

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 12 Mason Ridge -Wilmington - B

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

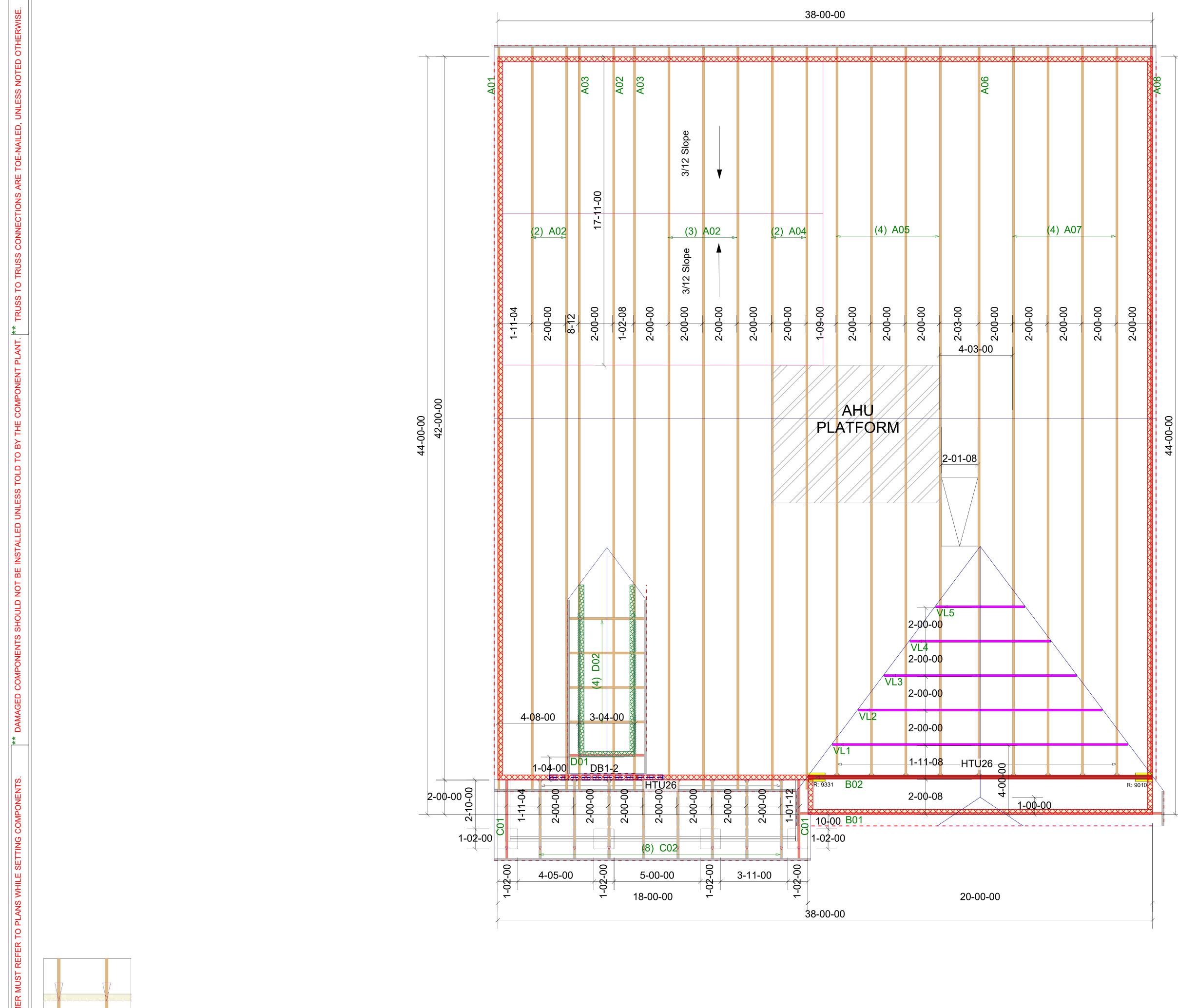
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

Truss Drawing Left End Indicator

	Revi	sions
	00/00/00	Name
acto	00/00/00	Name
Per ontr	00/00/00	Name
or c	00/00/00	Name
s on	00/00/00	Name
** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor	systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
		Lunder
S ARE READ AS: FO		
ED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	12 Mason Ridge - Wilmington -	B Roof Truss Layout
ER PRIOR TO ADDING ANY LOADS. **	Scale:	
ER PRIOR TO ADDING ANY LOADS. **	Scale:	ITS
ER PRIOR TO ADDING ANY LOADS. **	Scale: Date: 7/9/2	ıts 2025
ER PRIOR TO ADDING ANY LOADS. **	Scale: Date: 7/9/2 Des Nate Do	ITS 2025 signer: onaldson
ER PRIOR TO ADDING ANY LOADS. **	Scale: Scale: Date: 7/9/2 Des Nate Do Project 25070	ITS 2025 signer: Dnaldson ct Number: D038-C
ER PRIOR TO ADDING ANY LOADS. **	Scale: Scale: Date: 7/9/2 Des Nate Do Project 25070	ITS 2025 signer: Dnaldson ct Number:
	Scale: Scale: Date: 7/9/2 Des Nate Do Project 25070	/// 2025 signer: onaldson ct Number: 0038-C
ER PRIOR TO ADDING ANY LOADS. **	Scale: Scale: Date: 7/9/2 Des Nate Do Project 25070	/// 2025 signer: onaldson ct Number: 0038-C

ROOF PLACEMENT PLAN

Truss Connector Total List Manuf Product Qty

Simpson HTU26 17 Simpson One H2.5A 70

PlotIDLengthProductPliesDB1-28-00-002.0 RigidLam DF LVL 1-3/4 x 9-1/42

Hatch Legend

8' 1-1/8" BRG HGT

AHU PLATFORM

9' 1-1/8" BRG HGT

Products

13' 9-1/8" Dormer Bearing

Plies Net Qty Fab Type

FF

RE: 25070038

12 Mason Ridge - Wilmington B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton Inc Project Name: 25070038 Lot/Block: 12 Model: Wilmington B Address: Subdivision: Mason Ridge City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	169852575	A01	11/27/2024
2	169852576	A02	11/27/2024
3	169852577	A03	11/27/2024
4	169852578	A04	11/27/2024
5	169852579	A05	11/27/2024
6	169852580	A06	11/27/2024
7	169852581	A07	11/27/2024
8	169852582	A08	11/27/2024
9	169852583	B01	11/27/2024
10	169852584	B02	11/27/2024
11	169852585	C01	11/27/2024
12	169852586	C02	11/27/2024
13	169852587	D01	11/27/2024
14	169852588	D02	11/27/2024
15	169852589	VL1	11/27/2024
16	169852590	VL2	11/27/2024
17	169852591	VL3	11/27/2024
18	169852592	VL4	11/27/2024
19	169852593	VL5	11/27/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A01	Roof Special	1	1	Job Reference (optional)	169852575

21-0-0

2-11-4

5x6=

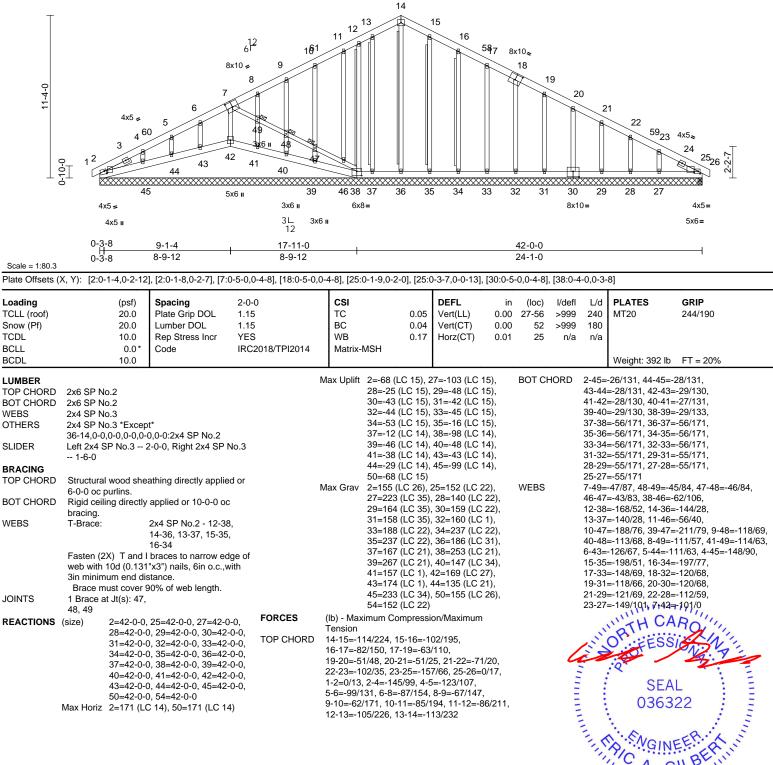
18-0-12

8-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-6-8

0-6-8


9-1-4

9-1-4

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:39 ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

