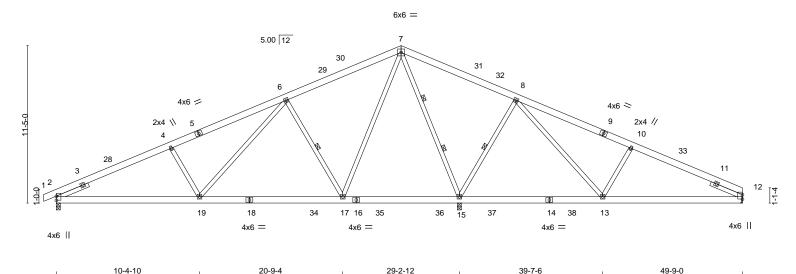
8-4-0

Structural wood sheathing directly applied or 5-5-0 oc purlins.

7-15

6-17, 8-15

Rigid ceiling directly applied or 6-0-0 oc bracing.


1 Row at midpt

2 Rows at 1/3 pts

8-4-0

Scale = 1:83.5

8-1-0

10-4-10 10-4-10 10-1-10 LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES** GRIP CSI. (loc) I/defl TCLL (roof) 20.0 Vert(LL) -0.14 17-19 240 244/190 Plate Grip DOL 1.15 TC 0.48 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.57 Vert(CT) -0.25 17-19 >999 180 TCDI 10.0 Rep Stress Incr YES WB 0.93 Horz(CT) 0.03 15 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 351 lb FT = 20% **BCDL** 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

8-4-0

8-4-0

2x4 SP No.3 WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=188(LC 15)

Max Uplift 2=-88(LC 16), 15=-150(LC 16), 12=-32(LC 16) Max Grav 2=1168(LC 28), 15=2834(LC 30), 12=633(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-4=-1768/181,\ 4-6=-1641/203,\ 6-7=-566/198,\ 7-8=0/840,\ 8-10=-604/137,$

10-12=-742/116

BOT CHORD 2-19=-96/1740, 17-19=-16/934, 13-15=-328/79, 12-13=-33/685 WEBS

7-17=-79/1303, 6-17=-931/212, 6-19=-26/960, 7-15=-1832/144, 4-19=-415/164,

8-15=-959/214, 8-13=-37/1032, 10-13=-455/172

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (it=lb) 15=150.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040531 25-4768-A T01C COMMON 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:56 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-O_F54zQmt6_?JbRBvJT5jxlbZnJ_OHyCGESgRjyhjsH 33-4-0 50-0-0 -0-11-0 0-11-0

8-4-0

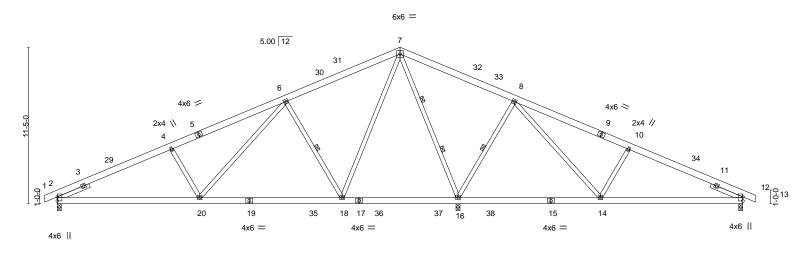
8-4-0

Structural wood sheathing directly applied or 5-5-2 oc purlins.

7-16

6-18, 8-16

Rigid ceiling directly applied or 6-0-0 oc bracing.


1 Row at midpt

2 Rows at 1/3 pts

8-4-0

0-11-0 Scale = 1:84.0

8-4-0

	10-4-10	1	20-9-4		29-2-12	2 1		39-7-6		1	50-0-0	
	10-4-10	l l	10-4-10	<u>'</u>	8-5-8	<u>'</u>		10-4-10)	<u>'</u>	10-4-10	
TCLL (I	NG (psf) roof) 20.0 Pf/Pg) 11.6/15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES FPI2014	CSI TC BC WB Mat	0.47 0.56	DEFL. Vert(LL Vert(CT Horz(C	-0.25	18-20 18-20	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 354 lb	GRIP 244/190 FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3

8-4-0

8-4-0

WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. (size) 2=0-3-8, 16=0-3-8, 12=0-3-8

Max Horz 2=190(LC 15)

Max Uplift 2=-89(LC 16), 16=-146(LC 16), 12=-64(LC 16) Max Grav 2=1167(LC 28), 16=2839(LC 30), 12=695(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1764/183, 4-6=-1638/205, 6-7=-562/200, 7-8=0/846, 8-10=-628/135,

10-12=-772/114

BOT CHORD 2-20=-75/1742, 18-20=0/936, 14-16=-333/95, 12-14=-7/713

WEBS 7-18=-80/1305, 6-18=-931/212, 7-16=-1838/142, 8-16=-966/214, 8-14=-32/1055,

10-14=-467/168, 6-20=-26/960, 4-20=-415/164

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 25-0-0, Exterior(2R) 25-0-0 to 30-0-0, Interior(1) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 16=146.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040532 25-4768-A T01GE COMMON SUPPORTED GAB Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:58 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-KNNrVeS0PkFjZuba0kVZoMN2Wb6xsN2VkYxnVbyhjsF 50-11-0 0-11-0 -0-11-0 0-11-0 25-0-0 25-0-0

