

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: David Weekley Homes

Model: B326 A CP TMB GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

UNLESS

*

U Z

Ц С

WHILE

MUST

ER

				57	-00-00										
	32	-09-08 PBA					N					24-02-()8		
1-1 ⁻	1-04														
		PBA1													
2-00	0-00	PBA1													
2-00	0-00	PBA1													
2-00	0-00	PBA1				00-									
2-00	0-00	PBA1				15-06			VLB8	VLB7	VLB6	VLB5	VLB4		
2-00	0-00	PBA1													
2-00	0-00	PBA1							2-00-00	2-00-00	2-00-00	2-00-00			
1-1(0-00	PBA1													
2-00	0-00	PBA1	A	HU											
2-00	0-00	PBA1	PLAT	FORM											
2-00	0-00	PBA1													
9-	04														
1-09	9-08 (For EWP Floor Beam	PBA2 J01					to	. 1	-09-08	- Bearin	g Wall U	nder Gi	rder		
2-00	0-00	J01					. BLDR	2	2-00-00						
2-00	нти26 0-00 2 Ф	J01	12-07-08				ns Wal		2-00-00						
2-00		J01 J01	Design Span 17-0	0-08			2-00-00 20-11-08								
2-00	нтu26 0-00	J01					nd Ver		2-00-00						
2-00	HTU26 0-00 (For EWP Floor Beam HGUS41	PBA2					2X6	2	2-00-00						
2-00	0-00	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●							•				_		
2-00	0-00	PBA1											ſ		
2-00	0-00	PBA1									VLD6	VLD5	VLD4		
2-00	0-00	PBA1	ΤΔ	TIC							-		F		
2-00	0-00	PBA1	RC	DOM							00-00-	00-00-			
2-00	0-00		16-0)1-08							A				
2-00	0-00														
	<u>}</u>														

55-00-00

D AS: FOOT-INCH-SIXTEENTH. THI UPILIT CONNECTORS SNOWN WITHIN THESE GOCUMENTS ARE RECOMMENDATIONS ONLY. PER ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for 00,00,00,00,00,00,00,00,00,00,00,00,00,	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure	Including headers, beams, walls, and columns is the responsibility of the Name Name Name Name Name Name Name Nam
D TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE RI	David Weekley Homes	924 Serenity-Roof-B326 A CP	
GIRDERS MUST BE FULLY CONNECTED	Scale: Date: 7 25	NTS 7/16/2 Desig Nick E Project I 50602 Sheet N	S 025 ner: Darr Number: 03-01 Number:

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25060203-01 924 Serenity-Roof-B326 A CP TMB GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I74931979 thru I74932016

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

July 16,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH			
25060203-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	174931979		

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:47 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 17-8-0 31-6-0 53-3-0 0-10-8 17-8-0 13-10-0 21-9-0 4x6= 4x6= 13 14 15 1668 1769 18 19 20 21 12 4x6 ≠ 22 ſ⊞ Ē 11 23 9¹⁰ 4x6 👟 24 6¹² П 8 7⁶⁷ 6

Scale = 1:94.5

Loading TCLL (roof) Snow (Pf)		(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.13 0.12	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL		10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-MSH	0.21	Horz(CT)	0.01	33	n/a	n/a	Weight: 546 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP N 2x6 SP N 2x4 SP N 2x4 SP N 49-17,48- 52-14,53-	o.2 o.2 o.3 o.3 *Excep 18,47-19,4 12:2x4 SP	t* 6-20,44-22,50-16,51 No.2	-15,	Max Grav 34= 36= 38= 40= 43= 46= 48=	419 (LC 1), 197 (LC 41) 174 (LC 45) 230 (LC 45) 230 (LC 45) 199 (LC 40) 217 (LC 40)	35=81 (LC 13 37=152 (LC 39=221 (LC 42=229 (LC 44=217 (LC 47=220 (LC 49=216 (LC	3), 59), 45), 45), 45), 45), 40), 40),	BOT CH	IORD	61-62 59-60 57-58 55-56 52-53 50-51 48-49		=-81/150, =-81/150, =-81/150, =-81/150, =-81/150, =-81/150, =-81/150,
BRACING TOP CHORD	52-14,53-12:2x4 SP No.2 RD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 13-21. RD Rigid ceiling directly applied or 6-0-0 oc				50=217 (LC 40), $51=220$ (LC 40), $46-47=81/150$, $44-46=81/150$, $52=199$ (LC 40), $53=218$ (LC 43), $43-44=-81/150$, $42-43=-81/150$, $55=234$ (LC 43), $56=233$ (LC 43), $40-42=81/150$, $39-40=-81/150$, $57=233$ (LC 43), $58=233$ (LC 43), $38-39=-81/150$, $37-38=-81/150$,								=-81/150, =-81/150, =-81/150, =-81/150,
BOT CHORD	Rigid ceil	ing directly	applied or 6-0-0 oc		59=199 (LC 43), 60=150 (LC 58), 36-37=-81/150, 61=257 (LC 51), 62=133 (LC 58) 34-35=-81/150,								=-81/150, =-81/150
WEBS	bracing. 1 Row at midpt 17-49, 18-48, 19-47, FORCES 20-46, 22-44, 23-43, 24-42, 16-50, 15-51, TOP CHORE 14-52, 12-53, 11-55, 9-56			(Ib) - Maximum Compression/Maximum Tension 2-62=-245/191, 1-2=0/23, 2-3=-100/91, 3-4=-74/121, 4-5=-48/115, 5-6=-58/156,									
REACTIONS	$\begin{array}{c} 14-52, 12-53, 11-55, 9-56 \\ \mbox{NS} (size) & 33=53\cdot3\cdot0, 34=53\cdot3\cdot0, 33=53\cdot3\cdot0, 33=53\cdot3\cdot0, 33=53\cdot3\cdot0, 43=53\cdot3\cdot0, 42=53\cdot3\cdot0, 43=53\cdot3\cdot0, 44=53\cdot3\cdot0, 42=53\cdot3\cdot0, 43=53\cdot3\cdot0, 44=53\cdot3\cdot0, 44=53\cdot3\cdot0, 43=53\cdot3\cdot0, 44=53\cdot3\cdot0, 44=53\cdot3\cdot0, 52=53\cdot3\cdot0, 52=53\cdot3\cdot0, 53=53\cdot3\cdot0, 55=53\cdot3\cdot0, 55=53\cdot3\cdot0, 55=53\cdot3\cdot0, 55=53\cdot3\cdot0, 55=53\cdot3\cdot0, 56=53\cdot3\cdot0, 60=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 60=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 60=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 61=53\cdot3\cdot0, 62=53\cdot3\cdot0, 61=53\cdot3\cdot0, 6$		3-0, 3-0,	6-7=-75/201, 7 9-11=-124/33& 12-13=-146/3& 14-15=-140/3& 16-17=-140/3& 20-21=-140/3& 20-21=-140/3& 22-23=-144/3& 24-25=-106/2& 27-28=-75/201 29-30=-63/137 31-32=-124/10	-o=-90/240, 5, 11-12=-14 3, 13-14=-1 30, 15-16=-1 30, 17-18=-1 30, 21-22=-1 37, 23-24=-1 11, 25-27=-9 , 28-29=-59 7, 30-31=-71 30, 32-33=-1	8-9=-106/29 4/387, 40/380, 40/380, 40/380, 40/380, 46/383, 24/338, 0/246, 1/10, 1/12, 34/117	π,		Continue	L'UNA BILLING	SEA 458 NOR FESE SEA 458	LAA OHNSUIT	

July 16,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	17 4004 070	
25060203-01	0203-01 A01 Piggyback Base \$		1	1	Job Reference (optional)	174931979	
Carter Components (Sanford NC) Sanford NC - 27332	Run: 8,73 S, Eab 10 2025 Print: 8,730 S, Eab 10 2025 MiTak Inductrias. Inc. Ward Jul 16 00:38:47					

ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

WEBS 17-49=-176/57, 18-48=-177/62, 19-47=-180/61, 20-46=-159/6, 22-44=-177/2, 23-43=-190/87, 24-42=-189/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-125/77, 30-36=-138/78, 31-35=-65/120, 32-34=-244/137, 16-50=-177/62, 15-51=-180/61, 14-52=-159/1, 12-53=-178/0, 11-55=-194/87, 9-56=-193/81, 8-57=-193/77, 7-58=-194/77. 6-59=-157/77. 5-60=-115/91. 4-61=-186/159, 3-62=-226/263

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-7-0, Exterior(2N) 4-7-0 to 12-4-2, Corner(3R) 12-4-2 to 22-11-14, Exterior(2N) 22-11-14 to 26-2-2, Corner(3R) 26-2-2 to 36-7-0, Exterior(2N) 36-7-0 to 47-11-2, Corner(3E) 47-11-2 to 53-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type G		Ply	924 Serenity-Roof-B326 A CP TMB GLH				
25060203-01	A03	Piggyback Base	5	1	Job Reference (optional)	174931980			

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Jul 16 09:23:31 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-v?ncyMRNDYTEawD3oeSJTGIG8BHZ4DczLMcFWgyxYMg

Scale =	1:94.5
---------	--------

Plate Offsets (X, Y): [2:0-4-14,0-2-8	3], [11:0-5-0,0-4-8], [15:	:0-5-0,0-4	I-8], [17:0-5-0,	,0-4-8]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.88 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.53 0.11	(loc) 19-21 19-21 13	l/defl >999 >732 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 472 lt	GRIP 244/190	%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x6 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 21-2,6-19,9-17,21-5 No.2 Right: 2x4 SP No.3 Structural wood she 3-1-4 oc purlins, ex 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 26, 27 28 29	ot* 17-15:2x6 SP 2400F ot* 22-2:2x6 SP No.2, ,19-5,17-10,15-10:2x4 eathing directly applied (cept end verticals, and 7-6 max.): 5-10. v applied or 10-0-0 oc 19-26, 17-27, 5-21, 10-17, 23-24	WE = SP or 1 1) 2)	TES Unbalanced this design. Wind: ASCE Vasd=103m Ui: Exp B: En	2-21=-62/2669, 19- 23-26=-474/257, 6- 17-24=-853/217, 24 9-27=-846/229, 3-2 5-21=-272/481, 5-19 11-15=-918/319, 10 11-14=-221/799, 12 23-25=-37/54, 24-29 26-28=-24/39, 28-39 27-30=-131/28, 7-29 6-28=-297/705, 28-39 9-29=-282/805, 8-29 roof live loads have 7-16; Vult=130mph ph; TCDL=6.0psf; B closed: MWFRS (e)	23=-49 26=-45 -27=-8 1=-817, 9=0/90 -15=-1 -14=-3 5=-37/5 0=-136, 8=-228, 29=-27 9=-72/8 • been (1 (3-section) (3-section) (3-section)	0/247, 7/265, 38/227, 329, 3, 10-17=-86/5 90/968, 30/236, i4, 18-25=0/41 (30, 72, 5/788, 10, 29-30=-24/ considered for cond gust) i.0psf; h=25ft; b exterior zon	940, 1, /70 r Cat.	 9) This cho 10) * Thomas of the second s	truss h rd live lo is truss he botto 5-00 tall rd and a er to girc vide mee ring plat e RT4 M s to bea s connec ral force phical pine orient om chor CASE(S)	as bee had nor has be m cho by 2-0 ny oth der(s) f chanic e capa iTek co ring wa ction is s. urlin re ation o d.	en designed for neconcurrent with een designed fo rd in all areas w 0-00 wide will fi er members, wi for truss to truss al connection (t able of withstand panectors recor- alls due to UPLI for uplift only a epresentation do of the purlin alor ndard	a 10.0 psf b any other I r a live load here a recta t between th h BCDL = 1 connection y others) of ding 28 lb up nmended to FT at jt(s) 2 nd does not bes not depi-	ottom ive loads. of 20.0psf angle he bottom 10.0psf. s. truss to olift at joint connect 2 and 16. consider ct the size nd/or
FORCES TOP CHORD BOT CHORD	(lb/size) 13=1857/ 16=581/0 Max Horiz 22=-187 / Max Uplift 13=-28 (L 22=-170 / Max Grav 13=2086 22=2365 (lb) - Maximum Con Tension 1-2=0/25, 2-3=-3224 5-6=-2712/226, 6-7- 7-8=-3211/426, 8-9= 9-10=-2695/224, 10 12-13=-4208/197, 2 21-22=-132/276, 19 18-19=-2/2589, 16- 14-16=-45/3129, 13	Mechanical, -3-8, 22=2059/0-5-8 (LC 12) .C 14), 16=-193 (LC 15 (LC 14) (LC 47), 16=854 (LC 3 (LC 37) npression/Maximum 4/217, 3-5=-3339/411, 3211/426, 3211/426, -12=-4165/307, -22=-2409/218 -21=-25/2496, 8=-2/2589, -14=-90/3640	;), ^{(9),} 3) 4) 5) 6) 7) 8)	and C-C Ext 10-1-10, Ext 39-2-5 to 47 ⁻ end vertical I MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end Provide adee All plates are	erior(2E) -0-8-6 to 4 erior(2R) 10-1-10 to 11-2, Exterior(2E) 4 left exposed;C-C for reactions shown; Lu 60 i 7-16; Pr=20.0 psf (L15); Pf=20.0 psf	I-7-9, Ir 39-2-5 47-11-2 r memb umber I (roof LL um DC 3; Fully een cor or great troof la other lin the bott points, s revent v otherwi	terior (1) 4-7- 5, Interior (1) 2: to 53-3-0 zor pers and force: DOL=1.60 plat .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof 1 bad of 20.0 ps ve loads. om chord, 24- 5-0-0 apart. water ponding se indicated.	9 to ne; s & te .15 ; iis live on -7-0 I.		Continue	Level and the second se	SEA 458	ARO AL 44	A A A A A A A A A A A A A A A A A A A

July 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quality Criteria and DSB-22</u> available from Truss Plate Institute (www.tpinst.org) and <u>Before Building Component Scient Information</u> available from the Structural Building Component description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply 924 Serenity-Roof-B326 A CP TMB GLH			
25060203-01	A03T	Piggyback Base	3	1	Job Reference (optional)	174931981

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Jul 16 09:25:11 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-zEqQxYe5gG32ZIsHfeFIWMROTVOCWSVhLwqX1tyxYL6 Page: 1

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH		
25060203-01	A04	Piggyback Base	1	1	Job Reference (optional)	174931982	

-0-10-8

0-10-8

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Jul 16 09:26:19 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-_Kx7CoTlf9ePkk3MewTiGiF??vb8RC1i_VI8QxyxYK2

31-6-0 19-5-4 8-11-12 17-8-0 24-7-0 29-8-12 38-11-7 45-2-4 53-3-0 8-11-12 8-8-4 1-9-4 5-1-12 5-1-12 1-9-4 7-5-7 6-2-13 8-0-12 4x5= 6x8= 6x8= 4x5= 5 6 37 738 8 9 4x8 ≠ 6¹² 4 26 24 8x10👟 5x8= 1039 36 3 40 35 34 11 41 2-4-4 2-2-8