<u>42-0-0</u> 21-0-0 0-6-8

Page: 1

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road

Edenton, NC 27932

November 27,2024

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A01	Roof Special	1	1	Job Reference (optional)	169852575
Carter Components (Sanford N	Run: 8 73 S. Oct 31 2	024 Print: 8	730 S Oct 31	2024 MiTek Industries Inc. Tue Nov 26 10:11:39	Page: 2	

ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-5-14 to 3-8-7, Interior (1) 3-8-7 to 16-9-11, Exterior(2R) 16-9-11 to 25-0-0, Interior (1) 25-0-0 to 38-3-9, Exterior(2E) 38-3-9 to 42-5-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 37, 35, 34, 33, 32, 31, 30, 29, 28, and 27. This connection is for uplift only and does not consider lateral forces.
- 12) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 38. This connection is for uplift only and does not consider lateral forces.
- 13) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 39, 40, 41, 43, 44, and 45. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

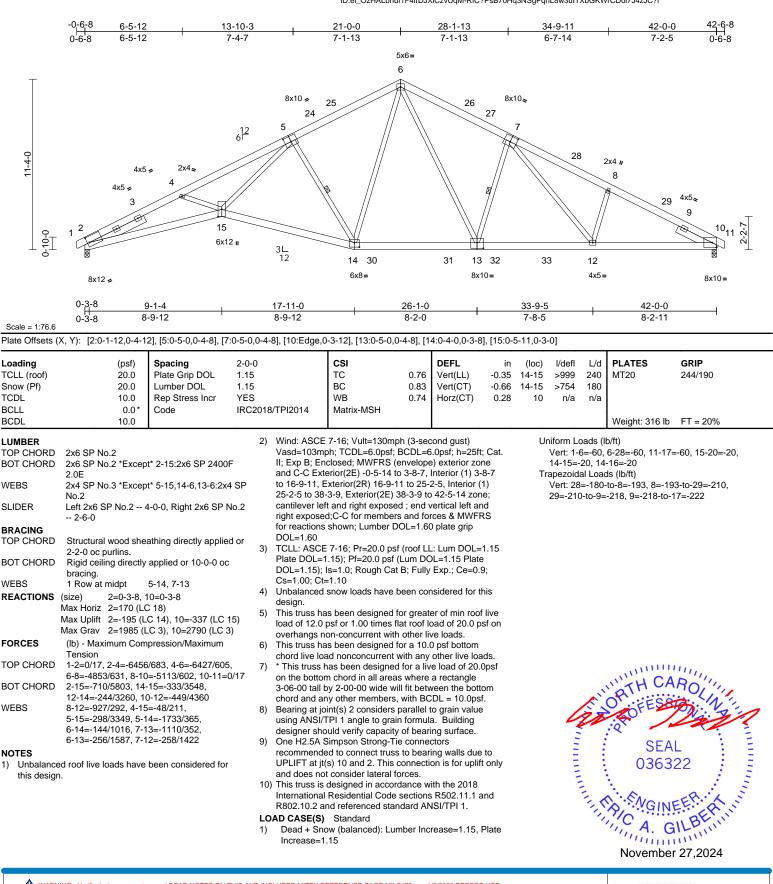
Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A02	Roof Special	6	1	Job Reference (optional)	169852576

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:41 ID:mnRSWvy_5Gboq0dv5C5SnJzvUx5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		i-12 i-12	<u>13-10-3</u> 7-4-7		21-0-0 7-1-13	-	28-1-13 7-1-13		<u>34-9</u> 6-7			42-0-0 7-2-5	42-6-8 0-6-8
11-4-0	4x6 = 2 3 4x5 = 8x10 = 8x10 = 10	24	6 ¹² 15 6x8 II	8x10 = 25 5 3L 12	26 14 27 6x8=	6	31 28 13 8x10		*	12	2x4 // 8 2 x5=	33	4x5 a 9 10 11 1 6x8 II
Scale = 1:80.9	0-3-8 H 0-3-8	<u>9-1-4</u> 8-9-12	+	<u>17-11-0</u> 8-9-12		<u>26-1-0</u> 8-2-0			<u>33-9-5</u> 7-8-5			42-0-0 8-2-11	
	(, Y): [2:0-1-14,0-2-0], [2:0-1-8,0-2-7], [5:	0-5-0,0-4-8], [7:0-5-0,0-4	-8], [10:0-3-12,0-2	2-9], [13:0	0-5-0,0-4-8],	[14:0-4-0	,0-3-8], [15:0-4-1	2,0-2-1	2]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.81 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.65 0.27	(loc) 14-15 14-15 10	l/defl >999 >766 n/a	240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 307 lt	FT = 20%
1 1	2-0-2 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=170 (LC Max Uplift 2=-172 (L Max Grav 2=1857 (I	ot* 14-6,13-6,5-15:2x 2-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 5-14 10=0-3-8 C 14) C 14), 10=-172 (LC _C 3), 10=1879 (LC 3)	4 SP No.3 ed or 3) c 4) 15) 5) 3)	II; Exp B; En and C-C Ext to 16-9-11, E 25-2-5 to 38- cantilever lef right exposer for reactions DOL=1.60 TCLL: ASCEP Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n	snow loads have as been designed psf or 1.00 times to on-concurrent with	(envelope to 3-8-7, 11 to 25- 38-3-9 to ed; end vi rs and fo DOL=1.60 sf (roof LI (Lum DC (Lum DC t B; Fully been col for great flat roof I h other Ii	e) exterior zo Interior (1) 3- 2-5, Interior (0 42-5-14 zor vertical left ar rcces & MWFf 0 plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for t er of min roo bad of 20.0 p ve loads.	ne -8-7 1) he; nd RS -1.15 -9; his f live					
FORCES	(lb) - Maximum Com Tension		6)		as been designed ad nonconcurrent			ads.					
TOP CHORD)=-3170/318, 10-11=	,	on the bottor	nas been designe n chord in all area	as where	a rectangle	•				Multi C	AD
BOT CHORD	2-15=-645/4825, 14 12-14=-125/2418, 10 6-14=-145/971, 6-13 7-13=-706/287, 7-12 8-12=-262/189, 4-15 5-15=-258/2770, 5-1	0-12=-185/2749 3=-191/1113, 2=-120/501, 5=-121/199,	8)	3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho	by 2-00-00 wide w ny other members int(s) 2 considers IPI 1 angle to gra buld verify capacit Simpson Strong-T	vill fit betw , with BC parallel in formul y of bear	veen the bott DL = 10.0ps to grain value a. Building ing surface.	f.		Gui	ALL	ORTH O	
NOTES 1) Unbalanced this design.	d roof live loads have		10	recommende UPLIFT at jt(and does no) This truss is International	ed to connect trus (s) 10 and 2. This t consider lateral f designed in accor Residential Code nd referenced sta	s to bear connecti forces. rdance w sections	ing walls due on is for uplif ith the 2018 \$ R502.11.1 a	t only		Contractive.			NEER KINN
Design va a truss sy building d is always	NG - Verify design paramete lid for use only with MiTek/ stem. Before use, the build esign. Bracing indicated is required for stability and to , storace, delivery, erectio	® connectors. This design ling designer must verify the to prevent buckling of ind prevent collapse with pos	is based only he applicability lividual truss v ssible persona	upon parameters of design parame yeb and/or chord n l injury and proper	shown, and is for an in eters and properly inco nembers only. Additio ty damage. For gener	ndividual bi prporate this nal tempor al guidance	uilding components design into the ary and permane e regarding the	nt, not overall ent bracing					RING BY ENCO A Mitek Atfiliate

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A03	Roof Special	2	1	Job Reference (optional)	169852577

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:41 ID:ei_OzHALbhuf1F4IrDJXICzvUqM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