Scale = 1:85.7

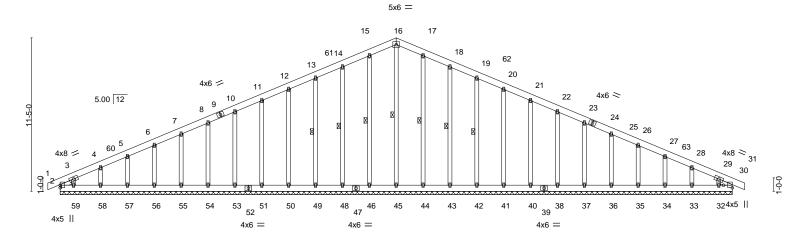


Plate Offsets (X,Y)--[30:Edge,0-7-13] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) -0.00 30 120 244/190 n/r MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.02 Vert(CT) -0.00 30 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.01 30 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Weight: 449 lb FT = 20%Matrix-S

50-0-0

LUMBER-

BCDL

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2

OTHERS 2x4 SP No.3 Left 2x4 SP No.3 0-11-5, Right 2x4 SP No.3 0-11-5 SLIDER

BRACING-

TOP CHORD **BOT CHORD** WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins

Rigid ceiling directly applied or 10-0-0 oc bracing. 16-45, 15-46, 14-48, 13-49, 17-44, 18-43, 1 Row at midpt

REACTIONS. All bearings 50-0-0.

10.0

Max Horz 2=-190(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40, 38,

37, 36, 35, 34, 33, 32, 2

Max Grav All reactions 250 lb or less at joint(s) 30, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 44,

43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-101/250, 14-15=-118/290, 15-16=-127/314, 16-17=-127/314, 17-18=-118/290,

18-19=-101/250

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 25-0-0, Corner(3R) 25-0-0 to 30-0-0, Exterior(2N) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 2.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040533 COMMON 25-4768-A T02 Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:59 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-oZxEi_SeA1NaA2AmaR0oLZw7O?J5bfSfzChK22yhjsE 33-4-0 50-0-0 50-11-0 0-11-0 -0-11-0 0-11-0

8-4-0

Horz(CT)

TOP CHORD

BOT CHORD

WEBS

0.03

16

6-0-0 oc bracing: 14-16.

1 Row at midpt

2 Rows at 1/3 pts

n/a

n/a

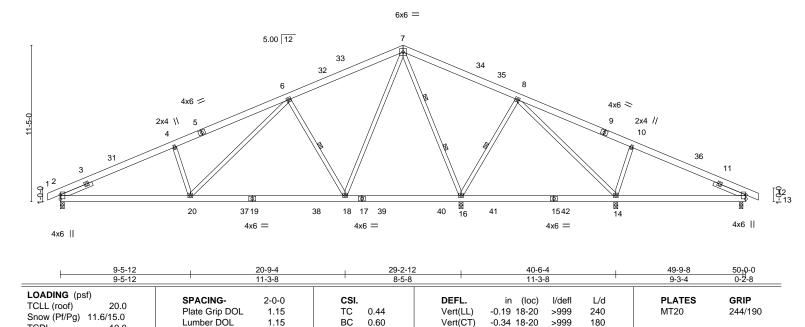
Structural wood sheathing directly applied or 5-1-12 oc purlins.

6-18, 8-16

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

7-16

8-4-0


8-4-0

Scale = 1:84.0

8-4-0

Weight: 355 lb

FT = 20%

LUMBER-BRACING-

Code IRC2018/TPI2014

Rep Stress Incr

8-4-0

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

2x4 SP No.3 WEBS

10.0

10.0

0.0

8-4-0

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. All bearings 0-3-8 except (jt=length) 12=0-3-0.

Max Horz 2=-190(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 14, 12 except 2=-100(LC 16), 16=-107(LC 16)

YES

Max Grav All reactions 250 lb or less at joint(s) except 2=1213(LC 28), 16=2505(LC 28), 14=617(LC 37),

WB

Matrix-MS

0.89

12=478(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1938/194, 4-6=-1853/249, 6-7=-650/225, 7-8=0/700, 10-12=-278/97

BOT CHORD 2-20=-85/1864, 18-20=-20/1032, 14-16=-348/68, 12-14=0/257 **WEBS**

4-20=-400/167, 6-20=-46/1044, 6-18=-911/217, 7-18=-78/1317, 7-16=-1742/117,

8-16=-630/208, 8-14=-14/462, 10-14=-466/169

NOTES-

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 25-0-0, Exterior(2R) 25-0-0 to 30-0-0, Interior(1) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 2=100, 16=107.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 Job
 Truss
 Truss Type
 Qty
 Ply
 RVF-LOT #31 ROOF
 I76040534

 25-4768-A
 T03
 COMMON
 10
 1
 Job Reference (optional)

Riverside Roof Truss, LLC, Danville, \

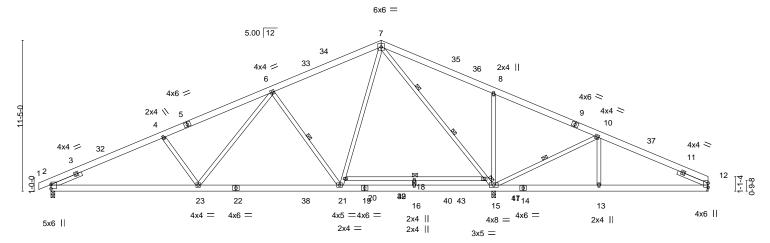
Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:23:59 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-oZxEi_SeA1NaA2AmaR0oLZw6w?EgbgUfzChK22yhjsE

Structural wood sheathing directly applied or 4-4-3 oc purlins.

