

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 28 Mason Ridge -Wilmington - C

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

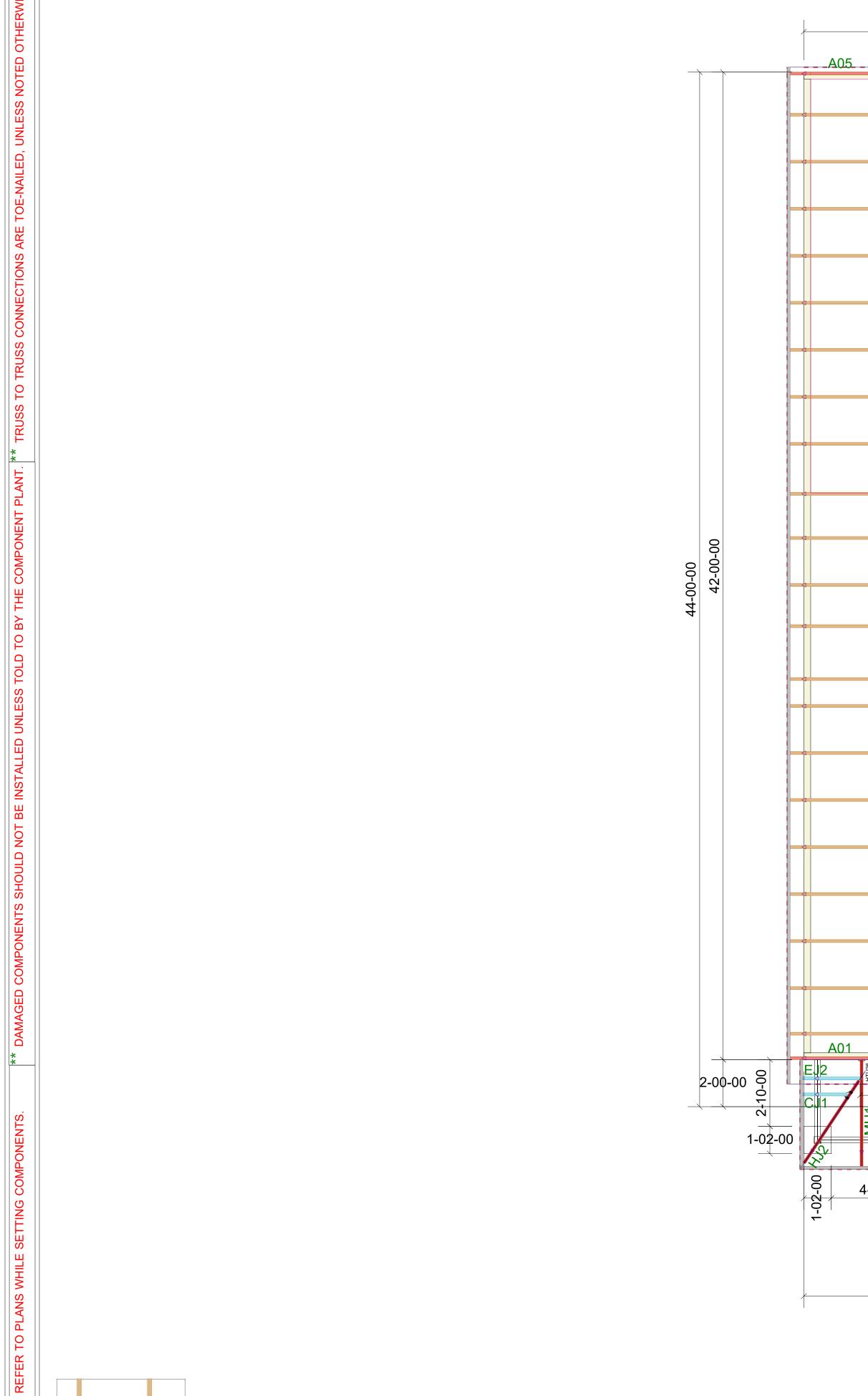
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

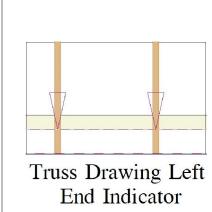
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.


9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

COMPONENTS

DNITT

FRAMER MUST

*

	38-00	0-00		
		ODD SPA	ACE 1-10-08	
			2-00-00	
			2-00-00	
>			2-00-00	
3/12 Slope (8)	3/12 Slope		2-00-00	
			2-00-00	
			2-00-00	
			2-00-00	
		ODD SPA		
4		ODD SP/		
A03		AHU	2-00-00	
(2)		PLATFORM ODD SP	ACE 1-09-00 ACE 2-03-00 +	
2-01-08		ODD SP.	ACE 2-03-00 4	
у — х А		ODD SP.	ACE 1-01-12	
<u>ц</u>			2-00-00	
			2-00-00	
			2-00-00	
(8) A02			2-00-00	
			2-00-00	
			2-00-00	
			1-11-04	
		ODD SP	ACE 1-00-08	
МН1 HTU26 2-00-00 2-00-00 2-00-00 2-00-00 (2)2-00-00	2-00-00 2-00-00 2-00-00 1-1-1 ^{НТU26} 1-01-1 ^{НТU26}		2-00-00	
4-05-00 		00 B01 2-00 20-00-00	0	
	38-00	0-00		

