

Trenco RE: Drayton Rev 2-Elev 2 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: DRB Raleigh Project Name: DRB Raleigh Model Track Lot/Block: Lot 00.0110 Subdivision: DRB Raleigh Model: Drayton Rev 2 Address: 79 Frost Meadow Way LILLINGTON, NC 27546 City: Raleigh State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 25.2 Wind Code: ASCE 7-16 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Wind Speed: 120 mph Floor Load: N/A psf Roof Load: 40.0 psf Mean Roof Height (feet): 25 Exposure Category: B

No.	Seal#	Truss Name	Date
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	174826609 174826613 174826613 174826613 174826614 174826614 174826615 174826617 174826617 174826618 174826618 174826619 174826619 174826619 174826619 174826619 174826655 174826655 174826655 174826633 174826633 174826634 174826638 174826639 174826640 174826641	G1 G1A V2 P2GE P2 P1SGE D1GE VD1 G2SGE G3GE G3GE G3A1T B1GT C1SGE C1 B1GE B1A V3 A1GE A1A V3 A1GE A1A A1B A1C V1	7/11/25 7/11/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Iruss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 1

Sevier, Scott

July 11,2025

Job	Truss	Truss Type	Qty Ply Drayton Rev 2-Elev 2		Drayton Rev 2-Elev 2	
	G1	Monopitch	9	1	Job Reference (optional)	174826609

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:51 ID:naxoGksvaRSnbSKoo39DHjzuTCt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 8-1-3 13-5-8 \vdash 8-1-3 5-4-5 1-0-0 2x4 II 5 14 6x6 🛷 13 9¹² 4 10-7-6 11-2-8 网 12 3x4 3 0-6-4 T 6 15 7 17 3x4= 4x4 = 16 2x4 II 8-1-3 13-5-8 8-1-3 5-4-5 13-5-8

Scale = 1:69

Plate Offsets (X, Y): [2:0-1-7,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.82 0.51 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.29 0.03 0.06	(loc) 7-10 7-10 2 7-10	l/defl >772 >546 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-5.8, 6 Max Horiz 2=229 (LC Max Uplift 6=-71 (LC Max Grav 2=670 (LC	-6-0 athing directly applied 5-6 = Mechanical 2 16) 2 33), 6=653 (LC 33)	5) 6) 7) , 8) 9) 10)	This truss has load of 12.0 p overhangs no Plates checkt about its cent This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mect bearing plate 6.	s been designed fo sf or 2.00 times fla in-concurrent with o ed for a plus or min er. s been designed fo d nonconcurrent w as been designed fo o chord in all areas y 2-00-00 wide will y other members, v r(s) for truss to trus nanical connection capable of withsta	or greate to roof lo other liv inus 5 de or a 10.0 ith any for a liv where fit betw with BC ss conr (by oth nding 7	er of min roof pad of 15.4 ps /e loads. egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf lections. ers) of truss t 1 lb uplift at ju	live sf on ds. ipsf om o o					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; I Exterior(21 zone; cant exposed; reactions s DOL=1.60 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 4) Unbalance	(lb) - Maximum Com Tension 1-2=0/60, 2-5=-660/1 2-7=-107/424, 6-7=-1 4-7=0/406, 4-6=-657, ed roof live loads have b. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter ilever left and right exp C-C for members and fc Shown; Lumber DOL=1 CE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P DOL = 1.15); Is=1.0; F DOL = 1.15); Is=1.0; F	pression/Maximum 118, 5-6=-287/63 106/429 /163 been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C ior (1) 2-0-0 to 13-3-1 vosed ; end vertical le prces & MWFRS for .60 plate grip roof LL: Lum DOL=1.* f=15.4 psf (Lum DOL Rough Cat B; Partially en considered for this	11) 12) LOA tt. 2 ft 15 =	This truss has load of 250.0 panels and ai Bottom Choror This truss des structural woo chord and 1/2 the bottom ch AD CASE(S)	s been designed fo b live and 3.0lb de all panel points ald i, nonconcurrent w sign requires that a bd sheathing be ap " gypsum sheetroo ord. Standard	or a mov ad loca ong the ith any n minim n minim plied di ck be a	ving concentra ted at all mid Top Chord a other live loau um of 7/16" rectly to the t oplied directly	nd ds. op to				SEAI 04492	ROLINER INTERVIEW

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minin

July 11,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	G1A	Monopitch	1	1	Job Reference (optional)	174826610

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:51 ID:85nYR3LNPQMEmRolamMMMyzuTCG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.6

Plate Offsets (X, Y): [1:0-1-7,0-2-0]

L oading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.83 0.52 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.29 0.03	(loc) 6-9 6-9 1	l/defl >772 >541 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.06	6-9	>999	240	Weight: 83 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=95m II; Exp B; I Exterior(21 13-3-12 zc vertical lef MWFRS fc grip DCL= 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=	2x4 SP No.2 2x4 SP SS 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shee except end verticals. Rigid ceiling directly 1 Row at midpt (size) 1=0-5-8, 5 Max Horiz 1=213 (LC Max Uplift 5=-71 (LC Max Grav 1=600 (LC (Ib) - Maximum Com Tension 1-4=-650/96, 4-5=-21 1-6=-109/429, 5-6=- 3-6=0/408, 3-5=-665 ed roof live loads have hold the state of the state of the state interpret of the state of the state of the state interpret of the state of the state of the state interpret of the state of the state of the state of the state interpret of the state of the state of the state of the state interpret of the state of the	-6-0 athing directly applied applied. 4-5 i= Mechanical (16) (29), 5=656 (LC 29) pression/Maximum 36/62 108/434 /165 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C erior (1) 3-2-12 to right exposed ; end bers and forces & mber DOL=1.60 plate roof LL: Lum DOL=1. f=15.4 psf (Lum DOL	5) 6) 7) 3, 8) 9) 10) 11) LO, at. $\frac{15}{\sqrt{2}}$	Plates check about its cem This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mecl bearing plate 5. This truss ha load of 250.0 panels and a Bottom Chorn This truss de structural wo chord and 1/2 the bottom ch AD CASE(S)	ed for a plus or mir ter. s been designed fo id nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members, ' er(s) for truss to tru- nanical connection capable of withsta s been designed fo lb live and 3.0lb det t all panel points al d, nonconcurrent w sign requires that a od sheathing be ap 2" gypsum sheetron ord. Standard	nus 5 de or a 10.0 vith any for a liv where l fit betw with BC ss conr (by oth nding 7 or a move ad loca ong the vith any a minim ck be a	egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf vections. ers) of truss t 1 lb uplift at ji ving concentri- ted at all mid Top Chord a other live loa um of 7/16" rectly to the t oplied directly	ds.)psf om op int ated ds. op to			And	OFESS SEA 0449	ROLN BUTCT L 25	annannan ann
+) Unbalance	eu snow loads nave be	en considered for thi	5								1	I. T M	GE N	

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

minin

July 11,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	P2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	174826612

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:52 ID:uAUr?7VHsumE7FF97UMkngzuSw_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.7

Plate Offsets (X, Y): [2:0-1-10,Edge]

Loading TCLL (roof) Snow (Pf/P TCDL BCLL BCDL	(psf) 20.0 g) 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-AS	.56 .61 .00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR BOT CHOR REACTION FORCES	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she except end verticals D Rigid ceiling directly S (size) 2=4-7-8, 4 Max Horiz 2=43 (LC Max Uplift 2=-16 (LC Max Grav 2=365 (LC (lb) - Maximum Com 	athing directly applied applied. 4=4-7-8 15) 2 42) 2 48), 4=352 (LC 47) apression/Maximum	 6) This truss ha load of 12.0 overhangs n 7) Plates check about its cer 8) Gable requir 9) Gable studs 10) This truss ha chord live loa 11) * This truss I on the botton 3-06-00 tall the chord and ar 12) Provide mec 	as been designed for gr psf or 2.00 times flat ro on-concurrent with oth- ted for a plus or minus iter. es continuous bottom of spaced at 2-0-0 oc. Is been designed for a ad nonconcurrent with has been designed for a n chord in all areas wh by 2-00-00 wide will fit 1 hy other members. hanical connection (by	reate oof lo er liv 5 de choro 10.0 any o a live bere a betw	er of min roof ad of 15.4 ps e loads. gree rotation d bearing. psf bottom other live loa e load of 20.0 a rectangle een the botto ers) of truss t	live sf on ds.)psf om o					
TOP CHOR 30T CHOR NOTES 1) Unbalan this des 2) Wind: A Vasd=9 II; Exp I (3E) -1 cantilev right ex	Tension D 1-2=0/26, 2-3=-191/2 D 2-4=-61/164 mced roof live loads have ign. SCE 7-16; Vult=120mph 5mph; TCDL=6.0psf; BC 3; Enclosed; MWFRS (er 0-0 to 2-0-0, Exterior(2N) er left and right exposed posed: C-C for members :	51, 3-4=-297/136 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C Coi) 2-0-0 to 4-5-12 zone ; end vertical left and and forces & MWERS	bearing plate 2 and 16 lb (13) This truss ha load of 250.(panels and a Bottom Chor 14) This truss de at. chord and 1/ the bottom c LOAD CASE(S)	e capable of withstandii uplift at joint 2. Is been designed for a bib live and 3.0lb dead tt all panel points along d, nonconcurrent with esign requires that a mi od sheathing be applie 2" gypsum sheetrock b hord. Standard	ng 16 mov locat g the any c inimu ed dir be ap	6 lb uplift at ju ing concentra- ted at all mid Top Chord a other live loa- um of 7/16" rectly to the t plied directly	oint ated ind ds. op r to			X		BOLINIA North