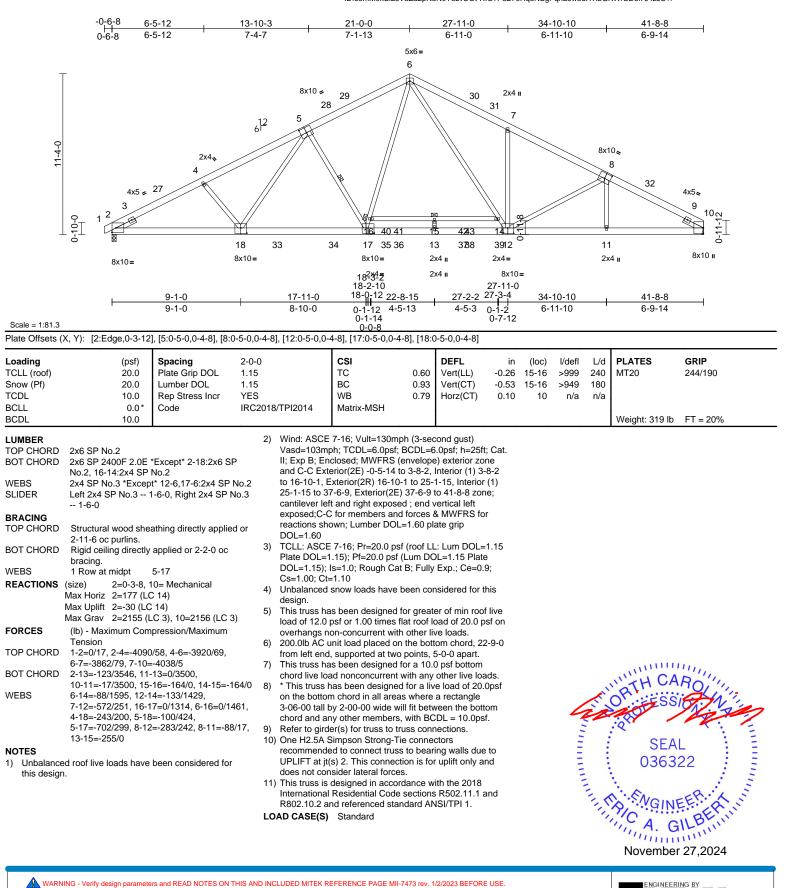
818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A04	Roof Special	2	1	Job Reference (optional)	169852578

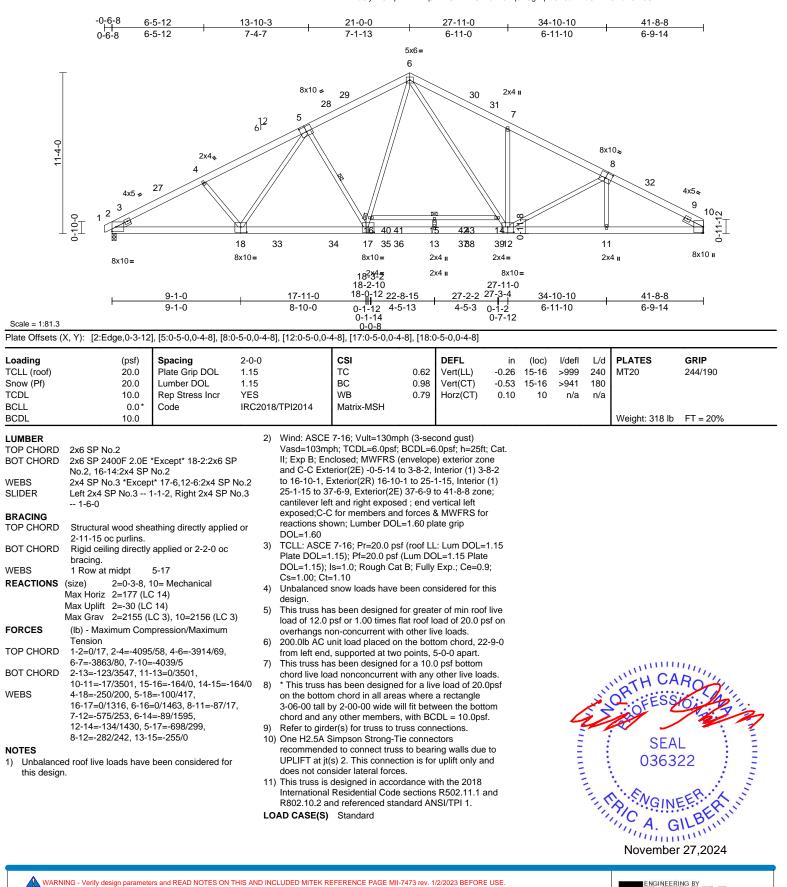
Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:41 ID:PUyzCTNt0PjWoBWHKfMm3nzvUVQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


	-0-6-8 0-6-8	<u>6-5-11</u> 6-5-11			-10-3 -4-7		21-0-0 7-1-13		27-11-0 6-11-0		<u>34-1</u> 6-1			<u>42-0-0</u> 7-1-6	42-6-8 0-6-8
11-4-0		4x5	≠ 2x4≈		612	8x10 ≠ 28 5		x6=	30	2x4 II 31 7			8x1		
0-10-0	12	4x5 = 3	4	19 8x12						8				32	4x5 x 9 10 10 10 8 1
⊥ , ⊥				0.12		3∟ 12	18 33 34 6x8=	<u>1'6</u> 14 2x4	3940 3536	<u>15</u> 13 2x4=			12 2x		
	10x12 <u>-</u> 0- <u>3</u> -8		9-1-4			17-11-0	2x4= 18-3-2 18-2-10 22-8-	2x4	II	8x10= 27-11-0 27-3-4	34-1	0-10	2.84	42-0-0	6x10 u
ale = 1:78.4	0-3-8 H 0-3-8		-9-12			8-9-12	0-3-10 4-5-1 0-0-8			0-1-2 0-7-12	6-1			7-1-6	
∍ Offsets (λ	X, Y): [2:0-2-	11,Edge]	, [5:0-5-0,0-4	-8], [8:0	-5-0,0-4-8	3], [10:0-5-6,0	-2-8], [13:0-5-0,0-4	-8], [18:0)-4-0,0-3-8] I	, [19:0-5-1	1,0-4-0]			1	
i ding _L (roof) ow (Pf) DL _L		(psf) 20.0 20.0 10.0	Spacing Plate Grip D Lumber DOI Rep Stress	L	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.85 0.91 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.77 0.29	(loc) 16-17 16-17 10	l/defl >999 >654 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LL DL		0.0* 10.0	Code		IRC201	8/TPI2014	Matrix-MSH							Weight: 326 lb	FT = 20%
RCES P CHORD T CHORD BS TES	No.2, 17-15: 2x4 SP No.3 No.2 Left 2x6 SP 1-6-0 Structural w 2-1-13 oc pu Rigid ceiling bracing. 1 Row at mi (size) 2: Max Horiz 2: Max Horiz 2: Max Uplift 2: Max Grav 2: (lb) - Maxim Tension 1-2=0/17, 2- 6-7=-3867/7 2-19=-216/6 14-18=0/24! 16-17=-69/0 4-19=-42/25 5-18=-1786/ 6-17=0/137' 13-15=-106/ 8-13=-320/2	2x4 SP N 3*Except No.2 4 ood shea urlins. directly: dept 4 =0-3-8, 1 =170 (LC =-29 (LC =2122 (L um Comp 4=-6842/ 2, 7-10=- 1562, 7- 49, 8-12: 49, 8-12:	** 19-5,18-6,1 I-0-0, Right 22 athing directly applied or 2-2 5-18 0=0-3-8 14), 10=-3 (L C 3), 10=217 pression/Max /129, 4-6=-68 -4085/2, 10-1 19=0/3822, I=0/3552, 10- -69/0 -65/3487, 18=-19/1248, 66/1678, 13=-569/251, I=-51/58, 14-1	3-6:2x4 x4 SP N appliec 2-0 oc .C 15) 4 (LC 3 imum :34/68, 1=0/17 12=0/38 6=-240/	- SP lo.3 d or 3) 4) 5) 6) 7) 6) 7) 8) 551, 8) 9) /0 10	and C-C Ex to 16-9-11, 25-2-5 to 30 cantilever le right exposi- for reaction DOL=1.60 TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalanced design. This truss h load of 12.C overhangs 200.0lb AC from left en This truss h chord live le * This truss on the botto 3-06-00 tall chord and a Bearing at j using ANSI designer sh) One H2.5A recommend UPLIFT at j and does n	as been designed psf or 1.00 times non-concurrent wit unit load placed of d, supported at two as been designed bad nonconcurrent has been designed or chord in all area by 2-00-00 wide w iny other members oint(s) 2 considers TPI 1 angle to gra ould verify capacit Simpson Strong-T led to connect trus t(s) 10 and 2. This ot consider lateral a designed in acco	to 3-8-7, 11 to 25- 38-3-9 to ad; end v for and fo DOL=1.60 if (roof LL (Lum DC t B; Fully been cou- for great flat roof I h other lin h other lin h other lin h other lin h othe boto p points, for a 10. with any d for a liv s where ill fit betv, , with BC parallel in formul y of bear is connect iorces.	Interior (1) : 2-5, Interior 0 42-5-14 zc vertical left : rcces & MWI 0 plate grip :: Lum DOL 1.5 Plat Exp.; Ce=(nsidered for er of min ro oad of 20.0 ve loads. tom chord, : 5-0-0 apart. 0 psf botton other live lk re load of 22 a rectangle veen the bc DL = 10.0p to grain valu a. Building ing surface. ctors ing walls du on is for up	3-8-7 (1) pone; and FRS =1.15 the 0.9; r this of live psf on 22-9-0				SEA 0363	

a duss system. Belore use, the building designer must verify the application of design plantiteters and properly incorporate rule design must remove and building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DBS-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A05	Common	4	1	Job Reference (optional)	169852579

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:41 ID:e5mM9kSiL8V3Za2pN8N0Y8zvUOt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITek Affilia 818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A06	Common	1	1	Job Reference (optional)	169852580

