

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24-4825-A

RVF-LOT #49 ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I75971656 thru I75971692

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

August 29,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971656 24-4825-A CJ01 DIAGONAL HIP GIRDER 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:15 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-9pxSBookyaxUrlFeQWl5eZtdPFlmTjpgnb9zhdyjODA 5-7-2 5-7-2 1-3-9 Scale = 1:16.6 3 3.54 12 NAILED NAILED 8 3x6 = 2 1-0-0 6 NAILED NAILED 4x4 = 52x4 LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES GRIP** CSI. (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL Vert(LL) -0.01 240 244/190 1.15 TC 0.55 6-7 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.15 Vert(CT) -0.02 6-7 >999 180 TCDI 10.0 Rep Stress Incr NO WB 0.02 Horz(CT) -0.00 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MF Weight: 35 lb FT = 20% **BCDL** 10.0 BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD **BOT CHORD**

2x4 SP No.2 2x6 SP No.2

2x4 SP No.3 *Except* **WEBS** 2-7: 2x6 SP No.2

REACTIONS.

(size) 7=0-5-5, 6=Mechanical

Max Horz 7=83(LC 9)

Max Uplift 7=-84(LC 12), 6=-31(LC 12) Max Grav 7=311(LC 2), 6=220(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-260/94

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-43, 5-7=-20

Structural wood sheathing directly applied or 5-7-2 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971657 24-4825-A GE01 **GABLE** Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:16 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-e?VqO8oMjt3LTvqr_DpKBmPrVf5jC9Gp0FuWE3yjOD9 10-0-0 0-11-0 4-6-8 4-6-8 0-11-0 Scale = 1:25.5 4x4 = 3 7.00 12 2x4 2x4 || 3x8 > 3x8 / 14 13 1-1-13 1-1-13 2x4 2x4 || 7 3x10 = 2x4 || 2x4 || 9-1-0 Plate Offsets (X,Y)-- [2:0-3-3,0-1-8], [4:0-3-3,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.01 6-7 >999 240 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.02 6-7 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 6 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-MS Weight: 57 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

10.0

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

> (size) 8=0-3-0, 6=0-3-0 Max Horz 8=-93(LC 14)

Max Uplift 8=-55(LC 16), 6=-55(LC 16)

Max Grav 8=415(LC 2), 6=415(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-346/109, 3-4=-346/109, 2-8=-375/173, 4-6=-375/173

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 4-6-8, Exterior(2R) 4-6-8 to 7-6-8 , Interior(1) 7-6-8 to 10-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL =
- 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

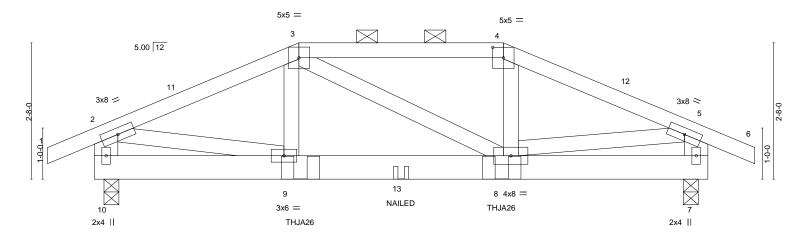
except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971658 24-4825-A HG01 HIP GIRDER Job Reference (optional)
8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:17 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541,


4-0-0

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-6B3CcUp_UBBC43P1YxKZk_y3p3RcxaVyEve3mWyjOD8 12-0-0

4-0-0

0-11-0

Scale = 1:22.5

Ur2- (4	4-0-0	0-0-0	11-9-12	14-010
0-2-4	3-9-12	4-0-0	3-9-12	0-2-4
ets (X,Y)	[4:0-2-8,0-2-7]			

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.17 BC 0.19 WB 0.20	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 8-9 >999 240 Vert(CT) -0.02 8-9 >999 180 Horz(CT) 0.00 7 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 *	Code IRC2018/TPI2014	Matrix-MS	Horz(CT) 0.00 / fiva fiva	Weight: 148 lb FT = 20%

LUMBER-**BRACING-**

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x6 SP No.2 except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. 2x4 SP No.3 *Except* **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **WEBS** 2-10,5-7: 2x6 SP No.2

REACTIONS. (size) 10=0-3-8, 7=0-3-8 Max Horz 10=49(LC 11)

Max Uplift 10=-160(LC 12), 7=-158(LC 12) Max Grav 10=910(LC 35), 7=901(LC 35)

4-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1229/218, 3-4=-1092/211, 4-5=-1224/217, 2-10=-860/177, 5-7=-849/175

BOT CHORD 8-9=-170/1079

0-11-0

WEBS 3-9=-48/285, 4-8=-54/310, 2-9=-160/956, 5-8=-160/943

Plate Offsets

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=160, 7=158,
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

OahtGreehigabaudia representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Edenton, NC 27932

SEAL

036322

JORTH

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #49 ROOF	
24-4825-A	HG01	HIP GIRDER	1	2	Job Reference (optional)	175971658

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:17 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-6B3CcUp_UBBC43P1YxKZk_y3p3RcxaVyEve3mWyjOD8

- 14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 4-0-6 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 15) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 7-11-10 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-53, 4-5=-43, 5-6=-43, 7-10=-20

Concentrated Loads (lb)

Vert: 9=-316(B) 8=-316(B) 13=-124(B)

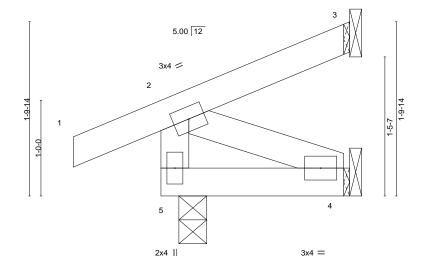
818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971659 24-4825-A J01 Jack-Open Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:17 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-6B3CcUp_UBBC43P1YxKZk_y4l3T4xd8yEve3mWyjOD8


Structural wood sheathing directly applied or 1-11-11 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale: 1"=1

		b-2-4 [']	1-9-7	· ·				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.03 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 5 -0.00 4-5 -0.00 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP					Weight: 11 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

0 - 2 - 4

1-11-11

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

(size) 3=Mechanical, 5=0-3-8, 4=Mechanical Max Horz 5=58(LC 16) Max Uplift 3=-9(LC 13), 5=-24(LC 16), 4=-11(LC 16)

Max Grav 3=36(LC 21), 5=155(LC 21), 4=35(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

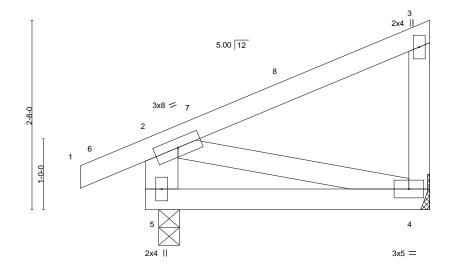
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5, 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971660 24-4825-A M01 MONOPITCH 3 Job Reference (optional)


Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:18 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-aOcapqqdFVJ3iC_D6eroGBUDiTnOg456TYNdlyyjOD7

4-0-0 0-11-0 4-0-0

Scale = 1:16.2

		0-2-4 0-2-4		3-9-12				
LOADING (psf) TCLL (roof) 20.0 Spow (Pf/Pa) 11.6/15.0	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES
	Plate Grip DOL	1.15	TC 0.22	Vert(LL)	-0.01 4-5	>999	240	MT20

BRACING-

TOP CHORD

BOT CHORD

Sn t/Pg) Lumber DOL **TCDL** 10.0 Rep Stress Incr **BCLL** 0.0 Code IRC2018/TPI2014 **BCDL** 10.0

1.15 BC 0.16 YES WB 0.05 Matrix-MF

Vert(CT) -0.02 4-5 >999 180 Horz(CT) -0.00 4 n/a n/a

except end verticals.

ES

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP 244/190

Weight: 23 lb FT = 20%

LUMBER-TOP CHORD **BOT CHORD**

REACTIONS.

