RE: Stonehaven Rev 2 Site Information: Project Customer: DRB Raleigh Project Name: DR Lot/Block: 00.0076 Subdivisi Model: Stonehaven Rev 2 Address: 160 Bronze Leeaf Drive LILLINGTON, NC 2 City: State: NC General Truss Engineering Criteria & Design Load Drawings Show Special Loading Conditions): Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 120 mph Roof Load: 40.0 psf Mean Roof Height (feet): 25	Trenco 818 Soundside Rd B Raleigh Model Track Edenton, NC 27932 7546 5 s (Individual Truss Design Design Program: MiTek 20/20 25.2 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf Exposure Category: B
No.Seal#Truss NameDateNo.Seal#1174582805M1GE $7/2/25$ 3517458282174582806M1 $7/2/25$ 3617458283174582807M1A $7/2/25$ 3717458284174582808G1GE $7/2/25$ 3817458285174582809P1A $7/2/25$ 3917458286174582810P1AGE $7/2/25$ 4017458287174582811E1GE $7/2/25$ 4117458288174582813P1GE $7/2/25$ 1717458289174582815J1GE $7/2/25$ 17174582810174582816J1 $7/2/25$ 1317458281711174582817J1A $7/2/25$ 1417458281811174582819H1GE $7/2/25$ 1417458281911174582820F1GE $7/2/25$ 1417458282114174582821F1 $7/2/25$ 171745828221516174582822F1A $7/2/25$ 17174582822F1A $7/2/25$ 17174582832H1A174582823H1A $7/2/25$ 17174582832H1A174582824H1AGE $7/2/25$ 174582832H1GE $7/2/25$ 20174582832A1A $7/2/25$ 174582833A1174582833A1B $7/2/25$ 174582833A1174582833A1B $7/2/25$	Truss Name Date 339 B1B 7/2/25 340 V5 7/2/25 341 V4 7/2/25 342 V3 7/2/25 343 V2 7/2/25 344 V1 7/2/25 345 PB1GE 7/2/25 346 A1C 7/2/25 347 A1CSGE 7/2/25
The truss drawing(s) referenced above have been prepared Truss Engineering Co. under my direct supervision based of provided by Structural, LLC. Truss Design Engineer's Name: Galinski, John My license renewal date for the state of North Carolina is I IMPORTANT NOTE: The seal on these truss component designs that the engineer named is licensed in the jurisdiction(s) identified and t designs comply with ANSI/TPI 1. These designs are based upon paran shown (e.g., loads, supports, dimensions, shapes and design codes), w given to MiTek or TRENCO. Any project specific information included i TRENCO's customers file reference purpose only, and was not taken in preparation of these designs. MiTek or TRENCO has not independently applicability of the design parameters or the designs for any particular b the building designer should verify applicability of design parameters an incorporate these designs into the overall building design per ANSI/TPI	by on the parameters December 31, 2025 is a certification hat the neters hich were s for MiTek's or to account in the y verified the uilding. Before use, d properly 1, Chapter 2.

Galinski, John

July 2,2025

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	M1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	174582805

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:oFpIoE2LHJjkNjy4f2VEZuzvac5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.24 0.18 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=8-11-8, 8=8-11-8 Max Horiz 2=104 (LC Max Grav 2=230 (LC (LC 23), 8	athing directly applied, applied. 6=8-11-8, 7=8-11-8, C 16) 16), 8=-23 (LC 16) C 2), 6=90 (LC 23), 7=- 3=401 (LC 23)	4) 5) 6) 7) 8) 9) 117 117	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen Gable requir Gable studs) This truss ha chord live loa	7-16; Pr=20.0 ps .15); Pg=20.0 ps DL = 1.15); Is=1.0; CS=1.00; Ct=1. snow loads have s been designed bosf or 2.00 times on-concurrent wite ed for a plus or m ter. es continuous boi spaced at 2-0-0 c s been designed dd nonconcurrent	sf (roof LL f; Pf=15.4 0; Rough 10 been cor for great flat roof lc h other livi ninus 5 de ttom chor oc. for a 10.0 with any d for a liv d for a livi	:: Lum DOL=1 I psf (Lum DC Cat B; Partial asidered for th er of min roof pad of 15.4 ps ve loads. agree rotation d bearing. D psf bottom other live loag	.15 JL = Iy is live f on ds.					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(b) - Maximum Com Tension 1-2=0/36, 2-3=-219/ 4-5=-36/24, 5-6=-68 2-8=-172/71, 7-8=0/ 4-7=-113/76, 3-8=-2 ed roof live loads have n. CE 7-16: Vult=120mph	pression/Maximum 91, 3-4=-80/18, /57 0, 6-7=0/0 83/253 been considered for (3-second gust)	11 12 13	 I his truss f on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate and 23 lb upl This truss de structural wo chord and 1// the bottom cl 	las been designe n chord in all area y 2-00-00 wide w y other members- hanical connection capable of withs if at joint 8. sign requires that od sheathing be a " gypsum sheeting ord.	d for a liv as where vill fit betw s. on (by oth tanding 4 t a minim applied di rock be a	e load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi um of 7/16" irrectly to the to oplied directly	ipst om ont 6 op to				WITH CA	ROUT