6-21, 10-15

Rigid ceiling directly applied or 2-2-0 oc bracing. Except:


6-0-0 oc bracing: 17-20

1 Row at midpt

2 Rows at 1/3 pts

-0-11-0 8-6-5 16-9-3 25-0-0 33-6-4 41-5-14 49-9-0 11-10 8-6-5 8-2-13 8-2-13 8-6-4 7-11-10 8-3-2

Scale = 1:87.2

11-1-12	22-0-0	1 27-6-0	33-6-4	41-5-14	49-9-0
11-1-12	10-10-4	5-6-0	6-0-4	7-11-10	8-3-2
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.47 BC 0.95 WB 0.82 Matrix-MS	Vert(LL) -0.29	n (loc) I/defl L/d 9 18-20 >999 240 6 18-20 >881 180 5 15 n/a n/a	PLATES GRIP MT20 244/190 Weight: 367 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except*

14-19: 2x6 SP 2400F 2.0E, 17-20: 2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

7-15: 2x4 SP DSS

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=188(LC 15)

Max Uplift 2=-80(LC 16), 15=-33(LC 16), 12=-26(LC 16) Max Grav 2=1536(LC 28), 15=3080(LC 30), 12=478(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2591/182, 4-6=-2393/187, 6-7=-1331/169, 7-8=0/688, 8-10=0/662, 10-12=-433/107

BOT CHORD 2-23=-96/2456, 21-23=-6/1755, 16-21=0/811, 15-16=0/811, 13-15=-61/400,

12-13=-61/400

WEBS 4-23=-398/165, 6-23=-20/824, 6-21=-924/211, 20-21=-0/1488, 7-20=0/1600,

7-17=-2116/31, 15-17=-2202/0, 8-15=-539/216, 10-15=-854/150, 16-18=-315/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 12.
- Toylor Invited International Confection (by Others) of its to bearing plate capable of withstanding 166 to uplin at joining 2, 15, 12.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

ENGINEERING BY

TRENCO

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040535 25-4768-A T03GE COMMON SUPPORTED GAB Job Reference (optional) Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:01 2025 Page 1

Riverside Roof Truss, LLC,

-0-11-0 0-11-0

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-kx2_7gUuhfdHQMK9hs2GQ_?Yqo8H3knxQWAR6wyhjsC

24-9-0

Scale = 1:83.3

5x6 = 15 16 17 18 61 14 62 19 20 12 21 4x6 = 4x6 > 10 5.00 12 ²³24 8 25 26 63 27 60 28 4x8 || 29 30 ********** ********** 40 39 37 32 59 57 55 45 43 42 36 31 47 52 4x5 ||

49-9-0 LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. (loc) I/defl L/d TCLL (roof) 20.0 Vert(LL) 244/190 Plate Grip DOL 1.15 TC 0.12 -0.00 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.04 Vert(CT) -0.00 120 n/r TCDI 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 31 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 445 lb FT = 20% **BCDL** 10.0

49-9-0

4x6 =

LUMBER-BRACING-TOP CHORD

4x6 =

25-0-0

TOP CHORD 2x6 SP No.2 2x6 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

Left 2x4 SP No.3 0-11-5 SLIDER

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

4x6 =

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 16-45, 15-46, 14-48, 13-49, 17-44, 18-43, 1 Row at midpt

REACTIONS. All bearings 49-9-0.

Max Horz 2=202(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 31, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40,

38, 37, 36, 35, 34, 33, 2 except 32=-109(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 31, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 44,

43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-107/259, 14-15=-121/299, 15-16=-130/323, 16-17=-130/323, 17-18=-121/299,

18-19=-107/259

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-0-11, Exterior(2N) 4-0-11 to 25-0-0, Corner(3R) 25-0-0 to 29-11-11, Exterior(2N) 29-11-11 to 49-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 2 except (jt=lb) 32=109.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

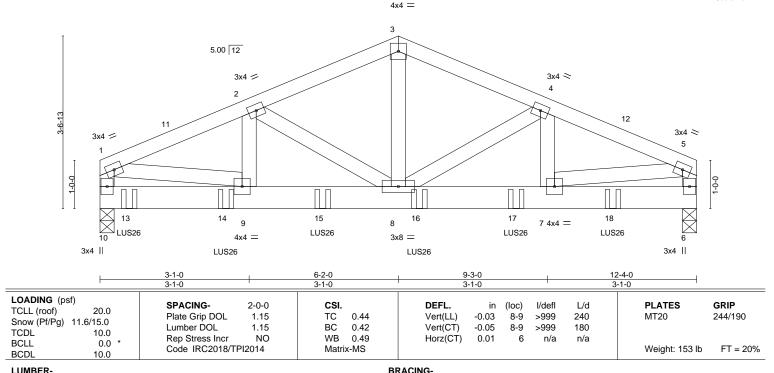
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #31 ROOF 176040536 25-4768-A T04G Common Girder Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:02 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-D8cMK0VXSyl81WvLFaaVyCYecCOio6L5f9v?eMyhjsB 6-2-0 3-1-0 12-4-0

3-1-0


Scale: 1/2"=1

3-1-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

2x6 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

REACTIONS. (size) 10=0-3-8, 6=0-3-8

Max Horz 10=-54(LC 35) Max Uplift 10=-172(LC 12), 6=-150(LC 12) Max Grav 10=2460(LC 2), 6=2119(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2977/227, 2-3=-2486/211, 3-4=-2486/211, 4-5=-2974/227, 1-10=-1771/141,

5-6=-1774/142

BOT CHORD 9-10=-40/406, 8-9=-171/2707, 7-8=-171/2704, 6-7=-26/387

WFBS 3-8=-108/1677, 4-8=-538/62, 4-7=-74/372, 2-8=-541/61, 2-9=-73/375, 1-9=-151/2360,

5-7=-152/2377

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=172, 6=150. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 8-0-0 oc max. starting at 0-7-4 from the left end to 10-7-4 to connect truss(es) to front face of bottom chord.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 4-7-4 from the left end to 8-7-4 to connect truss(es) to front face of bottom chord.