Scale = 1:94.5

Plate Offsets ((X, Y): [2:0-	4-14,0-2-8], [10:0-5-0,0-4-8], ['	14:0-5-0,0	-4-8], [15:0-5-	0,0-4-8]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.99 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.60 0.09	(loc) 17-19 17-19 12	l/defl >999 >894 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 470	GRIP 244/190 D lb FT = 20'	%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP N 2x6 SP N 2x4 SP N 19-2,6-17 No.2	o.2 o.2 o.3 *Excep (15-8,15-9,	t* 20-2:2x6 SP No.2 14-9,19-5,17-5:2x4	V <u>2,</u> SP	VEBS	2-19=-55/2603, 1 21-24=-442/331, (15-22=-875/237, 2 8-25=-847/242, 9 9-14=-385/26, 10- 10-13=-2071/246,	7-21=-45 6-24=-42 22-25=-8 -15=-23/1 -14=0/58 , 11-13=-	3/325, 9/333, 67/245, 420, 2, 455/258,		10) * Th on t 3-00 cho 11) Ref 12) Pro	his truss he botto 6-00 tall rd and a er to girc vide mee	has be om cho by 2-0 iny oth der(s) f chanic	een designed ord in all areas 00-00 wide wil er members, for truss to tru al connection	for a live load where a recta l fit between th with BCDL = uss connection (by others) of	of 20.0psf angle ne bottom 10.0psf. 1s. f truss to	
BRACING TOP CHORD	Structural 3-2-8 oc p 2-0-0 oc r	l wood shea ourlins, exe ourlins (3-8	athing directly applic cept end verticals, a -8 max): 5-9	ed or and		6/56, /41, 0/739	 bearing plate capable of withstanding 208 lb uplift at joint 12. 13) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 20. This 					uplift at joint connect 20. This				
BOT CHORD	Rigid ceili bracing, 2-2-0 oc l	ing directly Except: bracing: 15	applied or 10-0-0 or -16,14-15.	c N 1	IOTES) Unbalance this design	or	 connection is for uplift only and does not consider latera forces. 14) One RT5 MiTek connectors recommended to connect truss to bearing walls due to UPLIET at it(s) 13. This 									
WEBS	1 Row at	midpt	17-24, 15-25, 9-14,	2) Wind: ASC	E 7-16; Vult=130m	cond gust)	Cat	trus con	s to bea nection i	ring w is for ι	alls due to UF plift only and	2LIFT at jt(s) 1 does not cons	3. This sider lateral		
JOINTS	1 Brace a 25, 26	at Jt(s): 24,			II; Exp B; E and C-C Ex	II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-6 to 4-7-9, Interior (1) 4-7-9 to						forces.15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or				
REACTIONS	(Ib/Size) Max Horiz Max Uplift Max Grav	12=691/ N 13=1794/0 20=-187 (12=-208 (20=-157 (12=947 (L 20=2300 (//ecnanical, 0-5-8, 20=2012/0-5- LC 12) LC 14), 13=-378 (LC LC 14) LC 14) .C 37), 13=2351 (LC (LC 37)	-8 C 15), C 39), 3	and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16: Pr=20.0 psf (roof LL: Lum DOL=1.15					bottom chord. LOAD CASE(S) Standard				11,		
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		Plate DOL= DOL=1.15)	=1.15); Pf=20.0 psf); Is=1.0; Rough Ca	(Lum DC t B; Fully	DL=1.15 Plate Exp.; Ce=0.9	e 9;			FIR	viatit	- internet	Kin	
TOP CHORD	 1-2=0/25, 2-3=-3147/199, 3-5=-3263/393, 5-6=-2601/234, 6-7=-3170/440, 7-8=-3170/440, 8-9=-2579/235, 9-11=-2756/536, 11-12=-1616/470, 2-20=-2357/214 D 19-20=-131/272, 17-19=-4/2400, 16-17=0/2485, 13-16=-114/2485, 12-13=-354/1389 				Cs=1.00; C) Uhbalance design.) This truss I load of 12.0 overhangs) 200.0lb AC from left er) Provide ad) All plates a) This truss I chord live I	Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 200.0lb AC unit load placed on the bottom chord, 24-7-0 from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.							SI 45 VOREW	EAL 844 INEER.	Manufacture More	

- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty		924 Serenity-Roof-B326 A CP TMB GLH			
25060203-01	A04T	Piggyback Base	2	1	Job Reference (optional)	174931983		

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Jul 16 09:27:43 Page: 1 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-WU?trWURtzDUpfUVZZzPgPkLrnI47B23IZfaM3yxYIk 2-3-12 -0-10-8 0-10-8 29-8-12 31-6-0 10-0-12 17-8-0 25-7-0 38-11-7 45-2-4 21-5-4 53-3-0 + 7-7-4 3-9-4 1-9-4 7-9-0 4-1-12 4-1-12 7-5-7 6-2-13 8-0-12 2-3-12 2-2-8 6x8= 4x5= 4x5= 6x8= 7 41 42438 10 6 9 2-2-8 4x6 🚅 5 6¹² 8x10 15 1144 40 4 10-2-8 R 45 39 5x6 ≠ 9-0-12 9-0-12 9-0-12 ė 38 5x8 🚽 12 3 46 4-4 25 2447 248 56 18 1651^台 × 4x8= 4x6= 3x5 u 21 49 17 50 52 1553 54 14 4x6= 6x8= 4x5= 29^{4,x}f0=0 8x10= 6x8= ^{6x8=}23-1-0 4x5= M42081518x12 = 29-7-0 3x5 II 21-7-0 25-7-0,28-1-0 2-6-0 2-6-0 1-6-0 0-1-12 0 1-4 2-5-8 2-5-8 10-0-12 12-4-8 19-0-8 21-5-4 37-5-0 37-7-3 45-2-4 45-6-0 53-3-0 7-7-4 7-7-0 6-8-0 2-4-12 0-1-12 7-9-0 2-3-12 0-2-3 7-7-1 0-3-12

0-1-4

1-6-0

Scale = 1:98.5

11-8-0

11-8-0

Plate Offsets (2	X, Y): [11:0-5-0,0-4-8]	, [15:0-5-0,0-4-8], [16	6:0-6-0,0-5	5-0], [21:0-3-8,	,0-4-0], [23:0-5-8,	0-3-12], [26:0-5-8,Edg	e]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.85 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.61 0.16	(loc) 23-25 23-25 13	l/defl >999 >887 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 485 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 *Excep No.3, 22-16,16-15:2 20-18:2x4 SP No.2	t* 27-3,23-22:2x4 SP k6 SP 2400F 2.0E,	WE	EBS (6-23=0/914, 21-2 20-21=-977/284, 1 7-29=-809/298, 1 11-14=-2304/82, 16-18=-925/165,	3=0/3223 20-29=-8 0-15=-47 12-14=-4 18-30=-8	, 7-23=-256/1 75/310, 4/0, 48/252, 27/191,	1014,	10) This cho 11) * Th on t 3-00	s truss h rd live lo his truss he botto 6-00 tall	as bee ad nor has be m cho by 2-0	en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit	a 10.0 psf bot any other live a live load of here a rectan between the	tom e loads. f 20.0psf gle bottom
WEBS	2x4 SP No.3 *Excep 21-23,7-21,15-10,9-1 No.2, 28-2:2x6 SP N	t* 6,25-6,10-16:2x4 SP 0.2)	(9-30=-695/158, 4 6-25=-264/823, 3 10-16=0/1756, 11	-25=-764/ -25=0/138 -15=0/65	/287, 87, 17-19=-25 8, 29-30=-16 /208	58/0, 2/472,	cho 12) Ref 13) Pro	rd and a er to gird vide med	ny oth ler(s) f chanica	er members, wit for truss to truss al connection (b	h BCDL = 10 connections. y others) of tr	.0psf. uss to
BRACING TOP CHORD	Structural wood shea 3-3-0 oc purlins, exc 2-0-0 oc purlins (3-6	athing directly applied cept end verticals, and -6 max.): 6-10.	dor d NC 1)	D TES Unbalanced	2-26=-143/2540, roof live loads ha	ve been (9/165 considered fo	or	13. 14) One trus	e RT4 M s to bea	Tek co ring wa	onnectors recom alls due to UPLI	imended to c FT at jt(s) 14	onnect and 28.
BOT CHORD WEBS WEBS JOINTS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts 1 Brace at Jt(s): 29, 30 (lb/size) 13=714/ M 14=1865/(at midpt 21-29, 10-15, 16-30 at 1/3 pts 11-14 at J3=714/ Mechanical, 13=714/ Mechanical, 14 40000 0 5 0, 000						; Cat. ne -9 to ne; nd	This late 15) Gra or ti bott LOAD (s connec ral force phical p ne orient om chor CASE(S)	ition is s. urlin re ation c d. Star	for uplift only ar epresentation do of the purlin alon ndard	id does not co es not depict g the top and	onsider the size /or
FORCES	Max Horiz 28=-187 (l Max Uplift 13=-102 (l 28=-99 (L Max Grav 13=824 (L 28=2498 ((lb) - Maximum Com	LC 12) LC 14), 14=-243 (LC C 14) C 37), 14=2517 (LC 3 LC 37) pression/Maximum	15), 39), 3)	right exposed and forces & DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct	d; porch right exp MWFRS for read late grip DOL=1.6 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Ca	osed;C-C ctions sho 0 sf (roof LL (Lum DC at B; Fully	c for members own; Lumber L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	s 1.15 9;		C		OPTH CA	ROLIN	ein-
TOP CHORD	Tension 1-2=0/25, 2-3=-2365 4-6=-4098/293, 6-7= 7-8=-3033/115, 8-9= 9-10=-3043/145, 10- 12-13=-1324/256, 2-	/120, 3-4=-3992/124, -3232/160, -2794/132, 12=-3051/326, 28=-2649/136	4) 5)	Unbalanced design. This truss ha load of 12.0 overhangs n	snow loads have as been designed psf or 1.00 times on-concurrent wit	been cor for greate flat roof le h other liv	nsidered for th er of min roof bad of 20.0 ps ve loads.	his f live sf on		Section 2		SEA 458	NL 44	WILLIN
BOT CHORD	27-28=-33/32, 26-27 25-26=-206/2132, 23 22-23=-153/177, 21- 17-21=0/2964, 14-17 13-14=-164/1138, 19	=-1/21, 3-26=-1431/1 3-25=0/3004, 22=-78/86, 7=0/2964, 9-20=-9/20, 18-19=-9/	27, 6) 7) 8) /20 9)	200.0lb AC u from left end Provide adeo All plates are All plates are	unit load placed o , supported at two quate drainage to MT20 plates unl 2 2x4 MT20 unles	n the bott o points, s prevent ess other s otherwi	com chord, 25 5-0-0 apart. water ponding wise indicate se indicated.	5-7-0 g. ed.			N. N.	NOREW J	EER	A. I.

July 16,2025

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A05	Attic Girder	1	4	Job Reference (optional)	174931984

July 16,2025

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A05	Attic Girder	1	4	Job Reference (optional)	174931984

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-49, 49-50, 50-51, 51-52, 52-53, 13-53; Wall dead load (5.0psf) on member(s).13-22, 6-40
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 39-40, 37-39, 36-37, 34-36, 32-34, 31-32, 29-31, 28-29, 26-28, 23-26, 22-23
- 15) Bearings are assumed to be: , Joint 17 SP No.1 .
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5416 lb uplift at joint 21.
- 17) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 45. This connection is for uplift only and does not consider lateral forces.
- 18) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) LGT4 Hurricane ties must have four studs in line below the truss.
- 22) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 23) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-16=-60, 17-45=-20, 22-40=-30, 6-48=-10, 48-49=-10, 46-49=-10, 46-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 13-53=-10 Drag: 13-22=-10, 40-47=-10, 6-47=-10
 - Concentrated Loads (lb)
 - Vert: 41=-4881 (F), 63=-326 (F)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:50 ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