WEBS

2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except*

2-5: 2x6 SP No.2

(size) 5=0-3-8, 4=Mechanical

Max Horz 5=86(LC 15)

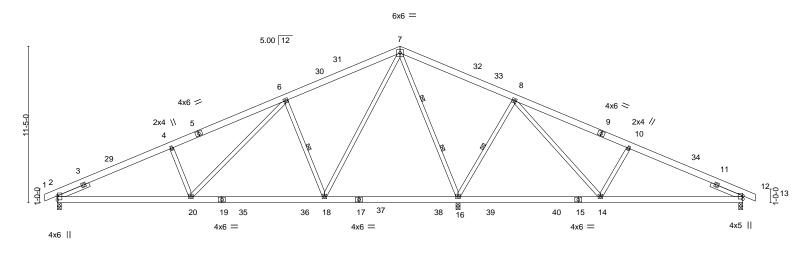
Max Uplift 5=-43(LC 16), 4=-19(LC 13) Max Grav 5=229(LC 21), 4=144(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971661 24-4825-A T01 COMMON 2 Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:18 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-aOcapqqdFVJ3iC_D6eroGBU9pTi5gsO6TYNdlyyjOD7 33-4-0 50-0-0 -0-11-0 0-11-0 0-11-0 8-4-0 8-4-0 8-4-0 8-4-0 8-4-0 8-4-0

Scale = 1:84.0

9-8-15	9-8-15	9-8-15	10-4-10	10-4-10
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.47 BC 0.49 WB 0.92 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.12 18-20 >999 240 Vert(CT) -0.21 18-20 >999 180 Horz(CT) 0.02 16 n/a n/a	MT20 244/190

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3

WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 16=0-3-8, 12=0-3-8

Max Horz 2=190(LC 15)

Max Uplift 2=-90(LC 16), 16=-144(LC 16), 12=-66(LC 16) Max Grav 2=1167(LC 28), 16=2859(LC 30), 12=691(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1806/182, 4-6=-1698/226, 6-7=-713/220, 7-8=0/853, 8-10=-622/140,

10-12=-766/119

BOT CHORD 2-20=-74/1747, 18-20=0/952, 14-16=-340/92, 12-14=-11/707

WEBS 4-20=-411/164, 6-20=-56/969, 6-18=-887/222, 7-18=-101/1408, 7-16=-1818/149,

8-16=-963/215, 8-14=-34/1050, 10-14=-467/167

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 25-0-0, Exterior(2R) 25-0-0 to 30-0-0, Interior(1) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 16=144.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-4-13 oc purlins.

7-16

6-18, 8-16

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

2 Rows at 1/3 pts

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971662 COMMON 24-4825-A T01A 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:19 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-2aAy1ArF0oRwKMZQfMM1pO1KWs2JPJjFiC7AqOyjOD6 49-9-0 -0-11-0 0-11-0

8-4-0

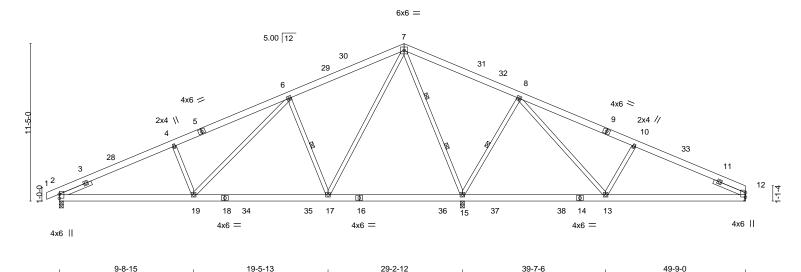
8-4-0

Structural wood sheathing directly applied or 5-4-11 oc purlins.

7-15

6-17, 8-15

Rigid ceiling directly applied or 6-0-0 oc bracing.


1 Row at midpt

2 Rows at 1/3 pts

8-4-0

Scale = 1:83.5

8-1-0

9-8-15 10-4-10 10-1-10 9-8-15 LOADING (psf) SPACING-DEFL. L/d **PLATES** GRIP 2-0-0 CSI. (loc) I/defl TCLL (roof) 20.0 Vert(LL) -0.12 17-19 240 244/190 Plate Grip DOL 1.15 TC 0.48 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.50 Vert(CT) -0.21 17-19 >999 180 TCDI 10.0 Rep Stress Incr YES WB 0.92 Horz(CT) 0.02 15 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 351 lb FT = 20% **BCDL** 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

8-4-0

8-4-0

2x4 SP No.3 WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=188(LC 15)

Max Uplift 2=-89(LC 16), 15=-147(LC 16), 12=-34(LC 16) Max Grav 2=1168(LC 28), 15=2846(LC 30), 12=629(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $2\text{-}4\text{=-}1809/180,\ 4\text{-}6\text{=-}1702/224,\ 6\text{-}7\text{=-}717/218,\ 7\text{-}8\text{=-}0/843,\ 8\text{-}10\text{=-}598/141,}$

10-12=-737/120

BOT CHORD 2-19=-95/1745, 17-19=-14/949, 13-15=-334/77, 12-13=-37/680

WEBS 4-19=-411/164, 6-19=-56/969, 6-17=-887/221, 7-15=-1808/152, 7-17=-101/1404,

8-15=-954/215, 8-13=-39/1024, 10-13=-456/172

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (it=lb) 15=147.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971663 24-4825-A T01B COMMON Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:20 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-WmkLEWstn6anxW8cD3tGLcaVHGNU8m_PwsskNryjOD5

8-4-0

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

WEBS

TOP CHORD

BOT CHORD

(loc)

14

-0.12 16-18

-0.21 16-18

1 Row at midpt

2 Rows at 1/3 pts

0.02

I/defI

>999

>999

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

L/d

240

180

n/a

Structural wood sheathing directly applied or 5-4-12 oc purlins.

6-14

5-16, 7-14

8-4-0

CSI.

TC

ВС

WB

Matrix-MS

0.48

0.50

0.92

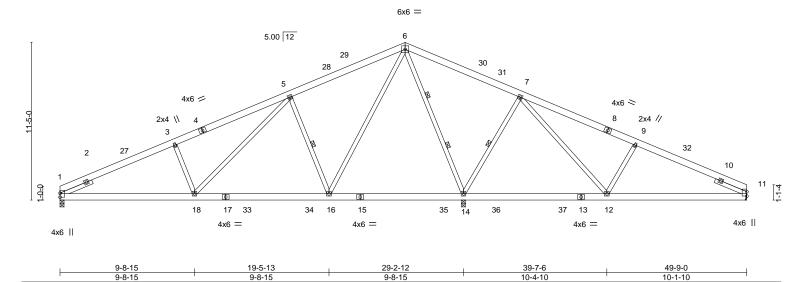
Scale = 1:83.5

8-1-0

PLATES

Weight: 348 lb

MT20


GRIP

244/190

FT = 20%

41-8-0

8-4-0

LUMBER-

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

2x4 SP No.3 WEBS **SLIDER** Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

20.0

10.0

10.0

0.0

8-4-0

REACTIONS. (size) 1=0-3-8, 14=0-3-8, 11=Mechanical Max Horz 1=182(LC 15)

Max Uplift 1=-60(LC 16), 14=-147(LC 16), 11=-34(LC 16) Max Grav 1=1121(LC 27), 14=2845(LC 29), 11=630(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

2-0-0

1.15

1.15

YES

TOP CHORD 1-3=-1781/189, 3-5=-1708/234, 5-6=-719/221, 6-7=0/841, 7-9=-599/141, 9-11=-738/120

16-8-0

8-4-0

BOT CHORD 1-18=-95/1751, 16-18=-14/952, 12-14=-331/76, 11-12=-37/681

WFBS 3-18=-413/169, 5-18=-64/974, 5-16=-889/222, 6-14=-1807/152, 6-16=-101/1405,

7-14=-954/215, 7-12=-39/1023, 9-12=-456/172

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 4-11-11, Interior(1) 4-11-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 4x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (it=lb) 14=147.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971664 COMMON 24-4825-A T01C 2 Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:21 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5IWyLng?jaR9E1eBtqyly9_-_zljSrsVYQieZgjonmOVup6g4gjktD9Y9WcHvHyjOD4

8-4-0

33-4-0

8-4-0

8-4-0

39-7-6

10-4-10

15

I/defl

>999

>999

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

L/d

240

180

n/a

Structural wood sheathing directly applied or 5-4-13 oc purlins.