DOL=1.60
Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

for reactions shown; Lumber DOL=1.60 plate grip

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL= 1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	P2	Monopitch	6	1	Job Reference (optional)	174826613

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:52 ID:IUeZ3LKV9b?DS5ATIX5SDjzuSwC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23

Plate Offsets (X, Y): [2:0-1-10,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.57 0.62 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.09 0.00 0.02	(loc) 4-7 4-7 2 4-7	l/defl >819 >603 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95n II; Exp 8; I Exterior(21 zone; can II; Exp 8; I Exterior(21 zone; can DOL=1.60 2) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 3) Unbalancc design. 4) This truss load of 12 overhangs 5) Plates che about its c	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-3-8, : Mechanic Max Horiz 2=44 (LC Max Uplift 2=-12 (LC Max Grav 2=366 (LC 4=297 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-193/ 2-4=-31/165 CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte illever left and right ex, S-C for members and f shown; Lumber DOL= CE 7-16; Pr=20.0 psf (DOL = 1.15); Pg=20.0 psf (DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10 ad snow loads have be has been designed fo .0 psf or 2.00 times fla s non-concurrent with o scked for a plus or min enter.	athing directly applied applied. 33 Mechanical, 4= al 12) (212), 3=-17 (LC 16) (2 43), 3=-298 (LC 40), (2 45) pression/Maximum 49 (3-second gust) DL=6.0psf; h=25ft; C twelope) and C-C rior (1) 2-0-0 to 4-6-1 posed ; end vertical le orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. 2f=15.4 psf (Lum DOL Rough Cat B; Partiall; een considered for thi r greater of min roof li t roof load of 15.4 psf ther live loads. us 5 degree rotation	6) 7) 4. 8) 9) 10) 11) 12) at. 13) 2 at. 13) 2 at. 13) 2 sft LO	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Refer to girde bearing plate 3. O One H2.5A S recommende UPLIFT at jt(does not con) This truss ha load of 250.0 panels and a Bottom Chorr) This truss de structural wo chord and 1/2 the bottom cf AD CASE(S)	s been designed for d nonconcurrent w as been designed in h chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- anical connection capable of withsta impson Strong-Tie d to connect truss s) 2. This connection sider lateral forces. s been designed for b live and 3.0lb de t all panel points al d, nonconcurrent w sign requires that a of sheathing be ap 2" gypsum sheetron hord. Standard	r a 10.1 ith any for a liv where fit betw ss conr uss con (by oth nding 1 conne- to bear on is fou r a mov ad loca- ong the th any minim plied d ck be a	D psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. nections. ers) of truss t 7 lb uplift at j ctors ing walls due · uplift only ar <i>v</i> ing concentr ted at all mid other live loa um of 7/16" irectly to the t oplied directly	ids. Dpsf om to oint tated and ds. top y to				SEA 0449	ROL L 25 SEVIEN 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	P1	Monopitch	3	1	Job Reference (optional)	174826614

4-7-8 4-7-8

4 T

9

-1-0-0

1-0-0

8

Structural LLC Thurmont MD - 21788

Scale = 1:29.2

Loading

TCDL

BCLL

BCDL

LUMBER

BRACING

FORCES

NOTES

1)

2)

3)

4)

5)

desian.

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:52 ID:b55d5YcYWz1pKn04iaX4BnzuSvq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-0-5 1-10-7 2-2-3 10 2 Ř 11 3x4 = 0-3-8 4-7-8 4-4-0 0-3-8 4-7-8 Plate Offsets (X, Y): [2:0-1-10,Edge] PLATES Spacing 2-0-0 CSI DEFL in l/defl L/d GRIP (psf) (loc) Plate Grip DOL 20.0 1.15 тс 0.57 Vert(LL) -0.07 4-7 >819 360 MT20 244/190 15.4/20.0 Lumber DOL 1.15 BC 0.76 Vert(CT) -0.09 4-7 >603 240 10.0 Rep Stress Incr WB 0.00 Horz(CT) 2 YES 0.00 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.03 >999 240 4-7 Weight: 16 lb 10.0 FT = 20% 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2x4 SP No 2 * This truss has been designed for a live load of 20.0psf 7) 2x4 SP No.2 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom Structural wood sheathing directly applied. chord and any other members. 10-0-0 oc bracing Refer to girder(s) for truss to truss connections. 8) **REACTIONS** (size) 2=0-3-0, 3= Mechanical, 4= 9) Refer to girder(s) for truss to truss connections. Mechanical 10) Provide mechanical connection (by others) of truss to Max Horiz 2=44 (LC 12) bearing plate capable of withstanding 23 lb uplift at joint Max Uplift 2=-46 (LC 12), 3=-23 (LC 12), 4=-9 3 and 9 lb uplift at joint 4. (LC 12) 11) One H2.5A Simpson Strong-Tie connectors 2=366 (LC 43), 3=298 (LC 40), Max Grav recommended to connect truss to bearing walls due to 4=297 (LC 45) UPLIFT at jt(s) 2. This connection is for uplift only and (lb) - Maximum Compression/Maximum does not consider lateral forces. Tension 12) This truss has been designed for a moving concentrated 1-2=0/26, 2-3=-193/49 load of 250.0lb live and 3.0lb dead located at all mid 2-4=-61/165 panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 13) This truss design requires that a minimum of 7/16" Wind: ASCE 7-16; Vult=120mph (3-second gust) structural wood sheathing be applied directly to the top Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C chord. Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 4-6-12 LOAD CASE(S) Standard zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 - THE WAY Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 44925 Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhands non-concurrent with other live loads. Plates checked for a plus or minus 5 degree rotation about its center. July 11,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	P1SGE	Monopitch Structural Gable	1	1	Job Reference (optional)	174826615

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:52 ID:mDFnPJISwLQF9TMCsOEf86zuSvf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-1-8

Scale = 1:27.9

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.04	4-7	>934	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		Wind(LL)	0.02	4-7	>999	240		
BCDL	10.0										Weight: 11 lb	FT = 20%
			6) Plates cher	ked for a plus or	minue 5 de	aree rotatio	<u>,</u>					

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied
	3-1-8 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-0, 4=0-5-8
	Max Horiz	2=30 (LC 12)
	Max Uplift	2=-36 (LC 12), 4=-33 (LC 13)
	Max Grav	2=334 (LC 37), 4=312 (LC 43)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/26,	2-3=-145/20
BOT CHORD	2-4=-27/1	32

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- us or minus 5 dearee rota about its center.
- Truss to be fully sheathed from one face or securely 7) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 8)

or

- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

THILL DOWN SEAL 044925 July 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	D1	Common	6	1	Job Reference (optional)	174826616

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:50 ID:4swkN9oInHCR3KT4WooboQzuKII-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31

L Ś

E

Loading	(psf)	Spacing	2-0-0		CSI	0.14	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (1001)	20.0	Plate Grip DOL	1.15			0.14	ven(LL)	0.00	8-11	>999	360	IVI I ZU	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	0.00	8-15	>999	240			
CDL	10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP		Wind(LL)	0.00	11	>999	240			
BCDL	10.0											Weight: 21 lb	FT = 20%	
UMBER OP CHORD OT CHORD VEBS SLIDER	10.0 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 2x4 SP No.2 0 0 2x4 SP No.3 6) Plates checked for a plus or minus 5 degree rotation about its center. 1-6-0 7) This truss has been designed for a 10.0 psf bottom													
OP CHORD	Structural wood shea	athing directly applied	or 8)	* This truss h	as been design	ed for a liv	e load of 20.	opsf						

- 3-3-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 6=0-3-8
- Max Horiz 2=28 (LC 15) Max Grav 2=328 (LC 40), 6=310 (LC 43) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/26, 2-4=-182/64, 4-6=-182/69, 6-7=0/262-8=-16/129, 6-8=-13/129 BOT CHORD WEBS 4-8=-26/218

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	D1GE	Common Supported Gable	2	1	Job Reference (optional)	174826617

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:51 ID:vHpQC04AML6AKsjVM7j_DGzuKHx-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.14 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x BOT CHORD 2x OTHERS 2x SLIDER Le	4 SP No.2 4 SP No.2 4 SP No.3 ft 2x4 SP No.3 1 1-6-0	-6-0, Right 2x4 SP N	4) o.3 5)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1 snow loads have b	(roof LL Pf=15.4 Rough 0 peen cor	:: Lum DOL= psf (Lum DC Cat B; Partia isidered for th	1.15 DL = Ily nis					
BRACING TOP CHORD St 3-	ructural wood shea 3-0 oc purlins.	athing directly applied	6) Lor	 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 7) Plates checked for a plus or minus 5 degree rotation about its center. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf 									
BOT CHORD Ri	gid ceiling directly acing.	applied or 10-0-0 oc	7)										
REACTIONS (siz May May May	e) 2=3-3-0, 6 < Horiz 2=-28 (LC < Uplift 2=-8 (LC < Grav 2=308 (LC 8=292 (LC	5=3-3-0, 8=3-3-0 14) 16), 6=-10 (LC 17) 2 49), 6=293 (LC 43), 2 55)	8) 9) 10 11										
FORCES (lb) - Maximum Com	pression/Maximum		3-06-00 tall b	by 2-00-00 wide wi	ll fit betv	veen the botto	om					
TOP CHORD 1-2	2=0/26, 2-4=-121/ [.] 7=0/26	127, 4-6=-134/127,	12) Provide med	hanical connection	(by oth	ers) of truss t	0 int 2					
BOT CHORD 2-4 WEBS 4-4	8=-5/78, 6-8=-5/78 8=-179/36	i		10 lb uplift at joint 6.	joint 6, 8 lb uplift a	at joint 2	and 10 lb up	lift at					
NOTES 1) Unbalanced ro this design.	of live loads have	been considered for	13 14	Beveled plate surface with This truss ha	e or shim required truss chord at joint s been designed f	to provi (s) 2, 6, or a mov	de full bearing 9, 13. /ing concentra	g ated			5	TH CA	ROL