			r			r	1		
Job	Trus	SS	Truss Type		Qty	Ply	924 Serenity-Roof-	-B326 A CP T	TMB GLH
25060203-01	1 A06	6	Attic Girder		1	4	Job Reference (op	tional)	174931985
Carter Componen	its (Sanford, NC), San	nford, NC - 27332,		Run: 8.73 S Feb 19 2	025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries	s, Inc. Wed Jul	16 00:38:51 Page: 1
				ID:pGeZvt1?IwruiNEY 28-6-	′_xH4fkzRAp 11	o7-RfC?PsB7	0Hq3NSgPqnL8w3uIT	XbGKWrCDoi7	J4zJC?f
-0	-10-8 5-7-13	. 11-0-3 .13-6	17-8-0 -0.16-2-4,	25-10-14 5 .23-3-2	. 31-6-0	32-9-4	39-7-10	46-5-3	53-6-0
0-	-10-8 5-7-13	5-4-5 2-5-1	14 2-8-4 ₁₋₅₋₁₂ 2-11-5	5 2-7-13 2-7-13 2-7-1	3 2-11-5	1-3-4	6-10-6	6-9-9	7-0-13
			12x16=	1-1-0		4x8 ≈			
			6x8 ≉	12x16= 4x5=	12 11	x16=			
Т			8x10 6			12			
		10	5 48	50 51 52	53 4	19			
		6 ¹² 4	开	6x8=	6x8=	-	8x10		
0		4x5 = 66	// \\				11 9 9	60	
-8-		3 05	/ \\	1-14					4x5
1	5x8 =			ъ ъ					16
_ 1	1 2								4x5.
0-0									17
5-1	46	₫ <u></u> ₩		8 37 35 33 32 30	28 26 2				
	⊠ 4x5 ∎	4544 43 61	62 4263 39	36 34 ³ 1	29 27 2	5 23	64 21 20		19 O
		6x8= 4x8= 4x6=	4x5 II 3) 12x16=	3x8 = 3x5	3x8= = 5x6WB:	5x8=	M120HS 3x8 = 3x5=	EASTEN T	
			8x10=	4x6 I	3x5=	0.0=			
			-20-0 18-5-8_21	u -4-12 24-2-4 26-11-8	29-9-0 29-7-83	2-6-8		MOVEMEN	NT OF THE BEARING.
	<u>5-7-13</u> 5-7-13	6-6-0 11-0-3 18	5-9-11 16-5-0 18-7-4		4-4 31-1-1	4 12 4	7 <u>-6-8</u> 39-7-10 -9-42-1-2	<u>46-5-3</u> 6-9-9	<u> </u>
Scale = 1:94.2		0-10-3	2-0-8 1	-4-12 1-4-12 1-4-12	1-3-4	0-2-12			
Plate Offsets (X	(, Y): [7:0-8-0,0-3-	4], [9:0-8-0,0-2-4], [12:0	-10-8,0-2-12], [18:Eddi	5,0-2-4], [23:0-3-8,0-2-8], [28:'0-3-0	f , 0-3-0], [39	9:0-4-12,Edge], [42:0)-8-0,0-4-12],	[45:0-3-8,0-3-0]
Loading	(psf)	Spacing	2-0-0	CSI	DEFL		in (loc) l/defl	L/d PLA	TES GRIP
TCLL (root) Snow (Pf)	20.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC 0.	.93 Vert(I .72 Vert(0	LL) -0. CT) -0.	49 39-42 >803 73 39-42 >532	240 MT20 180 MT20	DHS 187/143 D 244/190
TCDL	10.0	Rep Stress Incr	NO	WB 0.	.87 Horz((CT) 0.	21 18 n/a	n/a	
BCLL BCDL	0.0 [°] 10.0	* Code	IRC2021/TPI2014	Matrix-MSH	Attic	-0.	24 23-41 >812	360 Weig	ht: 2017 lb FT = 20%
			BOT CHORD	45-46=-123/440 43-45	=-731/120	74	1) 4-ply truss t	o be connect	red together with 10d
TOP CHORD	2x6 SP No.2 *Exc	cept* 7-5:2x4 SP 2400F		42-43=-832/16073, 36-	42=-684/1	7253,	(0.131"x3")	nails as follow	WS:
BOT CHORD	2.0E 2x4 SP 2400F 2.0)E *Except* 28-23,28-41	:2x4	29-31=0/16739, 25-29=	=0/17942, =-151/1433	34,	staggered a	t 0-9-0 oc, 2x	4 - 1 row at 0-9-0 oc.
	SP No.2, 44-46:2>	x6 SP No.2, 44-39:2x6 S	8P	22-25=-772/12128, 20-	22=-780/1	6089, 5543	Bottom choi	rds connected	d as follows: 2x6 - 2 rows (4 - 1 row at 0-9-0 oc
WEBS	2x4 SP No.3 *Exc	cept*		40-41=-1028/0, 38-40=	⊧-1102/0,	0040,	Web conne	cted as follow	vs: 2x4 - 1 row at 0-9-0 oc, 2x6 -
	46-2,42-47,6-42,6 13-22:2x6 SP 240	6-51,51-13:2x6 SP No.2,	0.2	37-38=-2921/0, 35-37= 33-35=-3019/0, 32-33=	-2921/0, -3019/0.		3 rows stag 2 rows stag	gered at 0-4- gered at 0-4-	0 oc, Except member 6-42 2x6 - 0 oc, member 13-22 2x6 - 2
OTHERS	2x4 SP No.3	501 2.0L, 40 2.2X4 01 1	0.2	30-32=-3019/0, 26-30=	-1178/736	,	rows stagge	ered at 0-9-0	
	Right 2x4 SP No.3	3 1-6-0	WEBS	24-26=-370/3083, 23-2 3-45=-5311/373, 4-43=	4=-370/30 -700/162,	83	center of the	e member w/	washers at 4-0-0 oc.
TOP CHORD	Structural wood sl	heathing directly applied	lor	41-42=-617/7143, 6-41	=-530/871	7,	2) All loads are	e considered	equally applied to all plies,
	6-0-0 oc purlins, 6	except end verticals, an 6-0-0 max): 7-12	d	6-48=-10655/685, 48-5	i0=-10276/	29, 663,	CASE(S) se	ection. Ply to	ply connections have been
BOT CHORD	Rigid ceiling direc	otly applied or 6-0-0 oc		50-52=-11090/661, 52-49-53=-12360/771 13-	·53=-15532 ·49=-12997	2/928, 7/808	provided to	distribute onl	y loads noted as (F) or (B),
JOINTS	bracing. 1 Brace at Jt(s): 5	50,		2-45=-673/12777, 15-2	20=-220/18	4,	3) Unbalanced	roof live load	ds have been considered for
	51, 52, 53, 41, 38	,		15-22=-640/213, 3-43=	-132/757, -237/4930	,	this design.		
REACTIONS ((size) 18= Me	echanical, 22=0-5-8,		7-48=-147/2364, 12-49	=-204/345 20/2271	1,			SAMPLICA
Ν	46=0-5 Max Horiz 46=-19	-8 0 (LC 10)		10-52=-109/92, 11-53=	-268/67,	70			H CAPO'
N	Max Uplift 18=-420	0 (LC 12), 22=-5361 (LC	>	1∠-53=-5376/307, 10-5 9-52=-4653/281, 9-50=	s=-2531/2 -4233/347	78, ,	\[\ldots \] \[\[\ldots \] \[\ldots \] \[\] \[\[\ldots \] \[\[\] \[\[\ldots \] \[\ldots \] \[\] \[\[\ldots \] \[\] \[\[\] \[I''R	del Linin
Ν	45), 46: 18=888 Max Grav	=-083 (LC 12) 37 (LC 46), 22=792 (LC	12),	7-50=-4773/262, 39-40	=-446/0,		()	à à i	attennin
	46=117	746 (LC 46)		36-38=0/1265, 36-37=-	-671/19,			.2	T K
FURGES	(u) - Maximum Co Tension	ompression/Maximum		35-36=-160/340, 34-35 33-34=-116/0. 31-32=-	i=-22/133, 558/0. 30-?	31=0/1422	Ξ	1	SEAL =
TOP CHORD	7-8=-3092/528, 8-	-9=-3089/526, 10-111715/1441		29-30=-818/0, 28-29=-	736/19, 26	-29=0/2289	9,		45844
	11-12=-1715/1441	1, 12-13=-4561/424,		∠ɔ-∠o=-1/25/0, 24-25= 5-42=-124/1475, 5-43=	-569/0, 23 -2258/111	-25=0/1636	р,		1 E
	13-15=-17753/108	87, 15-16=-17925/1006, 0_2-46=-11550/702	NOTES	-,				E. Think	NOWFER
	1-2=0/24, 2-3=-13	3497/782, 3-4=-17366/10	032,					", Op	SINE SUN
	4-6=-18564/1120,	, 6-7=-5994/479						1111	EN JOU!!!!
								1	STREAM STREAM

RENCO

July 16,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A06	Attic Girder	1	4	Job Reference (optional)	174931985

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 2x4 MT20 unless otherwise indicated.
- 10) All plates are 2x4 M120 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-50, 50-51, 51-52, 52-53, 49-53, 13-49; Wall dead load (5.0psf) on member(s).6-41, 13-23
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-41, 38-40, 37-38, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 420 lb uplift at joint 18 and 5361 lb uplift at joint 22.
- 17) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 46. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 7-12=-60, 12-18=-60, 46-54=-20, 23-41=-30, 6-48=-10, 48-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 49-53=-10, 13-49=-10, 1-2=-60, 2-7=-60 Drag: 41-47=-10, 6-47=-10, 13-23=-10 Concentrated Loads (lb)
- Vert: 42=-4881 (F)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:51 ID:pGeZvt1?IwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

JOH

45844

"

C

Job		Truss		Truss Type		Qty	Ply	924 Sere	nity-Roof-B326	A CP TMB GLH	ł
25060203-0	1	A07		Attic		1	1	Job Dofo	range (antional		174931986
Carter Compone	nts (Sanford, NC	C), Sanford	l, NC - 27332,		Run: 8.73 S Feb 19	2025 Print:	8.730 S Feb 19	9 2025 MiTel	k Industries, Inc. \	Ved Jul 16 00:38:5	2 Page: 1
				20-7-	ID:1d5INYb_Snpjqifl 28-6	l0e1reGzRE -11	BHO-RfC?PsB	70Hq3NSgP	qnL8w3ulTXbGK	WrCDoi7J4zJC?f	
-(0-10-8	8-4-0 8-4-0	<u> </u>	4 17-8-0 4 $4 = 402-11-6$	<u>23-10-14</u> <u>23-3-2</u> 2-7-13 2-7-13 2-7-	31-6-	-0 -5 4 4 7	<u>39-4-14</u> 6-6-7	46-3	-13	53-6-0
0	-10-8	0-4-0	7-10-	6x8=	2-1-13 2-1-13 2-1-	10 2-11-	-3 1-4-7 6x8 ≈	0-0-7	0-10	-14	7-2-5
			10	4x8 ≠	4x8= 4x5=	10	6x8=				
Т			61-2	5							
			4x6 = 4x5 = 61	44	43 45 46	47	48	53	8x10		
			3604		5x8=	5x8=	3x6 II		1354		
0- 8-		E9	59		4			//	55	 4x5. 	
<u>+</u>	5x8 ≠	30			9-1					14	
	12										56
-10-0								, 			150
\perp \sim	42		41 57		37 32 30 29 27 33 31 28	26 24		18	17	16	¥
N	/T18HS 3x10 =		5x8=	4x6 = 4x6 = 3x5	3x5= 3x8=	5x10=	12x16=	3x6	=	10	5x8=
				5x8 II 5x8=	3x10= 5x6 µ 4x5 µ 3x5= 3x8	4x8= 3x6=	=		8x10=		
				17-9-12 16-5-0 20-1	7-4 23-4-12 26-11-8	29-10 29-9-0	0,1 32 -9-4 32-6-8				
	H	8-4-0 8-4-0	<u> </u>	16-2-4 19-2-8	22-0-0 25-6-12 28	-4-4 31-1	$\frac{1-12}{1 4 12} \frac{37}{4}$	7-6-8 39-	-4-14 46-3	-13	53-6-0
Scale = 1:93.6	12:0.2	12020		0-2-12	12 1-4-12 1-4-12 1-4-12 2-2-0 1-4	1-4-12 1-12 0-1-0	0.2-12	<u></u>	2 01 126:0 2 0 0	2 01 [20:0 2 0	0.1.91
Plate Offsets (2	(2:0-2- X, Y): [38:Edg	ge,0-2-0]	, [41:0-3-8,0-2-8]	ο,ο], [<u>μ-</u> μ-μ2ο	0-4-0], [13.Edge,0-0-7]	, [17.0-3-	12,0-3-4], [13	.0-0-12,0-0	5-0], [20.0-5-0,0	-3-0], [20.0-3-0,	0-1-0],
Loading		(psf)	Spacing	2-0-0	CSI	DEI	FL	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) Snow (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC C).97 Ver).95 Ver	rt(LL) -0. rt(CT) -0.	47 31-33 77 31-33	>833 240 >509 180	MT20 MT18HS	244/190 244/190
TCDL BCU		10.0 0.0*	Rep Stress Incr	YES IRC2021/TPI2014	WB (Matrix-MSH).94 Hor Atti	rz(CT) 0. ic -0	15 15 32 21-38	n/a n/a >604 360		
BCDL		10.0						02 2:00		Weight: 454 lt	o FT = 20%
	OVE SD No 2	,		BOT CHORD	41-42=-107/220, 39-4	1=0/3431, -0/5184_3	, 31-33-0/6303	2) Wi	ind: ASCE 7-16	; Vult=130mph ((3-second gust)
BOT CHORD	2x6 SP N0.2 2x4 SP 2400)F 2.0E *	Except* 26-21,40-42:	2x4	28-31=0/6100, 25-28=	=0/4804, 2	20-25=0/1822	, ve ., II;	Exp B; Enclose	ed; MWFRS (env	velope) exterior zone
	SP No.1, 18	-23,26-3	8:2x4 SP No.2		16-17=-11/4069, 15-1	=-2104/0, 6=-72/406	69,	an 12	2-3-13, Exterior	2R) 12-3-13 to 2	23-3-2, Interior (1) 4-8-2 to
WEBS	2x4 SP No.3 No.2,	8 *Except	* 5-39,12-19:2x6 SP		37-38=-1135/0, 35-37 34-35=-3123/0, 32-34	=-1135/0, =-3123/0,		23 Int	terior (1) 36-10-1	4, Exterior(2R) 2 3 to 48-1-13, Ex	terior(2E) 48-1-13 to
	41-2,45-12,2 32,32-31,28-	20-21,36 -27,27-2	·38,45-5,36-35,35-33, 5,25-24,24-20:2x4 SP	33-	30-32=-3176/0, 29-30 27-29=-3176/0, 24-27	=-3176/0, =-690/956	6,	53 ve	8-6-0 zone; cant ertical left and right	ilever left and right exposed;C-C	ght exposed ; end C for members and
WEDGE	No.2, 21-17: Right: 2x4 S	2x4 SP I P No.3	No.1	WEBS	22-24=0/3300, 21-22= 3-41=-681/82, 13-17=	=0/3300 -267/96,		for DC	rces & MWFRS DL=1.60 plate g	for reactions sh rip DOL=1.60	own; Lumber
	Structurel w	and abov	thing directly applied	or	14-17=-578/208, 14-1 38-39=-47/336, 5-38=	6=0/247, 0/1190,		3) TC Pla	CLL: ASCE 7-16 ate DOL=1.15);	6; Pr=20.0 psf (r Pf=20.0 psf (Lu	oof LL: Lum DOL=1.15 m DOL=1.15 Plate
TOP CHORD	2-10-3 oc pu	urlins, ex	cept end verticals, ar	d	19-21=-1403/103, 12- 2-41=0/3476, 5-44=-2	21=-46/11 083/54.	140,	DC Cs	OL=1.15); ls=1. s=1.00: Ct=1.10	0; Rough Cat B;	Fully Exp.; Ce=0.9;
BOT CHORD	Rigid ceiling	directly	applied or 2-2-0 oc		43-44=-2008/54, 43-4	6=-1597/1	1328, 11/0	4) Ur de	nbalanced snow	/ loads have bee	en considered for this
WEBS	bracing. 1 Row at mi	dpt	12-47, 13-21, 3-39		12-48=-2567/0, 7-43=	-138/122,	6-44=0/354,	5) Th	his truss has be	en designed for	greater of min roof live
JOINTS	1 Brace at J 45, 46, 47, 3	t(s): 43, 35, 32,			11-48=0/450, 20-21=0)/2699, 36	6-38=0/1559,	0V	erhangs non-co	oncurrent with of	her live loads.
REACTIONS	27, 24 (size) 15	5= Mech	anical, 19=0-5-8.		38-37=-230/0, 20-22= 33-34=-185/0, 28-29=	-352/0, 25	0-31=-2/95,	6) PI	ovide adequate	drainage to pre	A D a lui
	42 Max Horiz 42	2=0-5-8 2=-190 (I	_C 12)		17-21=0/5329, 6-43=-	=-149/379 342/1277,	ש, ,		Λ	R	Side LINII
	Max Grav 15	5=2298 (LC 48), 19=1793 (LC		8-43=-876/124, 8-46= 11-47=-314/1438, 9-4	-285/0, 7=-923/11	18,			rally	man
FORCES	40 (Ib) - Maximu	3, $42=30um Com$	pression/Maximum		35-36=-1294/0, 33-35 32-33=-303/181, 31-3	=0/1052, 2=-363/11	1,			R. 05	
TOP CHORD	l ension 6-7=-2981/4	11, 7-8=	-2981/411,		27-28=0/1529, 25-27= 20-24=-2165/0	-1405/0, 2	24-25=0/210	6,		SE/	
	8-9=-3607/5 10-11=-2740	36, 9-10)/425, 11	=-2740/425, -12=-1776/184,	NOTES		oon con-!	idorod for		1	+50	TT / E
	12-14=-4116 2-42=-2999/	6/100, 14 91, 1-2=	-15=-4686/98, 0/22, 2-3=-3961/16	this design	I TOOT IIVE IOADS have b	een consi	luerea for		E.F.	A. SNO.	FER AN
	3-5=-4084/3	8, 5-6=-2	2144/162						11	ORE	HNSIII
										Think .	Unin the
										Ju	ly 16,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

ENGINEERING BY RE

ΓΩ

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A07	Attic	1	1	Job Reference (optional)	174931986

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 11) Ceiling dead load (5.0 psf) on member(s). 5-44, 43-44, 43-45, 45-46, 46-47, 47-48, 12-48; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:52 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

SEAL 45844 July 16,2025

11111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A08	Attic	6	1	Job Reference (optional)	174931987