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

1	Re	visions
or.	00/00/00) Name
r Itract	00/00/00	
	00/00/00	
	00/00/00) Name
All upility connectors shown within these documents are recommendations only. The ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer	Is responsible for temporary and permanent bracing of the tool and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
IS ARE READ AS: FOOT-		
fed together prior to adding any loads. ^{°°} Dimensions are read as: foot-inch-sixteenth.	DR Horton Inc	Roof Truss Layout
DNNECTED TOGETHER PRIOR TO ADDING ANY LOADS. " DIMENSIONS ARE READ AS: FOOT-	DR Horton Inc Scale:	- Mason ruge C Roof Truss Layout
LLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. " DIMENSIONS ARE READ AS: FOOT-	Scale:	•
BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Scale: Date: 7/9 Nate [NTS 9/2025 Designer: Donaldson
MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. " DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 7/S Nate [Pro 250]	NTS 0/2025 Designer: Donaldson ject Number: 70039-C
RDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. " DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 7/S Nate [Pro 250]	NTS 0/2025 Designer: Donaldson ject Number:
" GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. " DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 7/S Nate [Pro 250]	NTS 0/2025 Designer: Donaldson ject Number: 70039-C

Truss Connector Total ListManufProductQtySimpsonHTU268SimpsonOne H2.5A70

8

RE: 25070039 28 Mason Ridge - Wilmington C - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25070039Lot/Block: 28Model: Wilmington CAddress:Subdivision: Mason RidgeCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	168889556	A01	10/16/2024
2	168889557	A02	10/16/2024
3	168889558	A03	10/16/2024
4	168889559	A04	10/16/2024
5	168889560	A05	10/16/2024
6	l68889561	B01	10/16/2024
7	168889562	C01	10/16/2024
8	168889563	C02	10/16/2024
9	168889564	CJ1	10/16/2024
10	168889565	EJ2	10/16/2024
11	168889566	HJ2	10/16/2024
12	168889567	MH1	10/16/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job		Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
2507	0039	A01	Hip Structural Gable	1	1	Job Reference (optional)	168889556