6-15

5-17, 7-15

(loc)

-0.12 17-19

-0.21 17-19

1 Row at midpt

2 Rows at 1/3 pts

0.02

0-11-0 Scale = 1:84.0

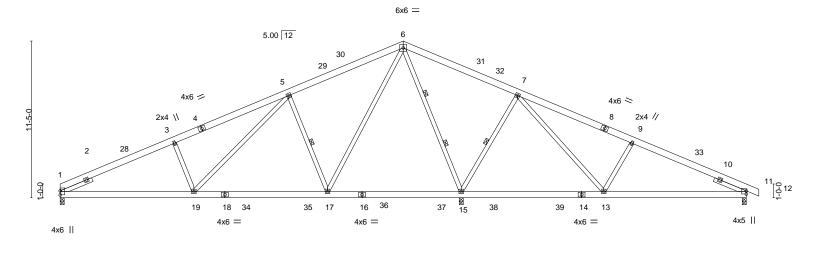
50-0-0

8-4-0

50-0-0

10-4-10

PLATES


Weight: 352 lb

MT20

GRIP

244/190

FT = 20%

29-2-12

9-8-15

0.47

0.50

0.92

CSI.

TC

ВС

WB

Matrix-MS

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

WEBS

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3

9-8-15

20.0

10.0

10.0

0.0

8-4-0

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 1=0-3-8, 15=0-3-8, 11=0-3-8

Max Horz 1=-189(LC 14)

Max Uplift 1=-61(LC 16), 15=-143(LC 16), 11=-66(LC 16) Max Grav 1=1119(LC 28), 15=2858(LC 30), 11=692(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

TOP CHORD 1-3=-1777/192, 3-5=-1705/236, 5-6=-715/223, 6-7=0/850, 7-9=-623/140, 9-11=-767/119

19-5-13

9-8-15

2-0-0

1.15

1.15

YES

8-4-0

BOT CHORD 1-19=-77/1753, 17-19=0/955, 13-15=-338/92, 11-13=-12/708

WFBS 3-19=-414/169, 5-19=-64/974, 5-17=-889/222, 6-17=-101/1409, 6-15=-1817/149,

7-15=-963/215, 7-13=-34/1050, 9-13=-467/167

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior(1) 5-0-0 to 25-0-0, Exterior(2R) 25-0-0 to 30-0-0, Interior(1) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (it=lb) 15=143.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971665 24-4825-A T01GE COMMON SUPPORTED GAB Job Reference (optional)

Riverside Roof Truss, LLC, Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:22 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-S9s5fBt7JjqVBqI_LUwkR1fxQ4A4csphOALqRjyjOD3

Structural wood sheathing directly applied or 6-0-0 oc purlins,

18-41

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

25-0-0 0-11-0

Scale = 1:84.5

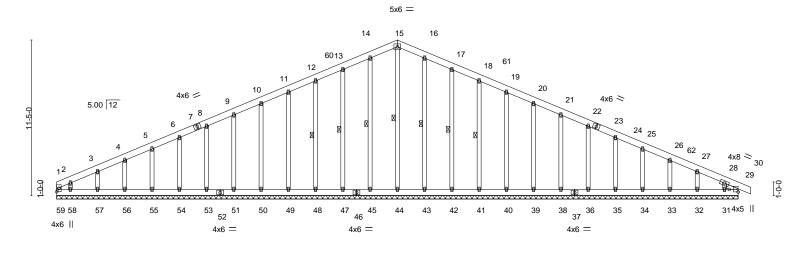


Plate Offsets (X,Y)--[29:Edge,0-7-13] LOADING (psf) SPACING-2-0-0 CSI. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) -0.00 29 120 244/190 n/r MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.04 Vert(CT) -0.00 29 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.01 29 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 Weight: 446 lb FT = 20%Matrix-S BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

50-0-0

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

SLIDER Right 2x4 SP No.3 0-11-5

All bearings 50-0-0.

Max Horz 59=-200(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 29, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 42, 41, 40, 39,

38, 36, 35, 34, 33, 32, 31 except 59=-124(LC 14)

All reactions 250 lb or less at joint(s) 59, 29, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, Max Grav

43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

12-13=-107/264, 13-14=-123/304, 14-15=-132/327, 15-16=-132/327, 16-17=-123/304,

17-18=-107/264

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-1-12 to 5-0-0, Exterior(2N) 5-0-0 to 25-0-0, Corner(3R) 25-0-0 to 30-0-0, Exterior(2N) 30-0-0 to 50-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 29, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31 except (jt=lb) 59=124.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15-44, 14-45, 13-47, 12-48, 16-43, 17-42,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971666 24-4825-A T02 COMMON Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:23 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-wLQTsXul41yMo_sBuBRzzEC1lUOsL98rdq5Oz9yjOD2

8-4-0

CSI.

TC

ВС

WB

Matrix-MS

0.40

0.52

0.83

32-9-2

7-9-2

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

TOP CHORD

BOT CHORD

WEBS

(loc)

15

6-0-0 oc bracing: 13-15.

1 Row at midpt

2 Rows at 1/3 pts

-0.12 17-19

-0.22 17-19

0.03

I/defl

>999

>999

n/a

L/d

240

180

n/a

Structural wood sheathing directly applied or 5-2-3 oc purlins.

7-15

6-17, 8-15

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

40-6-4

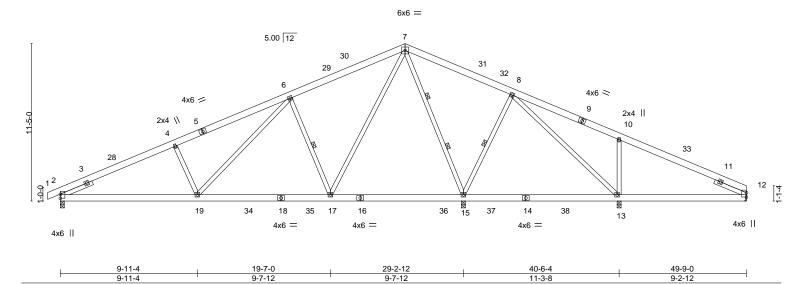
7-9-2

Scale = 1:83.5

49-9-0

9-2-12

PLATES


Weight: 352 lb

MT20

GRIP

244/190

FT = 20%

LUMBER-BRACING-

Code IRC2018/TPI2014

8-4-0

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

20.0

10.0

10.0

0.0

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

-0-11-0 0-11-0

8-4-0

2x4 SP No.3 WEBS

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. All bearings 0-3-8 except (jt=length) 12=Mechanical. Max Horz 2=188(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 13, 12 except 2=-104(LC 16), 15=-106(LC 16)

2-0-0

1.15

1.15

YES

Max Grav All reactions 250 lb or less at joint(s) except 2=1235(LC 28), 15=2467(LC 28), 13=571(LC 37),

12=466(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1952/213, 4-6=-1828/250, 6-7=-847/252, 7-8=0/604, 8-10=-462/246,

SPACING-

Plate Grip DOL

Rep Stress Incr

Lumber DOL

10-12=-370/135

BOT CHORD 2-19=-127/1875, 17-19=-48/1097, 13-15=-315/96, 12-13=-40/341

WEBS 4-19=-403/162, 6-19=-45/940, 6-17=-890/218, 7-17=-102/1385, 7-15=-1628/114,

8-15=-641/216, 8-13=-108/588, 10-13=-530/197

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 12 except (jt=lb) 2=104, 15=106.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

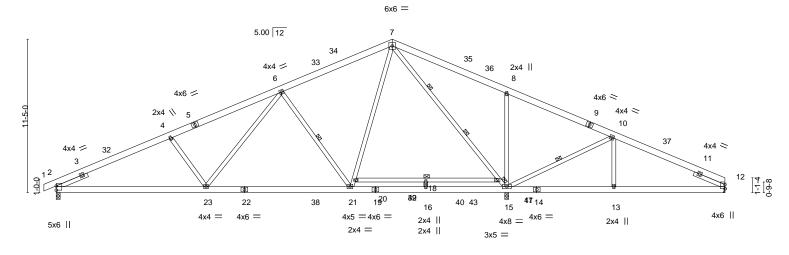
Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971667 24-4825-A T03 COMMON 10 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:23 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-wLQTsXul41yMo_sBuBRzzEC0gUl8L9Grdq5Oz9yjOD2

Structural wood sheathing directly applied or 4-4-3 oc purlins.