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2				
	VD1	Valley	2	1	Job Reference (optional)	174826618			

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:54 ID:kAfGuGxGyzjkVAOODJ0PHyzuKI6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:18.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.38 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 1); Exp B; E Exterior(2E vertical left forces & M DOL=1.60 3) Truss desi only. For s see Standa or consult 4) TCLL: ASC Plate DOL 1.15 Plate	2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-1-13 oc purlins. Rigid ceiling directly bracing. (size) 1=3-1-13, Max Horiz 1=-18 (LC Max Grav 1=-316 (LC (Ib) - Maximum Com Tension 1-2=-364/63, 2-3=-30 1-3=-42/275 ad roof live loads have E 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) zone; cantilever left and right exposed; C-1 WFRS for reactions sl plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf; (I =1.15); Pg=20.0 psf; (I =1.15); Pg=20.0 psf; (I	athing directly applied applied or 10-0-0 oc 3=3-1-13 14) 2 43), 3=316 (LC 47) pression/Maximum 64/63 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C and right exposed ; e C for members and hown; Lumber the plane of the trust (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. If=15.4 psf (Lum DOI Rough Cat B; Partial)	7) 8) 9) d or 10 11 11 L1 L0 s s le, 1. 1. 5 L = y	Gable requird Gable studs : This truss ha chord live loa)* This truss h on the botton 3-06-00 tall b chord and ar) This truss ha load of 250.0 panels and a Bottom Chor DAD CASE(S)	es continuous bott spaced at 4-0-0 or s been designed f id nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi y other members. s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent v Standard	iom chor c. for a 10. with any f for a liv s where all fit betw for a move ead loca ead loca ead loca with any	d bearing.) psf bottom other live load e load of 20.0 ving concentrative ted at all mid Top Chord a other live load	ds.)psf om ated nd ds.				SEA 0449	ROLING TOTAL

Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) design.

6) Plates checked for a plus or minus 5 degree rotation about its center.

M. DEnni M. SE

July 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	G2SGE	Monopitch Structural Gable	1	1	Job Reference (optional)	174826619

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:52 ID:1P4vQ3oDS59rKHibpk2GvzzuTBg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

φ

2-0

2-3-12 -1-0-0 13-5-8 \vdash 11-1-12 1-0-0 2-3-12 3-5-8 15-5-8 2-0-0 H 2x4 🛛 2x4 🖷 3-5-8 10 29 2x4 II 9 3x6 🛷 28 2x4 🛛 8 27 2x4 II 6 11-2-8 26 2x4 II 5 25 2x4 II 324 ģ⊥ 17 32 16 33 15 34 14 35 13 30 18 3 36 2x4 u 2x4 u 2x4 u 31 3x4= 12 2x4 II 2x4 🛛 2x4 🖷 2x4 II

13-5-8 2-3-12 12-5-4 +2-3-12 10-1-8 1-0-4 13-5-8

Scale = 1:85.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.19	15-16	>627	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.37	15-16	>333	240			
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.18	15-16	>661	240			
BCDL	10.0										Weight: 106 lb	FT = 20%	
TCDL BCLL BCDL	15.4/20.0 10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-AS	0.01	Wind(LL)	0.00 0.18	15-16 2 15-16	>333 n/a >661	240 n/a 240	Weight: 106 lb	FT = 20%	

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP S	S
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied,
	except en	d verticals.
BOT CHORD	Rigid ceili	ing directly applied.
WEBS	1 Row at	midpt 10-11, 9-13
REACTIONS	(size)	2=2-5-8, 11=1-2-0, 12=0-3-8, 18=2-5-8
	Max Horiz	2=230 (LC 16)
	Max Uplift	2=-185 (LC 70), 11=-737 (LC 62),
	•	12=-140 (LC 16), 18=-111 (LC 16)
	Max Grav	2=199 (LC 57), 11=81 (LC 16),
		12=1247 (LC 23), 18=749 (LC 30)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/49,	2-3=-506/283, 3-4=-372/122,
	4-5=-330/	/123, 5-6=-272/118, 6-8=-213/111,
	8-9=-172/	(155, 9-10=-122/52, 10-11=-223/79
BOT CHORD	2-18=-243	3/113, 17-18=-1/2, 16-17=-1/2,
	15-16=-1/	2, 14-15=-1/2, 13-14=-1/2,
	12-13=-1/	2, 11-12=-1/2
WEBS	9-13=-404	4/232, 8-14=-108/133,
	6-15=-164	4/80, 5-16=-155/91, 4-17=-161/82,
	3-18=-391	1/207
NOTES		

- 1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 13-3-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 737 lb uplift at joint 11
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 18. This connection is for uplift only and does not consider lateral forces.

13) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces.

Page: 1

- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss Truss Type		Qty	Ply	Drayton Rev 2-Elev 2				
	G3GE	Common Supported Gable	1	1	Job Reference (optional)	174826620			

Scale = 1:61.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.19 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 17-18 17-18 12 22-25	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood sheathing directly applied. D Rigid ceiling directly applied. S (lb/size) 2=135/19-11-0, 12=135/19-11-0, 14=136/19-11-0, 15=143/19-11-0, 16=141/19-11-0, 16=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=141/19-11-0, 20=132 (LC 15) Max Horiz 2=132 (LC 15) Max Uplift 2=-22 (LC 12), 14=-30 (LC 17), 15=-17 (LC 17), 16=-23 (LC 17), 17=-16 (LC 17), 19=-17 (LC 16), 20=-22 (LC 16), 21=-16 (LC 16), 22=-33 (LC 7), 14=-333 (LC 87), 17=-334 (LC 86), 16=-333 (LC 86), 16=-333 (LC 86), 17=-334 (LC 86), 16=-333 (LC 86), 17=-334 (LC 86), 16=-333 (LC 86), 17=-334 (LC 86), 18=-333 (LC 86), 18=-				ANDES 2 NOTES 1 NUNDALANCED 2 NOTES 1 NUNDALANCED 1 NUNDALANCED 2 NOTES 2 NOTES 2 NOTES 2 NOTES 2 NUNCL SC 2 NUNCL	21:01CKD 22:39=001+1, 22:39=-33/141, 22:40=-53/141, 21:40=-53/141, 21:41=-53/141, 20:41=-53/141, 20:42=-53/141, 19:42=-53/141, 19:43=-53/141, 19:42=-53/141, 18:44=-53/141, 17:44=-53/141, 16:46=-53/141, 16:45=-53/141, 16:46=-53/141, 15:46=-53/141, 16:46=-53/141, 15:46=-53/141, 15:47=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:48=-53/141, 12:48=-53/141, 14:59 15:40:50 16:50 17:50 17:50 17:51 16:51 17:51 18:51 19:51 19:51 19:51 10:51 <t< th=""><th colspan="6"> Plates checked for a plus or minus 5 degree rotatic about its center. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live lo 10) * This truss has been designed for a live load of 20 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bot chord and any other members. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. N/A This truss has been designed for a moving concen load of 250.0lb live and 3.0lb dead located at all m panels and at all panel points along the Top Chord Bottom Chord, nonconcurrent with any other live Ic This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the </th></t<>						 Plates checked for a plus or minus 5 degree rotatic about its center. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live lo 10) * This truss has been designed for a live load of 20 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bot chord and any other members. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. N/A This truss has been designed for a moving concen load of 250.0lb live and 3.0lb dead located at all m panels and at all panel points along the Top Chord Bottom Chord, nonconcurrent with any other live Ic This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the 					
FORCES TOP CHORD	(lb) - Max Tension 1-2=0/49, 3-30=-10: 5-31=-64, 6-33=-12: 8-34=-12: 9-36=-55, 11-37=-9: 12-13=0/4	14=333 (L 16=333 (L 20=333 (L 22=333 (L 22=333 (L 22=333 (L 22=333 (L 22=333 (L 22=33 (L 22=33 (L 22=33 (L 22=33 (L 233 (L) 22=33 (L) 233 (L)	C 87), 15=333 (LC 4 C 85), 17=334 (LC 4 C 85), 19=334 (LC 4 C 83), 19=334 (LC 4 C 79) pression/Maximum /86, 3-29=-112/99, -80/81, 4-31=-99/59 33/101, 6-32=-61/10 =-91/165, 7-34=-91/ =-61/109, 9-35=-93/ -99/37, 10-37=-55/8 =-95/71, 12-38=-102	96), 34), 32), 30), (9, 165, 101, 1, 2/44, (Corner(3R) 9 20-11-0 zone vertical left a forces & MW DOL=1.60 pl 7russ design only. For stu see Standarc or consult qu 1, TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 5) Unbalanced design. 6) This truss ha load of 12.0 p overhangs no	-11-8 to 12-11-8, E -: cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.60 red for wind loads i ds exposed to wind l ndustry Gable Er alified building des 7-16; Pr=20.0 psf; 0.15; Pg=20.0 psf; 0.12, 1.15; Is=1.0; ; Cs=1.00; Ct=1.10; s been designed for so for 2.00 times fil bon-concurrent with	Exterior d right e -C for n shown; in the p d (norm d Deta igner as (roof LL (roof LL Pf=15.4 Rough) een cor or great at roof lo other liv	2N) 12-11-8 t xposed ; end hembers and Lumber ane of the tru al to the face) is as applicat per ANSI/TF : Lum DOL=1 psf (Lum DC Cat B; Partial hsidered for th er of min roof pad of 15.4 ps re loads.	io iss), ole, Pl 1. 1.15 DL = Ily iis live sf on	cho the	rd and 1 bottom	2" gyr chord.	earning be applied sourn sheetrock b H CA EESS SEA 0449		Actly to		