Och)tinilledlonaipagles where hanger is in contact with lumber.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Job Truss Qty Ply RVF-LOT #31 ROOF 176040536 25-4768-A T04G Common Girder

Riverside Roof Truss, LLC,

Danville, Va - 24541,

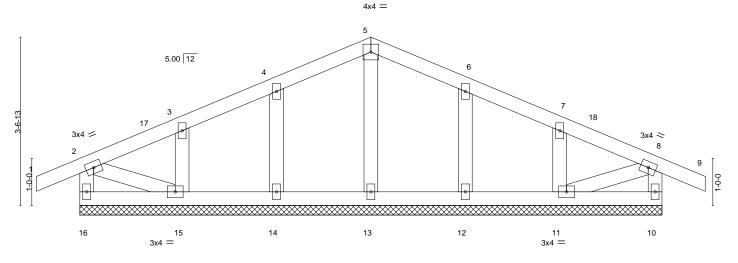
Z Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:02 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-D8cMK0VXSyI81WvLFaaVyCYecCOio6L5f9v?eMyhjsB

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-43, 3-5=-43, 6-10=-20

Concentrated Loads (lb)

Vert: 13=-453(F) 14=-447(F) 15=-448(F) 16=-448(F) 17=-448(F) 18=-448(F)



Job Truss Truss Type Qty RVF-LOT #31 ROOF Ply 176040537 25-4768-A T04GE COMMON SUPPORTED GAB Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:02 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-D8cMK0VXSyl81WvLFaaVyCYjGCUioDW5f9v?eMyhjsB

6-2-0 13-3-0 0-11-0 6-2-0 6-2-0 0-11-0

Scale = 1:24.4

12-4-0 12-4-0 LOADING (psf) SPACING-2-0-0 DEFL. **PLATES GRIP** CSI. (loc) I/defl L/d TCLL (roof) 20.0 Vert(LL) 244/190 Plate Grip DOL 1.15 TC 0.08 -0.00 9 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.03 Vert(CT) -0.00 9 120 n/r **TCDL** 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 63 lb FT = 20% BCDL 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 12-4-0.

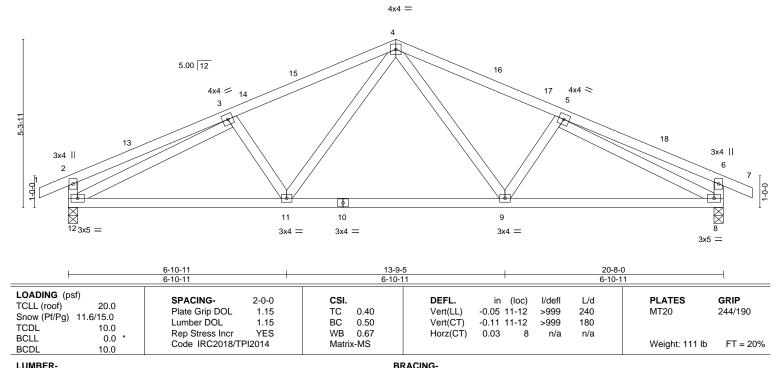
Max Horz 16=-62(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-2-0, Exterior(2N) 2-2-0 to 6-2-0, Corner(3R) 6-2-0 to 9-2-0, Exterior(2N) 9-2-0 to 13-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12 11
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



September 2,2025

Job Truss Truss Type Qty Ply RVF-LOT #31 ROOF 176040538 25-4768-A T05 COMMON 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:03 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-hKAkYMW9DGt?fgUXpH5kVP5p?cjiXWrEtpfYBpyhjsA 0-11-0 20-8-0 21-7-0 0-11-0 5-2-0 5-2-0 5-2-0

Scale = 1:36.4

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No 2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (size) 12=0-3-8, 8=0-3-8

Max Horz 12=-85(LC 14) Max Uplift 12=-83(LC 16), 8=-83(LC 16) Max Grav 12=879(LC 2), 8=879(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-266/89, 3-4=-1170/233, 4-5=-1170/233, 5-6=-266/89, 2-12=-292/132,

6-8=-292/132

BOT CHORD 11-12=-162/1110, 9-11=-68/831, 8-9=-148/1110

WFBS 4-9=-35/369, 4-11=-35/369, 3-12=-1055/159, 5-8=-1055/159

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 21-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-1-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS.

2x4 SP No.3 **WEBS**

(size) 11=0-3-8, 6=0-3-8 Max Horz 11=-76(LC 10)

Max Uplift 11=-236(LC 12), 6=-239(LC 12) Max Grav 11=3086(LC 2), 6=3124(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-4894/396, 2-3=-3729/337, 3-4=-3729/337, 4-5=-4896/397, 1-11=-2508/219,

5-6=-2509/219

BOT CHORD 10-11=-64/818, 8-10=-312/4460, 7-8=-312/4462, 6-7=-64/812

WEBS 3-8=-172/2511, 4-8=-1263/137, 4-7=-59/786, 2-8=-1261/137, 2-10=-59/785,

1-10=-250/3676, 5-7=-250/3682

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=236, 6=239
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-5-4 from the left end to 17-5-4 to connect truss(es) to front face of bottom chord.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent at 19-5-4 from the left end to connect truss(es) to front Continue of hottoge 2hord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.