6-21, 10-15

Rigid ceiling directly applied or 2-2-0 oc bracing. Except:


6-0-0 oc bracing: 17-20

1 Row at midpt

2 Rows at 1/3 pts

33-6-4 49-9-0 -0-11-0 0-11-0 8-2-13 8-2-13 8-6-4 7-11-10 8-3-2

Scale = 1:85.7

	11-1-12		22-0-0		27-6-0	33-6-4		41-5-14	-	49-9-0	
	11-1-12	ı	10-10-4	ı	5-6-0	6-0-4	<u>'</u>	7-11-10	<u>'</u>	8-3-2	
TCLL (r	NG (psf) oof) 20.0 Pf/Pg) 11.6/15.0 10.0 0.0 * 10.0	SPACING Plate Grip Lumber D Rep Stres Code IRC	DOL 1.15	CSI. TC BC WB Matri	0.47 0.95 0.82 ix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.29 18-20 -0.46 18-20 0.05 15	I/defI >999 >881 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 367 lb	GRIP 244/190 FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x6 SP No.2

2x6 SP No.2 *Except* **BOT CHORD**

14-19: 2x6 SP 2400F 2.0E, 17-20: 2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

7-15: 2x4 SP DSS

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. (size) 2=0-3-8, 15=0-3-8, 12=Mechanical

Max Horz 2=188(LC 15)

Max Uplift 2=-80(LC 16), 15=-33(LC 16), 12=-26(LC 16) Max Grav 2=1536(LC 28), 15=3080(LC 30), 12=478(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2591/182, 4-6=-2393/187, 6-7=-1331/169, 7-8=0/688, 8-10=0/662, 10-12=-433/107

BOT CHORD 2-23=-96/2456, 21-23=-6/1755, 16-21=0/811, 15-16=0/811, 13-15=-61/400,

WEBS 4-23=-398/165, 6-23=-20/824, 6-21=-924/211, 20-21=-0/1488, 7-20=0/1600, 7-17=-2116/31, 15-17=-2202/0, 8-15=-539/216, 10-15=-854/150, 16-18=-315/0

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-0-11, Interior(1) 4-0-11 to 25-0-0, Exterior(2R) 25-0-0 to 29-11-11, Interior(1) 29-11-11 to 49-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 12.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

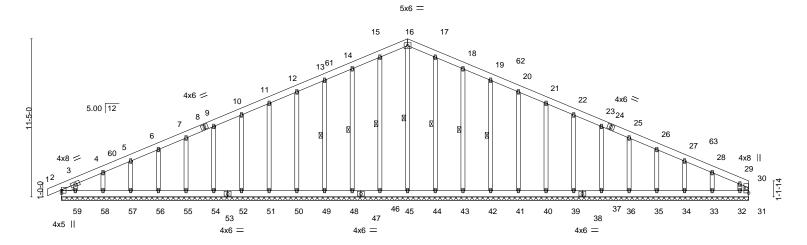
Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971668 24-4825-A T03GE Common Supported Gable Job Reference (optional)

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:25 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtgyly9_-tkXEHDv0beC32H0Z0cTR2fHSUHCkpCZ848aU22yjOD0

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

25-0-0

Scale = 1:83.2

49-7-8 LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 244/190 1.15 TC 0.13 -0.00 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.05 Vert(CT) -0.00 120 n/r TCDI 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 31 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 445 lb FT = 20% **BCDL** 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

49-7-8

LUMBER-

TOP CHORD 2x6 SP No.2

2x6 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3 SLIDER

Left 2x4 SP No.3 0-11-5

REACTIONS. All bearings 49-7-8. Max Horz 2=203(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 31, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40,

39, 37, 36, 35, 34, 33, 2 except 32=-128(LC 16)

Max Grav All reactions 250 lb or less at joint(s) 31, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 44, 43, 42, 41, 40, 39, 37, 36, 35, 34, 33, 32, 2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 13-14=-109/263, 14-15=-123/302, 15-16=-131/326, 16-17=-131/326, 17-18=-123/302,

18-19=-109/263

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=50ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 3-11-11, Exterior(2N) 3-11-11 to 25-0-0, Corner(3R) 25-0-0 to 29-11-11, Exterior(2N) 29-11-11 to 49-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 43, 42, 41, 40, 39, 37, 36, 35, 34, 33, 2 except (jt=lb) 32=128.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16-45, 15-46, 14-48, 13-49, 17-44, 18-43,

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971669 24-4825-A T04G COMMON GIRDER Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:26 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-Lw5cVZweMyKwfRbmaK_gbtqZ7hTLYbhHJoJ2aUyjOD? 3-1-0 3-1-0 3-1-0 Scale = 1:30.5 4x4 = 3 7.00 12 3x5 / 3x5 <> 12 3x5 <> 3x5 // 5 1-1-13 13 15 18 14 16 17 q 8 LUS26 LUS26 LUS26 3x5 = 3x8 = 3x5 = 3x4 || 3x4 || LUS26 LUS26 LUS26 12-4-0 6-2-0 3-1-0 3-1-0 LOADING (psf)

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

I/defI

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

L/d

240

180

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins,

(loc)

8-9

8-9

except end verticals.

6

-0.02

-0.04

0.01

LUMBER-

TCLL (roof)

TCDI

BCLL

BCDL

Snow (Pf/Pg) 11.6/15.0

TOP CHORD 2x4 SP No.2 2x6 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (size) 10=0-3-8, 6=0-3-8 Max Horz 10=-97(LC 10)

Max Uplift 10=-177(LC 12), 6=-155(LC 12) Max Grav 10=2453(LC 2), 6=2112(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

2-0-0

1.15

1.15

NO

CSI.

0.32

0.34

0.39

TC

ВС

WB

Matrix-MS

TOP CHORD 1-2=-2418/197, 2-3=-1948/193, 3-4=-1948/193, 4-5=-2416/198, 1-10=-1811/148,

5-6=-1813/148

BOT CHORD 9-10=-85/274, 8-9=-121/2045, 7-8=-121/2043

WFBS 3-8=-138/1725, 4-8=-529/76, 4-7=-59/448, 2-8=-531/75, 2-9=-58/451, 1-9=-114/1883,

5-7=-115/1896

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=177, 6=155
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-7-4 from the left end to 10-7-4 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.

ORTH

PLATES

Weight: 167 lb

MT20

GRIP

244/190

FT = 20%

August 29,2025

COARIGASE(S)geStandard

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty Job Truss Ply RVF-LOT #49 ROOF 175971669 **COMMON GIRDER** 24-4825-A T04G

Riverside Roof Truss, LLC,

Danville, Va - 24541,

| **2** | Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:26 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-Lw5cVZweMyKwfRbmaK_gbtqZ7hTLYbhHJoJ2aUyjOD?

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-43, 3-5=-43, 6-10=-20

Concentrated Loads (lb)

Vert: 13=-451(B) 14=-445(B) 15=-445(B) 16=-445(B) 17=-445(B) 18=-445(B)

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971670 24-4825-A T04GE COMMON SUPPORTED GAB Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:27 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-p6f_ivxG7GSnHbAy71Vv84Mok5tPH8QRXS3b6xyjOD_

6-2-0 6-2-0

> Scale = 1:29.9 4x4 =

6-2-0

13-3-0

0-11-0

5 7.00 12 6 7 3x5 🗸 3x5 > 14 13 12 10 16 15 11 3x4 = 3x4 = 12-4-0 12-4-0 SPACING-DEFL. **PLATES GRIP** 2-0-0 CSI. (loc) I/defl L/d 20.0 Vert(LL) 244/190 Plate Grip DOL 1.15 TC 0.08 -0.00 9 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.03 Vert(CT) -0.00 9 120 n/r 10.0

LUMBER-BRACING-

Code IRC2018/TPI2014

YES

WB

Matrix-S

0.04

Rep Stress Incr

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

LOADING (psf)

TCLL (roof)

TCDI

BCLL

BCDL

OTHERS

2x4 SP No.3 2x4 SP No.3

0.0

10.0

TOP CHORD

Horz(CT)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

n/a

except end verticals.

0.00

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

10

n/a

REACTIONS. All bearings 12-4-0.