25060203-0	A08		Auto			0	1	Jo	b Refere	ence (op	tional)			
Carter Compone	ents (Sanford, NC), Sanford	d, NC - 27332,		R	un: 8.73 S Feb	19 2025	Print: 8.730 S	6 Feb 19 20	25 MiTek	Industries	s, Inc. W	/ed Jul 16 00:3	8:53	Page: 1
				ID	:1d5INYb_Snp 28	jqifH0e1re -6-11	GzRBHO-Rf	C?PsB70H	q3NSgPq	nL8w3ulT	TXbGKV	VrCDoi7J4zJC	?f	
	0 4 0	16.0	₄ 17-8-0	20-7-5	_25-10-14 		32-10-	7	14		16 2 4	2	52 G O	
	8-4-0	7-10-4	4 1_5_12	2-11-5 2-7-1	4 3 2-7-13 2-	-7-13 2-	11-5 1_4_7	39-4	-14 -7	+	<u>40-3-1</u> 6-10-1	3 4	<u>-0-0-0</u> 7-2-3	
			6xi	3=	· ·		6x	85	-			-		
			4x8 ≠		4x8= 4x5;	=	6x8=							
		.12	5	_ 6 _	7_ 518	_ 9	10							
Т		6	4		1-10-8			11						
		4x6 ≠	43	42	44 45	46	47	\sim	50					
		4x5 = 00		5x8=		5x8=	3x6 II		52 8	10 s				
		2 ⁵⁹³								1453	E A			
0.0	57	8			4						54			
11-8					-1-							4x5 ×		
	5x8 =				0,			\$	//			13	55	
_т	1												\sim	
0-0							_							
2-1				<u>Ål</u> Å				<u>9</u>				R		
± ± 2	41	40 56	39 38 35	<u>34 उउ ३</u> । 32	- 29 26 2 30 27	20 29 2 24 2	22 19 2mg	<u>,</u> ,	17	16		15		
	4x5=	5x8=	4x6= 4x6=	3x5= 3x5	= 3x8=	5x10=	12x1	, 16=	3x6=					5x8=
			5x8 II	3x10=	5x6 II 4x5 II	ı 4	x8=		8	3x10=				
			5x	3=	3x5= 3	3x8= 3	3x6=							
			17-9-12 16-5-0	2 20-7-4 23-4	4-12 26-11	5x6= 29- 1-8 29-9	10-0-32-9 -0 32-6-8	-4						
	8-4-0	13-11-0	16-2-4 19	-2-8 22-0-0	25-6-12 2	28-4-4 3	1-1-12	37-6-8	39-4-	14	46-3-1	3	53-6-0	
0	8-4-0	5-7-0	2-3-4	1-4-12 1-4	-12 1-4-1	12 1-4-1	2 1-4-12	4-9-4	1-10	-6	6-10-1	4	7-2-3	1
Plate Offsets ([5:0-5-8,0-3-0], (X, Y): [40:0-3-8,0-2-8]	[10:0-5-8,0-3-0], [12:], [46:0-4-0,0-2-0]	:0-5-0,0-4-8], [1	<u>4:</u> 특성ge,0-0-7],	[16:0-3-12,0)-3-4], [18	5:0-6-42,0-	3-0], [25:0	-3-0,0-3-	·0], [27:0	0-3-8,0	-1-8], [37:Ed	ge,0-2-4],	
Looding	(pof)	Specing	2.0.0	C 5			DEEL	in	(loo)	l/dofl	L /d			
TCLL (roof)	(psi) 20.0	Plate Grin DOI	2-0-0	TC		0.65	Vert(LL)	-0 47	(100)	>837	240	MT20	244/10	90
Snow (Pf)	20.0	Lumber DOL	1.15	BC		0.95	Vert(CT)	-0.76	30-32	>513	180	11120	21010	
TCDL	10.0	Rep Stress Incr	YES	WB		0.93	Horz(CT)	0.15	14	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2	.014 Mat	rix-MSH		Attic	-0.32	20-37	>605	360			
BCDL	10.0											Weight: 45	4 lb FT = 2	0%
LUMBER			BOT CH	ORD 40-41	=-106/246, 3	8-40=0/3	3385,		2) Wir	d: ASCI	E 7-16;	Vult=130mp	oh (3-second	gust)
TOP CHORD	2x6 SP No.2			35-38	=0/3319, 32-	35=0/51	60, 30-32=0	0/6294,	Vas	d=103m	nph; T(CDL=6.0psf;	BCDL=6.0pst	f; h=25ft; Cat.
BOICHORD	2X4 SP 2400F 2.0E	"Except" 25-20,39-41 7.2x4 SP No 2	1:2x4	18-19	=-2285/0, 16	-18=-209	93/0, 19-24=0	0/1030,	and	C-CEx	terior(2	2E) 0-2-12 to	5-6-15, Inter	rior (1) 5-6-15
	0			15-16	=-16/4051, 1	4-15=-74	1/4051,		to 1	2-3-13,	Exterio	or(2R) 12-3-1	3 to 23-3-2, I	Interior (1)
WEBS	2x4 SP No.3 *Except	t* 41-1,4-38,11-18:2>	x6	36-37	=-1129/0, 34	-36=-112	29/0,		23-3	3-2 to 25	5-10-14	4, Exterior(2F	R) 25-10-14 to	o 36-10-3,
	SP NO.2, 40-1 44-11 19-20 35	-37 44-4 35-34 34-32	2 32-	29-31	=-3124/0, 31 =-3185/0, 28	-33=-312	24/0, 35/0.		53-	6-0 zone	e:C-C f	or members	and forces &	MWFRS for
	31,31-30,27-26,26-2	4,24-23,23-19:2x4 S	P	26-28	=-3185/0, 23	-26=-708	3/939,		rea	ctions sh	nown; l	umber DOL	=1.60 plate g	Irip
	No.2, 20-16:2x4 SP	No.1		21-23	=0/3264, 20-	21=0/32	64		DO	L=1.60		B 00.0		
WEDGE	Right: 2x4 SP No.3		WEBS	2-40=	-705/77, 12-1 579/209 1	16=-264/ 3-15-0/2	99, 947		3) TCI Plat	L: ASC	E 7-16	; Pr=20.0 ps Pf=20.0 psf	(roof LL: Lur	M DOL=1.15
	Structural wood sho	athing directly applied	d or	37-38	=-45/325, 4-3	37=0/118	32,		DO	L=1.15);	; ls=1.0	; Rough Cat	B; Fully Exp	.; Ce=0.9;
I OF OTOND	2-10-2 oc purlins, ex	cept end verticals, a	and	18-20	=-1401/105,	11-20=-4	17/1134,		Cs=	=1.00; Ć	t=1.10			
	2-0-0 oc purlins (3-9	-9 max.): 5-10.		1-40=	0/3451, 4-43	=-2073/5	8, 86/1222		4) Unb	alanceo	d snow	loads have l	oeen conside	ered for this
BOT CHORD	Rigid ceiling directly	applied or 2-6-0 oc		42-43 45-46	=-1999/08, 4 =-1785/1228	-∠-40=-1t 8, 46-47=	-2450/0.		5) Pro	ign. vide ade	equate	drainage to	prevent water	r pondina.
WEBS	1 Row at midot	11-46, 12-20, 2-38		11-47	=-2546/0, 6-4	42=-139/	121, 5-43=	0/353,	6) All	plates a	re 2x4	MT20 unless	otherwise in	dicated.
JOINTS	1 Brace at Jt(s): 42,			7-44=	0/62, 8-45=0	/130, 9-4	6=-171/78	,	7) This	s truss h	as bee	en designed f	for a 10.0 psf	bottom
	44, 45, 46, 34, 31,			10-47 25-26	=0/447, 19-2 230/0_10 1	21251/	5, 35-37=0/ 0 24-25- 3	(1556, 319/0	cho	rd live lo	oad noi	nconcurrent	with any othe	er live loads.
	26, 23			32-33	=-185/0, 27-2	28=-531/	0, 29-30=-3	3/94,				mm		
REACTIONS	(size) 14= Mech	anıcal, 18=0-5-8,		12-20	=-573/324, 2	-38=-131	/398,					"TH !	JARO,	11,
	Max Horiz 41=-222 (1	LC 15)		16-20	=0/5298, 5-4	2=-342/1	280,			∧		Oniet	Sik	Nº1
	Max Grav 14=2292 ((LC 47), 18=1790 (LC	0	7-42= 10-46	-314/1437	40=-203/ 8-46=-92	0, 20/118.				RIA	inte	I ANI	in
	39), 41=29	957 (LC 37)		34-35	=-1298/0, 32	-34=0/10)56,					:0	1	N 2

FORCES (lb) - Maximum Compression/Maximum 31-32=-307/177, 30-31=-355/12, Tension 26-27=0/1522, 24-26=-1401/0, 23-24=0/2101, lension 5-6=-2972/412, 6-7=-2972/412, 7-8=-3601/537, 8-9=-2737/426, 9-10=-2737/426, 10-11=-1773/186, 11-13=-4095/106, 13-14=-4666/103, 1-41=-2958/58, 1-2=-3909/28, 2-4=-4057/44, 45, 2422/452 TOP CHORD 19-23=-2162/0 NOTES 1) Unbalanced roof live loads have been considered for this design. 4-5=-2133/163

42 42 MGINEEL July 16 HAA DHERER. ON THE STREET SOLUTION July 16,20

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	A08	Attic	6	1	Job Reference (optional)	174931987

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-43, 42-43, 42-44, 44-45, 45-46, 46-47, 11-47; Wall dead load (5.0psf) on member(s).4-37, 11-20
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:53 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job		Truss		Truss Type			Qty		Ply	924 Serer	nity-Roof	-B326	A CP TMB GL	н
25060203-0	1	A09		Attic Supporte	d Gable		1		1	lob Pofor	ence (cr	tional)		174931988
Carter Compone	nts (Sanford, NC	C), Sanford	i, NC - 27332,			Run: 8.73 E May 9	2024 P	rint: 8.7	30 E May 9	2024 MiTek	Industries	s, Inc. W	ed Jul 16 09:32:	11 Page: 1
						ID:8kdnaNVfrXy7X5i	iJovJ26 11	itzRBB2	2-g2CC59kY	mJ_Syrz?Gr	nFXwqDD)pyFwSy	/WwGammXyxY	EY
ŀ	8-4	-0	16-2-4	17-8-020-7	7-5 <u>23-3</u>	-225-10-14	31	- <u>6-0</u>	-10-7	4	<u>16-3-13</u>			53-6-0
	8-4-	-0	7-10-4	1-5-122-1 6x8=	1-5 2-7-	13 2-7-13 2-7-1	3 2-	11-5 1.	-4-7 6x8≈		13-5-6			7-2-3
				4x8 =	10	4x5=	45	6x8	3=					
Т				10					o 17					
			4x6 =	69	71	72 74	73	70		19	4x6 ≈			
			6 6 5 80		5x8=	12x16 II 4x5 II	5x8=				20 2183	>		
0-8		78 479										83 23		
÷	3 x5 2		X	××						×			24	
1														8 <u>4</u> 6
-10-0					× p									2880_
⊥ ∾⊥ 68														
3:	x5 11 67 60	65	64 63 62 6 3	160 59 5 66 55 x6= 5x8⊪	5 58 52 3x8=	2 50 49 47 3x5= 3x5=	46 4 3x8=	4 3 412 3x8	349 38 =	37 36 3 3x6=	5 34	33	32 31	30 29 4x5=
				3x8=	3x	5= 3x5=	= 3: _ 29-5	x5= 10-0 3	5x8 n 32-9-4					
	8-4	-0	13-11-0	16-5-0 20 16-2-4 19-2-8	0-7-4 23 3 22-0-0	-4-12 26-11-8) 25-6-12 28-4	29-9- 4-4 31	0 32- 1-1-12	6-8 37-	6-8	4	6-3-13		53-6-0
f Scale – 1:90.9	8-4-	-0	5-7-0	2-3-4 1-4-12 0-2-12 1-	2 1-4-12	2-2-0 4-12 1-4-12	1-4-1	2 1-4 1-0 (-12 4-9)-2-12	9-4		8-9-5	l	7-2-3
Plate Offsets (2	X, Y): [7:0-2-0	6,Edge],	[11:0-5-12,0-3-0], [16	<u>1-4-12</u> :0-5-12,0-3-0], [40	D:Edge,0-	<u>1-4-</u> 2-4], [46:0-3-0,0-3	. <u>12 1</u> 3-0], [5	-3-12 8:Edge	e,0-2-4], [7	2:Edge,0-4	-6]			
Loading		(psf)	Spacing	2-0-0	с	SI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	T B	C (C (0.44 0.11	Vert(L Vert(C	.L) -0.(CT) -0.(01 10 01 10	>999 >999	240 180	MT20	244/190
TCDL		10.0	Rep Stress Incr	YES IRC2021/TPI201		/B (atrix-MSH	0.65	Horz((CT) 0.0	02 28	n/a	n/a		
BCDL		10.0	0000		-								Weight: 504	lb FT = 20%
	2x6 SP No 2	,			Max	Uplift 28=-48 (LC 30=-29 (LC	; 14), 2 ; 15) 3	29=-99 31=-47	(LC 15),	TOP C	HORD	1-68= 3-4=-7	-88/57, 1-2=-6	3/38, 2-3=-65/112, 8/222_5-6=-100/267
BOT CHORD	2x4 SP No.2	. *	* 40 50 47 20.200 05			32=-41 (LC 3444 (LC	; 15), 3 ; 15), 3	33=-44 3545	(LC 15),			6-8=-1	120/313, 8-9=- 903/328_11	-135/359, 9-10=-115/375, -12=-2147/593
WEBS	No.2, 72-17,	72-10:2x	4 SP No.2			37=-49 (LC	; 15), 3	38=-13 50- 12	2 (LC 40),			12-13	=-2147/593, 1 =-2122/593, 1	3-14=-2804/764, 5-16=-2122/502
BRACING	2x4 SP No.3	5				60=-127 (L	C 40), C	62=-13 62=-5	0 (LC 14),			16-17	=-894/327, 17	-18=-121/375, 20- 127/222
TOP CHORD	Structural w 6-0-0 oc pur	ood shea lins, exc	athing directly applied ept end verticals, and	or		65=-44 (LC	; 14), 6 ; 14), 6	6=-37	(LC 14), (LC 14),			20-22	=-121/275, 22	-20=-137/322, -23=-109/230,
BOT CHORD	2-0-0 oc pur Rigid ceiling	lins (4-1- directly	8 max.): 11-16. applied or 10-0-0 oc			75=-48 (LC	; 14), e ; 14)	00=-20	(LC 15),			25-24	=-102/205, 24 =-147/160, 26	-25=-122/182, -27=-170/134,
	bracing, Ex 6-0-0 oc bra	cept: cing: 48-	51.		Max	30=147 (LC) 30=147	28), 222),	29=23 31=16	7 (LC 45), 5 (LC 41),			27-28	=-220/127	
WEBS	1 Row at mi	dpt	10-58, 17-40, 18-38, 19-37, 9-60, 8-62			32=149 (LC 34=219 (LC	C 22), C 45),	33=172 35=23	2 (LC 45), 5 (LC 45),					
JOINTS	1 Brace at J	t(s): 71, 55, 52	,			37=208 (LC 39=1110 (L	C 45), 3 _C 40)	38=113 , 42=33	3 (LC 53), 33 (LC 20)	,				
DEACTIONS	47, 44	0, 0 <u>2</u> ,	0 0 00 00E/E2 6 0			45=369 (LC 51=319 (LC	C 20), 4 C 20), 4	48=319 53=368	9 (LC 20), 8 (LC 20),					
REACTIONS	(ID/SIZE) 20 30	0=123/53 0=147/53	3-6-0, 29=235/53-6-0, 3-6-0, 31=165/53-6-0,			56=330 (LC 60=123 (LC	C 20), C 51),	59=11 [:] 62=222	19 (LC 40) 2 (LC 43),	,				
	34	2=149/53 4=160/53	3-6-0, 33=161/53-6-0, 3-6-0, 35=169/53-6-0,			63=242 (LC 65=181 (LC	C 43), C 43),	64=23 ⁻ 66=16	1 (LC 43), 5 (LC 21),				annun (ADUIN
	3	7=126/53 9=916/53	3-6-0, 38=-22/53-6-0, 3-6-0, 42=156/53-6-0,			67=164 (LC 75=160 (LC	C 43), C 28)	68=122	2 (LC 21),		(1.1	RTHU	AHOLI
	4: 5 ⁻	5=138/53 1=121/53	3-6-0, 48=121/53-6-0, 3-6-0, 53=135/53-6-0,	FORCES	(lb) Top	- Maximum Comp	ressio	n/Maxi	imum			Er	not	Millin
	50	6=149/53)=-13/53	3-6-0, 59=930/53-6-0, -6-0, 62=142/53-6-0,		Ten	51011							·2` 7	K
	6: 6:	3=170/53 5=157/53	3-6-0, 64=160/53-6-0, 3-6-0, 66=163/53-6-0,										SE	AL
	6 7	7=152/53 5=123/53	8-6-0, 68=115/53-6-0, 8-6-0										400	544
	Max Horiz 68	8=-221 (l	_C 15)									E.P.	N.SNO.	NEER ON
												11	REIA	IOHNS
													minin	JOILIN