September 2,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORF USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #31 ROOF 176040539 25-4768-A T05G Common Girder

Riverside Roof Truss, LLC,

Danville, Va - 24541,

3 Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:04 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-9Wk7liWn_a?sHp2kN_cz2ddxo02BG0bO6TO5jFyhjs9

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

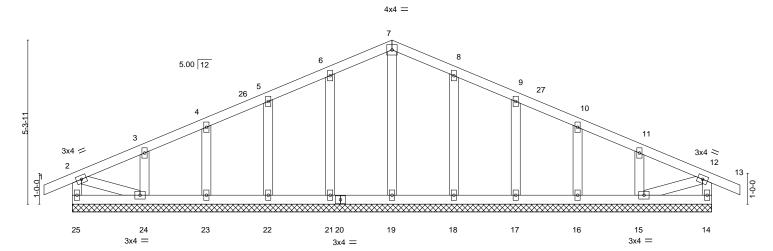
Uniform Loads (plf)

Vert: 1-3=-43, 3-5=-43, 6-11=-20

Concentrated Loads (lb)

Vert: 7=-319(F) 10=-319(F) 14=-319(F) 15=-319(F) 16=-319(F) 17=-319(F) 18=-319(F) 19=-319(F) 20=-319(F) 21=-319(F)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040540 25-4768-A T05GE COMMON SUPPORTED GAB Job Reference (optional)


Riverside Roof Truss, LLC, Danville, Va - 24541,

-0-11-0 0-11-0

8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:05 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-djIVz2XPlt7juzdwwi7CaqADWPVL?azXL78fFhyhjs8

21-7-0 0-11-0 20-8-0 10-4-0

Scale = 1:37.2

20-8-0 LOADING (psf) SPACING-2-0-0 DEFL. **PLATES** GRIP CSI. (loc) I/defl L/d TCLL (roof) 20.0 Vert(LL) 244/190 Plate Grip DOL 1.15 TC 0.08 -0.00 13 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.04 Vert(CT) -0.00 13 120 n/r TCDI 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 14 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 114 lb FT = 20% BCDL 10.0

BOT CHORD

LUMBER-BRACING-

10-4-0

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

> Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 24-25,14-15.

REACTIONS. All bearings 20-8-0.

Max Horz 25=-85(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 25, 14, 19, 21, 22, 23, 24, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-4-0, Exterior(2N) 2-4-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 23, 24, 18, 17, 16, 15,
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040541 25-4768-A V01 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:05 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-djlVz2XPlt7juzdwwi7CaqABFPU4?a7XL78fFhyhjs8

4-2-0

(loc)

3

n/a

n/a

0.00

999

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

n/a

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Vert(LL)

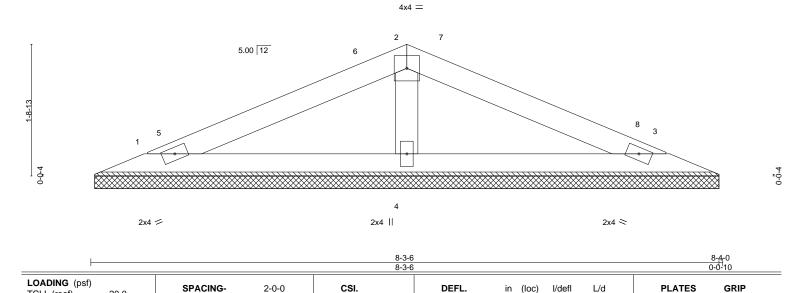
Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD


Scale = 1:15.2

244/190

FT = 20%

MT20

Weight: 25 lb

CSI.

TC

ВС

WB

Matrix-P

0.22

0.12

0.04

LUMBER-

REACTIONS.

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS**

Snow (Pf/Pg) 11.6/15.0

2x4 SP No.3

20.0

10.0

0.0

10.0

1=8-2-13, 3=8-2-13, 4=8-2-13 (size) Max Horz 1=18(LC 15)

Max Uplift 1=-19(LC 16), 3=-19(LC 16)

Max Grav 1=136(LC 20), 3=136(LC 21), 4=277(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

NOTES-

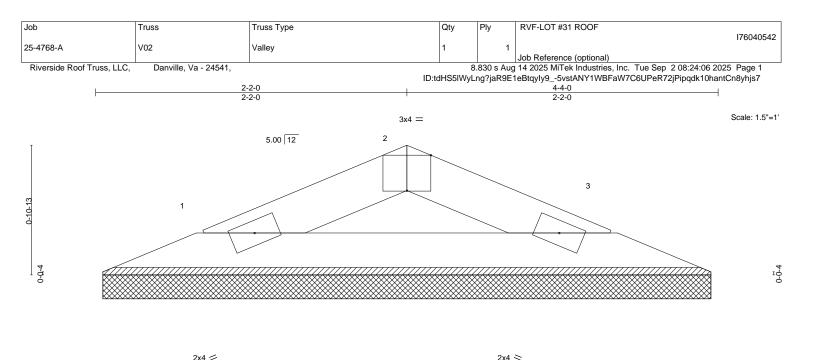
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 7-6-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.15

1.15

YES

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4-2-0

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

		4-3-6						0-δ-	ነ0
Plate Offsets (X,Y) [2:0-2	2-0,Edge]								
COADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.05 BC 0.10 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (n/a n/a 0.00	-	/defl n/a n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 11 lb	FT = 20%

4-3-6

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=4-2-13, 3=4-2-13 (size) Max Horz 1=-8(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16) Max Grav 1=113(LC 2), 3=113(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty 176040543 25-4768-A V03 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:06 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-5vstANY1WBFaW7C6UPeR72jM6pqKk1AhantCn8yhjs7 16-8-0 8-4-0

RVF-LOT #31 ROOF

(loc)

5

n/a

n/a

0.00

999

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

n/a

n/a

n/a

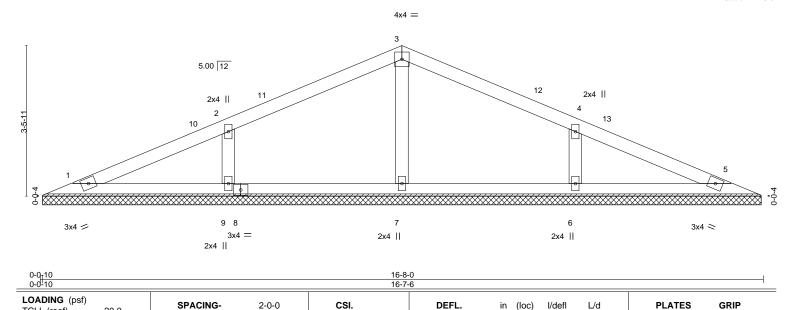
Rigid ceiling directly applied or 10-0-0 oc bracing.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-


Scale = 1:26.6

244/190

FT = 20%

MT20

Weight: 57 lb

LUMBER-

OTHERS

REACTIONS.