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner

(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 8-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

3)

July 2,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	M1	Monopitch	5	1	Job Reference (optional)	174582806

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 ID:gfQhoX3XMRWD9GGWQXYEmpzvadM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) \$ 20.0 F 15.4/20.0 I 10.0 F 0.0* (10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.98 0.61 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.23 0.01 0.09	(loc) 4-7 4-7 2 4-7	l/defl >989 >462 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood sheatt Rigid ceiling directly ap (size) 2=0-5-8, 4= Max Horiz 2=104 (LC 1 Max Gray 2=416 (LC 2	hing directly applied pplied. Mechanical 16) 6) 2). 4=408 (LC 23)	 7) * This truss on the botto 3-06-00 tall chord and a 8) Refer to gird 9) Provide met bearing plate 4. 10) This truss de structural we chord and 1. 	has been designe m chord in all area by 2-00-00 wide v ny other members er(s) for truss to t chanical connection e capable of withs esign requires that bod sheathing be 2" gypsum sheet bod	ed for a liv as where will fit betw s. truss conr on (by oth- standing 1 at a minim applied di rock be a	e load of 20. a rectangle veen the bott ections. ers) of truss 5 lb uplift at um of 7/16" rectly to the oplied directl	Opsf om to joint top y to					
FORCES	(lb) - Maximum Compr Tension	ression/Maximum	LOAD CASE(S)	Standard								
TOP CHORD BOT CHORD WEBS	1-2=0/36, 2-3=-268/21 2-4=-34/55 3-4=-267/145	0										
NOTES												
 Wind: AS(Vasd=95n II; Exp B; Exterior(2 zone; can exposed;(reactions DOL=1.6(TCLL: AS Plate DOL 1.15 Plate Exp;; Ce= Unbalance 	CE 7-16; Vult=120mph (3 nph; TCDL=6.0psf; BCDL Enclosed; MWFRS (enve E) -1-0-0 to 2-0-0, Interio tilever left and right expo: C-C for members and ford shown; Lumber DOL=1.6 CE 7-16; Pr=20.0 psf (ror c=1.15); Pg=20.0 psf; Pf= DOL = 1.15); Is=1.0; Ro :1.0; Cs=1.00; Ct=1.10 ed snow loads have been	3-second gust) L=6.0psf; h=25ft; C slope) and C-C or (1) 2-0-0 to 8-9-1 sed ; end vertical lk ces & MWFRS for S0 plate grip of LL: Lum DOL=1 =15.4 psf (Lum DOI bugh Cat B; Partiall	at. 2 eft 15 L = y							No.	OR HESS	

- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCEI Building Comparent Scietur Information** contraction and the form the Struster and **Building Comparent** here the trust and **Building Comparent** to prevent collapse to the trust and **BUILS** and **BUSE**.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

e (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	M1A	Monopitch	5	1	Job Reference (optional)	174582807

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:oRE05oQLHflzltZHAq4H_8zvacu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

S

Scale = 1:32.1			•										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	-0.10	4-7	>849	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.21	4-7	>383	240			
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.02	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.08	4-7	>999	240			
BCDL	10.0										Weight: 29 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2		7) * This truss on the botte	has been desigr om chord in all ar	ned for a liv reas where	e load of 20. a rectangle	0psf						

6-11-8

BOT CHORD 2x4 SP No 2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-5-8, 4= Mechanical Max Horiz 2=83 (LC 16)

