

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 11 Mason Ridge Galen F

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

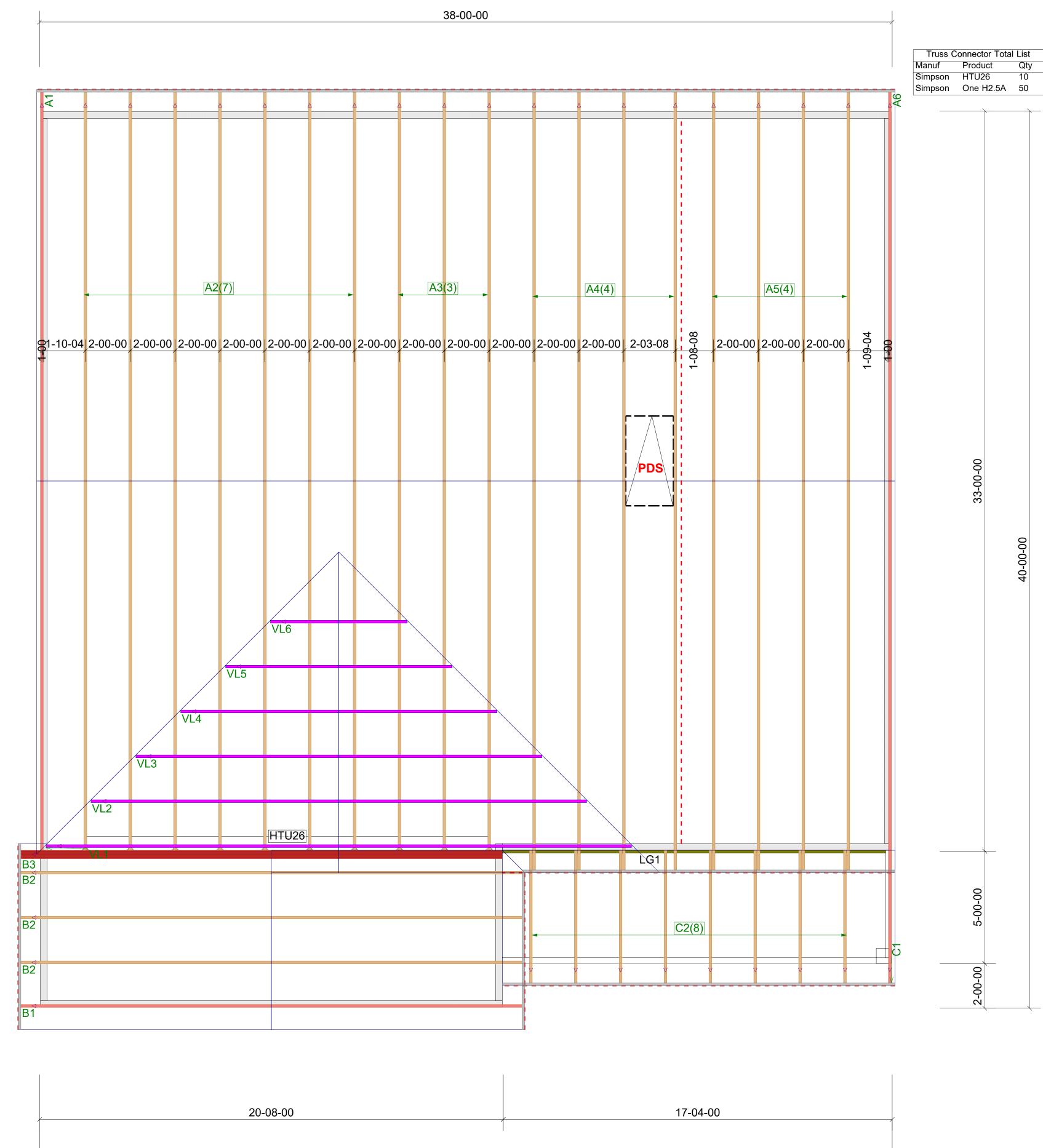
Approved By: _____

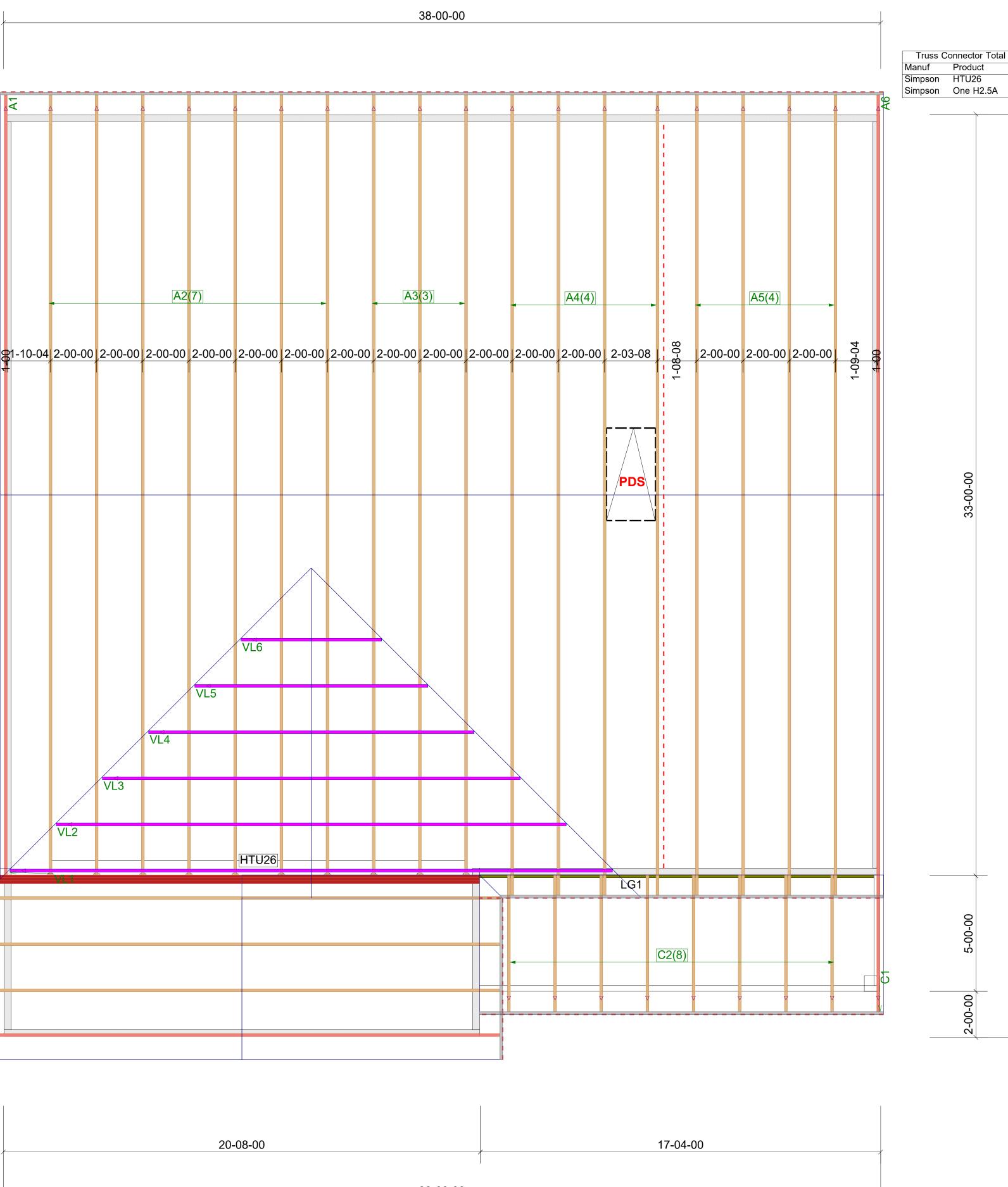
Date: _____

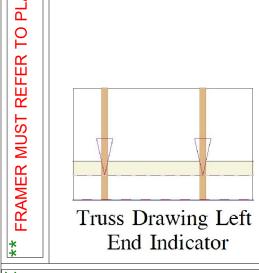
SHOULD NOT BE INS

DAMAGED COMPONENTS

L


∣≯


ANS


Щ. К

MUS.

