

RE: 4703101 - JSJ, Magnolia Prime A,B (5-13-25)

Trenco
 818 Soundside Rd
 Edenton, NC 27932

Site Information:

Project Customer: JSJ Builders Project Name:
 Lot/Block: 97 Subdivision: DUCKS LANDING
 Address:
 City: LILLINGTON State: NC

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:
 Address:
 City, County: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.8
 Wind Code: ASCE 7-10 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10
 Wind Speed: 130 mph
 Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 1 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Job ID#	Truss Name	Date
1	I77528487	4703101	A03	11/4/25

The truss drawing(s) referenced above have been prepared by
 Truss Engineering Co. under my direct supervision based on the parameters
 provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification
 that the engineer named is licensed in the jurisdiction(s) identified and that the
 designs comply with ANSI/TPI 1. These designs are based upon parameters
 shown (e.g., loads, supports, dimensions, shapes and design codes), which were
 given to MiTek or TRENCO. Any project specific information included is for MiTek's or
 TRENCO's customers file reference purpose only, and was not taken into account in the
 preparation of these designs. MiTek or TRENCO has not independently verified the
 applicability of the design parameters or the designs for any particular building. Before use,
 the building designer should verify applicability of design parameters and properly
 incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

November 4,2025

Gilbert, Eric

RE: \$JOBNAME - \$JOBDESC

Trenco
818 Soundside Rd
Edenton, NC 27932

Site Information:

Project Customer: \$SI_CUSTOMER Project Name: \$SI_JOBNAME
Lot/Block: \$SI_LOTNUM Subdivision: \$SI_SUBDIV
Address: \$SI_SITEADDR
City, County: \$SI_SITECITY State: \$SI_SITESTATE

RE: \$JOBNAME - \$JOBDESC

Trenco
818 Soundside Rd
Edenton, NC 27932

Site Information:

Project Customer: \$SI_CUSTOMER Project Name: \$SI_JOBNAME
Lot/Block: \$SI_LOTNUM Subdivision: \$SI_SUBDIV
Address: \$SI_SITEADDR
City, County: \$SI_SITECITY State: \$SI_SITESTATE

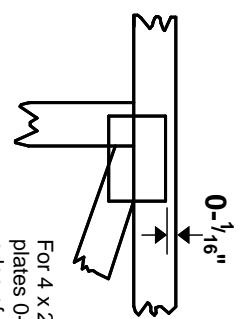

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

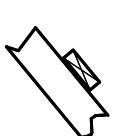
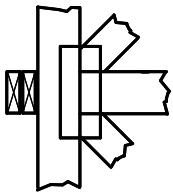

* Plate location details available in MiTek software or upon request.

PLATE SIZE

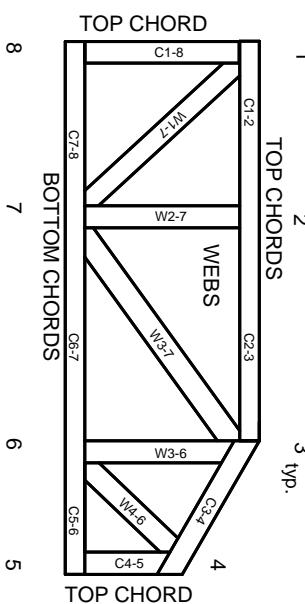
4 x 4


LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.



Industry Standards:

- ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
- DSB-22: Design Standard for Bracing.
- BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®
ENGINEERING BY
TRENGO
A MiTek Affiliate