Max Uplift 4=-12 (LC 16) Max Grav 2=341 (LC 23), 4=326 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/36, 2-3=-231/121 BOT CHORD 2-4=-198/118 WEBS 3-4=-239/139

NOTES

Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this desian.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Plates checked for a plus or minus 5 degree rotation 5) about its center.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 12 lb uplift at joint
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	P1A	Monopitch	8	1	Job Reference (optional)	174582809

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:NIBDA6gCv6tty_ucXHEuKazqQdm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1.51.7													
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
FCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.07	4-7	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.13	4-7	>534	240			
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.09	4-7	>816	240			
BCDL	10.0										Weight: 23 lb	FT = 20%	
			7) * This truss	has been design	ned for a liv	e load of 20.	0psf					·	

6-0-0

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-3-0, 4= Mechanical Max Horiz 2=53 (LC 12) Max Uplift 2=-52 (LC 12), 4=-42 (LC 12) Max Grav 2=331 (LC 23), 4=272 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/26, 2-3=-140/49
- BOT CHORD 2-4=-88/123 3-4=-191/124
- WEBS

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-10-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 5) about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 42 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

July 2,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is the permanent bracing of trusses and truss systems are additional temporary and permanent bracing temporary and permanent bracing of trusses are addited at the permanent bracing temporary and p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	Stonehaven Rev 2	
	P1AGE	Monopitch Structural Gable	1	1	Job Reference (optional)	174582810

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:80j5_TAY009w_R6h_6_k0QzqQd6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.48 0.52 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.16 0.00 0.10	(loc) 6-9 6-9 2 6-9	l/defl >794 >453 n/a >715	L/d 360 240 n/a 240	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 2=0-3-0, 5 Max Horiz 2=53 (LC Max Uplift 2=-52 (LC Max Grav 2=331 (LC	athing directly applie applied. 5=0-11-8 12) 12), 5=-42 (LC 12) 2 23), 5=272 (LC 23)	5) 6) 7) d. 8) 9) 10)	Unbalanced design. This truss ha load of 12.0 µ overhangs nu Plates check about its cen Gable studs 3 This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	snow loads have s been designed osf or 2.00 times on-concurrent wit ed for a plus or m ter. spaced at 2-0-0 o s been designed id nonconcurrent has been designed n chord in all area y 2-00-00 wide worther members	been cor for greate flat roof lo h other liv hinus 5 de oc. for a 10.0 with any d for a liv as where vill fit betw	sidered for t er of min root ad of 15.4 p re loads. egree rotation opsf bottom other live loa e load of 20.1 a rectangle reen the bott	his f live sf on n ads. Opsf om						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-148/4 4-5=-152/99 2-6=-87/122, 5-6=0/0 3-6=-77/51	pression/Maximum 46, 3-4=-38/44, 0	11) 12)	 Provide mecl bearing plate 5 and 52 lb u This truss de structural wo chord and 1/2 the bottom cl 	hanical connection capable of withs plift at joint 2. sign requires that od sheathing be a 2" gypsum sheetin ord.	s. on (by othe standing 4 t a minime applied di rock be ap	ers) of truss 2 lb uplift at j um of 7/16" rectly to the oplied directly	to joint top y to						

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-10-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	E1GE	Common Supported Gable	1	1	Job Reference (optional)	174582811

Structural LLC Thurmont MD - 21788

-1-0-0

Run: 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Tue Jul 01 16:44:09 Page: 1 ID:kCdqowB7bwQm?nfATzYKSIzqDS?-QcX9E7_fHtXF3f7cOmVUW0RK8p67J?KIc?oYvIz0NRL 22-11-0 21-11-0 10-11-8 10-11-8 10-11-8