*

38-00-00

		ANSI/ I PI 1, all uplit	ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	d or contractor.
Nate	DR Horton Inc	e		F 00/00/ 00/00/ 00/00/ 00/00/
NTS 2/3/20 Designe Dona Project Nu 124042 Sheet Nu	11 Mason Ridge Galen F			00 00 00
24 r: Idson ^{mber:} 5-A	Roof PLACEMENT PLAN	Lumber	building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	ns Name Name Name Name Name

RE: 11 Mason Ridge

11 Mason Ridge-Roof-Galen F

Site Information:

Customer: DR Horton Inc Project Name: 11 Mason Ridge Lot/Block: 11 Model: Address: Subdivision: Mason Ridge City: State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 17 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	164497210	A1	3/28/2024
2	164497211	A2	3/28/2024
3	164497212	A3	3/28/2024
4	164497213	A4	3/28/2024
5	164497214	A5	3/28/2024
6	164497215	A6	3/28/2024
7	164497216	B1	3/28/2024
8	164497217	B2	3/28/2024
9	164497218	B3	3/28/2024
10	164497219	C1	3/28/2024
11	164497220	C2	3/28/2024
12	164497221	VL1	3/28/2024
13	164497222	VL2	3/28/2024
14	164497223	VL3	3/28/2024
15	164497224	VL4	3/28/2024
16	164497225	VL5	3/28/2024
17	164497226	VL6	3/28/2024

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

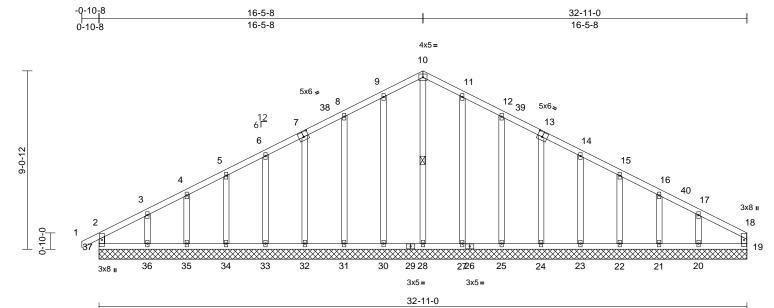
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Gilbert, Eric

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A1	Common Supported Gable	1	1	Job Reference (optional)	164497210

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:40 ID:fFaWlyRB4ATfbQCueKrxP9yWzcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.5

Plate Offsets (X, Y): [7:0-3-0,0-3-0], [13:0-3-0,0-3-0]

	,, ,, ,, ,, ,, ,,	0 0,0 0 0],	[10:0 0 0,0 0 0]			-								
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(lo	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	(10	- n/a		MT20	244/190
Snow (Pf/Pg)	10	3.9/20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a		- n/a	999	101120	244/190
	13			YES		WB		· · ·				999 n/a		
TCDL		10.0	Rep Stress Incr				0.19	Horz(CT)	0.00		19 n/a	n/a		
BCLL		0.0*	Code	IRC20)18/TPI2014	Matrix-MR							-	
BCDL		10.0					-						Weight: 213 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilin bracing. 1 Row at n (size) Max Horiz Max Uplift Max Grav	2.2 2.3 3.3 wood shea ourlins, exa ng directly midpt 19=32-11- 23=32-11- 23=32-11- 23=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 33=32-11- 22=18 (L 23=154 (L) 23=154 (L) 23=156 (L) 23=154 (L)	$\begin{array}{c} \text{LC 14} \\ \text{C 16}, 21 =-7 (\text{LC 16}, 23 =-13 (\text{LC 1}, 25 =-20 (\text{LC 1}, 25 =-20 (\text{LC 1}, 25 =-20 (\text{LC 1}, 25 =-12 (\text{LC 1}, 25 =-12 (\text{LC 1}, 32 =-16 (\text{LC 1}, 25 =-12 (\text{LC 1}, 32 =-16 (\text{LC 1}, 25 =-12 (\text{LC 1}, 33 =-12 (\text{LC 1}, 33 =-12 (\text{LC 1}, 33 =-12 (\text{LC 1}, 33 =-12 (\text{LC 1}, 25 =-12 (\text{LC 1}, 33 =-12 (\text{LC 1}, 25 =-12 (\text{LC 1}, 32 $	d or 6), 6), 6), 5), 5), 5), (), (), (), (), (), (), (), (this design. Wind: ASCI Vasd=103m II; Exp B; E (3E) -0-10-Corner(3R) 32-9-4 zone vertical left forces & MI DOL=1.60 Truss designed only. For sisee Standa 	E 7-16; Vult=130m hph; TCDL=6.0psf; nclosed; MWFRS (1 to 2-5-8, Exterior 16-5-8 to 19-8-10, e; cantilever left an and right exposed; WFRS for reactions olate grip DOL=1.3 gned for wind loads tuds exposed to wi tuds exposed to wi	2=0/33, 2 70/78, 5- -107/26(11-12=-1 4-15=-70 -17=-56/3 -33=-29/7 -33=-29/7 -33=-29/7 -22=-28/7 -30=-165 -33=-120/7 -33=-120/7 -33=-120/7 -6=-144/ -225=-14 4-23=-12 6-21=-11 we been ph (3-set BCDL=6 (envelopm (2N) 2-5- Exterior d right e) C-C for r s shown; 3 s in the p nd (norther s shown; 3	-3=-93/59, 6=-70/125,), 9-10=-124/3 07/260, /125, 36, 17-18=-71, 70, 34-35=-29, 70, 31-32=-29, 72, 23-24=-28, 70, 20-21=-28, /67, 8-31=-14, 73, 5-34=-129, 127, 4/85, 0/73, 9/69, considered for cond gust) 3.Opsf; h=25ft; a) and C-C Cc 8 to 16-5-8, (2N) 19-8-10 t cosed ; end Lumber lane of the truu al to the face) ills as applicat	801, /34, /70, /72, /70, /70, 4/85, /81, /81, r Cat. orner so	F [[[[[[[[[[[[[[[[[[Plate DOL: DOL=1.15 Exp.; Ce=(Unbalance design. This truss I oad of 12. overhangs All plates a Gable requ Truss to be oraced aga Gable stud this truss on the bott 3-06-00 tal chord and All bearing	=1.15); Plate E 0.9; Cs= d snow mas beed 0 psf on non-ccc re 2x4 iires co f fully s iinst lat s spacet has b om chcc by 2-C any oth s are ar	SP=20.0 psf (roc Pg=20.0 psf; Pf= DQL=1.15); Is=1.0 Ioads have been en designed for g 2.00 times flat ro ncurrent with oth MT20 unless oth ntinuous bottom one eral movement (i ed at 2-0-0 oc. een designed for ror din all areas with 00-00 wide will fut er members. ssumed to be SP	of LL: Lum DOL=1.15 13.9 psf (Lum); Rough Cat B; Fully in considered for this reater of min roof live of load of 13.9 psf on er live loads. erwise indicated. chord bearing. e face or securely e.e. diagonal web). a live load of 20.0psf lere a rectangle between the bottom No.2.
		23=154 (L 25=184 (L 28=157 (L 31=184 (L 33=154 (L	C 2), 24=160 (LC 4) C 23), 27=204 (LC 2) C 36), 30=205 (LC 2) C 22), 32=159 (LC 3) C 2), 34=162 (LC 3) C 2), 36=175 (LC 3)), 23), 22), 39), 9),	forces & MV DOL=1.60 3) Truss design only. For sisee Standa	WFRS for reactions plate grip DOL=1.3 gned for wind loads tuds exposed to wi	s shown; 3 s in the p nd (norm End Deta	Lumber lane of the tru hal to the face) ils as applicat), ole,				10000	EER

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A1	Common Supported Gable	1	1	Job Reference (optional)	l64497210

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 37, 12 lb uplift at joint 30, 19 lb uplift at joint 31, 16 lb uplift at joint 32, 13 lb uplift at joint 33, 19 lb uplift at joint 34, 5 lb uplift at joint 35, 52 lb uplift at joint 26, 11 lb uplift at joint 27, 20 lb uplift at joint 25, 16 lb uplift at joint 24, 13 lb uplift at joint 23, 18 lb uplift at joint 22, 7 lb uplift at joint 21 and 44 lb uplift at joint 20.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:40 ID:fFaWlyRB4ATfbQCueKrxP9yWzcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A2	Common	7	1	Job Reference (optional)	164497211

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries. Inc. Tue Mar 26 15:25:41