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:41 ID:ka8lyh7OIYpx1IIEB?qJtEzvUK7-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A07	Common	4	1	Job Reference (optional)	169852581

WEBS

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							J	169852581
25070038	1	407		Common		4	1	Job	Reference	(optional)		109852581
Carter Component	s (Sanford, NC),	Sanford	d, NC - 27332,					Oct 31 2024	MiTek Indus	ries, Inc. T	ue Nov 26 10:11:42	Page: 1
					ID:WTFSTUFjr	6Wkhbv68	I?78szvUlg-R	fC?PsB70Hq	3NSgPqnL8v	/3ulTXbGk	WrCDoi7J4zJC?f	
	-0-6-8	7-2-	5 ,	14-1-3	21-0-0	1	27-10-13	3	34-9	-11	41-8	-8
	-0-6-8 0-6-8	7-2-	5	6-10-13	6-10-13	I	6-10-13	I	6-10	-13	6-10-	13
						5x6=						
						6						
Т					/							
				4x5 ≠	24		2	9 ^{8x10})*			
				23 5 /				30 -				
				12 6				7	_			
				01				\mathcal{H}	\sim			
11-4-0			8x10 ≠		\backslash				$\langle \rangle > \langle \rangle$		2x4 🍬	
÷			4	~						\sim	8	
			H				\$//					
	4x5 -	, 22								/	31	4x5 👟
	3	/		< //								9
Ģ	1 ²			\mathbb{N}		\parallel	/					11-12 01
0-10-0										1		÷
0	×			13 25	26	12	27		28 1 [.]	l		0
	6x8 I			8x10=		8x10=			8x	10=		6x8 II
			10-7-12	. 2	1-0-0		3	1-4-4			41-8-8	
			10-7-12		0-4-4	i		0-4-4	1		10-4-4	
Scale = 1:76.2	V)· [2·0_3_12	0_2_0	[4:0-5-0 0-4-8] [7:	0-5-0,0-4-8], [11:0-5-0,0	-4-8] [12:0-5-0 0-	1-81 [13:	1-5-0 0-4-81					
	1). [2.0 0 12	.,0 2 0]	, [4.0 0 0,0 4 0], [7.		1	- 0], [10.	J U U,U 4 U]	· · · · ·			1	
oading		osf)	Spacing	2-0-0	CSI		DEFL	in	(loc) l/d		PLATES	GRIP
CLL (roof)		0.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)		11-12 >9		MT20	244/190
now (Pf)		0.0	Lumber DOL	1.15	BC	0.86	Vert(CT)		11-12 >9			
CDL		0.0	Rep Stress Incr Code	YES	WB	0.44	Horz(CT)	0.11	10 r	/a n/a		
		0.0* 0.0	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 295 lb	FT = 20%
		-		a) TOLL 100	F 7 40: D: 00 0	- 6 / 6 1						
UMBER OP CHORD	2x6 SP No.2				E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps							
	2x6 SP No.2 2x6 SP No.2				; Is=1.0; Rough Ca							
		Eveen	* 10 6:0v4 CD No 0		t=1 10	, " ,	,,,,,,					

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 -- 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 3-3-3 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-12, 5-12 REACTIONS 2=0-3-8, 10= Mechanical (size) Max Horiz 2=177 (LC 14) Max Uplift 2=-172 (LC 14), 10=-158 (LC 15) Max Grav 2=1868 (LC 3), 10=1837 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-5=-3520/336, 5-6=-2425/350, 6-8=-3259/349, 8-10=-3472/336 BOT CHORD 2-10=-351/3044 WEBS 6-12=-122/1715, 7-12=-849/257,

2x4 SP No.3 *Except* 12-6:2x4 SP No.2

7-11=-18/568, 8-11=-272/195, 5-12=-866/258, 5-13=-26/622, 4-13=-298/200

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-5-14 to 3-8-2, Interior (1) 3-8-2 to 16-10-1, Exterior(2R) 16-10-1 to 25-1-15, Interior (1) 25-1-15 to 37-6-9, Exterior(2E) 37-6-9 to 41-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 158 lb uplift at joint 10) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

overhangs non-concurrent with other live loads.

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Cs=1.00; Ct=1.10

design.

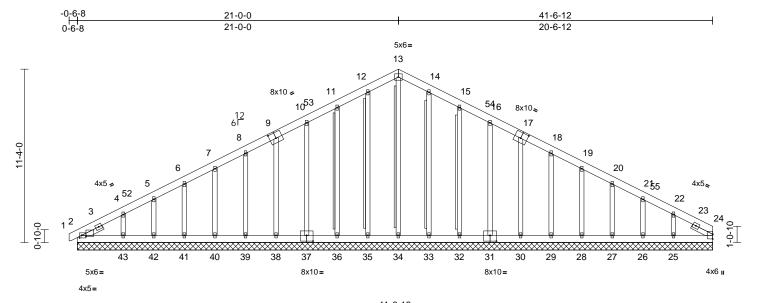
4)

5)

6)

7)

8)


9)

10.

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A08	Common Supported Gable	1	1	Job Reference (optional)	169852582

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:42 ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.4

41-6-12

Plate Offsets (X, Y): [2:0-1-9,0-2-0]	, [2:0-3-7,0-0-13], [9:0-5-	0,0-4-8], [17:0-5-0	,0-4-8], [3	1:0-5-0,0-4-	•8], [37:0	0-5-0,0-4-8]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	0-0 15 15 ES RC2018/TPI2014	CSI TC BC WB Matri	x-MSH	0.06 0.05 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 373 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and web with 10d (0.131 3in minimum end di Brace must cover (size) 2=41-6-1	0,0-0:2x4 SP No.2 1-6-0, Right 2x4 SP No.3 eathing directly applied or applied or 10-0-0 oc 2x4 SP No.2 - 12-35, 11-36, 14-33, 15-32, 13-34 braces to narrow edge e "x3") nails, 6in o.c.,with stance. 90% of web length. 2, 24=41-6-12,			26=-25 (28=-43 (30=-44 (32=-53 (35=-23 (37=-46 (39=-41 (43=-108 (25=208 (27=163 (27=163 (27=163 (27=163 (31=190 (33=237 (35=235 (37=185 (37=185 (39=156 (41=166 ())))	LC 15), LC 15), LC 15), LC 15), LC 14), LC 14), LC 14), LC 14), (LC 14), (LC 35), (LC 35), (LC 35), (LC 22), (LC 22), (LC 22), (LC 21), (LC 21), (LC 24), (LC 34), (LC 34),	5=-111 (LC 1 27=-48 (LC 1 29=-41 (LC 1 31=-46 (LC 1 33=-15 (LC 1 33=-15 (LC 1 33=-44 (LC 1 40=-43 (LC 1 40=-43 (LC 1 40=-43 (LC 1 42=-23 (LC 1 42=-23 (LC 1 24=127 (LC 2 26=147 (LC 28=160 (LC 3 32=236 (LC 36=232 (LC 38=160 (LC 3 34=183 (LC 38=160 (LC 42=135 (LC 44=168 (LC	5), 5), 5), 5), 5), 5), 4), 4), 4), 4), 4), 4), 4), 22), 22),	,	balanced	41-42= 39-40= 36-38= 34-35= 32-33= 27-28= 25-26= 12-35= 10-37= 7-40=- 4-43== 15-32= 17-30= 19-28= 21-26= 13-34=	121/78, 6-41=- 156/155, 14-33 =-196/89, 16-31 =-120/77, 18-29 =-121/78, 20-27 =-115/79, 22-25 =-173/38 ye loads have b	=-46/150, =-46/150, =-46/152, =-46/152, =-46/150, =-46/150, =-46/150, =-192/89, -120/77, 8-39=-11 122/79, 5-42=-110 =-197/39, =-150/80, =-116/74, =-121/77, =-142/171,	0/66,
	$\begin{array}{c} 27 = 41 - 6 \\ 29 = 41 - 6 \\ 31 = 41 - 6 \\ 33 = 41 - 6 \\ 35 = 41 - 6 \\ 37 = 41 - 6 \\ 39 = 41 - 6 \\ 41 = 41 - 6 \\ 43 = 41 - 6 \\ 48 = 41 - 6 \end{array}$	12, 26=41-6-12, 12, 28=41-6-12, 12, 30=41-6-12, 12, 32=41-6-12, 12, 33=41-6-12, 12, 33=41-6-12, 12, 40=41-6-12, 12, 42=41-6-12, 12, 42=41-6-12, 12, 44=41-6-12, 12 C 14), 44=179 (LC 14)	FORCES TOP CHORD	Tensio 1-2=0/ ⁷ 5-6=-12 8-10=- ⁷ 11-12= 13-14= 15-16= 18-19=	48=127 aximum Co 1 3, 2-4=-216 26/91, 6-7=- 77/183, 10-1 -116/279, 12 -127/308, 1 -95/229, 16	(LC 27) mpressi 6/76, 4-5 104/111 11=-95/2 2-13=-1 2-13=-1 -18=-77 20=-56/4	on/Maximum i=-160/78, , 7-8=-82/134 (30, 27/308, 16/279, (183, 9, 20-21=-76	4,	this	design.	20	SEA 0363	AL 822	Norman