Max Horz 16=-112(LC 14) (lb) -

-0-11-0 0-11-0

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-2-0, Exterior(2N) 2-2-0 to 6-2-0, Corner(3R) 6-2-0 to 9-2-0, Exterior(2N) 9-2-0 to 13-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12 11
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 72 lb

FT = 20%

August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971671 24-4825-A T05 COMMON Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:27 2025 Page 1 Riverside Roof Truss, LLC, Danville, Va - 24541, ID:tdHS5lWyLng?jaR9E1eBtqyly9_-p6f_ivxG7GSnHbAy71Vv84Mhe5iHH?rRXS3b6xyjOD_ 21-7-0 0-11-0 15-6-0 20-8-0 5-2-0 5-2-0 5-2-0 Scale = 1:45.0 4x4 = 7.00 12 13 4x4 🗸 4x4 < 3x4 II 3x4 II 9 5x8 = 3x6 =3x6 =10-4-0 10-4-0 10-4-0 Plate Offsets (X,Y)-- [9:0-4-0,0-3-4]

Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.74 Vert(CT TCDL 10.0 Rep Stress Incr YES WB 0.59 Horz(CT BCDL 10.0 Code IRC2018/TPI2014 Matrix-MS Matrix-MS	,	8-9	>999 >648 n/a	240 180 n/a	MT20 Weight: 118 lb
---	---	-----	---------------------	-------------------	---------------------

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.1 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.3 REACTIONS. (size) 10=0-3-8, 8=0-3-8

Max Horz 10=161(LC 15)

Max Uplift 10=-83(LC 16), 8=-83(LC 16) Max Grav 10=879(LC 2), 8=879(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\hbox{-}3\hbox{--}286/66,\ 3\hbox{-}4\hbox{--}829/124,\ 4\hbox{-}5\hbox{--}829/124,\ 5\hbox{-}6\hbox{--}286/66,\ 2\hbox{-}10\hbox{--}312/95,\ 6\hbox{-}8\hbox{--}312/95}$ TOP CHORD

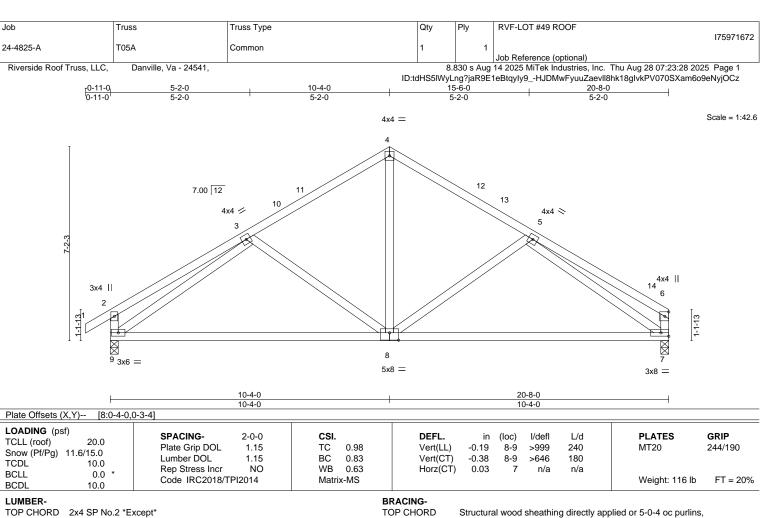
BOT CHORD 9-10=-70/802, 8-9=-57/800

4-9=-13/505, 3-10=-782/102, 5-8=-782/102 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 21-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

GRIP 244/190


FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD 2x4 SP No.2 *Except*

4-6: 2x4 SP No.1 2x4 SP No.1

BOT CHORD WEBS 2x4 SP No.3 TOP CHORD

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 9=0-3-8, 7=0-3-8

Max Horz 9=158(LC 15)

Max Uplift 9=-84(LC 16), 7=-86(LC 16) Max Grav 9=907(LC 2), 7=1421(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-287/66, 3-4=-876/129, 4-5=-885/133, 5-6=-758/84, 2-9=-311/95, 6-7=-903/144 TOP CHORD

BOT CHORD 8-9=-105/837 7-8=-110/941

WEBS 4-8=-25/556, 5-8=-350/155, 3-9=-828/108, 5-7=-746/117

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 20-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 7.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 705 lb down and 107 lb up at 19-8-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-4=-43, 4-6=-43, 7-9=-20

August 29,2025

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

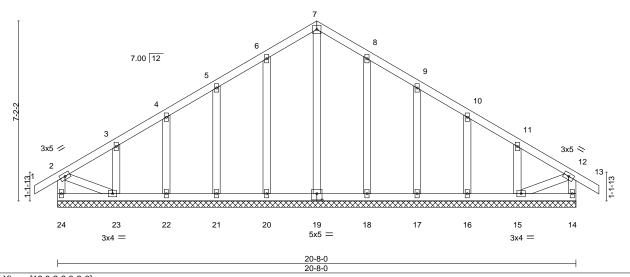
Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971672 T05A 24-4825-A Common

Riverside Roof Truss, LLC,

Danville, Va - 24541,

Job Reference (optional) 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:28 2025 Page 2 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-HJDMwFyuuZaevll8hk18glvkPV070SXam6o9eNyjOCz

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 14=-500



818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971673 24-4825-A T05GE COMMON SUPPORTED GAB Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:29 2025 Page 1

ID:tdHS5lWyLng?jaR9E1eBtqyly9_-lVnk7bzWftiVWvKLFSYNDVS7EuZnl10j?mYiApyjOCy 21-7-0 0-11-0 20-8-0 10-4-0 10-4-0

> 4x4 = Scale = 1:45.9

Plate Offsets (X,Y) [19:0-2-8	,0-3-0]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.04 WB 0.10	Vert(CT) -0.00 13 n/r 120 Horz(CT) 0.00 14 n/a n/a	1/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Weight: 132 lb F	T = 20%

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. WEBS 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: **OTHERS** 2x4 SP No.3 6-0-0 oc bracing: 23-24,14-15.

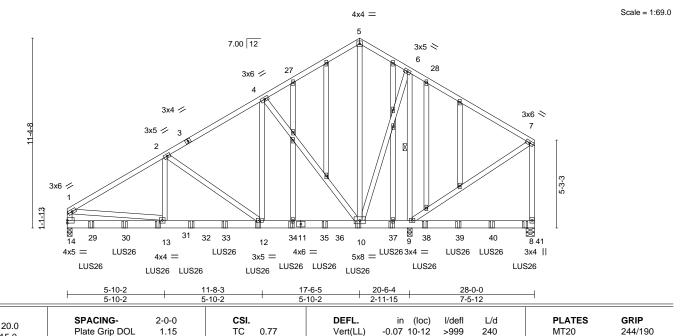
REACTIONS. All bearings 20-8-0.

Max Horz 24=161(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 24, 20, 21, 22, 23, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-4-0, Exterior(2N) 2-4-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 20, 21, 22, 23, 18, 17, 16, 15.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


August 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply RVF-LOT #49 ROOF 175971674 24-4825-A T06G **GABLE** Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:30 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-DhL7Kwz8QBqM83vXp93clj_8DlkMUHotEQHFiGyjOCx 17-6-5 20-6-4 28-0-0 5-10-2 5-10-2 5-10-2 2-11-15 7-5-12

Vert(CT)

Horz(CT)

TOP CHORD

BOT CHORD

WEBS

-0.13

0.02

8-9

except end verticals.

6-0-0 oc bracing: 9-10.

1 Row at midpt

8

>689

n/a

180

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

LUMBER-BRACING-

Code IRC2018/TPI2014

1.15

NO

ВС

WB

Matrix-MS

0.72

0.90

TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD** WEBS

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

REACTIONS.