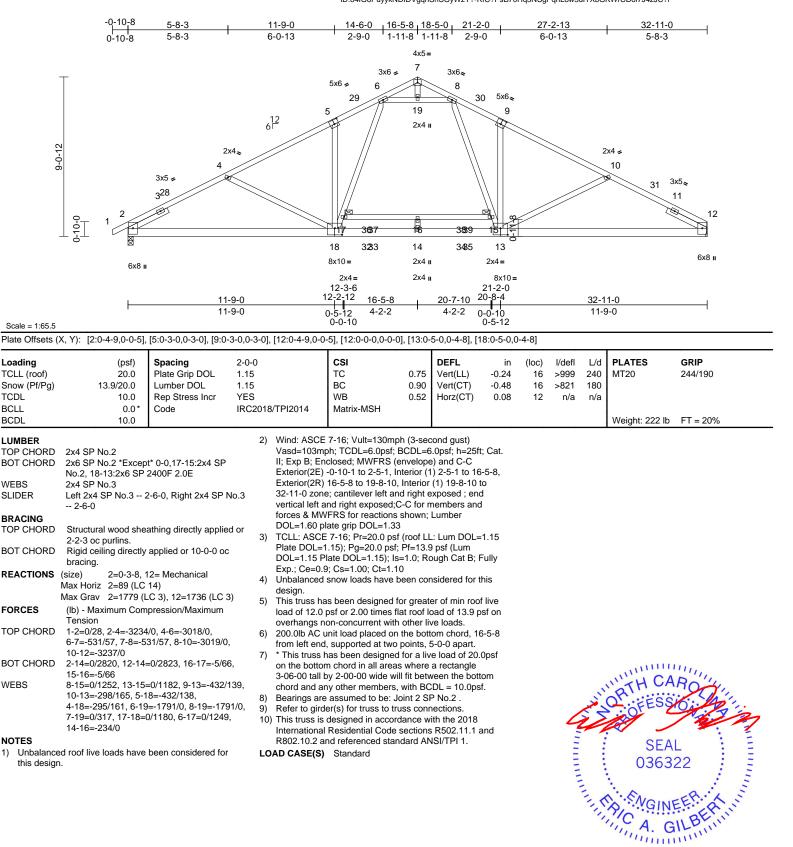
ID:uXgnKfz9yOuZG1?9fs71fEyWzbn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 21-10-3 5-8-3 11-0-13 16-5-8 27-2-13 32-11-0 0-10-8 5-8-3 5-4-11 5-4-11 5-4-11 5-4-11 5-8-3 4x5= 5 5x6 ≠ 5x6 👟 18 19 17 20 6 4 12 61 9-0-12 4x5 ≠ 4x5 👟 3 7 16 8x10= 2 8 0-10-0 Ð 9 14 13 22 12 23 11 10 8x10= 3x5= 3x8= 3x5= 3x5= 3x5= 8-4-8 16-5-8 24-6-8 32-11-0 8-4-8 8-1-0 8-1-0 8-4-8 Scale = 1:63 Plate Offsets (X, Y): [2:Edge,0-2-12], [4:0-3-0,0-3-0], [6:0-3-0,0-3-0], [9:Edge,0-2-12]

Plate Offsets ((X, Y): [2:Edge,0-2-12], [4:0-3-0,0-3-0], [6:(-	0-3-0,0-3-0	0], [9:Edge,0-2	-12]							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.93 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-12 10-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 192 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 9= Mecha Max Horiz 15=106 (I Max Grav 9=1430 (I (lb) - Maximum Com Tension 1-2=0/33, 2-3=-681/ 5-7=-2478/240, 7-8= 8-9=-388/79	cept end verticals. applied or 2-2-0 oc 3-15, 7-9 inical, 15=0-3-8 .C 14) .C 3), 15=1480 (LC 3 ipression/Maximum 105, 3-5=-2471/238, -563/71, 2-15=-505/ 2-14=-95/1948, 0=-155/2217 =-644/127, 6-10=0/4	4) d or 5) 6) 3) 7) 8) 9) 138, LG	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n * This truss I on the bottor 3-06-00 tall I chord and an Bearings are Refer to gird This truss is International	7-16; Pr=20.0 psf 1.15); Pg=20.0 psf; late DOL=1.15); Is 0; Cs=1.00; Ct=1.1 snow loads have b as been designed f psf or 2.00 times fl on-concurrent with as been designed m chord in all areas by 2-00-00 wide wi by other members, assumed to be: J er(s) for truss to tru designed in accorr Residential Code nd referenced stan Standard	Pf=13.9 =1.0; R 0 peen con- for great a troof I a troof I a troof I for a live s where II fit bety with BC out 15 S uss conn dance w sections	e) psf (Lum bugh Cat B; f nsidered for t er of min roo bad of 13.9 p ve loads. re load of 20. a rectangle veen the bott DL = 10.0ps SP No.2 nections. ith the 2018 \$ R502.11.1 a	Fully his f live sf on Opsf om f.				NH CA	ROLINI
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; I Exterior(2I S2-9-4 zor vertical lef 	ed roof live loads have n. CE 7-16; Vult=130mph Imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er E) -0-10-1 to 2-5-1, Int R) 16-5-8 to 19-8-10, I ne; cantilever left and r t and right exposed;C- /WFRS for reactions s	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C erior (1) 2-5-1 to 16- interior (1) 19-8-10 to ight exposed ; end C for members and	Cat. 5-8,									SEA 0363	

(envelo Exterior(2E) -0-10-1 to 2-5-1, Interior (1) 2-5-1 to 16-5-8, Exterior(2R) 16-5-8 to 19-8-10, Interior (1) 19-8-10 to 32-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

G minin March 28,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A3	Common	3	1	Job Reference (optional)	164497212

1)

Run: 8 73 S. Feb 22 2024 Print: 8 730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:41 ID:o4IG6PuyykNDIDVgqhSnSGyWzY?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 28,2024

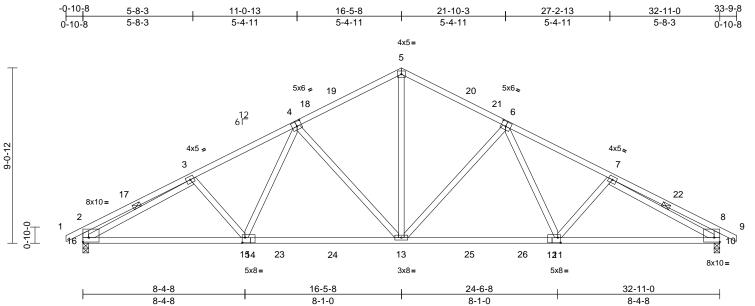
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A4	Common	4	1	Job Reference (optional)	164497213

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:42 ID:Vug1G0_P2nIdhmcORu?GUqyWzRR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	-0-10-8 	<u>5-8-3</u> 5-8-3		<u>11-9-0</u> 6-0-13	- 1		5-8 18-4 1-8 1-1	5-0 21-2 1-8 2-9	<u>2-0</u>	<u>27-2</u> 6-0-				<u>11-0</u> 8-3	33-9-8
							4x5=								
Т					5x6 ≠	3x6 ≠	7 /tt	3x6≈							
						6 31		8	32 ^{5x6} ≈						
				12 6	5		21 2x4 ॥		9						
9-0-12			3x5 ≠									2x4	=		
0-6		3x5 🖌	4					//					0	3x5 👟	
		330				//		,	$\langle $					3311	
o_	1 ²	ET.				/ ସ	-							19	12 13
 			B		118	389	0 17	4041							
	×		20		19	3485	15	3637	14						
	5x10=		2x4 II		8x10:	=	2x4 II		2x4=						5x8=
					2x 12-3	4= -6	2x4 🛛		8x10= 21-2-0						
	1	5-8-3	1	11-9-0	12-2-1	² 16-5-8	1		20-8-4			32-11-	0		1
		5-8-3	I	6-0-13	0-5-1	2 4-2-2	I	4-2-2	0-0-10			11-9-0)		
Scale = 1:65.5					0-0-				0-5-12						
ate Offsets (X, Y)	: [2:Edge,0-2-5],	[5:0-3-0,0-3-0), [9:0-3-0,0)-3-0], [12:Ed	ge,0-2-9],	[14:0-5-0,0-4-	8], [19:0	-5-0,0-4-8]							
oading	(psf)	Spacing	2-0)-0	с	SI		DEFL	in	(loc)	l/defl	L/d	PLATES	(GRIP
CLL (roof)	20.0	Plate Grip D	OL 1.1	5	T	0		Vert(LL)	-0.22	17-18	>999	240	MT20		244/190
now (Df/Da)	12 0/20 0			F		\sim	0.40	Vart(CT)	0.40	47 40	. 004	400			