TCLL (roof)

TCDI

BCLL

BCDL

Snow (Pf/Pg) 11.6/15.0

(lb) -

TOP CHORD 2x4 SP No 2

20.0

10.0

10.0

0.0

BOT CHORD 2x4 SP No.2 2x4 SP No.3

All bearings 16-6-13

TOP CHORD BOT CHORD

1.15

1.15

YES

Max Horz 1=41(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 9, 6

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=274(LC 2), 9=359(LC 33), 6=359(LC 34)

CSI.

TC

ВС

WB

Matrix-S

0.21

0.12

0.05

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-9=-270/157, 4-6=-270/157 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 8-4-0, Exterior(2R) 8-4-0 to 11-4-0, Interior(1) 11-4-0 to 15-10-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

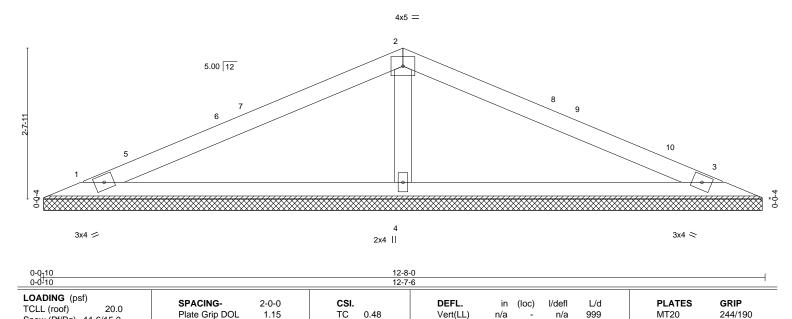
Truss Type Qty 176040544 25-4768-A V04 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:07 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-Z5PFNjZfHVNR8Hnl279gfFFTiD7aTT7qoRdmKayhjs6 6-4-0 6-4-0

RVF-LOT #31 ROOF

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.


n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

3

Scale = 1:20.1

LUMBER-

REACTIONS.

TCDI

BCLL

BCDL

Job

Truss

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

10.0

10.0

0.0

OTHERS 2x4 SP No.3

Snow (Pf/Pg) 11.6/15.0

1=12-6-13, 3=12-6-13, 4=12-6-13 (size) Max Horz 1=-30(LC 14)

Max Uplift 1=-21(LC 16), 3=-21(LC 16), 4=-11(LC 16) Max Grav 1=201(LC 33), 3=201(LC 34), 4=500(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

WEBS 2-4=-337/182

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 6-4-0, Exterior(2R) 6-4-0 to 9-4-0, Interior(1) 9-4-0 to 11-10-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.15

YES

ВС

WB

Matrix-S

0.31

0.07

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 40 lb

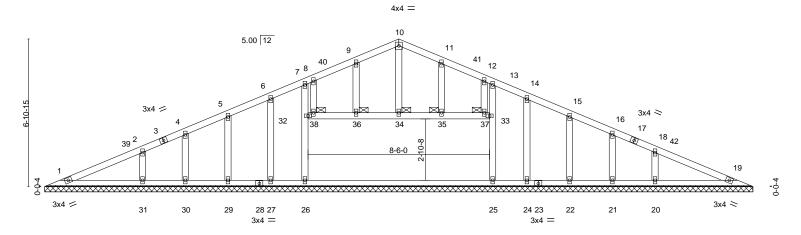
FT = 20%

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040545 25-4768-A V05GE **GABLE**

Riverside Roof Truss, LLC, Danville, Va - 24541, Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:07 2025 Page 1

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-Z5PFNjZfHVNR8HnI279gfFFXyD3MTQ4qoRdmKayhjs6 20-7-0 18-7-0 33-2-0 2-0-0 2-0-0 2-0-0 2-0-0

Scale = 1:53.9

33-2-0 LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.21 Vert(LL) n/a n/a 999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.51 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.27 Horz(CT) 0.01 19 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 174 lb FT = 20% **BCDL** 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

TOP CHORD BOT CHORD **JOINTS**

BRACING-

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 34, 35, 36, 37, 38

REACTIONS. All bearings 33-2-0.