November 27,2024

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify d

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

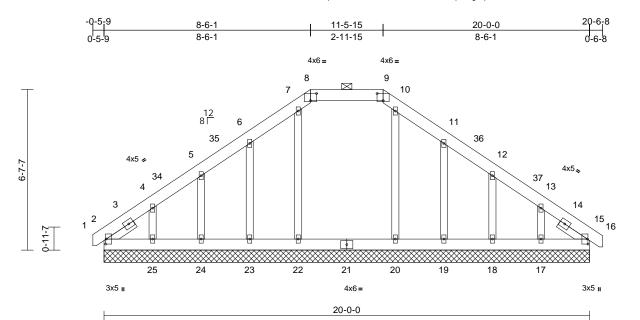
Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	A08	Common Supported Gable	1	1	Job Reference (optional)	169852582
Carter Components (Sanford, NC), Sanford, NC - 27332.	Run: 8.73 S Oct 31 2	024 Print: 8.	730 S Oct 31	2024 MiTek Industries. Inc. Tue Nov 26 10:11:42	Page: 2

ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- Wind: ASCE 7-16: Vult=130mph (3-second aust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-5-14 to 3-8-2, Exterior(2N) 3-8-2 to 16-10-1, Corner(3R) 16-10-1 to 25-0-0, Exterior(2N) 25-0-0 to 37-4-13, Corner(3E) 37-4-13 to 41-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 33, 32, 31, 30, 29, 28, 27, 26, and 25. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	B01	Hip Supported Gable	1	1	Job Reference (optional)	169852583

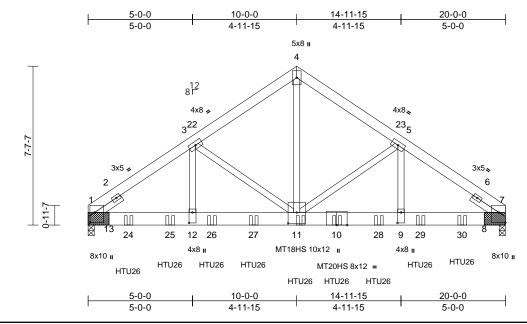
Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:42 ID:3svb5hhSXbq1LmTDC3xnuAzwPrT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.5

Plate Offsets ()	X, Y): [2:0-2-8,0-0-5]	, [4:0-0-0,Edge], [5:0-0-	0,Edge]	, [6:0-0-0,Edg	e], [7:0-0-0,Edge]	, [8:0-3-0	0-3-8], [9:0-3-	-0,0-3-8], [15:0-2	2-8,0-0-5	5]		
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.06 0.14	Vert(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 150 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	1-4-2 Structural wood she 6-0-0 oc purlins, ex		.3 Wi	EBS	2-25=-56/128, 24 23-24=-56/128, 2 20-22=-56/128, 1 18-19=-56/128, 1 15-17=-56/128 10-20=-229/23, 1 12-18=-194/87, 1 7-22=-229/49, 6-2 4-25=-186/110	2-23=-56 9-20=-56 7-18=-56 1-19=-19 3-17=-18	/128, /128, /128, 4/99, 6/109,	/87,	11) This cho 12) * Th 3-00 cho 13) Pro bea	s truss h ord live lo his truss the botto 6-00 tall ord and a vide me uring plat	has bee bad not has be om cho by 2-0 any oth chanic te capa	nconcurrent with een designed for rd in all areas wh 0-00 wide will fit er members, wit al connection (by able of withstand	10.0 psf bottom any other live loads. a live load of 20.0psi here a rectangle between the bottom h BCDL = 10.0psf. v others) of truss to ing 50 lb uplift at joint at joint 19, 47 lb upli
BOT CHORD	2-0-0 oc purlins (6- Rigid ceiling directly bracing.	0-0 max.): 8-9. y applied or 10-0-0 oc		DTES Unbalanced this design.	I roof live loads ha	ve been	considered fo	r	at jo Ib u	oint 18, 9 plift at jo	99 lb u pint 23,	plift at joint 17, 7 46 lb uplift at joi	Ib uplift at joint 22, 78 nt 24, 106 lb uplift at
	18=20-0- 22=20-0- 25=20-0- 25=20-0- 25=20-0- 25=-141 (I Max Uplift 2=-50 (Ld 17=-99 (I 19=-81 (I 23=-78 (I 25=-106 30=-19 (I		0, 0, 0	Vasd=103rr II; Exp B; Er and C-C Cc to 5-6-1, Cc 14-5-15 to 1 cantilever le right expose for reactions DOL=1.60 Truss desig	E 7-16; Vult=130m ph; TCDL=6.0psf nclosed; MWFRS rmer(3E) -0-4-11 t rmer(3R) 5-6-1 to 17-5-10, Corner(3I ft and right exposed ad;C-C for member s shown; Lumber I ned for wind loads uds exposed to w	BCDL=6 (envelope o 2-7-5, E 14-5-15, I E) 17-5-10 ed ; end v rs and fo DOL=1.60 s in the pl	6.0psf; h=25ft; e) exterior zor Exterior(2N) 2- Exterior(2N) 0 to 20-5-10 z vertical left an rces & MWFR 0 plate grip ane of the trus	ne -7-5 cone; d :S	14) This Inte R80 15) Gra or t	s truss is ernationa 02.10.2 a phical p he orien tom cho	s desig al Resid and ref ourlin re tation o rd.) Sta	ned in accordan dential Code sec erenced standar appresentation do of the purlin alon ndard	tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or
	17=271 (19=224 (22=346 (24=249 (C 27), 15=176 (LC 22), LC 53), 18=251 (LC 53) LC 53), 20=346 (LC 6), LC 5), 23=221 (LC 51), LC 51), 25=281 (LC 51) LC 27), 30=176 (LC 22)	4)	see Standa or consult q TCLL: ASC Plate DOL=	rd Industry Gable ualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca	End Deta esigner a sf (roof Ll ^c (Lum DC	ils as applical s per ANSI/TF .: Lum DOL=1)L=1.15 Plate	ole, PI 1. 1.15		Yan	Ex	DFE.	Phi a
FORCES	(lb) - Maximum Cor	npression/Maximum		Cs=1.00; C			•					0363	22
TOP CHORD	8-9=-128/151, 9-10 10-11=-144/145, 11	144/145, 7-8=-191/145, =-191/145,	6)	design. This truss h load of 12.0 overhangs r Provide ade All plates ar	as been designed psf or 1.00 times non-concurrent wite quate drainage to re 2x4 MT20 unles res continuous bo	for great flat roof le th other line prevent so otherwi	er of min roof oad of 20.0 ps ve loads. water ponding se indicated.	live sf on			A A A A A A A A A A A A A A A A A A A		EER. HILL

minin November 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	B02	Common Girder	1	2	Job Reference (optional)	169852584

Scale = 1:55.2

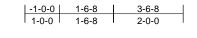
Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:42 ID:PTv5C6lkKROx2GY0tKS8s4zvUAt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

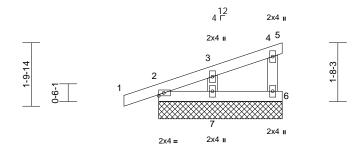
Page: 1

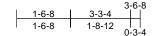
Plate Offsets (X, Y): [1:0-5-13,0-2-11], [7:Edge,0-3-11], [9:0-6-0,0-2-0], [11:0-6-4,0-5-0], [12:0-6-0,0-2-0]