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www.shearcomponent.scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 11,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	G3GE	Common Supported Gable	1	1	Job Reference (optional)	174826620
Structural, LLC, Thurmont, MD -	21788,	Run: 25.20 E May 29	2025 Print:	25.2.0 E May	/ 29 2025 MiTek Industries, Inc. Fri Jul 11 09:04:05	Page: 2

ID:kCbfE3EWw8_N85Zd5qMz_gzsCBz-1SrLQx3WracPKomDUt?R51QSI7rhJiLTZifyyWyzBEf

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	G3	Common	6	1	Job Reference (optional)	174826621

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:52 ID:waIF6da4KIWPVOi?kisY7azsCBX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.6

Plate Offsets (X, Y): [2:0-3-2,0-1-8], [8:0-3-2,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.66 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.38 -0.51 0.03 0.03	(loc) 10-17 10-17 2 10-17	l/defl >611 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea Rigid ceiling directly (size) 2=0-3-8, 8 Max Horiz 2=-132 (Li Max Grav 2=850 (LC (lb) - Maximum Com Tension	I-6-0, Right 2x6 SP athing directly applie applied. B=0-5-8 C 14) C 2), 8=856 (LC 2) pression/Maximum	5) 6) No.2 7) ed. 8) 9)	This truss ha load of 12.0 j overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar This truss ha load of 250.0 panels and a Bottom Chor	s been designed psf or 2.00 times i on-concurrent with ed for a plus or m ter. s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members s been designed lib live and 3.0lb of t all panel points d, nonconcurrent	for greate flat roof lc h other liv inus 5 de for a 10.0 with any d for a liv with any for a mov dead loca along the with any	er of min roo' ad of 15.4 p re loads. gree rotation o psf bottom other live load e load of 20. a rectangle reen the bott ring concentu ted at all mic Top Chord a other live load	f live psf on n ads. 0psf rated d and ads.						
TOP CHORD BOT CHORD WEBS	1-2=0/56, 2-4=-1218 5-6=-737/95, 6-8=-1 2-8=0/692 5-10=-38/584, 6-10=	/73, 4-5=-739/95, 144/73, 8-9=0/60 -282/106, 4-10=-28	10 8/108	 This truss de structural wo chord and 1/2 the bottom cl 	sign requires that od sheathing be a 2" gypsum sheetr hord.	t a minim applied di ock be ap	um of 7/16" rectly to the oplied directly	top y to						
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; F Exterior(2E Exterior(2E 20-11-0 zc vertical lef forces & M DOL=1.60 3) TCLL: ASC Plate DOL	ed roof live loads have b. E 7-16; Vult=120mph inph; TCDL=6.0psf; BCi Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter R) 9-11-8 to 12-11-8, Ir one; cantilever left and t and right exposed;C-1 WFRS for reactions sl plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; (r =1.15); Pg=20.0 psf; (r	been considered for (3-second gust) DL=6.0psf; h=25f; (velope) and C-C ior (1) 2-0-0 to 9-11 hterior (1) 12-11-8 to right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 f=15.4 psf (Lum DC	L(Cat. -8, 5 1.15 L =	DAD CASE(S)	Standard							SEA 0449	ROJ 111	Junum 11

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

W. SEMM

July 11,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	C1SGE	Common Supported Gable	1	1	Job Reference (optional)	174826631

Scale = 1:30.2

Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0,

Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left

and right exposed; porch left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3)

4)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:50

ID:KzYK5aBh7a7pQVNjVgXEK5zsBKW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.53 0.64 0.15	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.12 0.01 0.05	(loc) 10-13 10-13 6 10-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Structural wood shea 10-0-0 oc bracing. (size) 2=0-3-0, 6 Max Horiz 2=-19 (LC Max Uplift 2=-88 (LC Max Grav 2=543 (LC	athing directly applied 5=0-3-0 : 17) : 12), 6=-88 (LC 13) : 23), 6=543 (LC 24)	 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cer Gable studs This truss ha chord live lo 10) * This truss la on the botton 	snow loads have as been designed psf or 2.00 times f on-concurrent with ed for a plus or m ter. spaced at 2-0-0 o as been designed ad nonconcurrent nas been designed m chord in all area	for greate lat roof lo nother liv inus 5 de c. for a 10.0 with any d for a liv s where	er of min roof aad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle	his f live sf on n n ds. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3-06-00 tall I chord and a	by 2-00-00 wide w ny other members	ill fit betv	veen the bott	om					
TOP CHORD	1-2=0/26, 2-3=-883/4 4-5=-853/466, 5-6=-8	446, 3-4=-853/466, 883/446, 6-7=0/26	11) One H2.5A recommende	Simpson Strong-Ti ed to connect trus	e conne	ctors na walls due	to					
BOT CHORD	2-10=-367/811, 9-10 6-8=-367/811	=-367/811, 8-9=-367	811, UPLIFT at jt and does no	(s) 2 and 6. This c t consider lateral f	onnection orces.	n is for uplift	only					
WEBS NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=95mj II; Exp B; E	4-9=-157/397, 3-10= d roof live loads have E 7-16; Vult=120mph oh; TCDL=6.0psf; BC nclosed; MWFRS (en	159/93, 5-8=-159/93 been considered for (3-second gust) DL=6.0psf; h=25ft; C: ivelope) and C-C	12) This truss ha load of 250.0 panels and a Bottom Choo 13) This truss de structural wo chord.	as been designed Olb live and 3.0lb c at all panel points a rd, nonconcurrent esign requires that bod sheathing be a	for a move lead locat along the with any a minim a minim	ving concentr ted at all mid Top Chord a other live loa um of 7/16" rectly to the	rated I and ads. top				TH CA	RO

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	C1	Common	5	1	Job Reference (optional)	174826632

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:50

Page: 1

Structural, LLC, Thurmont, MD - 21788.

Loading

TCDL

BCLL

BCDL

TCLL (roof)

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied
BOT CHORD	10-0-0 oc	bracing.
REACTIONS	(size)	2=0-3-0, 4=0-3-0
	Max Horiz	2=-19 (LC 17)
	Max Uplift	2=-88 (LC 12), 4=-88 (LC 13)
	Max Grav	2=543 (LC 23), 4=543 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/26,	2-3=-882/449, 3-4=-882/449,
	4-5=0/26	
BOT CHORD	2-6=-358/	/795, 4-6=-358/795
WEBS	3-6=-88/3	82
NOTES		

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Plates checked for a plus or minus 5 degree rotation
- about its center. This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174826633