Max Horz 1=100(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 29, 30, 31, 22, 21, 20 except 27=-125(LC 7), 24=-125(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 22, 21, 19 except 26=465(LC 7), 25=465(LC 7), 31=314(LC 33), 20=314(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1\hbox{-}2\hbox{--}330/0,\ 2\hbox{-}4\hbox{--}336/43,\ 4\hbox{-}5\hbox{--}319/61,\ 5\hbox{-}6\hbox{--}328/90,\ 6\hbox{-}7\hbox{--}293/108,\ 7\hbox{-}8\hbox{--}378/133,\ 3\hbox{--}336/43,\ 4\hbox{--}336/43,\ 4\hbox{--}36/43,\ 4\hbox{--}36/43,\$

8-9=-349/141, 9-10=-323/161, 10-11=-323/160, 11-12=-349/140, 12-13=-378/133, 13-14=-293/107, 14-15=-328/89, 15-16=-319/60, 16-18=-336/42, 18-19=-330/0

1-31=0/277, 30-31=0/277, 29-30=0/277, 27-29=0/277, 26-27=0/277, 25-26=0/270, **BOT CHORD**

24-25=0/277, 22-24=0/277, 21-22=0/277, 20-21=0/277, 19-20=0/277

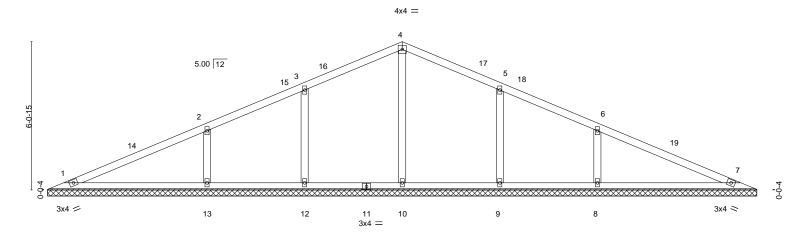
WFBS 26-32=-259/98, 7-32=-278/99, 25-33=-259/98, 13-33=-278/98

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 4-0-12, Interior(1) 4-0-12 to 16-7-0, Exterior(2R) 16-7-0 to 19-10-11, Interior(1) 19-10-11 to 32-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 29, 30, 31, 22, 21, 20 except (jt=lb) 27=125, 24=125.

September 2,2025

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040546 25-4768-A V06 Valley Job Reference (optional) Riverside Roof Truss, LLC, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:08 2025 Page 1 Danville, Va - 24541,


ID:tdHS5lWyLng?jaR9E1eBtqyly9_-1lzdb3ZH2oVIIRMVcqgvCTofEdTzCvlz15MJs0yhjs5

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:47.2

29-2-0

29-1-6									0-0-10
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.43 BC 0.30 WB 0.14 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

29-1-6

LUMBER-TOP CHORD

2x4 SP No 2 2x4 SP No.2

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 29-0-13 Max Horz 1=82(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 12, 13, 9, 8

14-7-0

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=414(LC 27), 12=333(LC 27), 13=531(LC 27),

9=332(LC 28), 8=531(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-13=-347/132. 6-8=-347/132 WEBS

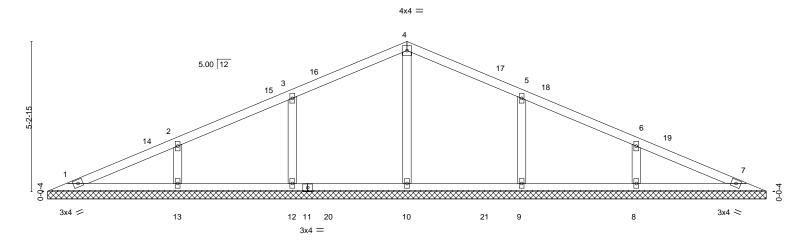
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 14-7-0, Exterior(2R) 14-7-0 to 17-7-0, Interior(1) 17-7-0 to 28-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 12, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040547 25-4768-A V07 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:09 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-VUX0oPawp6d9Nbxh9YC8lgLte1rFxNC7Gl6sOSyhjs4

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:40.2

0-0 ₁ 10 0-0-10		25-2- 25-1-							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.19 BC 0.17 WB 0.10	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	I/defI n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S						Weight: 95 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 25-0-13. Max Horz 1=-63(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=379(LC 27), 12=368(LC 27), 13=382(LC 27),

9=368(LC 28), 8=382(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-12=-256/119, 2-13=-255/110, 5-9=-256/119, 6-8=-255/110 WEBS

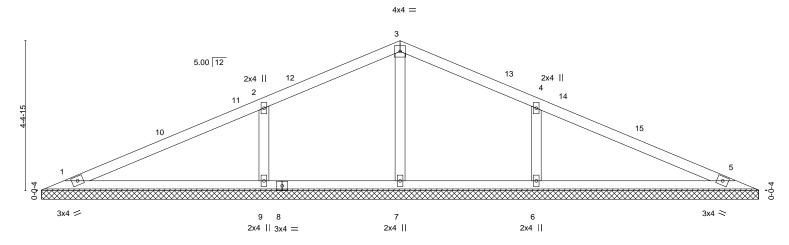
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 12-7-0, Exterior(2R) 12-7-0 to 15-7-0, Interior(1) 15-7-0 to 24-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040548 25-4768-A V08 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:09 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,


ID:tdHS5lWyLng?jaR9E1eBtqyly9_-VUX0oPawp6d9Nbxh9YC8lgLqu1paxNV7Gl6sOSyhjs4

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-7-0 10-7-0

Scale = 1:33.8

0-0 _[10		21-2-						
<u>0-0¹-10</u>		21-1-	6					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.43 BC 0.27 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo n/a n/a 0.00	oc) l/defl - n/a - n/a 5 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 21-0-13. Max Horz 1=-53(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 9=500(LC 33), 6=500(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-365/174, 4-6=-365/174 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 10-7-0, Exterior(2R) 10-7-0 to 13-7-0, Interior(1) 13-7-0 to 20-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty 176040549 25-4768-A V09 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:10 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-_g5O0lbYaQl0?kWtjFjNHut2tQC6gr8GUPrQxvyhjs3

RVF-LOT #31 ROOF

I/defI

n/a

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

(loc)