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:10 ID:FdJkUXBMoUWEJm5osa_ZPVzwPcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-7-0 27-10-3 38-7-0 16-11-0 21-1-0 32-6-0 38-0-0 16-11-0 4-2-0 6-9-3 4-7-13 5-6-0 0-7-0 5x6= 5x10= 11 12 13 10 14 9⁴¹ ⁴³15 3x6 🧔 12 61 5x6 40 44 8 7 16 ⁴⁵46 6 39 9-3-8 5 17 4 38 x10 u 3x5 II 2 37 8x10= 3x5 II 3x5 II 36 2 18 19 0-10-0 3x5 II 20 33 XXX 42 22 21 32 31 30 29 28 27 26 25 24 23 3x6= 3x6= 3x5= 3x6 =4x8 =3x5 II 38-0-0 || 0-2-12 18-1-13 17-0-12 27-10-3 37-9-4 16-10-0 1-1-1 9-8-7 9-11-1 Scale = 1:66.7 Plate Offsets (X, Y): [11:0-3-0,0-2-0], [13:0-5-0,0-2-6], [16:0-2-8,0-3-0], [18:0-4-8,0-1-7] 1-11-4 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.20 20-21 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.88 Vert(CT) -0.39 20-21 >596 180 TCDL Rep Stress Incr WB 10.0 YES 0.28 Horz(CT) 0.01 20 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 276 lb BCDL 10.0 FT = 20% LUMBER TOP CHORD 1-2=0/21, 2-3=-139/518, 3-4=-73/456, 3) Truss designed for wind loads in the plane of the truss 4-5=-41/477, 5-6=-4/480, 6-8=0/486, only. For studs exposed to wind (normal to the face). TOP CHORD 2x4 SP No.2 8-9=0/485, 9-10=0/489, 10-11=0/499, BOT CHORD 2x4 SP No.2 see Standard Industry Gable End Details as applicable. 11-12=0/450, 12-13=0/450, 13-14=0/368, or consult qualified building designer as per ANSI/TPI 1. WEBS 2x4 SP No.3 *Except* 16-24,33-2,20-18:2x6 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 SP No.2 14-15=0/347. 15-17=-735/321. 4) 17-18=-937/191, 18-19=0/21, 2-33=-33/207, Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate OTHERS 2x4 SP No.3 18-20 = -629/172DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; BRACING BOT CHORD 32-33=-418/210, 31-32=-418/210, Cs=1 00. Ct=1 10 TOP CHORD Structural wood sheathing directly applied or 30-31=-418/210, 29-30=-418/210, 5) Unbalanced snow loads have been considered for this 4-9-10 oc purlins, except end verticals, and 28-29=-418/210, 26-28=-418/210, design. 2-0-0 oc purlins (10-0-0 max.): 11-13. 25-26=-418/210, 24-25=-418/210, 6) This truss has been designed for greater of min roof live BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 23-24=0/638, 21-23=0/638, 20-21=-104/765 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on bracing, Except: WEBS 11-24=-285/0, 24-34=-625/122, overhangs non-concurrent with other live loads. 10-0-0 oc bracing: 23-24,21-23,20-21. 13-34=-523/105, 24-35=-989/161 Provide adequate drainage to prevent water ponding. 7) WEBS 1 Row at midpt 11-24 35-36=-996/156, 36-37=-1052/197, All plates are 2x4 MT20 unless otherwise indicated. 8) JOINTS 1 Brace at Jt(s): 34, 37-38=-998/171, 16-38=-955/151, 9) Truss to be fully sheathed from one face or securely 36, 37, 38 16-21=0/492, 12-34=-190/47, 34-35=-111/37, braced against lateral movement (i.e. diagonal web). **REACTIONS** (size) 20=0-3-8, 23=0-3-8, 24=18-3-9, 13-36=-93/198, 14-37=-146/56, 10) Gable studs spaced at 2-0-0 oc. 25=18-3-9, 26=18-3-9, 28=18-3-9, 15-38=-121/45, 10-25=-178/62, 11) This truss has been designed for a 10.0 psf bottom 29=18-3-9, 30=18-3-9, 31=18-3-9, 9-26=-169/68, 8-28=-174/65, 6-29=-156/65, chord live load nonconcurrent with any other live loads. 32=18-3-9, 33=18-3-9 5-30=-127/70, 4-31=-92/47, 3-32=-254/120, ALL DTH C Max Horiz 33=119 (LC 13) 17-21=-221/148 Max Uplift 20=-116 (LC 15), 24=-247 (LC 15), ORTH NOTES CAR 25=-28 (LC 14), 26=-48 (LC 14), 0 Unbalanced roof live loads have been considered for 1) 28=-41 (LC 14), 29=-41 (LC 14), this design 30=-48 (LC 14), 31=-17 (LC 14), Wind: ASCE 7-16; Vult=130mph (3-second gust) 32=-114 (LC 14), 33=-228 (LC 43) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 20=761 (LC 45), 23=639 (LC 23), Max Grav II: Exp B: Enclosed: MWFRS (envelope) exterior zone WITTER PARTY 24=1054 (LC 22), 25=248 (LC 47), CHARLEN WINDER and C-C Exterior(2E) -0-7-0 to 3-0-0. Interior (1) 3-0-0 to SEAL 26=201 (LC 39), 28=215 (LC 39), 11-6-10. Exterior(2R) 11-6-10 to 26-5-6. Interior (1) 29=192 (LC 39), 30=184 (LC 45), 036322 26-5-6 to 34-9-8, Exterior(2E) 34-9-8 to 38-7-0 zone; 31=115 (LC 54), 32=392 (LC 45), cantilever left and right exposed ; end vertical left and 33=66 (LC 14) right exposed;C-C for members and forces & MWFRS FORCES (Ib) - Maximum Compression/Maximum for reactions shown; Lumber DOL=1.60 plate grip Tension DOL=1.60 GILB October 16,2024

Continued on page 2

Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

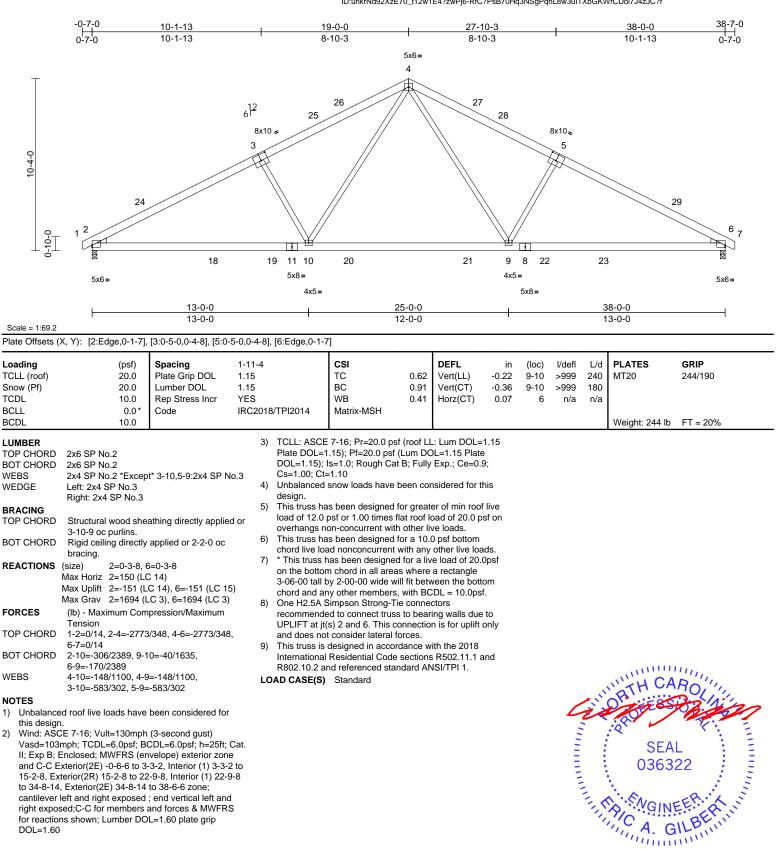
Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	A01	Hip Structural Gable	1	1	Job Reference (optional)	168889556