Scale = 1:71.8

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.21 0.19	DEFL Vert(LL) Vert(CT)	in -0.01 -0.01	(loc) 17-18 19-20	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.23	Horz(CT)	0.00	12	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.00	14-29	>999	240			
BCDL	10.0											Weight: 127 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEPS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh Rigid ceiling directl	eathing directly applied. y applied.	BC	DT CHORD	2-44=-84/167, 23-4 23-45=-64/167, 22- 21-22=-64/167, 21- 20-46=-64/167, 20- 19-47=-64/167, 19- 18-48=-64/167, 18- 17-49=-64/167, 16- 16-50=-64/167, 16-	44=-64/1 -45=-64, -46=-64, -47=-64, -48=-64, -49=-64, -50=-64, -51=-64,	67, (167, (167, (167, (167, (167, (167, (167,		 Pla abo B) Ga 9) Thi cho 10) * T on 3-0 	tes chec but its ce ble studs s truss h brd live lo his truss the botto 6-00 tall	ked for nter. s space as bee bad nor has be m cho by 2-0	r a plus or minus ad at 2-0-0 oc. In designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit	5 degree rotation 10.0 psf bottom any other live load a live load of 20.0p ere a rectangle between the bottoo	ls. psf
PEACTIONS	(lb/size) 2–128/1	/-18 2.2.8 12-128/10-2-8			15-51=-64/167, 15	-52=-64	167,		cho	ord and a	iny oth	er members.		
REACTION	14=116/ 16=140/ 18=112/ 20=140/ 23=116/	19-2-8, 15=147/19-2-8, 19-2-8, 17=144/19-2-8, 19-2-8, 19=144/19-2-8, 19-2-8, 21=147/19-2-8, 19-2-8, 21=147/19-2-8,	WE	EBS	14-52=-64/167, 14 12-53=-64/167 7-18=-202/50, 6-19 4-21=-286/91, 3-23 9-16=-281/94, 10-1	-53=-64, 9=-279/8 3=-281/9 15=-286,	(167, 1, 5-20=-281 10, 8-17=-279 (91, 11-14=-2	/94, /81, :81/90	11) All car 12) N	bearings bacity of A	are as 565 ps	ssumed to be SF i.	No.2 crushing	
	Max Horiz 2=141 (L	.C 15)		DTES	reef live leads here		a a naide rad fa	-	13) Thi	s truss h	as bee	n designed for a	moving concentra	ated
	Max Uplift 2=-32 (L 14=-35 (16=-29 (21=-23 (Max Grav 2=311 (L 14=323 (16=332 (20=332 (23=323 (C 12), 12=-4 (LC 13), LC 17), 15=-23 (LC 17), LC 17), 17=-21 (LC 17) LC 16), 20=-28 (LC 16) LC 16), 23=-38 (LC 16) C 65), 12=278 (LC 76) LC 87), 15=335 (LC 86 LC 85), 17=334 (LC 82 LC 81), 21=335 (LC 80 LC 79)	1) , 2) ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	Unbalanced this design. Wind: ASCE Vasd=95mpl II; Exp B; En (3E) -1-0-0 tr (3R) 9-7-4 to cantilever lef right exposed for reactions DOL=1.60 Truss design	roof live loads hav 7-16; Vult=120mp n; TCDL=6.0psf; Bi closed; MWFRS (e p 2-0-0, Exterior(21 12-7-4, Exterior(21 t and right expose d;C-C for members shown; Lumber Di-	e been of CDL=6.0 envelope N) 2-0-0 N) 12-7- d; end v s and for OL=1.60	considered fo cond gust) Dpsf; h=25ft; (and C-C Cc to 9-7-4, Cor -4 to 20-2-8 z vertical left an ces & MWFR D plate grip	r Cat. orner ner one; id RS	loa pai Bo 14) Thi stru cho the	d of 250. nels and ttom Cho s truss d uctural w ord and 1 bottom	Olb live at all p ord, nor esign r ood sh /2" gyp chord.	and solub dead anel points alon noconcurrent with requires that a m eathing be appli usum sheetrock	Income and all mid potential all mid p the Top Chord ar any other live load inimum of 7/16" ed directly to the to be applied directly	nd Is. op to
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	3)	only. For stu	ids exposed to win	id (norm	al to the face),		6	ZZ	att	Jerlie	2
TOP CHORD	1-2=0/52, 2-30=-13 3-31=-108/66, 31-3 4-33=-105/61, 5-33 34-35=-85/97, 6-35 7-36=-91/171, 7-37 8-38=-56/105, 38-3 9-40=-61/83, 10-40 41-42=-89/36, 11-4 12-43=-133/61, 12-	7/97, 3-30=-129/109, 2=-95/76, 4-32=-95/89, =-63/83, 5-34=-98/91, =-58/105, 6-36=-137/11 =-91/171, 8-37=-137/10 9=-85/97, 9-39=-98/91, =-105/24, 10-41=-60/8 2=-102/26, 11-43=-124 13=0/52	4) 62, 62, 5, 5) /77, 6)	see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n	d Industry Gable E ialified building des 7-16; Pr=20.0 psf, .15); Pg=20.0 psf; OL = 1.15); Is=1.0; O; Cs=1.00; Ct=1.1 snow loads have b is been designed fip psf or 2.00 times fl on-concurrent with	nd Deta signer as (roof LL Pf=15.4 ; Rough 0 peen cor or great at roof lo	ils as applical s per ANSI/TF .: Lum DOL= b psf (Lum DC Cat B; Partia nsidered for th pad of 15.4 ps ve loads.	ble, PI 1. 1.15 DL = Ily nis live sf on		Contraction of the second s		SEA 0449 OA49 OA49 OA49	L 25 SEVIEN	MARINE

July 11,2025

Page: 1

ontinuod	00	0000	2
onunuea	OIL	Dade	~

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. Building from the Structure Review Component Advance interpreting and properting and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174826633
Structural LLC Thurmont MD - 21788		Rup: 25 20 E May 20	2025 Print	25.2.0 E May	29 2025 MiTek Industries Inc. Fri Jul 11 09:06:16	Page: 2

ID:rzPvynr9dkqIS4qHBBlgewzuTKe-AspF74fJl8FgA4sbDbNOSsu0zKuZEPEvwFexbtyzBCb

LOAD CASE(S) Standard

SEAL 044925 July 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	B1	Common	4	1	Job Reference (optional)	174826634

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:49 ID:ppBVPHCsfxib8AR8DdJn7EzuTMm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.3

Plate Offsets (X, Y): [2:0-3-2,0-1-8], [8:0-3-2,0-1-8], [8:0-0-0,0-0-0]

PLATES GRIP MT20 244/190
Weight: 104 lb FT = 20%
SEAL 044925

July 11,2025

Page: 1

TERENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	B1A	Common	1	1	Job Reference (optional)	174826635

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:49 ID:M9gzKZcYu4svcFSUf3OWzCzuTMF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.1

Plate Offsets (X, Y): [1:Edge,0-2-4], [7:Edge,0-2-4], [7:0-0-0,0-0-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.63 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.35 -0.46 0.03 0.04	(loc) 8-11 8-11 1 8-11	l/defl >643 >486 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 100 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she Rigid ceiling directly (size) 1=0-3-8, 7 Max Horiz 1=126 (LC Max Grav 1=856 (LC (lb) - Maximum Com Tension 1-3=-1116/77, 3-4=- 5-7=-1070/77 1-7=0/742 4-8=-78/777, 3-8=-2	1-6-0, Right 2x4 SP N athing directly applie applied. 7=0-5-8 C 13) C 29), 7=856 (LC 30) ipression/Maximum 791/113, 4-5=-789/1 80/119, 5-8=-270/119	5) 6) No.3 7) d. 8) 9) 12, LC 9	Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar This truss ha load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1/ the bottom c	ed for a plus or n ter. Is been designed ad nonconcurrent nas been designe in chord in all are: by 2-00-00 wide w by 2-00-00 w by 2-00-000 w by 2-00-000 w by 2-00-000 w by 2-00-000 w	ninus 5 de for a 10.0 with any d for a liv as where vill fit betw s, with BC for a mov dead loca dead loca along the with any t a minim applied di rock be ap	egree rotation other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ving concentr ted at all mid Top Chord a other live loa um of 7/16" rectly to the t oplied directly	n Opsf om f. ated l and ids. top y to					
 Unbalance this design Wind: ASG Vasd=95n II; Exp B; Exterior(2 18-11-12 if vertical lef forces & M DOL=1.60 TCLL: AS Plate DOL 15 Plate 	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) 0-1-12 to 3-1-12, Int R) 9-7-4 to 12-7-4, Inte zone; cantilever left an it and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) and C-C terior (1) 3-1-12 to 9- prior (1) 12-7-4 to d right exposed; enc C for members and hown; Lumber roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO)	Cat. 7-4, 1 .15 L =								S.	SEA 0449	ROLINE L

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

July 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1GE	Roof Special Supported Gable	2	1	Job Reference (optional)	174826637

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:47 ID:RxmdSODcKFkugriEVCoxOSzuTK9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