						-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		11-12		240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.53	Vert(CT)		11-12	>937	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.06	7	n/a	n/a	MT18HS	244/190
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 344 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 * Excep Left 2x4 SP No.3 1-6-0 Structural wood she 3-6-1 oc purlins. Rigid ceiling directly bracing. (size) 1=(0-3-8 -0-4-3), 7= (req. 0-3- (req. 0-3- Max Horiz 1=-154 (L Max Grav 1=10077 (lb) - Maximum Com Tension	1-6-0, Right 2x4 SP N athing directly applie applied or 10-0-0 oc + bearing block), (rec (0-3-8 + bearing bloc (0-3-8 + bearing bloc (0-3-8, the second (0-3-8, the s	3) d or 4) 1. 5 ^{(k),} 5) 6)	except if not CASE(S) see provided to c unless other 2x8 SP 2400 attached to e nails spaced is assumed t 2x8 SP 2400 attached to e nails spaced is assumed t Unbalanced this design. Wind: ASCE Vasd=103mj II; Exp B; En cantilever lef	 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 2x8 SP 2400F 2.0E bearing block 12" long at jt. 1 attached to each face with 4 rows of 10d (0.131"x3") nails spaced 3" o.c. 16 Total fasteners per block. Bearing is assumed to be SP 2400F 2.0E. 2x8 SP 2400F 2.0E bearing block 12" long at jt. 7 attached to each face with 4 rows of 10d (0.131"x3") nails spaced 3" o.c. 16 Total fasteners per block. Bearing is assumed to be SP 2400F 2.0E. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 14) Use Simpson Strong-Tie HTU26 (20-10d Gi 14-10dx1 1/2 Truss, Single Ply Girder) or ec spaced at 2-3-0 oc max. starting at 1-11-3 from the left end to 10-2-3 to connect truss(es) to back face of bottom che 14-10dx1 1/2 Truss) or equivalent spaced at max. starting at 11-11-3 from the left end to connect truss(es) to back face of bottom che 10 Fill all nail holes where hanger is in contact to connect truss(es) to back face of bottom che 10 Fill all nail holes where hanger is in contact to connect truss(es) to back face of bottom che 10 Fill all nail holes where hanger is in contact to 2000 for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DDL=1.60 Went: 10=-1642 (B), 30=-1642 (B) 								0-10d Girder, der) or equivalent 1-11-3 from the left to back face of bottom 0-16d Girder, spaced at 2-0-0 oc ft end to 17-11-3 to ottom chord. contact with lumber. Increase=1.15, Plate -20 B), 24=-1851 (B), '=-1851 (B), 28=-1642
BOT CHORD WEBS	7-9=0/9996 4-11=0/9840, 5-11=	-2708/775,	,	Plate DOL=1 DOL=1.15);	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	(Lum DC	DL=1.15 Plate					TH CA	ROUT
	5-9=-611/3269, 3-11	=-3434/0, 3-12=0/40		Cs=1.00; Ct=						/	N	041188	Do Nin-
NOTES			8)		snow loads have	been co	nsidered for th	nis		L	2À		No start
	s to be connected toge	ther with 10d	0)	design.	MT20 plotos unit	and other	nuico indiasta	d				ion L	- F: -
	") nails as follows: is connected as follows	2 2 YE 2 rows			e MT20 plates unle tion Tolerance at je			u.		1		0.51	
	at 0-9-0 oc.	5. 210 - 2 1005			as been designed					=	:	SEA	L ; =
	hords connected as follo	ows: 2x8 - 2 rows			ad nonconcurrent			ds.		Ξ		0363	22 E
	staggered at 0-5-0 oc.				 a) The Fabrication Tolerance at joint 11 = 12% b) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. c) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. a) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 								
	nected as follows: 2x4 -			on the bottom chord in all areas where a rectangle									1 5
Except me	Except member 4-11 2x4 - 1 row at 0-7-0 oc.				3-06-00 tall by 2-00-00 wide will fit between the bottom								ERIAS
					ny other members						1	A GIN	E.F. AN
			13		designed in accor Residential Code			nd			1	CAC	II BEIN
					ind referenced star			na				Minnin C	in in its in the second s
				1.002.10.2 d								November	27 2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




November 27,2024


Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	C01	Monopitch Supported Gable	2	1	Job Reference (optional)	169852585

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:42 ID:U5QFVIeIxXRFdnTjJFF5o7zw9dU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

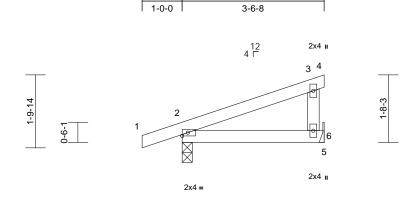
Scale = 1:33.1

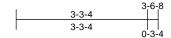
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0		-								Weight: 15 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she: 3-6-8 oc purlins, exi Rigid ceiling directly bracing. (size) 2=3-6-8, 5 8=3-6-8 Max Horiz 2=60 (LC Max Uplift 2=-40 (LC 8=-40 (LC 8=-40 (LC Max Grav 2=184 (LC	cept end verticals. applied or 10-0-0 oc 5=3-6-8, 6=3-6-8, 7=3 10), 8=60 (LC 10) 10), 5=-36 (LC 21), 10), 7=-30 (LC 14), 10), 221), 5=11 (LC 10), 221), 7=169 (LC 21) 221)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs n 6) Gable requir 7) Gable studs 8) This truss ha chord live loa 9) * This truss ha chord live loa 9) * This truss ha chord and ar 10) Provide mec bearing plate	5 7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b as been designed fr psf or 1.00 times file on-concurrent with es continuous botto spaced at 2-00 oc as been designed fr ad nonconcurrent v has been designed fr ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection e capable of withsta at joint 5, 35 lb up	Lum DC B; Fully peen cor or greate at roof k other lin om chor c or a 10.0 vith any for a liv s where il fit betw i (by oth anding 4	DL=1.15 Plate Exp.; Ce=0.9 asidered for the or of min roof pice of 20.0 pice of 20.0 pice of 20.0 pice of 20.0 pice of 20.0 pice of bottom other live load a rectangle veen the bottod ers) of truss t 0 bu plift at j	e p; live sf on ds. Dpsf om o					
TOP CHORD	Tension 1-2=0/28, 2-3=-119/3	75, 3-4=-39/23,	joint 7 and 4	0 lb uplift at joint 2. designed in accord		•	int at					
BOT CHORD	4-5=-19/11, 4-6=-13		International	Residential Code :	sections	R502.11.1 a	ind				HTH CA	um.
WEBS	3-7=-139/149			nd referenced stan	uaru AN	ISI/TPLT.					WHY CA	ROUL
NOTES			LOAD CASE(S)	Sidnuaru						15	Rain	SULL.
 Wind: AS Vasd=10; II; Exp B; and C-C to 3-6-8 z vertical le MWFRS i grip DOL: Truss des only. For see Stand 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B0 Enclosed; MWFRS (en Corner(3E) -1-0-0 to 2-6 cone; cantilever left and fft exposed;C-C for men for reactions shown; Lu =1.60 signed for wind loads in • studs exposed to wind dard Industry Gable End t qualified building desig	CDL=6.0psf; h=25ft; (velope) exterior zone 0-0, Exterior(2N) 2-0- right exposed ; end nbers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab	e S Ie,						A Martine Contraction	i	SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI A. GIL November 27,2024


Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	C02	Monopitch	8	1	Job Reference (optional)	169852586


-1-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:m4jm85hMIZcJHoWkltroegzw9ei-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-6-8

Scale = 1:28.7

Loading TCLL (roof Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	14	CSI TC BC WB Matrix-MP	0.19 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOI BOT CHOI WEBS BRACING TOP CHOI BOT CHOI REACTION FORCES TOP CHOI BOT CHOI CASH (CON CHOI BOT CH	 RD 2x4 SP No.2 RD 2x4 SP No.2 2x4 SP No.3 RD Structural wood she 3-6-8 oc purlins, ex RD Rigid ceiling directly bracing. NS (size) 2=0-3-0, 1 Max Horiz 2=59 (LC Max Uplift 2=-81 (LC Max Grav 2=276 (LC (Ib) - Maximum Com Tension RD 1-2=0/28, 2-3=-50/8 RD 2-6=-54/50, 5-6=0/0 ASCE 7-16; Vult=130mph 103mph; TCDL=6.0psf; B B; Enclosed; MWFRS (er C Exterior(2E) zone; cant dd; end vertical left expos ed; C-C for members and f ns shown; Lumber DOL= .60 ASCE 7-16; Pr=20.0 psf (L .15); Pf=20.0 psf (L .15); Is=1.0; Rough Cat E .00; Ct=1.10 	applied or 10-0-0 oc 6= Mechanical 10) C 10), 6=-56 (LC 10) C 21), 6=-193 (LC 21) pression/Maximum 6, 3-4=-8/0, 3-6=-144 (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon ilever left and right sed; porch left and right orces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	on the 3-06- chord 7) Refer 9) One 9) One 9) One 10) This t 10) This t 101 This t 102 This 102 This 102 This 103 This 104 CA Cat. e ht 105 This 105	bottom 0 tall by and any to girde le mech g plate 12.5A Si mended T at jt(s not cons uss is c ational I 10.2 an	as been designed o chord in all areas y 2-00-00 wide wil y other members. rr(s) for truss to tru nanical connection capable of withsta impson Strong-Tie d to connect truss s) 2. This connect isider lateral forces lesigned in accorc Residential Code s d referenced stan Standard	s where Il fit betw uss conr (by oth anding 5 e conne to bear to bear ton is for s. dance w sections	a rectangle veen the botto nections. ers) of truss t 6 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a	to to to to nd		A. The second seco		Weight: 14 lb	
 4) This true load of overhat 5) This true to the second seco	uss has been designed fo 12.0 psf or 1.00 times fla ngs non-concurrent with uss has been designed fo ive load nonconcurrent w	t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	fon									November	EEP. KININ

November 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	D01	Common Supported Gable	1	1	Job Reference (optional)	169852587