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Bearing at joint(s) 33, 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 33. This connection is for uplift only and does not consider lateral forces.
- 15) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24, 25, 26, 28, 29, 30, 31, 32, and 20. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:10 ID:FdJkUXBMoUWEJm5osa_ZPVzwPcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	A02	Common	8	1	Job Reference (optional)	168889557

1)

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11 ID:unkrNd92XzE70_t12w1E4?zwPj6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

October 16,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	A03	Common	5	1	Job Reference (optional)	168889558

19-0-0

8-10-3

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-7-0


0-7-0

10-1-13

10-1-13

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11 ID:_sJSfbW6i9jePBhjvT73dHzwPDg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 38-7-0 27-10-3 38-0-0 8-10-3 10-1-13 0-7-0

5x6=

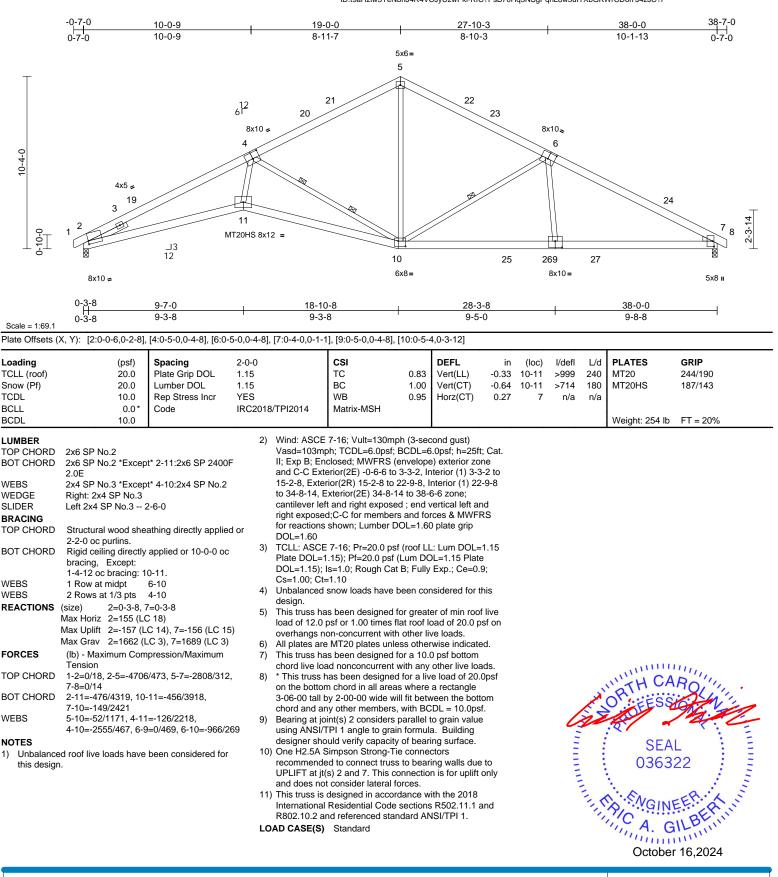
Loading TCLL (roof) Snow (Pf) TCDL BCLL	20.0 P 20.0 Li 10.0 R 0.0* C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.83 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.39 0.07	(loc) 9-23 9-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0					-						Weight: 261 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x6 SP No.2 2x6 SP No.2 *Except* 1 2.0E, 12-13:2x4 SP No. 2x4 SP No.3 *Except* 1 Left: 2x4 SP No.3	.2	o.2 4)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design.	snow loads have	(Lum DC at B; Fully been cor	L=1.15 Plate Exp.; Ce=0.9 sidered for t	e 9; his					
	Right: 2x4 SP No.3		5)		s been designed osf or 1.00 times								
BRACING TOP CHORD	Structural wood sheathi 3-3-12 oc purlins.	ing directly applied	or 6)	overhangs n	nit load placed o	h other liv	e loads.						
BOT CHORD	Rigid ceiling directly applications	plied or 10-0-0 oc	7)	This truss ha	supported at two s been designed	for a 10.0) psf bottom						
	(size) 2=0-3-8, 6=0 Max Horiz 2=155 (LC 14 Max Uplift 2=-56 (LC 14 Max Grav 2=1795 (LC 3	4) 4), 6=-56 (LC 15)	8)	* This truss h on the bottor 3-06-00 tall b	Id nonconcurrent as been designe n chord in all area y 2-00-00 wide w y other members	d for a liv as where vill fit betw	e load of 20. a rectangle reen the bott	0psf om					
FORCES	(lb) - Maximum Compre Tension		9)	One H2.5A S	impson Strong-T	ie connec	tors						
TOP CHORD	1-2=0/14, 2-4=-2970/13 6-7=0/14	30, 4-6=-2970/130,		UPLIFT at jt(s) 2 and 6. This of consider lateral	connectio							
BOT CHORD WEBS	2-10=-233/2559, 9-10=(4-10=-37/1189, 4-9=-37 5-9=-588/326	,		0) This truss is International	designed in acco Residential Code nd referenced sta	rdance wi	R502.11.1 a	and				TH CA	Route
NOTES			L	DAD CASE(S)							and and	R	in Init
, this desigr	ed roof live loads have be 1. 25 7-16: \/ult=130mpb (3-									4	i	P	And A