5

n/a

n/a

0.00

L/d

999

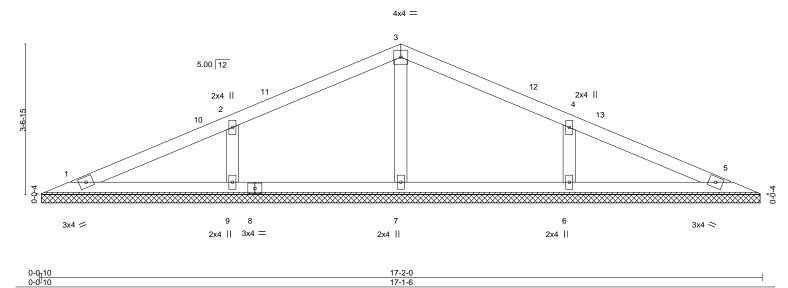
999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

PLATES

Weight: 59 lb


MT20

GRIP

244/190

FT = 20%

Scale = 1:27.4

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

2x4 SP No.2 2x4 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 17-0-13. Max Horz 1=-42(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 9, 6

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

8-7-0

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=268(LC 2), 9=373(LC 33), 6=373(LC 34)

2-0-0

1.15

1.15

YES

CSI.

TC

ВС

WB

Matrix-S

0.23

0.13

0.06

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-279/158, 4-6=-279/158 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 8-7-0, Exterior(2R) 8-7-0 to 11-7-0, Interior(1) 11-7-0 to 16-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 pst (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

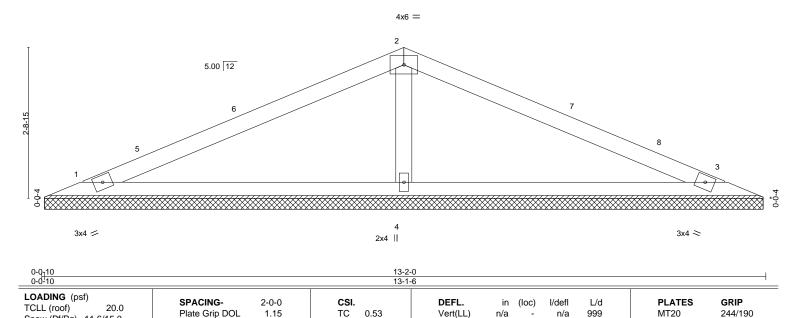
Truss Type Qty 176040550 25-4768-A V10 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:10 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-_g5O0lbYaQl0?kWtjFjNHutzBQ8rgqoGUPrQxvyhjs3 6-7-0

RVF-LOT #31 ROOF

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.


n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

3

Scale = 1:20.9

LUMBER-

TCDI

BCLL

BCDL

Job

Truss

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

10.0

10.0

0.0

Snow (Pf/Pg) 11.6/15.0

OTHERS 2x4 SP No.3

REACTIONS. 1=13-0-13, 3=13-0-13, 4=13-0-13 (size) Max Horz 1=-31(LC 14)

Max Uplift 1=-22(LC 16), 3=-22(LC 16), 4=-12(LC 16) Max Grav 1=210(LC 33), 3=210(LC 34), 4=522(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

WEBS 2-4=-352/183

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 6-7-0, Exterior(2R) 6-7-0 to 9-7-0, Interior(1) 9-7-0 to 12-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.15

YES

ВС

WB

Matrix-S

0.34

0.08

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

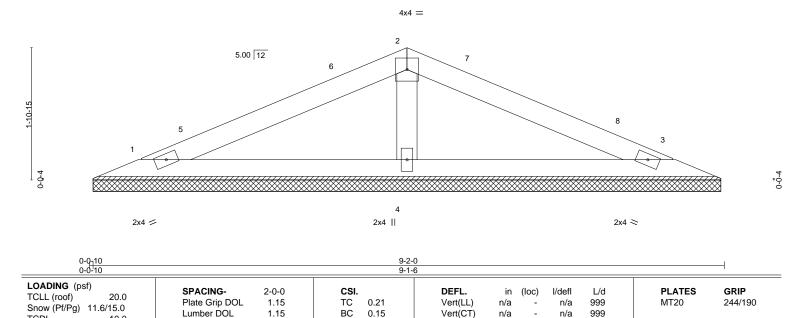
Weight: 41 lb

FT = 20%

September 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040551 25-4768-A V11 Valley Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:11 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-StfmD5cALjttcu54HzEcq5QDzqW2PIXQj3bzTLyhjs2

4-7-0

Scale = 1:16.6

LUMBER-

REACTIONS.

TCDI

BCLL

BCDL

2x4 SP No.2 2x4 SP No.2

10.0

0.0

10.0

TOP CHORD BOT CHORD **OTHERS** 2x4 SP No.3

> 1=9-0-13, 3=9-0-13, 4=9-0-13 (size)

Max Horz 1=21(LC 15)

Max Uplift 1=-15(LC 16), 3=-15(LC 16), 4=-8(LC 16) Max Grav 1=142(LC 20), 3=142(LC 21), 4=343(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Incr

Code IRC2018/TPI2014

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 4-7-0, Exterior(2R) 4-7-0 to 7-7-0, Interior(1) 7-7-0 to 8-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

YES

WB

Matrix-S

0.05

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4-7-0

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 28 lb

FT = 20%

September 2,2025

Job Truss Truss Type Qty RVF-LOT #31 ROOF 176040552 25-4768-A V12 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Tue Sep 2 08:24:11 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-StfmD5cALjttcu54HzEcq5QF?qWiPIGQj3bzTLyhjs2 2-7-0 Scale = 1:9.9 3x4 =5.00 12 3 2x4 / 2x4 < Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.17 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-P Weight: 13 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins. BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. 1=5-0-13, 3=5-0-13 (size) Max Horz 1=10(LC 15)

Max Uplift 1=-9(LC 16), 3=-9(LC 16) Max Grav 1=146(LC 2), 3=146(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 2,2025

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

PLATE SIZE

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.