Loading	(psf)	Spacing	2-0-0		CSI	0.70	DEFL	in	(loc)	l/defl	L/d	PLATES MT20	GRIP	
TCLL (roof) Snow (Pf/Pg)	20.0 13.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.70 0.46	Vert(LL) Vert(CT)		17-18 17-18	>999 >921	240 180	MT20	244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.06	12	n/a	n/a			
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 228 lb	FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP 2400F 2.0E No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she 2-4-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-88 (LC Max Grav 2=1779 (L (lb) - Maximum Com Tension 1-2=0/28, 2-4=-3155 6-7=-523/56, 7-8=-5 10-12=-3244/0, 12-1 2-20=0/2763, 15-20= 17-18=-4/68, 16-17= 5-19=-412/138, 10-1 6-21=-1804/0, 8-21= 15-17=-242/0, 4-20= ed roof live loads have h.	2-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc (12) (13) (2-3), 12=1779 (LC 3) (2-3), 12=1779 (LC 3) (LC 3) (LC 3) (LC 3) (LC 3) (LC 3	dor 3) d or 3) 4) 5) 6) 7) 273, 160, 8) 9)	Vasd=103mp II; Exp B; Enn. Exterior(2E) Exterior(2R) 33-9-1 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs no 200.0lb AC u from left end. * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a International	7-16; Vult=130mp h; TCDL=6.0psf; closed; MWFRS ((-0-10-1 to 2-5-7, In 16-5-8 to 19-9-0, 1 cantilever left and nd right exposed; FRS for reactions ate grip DOL=1.3; 7-16; Pr=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 snow loads have I s been designed f pon-concurrent with nit load placed on supported at two as been designed n chord in all area y 2-00-00 wide wi y other members, are assumed to be designed in accorn Residential Code nd referenced star Standard	BCDL=6 envelopenterior (1 Interior (1 Interior (1 Interior (1 Interior (1 Interior (1 Interior (1 Interior (1 Fr=13.2) = 1.0; R0 0 been con for great lat roof la I for a liv for a great lat roof la I for a liv I for a liv s where II fit betw with BC 0 SP 240 dance w sections	.0psf; h=25ft e) and C-C) 2-5-7 to 16 1) 19-9-0 to posed; end hembers and Lumber :: Lum DOL= psf (Lum bugh Cat B; F asidered for the er of min roof bad of 13.9 p; re loads for 20.0 a rectangle veen the bottt DL = 10.0ps1 OF 2.0E. th the 2018 R502.11.1 a	-5-8, -1.15 Fully his filive sf on S-5-8 Opsf om f.				SEA 0363	ERER.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

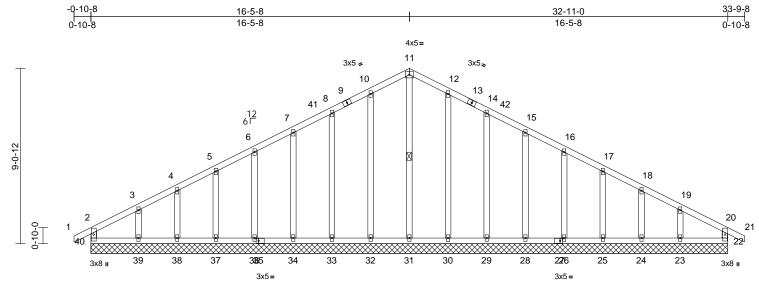
Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A5	Common	4	1	Job Reference (optional)	164497214

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries. Inc. Tue Mar 26 15:25:42 ID:luFsjvljwmZxolbOyMTMXJyWzR1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.5

Plate Offsets ((X, Y): [2:Edge,0-2-12], [4:0-3-0,0-3-0], [6:	:0-3-0,0-3-	0], [10:Edge,0-	2-12], [11:0-1-12,0)-3-4], [1	4:0-1-12,0-3	-4]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.92 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-15 13-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-1 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8, Max Horiz 16=-105 (Max Grav 10=1477 (lb) - Maximum Com Tension 1-2=0/33, 2-3=-681/ 5-7=-2464/238, 7-8= 2-16=-505/138, 8-10	cept end verticals. applied or 2-2-0 oc 3-16, 7-10 16=0-3-8 LC 13) (LC 3), 16=1477 (LC pression/Maximum 105, 3-5=-2464/238 -681/105, 8-9=0/33)=-505/139 3-15=-67/1940, -11=-118/2196 3=-643/128, 4-15=0/	4 ed or 5 6 C 3) 7 8 , , L	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. This truss ha load of 12.0 overhangs n * This truss l on the bottor 3-06-00 tall l chord and an All bearings This truss is International	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps late DOL=1.15); ls 9; Cs=1.00; Ct=1.1 snow loads have l as been designed i psf or 2.00 times f on-concurrent with nas been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be designed in accor Residential Code nd referenced star Standard	; Pf=13.9 s=1.0; Ro 0 been cor for great lat roof lin o ther lin d for a liv s where ill fit betw , with BC e SP No. dance w sections	e psf (Lum bugh Cat B; I rsidered for t er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott DL = 10.0ps 2. th the 2018 s R502.11.1 a	Fully this of live osf on Opsf tom			A	WITH CA	RO
this design 2) Wind: ASC Vasd=103 II; Exp B; Exterior(2 33-9-1 zor vertical lef forces & M	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-10 to 2-5-7, Int R) 16-5-8 to 19-9-0, In ne; cantilever left and r ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C erior (1) 2-5-7 to 16- terior (1) 19-9-0 to ight exposed ; end for members and	; Cat. -5-8,									SEA 0363 NGIN A. G March	ER REALIN

March 28,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A6	Common Supported Gable	1	1	Job Reference (optional)	164497215

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:42 ID:aJ8ZYmZ8VrTg3IspphNlzAyWzQg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

32-11-0

Scale = 1:59.5 Plate Offsets (X, Y): [27:0-1-8.0-1-8] [35:0-1-8.0-1-8]

Plate Offsets (X, Y): [27:0-	1-8,0-1-8], [35:0-1-8,0-1-8]	_											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.05 0.19		in n/a n/a 0.00	2	- n/a - n/a 2 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 215		20%
	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 6-0-0 oc pu Rigid ceilin bracing. 1 Row at m (size) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 wood she trifins, ex. g directly hidpt 22=32-11 24=32-11 26=32-11 26=32-11 31=32-11 33=32-11 33=32-11 33=32-11 34=32-11 40=-105 (22=-7 (LC 24=-7 (LC 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 25=-16 (LC) 2	LC 13) : 12), 23=-44 (LC 16) : 16), 25=-18 (LC 16) C 16), 28=-15 (LC 16) C 16), 30=-11 (LC 11) C 15), 33=-18 (LC 12) C 15), 36=-15 (LC 12) C 15), 40=-24 (LC 12) C 2), 23=176 (LC 40) C 2), 25=161 (LC 40) C 2), 25=161 (LC 22) C 23), 30=206 (LC 22) C 23), 30=206 (LC 22) C 22), 34=160 (LC 22) C 22), 34=160 (LC 22) C 22), 33=161 (LC 32) C 22), 33=177 (LC 32) C 2), 39=177 (LC 32) C 30), 30=207 (LC 32) C 2), 39=177 (LC 32)	d or), ,, 6), 5), 5), 5), 2), 23), 22), 2),	TOP CHORD BOT CHORD WEBS 1) Unbalancer this design. 2) Wind: ASC Vasd=103r II; Exp B; E (3E) -0-10- Corner(3R) 33-9-1 zom vertical left forces & M	Tension 2-40=-136/84, 1-2 3-4=-69/56, 4-5=- 6-7=-74/170, 7-8= 10-11=-124/303, 12-14=-107/262, 15-16=-74/170, 11 17-18=-50/79, 18 20-21=0/33, 20-2 39-40=-31/87, 34 30-37=-31/87, 34 32-33=-31/87, 31 29-30=-31/87, 24 22-23=-31/87, 24 22-23=-31/87, 24 22-23=-31/87, 24 22-23=-31/87, 24 22-23=-31/87, 24 22-33=-128/80, 41 15-28=-128/76, 11 17-25=-128/80, 11 19-23=-144/127 d roof live loads ha	2=0/33, 2 63/78, 5- 	-3=-85/61, 6=-62/125, 8×10=-107/26 24/303, 8/215, 1/125, 38, 19-20=-70, 4 37, 37-38=-31, 37, 30-31=-31, 37, 30-31=-31, 37, 23-24=-31, 6/67, 76, 6-36=-126, 0, 3-39=-146, 9/82, 6/77, 3/70, considered fo cond gust) 0.0psf; h=25ft; b) and C-C Cc 8 to 16-5-8, 2N) 19-9-0 to posed; end nembers and	/37, /87, /87, /87, /87, /87, /87, /77, /127, /127, r Cat.	4) T F E 5) U 5) U 6) T 8) C 9) T 10) C 11) *	only. For s see Standa or consult of CCL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 Inbalance/ lesign. This truss h boad of 12.0 yverhangs All plates a Sable requ Truss to be praced aga Sable stud: This truss on the botto 8-06-00 tall schord and a	tuds eviral Indu yualifiez F 7-16 (E F 7-16 1.15); Plate E F 7-16 (E F 7-16 1.15); Plate C 9, (Cs== d snow mas bee 0 psf or non-co re 2x4 irres co inst lat s space has bé folly si inst lat s space has by 2-0 any oth	xposed to wind ustry Gable En, d building desig ; Pr=20.0 psf (Pg=20.0 psf; F DOL=1.15); Is= =1.00; Ct=1.10 loads have be en designed for 2.00 times flat oncurrent with c MT20 unless c ntinuous bottor heathed from c eral movement ed at 2-0-0 oc. een designed for or 1 all areas 10-00 wide will her members.11	I (normal to d Details as gner as per roof LL: Lui P=13.9 psf 1.0; Rough een conside r greater of t roof load of other live lo other live lo	the face), s applicable, r ANSI/TPI 1. m DOL=1.15 (Lum D Cat B; Fully ered for this min roof live of 13.9 psf on ads. dicated. aaring. securely and of 20.0psf ctangle the bottom