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-6-6 to 3-3-2, Interior (1) 3-3-2 to 15-2-8, Exterior(2R) 15-2-8 to 22-9-8, Interior (1) 22-9-8 to 34-8-14, Exterior(2E) 34-8-14 to 38-6-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SEAL

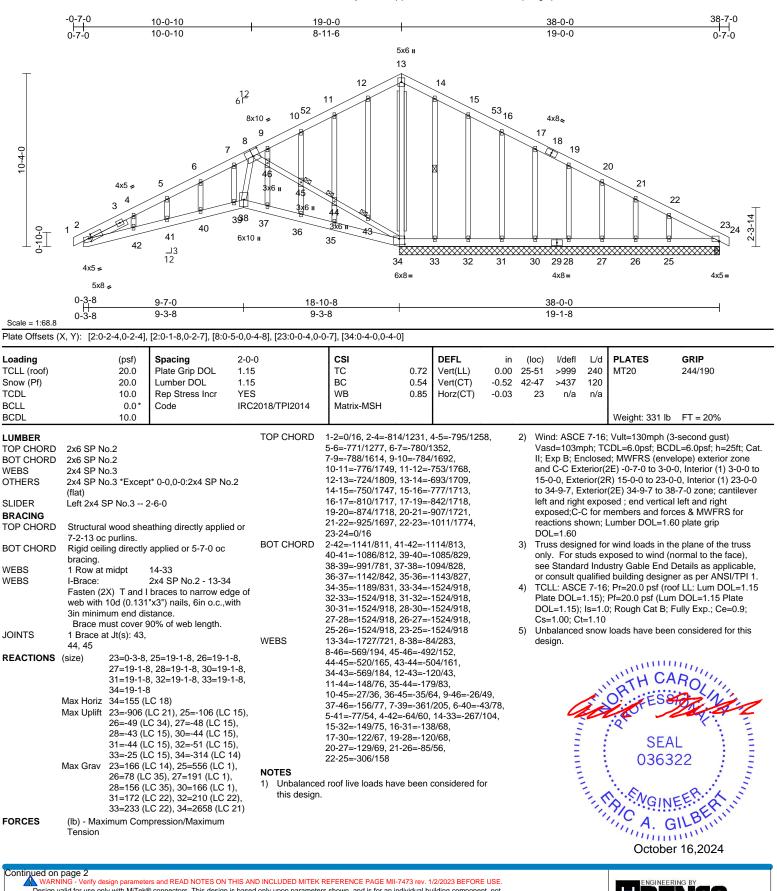

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	A04	Roof Special	8	1	Job Reference (optional)	168889559

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11 ID:t9aHzlw3YeNbnJ4R4VCJyUzwPki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4 13:06:11 Page: 1 J4zJC?f

818 Soundside Road

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof		
25070039	A05	Roof Special Structural Gable	1	1	Job Reference (optional)	168889560	

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:djFcPYmnieq_pou14PULBkzwPnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	A05	Roof Special Structural Gable	1	1	Job Reference (optional)	168889560

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 34, 25 lb uplift at joint 33, 51 lb uplift at joint 32, 44 lb uplift at joint 31, 44 lb uplift at joint 30, 43 lb uplift at joint 28, 48 lb uplift at joint 27, 49 lb uplift at joint 26, 106 lb uplift at joint 25 and 906 lb uplift at joint 23.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:djFcPYmnieq_pou14PULBkzwPnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

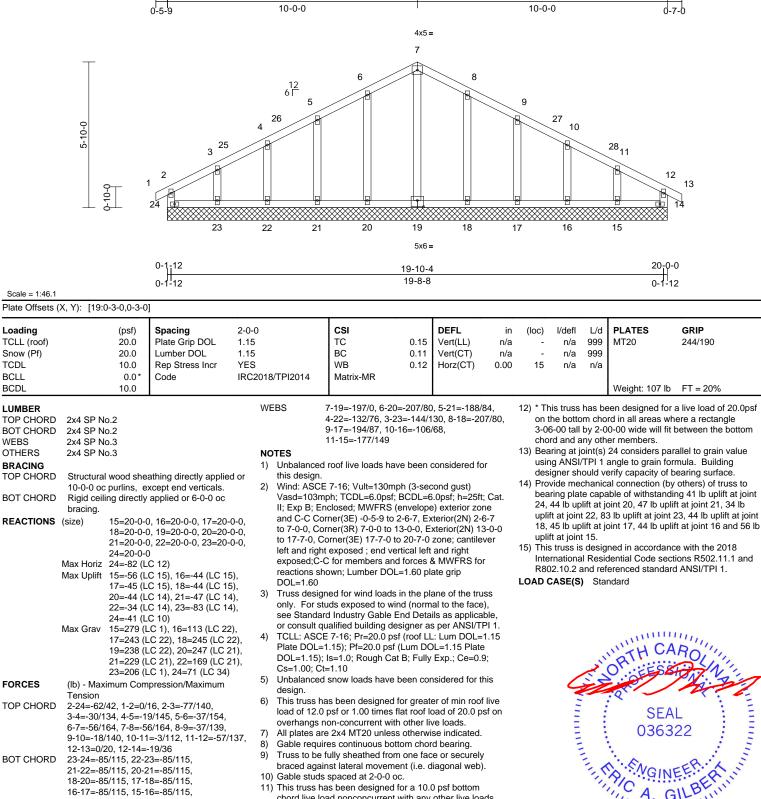
Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	B01	Common Supported Gable	1	1	Job Reference (optional)	168889561