31-9-0

Scale = 1:79.9

FORCES

Plate Offsets (X, Y): [13:0-1-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg)	1:	(psf) 20.0 5.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Strass Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.31 0.33 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a	(lo	ic) I/c - - 2	lefl n/a n/a	L/d 999 999 p/a	PLATES MT20	GRIP 244/190	
BCLL BCDL		0.0* 10.0	Code	IRC202	21/TPI2014	Matrix-AS	0.21		0101		_	, a	n, a	Weight: 227 lb	FT = 20%	, 0
LUMBER TOP CHORD BOT CHORD WEBS DTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S Structural except er Rigid ceili 1 Row at (size)	0.2 0.2 0.3 0.3 PN0.3 1 wood sheat d verticals. ng directly midpt 2=31-9-0, 22=31-9-0 25=31-9-0 32=31-9-0 32=31-9-0 32=31-9-0	I-6-0 athing directly applied. 13-26, 12-27, 11-29 14-25 20=31-9-0, 21=31-9 0, 23=31-9-0, 24=31- 0, 30=31-9-0, 31=31- 0, 33=31-9-0, 34=31- 0, 1120	T .d, E ., V .9-0, V .9-0, .9-0, .9-0, .9-0, .9-0,	OP CHORD	$\begin{array}{l} 1.2=0/36, 2-4=-252,\\ 5-6=-133/78, 6-7=-1\\ 8-10=-113/193, 10-\\ 11-12=-129/272, 12\\ 13-14=-157/328, 14\\ 15-16=-102/204, 16\\ 17-18=-86/90, 18-11\\ 2-35=-20/60, 31-3;\\ 32-33=-20/60, 31-3;\\ 32-33=-20/60, 31-3;\\ 22-33=-20/60, 27-2;\\ 25-26=-20/60, 21-2;\\ 22-23=-20/60, 21-2;\\ 22-23=-20/60, 21-2;\\ 13-26=-260/87, 12-;\\ 11-29=-272/71, 10-;\\ 8-31=-276/83, 7-32;\\ 5-34=-274/51, 4-35;\\ 15-24=-276/92, 16-;\\ 17-22=-282/81, 18-;\\ \end{array}$	(73, 4-5 26/116 11=-10 -13=-1 -15=-1 -15=-1 -15=-1 -20/60 2=-20/60 2=-20/6 2=-20/6 2=-20/6 2=-20/6 2=-27/6 =-278/6 =-317/1 23=-27 21=-28	=-142/62, , 7-8=-119/15 3/230, 13/301, 30/272, 03/140, 54, 19-20=-2 , 33-34=-20/6 0, 30-31=-20, 0, 26-27=-20, 0, 23-24=-20, 0, 20-21=-20, 2/42, 4/61, 2, 6-33=-284, 11, 14-25=-2 3/84, 3/166	54, 78/3 50, /60, /60, /60, /66, 74/68,	 4) 5) 6) 7) 8) 9) 10) 11) 	TCLL: / Plate D 1.15 Pli Exp.; C Unbala design. This tru load of overhai Plates c about it Gable s This tru chord li * This tru chord li 3-06-00 chord a	ASCE OL= ate D e=1.1 nced ss ha 12.0 ngs r checl s cer equin tuds ss ha ve lo ve lo votto tuds ndto ndto tuds ndto ndto ndto ndto ndto ndto ndto ndto	E 7-16 1.15); OOL = 0; CS= 0; CS= poly conversion poly conversion poly conversion conversion space as bee ad non has bee m cho by 2-0 ny oth	; Pr=20.0 psf; Pr Pg=20.0 psf; Pf 1.15); Is=1.0; Rc 1.00; Ct=1.10 loads have bee en designed for g 2.00 times flat r ncurrent with oth r a plus or minus ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for a nconcur	of LL: Lum I =15.4 psf (Lu pugh Cat B; n considered preater of mi oof load of 1 ter live loads 5 5 degree rc chord beari a 10.0 psf bc any other I i a live load ber here a recta between th	DOL=1.15 Jm DOL = Partially d for this n roof live 15.4 psf on s. Jtation ng. Jtom ve loads. of 20.0psf ngle e bottom
	Max Uplift Max Grav	2=-6 (LC 22=-10 (L 24=-24 (L 29=-10 (L 31=-7 (LC 33=-9 (LC 35=-31 (L 2=337 (L 103), 23=: (LC 101), 26=319 (L 29=333 (L 31=333 (L	12), 21=-58 (LC 17), C 17), 23=-22 (LC 1 C 17), 25=-11 (LC 1 C 16), 30=-6 (LC 16), 16), 32=-6 (LC 16), 16), 34=-30 (LC 74) C 16), 273), 20=300 (LC 10 C 104), 22=332 (LC 10 333 (LC 102), 24=33 25=334 (LC 100), C 97), 30=333 (LC 10), C 97), 30=333 (LC 10), C 95), 32=332 (LC 10), C 95), 32=32 (LC 10), C	N, 1 7), 2), 2), 2 05), ; 33 98), 3 96), 3 94),	IOTES) Unbalanced this design.) Wind: ASCE Vasd=95mpl II; Exp B; En (3E) -1-0-0 t Corner(3R) ; 31-7-4 zone; vertical left e MWFRS for grip DOL=1.) Truss design only. For stu	roof live loads have 7-16; Vult=120mpf h; TCDL=6.0psf; BC closed; MWFRS (er o 2-2-2, Exterior(2N 19-6-10 to 22-8-11, ; cantilever left and exposed;C-C for me reactions shown; Lt 60 hed for wind loads in uds exposed to wing	been of CDL=6.0 nvelope) 2-2-2 Exterio right ex mbers a umber I n the pla	considered fo ond gust) Dpsf; h=25ft; () and C-C CC to 19-6-10, r(2N) 22-8-11 posed; end and forces & DOL=1.60 pla ane of the true al to the face;	r Cat. orner I to ite ss),			Annual.	ð	SEA 0449	NROL NL 125	A CONTRACTOR OF THE OWNER

33=338 (LC 93), 34=311 (LC 92), 35=390 (LC 41) (lb) - Maximum Compression/Maximum Tension

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1GE	Roof Special Supported Gable	2	1	Job Reference (optional)	174826637
Structural, LLC, Thurmont, MD -	21788,	Run: 25.20 S May 13	2025 Print:	25.2.0 S May	/ 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:47	Page: 2

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:47 ID:RxmdSODcKFkugriEVCoxOSzuTK9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) _{N/A}

- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1	Roof Special	1	1	Job Reference (optional)	174826638

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:45 ID:rUNLQD7Tk?fEdgxye2rMbazuTXB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.2

Plate Offsets (X, Y): [2:0-4-1,Edge], [6:0-3-8,0-2-0], [8:0-1-0,0-1-12], [9:Edge,0-1-8]

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.97 0.71 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.44 -0.62 0.06 0.04	(loc) 11-13 11-13 9 11-13	l/defl >861 >616 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 180 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=166 (LC Max Grav 2=1428 (L (lb) - Maximum Com Tension 6-7=-1439/143, 7-8= 1-2=0/36, 2-4=-2288 2-13=-108/2036, 11- 10-11=-12/1260, 9-1 6-11=-18/999, 5-13= 4-13=-323/106, 7-10 8-10=-12/1204, 7-11	I-6-0 athing directly applied 5-11, 7-11 = Mechanical C 3), 9=1390 (LC 31 pression/Maximum 1633/82, 8-9=-1315 /101, 4-6=-2091/155 13=0/1584, 0=-11/146 0/622, 5-11=-737/95 =-143/194, =-301/107	3) 4) 5) 6) 7) 8) 9) /65, 10] 11]	TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen Plates check about its cen This truss ha chord live loa * This truss ha chord and ar Refer to gird! This truss ha load of 250.0 panels and a Bottom Chor	7-16; Pr=20.0 ps .15); Pg=20.0 psi OL = 1.15); Is=1.(; Cs=1.00; Ct=1.' snow loads have s been designed bosf or 2.00 times i on-concurrent with a MT20 plates unli- ed for a plus or m ter. s been designed ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w hy other members gr(s) for truss to ti s been designed lib live and 3.0 lib of t all panel points d, nonconcurrent sion requires that	f (roof LL f; Pf=15.4); Rough 10 been cor for greate flat roof lc h other lin ess other ninus 5 de for a 10.0 with any d for a liv as where will fit betw s, with BC russ conr for a mov dead loca along the with any t a minim	: Lum DOL= psf (Lum DC Cat B; Partia isidered for t er of min rool ad of 15.4 p re loads. wise indicate gree rotation 0 psf bottom other live loa e load of 20.1 a rectangle reen the bott DL = 10.0ps ving concentr ted at all mic Top Chord a other live loa other live loa gree rotations.	1.15 OL = ally his f live set on ed. n ads. Opsf d ads. and ads.					RO	
 Unbalanc this desig Wind: ASI Vasd=957 II; Exp B; Exterior(2 S1-7-4 zoi vertical le MWFRS f grip DOL= 	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-2-2, Inter R) 19-6-10 to 22-8-11, ne; cantilever left and ri it exposed;C-C for men or reactions shown; Lu :1.60	been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) and C-C ior (1) 2-2-2 to 19-6- Interior (1) 22-8-11 to ight exposed ; end nbers and forces & mber DOL=1.60 plate	at. LO	chord and 1/ the bottom cl AD CASE(S)	od sheathing be a 2" gypsum sheetr hord. Standard	applied di ock be ap	pplied directly	top y to			Bo	SEA 0449	25 ERVIEN	A Barning and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

S unun July 11,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1A	Attic	2	1	Job Reference (optional)	174826639

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:46 ID:a?10FyGYoH?WPL2LCyQjW?zuTNz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:95.7

Plate Offsets (X, Y): [2:0-4-1,Edge], [4:0-3-0,0-3-4], [6:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-AS	0.78 0.77 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.36 -0.67 0.07 0.15	(loc) 18-19 15-18 11 18-19	l/defl >999 >568 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 203 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 2x4 SP SS *Except 2x4 SP No.3 *Except No.2, 5-18:2x4 SP S Left 2x4 SP No.3 - 1 Structural wood sheat except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=166 (LC	t* 4-6:2x4 SP SS 17-13:2x4 SP No.2 t* 20-7,8-12:2x4 SP S I-6-0 athing directly applied applied. 7-20, 4-18 I1= Mechanical C 13)	2) i, 3)	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E)) S1-7-4 zone; vertical left e MWFRS for 1 grip DOL=1.6 TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced	7-16; Vult=120mp ;; TCDL=6.0psf; Bi closed; MWFRS (e -1-0-0 to 2-2-2, Int 19-6-10 to 22-8-11 cantilever left and xposed;C-C for me reactions shown; L 50 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ;; Cs=1.00; Ct=1.1; snow loads have h	h (3-sec CDL=6. envelope erior (1) I, Interior right ex embers a umber I (roof LL Pf=15.4 Rough 0	ond gust) Dpsf; h=25ft; () and C-C 2-2-2 to 19-6 r (1) 22-8-11 posed; end and forces & DOL=1.60 pla .: Lum DOL= ² psf (Lum DC Cat B; Partial sidered for th	Cat. 3-10, to ate 1.15 DL = Ily	13) This structurestructurechothe14) AtticLOAD (s truss de ctural we rd and 1 bottom c c room c CASE(S)	esign r bod sh /2" gyp chord. heckeo Star	requires that a m eathing be appli osum sheetrock d for L/360 defle ndard	iinimum of 7, ed directly to be applied d ction.	/16" the top irectly to
FORCES TOP CHORD	Max Grav 2=1482 (L (lb) - Maximum Com Tension 1-2=0/36, 2-5=-2431 6-7=-576/37, 7-8=-1: 9-10=-321/58 10-11	LC 2), 11=1519 (LC 2) pression/Maximum /0, 5-6=-2169/0, 233/0, 8-9=-1869/0, =-325/48) 5) 6)	design. This truss ha load of 12.0 p overhangs no 250.0lb AC u 19-6-10 from	s been designed for psf or 2.00 times fl on-concurrent with init load placed on ueft and supporte	or greate at roof lo other liv the bott	er of min roof bad of 15.4 ps /e loads. om chord, points 5-0-0	live sf on						
BOT CHORD	2-19=-28/2095, 18-1 12-15=0/1255, 11-12 13-14=-62/348 20-22=-1134/0, 7-22 17-20=0/700, 5-20=- 13-21=0/546, 8-21=(14-15=-47/53, 9-12= 4-19=0/358, 4-18=-6 21-22=-372/12	9=0/2096, 15-18=0/1 2=0/1317, 14-17=-62/ 2=-915/0, 17-18=0/67 561/127, 12-13=0/48 0/646, 15-17=-718/22 ->21/246, 9-11=-1840, 444/94, 6-20=0/1900,	677, 348, 7) 8) 1, 0, 9) 3, ′0, 10	apart. All plates are Plates check about its cen This truss ha chord live loa) * This truss h on the botton 3-06-00 tall b	MT20 plates unle ed for a plus or mi ter. is been designed for a been designed for honconcurrent v has been designed in chord in all areas by 2-00-00 wide wil	ss other nus 5 de or a 10.0 vith any for a liv s where Il fit betv	wise indicate agree rotation 0 psf bottom other live load e load of 20.0 a rectangle veen the botto	d. ds. Dpsf			Je	NITH CA	ROLIN	er
NOTES 1) Unbalance this desigr	ed roof live loads have n.	been considered for	11 12	chord and an) Refer to girde) This truss ha	by other members. er(s) for truss to truss to truss been designed for	uss conr	ections. ving concentra	ated		11111		0449	25	