March 28,2024

Page: 1

4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria and DSP-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	A6	Common Supported Gable	1	1	Job Reference (optional)	164497215

12) All bearings are assumed to be SP No.2.

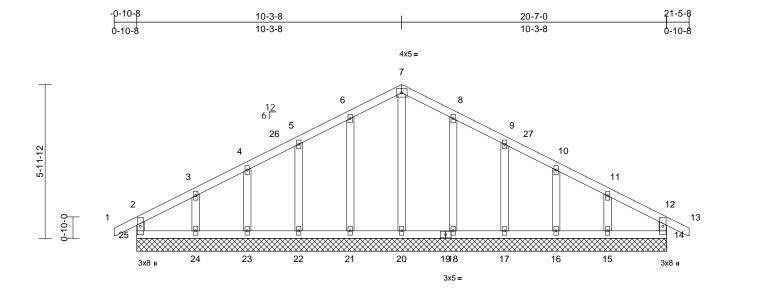
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 40, 7 lb uplift at joint 22, 12 lb uplift at joint 32, 18 lb uplift at joint 33, 16 lb uplift at joint 34, 15 lb uplift at joint 36, 18 lb uplift at joint 37, 5 lb uplift at joint 38, 51 lb uplift at joint 39, 11 lb uplift at joint 30, 18 lb uplift at joint 29, 15 Ib uplift at joint 28, 15 lb uplift at joint 26, 18 lb uplift at joint 25, 7 lb uplift at joint 24 and 44 lb uplift at joint 23.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run; 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:42 ID:aJ8ZYmZ8VrTg3IspphNlzAyWzQg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	B1	Common Supported Gable	1	1	Job Reference (optional)	164497216

. . . -

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:42 ID:yihlioUFIONG0axA3tCpNUyWzOC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-7-0

Scale = 1:44.7												1
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	014 CSI TC BC WB Matrix-MR	0.08 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%
	17=20-7-0 21=20-7-0 24=20-7-0 24=20-7-0 Max Horiz 25=73 (LC 16=-11 (L 18=-15 (L 22=-18 (L 22=-18 (L 22=-36 (L) Max Grav 14=149 (L 16=159 (L 18=207 (L 21=207 (L	cept end verticals. applied or 6-0-0 oc), 15=20-7-0, 16=20-), 18=20-7-0, 20=20-), 22=20-7-0, 23=20-), 25=20-7-0 C 14) 112), 15=-32 (LC 16) C 16), 17=-18 (LC 16) C 16), 21=-15 (LC 14) C 15), 23=-10 (LC 15) C 15), 25=-18 (LC 17) C 2), 15=165 (LC 42) C 2), 17=180 (LC 22) C 23), 20=144 (LC 22) C 22), 22=180 (LC 23) C 2), 24=165 (LC 35)	d or this 2) Win Vas II; E 7-0, (3E 7-0, Cor 7-0, 21-4 forc DOI 5), 3) Tru 5), or c 1) or c 1), 4) TCL 9), 4) TCL 9), Exp (2), Exp (3), 5) Unt des	7-20=-119/15, 6- 4-23=-126/76, 3- 9-17=-139/83, 10 11-15=-135/112 alanced roof live loads ha design. 1: ASCE 7-16; Vult=130n d=103mph; TCDL=6.0psi xp B; Enclosed; MWFRS -0-10-1 to 2-3-8, Exterio her(3R) 10-3-8 to 13-3-8, -1 zone; cantilever left ar cal left and right exposed as & MWFRS for reaction =1.60 plate grip DOL=1.1 ss designed for wind load . For studs exposed to w Standard Industry Gable onsult qualified building d L: ASCE 7-16; Pr=20.0 ps =1.15 Plate DOL=1.15); ; Ce=0.9; Cs=1.00; Ct=1 alanced snow loads have gn. truss has been designed	24=-136/ -16=-126 ave been hph (3-see ; BCDL={ (enveloper r(2N) 2-3. Exterior(: hd right es i; C-C for r is shown; 33 ds in the p rind (norm End Deta esigner a sf (roof L1 sf, Pf=13. Is=1.0; R 10 e been co	12, 8-18=-16 76, considered for cond gust) 0.0psf; h=25ft and C-C Cri 8 to 10-3-8, 2N) 13-3-8 to cposed ; end nembers and Lumber lane of the tru al to the face ills as applica s per ANSI/TI :: Lum DOL= 0 psf (Lum bugh Cat B; F nsidered for th	s7/77, or ; Cat. orner uss), ble, PI 1. 1.15 Fully his	bea 25, at jo 15 I joint 14) This Inte	ring pla 8 lb upli bint 22, b uplift a t 16 and s truss is rnationa 02.10.2	te capa ift at joi 10 lb uj at joint 1 32 lb u s desig al Resid and ref	ble of withstand nt 14, 15 lb uplif olift at joint 23, 3 18, 18 lb uplift at uplift at joint 15. ned in accordan dential Code sec erenced standar	r others) of truss to ing 18 lb uplift at joint at joint 21, 18 lb uplift 5 lb uplift at joint 24, joint 17, 11 lb uplift at ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-25=-130/103, 1-2= 3-4=-47/69, 4-5=-55, 6-7=-83/205, 7-8=-83 9-10=-55/113, 10-11 12-13=0/33, 12-14=- 24-25=-23/56, 23-24 21-22=-23/56, 20-21 17-18=-23/56, 16-17 14-15=-23/56	6/33, 2-3=-60/43, /112, 5-6=-67/160, 3/205, 8-9=-67/160, =-44/68, 11-12=-48/: 130/102 =-23/56, 22-23=-23/: =-23/56, 18-20=-23/:	load ove 7) All (8) Gat 32, 9) Tru: brac 56, 10) Gat 56, 11) * Tr 56, on t 56, 3-00 cho	of 12.0 psf or 2.00 times hangs non-concurrent wi lates are 2x4 MT20 unlee le requires continuous bo s to be fully sheathed fro ed against lateral movern le studs spaced at 2-0-0 is truss has been designe he bottom chord in all are -00 tall by 2-00-00 wide v d and any other member earings are assumed to l	flat roof I th other li ss otherw bttom choi m one fac nent (i.e. c oc. ed for a liv eas where will fit betw s.	bad of 13.9 p: ve loads. se indicated. d bearing. se or securely liagonal web) re load of 20.0 a rectangle veen the botto	sf on / Opsf		JN		SEA 0363	EEP A

March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	B2	Common	3	1	Job Reference (optional)	164497217

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries. Inc. Tue Mar 26 15:25:42 ID:feH4pDcXxSerD6i5fzO9nbyWzO2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 0-10-8 21-5-8 0-10-8 5-3-8 10-3-8 15-3-8 20-7-0 5-3-8 5-0-0 5-0-0 5-3-8 4x5 = 4 1<u>2</u> 6 [15 16 4x5 ዾ 4x5 👟 ¹⁷ 5 3 ¹⁴ 5-11-12 13 18 8x10 = 2 6 9-10-p 7 8 . Ø 9 11 10 8x10 = 3x5 = 3x5 = 3x5 = 6-11-8 13-7-8 20-7-0