10-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

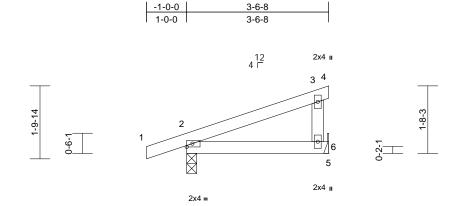

14-15=-85/115

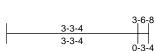
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:3svb5hhSXbq1LmTDC3xnuAzwPrT-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-0

Page: 1

20-7-0


chord live load nonconcurrent with any other live loads.


October 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	C01	Monopitch	7	1	Job Reference (optional)	168889562

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:m4jm85hMIZcJHoWkltroegzw9ei-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.7

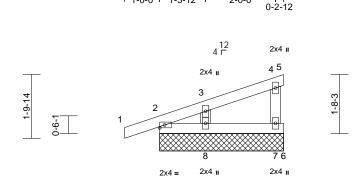
ocale = 1.20.7									
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.19 BC 0.18 WB 0.00 Matrix-MP	DEFLinVert(LL)0.02Vert(CT)0.02Horz(CT)0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
BOT CHORD 3-6-8 oc purlins, exe Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-0, (Max Horiz 2=59 (LC Max Uplift 2=-81 (LC Max Grav 2=276 (LC FORCES (lb) - Maximum Com Tension	applied or 10-0-0 oc 6= Mechanical 10) C 10), 6=-56 (LC 10) C 21), 6=193 (LC 21) ppression/Maximum 6, 3-4=-8/0, 3-6=-144/1 (3-second gust) CDL=6.0psf; h=25ft; Ca nvelope) exterior zone ilever left and right ed; porch left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this r greater of min roof live t roof load of 20.0 psf o other live loads. r a 10.0 psf bottom	on the bottor 3-06-00 tall t chord and ar 7) Refer to gird 8) Provide mec bearing plate 6. 9) One H2.5A S recommende UPLIFT at jt(does not cor 10) This truss is International R802.10.2 at LOAD CASE(S) at.	has been designed for a liv n chord in all areas where y 2-00-00 wide will fit betw ny other members. er(s) for truss to truss conn- hanical connection (by oth e capable of withstanding f Simpson Strong-Tie conne ed to connect truss to bear (s) 2. This connection is fo sider lateral forces. designed in accordance w Residential Code sections nd referenced standard AN Standard	a rectangle veen the bottom nections. ers) of truss to 56 lb uplift at joint ctors ing walls due to r uplift only and ith the 2018 \$ R502.11.1 and				SEA 0363	

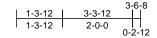
Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	C02	Monopitch Supported Gable	1	1	Job Reference (optional)	168889563

-1-0-0 1-3-12

1-0-0 1-3-12

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:U5QFVIeIxXRFdnTjJFF5o7zw9dU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-6-8

3-3-12

2-0-0

Page: 1

Scale = 1:32.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 ES RC2018/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-6-8 oc purlins. Rigid ceiling directly bracing. (size) 2=3-6-8, 5 8=3-6-8, 9 Max Horiz 2=60 (LC Max Uplift 2=-37 (LC 6=-54 (LC (LC 14), 9 Max Grav 2=172 (LC 6=-14 (LC	5=3-6-8, 6=3-6-8, 7=3-6 ∋=3-6-8 10), 9=60 (LC 10) 10), 5=-70 (LC 21), 7), 7=-28 (LC 10), 8=-3 =-37 (LC 10) 2 21), 5=22 (LC 10), 10), 7=236 (LC 21), 2 21), 9=172 (LC 21)	 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable requir This truss ha chord live los This truss la on the bottoo 3-06-00 tall l chord and at Provide mec bearing plattat 2, 54 lb uplif 	1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times on-concurrent wi es continuous bo spaced at 2-0-0 as been designed ad nonconcurrent mas been designed an chord in all are by 2-00-00 wide v ny other members hanical connection e capable of withs t at joint 6, 70 lb o	f (Lum DC at B; Fully been cor for great flat roof I tho other Ii tho other oc. I for a 10.1 t with any as where vill fit betw s. on (by oth standing 3 uplift at joi	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps ve loads. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 7 lb uplift at jc nt 5, 28 lb upl	; live f on ds. psf m opint					
Vasd=103 II; Exp B; and C-C C exposed ; and forces DOL=1.60 2) Truss des only. For see Stand	1-2=0/28, 2-3=-117/ 4-5=-28/22 2-8=-42/18, 7-8=0/0, 4-7=-175/180, 3-8=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en Corner(3E) zone; cantill end vertical left exposs s & MWFRS for reactio 0 plate grip DOL=1.60 0 plate grip DOL=1.60 igned for wind loads in studs exposed to wind lard Industry Gable End	6-7=0/0 148/160 (3-second gust) CDL=6.0psf; h=25ft; Cai velope) exterior zone ever left and right ed;C-C for members ns shown; Lumber the plane of the truss (normal to the face),	11) This truss is International R802.10.2 a LOAD CASE(S)	Residential Code nd referenced sta	ordance w	ith the 2018 R502.11.1 ar	nd		Contraction of the second seco		SEA 0363	• -