load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

unn July 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1B	Attic	5	1	Job Reference (optional)	174826640

15-4-14

Structural LLC Thurmont MD - 21788

Scale = 1:95.7

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

WEBS

FORCES

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

(size)

Tension

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

-1-0-0

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:47 ID:4Y8uDsoz3IAcJqtyiPFeimzuTRA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

23-8-6

Page: 1

31-9-0 7-10-7 19-6-10 23-1-13 28-1-0 3-7-4 0-6-9 H 7-10-7 7-6-7 4-4-10 4-1-12 3-8-0 1-0-0 6x6 ≠ 6 ∠x4 ∎ 5 46 45 2x4 II 47 27 2x4= 287 1<u>2</u> 19 6¹² 8 44 2Ž 10-7-3 6x6 🚅 29 10-5-5 4x4 2x4。 a 2 43 3x4 30 3x4 II 42 10 8 10 11 11 3 1 -38 40 ± 35 36 18 ⁴33 31 32 15 37 19 12 4x8 ı 4x6= 16 34 2x4 II 4x4= 2x4= 39 3x4= 41 2x4 u 3x4= 4x8 🛛 MT20HS 3x8 = 19-4-14 15-10-8 23-8-6 15-6-10 7-10-7 15-4-14 23-6-10 <u>31-9-0</u> 0-1-12 3-6-6 -11 7-10-7 7-6-7 4-1-12 " 0-1-12 8-0-10 0-3-14 31-9-0 Plate Offsets (X, Y): [2:0-4-1,Edge], [4:0-3-0,0-3-4], [6:0-4-0,0-3-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 тс 0.78 Vert(LL) -0.36 18-19 >999 360 MT20 244/190 15.4/20.0 Lumber DOL 1.15 BC 0.77 Vert(CT) -0.67 15-18 >568 240 MT20HS 187/143 Rep Stress Incr WB Horz(CT) 10.0 YES 0.91 0.07 11 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.15 >999 240 18-19 10.0 Weight: 203 lb FT = 20% 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) 13) Attic room checked for L/360 deflection. Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No.2 *Except* 4-6:2x4 SP SS LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP SS *Except* 17-13:2x4 SP No.2 Exterior(2E) -1-0-0 to 2-2-2, Interior (1) 2-2-2 to 19-6-10, 2x4 SP No.3 *Except* 5-18:2x4 SP SS, 8-12,20-7:2x4 SP No.2 Exterior(2R) 19-6-10 to 22-8-11. Interior (1) 22-8-11 to 31-7-4 zone; cantilever left and right exposed ; end Left 2x4 SP No.3 -- 1-6-0 vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate Structural wood sheathing directly applied, grip DOL=1.60 except end verticals. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Rigid ceiling directly applied. Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1 Row at midpt 7-20, 4-18 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 2=0-3-8, 11=0-3-8 Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Max Horiz 2=166 (LC 13) Unbalanced snow loads have been considered for this 4) Max Grav 2=1482 (LC 2), 11=1519 (LC 2) design. (Ib) - Maximum Compression/Maximum This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on 6-7=-576/37, 7-8=-1233/0, 8-9=-1869/0, overhangs non-concurrent with other live loads. 9-10=-321/58, 10-11=-325/48, 1-2=0/36, 6) 250.0lb AC unit load placed on the bottom chord, 2-5=-2431/0, 5-6=-2169/0 19-6-10 from left end, supported at two points, 5-0-0 2-19=-28/2095, 18-19=0/2096, 15-18=0/1677, apart. 12-15=0/1255, 11-12=0/1317, 14-17=-62/348, All plates are MT20 plates unless otherwise indicated. 7) 13-14=-62/348 Plates checked for a plus or minus 5 degree rotation 8) 17-18=0/671, 17-20=0/700, 5-20=-561/127, about its center. 12-13=0/480, 13-21=0/546, 8-21=0/646, 9) This truss has been designed for a 10.0 psf bottom 20-22=-1134/0, 7-22=-915/0, 9-11=-1840/0, chord live load nonconcurrent with any other live loads. 15-17=-718/223, 9-12=-21/246, 10) * This truss has been designed for a live load of 20.0psf 14-15=-47/53, 4-19=0/358, 6-20=0/1900, on the bottom chord in all areas where a rectangle 4-18=-644/94, 21-22=-372/12 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 44925 1) Unbalanced roof live loads have been considered for 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 12) This truss design requires that a minimum of 7/16"

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

July 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2		
	A1C	Roof Special	5	1	Job Reference (optional)	174826641	

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:47 ID:DXIxkA0FYRsttu0_QtfU2zzuTW2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.2

Plate Offsets (X, Y): [2:0-4-1,Edge], [6:0-3-8,0-2-0], [8:0-1-0,0-1-12], [9:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.97 0.71 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.44 -0.62 0.06 0.04	(loc) 11-13 11-13 9 11-13	l/defl >861 >616 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 180 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shee except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, S Max Horiz 2=166 (LC Max Grav 2=1428 (L	I-6-0 athing directly applie applied. 5-11, 7-11 9=0-3-8 C 13) C 3), 9=1390 (LC 31	3) 4) 6) 7) 8)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs nn All plates are Plates check about its cen This truss ha chord live load	7-16; $Pr=20.0 \text{ psf}$.15); $Pg=20.0 \text{ psf}$; DL = 1.15); $Is=1.0$; Cs=1.00; $Ct=1.11snow loads have bs been designed forpsf or 2.00 times fiton-concurrent withMT20 plates unleed for a plus or mini-ter.s been designed fora d ponconcurrent for$	(roof LL Pf=15.4 Rough) een cor or greate at roof le other liv ss other hus 5 de or a 10.0	: Lum DOL= t psf (Lum DC Cat B; Partia nsidered for the er of min roof pad of 15.4 p ve loads. wise indicate agree rotation D psf bottom other live loa	1.15 OL = ally his f live sf on ed. n						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	* This truss h on the bottor	as been designed n chord in all areas	for a liv where	e load of 20.0 a rectangle	0psf						
TOP CHORD	1-2=0/36, 2-4=-2288 6-7=-1439/143, 7-8=	8/101, 4-6=-2091/155 -1633/82, 8-9=-1315	, /65	3-06-00 tall to chord and ar	by 2-00-00 wide will by other members,	l fit betv with BC	veen the bott DL = 10.0pst	om f.						
BOT CHORD	2-13=-108/2036, 11- 10-11=-12/1260, 9-1	13=0/1584, 0=-11/146	10)) This truss ha	s been designed fo	or a mov	ving concentr	rated						
WEBS	5-13=0/622, 5-11=-7 7-11=-301/107, 7-10 8-10=-12/1204, 4-13	′37/95, 6-11=-18/999)=-143/194,)=-323/106	, 11)	panels and a Bottom Chor) This truss de structural wo	t all panel points a d, nonconcurrent v sign requires that a od sheathing be a	long the vith any a minim	Top Chord a other live loa um of 7/16" irectly to the	and ads.			h 3	TH CA	Ro	
 Unbalance this design 	ed roof live loads have n.	been considered for		chord and 1/ the bottom cl	2" gypsum sheetro hord.	ck be a	oplied directly	y to			S	OF	PN Y	
Wind: ASO	CE 7-16; Vult=120mph	(3-second gust)	LO	AD CASE(S)	Standard						X		Jonation 1	

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-2-2, Interior (1) 2-2-2 to 19-6-10, Exterior(2R) 19-6-10 to 22-8-11, Interior (1) 22-8-11 to 31-7-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	V1	Valley	1	1	Job Reference (optional)	174826642