TCDI

BCLL

BCDL

2x4 SP No.3 **OTHERS** 2x4 SP No.3

10.0

10.0

0.0

(size) 14=0-3-8, 9=0-3-8, 8=0-6-0 Max Horz 14=291(LC 11)

Max Uplift 14=-201(LC 12), 9=-490(LC 12), 8=-61(LC 12) Max Grav 14=2912(LC 2), 9=4873(LC 2), 8=832(LC 30)

Lumber DOL

Rep Stress Incr

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-3627/273, 2-4=-2355/228, 4-5=-686/154, 5-6=-667/182, 6-7=-72/333,

1-14=-2321/187

BOT CHORD 13-14=-260/655, 12-13=-276/3060, 10-12=-179/1963, 9-10=-261/154

WEBS 2-13=-44/1140, 2-12=-1351/170, 4-12=-147/2352, 4-10=-2387/275, 5-10=-112/464,

6-10=-108/2258, 6-9=-2924/282, 1-13=-107/2520, 7-9=-322/130

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 7) Unbalanced snow loads have been considered for this design.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 14=201, 9=490.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere naestagia 12 dard ANSI/TPI 1

Weight: 563 lb

FT = 20%

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #49 ROOF	
04 4005 4	T000	OARI F				175971674
24-4825-A	T06G	GABLE	1	2	Job Reference (optional)	

Riverside Roof Truss, LLC,

Danville, Va - 24541,

8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:30 2025 Page 2 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-DhL7Kwz8QBqM83vXp93clj_8DlkMUHotEQHFiGyjOCx

14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-5-4 from the left end to 27-5-4 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

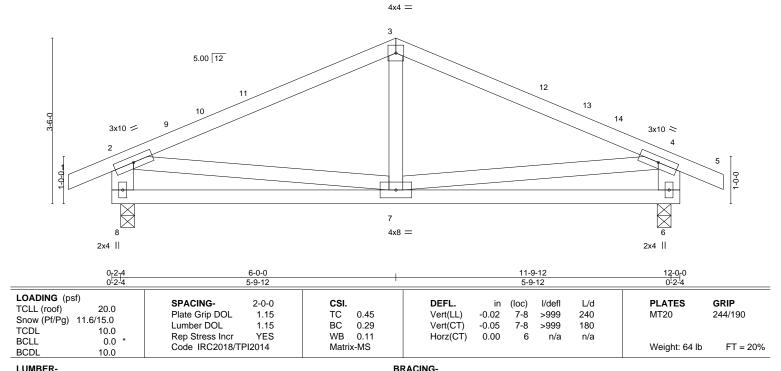
Vert: 1-5=-43, 5-7=-43, 8-14=-20

Concentrated Loads (lb)

Vert: 12=-319(B) 10=-319(B) 29=-319(B) 30=-319(B) 31=-319(B) 32=-319(B) 33=-319(B) 34=-319(B) 36=-319(B) 37=-319(B) 38=-334(B) 39=-334(B) 40=-334(B)

41=-340(B)

818 Soundside Road Edenton, NC 27932


Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971675 24-4825-A T07 COMMON 2 Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:30 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-DhL7Kwz8QBqM83vXp93clj_DClr0UU7tEQHFiGyjOCx

5-6-8

6-0-0

Scale = 1:24.3

12-0-0 12-11-0 0-5-8 0-11-0

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 *Except* **WEBS**

0-11-0

2-8,4-6: 2x6 SP No.2

(size) 8=0-3-8, 6=0-3-8 Max Horz 8=-63(LC 14)

Max Uplift 8=-64(LC 16), 6=-64(LC 16)

Max Grav 8=530(LC 2), 6=530(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-562/180, 3-4=-562/180, 2-8=-478/231, 4-6=-478/231 TOP CHORD

BOT CHORD 7-8=-165/271, 6-7=-120/271 WFBS 2-7=0/260, 4-7=0/260

NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0 , Interior(1) 9-0-0 to 12-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8. 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971676 24-4825-A T07A Common Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:31 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-huvVYG_mBUyDmCUjMtarlwXNdiBLDx80S41pFiyjOCw 12-0-0 11-8-0 0-4-0 Scale = 1:23.4 4x4 = 2 5.00 12 10 3x8 > 3x8 = 1-0-0 5 4x8 = 2x4 | 2x4 || 0-5-12 0-4-0 12-0-0 0-1-12 LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES GRIP** (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) -0.02 240 244/190 1.15 0.47 5-6 >999 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.29 Vert(CT) -0.05 5-6 >999 180 TCDI 10.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-MS Weight: 61 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3 *Except* WEBS

1-6,3-4: 2x6 SP No.2

(size) 6=0-3-8, 4=0-3-8 Max Horz 6=-57(LC 14)

Max Uplift 6=-28(LC 16), 4=-28(LC 16)

Max Grav 6=462(LC 2), 4=462(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-576/188, 2-3=-576/185, 1-6=-409/173, 3-4=-409/171 TOP CHORD

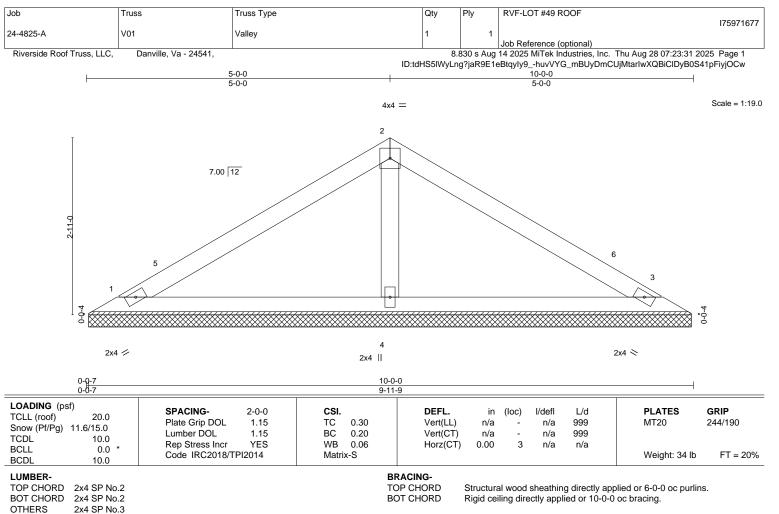
WEBS 1-5=-39/297, 3-5=-40/297

NOTES-

BOT CHORD

REACTIONS.

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior(1) 3-2-12 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 11-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS.

1=9-11-2, 3=9-11-2, 4=9-11-2 (size)

Max Horz 1=52(LC 15)

Max Uplift 1=-21(LC 16), 3=-21(LC 16)

Max Grav 1=169(LC 2), 3=169(LC 2), 4=376(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 5-0-0, Exterior(2R) 5-0-0 to 8-0-0, Interior(1) 8-0-0 to 9-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971678 24-4825-A V02 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:32 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-A4Ttlc?Pyo44NM2vwa54q84du6adyPpAhkmMn8yjOCv 3-6-14 3-6-14 Scale = 1:14.6 4x4 = 2 7.00 12 0-0-4 D-Ö-0 4 2x4 || 2x4 // 2x4 < 7-1-5 LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** CSI. (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.18 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 23 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

OTHERS

1=7-0-14, 3=7-0-14, 4=7-0-14 (size)

Max Horz 1=35(LC 15)

2x4 SP No.3

Max Uplift 1=-21(LC 16), 3=-21(LC 16)

Max Grav 1=129(LC 20), 3=129(LC 21), 4=231(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971679 24-4825-A V03 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:32 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-A4Ttlc?Pyo44NM2vwa54q84fz6a8yPIAhkmMn8yjOCv 2-1-11 2-1-11 Scale = 1:8.9 3x4 = 2 7.00 12 3 0-0-4 5-0-0 2x4 // 2x4 < Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.05 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-P Weight: 12 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-3-7 oc purlins. BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

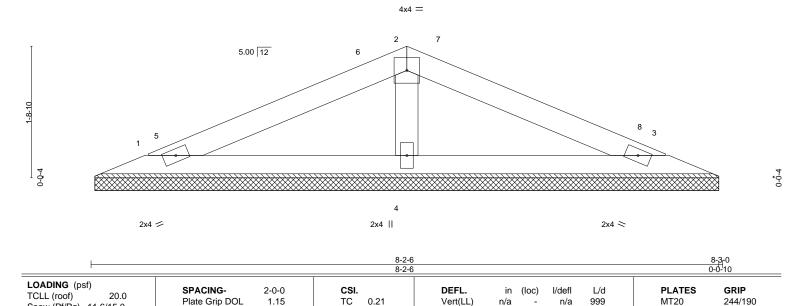
1=4-2-9, 3=4-2-9 (size) Max Horz 1=-19(LC 14)

Max Uplift 1=-8(LC 16), 3=-8(LC 16) Max Grav 1=128(LC 2), 3=128(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971680 24-4825-A V04 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:33 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-eG0Fzy01j6Cx?Wd6UIcJNLcn4WvXhsuJwOWwJayjOCu 8-3-0

Scale = 1:15.0

LUMBER-

TCDI

BCLL

BCDL

Snow (Pf/Pg) 11.6/15.0

2x4 SP No.2 2x4 SP No.2

10.0

0.0

10.0

TOP CHORD BOT CHORD **OTHERS** 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD

Vert(CT)

Horz(CT)

n/a

0.00

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

999

n/a

n/a

n/a

3

4-1-8

REACTIONS.