6-8-0

Scale = 1:45.3

Plate Offsets (X, Y): [2:Edge,0-3-0], [8:Edge,0-3-0]

6-11-8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.39 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.03	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-2-5 oc purlins, exc Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 12=73 (LC Max Grav 8=871 (LC	cept end verticals. applied or 10-0-0 oc 2=0-3-8 C 14)		 design. This truss ha load of 12.0 overhangs n * This truss I on the bottor 3-06-00 tall I chord and an All bearings This truss is International 	snow loads have as been designed psf or 2.00 times on-concurrent with has been designe on chord in all area by 2-00-00 wide w hy other members are assumed to b designed in accoo Residential Code not referenced sta	for great flat roof le h other li d for a liv as where vill fit betw e SP No. rdance w e sections	er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott 2. ith the 2018 a R502.11.1 a	f live osf on Opsf tom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-2=0/33, 2-3=-395/1 4-5=-1117/239, 5-6= 2-12=-352/148, 6-8=	-394/115, 6-7=0/33,											
BOT CHORD	11-12=-131/1022, 10 8-10=-119/1020)-11=-28/728,											
WEBS	4-10=-54/387, 5-10= 3-11=-226/152, 3-12											mun	1111.
NOTES 1) Unbalance	ed roof live loads have	been considered for									3	TH CA	Routh

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-1 to 2-1-15, Interior (1) 2-1-15 to 10-3-8, Exterior(2R) 10-3-8 to 13-3-8, Interior (1) 13-3-8 to 21-5-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

6-11-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	B3	Common Girder	1	3	Job Reference (optional)	164497218

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES

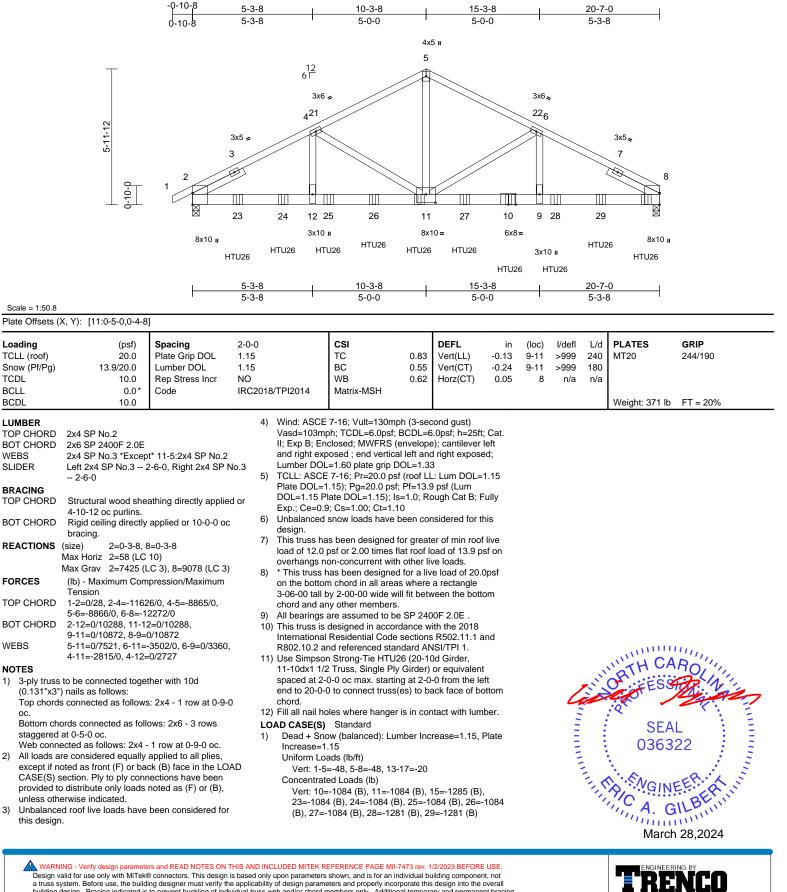
WFBS

NOTES

oc

1)

2)

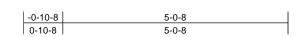

3)

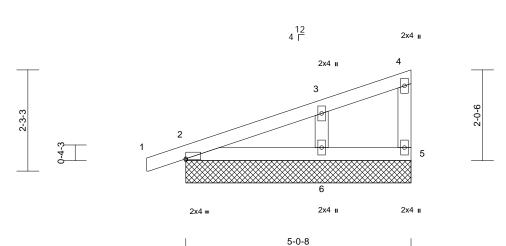
LUMBER

Run: 8 73 S. Feb 22 2024 Print: 8 730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:42 ID:PH46WGGu4LebO2ime9u7nByWzPn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932




bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 M	lason Ridge	C1	Monopitch Supported Gable	1	1	Job Reference (optional)	164497219

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:43 ID:Roi51RjmSxSNkGknknPuTcyWxUX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.8

Plate Offsets (X, Y): [2:Edge,0-0-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.24 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 5-0-8 oc purlins, exx Rigid ceiling directly bracing. (size) 2=5-0-8, 5 Max Horiz 2=53 (LC Max Uplift 2=-21 (LC Max Grav 2=184 (LC	cept end verticals. applied or 10-0-0 or 5=5-0-8, 6=5-0-8, 7= 14), 7=53 (LC 14) 2 11), 7=-21 (LC 11)	c 6 =5-0-8 8	Plate DOL= DOL=1.15 F Exp.; Ce=0. Unbalanced design. This truss hi load of 12.0 overhangs r Gable requi Gable studs * This truss on the botto 3-06-00 tall chord and a	E 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps Plate DOL=1.15); H 9; Cs=1.00; Ct=1.1 snow loads have as been designed psf or 2.00 times i non-concurrent with res continuous bot spaced at 2-0-0 that has been designed m chord in all areas by 2-00-00 wide with ny other members are assumed to b	f; Pf=13.9 s=1.0; Ro 10 been cor for great flat roof li h other li ttom chor oc. d for a liv as where vill fit betv s.	e) psf (Lum bugh Cat B; F nsidered for the er of min roof pad of 13.9 p ve loads. d bearing. e load of 20.0 a rectangle veen the botto	Fully his f live sf on 0psf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-3=-126/7 4-5=-37/62 2-6=-46/64, 5-6=-28/	79, 3-4=-45/35,	1	 D) Provide med bearing plate 2 and 21 lb 1) This truss is 	chanical connectio e capable of withs uplift at joint 2. designed in accol I Residential Code	n (by oth tanding 2 rdance w	ers) of truss t 21 lb uplift at j ith the 2018	joint					
WEBS NOTES 1) Wind: AS(3-6=-231/231 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B0				ind referenced sta						. Inthe	OR EESS	ROLA

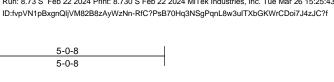
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-3 to 2-1-13, Exterior(2N) 2-1-13 to 4-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

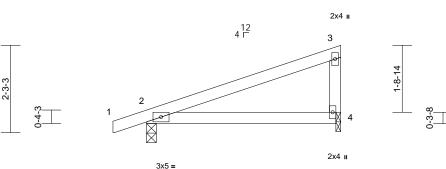
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

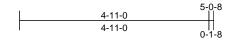
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

AMITEK Atfiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	101107000	
11 Mason Ridge	C2	Monopitch	6	1	Job Reference (optional)	164497220	