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A	CP TMB GLH	17 400 4000
25060203-01	A09	Attic Supported Gable	1	1	Job Reference (optional)		174931988
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 E May 9 2 ID:8kdnaNVfrXy7X5i.	2024 Print: 8. JovJ26tzRBB	- 730 E May	9 2024 MiTek Industries, Inc. Wee /mJ_Syrz?GrnFXwqDDpyFwSyW	d Jul 16 09:32:11 /wGammXyxYEY	Page: 2
 BOT CHORD 67-68=-96/2 65-66=-96/2 63-64=-96/2 60-62=-96/2 56-59=-104/ 51-53=-32/1 45-48=-32/1 39-42=-82/2 37-38=-87/2 30-31=-87/2 28-29=-87/2 54-55=-30/1 50-52=-39/1 47-49=-39/1 40-41=-11/8 WEBS 5-64=-191/7 26-30=-116/ 58-59=-109/0 39-40=-108 18-38=-74/1 20-35=-195/ 23-33=-131/ 9-60=-84/16 4-65=-142/8 2-67=-134/1 41-42=-202/ 48-49=-218/ 69-71=-37/6 12-71=-35/4/ 14-74=-22/5 13-71=-654/ 14-73=-715/ 55-56=-118/	12, 66-67=-96/212, 12, 64-65=-96/212, 12, 64-65=-96/212, 12, 59-60=-96/212, 213, 53-56=-52/140, 26, 48-51=-56/104, 25, 42-45=-48/139, 100, 38-39=-87/212, 12, 35-37=-87/212, 12, 35-37=-87/212, 12, 31-32=-87/212, 12, 57-58=-11/91, 55-57=-11/ 14, 52-54=-30/114, 08, 49-50=-39/108, 08, 44-47=-31/115, 41-44=-1 4 6, 25-31=-129/79, 94, 27-29=-189/180, 10/31, 10-58=-1096/109, 3/62, 17-40=-1093/151, 71, 19-37=-168/77, 180, 22-34=-179/77, 78, 24-32=-118/72, 77, 8-62=-183/80, 6-63=-201/8 3, 3-66=-126/114, 43, 56-58=-91/14, 56-57=-20: (0, 45-46=-181/0, 53-54=-181/0, 0, 50-51=-218/0, 10-69=-39/6 38, 71-74=-441/2725, 12775, 70-73=-42/627, 35, 11-69=-24/19, 16-70=-27/ 67, 13-72=-1/25, 15-73=-236/ 3, 13-74=-65/152, 189, 13-74=-65/152, 189, 13-74=-65/152, 189, 13-74=-65/152, 189, 13-74=-61/152, 12, 53-55=-120/0, 52-53=-12: (0, 47-48=-100/0, 45-47=-118	 12) Bottom chord live load (40.0 psf) a chord dead load (5.0 psf) applied of 55-57, 54-55, 52-54, 50-52, 49-50, 41-44, 40-41 13) N/A 14) Graphical purlin representation do or the orientation of the purlin alon bottom chord. 191, 15) Attic room checked for L/360 defle LOAD CASE(S) Standard 1/84, 1, 3/0, 0, 0, 44, 40, 40, 40, 40, 40, 40, 40,	nd addition only to room 47-49, 46- es not depic g the top ar ction.	al bottom n. 57-58, 47, 44-46, ct the size nd/or	nij_syl2 (Ginf Awdp Dþýr wsyv	WGallinxyXTET	
 44-45=-125/ NOTES 1) Unbalanced roof live loa this design. 2) Wind: ASCE 7-16; Vult= Vasd=103mph; TCDL=6 II; Exp B; Enclosed; MW and C-C Corner(3E) 0-1 5-5-15 to 12-3-13, Corne Exterior(2N) 23-3-2 to 25 36-10-3, Exterior(2N) 23-3-2 to 25 36-10-3, Exterior(2N) 23-6 48-1-13 to 53-6-0 zone; (MWFRS for reactions sh grip DOL=1.60 3) Truss designed for wind only. For studs exposed see Standard Industry G or consult qualified build 4) TCLL: ASCE 7-16; Pr=2 Plate DOL=1.15); Is=1.0; Roug Cs=1.00; Ct=1.10 5) Unbalanced snow loads design. 6) Provide adequate draina 7) All plates are 2x4 MT20 8) Gable studs spaced at 2 9) This truss has been desi chord live load noncont 10) * This truss has been desi 100 the bottom chord in a 3-06-00 tall by 2-00-00 v chord and any other met 11) Ceiling dead load (5.0 ps 71-72, 72-74, 73-74, 70-(5.0psf) on member(s).1 	 N. 42-44=-112/20, 40-42=-10; (a) 42-44=-112/20, 40-42=-10; (b) 42-44=-112/20, 40-42=-10; (c) 42-44=-112/20, 40-42=-10; (c) 42-44=-112/20, 40-42=-10; (c) 48-10, 40-40; (c) 48-1-13, Corner(2N) (c) 48-1-13, Corner(3E) (c) 60 + 100	3/10 Cat. to 4. 5. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1.			Action and the second s	SEAL 45844	00 4 4 4 4 4 5 6,2025
WARNING - Verify design	n parameters and READ NOTES ON T	HIS AND INCLUDED MITEK REFERENCE PAGE MII-7473	rev. 1/2/2023 E	BEFORE USE		ENGINEERING	BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	B01	Common	1	1	Job Reference (optional)	174931989

Scale = 1:76.3

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:54 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-0-8 23-2-0 -0-10-8 <u>3-11-4</u> 0-10-8 <u>3-11-4</u> 8-10-6 11-7-0 21-7-0 -2-8-10 1-7-0 4-11-2 10-0-0 0-10-8 4x5= 3x5 🛷 8 3x5 🛷 9 3x5💊 7 5 ⁶ ³⁴10 11 12 33 10 R.F Þ 26 10-7-13 10-9-2 12 25 0-11-12 4 13 對 3x5 II 4x5 3x6 i 14 3 2 15 8-8-2 0-0 16 Ŕſ ₿ 2218²⁰ 23 22 19 18 3x8= 3x10 **I** 3x5= 5x6 II

	8-9-0	17-2-12	18-1-7 17-3-4 21-7-0	23-2-0 22-9-12
r	8-9-0	8-5-12	0-0-8 3-5-9 0-10-3	1-2-12 0-4-4
'): [2:0-7-7,Edge], [24:0-0-0,0-0-10]				

Plate Offsets	(X, Y): [2:0-7-7,Edge],	[24:0-0-0,0-0-10]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.57 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.16 0.02	(loc) 18-19 23-31 17	l/defl >917 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except 6-20:2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shee 5-5-4 oc purlins, exc Rigid ceiling directly bracing. 1 Brace at Jt(s): 24, 25, 27 (size) 2=0-5-8, 1 Max Horiz 2=265 (LC Max Uplift 2=-50 (LC Max Grav 2=853 (LC 21=753 (LC	* 17-15:2x6 SP No.2, -6-0 athing directly applied cept end verticals. applied or 10-0-0 oc 7=0-3-8, 21=0-5-8 : 13) 14), 21=-225 (LC 15) : 21), 17=446 (LC 22), C 22)	1) 2) or 3) 4)	Unbalanced this design. Wind: ASCE Vasd=103m; II; Exp B; En and C-C Ext to 8-7-0, Ext to 21-0-8, Ex left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 to erior(2E) 8-7-0 to trerior(2E) 21-0-8 t exposed ; end ver charterior(2E) 21-0-8 t exposed ; end ver charter	e been of h (3-sec BCDL=6 anvelope o 2-1-8, I 44-7-0, I tical left forces 8 =1.60 pla in the pla d (norm nd Deta signer as (roof LL Lum DC B; Fully	considered fo cond gust) .0psf; h=25ft;) exterior zor Interior (1) 2- terior (1) 14- zone; cantile and right & MWFRS for ate grip ane of the tru al to the face Ils as applical s per ANSI/TF L=1.15 Plate Exp.; Ce=0.5	r ; Cat. ne 1-8 -7-0 ever r ss), ble, PI 1. 1.5 e 2;						
TOP CHORD BOT CHORD WEBS	Tension 1-2–0/34, 2-4=-911/7 6-7=-332/144, 7-8=-3 9-11=-301/119, 11-1; 12-13=-203/16, 13-1; 14-15=-345/1, 15-16; 2-23=-214/696, 21-2; 20-21=-11/617, 19-2; 18-19=-37/231, 17-1; 4-23=-237/181, 21-2; 6-26=-463/113, 25-2;	79, 4-6=-760/90, 315/186, 8-9=-280/153 2=-323/75, 4=-293/12, =0/42, 15-17=-343/0 3=-41/499, 0=-37/231, 8=-547/345, 6=-468/121,	6) 3, 7) 8) 9) 10	design. This truss ha load of 12.0 overhangs n All plates are Gable studs This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b	is been designed f psf or 1.00 times fl on-concurrent with 2x4 MT20 unless spaced at 2-0-0 or is been designed f ad nonconcurrent v nas been designed n chord in all area: y 2-00-00 wide wi	or greate at roof le other liv otherwi 5. or a 10.0 with any for a liv s where Il fit betw	er of min roof bad of 20.0 per ve loads. se indicated.) psf bottom other live loa e load of 20.0 a rectangle veen the botto	live sf on ds. Opsf		Commun		SEA	ROJA Idia A L Idia A	Annun
NOTES	24-25=-413/70, 24-2 27-28=-419/70, 20-2 23-24=-69/89, 6-23= 7-26=-31/42, 9-24=-1 12-28=-382/221, 13-	7=-407/54, 8=-471/86, 0/345, 8-25=-128/164 184/31, 11-27=-81/63, 19=-20/49, 14-18=-65	, , /82 LC	chord and ar) One H2.5A S recommende UPLIFT at jt(and does no DAD CASE(S)	y other members. Simpson Strong-Til ed to connect truss s) 2 and 21. This of t consider lateral for Standard	e connection to bear connection prces.	ctors ng walls due on is for uplift	to t only			N. R.	NOREW J	EFR. O	

July 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	B02	Common Girder	1	2	Job Reference (optional)	174931990

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:54 ID:IFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:73

Plate Offsets (X, Y):	[1:Edge.0-2-5], [3:0-0-12.0-1-12],	[11:0-8-0.0-7-12], [12:0-8-4.0-1-12], [13:0-8-0.0-3-0]
	[ago,o _ o], [o.o o,o],	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.37 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.02	(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 479 lb	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x10 SP 2400F 2.0f 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 4-8-12 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-5-8, Max Horiz 1=-227 (L Max Uplift 7=-262 (L Max Grav, 1=8516 (athing directly applied applied or 6-0-0 oc 5-9 7=0-7-12, 9=0-5-8 C 10) C 12) C 5) 7=652 (I C 19)	2) 3) d or 4) 5)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Enc cantilever left right exposed TCLL: ASCE Plate DOL=1	considered equally ed as front (F) or ba- tion. Ply to ply con- istribute only loads vise indicated. roof live loads have 7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e and right exposed t; Lumber DOL=1.1 7-16; Pr=20.0 psf (15); Pf=20.0 psf (y applie ack (B) innection s noted e been o h (3-sec BCDL=6 envelope d; end v 60 plate (roof LL Lum DC	d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) .0psf; h=25ft) exterior zon rertical left an grip DOL=1. .: Lum DOL= DL=1.15 Plate	DAD or ; Cat. ne; id 60 1.15	12) Use 26- spa end bott 13) Use 26- left cho 14) Use 14- left cho 15) Fill	Simpso 10dx1 1/ ced at 6 to 21-10 om chor Simpso 10dx1 1/ end to c rd. s Simpso 10dx1 1/ end to c rd. all nail h CASE(S)	on Stro 2 Trus -0-0 or 0-0 to d. on Stro 2 Trus onnec on Stro 2 Trus onnec on Stro 2 Trus onnec	ing-Tie HTU28 (is, Single Ply Gi c max. starting a connect truss(es ing-Tie HTU28 (is) or equivalent t truss(es) to bac ong-Tie HTU26 (is) or equivalent t truss(es) to bac there hanger is i indard	20-16d Girder, rder) or equivalent at 12-0-0 from the left b) to back face of 20-16d Girder, at 17-10-0 from the ck face of bottom 10-16d Girder, at 19-10-0 from the ck face of bottom n contact with lumber.	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0 131"%3"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces. Use Simpson Strong-Tie HTL128 (26.104 Girder 					1) Dead + Show (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-60, 4-7=-60, 14-17=-20 Concentrated Loads (lb)				9	
Top chords staggered Bottom chords staggered Web connor Except me member 3-	 (b. 10 Hz) Think das follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 3 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, member 3-12 2x4 - 1 row at 0-7-0 oc. Continued on page 2 					t at face t oft ottom		11112	anna Anna	458 NGIN NEW J	44 IEER. ON 1111 IOHNSUITUUT 9 16,2025			

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	B02	Common Girder	1	2	Job Reference (optional)	174931990

Vert: 10=-1955 (B), 13=-1877 (B), 12=-1877 (B), 8=-740 (B), 21=-1877 (B), 22=-1877 (B), 23=-1877 (B), 24=-1955 (B), 25=-1955 (B), 26=-740 (B), 27=-914 (B)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:54 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	C01	Half Hip	4	1	Job Reference (optional)	174931991