1-7-8

1-7-8

8 L

-0-6-8

0-6-8

2

3x8 ı

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Oct 31 2024 Print: 8 730 S. Oct 31 2024 MiTek Industries. Inc. Tue Nov 26 10:11:43 ID:fIG?DolQzsmG5QC5xg?Krkz4Siq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-0

1-7-8

4x5 =

2x4 II

3-3-0

3

3-9-8

0-6-8

4

3x8 II

5

Page: 1

GRIP

244/190

FT = 20%

13) This truss is designed in accordance with the 2018 C WWWWWWWW SEAL 036322 G 11111111 November 27,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:25.4

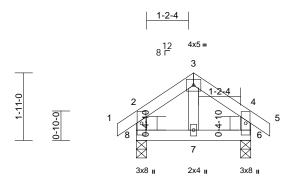
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.07 0.02 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 3-3-0 oc purlins, exx Rigid ceiling directly bracing. (size) 6=3-3-0, 7 Max Horiz 8=-53 (LC Max Upliff 6=-34 (LC Max Grav 6=145 (LC 8=145 (LC	cept end verticals. applied or 6-0-0 oc 7=3-3-0, 8=3-3-0 12) 15), 8=-34 (LC 14) 2 22), 7=102 (LC 1),	7) 8) 9) 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced agair Gable studs) This truss ha chord live loa	7-16; Pr=20.0 ps I.15); Pf=20.0 ps Is=1.0; Rough Cat =1.10 snow loads have as been designed psf or 1.00 times f on-concurrent witt es continuous bot fully sheathed from nst lateral movement spaced at 2-0-0 o as been designed ad nonconcurrent has been designed	(Lum DC B; Fully been cor for great lat roof lin o ther lin tom chorn o one fac not (i.e. c c. for a 10.1 with any	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the or of min roof oad of 20.0 pr ve loads. d bearing. the or securely liagonal web) D psf bottom other live loa); live sf on ds.				
FORCES	(lb) - Maximum Com Tension 2-8=-133/169, 1-2=0		1	on the bottor 3-06-00 tall I	n chord in all area by 2-00-00 wide w by other members	s where ill fit betv	a rectangle					
BOT CHORD WEBS	3-4=-44/91, 4-5=0/32 7-8=-24/44, 6-7=-24/ 3-7=-77/0	2, 4-6=-133/164	12) Provide med bearing plate	hanical connection capable of withst uplift at joint 6.	n (by oth						

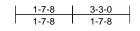
1-11-0

0-10-0

WEBS NOTES


- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 8 and 34 lb uplift at joint 6.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

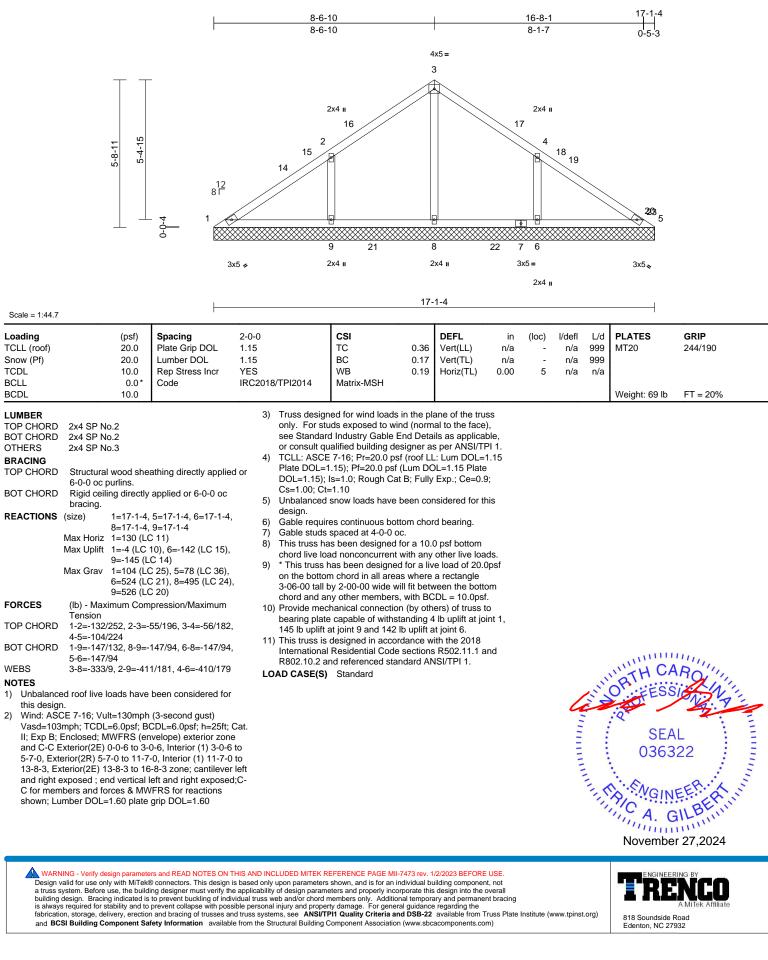
Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	D02	Common	4	1	Job Reference (optional)	169852588

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:cgOleTngUT0_KjLT251ox9z4Sio-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 16 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-3-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. • applied or 10-0-0 or 8=0-3-8 \$ 12) \$ 15), 8=-23 (LC 14)	chord live 7) * This tru on the bo 3-06-00 t chord and 8) One H2.5 recomme UPLIFT a and does 9) This truss Internatio R802.10.	s has been designed load nonconcurrent ss has been designe ttom chord in all are: all by 2-00-00 wide w d any other members 5A Simpson Strong-T ended to connect trus at jt(s) 8 and 6. This of not consider lateral is designed in acco and referenced sta (C) Chorderad	t with any ed for a liv as where will fit betv s. Fie conne ss to bear connectio forces. ordance w e sections	other live load ve load of 20.0 a rectangle ween the botto ctors ing walls due n is for uplift o vith the 2018 s R502.11.1 a	0psf om to only					
FORCES	(lb) - Maximum Com			(S) Standard								
TOP CHORD	Tension 1-2=0/33, 2-3=-97/5	6 3-100/51 1 5-0	0/33									
	2-8=-173/110, 4-6=-	173/106	0/33,									
BOT CHORD WEBS	7-8=-7/67, 6-7=-7/67 3-7=-2/41	7										
NOTES												
	ad reaf live leads have	has a secold secol for										
,	ed roof live loads have	been considered to)r									
this design		(0										11111
	CE 7-16; Vult=130mph		0 /								WHILL CA	Pall
	mph; TCDL=6.0psf; B									1	altion	NOT THE
	Enclosed; MWFRS (er		ne							~	OFFESS	in the
	Exterior(2E) zone; cant									~ ~		The second
	end vertical left and ri								U	20	2/ 4	14.0
	and forces & MWFRS		1;							6 18	: < /	N : E
	OL=1.60 plate grip DC								-		SEA	d : E
	CE 7-16; Pr=20.0 psf (=		01/	• -
	=1.15); Pf=20.0 psf (L								=		0363	22 : 5
	5); Is=1.0; Rough Cat E	s; Fully Exp.; Ce=0.9	э;						-	- 0	:	1 - E -
Cs=1.00; 0										-	Sec. 1	- 1 S -
 Unbalance design. 	ed snow loads have be	en considered for th	his								0363	FERMAN
	has been designed fo	r greater of min roof	live							11	710	The start of the s
,	.0 psf or 1.00 times fla	0									A G	HLB
	s non-concurrent with o										in a. C	1111111

November 27,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

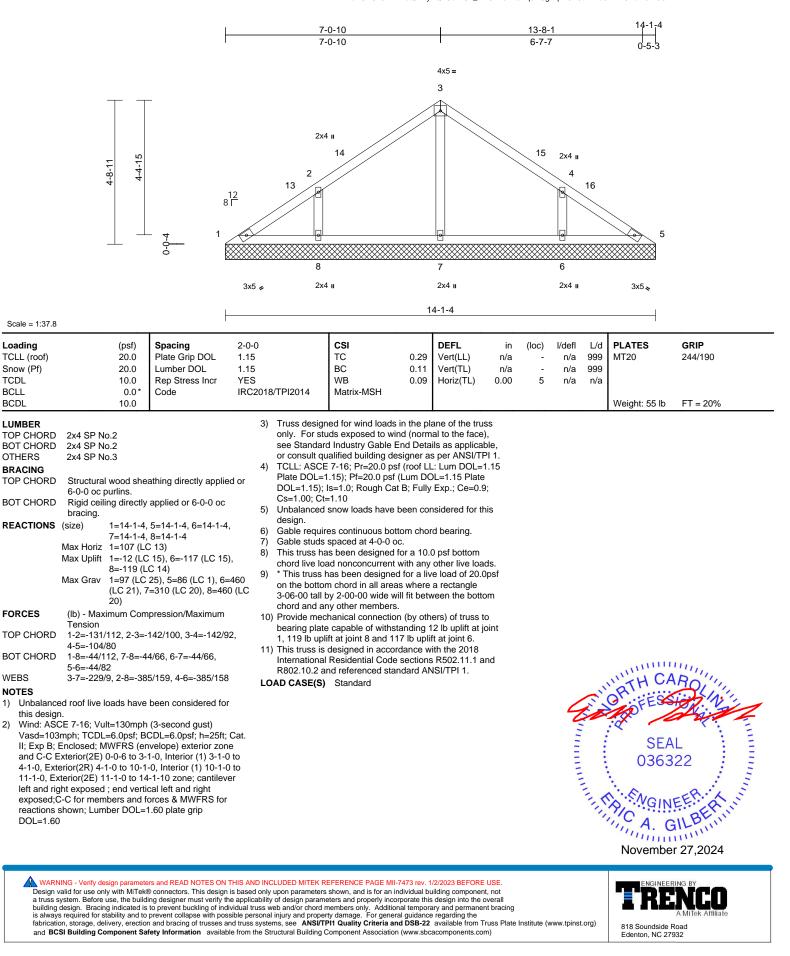
Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	VL1	Valley	1	1	Job Reference (optional)	169852589