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:53 ID:YvDEdLhPlbgY8aQodHmLIPzuJtK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIF	-0-0 .15 .15 ES RC2021/TPI2014	CSI TC BC WB Matrix-AS	0.41 0.44 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=13-11- 6=13-11- 8=13-11- Max Horiz 1=-90 (LC (LC 16) Max Grav 1=295 (LL 6=411 (L 8=411 (L 8=411 (L	eathing directly applied. <i>r</i> applied. 13, 5=13-11-13, 13, 7=13-11-13, 13 C 14) 12), 6=-47 (LC 17), 8=-4 C 45), 5=295 (LC 51), C 61), 7=412 (LC 60), C 59)	 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DL Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live log This truss ha 	ed for wind loads i ds exposed to wind d Industry Gable E alified building des 7-16; Pr=20.0 psf; 0.5; Pg=20.0 psf; 0.C = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have b ed for a plus or mi ter. es continuous bott spaced at 4-0-0 oc s been designed f ad nonconcurrent v	in the pla id (norm nd Detai signer as (roof LL Pf=15.4 ; Rough 0 been cor nus 5 de om chor c. or a 10.0 with any	ane of the trus al to the face, is as applicat per ANSI/TF psf (Lum DOL=' psf (Lum DOC Cat B; Partial isidered for th gree rotation d bearing.	ss),)ole, PI 1. I.15 DL = Ily nis ds.					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	on the bottor	nas been designed n chord in all areas	s where	e load of 20.0 a rectangle	psr					
TOP CHORD	1-2=-272/155, 2-3=- 4-5=-272/155	-159/98, 3-4=-159/94,	chord and ar	y other members.								
BOT CHORD WEBS	1-8=-40/194, 7-8=-4 5-6=-40/194 3-7=-267/0, 2-8=-33	10/64, 6-7=-40/64, 31/148, 4-6=-331/147	11) Provide mec bearing plate 48 lb uplift at 12) Beveled plate	nanical connection capable of withsta joint 8 and 47 lb u e or shim required	n (by oth) anding 9 uplift at jo to provio	ers) of truss to Ib uplift at joi bint 6. de full bearing	o int 1,				mmm	11111
NOTES	ed roof live loads have	been considered for	surface with 13) This truss ba	truss chord at joint	t(s) 1, 5. or a mov	vina concentra	ated		=:	10	"ATH CA	RO

 Unbalanced root live loads have been considered this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-11-14, Interior (1) 2-11-14 to 6-11-14, Exterior(2R) 6-11-14 to 9-11-14, Interior (1) 9-11-14 to 13-11-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	V2	Valley	1	1	Job Reference (optional)	174826643

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:53 ID:JAAqkGalQqXpZCE4bu6EtVzuJtT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.8

B

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.95	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 39 lb	FT = 20%
LUMBER 5) Unbalanced snow loads have been considered for this												

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	1=10-4-10, 3=10-4-10, 4=10-4-10
	Max Horiz	1=-66 (LC 12)
	Max Uplift	1=-65 (LC 50), 3=-65 (LC 49)
	Max Grav	1=266 (LC 43), 3=266 (LC 47),
		4=768 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-220/	/341, 2-3=-220/341
BOT CHORD	1-4=-204/	(154, 3-4=-204/154
WEBS	2-4=-602/	217

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-2-5, Exterior(2R) 5-2-5 to 8-2-5, Interior (1) 8-2-5 to 10-4-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 1 and 65 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	V3	Valley	1	1	Job Reference (optional)	174826644

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 10 16:13:53 ID:4S8QrBT6Y3O5_p1LZVR70czuJtc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.4

Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.52 Vert(1L) n/a - n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 4 n/a n/a BCLL 0.0* Code IRC2021/TPI2014 Matrix-AS Matrix-AS Weight: 25 lb FT = 20%	10.0 Weight 2010 11 = 2070	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.38 0.52 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
--	----------------------------	--	--	---	---	------------------------------------	----------------------	---	--------------------------	----------------------	-----------------------------	--------------------------	----------------	------------------------

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	l wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	1=6-9-6, 3=6-9-6, 4=6-9-6
	Max Horiz	1=-42 (LC 12)
	Max Uplift	1=-39 (LC 46), 3=-39 (LC 44)
	Max Grav	1=274 (LC 43), 3=274 (LC 47),
		4=505 (LC 40)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-217/	241, 2-3=-217/241
BOT CHORD	1-4=-133/	/148, 3-4=-133/148
WEBS	2-4=-357/	(156

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-4-11, Exterior(2R) 3-4-11 to 6-4-11, Interior (1) 6-4-11 to 6-9-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1 and 39 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	A1T	Roof Special	6	1	Job Reference (optional)	174826655

Scale = 1:84.3

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

4-19=-1754/120, 4-20=-1875/168

20-21=-1796/179. 5-21=-1795/197

5-22=-1172/146, 22-23=-1188/120,

6-23=-1326/119, 6-24=-1362/79,

24-25=-1396/62, 7-25=-1511/57,

2-26=-10/2335, 13-26=-13/2333,

4-12=-348/118, 11-28=-41/212,

6-9=-128/207, 7-9=-8/1124

Unbalanced roof live loads have been considered for

10-28=-41/212, 10-29=-10/1163,

2-14=0/246, 1-31=0/68, 14-31=-1/51

3-13=0/364, 3-12=-851/49, 10-12=0/867,

13-27=-9/2339, 12-27=-9/2339, 11-12=0/179,

9-29=-10/1163, 9-30=-14/141, 8-30=-14/141,

5-12=-86/1181, 5-10=0/341, 6-10=-306/101,

7-8=-1223/62

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Fri Jul 11 09:08:49

Page: 1

- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 1 SP No.2 crushing 9) capacity of 565 psi.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 2	
	B1GT	Common Girder	2	2	Job Reference (optional)	174826656

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 10 16:13:49 ID:_SUWwAGcXA1wSp6jvBKZI5zuTHW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.5

Plate Offsets (X, Y): [1:Edge,0-1-7], [5:Edge,0-1-7], [7:0-4-0,0-4-8]

Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing 2 Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr N Code II	2-0-0 .15 .15 NO RC2021/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MS	DEF 72 Vert(.58 Vert(.82 Horz Winc	L in LL) -0.09 CT) -0.19 (CT) 0.04 I(LL) 0.00	(loc) 7-8 7-8 5 7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP DSS WEBS 2x4 SP No.3 *Excep BRACING TOP CHORD Structural wood she 3-6-10 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=0-3-8, Max Horiz 1=-128 (L Max Grav 1=6139 (FORCES (lb) - Maximum Con Tension TOP CHORD 1-8=0/6114, 6-8=0/4 WEBS 3-7=0/6680, 4-7=-21 2-7=-2655/0, 2-8=0. NOTES 1) 2-ply truss to be connected toge (0.131*x3*) nails as follows: Top chords connected as follow oc. Bottom chords connected as follows co. Bottom chords connected as follows: 2x42) All loads are considered equally except if noted as front (F) or ba CASE(S) section. Ply to ply con provided to distribute only loads unless otherwise indicated. 3) Unbalanced roof live loads have this design.	athing directly applied of applied or 10-0-0 oc 5=0-5-8 (C 8) (C 2), $5=7091$ (LC 2) appression/Maximum 517/0, 3-4=-5521/0, 3342, 5-6=0/6342 (2066/0, $4-6=0/3488, 3120$) ther with 10d (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	 4) Wind: ASCE Vasd=95mpl II; Exp B; En and right exp Lumber DOL 5) TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 6) Unbalanced design. 7) Plates check about its cen 8) This truss ha chord live loa 9) * This truss ha chord live loa 9) * This truss ha chord live loa 9) * This truss ha load of 250.0 panels and a Bottom Chor 11) Use Simpson Truss) or eqi 2-0-12 from i to back face 12) Fill all nail ho LOAD CASE(S) 1) Dead + Sno Increase=1 Uniform Lo. Vert: 1-3 Concentrativ Vert: 6=- 24=-1093 (B), 29=- 	7-16; Vult=120mph (3 n; TCDL=6.0psf; BCDL closed; MWFRS (enve bosed; end vertical left =1.60 plate grip DCL= 57-16; Pr=20.0 psf; Pf= OL = 1.15); Is=1.0; Ro 0; Cs=1.00; Ct=1.10 snow loads have beer snow loads have beer ted for a plus or minus ter. is been designed for a ad nonconcurrent with has been designed for a ad nonconcurrent with is been designed for a bib live and 3.0lb dead d, nonconcurrent with in Strong-Tie HUS26 (1 uivalent spaced at 2-0- the left end to 18-0-12 of bottom chord. bles where hanger is in Standard bw (balanced): Lumber 15 ads (lb/ft) =-51, 3-5=-51, 9-12=-2 ed Loads (lb) 1097 (B), 21=-1098 (B 7 (B), 26=-1097 (B), 27 1354 (B), 31=-1354 (B)	-second gi =6.0psf; h lope); can and right 1.60 of LL: Lum 15.4 psf (L ugh Cat B; a considered 5 degree i 10.0 psf b any other 1 a live load here a recta between th moving cc locate da t g the Top C any other 1 4-10d Gird 0 oc max. to connect contact w contact w contact w 10.2 second 10.0 psf b any other 1 4-10d Gird 0 oc max. to connect 10.2 second 10.2 second 10.2 second 10.0 psf b 10.0 psf b any other 1 4-10d Gird 0 oc max. to connect 10.2 second 10.2	ust) =25ft; Cat. tilever left exposed; DOL=1.15 .um DOL = ; Partially ed for this rotation ottom live loads. of 20.0psf angle he bottom oncentrated all mid Chord and live loads. der, 4-10d starting at t truss(es) ith lumber. =1.15, Plate 7 (B),), 28=-1097				SEA 0449	ROLINE L 25 SEVILLINE 11,2025	

A MITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