1=8-1-13, 3=8-1-13, 4=8-1-13 (size) Max Horz 1=18(LC 15) Max Uplift 1=-19(LC 16), 3=-19(LC 16)

Max Grav 1=134(LC 20), 3=134(LC 21), 4=273(LC 2)

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 4-1-8, Exterior(2R) 4-1-8 to 7-1-8, Interior(1) 7-1-8 to 7-5-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.15

YES

ВС

WB

Matrix-P

0.11

0.04

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4-1-8

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 25 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971681 24-4825-A V05 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:33 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-eG0Fzy01j6Cx?Wd6UlcJNLcqjWvuhsYJwOWwJayjOCu 2-1-8 Scale = 1:7.9 3x4 = 5.00 12 2 2x4 = 2x4 < 4-2-6 Plate Offsets (X,Y)--[2:0-2-0,Edge]

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

in (loc)

n/a

n/a

0.00

LUMBER-

LOADING (psf)

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

20.0

10.0

10.0

0.0 *

11.6/15.0

BRACING-TOP CHORD **BOT CHORD**

Matrix-P

CSI.

0.05

0.09

0.00

TC

BC

WB

Structural wood sheathing directly applied or 4-3-0 oc purlins.

L/d

999

999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

I/defl

3

n/a

n/a

n/a

REACTIONS. (size)

Max Horz 1=-7(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16) Max Grav 1=110(LC 2), 3=110(LC 2)

1=4-1-13, 3=4-1-13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-0-0

1.15

1.15

YES

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

GRIP

244/190

FT = 20%

PLATES

Weight: 11 lb

MT20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971682 24-4825-A V06 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:34 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-6TadAI0fUPKodgCl2?7YwZ9yqvEvQGzT82FTr1yjOCt 28-4-8 0-11-0 16-4-5 11-1-3 Scale = 1:56.7 4x4 = 6 7.00 12 20 19 3x4 🖊 Ø 9 10 3-0-13 3x4 / 18 17 16 15 13 12 11 3x4 =LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 244/190 1.15 TC 0.21 -0.00 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.17 Vert(CT) -0.00 10 120 n/r TCDI 10.0 Rep Stress Incr YES WB 0.25 Horz(CT) 0.00 n/a n/a 11 **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 142 lb FT = 20% **BCDL** 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3 BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt

REACTIONS. All bearings 27-5-1.

Max Horz 1=230(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 1, 15, 17, 18, 13, 12

Max Grav All reactions 250 lb or less at joint(s) 11, 1 except 14=442(LC 28), 15=467(LC 28), 17=397(LC 28),

18=417(LC 28), 13=470(LC 29), 12=377(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-6=-196/274, 6-7=-196/267

WFBS 5-15=-261/123, 2-18=-263/113, 7-13=-266/125

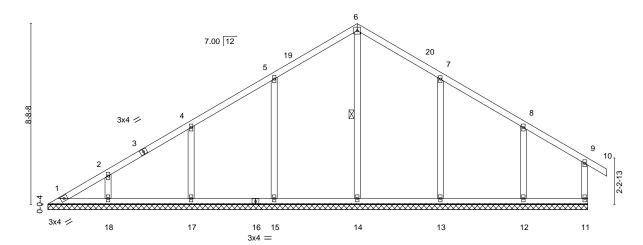
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 16-4-5, Exterior(2R) 16-4-5 to 19-4-5, Interior(1) 19-4-5 to 28-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 1, 15, 17, 18, 13 12
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971683 24-4825-A V07 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:35 2025 Page 1

ID:tdHS5IWyLng?jaR9E1eBtqyly9_-af80Oe1HFjSfEqnUbjfnSmi7jJa79k3cNi?0OTyjOCs 26-11-6 0-11-0 14-11-3 11-1-3

> Scale = 1:55.5 4x4 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES** GRIP CSI. (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 244/190 1.15 TC 0.21 -0.00 10 n/r 120 MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.17 Vert(CT) -0.00 10 120 n/r TCDI 10.0 Rep Stress Incr YES WB 0.19 Horz(CT) 0.00 n/a n/a 11 **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 128 lb FT = 20% **BCDL** 10.0

26-0-6

LUMBER-BRACING-TOP CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **OTHERS** 2x4 SP No.3 **WEBS** 1 Row at midpt

REACTIONS. All bearings 25-11-15.

Max Horz 1=201(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 1, 15, 17, 18, 13, 12

Max Grav All reactions 250 lb or less at joint(s) 11, 1 except 14=435(LC 28), 15=461(LC 28), 17=416(LC 28),

18=337(LC 28), 13=469(LC 29), 12=378(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-6=-180/250

WFBS 5-15=-259/122, 7-13=-266/124

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 14-11-3, Exterior(2R) 14-11-3 to 17-11-3, Interior(1) 17-11-3 to 26-11-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 1, 15, 17, 18, 13 12
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 29,2025

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971684 24-4825-A V08 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:35 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-af80Oe1HFjSfEqnUbjfnSmi63JZU9jEcNi?0OTyjOCs 13-6-0 11-1-3 Scale = 1:50.9 4x4 = 7.00 12 3 Z-10-8 3x4 // 9 15 18 14 13 12 11 19 10 3x4 =

LUMBER-

LOADING (psf)

Snow (Pf/Pg) 11.6/15.0

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2

20.0

10.0

0.0

10.0

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3 BRACING-TOP CHORD

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

L/d

120

120

n/a

PLATES

Weight: 115 lb

MT20

GRIP

244/190

FT = 20%

except end verticals.

(loc)

8

8

9

-0.00

-0.00

0.00

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

I/defl

n/r

n/r

n/a

REACTIONS. All bearings 24-6-13.

Max Horz 1=172(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 13, 15, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 1, 9 except 12=427(LC 28), 13=420(LC 28), 15=507(LC 28),

CSI.

TC

ВС

WB

Matrix-S

0.31

0.21

0.24

2-0-0

1.15

1.15

YES

11=463(LC 29), 10=357(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

WEBS 2-15=-307/131, 5-11=-266/124

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 13-6-0, Exterior(2R) 13-6-0 to 16-6-0, Interior(1) 16-6-0 to 25-6-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

referenced standard ANSI/TPI 1.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 13, 15, 11, 10. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971685 24-4825-A V09 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:36 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-2riOb_2v01bWs_Mh9QA0?_EIYjwGuBllcMkawvyjOCr 24-1-1 0-11-0 12-0-14 11-1-3 Scale = 1:46.4 4x4 = 16 7.00 12 3 3x4 / 14 13 12 11 10 9 17 3x4 =3x4 =23-2-1 23-1-10 LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP (loc) I/defl

0.20

0.18

0.16

TC

ВС

WB

Matrix-S

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

0.01

0.00

8

8

n/r

n/r

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

120

120

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

Snow (Pf/Pg) 11.6/15.0

REACTIONS. All bearings 23-5-15. Max Horz 1=-138(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 12, 14, 10, 9, 7

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

All reactions 250 lb or less at joint(s) 1, 7 except 11=384(LC 28), 12=423(LC 28), 14=393(LC 28), Max Grav

1.15

1.15

YES

10=425(LC 29), 9=385(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-12=-259/123, 5-10=-260/124 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 12-0-14, Exterior(2R) 12-0-14 to 15-0-14, Interior(1) 15-0-14 to 24-1-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 14, 10, 9, 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 29,2025

244/190

FT = 20%

Weight: 103 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty RVF-LOT #49 ROOF 175971686 24-4825-A V10 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:36 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyly9_-2riOb_2v01bWs_Mh9QA0?_EIVjwMuCMlcMkawvyjOCr 10-7-12 10-7-12 Scale = 1:40.9 4x4 = 7.00 12 15 6 3x4 ≥ 3x4 // 13 11 10 17 9 8 3x4 =LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES GRIP**

(loc)

n/a

n/a

0.00

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

I/defl

n/a

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

999

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

TCLL (roof)

TCDI

BCLL

BCDL

Snow (Pf/Pg) 11.6/15.0

TOP CHORD 2x4 SP No.2 2x4 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 21-2-10 Max Horz 1=118(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 13, 9, 8

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=374(LC 27), 12=433(LC 27), 13=319(LC 27),

TC

ВС

WB

Matrix-S

0.20

0.17

0.12

1.15

1.15

YES

9=433(LC 28), 8=319(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-12=-268/127, 5-9=-268/127 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 10-7-12, Exterior(2R) 10-7-12 to 13-7-12, Interior(1) 13-7-12 to 20-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 13, 9, 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

244/190

FT = 20%

MT20

Weight: 88 lb

24-4825-A V11 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:37 2025 Page 1 ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-W2GmoK3XnKjMU7xtj7hFXBnSw7GYdfEvr0U7SMyjOCq 9-2-9 9-2-9 9-2-9 Scale = 1:35.4 4x4 = 3 7.00 12 2x4 || 2x4 || 2 13 3x4 / 3x4 > 9 8 6 2x4 || 2x4 || 2x4 || 3x4 =18-4-12 18-4-12 LOADING (psf) SPACING-2-0-0 DEFL. L/d **PLATES GRIP** CSI. (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 999 244/190 1.15 TC 0.29 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.17 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 72 lb FT = 20% **BCDL** 10.0

BRACING-

TOP CHORD

BOT CHORD

Qty

RVF-LOT #49 ROOF

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

175971687

LUMBER-

REACTIONS.