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:4IUA5n6iT0ltV4so0m7npDzvU7E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	VL2	Valley	1	1	Job Reference (optional)	169852590

TCDL

BCLL


BCDL

WEBS

1)

2)

Run: 8 73 S. Oct 31 2024 Print: 8 730 S. Oct 31 2024 MiTek Industries. Inc. Tue Nov 26 10:11:43 ID:cNSDSFJwhxmcQX4ty7QXSbzvU7_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

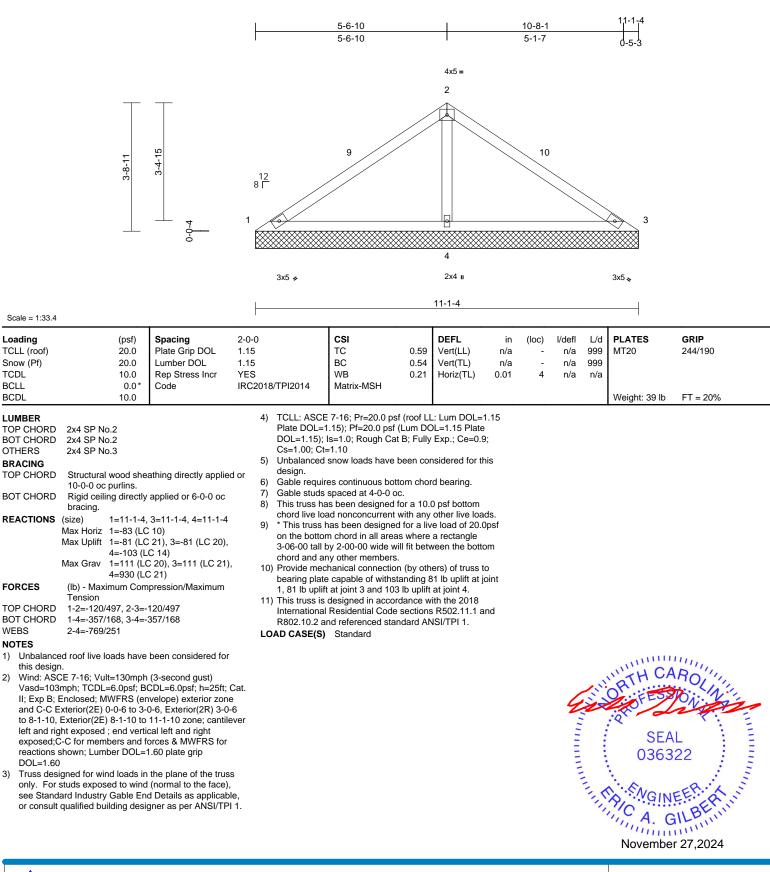
Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	VL3	Valley	1	1	Job Reference (optional)	169852591

TCDL

BCLL

BCDL

WFBS


1)

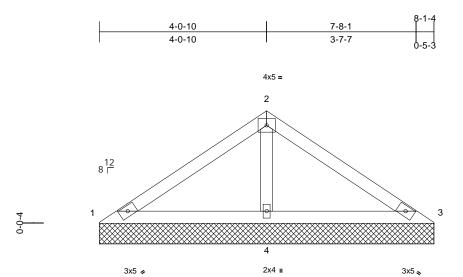
2)

3)

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:KI3?ZgRBL00Bd4roYDbtsizvU6q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	VL4	Valley	1	1	Job Reference (optional)	169852592

2-4-15

2-8-11

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:1Efnf5YT_4Hmqccj7JnDGpzvU6g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-4

Scale =	1:27.9
---------	--------

					· · · · · ·		· · · ·					1	
Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.32	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0		YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0		IRC2018/	TPI2014	Matrix-MP								
BCDL	10.0											Weight: 28 lb	FT = 20%
LUMBER			4)	TCLL: ASCE	7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP No.2		,	Plate DOL=1	.15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate						
BOT CHORD	2x4 SP No.2			DOL=1.15); I	s=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
OTHERS	2x4 SP No.3			Cs=1.00; Ct=									
BRACING			- /		snow loads have	been cor	nsidered for th	nis					
TOP CHORD	Structural wood s 8-1-4 oc purlins.	heathing directly appli	6)		es continuous bot		d bearing.						
BOT CHORD	Rigid ceiling dire bracing.	ctly applied or 6-0-0 oc	8)	This truss ha	spaced at 4-0-0 o s been designed	for a 10.							
REACTIONS	•	4, 3=8-1-4, 4=8-1-4			ad nonconcurrent								
	Max Horiz 1=-60	(LC 10)			as been designed n chord in all area			psi					
		(LC 21), 3=-27 (LC 20) (LC 14)	,	3-06-00 tall b	y 2-00-00 wide w	ill fit betw		om					
		(LC 20), 3=105 (LC 21 (LC 21)	^{),} 10)	Provide mecl	y other members hanical connectio capable of withs	n (by oth							
FORCES	(lb) - Maximum C Tension	ompression/Maximum		1, 27 lb uplift	at joint 3 and 66 designed in accor	lb uplift a	it joint 4.	oint					
TOP CHORD	1-2=-96/293, 2-3	-96/293			Residential Code			nd					
BOT CHORD	1-4=-243/149, 3-	1=-243/149			nd referenced sta			ina					
WEBS	2-4=-485/192			AD CASE(S)									
NOTES													
1) Unbalance this design		ve been considered fo	r									WITH CA	11111
	CE 7-16; Vult=130n	ph (3-second gust)										WITH CA	ROUL
Vasd=103	mph: TCDL=6.0psf	BCDL=6.0psf: h=25ft	Cat.								1	A	in Clark

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-1-10, Exterior(2E) 5-1-10 to 8-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	12 Mason Ridge - Wilmington B - Roof	
25070038	VL5	Valley	1	1	Job Reference (optional)	169852593

2-6-10

2-6-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Tue Nov 26 10:11:43 ID:k9GZIWgkd9YL08NejQyZgwzvU6W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-8-1

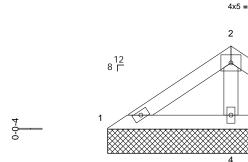
2-1-7

5-1-4

3

2x4 💊

1 4 2x4 🛛


5-1-4

Scale = 1:23.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	0.0* 10.0	Code	IRC2018/1PI2014	Matrix-MP							Weight: 17 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-1-4 oc purlins. Rigid ceiling directly bracing. (size) 1=5-1-4,3 Max Horiz 1=-36 (LC Max Uplift 1=-5 (LC 14) Max Grav 1=89 (LC	applied or 6-0-0 oc =5-1-4, 4=5-1-4 10) 14), 3=-11 (LC 15), 4	design. 6) Gable re 7) Gable st 8) This trus ed or 9) * This tru 0) * This trus 0) * This trus 3-06-00 chord ar 10) Provide bearing 11 lb up 11 lb up 11 D trus trus	ted snow loads hav quires continuous b Jds spaced at 4-0-0 s has been design to bad nonconcurrer ss has been design totom chord in all an all by 2-00-00 wide d any other membe nechanical connect late capable of with ft at joint 3 and 27 I s is designed in acc nal Residential Coo	ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw rs. ion (by oth istanding 5 b uplift at ju ordance w	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i lb uplift at jo pint 4. ith the 2018	ds.)psf om o int 1,					
FORCES	(LC 21) (lb) - Maximum Com	pression/Maximum		2 and referenced st (S) Standard	andard AN	ISI/TPI 1.						
this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C E	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (en exterior(2E) zone; canti	00/81 been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zor lever left and right	Cat.						4		OR THE CA	ROJULA
members a Lumber DC 3) Truss desig only. For s see Standa or consult (4) TCLL: ASC Plate DOL	end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat B Ct=1.10	for reactions shown L=1.60 the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate	ss , ole, 11 1. .15								SEA 0363	EER.KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1-4-15 1-8-11 0-0-4