-0-10-8


0-10-8

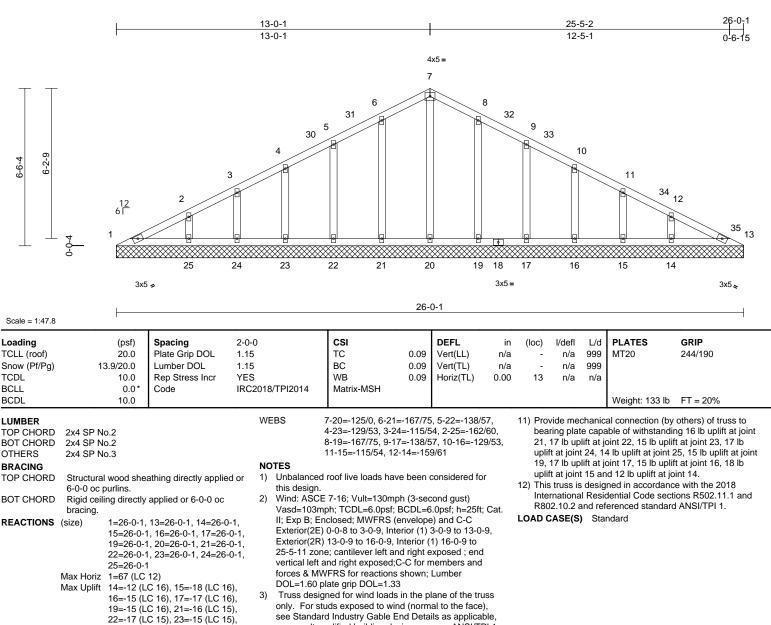

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:43

Page: 1

Scale = 1:29.9

00010 = 1.20.0														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-MP	0.39 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.07 0.00	(loc) 4-7 4-7 2	l/defl >999 >881 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E 4-10-12 co vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL: DOL=1.15 Exp.; Ce=(0 3) Unbalance design. 4) This truss I load of 12.1	5-0-8 oc purlins, ex	applied or 10-0-0 oc 4=0-1-8 14) C 11), 4=-6 (LC 15) C 22), 4=218 (LC 22) pression/Maximum 9, 3-4=-156/119 (G-second gust) CDL=6.0psf; h=25ft; hvelope) and C-C herior (1) 2-1-13 to right exposed ; end C for members and hown; Lumber froof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu sen considered for thi r greater of min roof I t roof load of 13.9 ps	6) d or 7) 8) 9) (10) LOA Cat. .15 .15 .115 .119 .15	on the botton 3-06-00 tall b chord and an Bearings are SP No.3. Bearing at joi using ANSI/T designer sho Provide mech bearing plate One H2.5A S recommende UPLIFT at jt(and does not This truss is c International	as been designe n chord in all are: y 2-00-00 wide w y other members assumed to be: int(s) 4 considers PI 1 angle to gra uld verify capacit hanical connectic at joint(s) 2, 4. Simpson Strong-T d to connect trus s) 2 and 4. This of consider lateral designed in acco Residential Code and referenced sta Standard	as where vill fit betv s. Joint 2 SI a parallel t in formula y of bear on (by oth "ie conne is to bear connectio forces. rdance we e sections	a rectangle veen the bott > No.2, Joint to grain value a. Building ing surface. ers) of truss ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	om t 4 to to only			23	ORTESS SEA 0363	EER AL	

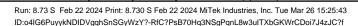

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

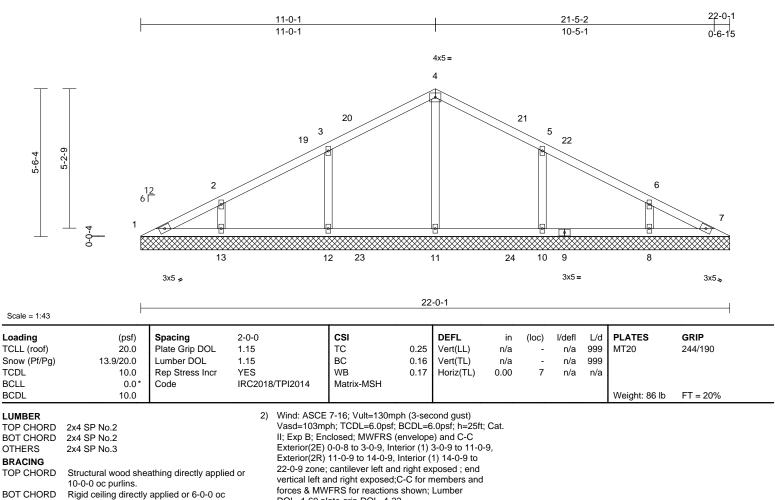
GI mmm March 28,2024

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F			
11 Mason Ridge	VL1	Valley	1	1	I644 Job Reference (optional)	497221		

Run: 8 73 S. Feb 22 2024 Print: 8 730 S Feb 22 2024 MiTek Industries. Inc. Tue Mar 26 15:25:43 ID:Kuktv3tKBRFMg3wUH_xYw2yWzY0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 24=-17 (LC 15), 25=-14 (LC 15) Max Grav 1=94 (LC 38), 13=64 (LC 39), 14=236 (LC 39), 15=134 (LC 2) 16=167 (LC 39), 17=178 (LC 22), 19=207 (LC 22), 20=164 (LC 2), 21=207 (LC 21), 22=177 (LC 21), 23=167 (LC 38), 24=132 (LC 2), 25=242 (LC 38) (Ib) - Maximum Compression/Maximum
- FORCES Tension TOP CHORD 1-2=-133/80, 2-3=-49/63, 3-4=-29/67, 4-5=-24/71, 5-6=-42/106, 6-7=-61/140, 7-8=-61/136, 8-9=-42/103, 9-10=-24/67 10-11=-11/48, 11-12=-25/43, 12-13=-105/69 BOT CHORD 1-25=-43/116, 24-25=-43/68, 23-24=-43/68, 22-23=-43/68, 21-22=-43/68, 20-21=-43/68,
 - 19-20=-43/68, 17-19=-43/68, 16-17=-43/68, 15-16=-43/68, 14-15=-43/68, 13-14=-43/94


- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F		
	11 Mason Ridge	VL2	Valley	1	1	Job Reference (optional)	164497222	

	bracing.	
REACTIONS	(size)	1=22-0-1, 7=22-0-1, 8=22-0-1,
		10=22-0-1, 11=22-0-1, 12=22-0-1,
		13=22-0-1, 18=22-0-1
	Max Horiz	1=56 (LC 12)
	Max Uplift	1=-7 (LC 16), 8=-20 (LC 16),
		10=-42 (LC 16), 12=-39 (LC 15),
		13=-25 (LC 15)
	Max Grav	1=71 (LC 38), 8=328 (LC 33),
		10=391 (LC 6), 11=479 (LC 32),
		12=400 (LC 5), 13=313 (LC 32)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-82/166, 2-3=-9/173, 3-4=-25/175, 4-5=-25/169, 5-6=0/161, 6-7=-36/154 BOT CHORD 1-13=-108/64, 12-13=-108/41, 11-12=-108/41, 10-11=-108/41, 8-10=-108/41, 7-8=-108/41

WEBS 4-11=-308/0. 3-12=-299/143. 2-13=-222/107. 5-10=-294/144. 6-8=-229/105

NOTES

1) Unbalanced roof live loads have been considered for this design.

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc. 8)
 - * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 - 10) All bearings are assumed to be SP No.2 .
 - 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 1, 39 lb uplift at joint 12, 25 lb uplift at joint 13, 42 lb uplift at joint 10 and 20 lb uplift at joint 8.
 - 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Mason Ridge	VL3	Valley	1	1	Job Reference (optional)	164497223

Scale = 1:39.4

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:43 ID:xp_Jk62cKqN8EHKJbNav2OyWzQ3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-0-1 0-6-15

5

3x5 👟

9-0-1 17-5-2 9-0-1 8-5-1 4x5 = 3 2x4 II 17 18 2x4 🛛 2 4 4-2-9 16 19 4-6-4 15 20 12 6 Г ¢ ę 88 9 8 6 7 3x5 🍃 2x4 🛛 2x4 🛛 3x5 = 2x4 🛛 18-0-1