Job

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

> All bearings 18-4-5. Max Horz 1=101(LC 15)

Truss

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 9=422(LC 27), 6=422(LC 28)

Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-312/143, 4-6=-312/143 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 9-2-9, Exterior(2R) 9-2-9 to 12-2-9, Interior(1) 12-2-9 to 17-10-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

175971688 24-4825-A V12 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:38 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtqyly9_-_Eq80f49YerD6HW3HrCU4PJe0WdnM6i23gDh_oyjOCp 7-9-7 7-9-7 7-9-7 Scale = 1:30.2 4x4 = 7.00 12 2x4 II 2x4 || 2 8 7 6 3x4 🗸 3x4 ≥ 2x4 || 2x4 || 2x4 || 15-6-14 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 999 244/190 1.15 TC 0.20 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.11 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 59 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-

TOP CHORD

BOT CHORD

Qty

RVF-LOT #49 ROOF

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

Job

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

> All bearings 15-6-1. Max Horz 1=-84(LC 14)

Truss

Truss Type

Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=264(LC 2), 8=343(LC 33), 6=343(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-259/134, 4-6=-259/134 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-9-7, Interior(1) 3-9-7 to 7-9-7, Exterior(2R) 7-9-7 to 10-9-7, Interior(1) 10-9-7 to 15-0-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type Qty 175971689 24-4825-A V13 Valley Job Reference (optional) Riverside Roof Truss, LLC, Danville, Va - 24541, 8.830 s Aug 14 2025 MiTek Industries, Inc. Thu Aug 28 07:23:38 2025 Page 1 ID:tdHS5lWyLng?jaR9E1eBtgyly9_-_Eq80f49YerD6HW3HrCU4PJe1WdaM7y23gDh_oyjOCp 12-8-10 6-4-5 6-4-5 Scale = 1:24.6 4x4 = 3 7.00 12 10 2x4 || 2x4 || 3x4 / 3x4 ≥ 2x4 || 2x4 || 2x4 || 12-8-10 0-0-7 12-8-3 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.20 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 46 lb FT = 20% **BCDL** 10.0 LUMBER-BRACING-

TOP CHORD

BOT CHORD

RVF-LOT #49 ROOF

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

Job

2x4 SP No.2 2x4 SP No.2

TOP CHORD BOT CHORD **OTHERS** 2x4 SP No.3

(lb) -

All bearings 12-7-12. Max Horz 1=68(LC 15)

Truss

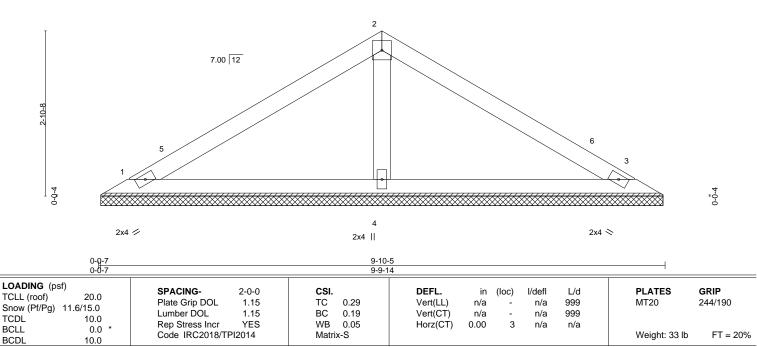
Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=277(LC 2), 8=307(LC 20), 6=307(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-4-5, Exterior(2R) 6-4-5 to 9-4-5, Interior(1) 9-4-5 to 12-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

TOP CHORD

BOT CHORD

BRACING-

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

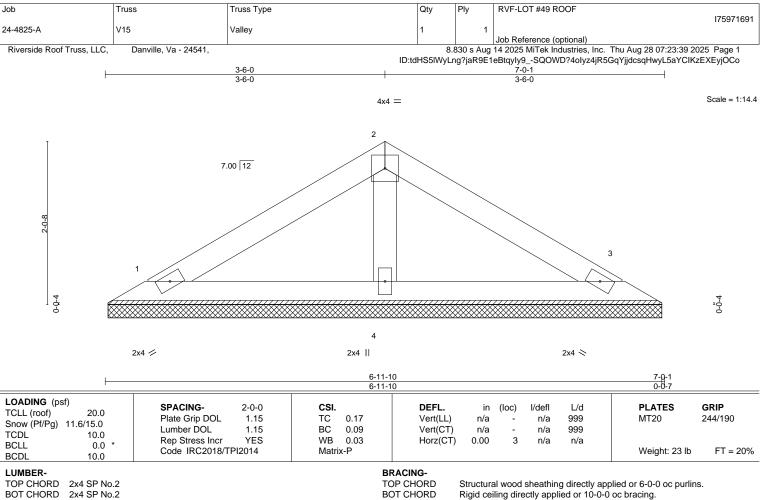
1=9-9-7, 3=9-9-7, 4=9-9-7 (size) Max Horz 1=-51(LC 14) Max Uplift 1=-21(LC 16), 3=-21(LC 16)

Max Grav 1=166(LC 2), 3=166(LC 2), 4=370(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-11-3, Exterior(2R) 4-11-3 to 7-11-3, Interior(1) 7-11-3 to 9-3-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS.

BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

> (size) 1=6-11-3, 3=6-11-3, 4=6-11-3

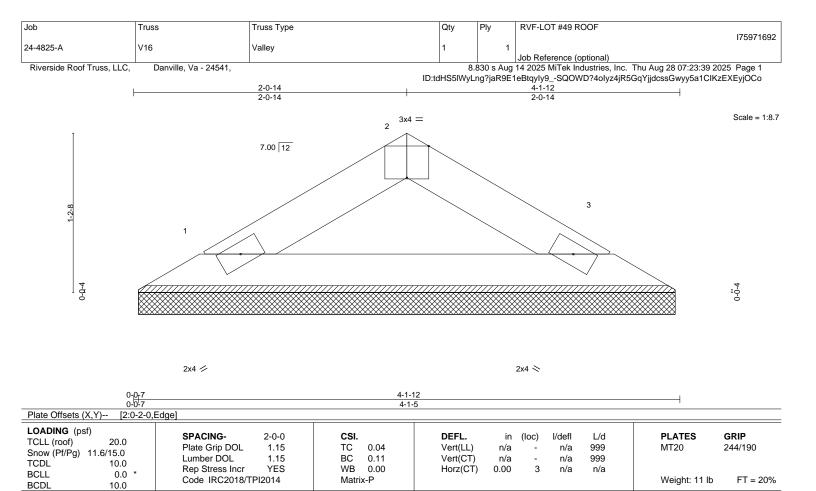
Max Horz 1=-34(LC 14)

Max Uplift 1=-20(LC 16), 3=-20(LC 16)

Max Grav 1=126(LC 20), 3=126(LC 21), 4=226(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

1=4-0-14, 3=4-0-14 (size) Max Horz 1=-18(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16)

Max Grav 1=123(LC 2), 3=123(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

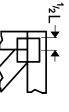
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

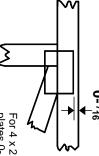
Structural wood sheathing directly applied or 4-1-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

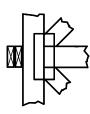
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

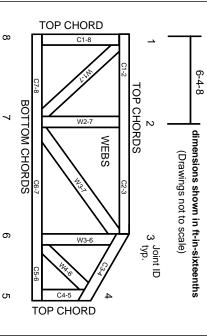

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.