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:54 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 20-11-8 7-0-5 13-9-3 20-2-8 0-10-8 7-0-5 6-8-13 6-5-5 0-9-0 3x5 ≠ 7 -8-0 12 19 3x5 ≠ 18 12 6 6 3x5 🞜 11-0-3 5 10-0-14 10-0-14 10-0-14 3x5 🞜 4 3x5 ≉ 17 3 0-8-] . X 10 9 11 20 21 2x4 II 3x5= 3x5 II 3x8= 3x5= 20-11-8 7-0-5 13-9-3 20-7-0 7-0-5 6-8-13 6-9-13 0-4-8

Scale = 1:71.5	
Plate Offsets (X, Y):	[2:0-3-1.0-0-1]. [8:0-1-12.0-1-8]

		. , ,										-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.62 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 II; Exp B; and C-C F to 17-4-4, vertical le MWFRS f grip DOL= 2) TCLL: AS Plate DOU DOL=111	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Left 2x4 SP No.3 1 Structural wood she 4-8-11 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=387 (LC Max Uplift 2=-49 (LC Max Uplift 2=-49 (LC Max Uplift 2=-49 (LC Max Grav 2=954 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-4=-1437 6-7=-166/102, 7-8=- 2-11=-399/1321, 9-1 8-9=-159/721 4-11=0/263, 4-9=-68 6-8=-1026/227 CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) 1-7-4-4 to ft exposed;C-C for mer or reactions shown; Lu =1.60 CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (et* 7-8:2x4 SP No.2 1-6-0 athing directly applie xcept end verticals. applied or 10-0-0 oc 7-8, 6-8 3=0-5-8 C 14) 2 14), 8=-342 (LC 14) C 5), 8=1731 (LC 21) appression/Maximum 7/30, 4-6=-824/0, 270/93 1=-320/1321, 91/185, 6-9=0/637, (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zonn 2-1-8, Interior (1) 2-1 20-4-4 zone; end mbers and forces & imber DOL=1.60 plat roof LL: Lum DOL=1 um DOL=1.15 Plate 8: Evilly, Exp. Con-20	3) 4) 5) 6) d or 7) 8) 9) 9) LC 1) 1) Cat. e -8 e .15	Unbalanced design. This truss he load of 12.0 overhangs n All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommenda UPLIFT at jtt and does no Hanger(s) or provided suff lb down and design/selec responsibility DAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-7 Concentrat Vert: 8=-	snow loads have I as been designed I psf or 1.00 times f on-concurrent with a 3x5 MT20 unless as been designed f ad nonconcurrent i has been designed m chord in all area by 2-00-00 wide wi hy other members, Simpson Strong-Ti ed to connect truss (s) 8 and 2. This cut t consider lateral fr other connect truss (s) 8 and 2. This cut t consider lateral fr other connect truss (s) 8 and 2. This cut t consider lateral fr other connect truss (s) 8 and 2. This cut t consider lateral fr other connect to support to a such connect y of others. Standard bw (balanced): Lur 15 ads (lb/ft) =-60, 8-13=-20 ed Loads (lb) 747	been cor for great lat roof k o other lis o ther lis o therwi for a 10.0 with any d for a liv s where e connect s to bear onnection orces. device(s concentra -0 on bo' cction de	esidered for the er of min rood bad of 20.0 p ve loads. se indicated. D psf bottom other live loa e load of 20.0.1 e load of 20.1 DL = 10.0psi ctors ing walls due n is for uplift) shall be ated load(s) 7 vice(s) is the rease=1.15, I	his f live sf on ads. Opsf om f. to only 752 The Plate			A CONTRACT OF A	SEA 4584	ROLINA CHARACTER 4	Juning

- vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2)
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minim

July 16,2025

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	C02	Half Hip	1	1	Job Reference (optional)	174931992

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:54 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3		
Plate Offsets (X_Y)	[1:0-5-1 Edge]	[7.0-1-12 0-1-8]

Loading (psf) Spacing 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf) 20.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCLL 0.0* Code IRC20.0	21/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.63 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%
LUMBER 3 TOP CHORD $2x4$ SP No.2 4 BOT CHORD $2x4$ SP No.3 *Except* 6-7:2x4 SP No.2 4 WEBS $2x4$ SP No.3 *Except* 6-7:2x4 SP No.2 5 OTHERS $2x6$ SP No.2 5 SLIDER Left 2x4 SP No.3 1-6-0 5 BRACING TOP CHORD Structural wood sheathing directly applied or 4 -7-1 oc purlins, except end verticals. 6 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6 WEBS 1 Row at midpt 6-7, 5-7 7 REACTIONS (size) 1=0-3-8, 7=0-5-8 7 Max Horiz 1=370 (LC 14) Max Uplift 1=300 (LC 5), 7=1714 (LC 20) FORCES (lb) - Maximum Compression/Maximum tension 1 TOP CHORD 1-3=-1401/30, 3-5=-812/0, 5-6=-162/100, 6-7=-265/93 6 BOT CHORD 1-3=-1401/30, 3-5=-812/0, 5-6=-162/100, 6-7=-108/227 7 NOTES 1 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.	 3) Unbalanced : design. 4) This truss ha chord live loa 5) * This truss h on the botton 3-06-00 tall b chord and an 5) One H2.5A S recommende UPLIFT at jt(and does not Hanger(s) or provided suff lb down and design/select responsibility LOAD CASE(s) 1) Dead + Snc Increase=1. Uniform Loa Vert: 1-6: Concentrate Vert: 7=-1 	snow loads have be s been designed fo d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members, w impson Strong-Tie d to connect truss is s) 7 and 1. This cor consider lateral for other connection d cicient to support co 129 lb up at 20-7-0 ion of such connect of others. Standard w (balanced): Lum 15 ads (lb/ft) =-60, 7-12=-20 ad Loads (lb) 747	een con r a 10.0 ith any ior a livv where fit betw with BC connect cos. evice(s ncentra 0 on bot tion dev ber Inci	sidered for th) psf bottom other live loa e load of 20.0 a rectangle reen the botto DL = 10.0psf tors ng walls due h is for uplift of) shall be ted load(s) 7 tom chord. T <i>vice</i> (s) is the rease=1.15, F	nis ds.)psf om to only 52 The Plate			the	SEAL 4584	ROUTER SOLUTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	D01	Common Supported Gable	1	1	Job Reference (optional)	174931993

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:54 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

18-6-0

Scale = 1:56.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

L oading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 14=18-6-C 21=18-6-C 24=18-6-C 24=18-6-C 24=18-6-C 24=18-6-C 23=168-C Max Uplift 14=-50 (L 17=-47 (L 23=-168 (Max Grav 14=190 (L 17=172 (L 19=224 (L 23=228 (L 23=228 (L)	athing directly applied cept end verticals. applied or 6-0-0 oc), 15=18-6-0, 20=18-6), 22=18-6-0, 23=18-6), 22=18-6-0, 23=18-6) LC 12) C 11), 15=-163 (LC 1 LC 14), 22=-46 (LC 1 LC 14), 22=-46 (LC 1 LC 14), 22=-46 (LC 1 LC 25), 15=221 (LC 2 .C 22), 15=223 (LC 2 .C 22), 22=224 (LC 2 .C 21), 22=172 (LC 2 .C 25), 24=205 (LC 2)	W 1) d or 2) 6-0, 6-0, 5-0, 5), 5), 5), 5), 30, 6), 2), 4), 4), 6)	EBS 6 2 2 2 2 2 2 2 2 2 2 2 2 2	S-20=-185/8, 8-19= I-22=-142/93, 3-23: D-18=-213/163, 10- 1-15=-168/168 roof live loads have 7-16; Vult=130mpt b; TCDL=6.0psf; B; closed; MWFRS (ei ner(3E) -0-10-8 to 21 S-2-12, Corner(3E) and right exposed d;C-C for members shown; Lumber DC ed for wind loads ir ds exposed to wind Industry Gable Er alified building desi 7-16; Pr=20.0 psf (5); Pf=20.0 p	-185/7, =-174/1 17=-14: be been of CDL=6 nvelope 2-3-4, E -2-12, I 16-2-12 ; end v ; and for DL=1.60 n the pla d (norm of Deta grore as (roof LL -um DC 3; Fully	5-21=-213/16 60, 3/91, considered fo ond gust) .0psf; h=25ft; exterior zor xterior(2N) 2 exterior(2N) 2 exterior(2N) 2 exterior(2N) 2 exterior(2N) 2 to 19-4-8 zoo ertical left an ces & MWFR plate grip ane of the tru: al to the face ils as applical s per ANSI/TF .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9	62, or ; Cat. ne -3-4 one; id RS ss), ble, PI 1. 1.15 9;	12) * Th on ti 3-0€ chor 13) Prov bear 24, 5 uplif joint 15. LOAD C	is truss ne botto -00 tall d and a vide mei- ting plat 50 lb up t at joint 18, 47 ASE(S)	has be m cho by 2-0 ny oth chanic e capp i 22, 11 lb uplif lb uplif) Sta	een designed for rd in all areas wh 10-00 wide will er er members. al connection (by able of withstand oint 14, 115 lb up 68 lb uplift at join ft at joint 17 and ndard	a live load of ere a rectang between the h r others) of tru ng 69 lb uplift lift at joint 21, t 23, 116 lb up I63 lb uplift at	20.0psf le pottom iss to at joint 46 lb plift at joint
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-24=-168/63, 1-2=0 3-4=-105/90, 4-5=-9; 6-7=-94/171, 7-8=-9 9-10=-77/117, 10-11 12-13=0/39, 12-14=- 23-24=-106/187, 22- 21-22=-106/187, 18- 19-20=-106/187, 15- 14-15=-106/187	yression/Maximum //39, 2-3=-164/140, 2/118, 5-6=-116/235, 4/171, 8-9=-116/235, =-90/72, 11-12=-152/ 155/47 23=-106/187, 21=-106/187, 19=-106/187, 17=-106/187,	5) 6) /(117, 7) 8) 9) 10 11	Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs n All plates are Gable required Truss to be f braced again) Gable studs :) This truss ha chord live loa	1.10 snow loads have be solved by the second second second solved by the second second second secontinuous botto and the second	een cor or greate tt roof lo other liv otherwi on chor one fac one fac	esidered for the er of min roof pad of 20.0 ps re loads. se indicated. d bearing. e or securely iagonal web) 0 psf bottom other live loa	his i live sf on ,			in the second se	SEA 4584 SEA 4584	L 14 EEER.GO	- Annoning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	D02	Common Girder	1	2	Job Reference (optional)	174931994

8-8-8

2-7-0

1-0-15

2-9-8

Plate Offsets (X, Y): [1:0-8-0,0-9-4], [3:0-5-0,0-5-12], [5:0-0-8,0-2-0], [10:0-3-12,0-8-5], [11:0-5-12,0-1-8], [12:0-8-0,0-9-0], [13:0-9-12,0-6-0], [14:0-9-8,0-3-8], [15:0-3-8,0-9-8]

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:55

Page: 1

2-9-8

2-8-0

2-11-1

3-7-15

Scale = 1:59.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.43	Vert(LL)	-0.10	14-15	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.17	14-15	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.92	Horz(CT)	0.04	10	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 487 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x8 SP 2400F 2.0E 2x12 SP 2400F 2.0E 2x4 SP No.3 *Excep 5-14:2x4 SP No.2 Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 5-11-12 oc purlins. Rigid ceiling directly bracing	t* 13-6:2x4 SP No.1, t* 13-6:2x4 SP No.1, I-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc	1) No.3 d or 2)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorc staggered at Web connect Except memi 3-16 2x4 - 2 All loads are except if note CASE(S) sec	be connected toge ails as follows: onnected as follow 0-9-0 oc. Is connected as fol 0-5-0 oc. ed as follows: 2x4 ber 5-14 2x4 - 1 rov rows staggered at considered equally id as front (F) or ba tion. Ply to ply con	ether wi vs: 2x8 - llows: 2 - 1 row w at 0-5 0-2-0 oc v applier ack (B) f nection	th 10d 2 rows x12 - 6 rows at 0-9-0 oc, -0 oc, memb c. d to all plies, face in the LC s have been	er DAD	10) Use 14- 4-4. of b 11) Use 26- spa end bott 12) Fill 13) Har prov	e Simpso 10dx1 1/ 12 from ottom cl Simpso 10dx1 1/ ced at 2 to 16-4 om chou all nail h ager(s) c vided su	on Stro /2 Trus the le hord. on Stro /2 Trus -0-0 of -12 to rd. ioles w or othe fficient	ng-Tie HTU210 ss, Single Ply Gir ft end to connect ong-Tie HTU28 (2 ss, Single Ply Gir c max. starting a connect truss(es where hanger is in r connection dev t to support conc	(32-10dx1 1/2 Gi der) or equivalen : truss(es) to back 20-16d Girder, der) or equivalen t 6-4-12 from the) to back face of n contact with lun ice(s) shall be sentrated load(s) i	irder, nt at k face e left nber. 8867
REACTIONS	(size) 1=(0-5-8 + 0-6-2), 10 Max Horiz 1=-176 (L Max Grav 1=14865 (⊦ bearing block), (req =0-5-8 C 10) (LC 21), 10=10712 (L	3) _C 6)	provided to d unless other 2x12 SP 240 attached to e	istribute only loads vise indicated. 0F 2.0E bearing bl ach face with 6 ro 3" o.c. 24 Total fac	ock 12" ws of 10	as (F) or (B), long at jt. 1 0d (0.131"x3"	')	ib d des resp LOAD (own and ign/sele consibili	d 535 ll ction o ty of ot) Sta	b up at 2-7-0 on of such connection thers. ndard	bottom chord. T n device(s) is the	The e
FORCES	(lb) - Maximum Com Tension	pression/Maximum		is assumed to	be SP 2400F 2.0	E.	per block. Be	anng	1) De Inc	ead + Sr crease=	1.15	alanced): Lumbe	r Increase=1.15,	Plate
TOP CHORD	1-3=-15578/0, 3-4=- 5-6=-9492/0, 6-7=-94 8-10=-12158/0	14258/0, 4-5=-12125 463/0, 7-8=-11050/0,	4) (0, 5)	this design. Wind: ASCE Vasd=103mr	7-16; Vult=130mpl	h (3-sec 3CDL=6	cond gust)	: Cat.	Ur Co	Vert: 1-0 vort: 1-0 voncentra	bads (I 6=-60, ted Lo	b/ft) 6-10=-60, 17-21 bads (lb)	=-20	
BOT CHORD	1-16=0/10988, 15-16 14-15=0/11862, 13-1 10-11=0/9123	5=0/10988, 14=0/9117, 11-13=0/9	9123,	II; Exp B; En cantilever lef right exposed	closed; MWFRS (e and right exposed t; Lumber DOL=1.6	nvelope i ; end v 50 plate	e) exterior zor vertical left an grip DOL=1.	ne; nd .60		^		WH CA	ROLI	
WEBS	6-13=0/10728, 7-13= 8-12=-1103/0, 8-11= 4-15=-208/3373, 5-1 3-16=-421/1446, 3-1	=-1571/0, 7-12=0/291 =0/1625, 4-14=-4425/ 4=0/5105, 5-13=-318 5=0/2222	18, 101, 6) 39/0,	TCLL: ASCE Plate DOL=1 DOL=1.15); I	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat	(roof LL Lum DC B; Fully	.: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	1.15 9;		U	Č.	not f	Oizta	4.00
NOTES			7) 8) 9)	Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	1.10 snow loads have b s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members.	een cor or a 10.0 vith any for a liv where I fit betw	o psf bottom other live load e load of 20.0 a rectangle veen the botto	his nds. Opsf om		11110 Constant	N. N	4584 4584 VOREW J	EER. 501	Minine.