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm October 16,2024

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	CJ1	Jack-Open	1	1	Job Reference (optional)	168889564

-0-6-0

2

×

1-3-3

-5-5

1-4-9 1 - 4 - 9

12 6 Г

3

4

Carter Components (Sanford, NC), Sanford, NC - 27332,

1)

2)

3)

4)

5)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:8Ck3kIOp5tNJhToqV_tssPzw9cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

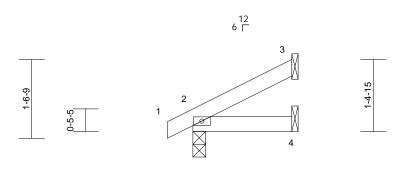
I-1-10

Page: 1

GRIP

244/190

FT = 20%


2x4 =1-4-9 Scale = 1:24.8 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) 0.00 7 >999 240 MT20 BC Snow (Pf) 20.0 1 15 Lumber DOL 0.02 Vert(CT) 0.00 4-7 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MP BCDL 10.0 Weight: 5 lb * This truss has been designed for a live load of 20.0psf LUMBER 6) on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING Bearings are assumed to be: , Joint 2 User Defined . 7) TOP CHORD Structural wood sheathing directly applied or Refer to girder(s) for truss to truss connections. 8) 1-4-9 oc purlins. Provide mechanical connection (by others) of truss to BOT CHORD 9) Rigid ceiling directly applied or 10-0-0 oc bearing plate capable of withstanding 11 lb uplift at joint bracing. 2 and 17 lb uplift at joint 3. **REACTIONS** (size) 2=0-3-0, 3= Mechanical, 4= 10) This truss is designed in accordance with the 2018 Mechanical International Residential Code sections R502.11.1 and Max Horiz 2=33 (LC 14) R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 2=-11 (LC 14), 3=-17 (LC 14) LOAD CASE(S) Standard 2=118 (LC 21), 3=43 (LC 21), 4=24 Max Grav (LC 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/18, 2-3=-20/15 BOT CHORD 2-4=-16/17 NOTES Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Vinnennen Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; SEAL Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 036322 design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. G (1111111) October 16,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	EJ2	Jack-Open	1	1	Job Reference (optional)	168889565

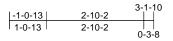
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:VR3NLqfcve8BKrT3ocH1l2zw9c9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

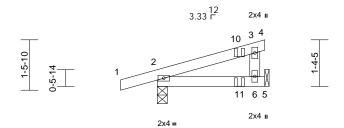
2x4 =

Scale - 1.22 6

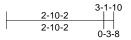
Scale = 1:22.6													
Loading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
ACCL ACCESSION ACCESSION	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 1-11-4 oc purlins. Rigid ceiling directly bracing. ize) 2=0-3-0, 5 Mechanic ax Horiz 2=43 (LC ax Uplift 2=-12 (LC ax Grav 2=149 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/19, 2-3=-31/2 2-4=-29/27 7-16; Vult=130mph oh; TCDL=6.0psf; Br closed; MWFRS (er errior(2E) zone; cant id vertical left and ri; d forces & MWFRS =1.60 plate grip DC 57-16; Pr=20.0 psf (1-5); Pf=20.0 psf (1-5); Rough Cat E	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 14) 2 14), 3=-25 (LC 14) C 21), 3=67 (LC 21), apression/Maximum 4 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown iL=1.60 roof LL: Lum DOL=' um DOL=1.15 Plate b; Fully Exp.; Ce=0.5	6) ed or 7) 8) 2 9) 10) 4=35 LOA Cat. ne ; 1.15	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mect 2 and 25 lb u This truss is International	as been designeer n chord in all area y 2-00-00 wide w y other members assumed to be: , er(s) for truss to t hanical connection capable of with plift at joint 3. designed in accor Residential Code nd referenced star	s where ill fit betw Joint 2 L russ con n (by oth canding 1 dance w sections	a rectangle veen the both Jser Defined nections. ers) of truss t 2 lb uplift at j ith the 2018 R502.11.1 a	om to joint				NUTH CA	
load of 12.0 overhangs no 5) This truss ha	as been designed for psf or 1.00 times fla on-concurrent with o as been designed for ad nonconcurrent wi	t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	sf on								A A A A A A A A A A A A A A A A A A A	SEA 0363	EEP. KININ