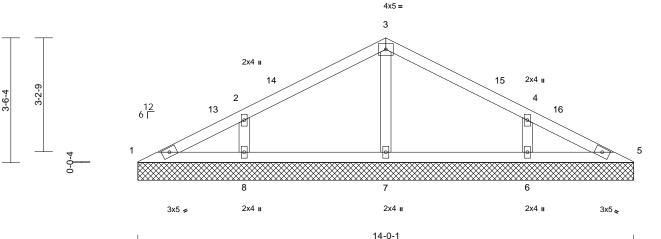
		1			i		· · · · · ·					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.18	Horiz(TL)	-0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/	FPI2014	Matrix-MSH								
BCDL	10.0											Weight: 66 lb	FT = 20%
LUMBER					ned for wind loads								
TOP CHORD					ids exposed to will								
BOT CHORD	2x4 SP No.2				d Industry Gable E								
OTHERS	2x4 SP No.3				alified building de 7-16; Pr=20.0 ps								
BRACING	o		· · ·		.15); Pg=20.0 ps			=1.15					
TOP CHORD	Structural wood she 10-0-0 oc purlins.	eathing directly applie			late DOL=1.15); Is			Fully					
BOT CHORD		applied or 6-0-0 oc	5)	Unbalanced	; Cs=1.00; Ct=1.1 snow loads have		nsidered for t	this					
REACTIONS	(size) 1=18-0-1	, 5=18-0-1, 6=18-0-1	, 6)	design. Gable requir	es continuous bot	tom choi	d bearing						
		, 9=18-0-1, 14=18-0-			spaced at 4-0-0 o		a bearing.						
	Max Horiz 1=46 (LC	,	8		nas been designed		e load of 20.	.0psf					
	Max Uplift 1=-34 (L0 9=-46 (L0	,, , , ,			n chord in all area								
	Max Grav 1=100 (L				oy 2-00-00 wide w		veen the both	tom					
		8=520 (LC 2), 9=441	// C		y other members		<u>^</u>						
	21), 14=0) (LC 2)			are assumed to be hanical connection			to					
FORCES	(lb) - Maximum Con	npression/Maximum			capable of withst								
	Tension				at joint 9 and 43			John					
TOP CHORD	1-2=-130/370, 2-3=	0/347, 3-4=0/347,			designed in accor								
	4-5=-115/370	202/01 6 0 202/01			Residential Code			and					
BOT CHORD	1-9=-283/111, 8-9= 5-6=-283/91	-283/91, 6-8=-283/91			nd referenced star	ndard AN	ISI/TPI 1.						Un.
WEBS		326/165, 4-6=-325/16	6 LOA	D CASE(S)	Standard							WHY CA	Pall
NOTES	,	,									1	ATT	10/14
	ed roof live loads have	been considered for									5.	O FESS	the visit
fhis desigr										4	Ø		and L
	CE 7-16; Vult=130mpl											:2	K : 3
	Smph; TCDL=6.0psf; B		Cat.							-		SEA	a : =
	Enclosed; MWFRS (e E) 0-0-8 to 3-0-8, Inter									=			• -
	R) 9-0-9 to 12-0-9, Intel									Ξ		0363	22 : 3
	tilever left and right ex									-	- 3	N	1 E -
	exposed;C-C for mem								1	·	all S		
	or reactions shown; Lu	umber DOL=1.60 pla	te									S NGIN	EETAN
grip DOL=	=1.33										11	710	COLUMN STREET
												A C	ALBE I'''

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G١ mmm March 28,2024

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F
11 Mason Ridge	VL4	Valley	1	1	I64497224 Job Reference (optional)

7-0-1


7-0-1

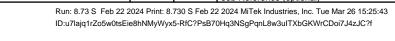
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run; 8,73 S Feb 22 2024 Print; 8,730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:43 ID:LOgRM74Uclmj5l3tGW7cg0yWzQ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

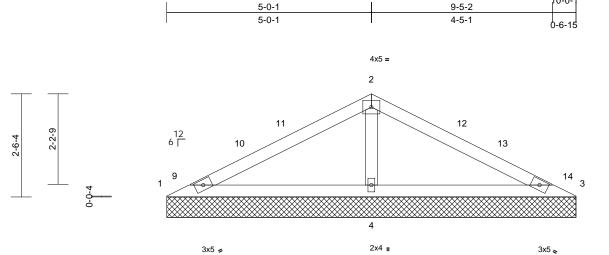
14-0-1 13-5-2 6-5-1 0-6-15

Scale = 1:32.5

Scale = 1.52.5													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.08 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	7=14-0-1, 8 Max Horiz 1=-34 (LC Max Uplift 6=-34 (LC Max Grav 1=81 (LC 2	applied or 6-0-0 oc 5=14-0-1, 6=14-0-1 8=14-0-1 13) 16), 8=-35 (LC 15)	, 6 7 8 67	 only. For stusee Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Gable requir Gable studs * This truss f on the bottor 3-06-00 tall b chord and ar 	ned for wind load ids exposed to w d Industry Gable ialified building d : 7-16; Pr=20.0 ps late DOL=1.15); 0; Cs=1.00; Ct=1 snow loads have es continuous bo spaced at 4-0-0 has been designe n chord in all are by 2-00-00 wide w by other member are assumed to b	rind (norm End Detai esigner as sf (roof LL sf; Pf=13.9 Is=1.0; Rc 10 be been cor betom chor oc. ed for a liv as where will fit betw s.	al to the face ils as applica s per ANSI/TI i: Lum DOL= psf (Lum bugh Cat B; F asidered for th d bearing. e load of 20.0 a rectangle veen the both), ble, PI 1. 1.15 Fully his Opsf					
FORCES	(lb) - Maximum Comp Tension 1-2=-104/68, 2-3=-78		1	 Provide mec bearing plate 	hanical connection capable of withs plift at joint 6.	on (by oth	ers) of truss t						
BOT CHORD WEBS NOTES 1) Unbalance	4-5=-104/61 1-8=-26/86, 7-8=-26/4 5-6=-26/84 3-7=-231/65, 2-8=-29 ed roof live loads have b	07/173, 4-6=-297/17	³ L	Ínternational	designed in acco Residential Cod nd referenced sta Standard	e sections	R502.11.1 a	and			-	NITH CA	ROUT


this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-8 to 3-0-9, Interior (1) 3-0-9 to 7-0-9, Exterior(2R) 7-0-9 to 10-0-9, Interior (1) 10-0-9 to 14-0-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F
11 Mason Ridge	VL5	Valley	1	1	I64497225 Job Reference (optional)

0-0-

10-0-1

Scale = 1:28.2													
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.34 0.33 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-MSH							Weight: 32 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-0-1, Max Horiz 1=24 (LC Max Uplift 1=-17 (LC Max Grav 1=94 (LC (LC 2) (lb) - Maximum Corr	applied or 6-0-0 oc , 3=10-0-1, 4=10-0-1 14) ; 22), 3=-17 (LC 21) 21), 3=94 (LC 22), 4	ed or 6 7 8 1 4=705 1	 Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. Gable requir Gable studs on the bottor 3-06-00 tall t chord and an All bearings Provide mec bearing plate 	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps late DOL=1.15); I 3; Cs=1.00; Ct=1. snow loads have es continuous bol spaced at 4-0-0 c has been designe n chord in all area y 2-00-00 wide w hanical connectio e capable of withs polift at joint 3.	f; Pf=13.5 s=1.0; Ro 10 been cor tom chor bc. d for a liv as where rill fit betv i. e SP No. n (by oth	e) psf (Lum bugh Cat B; F nsidered for th rd bearing. re load of 20.0 a rectangle ween the botto .2. uers) of truss to	Fully his Opsf om					
	Tension 1-2=-137/370, 2-3=- 1-4=-306/179, 3-4=- 2-4=-569/274	130/370	1	1) This truss is International R802.10.2 a	designed in acco Residential Code nd referenced sta	sections	s R502.11.1 a	ind					
NOTES				OAD CASE(S)	Standard								
this design 2) Wind: ASC Vasd=103	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B	(3-second gust) CDL=6.0psf; h=25ft;										TH CA	RO

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 5-0-9, Exterior(2R) 5-0-9 to 8-0-9, Interior (1) 8-0-9 to 10-0-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

anninnana ann VIIIIII SEAL 036322 GI mmm March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

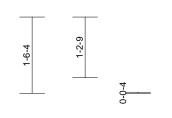
Job		Truss	Truss Type	Qty	Ply	11 Mason Ridge-Roof-Galen F	
11 Maso	on Ridge	VL6	Valley	1	1	Job Reference (optional)	164497226

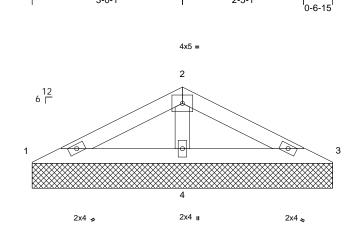
3-0-1

3-0-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Tue Mar 26 15:25:43 ID:2UWrJOrgy25kEiHtUm3WqlyWy?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-5-2


2-5-1

6-0-1

Page: 1

6-0-1

Scale = 1:23

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
FCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-1 oc purlins. Rigid ceiling directly bracing.	3=6-0-1, 4=6-0-1 14) 15), 3=-4 (LC 16)	9) 10 11	design. Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate and 4 lb uplif) This truss is International	snow loads have es continuous be spaced at 4-0-0 has been designe n chord in all are by 2-00-00 wide hy other member are assumed to the hanical connective capable of with it at joint 3. designed in accor Residential Cod nd referenced sta	ottom chor oc. ed for a liv eas where will fit betw s. be SP No. on (by oth standing 2 ordance w e sections	d bearing. a rectangle veen the bott 2. ers) of truss 2 lb uplift at jo ith the 2018 5 R502.11.1 a	.0psf tom to point 1					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)									

WEBS NOTES

TOP CHORD

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

2-4=-253/157

1-2=-88/157, 2-3=-88/157

1-4=-142/113, 3-4=-142/113

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

MILLIN CARO Contraction of the MANDER IN THE SEAL 036322 GI minin March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