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	D02	Common Girder	1	2	Job Reference (optional)	174931994
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S	Feb 19 2025 Print: 8	.730 S Feb 1	9 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55	Page: 2

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:55 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 14=-1893 (B), 16=-5499 (B), 27=-1897 (B), 28=-1893 (B), 29=-1893 (B), 30=-1893 (B), 31=-1893 (B), 32=-1893 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	E01	Common Supported Gable	1	1	Job Reference (optional)	174931995

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

17-6-0

Scale = 1:53.1

Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MR	0.18 0.11 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 130	GRIP 244/190 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing	eathing directly applied ccept end verticals. / applied or 6-0-0 oc	BOT C or WEBS	HORD	27-28=-98/172, 26 27-28=-98/172, 24 23-24=-98/172, 22 21-22=-98/172, 19 18-19=-98/172, 17 16-17=-98/172, 17 16-17=-98/172 7-23=-141/22, 9-22 5-25=-167/114, 4-2 3-27=-124/148, 10 11-19=-167/114, 1	-27=-98/ -25=-98/ -23=-98/ -21=-98/ -18=-98/ 2=-141/2 26=-150/ -21=-18 2-18=-1	(172, (172, (172, (172, (172, (172, (172, (172, 1/127, 50/120,	/127,	 8) Gat 9) Trus brac 10) Gat 11) This cho 12) * Th on t 3-06 cho 	ble requi ss to be ced agained ble studs truss h rd live lo is truss he botto 6-00 tall rd and a	res co fully s inst lat s space as bee bad no has be m cho by 2-0 any oth	ntinuous bottor heathed from c eral movement ed at 2-0-0 oc. en designed for nconcurrent wi een designed f ord in all areas v 00-00 wide will er members.	n chord bearing. ne face or secure (i.e. diagonal we a 10.0 psf bottor h any other live l or a live load of 2 where a rectangle it between the bo	ely ›b). m loads. 0.0psf e ottom
REACTIONS	(size) 16=17-6- 19=17-6- 23=17-6- 23=17-6- 26=17-6- Max Horiz 28=209 (Max Uplift 16=-135 18=-70 (I 21=-84 (I 25=-77 (I 27=-231) Max Grav 16=226 (18=170 (21=214 (23=136 (25=206 (25=203 (27=233 (0, 17=17-6-0, 18=17-6 0, 21=17-6-0, 22=17-6 0, 24=17-6-0, 25=17-6 0, 27=17-6-0, 28=17-6 LC 13) (LC 13), 17=-215 (LC - C 15), 19=-77 (LC 15) .C 15), 24=-83 (LC 14) .C 14), 26=-69 (LC 14) (LC 14), 28=-187 (LC - LC 15), 17=200 (LC 22 LC 21), 24=214 (LC 21 LC 21), 24=214 (LC 21 LC 21), 24=214 (LC 21 LC 21), 24=214 (LC 21 LC 21), 28=261 (LC 12) LC 12), 28=261 (LC 11) LC 12) 28=261 (LC 11)	-0, NOTE: -0, 1) Ur -0 2) Wi 15), Va (, an , to (, an , to), ex 2), ex 2), ex 2), ex (), on	balanced s design. nd: ASCE sd=103m, Exp B; En d C-C Cor 5-9-0, Cor 15-4-8, Cc and right cossed;C-C actions sho DL=1.60 uss design y. For stu	13-17=-111/144 roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; l closed; MWFRS (e ner(3E) -0-10-8 to ner(3E) 15-9-0 to 1 porner(3E) 15-4-8 to exposed ; end ver C for members and pwn; Lumber DOL ned for wind loads i ids exposed to win	e been of h (3-sec BCDL=6 envelope 2-1-8, E 1-9-0, E b 18-4-8 tical left forces & =1.60 pla in the plat d (norm	considered for cond gust) .0psf; h=25ft e) exterior zor :xterior(2N) 1 zone; cantile zone; cantile and right & MWFRS for ate grip ane of the tru al to the face	r ; Cat. ne -1-8 1-9-0 ver r ss),	13) Pro bea 28, upli join lb u LOAD (vide me ring plat 135 lb u it at join 27, 84 plift at jo CASE(S	chanic ie capa plift at t 25, 6 lb uplif bint 18) Sta	al connection (able of withstar joint 16, 83 lb 9 lb uplift at join ft at joint 21, 77 and 215 lb upli ndard	ay others) of truss ding 187 lb uplift .plift at joint 24, 7 it 26, 231 lb uplift lb uplift at joint 1 ft at joint 17.	s to at joint 77 lb t at 19, 70
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-28=-168/112, 1-2: 3-4=-116/115, 4-5= 6-7=-104/251, 7-8= 9-10=-104/251, 10- 12-13=-90/87, 13-1: 14-16=-142/80	npression/Maximum =0/38, 2-3=-204/166, -92/94, 5-6=-76/160, -76/166, 8-9=-76/166, 11=-72/160, 11-12=-69 4=-185/126, 14-15=0/3	- se or 4) TC Pla DC DC 773, Cs 8, Cs 8, de 6) Th loa ov 7) All	e Standard consult qu LL: ASCE the DOL=1 DL=1.15); I =1.00; Ct= balanced sign. is truss ha do of 12.0 p enhangs no plates are	d Industry Gable E ialified building des 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b is been designed f psf or 1.00 times fl on-concurrent with 2 x4 MT20 unless	nd Deta signer as (roof LL (Lum DC B; Fully been cor or greate at roof lo other liv otherwi	ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for tl er of min roof bad of 20.0 p: ve loads. se indicated.	ble, PI 1. 1.15 9; his f live sf on		Contraction of the second s		SE 458 VOREW	AL 344 VEEER.SO	animmuna.

July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	G01	Monopitch	5	1	Job Reference (optional)	174931996

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.6

Plate Offsets (X, Y):	[2:0-2-0,0-1-8]	[3:0-4-0,0-3-4]
-----------------------	-----------------	-----------------

()	1): [2:0 2 0,0 1 0],												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.67 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >923 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2 BRACING TOP CHORD S BOT CHORD S BOT CHORD F WEBS 1 REACTIONS (si Ma Ma FORCES (I TOP CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 8 WEBS 3 NOTES 1) Wind: ASCE Vasd=103mp II; Exp B; Enc and C-C Exte to 12-11-8, E: cantilever left exposed;C-C reactions sho DOL=1.60 2) TCLL: ASCE Plate DOL=1 DOL=1.15; I CS=1.00; Ct= 3) Unbalanced s design.	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt ize) 7= Mecha ax Horiz 9=273 (LC ax Uplift 7=-221 (L ax Grav 7=831 (LC (b) - Maximum Com Tension 1-2=0/27, 2-4=-677/ 4-7=-328/122, 2-9= 3-9=-334/218, 7-8=- 3-8=0/313, 3-7=-768 7-16; Vult=130mph oh; TCDL=6.0psf; Bi closed; MWFRS (er erior(2E) 12-11-8 t and right exposed 5 for members and for yow; Lumber DOL=' 5 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E =1.10 snow loads have be	et* 1-3:2x4 SP No.2 et* 4-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 4-7, 3-7 mical, 9=0-5-8 C14) C 14) C 5), 9=754 (LC 5) mpression/Maximum 119, 4-5=-12/0, 655/84 195/603, 6-7=0/0 3/250, 2-8=0/486 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 to 15-11-8 zone; ; end vertical left orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th	4) 5) d or 6) 3) EC LC Cat. e -8 .15 ; is	This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall l chord and ar Refer to gird Provide mec bearing plate 7. DAD CASE(S)	is been designed for psf or 1.00 times fla on-concurrent with is been designed for ad nonconcurrent v nas been designed in chord in all areas by 2-00-00 wide will y other members, er(s) for truss to tru hanical connection a capable of withsta Standard	or great at roof k other liv or a 10.0 vith any for a liv s where I fit betw with BC uss conr uss conr (by oth anding 2	er of min roof aad of 20.0 p ve loads.) psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi ers) of truss t 21 lb uplift at	ilive sf on ids. Dpsf c to to to to				SEA 4584	ROLL L L EFR. ON MULTIN

July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	174931997

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.9

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [10:0-0-8,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.99 0.36 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.08	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20))%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Left: 2x4 S Structural 6-0-0 oc pi Except: 9-5-0 oc bo Rigid ceilir bracing. 1 Brace at (size) Max Horiz Max Uplift	.2 .2 .3 *Except .3 P No.3 wood sheat urlins, exc racing: 12- ng directly Jt(s): 18 2=10-1-0, 14=10-1-0 2=180 (LC 2=-48 (LC 13=-9 (LC 13=-9 (LC 15=-26 (LC	* 8-12:2x4 SP No.2 athing directly applie ept end verticals. 17 applied or 6-0-0 oc 12=10-1-0, 13=10-1 , 15=10-1-0, 16=10- :10) 21), 12=-72 (LC 21 10), 12=-72 (LC 21 10), 14=-41 (LC 14 C 10), 16=-98 (LC 1- C 10)	V N 1 1-0, -1-0, 3),), 4), 4), 4	VEBS 5 VEBS 5 Vortes) Wind: ASCE Vasd=103mp II; Exp B; En- and C-C Cor to 16-0-0 zor vertical left a forces & MW DOL=1.60 pl) Truss design only. For stu see Standarc or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=) Unbalanced	3-16=-145/179, 4-1 5-14=-168/172, 7-1 17-18=-793/656, 10 3-18=-21/26 7-16; Vult=130mph bh; TCDL=6.0psf; B closed; MWFRS (en ner(3E) -0-10-8 to 2 ie; cantilever left ar nd right exposed; C- FRS for reactions s ate grip DOL=1.60 ed for wind loads ir ids exposed to wind loads try Gable En alified building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be	5=-125, 5=-33, 5=-33, 5=-18=-8 1-18=-8 1-18=-8 1-18=-8 1-18=-8 1-18=-8 1-25,	(117, (6, 01/669, 0.0psf; h=25ft exposed; er- nembers and Lumber ane of the tru al to the face is as applica s per ANSI/TI :: Lum DOL= DL=1.5 Plate Exp.; Ce=0.9 sidered for the tru	;; Cat. ne 2-0-0 nd I sss ≥), bble, PI 1. :1.15 ∋ 9; his	 11) Provest bea 12. 12) N/A 13) Nor LOAD (vide mee ring plat	chanic e capa rd bea) Sta	al connection (b able of withstand aring condition. I ndard	/ others) of ing 72 lb u Review req	f truss to plift at joint įuired.
FORCES TOP CHORD BOT CHORD	(lb) - Maxir Tension 1-2=0/17, 2 4-5=-606/4 8-9=-633/6 12-17=0/0, 2-16=-383, 14-15=-38, 12-13=-38;	2=123 (LC 13=129 (L 15=158 (L 17=875 (L num Com 2-3=-710/4 (25, 5-7=-5 30, 9-10= , 8-17=-36 (370, 15-1) 3/370, 13- 3/370	: 14), 12=39 (LC 10) C 1), 14=172 (LC 2 ⁻ C 1), 16=217 (LC 2 ⁻ C 21) pression/Maximum I28, 3-4=-650/422, 544/407, 7-8=-542/4 -632/697, 10-11=-4 4/285 6=-383/370, 14=-383/370,), 5 1), 6 7 8 76, 9 5/0, 1	 b) This truss ha load of 12.0 p overhangs no c) All plates are c) All plates are c) Gable studs c) This truss ha chord live loa this truss ha on the bottom 3-06-00 tall b chord and ar d) Bearing at jo using ANSI/T designer sho 	s been designed fo osf or 1.00 times fla on-concurrent with 2x4 MT20 unless of spaced at 2-0-0 oc. s been designed fo ad nonconcurrent w ias been designed in n chord in all areas by 2-00-00 wide will by other members. int(s) 17 considers PI 1 angle to grain uld verify capacity of	or great to roof lo other liv otherwi rr a 10.0 ith any for a liv where fit betv parallel formula of bear	er of min roof pad of 20.0 p ve loads. se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott to grain valu a. Building ng surface.	f live isf on ads. 0psf iom je		Comme		SEA 458 SEA	L 44 EER.C	No. No.

July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	H02	Monopitch	6	1	Job Reference (optional)	174931998

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-4-8	5-2-13	10-2-4	10-5-8
0-4-8	4-10-5	4-11-7	0-3-4

Scale = 1:48.2 Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [6:0-0-8,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.36 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.05 0.01	(loc) 9-10 9-10 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Except: 5-3-0 oc bracing: 9-7 Rigid ceiling directly bracing. (size) 2=0-3-0, § Max Horiz 2=207 (LC Max Uplift 2=-100 (L Max Grav 2=377 (LC	t* 5-9:2x4 SP No.1 athing directly applie cept end verticals. 11 applied or 10-0-0 oc 0=0-5-8 C 10) C 10), 9=-371 (LC 1: C 1), 9=1084 (LC 21)	3) 4) 5) 6d or 6) 5 7)	Unbalanced design. This truss ha load of 12.0 overhangs ni This truss ha chord live loa * This truss h on the bottor 3-06-00 tall tb chord and ar One H2.5A S recommende UPLIFT at jt(and does noi DAD CASE(S)	snow loads have s been designed psf or 1.00 times i on-concurrent with s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide way other members simpson Strong-T ed to connect trus: s) 9 and 2. This c t consider lateral f Standard	been cor for greate lat roof lo n other liv for a 10.0 with any d for a liv s where ill fit betw e connection onces.	sidered for the er of min roof pad of 20.0 p: re loads. 0 psf bottom other live loa e load of 20.1 a rectangle recen the botto ctors ng walls due n is for uplift of	his f live sf on dds. 0psf om to only						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-2=0/17, 2-3=-368/ 5-6=-456/707, 6-7=- 5-11=-321/163	82, 3-5=-393/465, 45/0, 9-11=-847/467	,										1.	
BOT CHORD WEBS NOTES 1) Wind: ASC	2-10=-230/338, 9-10 3-10=-124/211, 3-9= CE 7-16; Vult=130mph)=-230/338, 8-9=0/0 614/478, 6-11=-81 (3-second gust)	1/468 Cat							0	tri i	WHTH CA	ROLL	<u>ی</u>
II; Exp B; E	Enclosed; MWFRS (en	velope) exterior zon	e									·Q`	X.	