October 16,2024

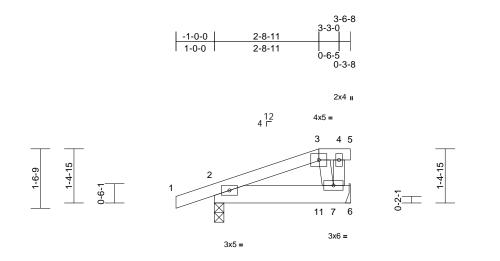

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

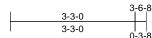
Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	HJ2	Jack-Closed Girder	1	1	Job Reference (optional)	168889566


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:k_h3xLOFn4igX43bJCL5Aizw9bD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.6

Scale = 1:33.6												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	,	russ has been desigr			in 0.00 -0.01 0.00 0psf	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	3-3-11 oc purlins. Rigid ceiling directly bracing.		3-06-0 chord a 7) Refer t d or 8) One H recom UPLIF does n	bottom chord in all ar 0 tall by 2-00-00 wide and any other membe o girder(s) for truss tr 2.5A Simpson Strong- nended to connect tr Γ at jt(s) 2. This conner ot consider lateral for ISA MiTek connector	e will fit betw ers. o truss con -Tie conne uss to bear ection is fo ces.	veen the bott nections. ctors ing walls due r uplift only a	e to nd					
	Max Horiz 2=46 (LC Max Uplift 2=-58 (LC Max Grav 2=255 (LC	C 8), 6=-23 (LC 12) C 19), 6=169 (LC 19)	truss to connec forces. 10) This tru	bearing walls due to tion is for uplift only a uss is designed in acc	OUPLIFT a and does n cordance w	t jt(s) 6. This ot consider la ith the 2018	ateral					
BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/24, 2-3=-49/6 2-6=-33/4, 5-6=0/0 3-6=-122/36		R802. ² 11) "NAILE (0.148 12) In the	tional Residential Coo 0.2 and referenced s D" indicates 3-10d (0 x3.25") toe-nails per .OAD CASE(S) section russ are noted as from	tandard AN 0.148"x3") (NDS guidli on, loads a	NSI/TPI 1. or 2-12d nes. pplied to the						
 Vasd=103n II; Exp B; E cantilever lu right expos 2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 3) Unbalanced design. 4) This truss h load of 12.0 overhangs 	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 E 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L ; Is=1.0; Rough Cat E t=1.10 d snow loads have be nas been designed foi 0 psf or 1.00 times fla non-concurrent with of nas been designed foi	CDL=6.0psf; h=25ft; ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9 een considered for th r greater of min roof I t roof load of 20.0 ps bther live loads.	LOAD CA: Cat. 1) Dead e; Incre: d Unifo 50 Ve Conc .15 Ve ; is	SE(S) Standard + Snow (balanced): L Ise=1.15 m Loads (lb/ft) t: 1-4=-60, 5-7=-20 entrated Loads (lb) t: 11=-6 (B)	.,		Plate		(W. CLITTING		SEA 0363	• –
	oad nonconcurrent wi		ds.							11		ALBERTIN'




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	28 Mason Ridge - Wilmington C - Roof	
25070039	MH1	Half Hip Girder	1	1	Job Reference (optional)	168889567

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:aUhT1SUKM1Amx3W48pURMuzw9Zo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale - 1.30

Scale = 1:30														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.09 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; B cantilever right expos 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (4) Unbalance design. 5) This truss load of 12. overhangs	3-6-8 oc purlins, exc 2-0-0 oc purlins: 3-5 Rigid ceiling directly bracing. (size) 2=0-3-0,7 Max Horiz 2=50 (LC Max Uplift 2=-62 (LC Max Grav 2=274 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-52/11 2-7=-19/30, 6-7=0/0 4-7=-53/14, 3-7=-94, ed roof live loads have her cold live loads have her co	applied or 10-0-0 oc 7= Mechanical 8) 2 8), 7=-57 (LC 8) 2 34), 7=299 (LC 34) pression/Maximum 6, 3-4=-2/7, 4-5=0/0 /34 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1.15 Plate 8; Fully Exp.; Ce=0.9; ten considered for thi r greater of min roof I t roof load of 20.0 pst other live loads.	8) d or 9) 10) 11) 12) 13) 13) 14) Cat. LO 2; 1) 0 .15 s ive	chord live loa * This truss h on the bottor chord and ar Refer to gird Provide mect 2 and 57 lb u) This truss is International R802.10.2 ar 0 Graphical pu or the orients bottom chord Hanger(s) or provided suff down and 32 down and 32	other connection icient to support of Ib up at 2-8-11 o Ib up at 2-8-11 o tion of such conne of others. CASE(S) section, re noted as front of Standard wy (balanced): Lur 15	with any d for a live s where ill fit betw- uss conin in (by oth anding 6 dance w sections ndard AN does n along the device(s concentra n top ch n botton ection de loads a (F) or ba	other live loa e load of 20.0 a rectangle ween the botto nections. ers) of truss t 52 lb uplift at j ith the 2018 s R502.11.1 a VSI/TPI 1. ot depict the se to to and/or b) shall be ated load(s) 3 ord, and 153 in chord. The vice(s) is the pplied to the f ck (B).	Opsf om to joint and size B2 lb lb				SEA 0363	EER.	Mamming.
												Octobe	r 16,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