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 16-0-0 zone; cantilever left exposed ; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 45844 July 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	J01	Common	5	1	Job Reference (optional)	174931999

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:55 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	PBA	Piggyback	2	1	Job Reference (optional)	174932000

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:55 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	PBA1	Piggyback	18	1	Job Reference (optional)	174932001

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	PBA2	Piggyback	2	4	Job Reference (optional)	174932002

TCDL

BCLL

BCDL

1)

2)

3)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:56 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB1	Valley	1	1	Job Reference (optional)	174932003

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB2	Valley	1	1	Job Reference (optional)	174932004

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB3	Valley	1	1	Job Reference (optional)	174932005

Scale = 1:50.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

July 16,2025

AMALINININ IN

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB4	Valley	1	1	Job Reference (optional)	174932006

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=14-5-0, 5=14-5-0, 6=14-5-0,
		7=14-5-0, 8=14-5-0
	Max Horiz	1=-136 (LC 10)
	Max Uplift	1=-29 (LC 10), 6=-154 (LC 15),
		8=-156 (LC 14)

 $\begin{array}{rl} \mbox{Max Uplift} & 1=-29 \ (LC \ 10), \ 6=-154 \ (LC \ 15), \\ & 8=-156 \ (LC \ 14) \\ \mbox{Max Grav} & 1=109 \ (LC \ 25), \ 5=100 \ (LC \ 24), \\ & 6=454 \ (LC \ 21), \ 7=401 \ (LC \ 24), \\ & 8=452 \ (LC \ 20) \\ \mbox{FORCES} & (lb) - \mbox{Maximum Compression/Maximum Tension} \\ \mbox{TOP CHORD} & 1-2=-141/139, \ 2-3=-178/119, \ 3-4=-177/112, \\ & 4-5=-122/104 \\ \mbox{BOT CHORD} & 1-8=-59/119, \ 7-8=-59/99, \ 6-7=-59/99, \\ \end{array}$

5-6=-59/99 WEBS 3-7=-223/0, 2-8=-374/196, 4-6=-375/195

NOTES

Scale = 1:43.4

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 29 lb uplift at joint 1, 156 lb uplift at joint 8 and 154 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB5	Valley	1	1	Job Reference (optional)	174932007

6-0-2

6-0-2

2x4 🛛

2

8

2x4 II

1<u>2</u> 10 Г

1¹⁶⁸

3x5 🖌

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-8-10

5-0-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:56 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-8-1

5-8-0

4x5 = 3

12-0-3

Page: 1

2x4 II 14 15 4 5 6 7 2x4 II 2x4 II 3x5 💊 12-0-3

Scale = 1:39.1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								FT 000
BCDL		10.0		-									Weight: 50 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural w 6-0-0 oc put Rigid ceiling	2 2 3 vood shea rlins. g directly	athing directly applie applied or 10-0-0 oc	3) 4) d or 5)	Truss desigr only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced	ned for wind load uds exposed to w d Industry Gable Jalified building c 7-16; Pr=20.0 p I.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have	s in the pl vind (norm End Deta lesigner as sf (roof Ll f (Lum DC at B; Fully e been cor	ane of the tru hal to the face iils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate r Exp.; Ce=0.9 nsidered for tl	ss), ble, ⊃I 1. 1.15 9; Э;					
REACTIONS	(size) 1: Max Horiz 1: Max Uplift 1: Max Grav 1: (L	=12-0-3, =12-0-3, =-113 (LC =-38 (LC =-136 (LC =77 (LC LC 21), 7 0)	5=12-0-3, 6=12-0-3, 8=12-0-3 C 10) 10), 5=-6 (LC 11), C 15), 8=-138 (LC 14), 30), 5=71 (LC 24), 6 =259 (LC 21), 8=432	4) =434 2 (LC	design. Gable requir Gable studs This truss ha chord live loa * This truss l on the bottor 3-06-00 tall h	res continuous bo spaced at 4-0-0 as been designed ad nonconcurren has been design m chord in all are by 2-00-00 wide	ottom chor oc. I for a 10. t with any ed for a liv eas where will fit betw	rd bearing. 0 psf bottom other live loa ve load of 20.0 a rectangle ween the botto	ds. Opsf					
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum	10) Provide mec	hy other member chanical connecti	s. on (by oth standing ?	iers) of truss t	:0 oint					
TOP CHORD	1-2=-114/10 4-5=-89/63	00, 2-3=-2	219/116, 3-4=-218/1	15,	1, 6 lb uplift	at joint 5, 138 lb	uplift at joi	int 8 and 136	lb					
BOT CHORD	1-8=-32/73, 5-6=-30/73	7-8=-30/	73, 6-7=-30/73,	L	DAD CASE(S)	Standard								un.
WEBS	3-7=-171/0,	2-8=-400	0/215, 4-6=-401/220									. ("TH CA	RO
NOTES											- Λ	3	A Act	12. 4/1

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB6	Valley	1	1	Job Reference (optional)	174932008

4-0-5

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-11 9-3-4 4-9-11 4-5-9 4x5 = 2 10 11 3-8-10 12 10 Г 19 1 3 0-0-4 Г 4 2x4 II 3x5 💊 3x5 🍫

9-7-6

Scale = 1:33.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASG Vasd=103 II; Exp B; I and C-CE 3-4-13 to 6 cantilever right expos for reactio DOL=1.60 3) Truss desi only. For see Stand or consult	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 9-7-6 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-110/ 1-4=-241/ 2-4=-632/ ed roof live Io CE 7-16; Vul imph; TCDL- Enclosed; M Exterior(2E) (6-7-11, Exte Ieft and righ sed; C-C for ns shown; L) gigned for wir studs expos ard Industry qualified bu	b.2 b.2 c.3 wood shea urlins. ng directly 1=9-7-6, 3 1=-89 (LC 1=-58 (LC 4=-106 (L' 1=75 (LC (LC 20) mum Com 369, 2-3=-7 170, 3-4=-7 265 bads have t=130mph =6.0psf; BC WFRS (en 0-4-13 to 3 rior(2E) 6-7 t exposed members a umber DO d loads in ed to wind Gable Enc ilding desig	athing directly applie applied or 6-0-0 oc 3=9-7-6, 4=9-7-6 10) 21), 3=-47 (LC 20), C 14) 20), 3=94 (LC 21), 4 pression/Maximum 112/366 241/170 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon -4-13, Exterior(2R) 7-11 to 9-7-11 zone; end vertical left and and forces & MWFR: L=1.60 plate grip the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	4) 5) 6) 7) 8) 9) 9) 5 Cat. c Cat. e 5 S s, ple, 11.	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs i This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an 9) Provide mecl bearing plate 1, 47 lb uplift DAD CASE(S)	7-16; Pr=20.0 psf (15); Pf=20.0 psf (I s=1.0; Rough Cat I (1.10) snow loads have b es continuous botto spaced at 4-0-0 oc s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 3 and 106 Standard	(roof LL Lum DC B; Fully een cor or a 10.0 /ith any for a liv : where I fit betv (by oth Inding 5 Ib uplift	: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Isidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottot ers) of truss the 8 lb uplift at j at joint 4.	1.15 2); his dds. Dpsf om io oint		Contraction of the second se		SEA 4584	ROL DUARA L 4 EFR. O THNS 16 2025	"Annonnon
													541)	,	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB7	Valley	1	1	Job Reference (optional)	174932009

3-7-5

3-7-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:29.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD WFBS

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:56 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

6-10-8

3-3-3

Page: 1

818 Soundside Road

Edenton, NC 27932

2 10 3-0-5 12 10 ∟ 19 3 4 2x4 ı 3x5 🖌 3x5 💊 7-2-10 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) n/a n/a 999 MT20 244/190 20.0 1 15 BC 0.26 Lumber DOL Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 27 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7-2-10 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf **REACTIONS** (size) 1=7-2-10, 3=7-2-10, 4=7-2-10 9) Max Horiz 1=-66 (LC 10) on the bottom chord in all areas where a rectangle 1=-26 (LC 21), 3=-14 (LC 20), Max Uplift 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-70 (LC 14) chord and any other members. Max Grav 1=71 (LC 20), 3=103 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=523 (LC 20) bearing plate capable of withstanding 26 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 14 lb uplift at joint 3 and 70 lb uplift at joint 4. Tension LOAD CASE(S) Standard 1-2=-83/223, 2-3=-87/223 1-4=-176/150, 3-4=-176/150 2-4=-415/192Unbalanced roof live loads have been considered for this design Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone Annun un and C-C Exterior(2E) 0-4-13 to 3-7-10, Exterior(2R) Stramon Stramon 3-7-10 to 4-2-14, Exterior(2E) 4-2-14 to 7-2-14 zone; cantilever left and right exposed ; end vertical left and SEAL right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. 104 minim July 16,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLB8	Valley	1	1	Job Reference (optional)	174932010

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:57 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

4-9-13

IOP CHORD	2X4 OF IN	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	4-9-13 oc	purlins.
BOT CHORD	Rigid ceili	ng directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=4-9-13, 3=4-9-13, 4=4-9-13
	Max Horiz	1=-43 (LC 10)
	Max Uplift	3=-7 (LC 15), 4=-30 (LC 14)
	Max Grav	1=58 (LC 20), 3=86 (LC 21), 4=285
		(LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
		•

Tension TOP CHORD 1-2=-61/98, 2-3=-79/99 BOT CHORD 1-4=-80/85, 3-4=-80/85 WEBS 2-4=-203/92

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 7)

1

- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 30 lb uplift at joint 4.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD1	Valley	1	1	Job Reference (optional)	174932011

Scale = 1:50.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:57

Page: 1

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-0, Exterior(2R) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 13-7-3, Exterior(2E) 13-7-3 to 16-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

NOTES Unbalanced roof live loads have been considered for 1) this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

mm July 16,2025

SEAL

Summing.

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD2	Valley	1	1	Job Reference (optional)	174932012

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jul 16 00:38:57 ID:Th_ZgqfOm8nUgyqbk?jKoVzRQuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=14-6-10, 5=14-6-10, 6=14-6-10,
		7=14-6-10, 8=14-6-10
	Max Horiz	1=138 (LC 11)
	Max Uplift	1=-24 (LC 10), 6=-156 (LC 15),
		8=-159 (LC 14)
	Max Grav	1=124 (LC 25), 5=99 (LC 24),
		6=456 (LC 21), 7=407 (LC 24),
		8=456 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-153/	/145, 2-3=-173/121, 3-4=-173/111,
	4-5=-121/	(110
BOT CHORD	1-8=-61/1	27, 7-8=-61/101, 6-7=-61/101,
	5-6=-61/1	01
WEBS	3-7=-227/	0, 2-8=-375/197, 4-6=-375/196
NOTES		

Scale = 1:43.7 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-3-10, Interior (1) 3-3-10 to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4)
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 24 lb uplift at joint 1, 159 lb uplift at joint 8 and 156 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD3	Valley	1	1	Job Reference (optional)	174932013

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:57 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-1-13

Scale = 1:39.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psi 20.1 20.1 10.1 0.1 10.1	f) Spacing 0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr 0* Code 0	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins. Rigid ceiling dire bracing. (size) 1=12- 7=12- Max Horiz 1=-11 Max Uplift 1=-33 6=-13 Max Grav 1=94 (LC 2) 20)	sheathing directly applie ectly applied or 10-0-0 or 1-13, 5=12-1-13, 6=12- 1-13, 8=12-1-13 5 (LC 12) 5 (LC 12) 6 (LC 15), 8=-140 (LC 1 (LC 25), 5=73 (LC 24), 6 1), 7=261 (LC 21), 8=43	3) ed or c 5) 1-13, 6) 7, 8) 4) 5=434 9) 4 (LC	 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b 	ted for wind loads ads exposed to w d Industry Gable tailfied building d 5 7-16; Pr=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 as been designed ad nonconcurrent nas been designed n chord in all are by 2-00-00 wide by to other members	s in the pl ind (norm End Deta esigner a: sf (roof Ll (Lum DC at B; Fully been con ttom chor oc. for a 10.1 : with any d for a li as where	ane of the tru ial to the face ils as applica s per ANSI/T :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 insidered for t rd bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott	uss), ble, PI 1. 1.15 9; his dds. 0psf om					
	(lb) - Maximum (Tension	Compression/Maximum	10) Provide mec bearing plate	hanical connections capable of with	on (by oth standing 3	ers) of truss 33 lb uplift at j	to joint					
BOT CHORD	1-2=-11//101, 2- 4-5=-91/63 1-8=-32/79, 7-8= 5-6=-32/74	-3=-216/116, 3-4=-216/1 =-32/74, 6-7=-32/74,	L116,	1, 5 lb uplift a uplift at joint OAD CASE(S)	at joint 5, 140 lb u 6. Standard	uplift at joi	int 8 and 136	lb				minin	11111
WEBS NOTES 1) Unbalance	3-7=-174/0, 2-8= ed roof live loads h	=-397/217, 4-6=-397/217	r							\cap	- Street	OR TH CA	ROLA

- Unbalanced roof live loads have been considered this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD4	Valley	1	1	Job Reference (optional)	174932014

4-10-8

4-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:33.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:57 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

9-4-14 4-6-6

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD5	Valley	1	1	Job Reference (optional)	174932015

2-9-5

3-1-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:57 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-4-3

Casla		4.00.0
Scale	=	1:29.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.27 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-4-3 oc purlins. Rigid ceiling directly bracing. (size) 1=7-4-3, 3 Max Horiz 1=68 (LC Max Uplift 1=-19 (LC 4=-76 (LC Max Grav 1=105 (L1 4=545 (L1 (lb) - Maximum Com Tension 1-2=-92/236, 2-3=-9 1-4=-184/155, 3-4=- 2-4=-432/204	athing directly applie applied or 6-0-0 oc 3=7-4-3, 4=7-4-3 11) 2 21), 3=-19 (LC 20), 2 14) 2 20), 3=105 (LC 21) 2 20) apression/Maximum 2/236 184/155	4) 5) 7) 8) 9) 9, 10 LC	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 1, 19 lb uplif AD CASE(S)	7-16; Pr=20.0 ps 15); Pf=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed m chord in all arec by 2-00-00 wide w ny other members hanical connectio e capable of withs at joint 3 and 76 Standard	of (roof LL (Lum DC t B; Fully been cor tom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. n (by oth tanding 1 lb uplift a	Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the bott ers) of truss the 9 lb uplift at j t joint 4.	1.15 e); his dds. 0psf om to joint					
NOTES													

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	924 Serenity-Roof-B326 A CP TMB GLH	
25060203-01	VLD6	Valley	1	1	Job Reference (optional)	174932016

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Wed Jul 16 00:38:57 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.2		-												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 18 lb	FT = 20%	
LUMBER			5)	Unbalanced	snow loads hav	e been cor	nsidered for t	this						
TOP CHORD	2x4 SP No.2			design.										
BOT CHORD	2x4 SP No.2		6)	Gable requ	quires continuous bottom chord bearing.									
OTHERS	2x4 SP No.3		7)	Gable stude	Js spaced at 4-0-0 oc.									
BRACING			8)	This truss h	as been designe	d for a 10.0	0 psf bottom							
TOP CHORD	Structural wood shea	athing directly applie	ed or	chord live lo	ad nonconcurre	nt with any	other live loa	ads.						
	4-11-6 oc purlins.	\$ 7 11	9)	* This truss	iss has been designed for a live load of 20.0psf									
	Rigid ceiling directly	applied or 6-0-0 oc		on the botto	om chord in all ar	eas where	a rectangle							

4-11-6

BOT CHORD	bracing.	ing directly applied of 0-0-0 oc
REACTIONS	(size)	1=4-11-6, 3=4-11-6, 4=4-11-6
	Max Horiz	1=44 (LC 13)
	Max Uplift	3=-7 (LC 15), 4=-35 (LC 14)
	Max Grav	1=89 (LC 20), 3=89 (LC 21), 4=303
		(LC 21)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-82/108, 2-3=-82/108

- BOT CHORD 1-4=-87/91, 3-4=-87/91 WEBS 2-4=-218/101 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 35 lb uplift at joint 4.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