3x4=

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.01	12-25	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	19-22	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.01	19-22	>999	240		
BCDL	10.0										Weight: 111 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING Structural wood sheathing directly applied. TOP CHORD BOT CHORD Rigid ceiling directly applied. REACTIONS (lb/size) 2=248/21-11-0, 10=248/21-11-0, 12=345/21-11-0, 13=46/21-11-0, 14=166/21-11-0, 16=44/21-11-0, 17=166/21-11-0, 18=46/21-11-0, 19=345/21-11-0 Max Horiz 2=52 (LC 15) Max Uplift 12=-18 (LC 17), 13=-2 (LC 17), 14=-6 (LC 17), 17=-6 (LC 16), 18=-1 (LC 16), 19=-20 (LC 16) Max Grav 2=283 (LC 2), 10=283 (LC 2), 12=391 (LC 37), 13=90 (LC 24), 14=232 (LC 24), 16=74 (LC 17), 17=232 (LC 23), 18=90 (LC 23), 19=391 (LC 36) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/36, 2-26=-166/48, 3-26=-117/33, TOP CHORD 3-27=-160/56, 4-27=-123/66, 4-5=-125/87 5-6=-137/114. 6-7=-137/117. 7-8=-125/90. 8-28=-123/69, 9-28=-160/60, 9-29=-109/24, 10-29=-166/9, 10-11=0/36 BOT CHORD 2-19=-37/103, 18-19=0/103, 17-18=0/103, 16-17=0/103, 15-16=0/103, 14-15=0/103, 13-14=0/103, 12-13=0/103, 10-12=0/103 WEBS 6-16=-65/56, 5-17=-181/57, 4-18=-89/31, 3-19=-270/76, 7-14=-181/57, 8-13=-89/31, 9-12=-270/76 NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 10-11-8, Exterior(2R) 10-11-8 to 14-11-8, Interior (1) 14-11-8 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 7) about its center.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 17, 1 lb uplift at joint 18, 20 lb uplift at joint 19, 6 lb uplift at joint 14, 2 lb uplift at joint 13 and 18 lb uplift at joint 12

13) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	E1	Common	6	1	Job Reference (optional)	174582812

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:40 ID:SglS1zjkERzWHX0d2CLeEZzqDRJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.11	8-10	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.19	8-10	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.04	6	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.03	8-10	>999	240		
BCDL	10.0										Weight: 102 lb	FT = 20%
		•	6) Platas chos	kod for a plue or	minue 5 de	aroo rotation	<u> </u>					

LUWBER		
TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
WEBS	2x4 SP No	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=-52 (LC 14)
	Max Grav	2=997 (LC 3), 6=997 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/36,	2-3=-1574/138, 3-4=-1431/155,
	4-5=-1431	1/156, 5-6=-1574/138, 6-7=0/36
BOT CHORD	2-10=-51/	1379, 8-10=0/930, 6-8=-58/1357
WEBS	4-8=-20/5	81, 5-8=-315/123, 4-10=-20/582,
	3-10=-315	5/123

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 10-11-8, Exterior(2R) 10-11-8 to 13-11-8, Interior (1) 13-11-8 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Plates checked for a plus or minus 5 degree rotation about its center.

- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.
9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

July 2,2025

Page: 1

A MiTek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	P1GE	Monopitch Structural Gable	1	1	Job Reference (optional)	174582813

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:67yhlloCQk1Ol2t?8VmFiazeRG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.22	8	>433	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.39	8	>241	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.25	8	>376	240		
BCDL	10.0										Weight: 34 lb	FT = 20%
LUMBER			5) Unbalance	d snow loads hav	e been cor	nsidered for t	his					

TOP CHORD	2x4 SP S	S
BOT CHORD	2x4 SP S	S
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied, ad verticals
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	2=0-3-0, 6= Mechanical
	Max Horiz	2=68 (LC 12)
	Max Uplift	2=-62 (LC 12), 6=-58 (LC 12)
	Max Grav	2=381 (LC 23), 6=360 (LC 23)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/26,	2-3=-201/73, 3-4=-65/33,
	4-5=-47/5	8, 5-6=-198/126
BOT CHORD	2-8=-135/	/170, 7-8=0/0, 6-7=0/0
WEBS	4-7=-59/3	37, 3-8=-68/46

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 7-10-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

July 2,2025

building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	P1	Monopitch	5	1	Job Reference (optional)	174582814

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 ID:D4Blu6Y1NHNMHpmzQbuKL9zeRGM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.6

Plate Offsets (X, Y): [2:0-0-10,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.51 0.67 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.35 0.00	(loc) 4-7 4-7 2	l/defl >578 >271 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.24	4-7	>401	240	Weight: 30 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E zone; canti exposed; p and forces DOL=1.60 2) TCLL: ASC Plate DOL= 1.15 Plate Exp.; Ce=1 3) Unbalance design. 4) This truss I load of 12. overhangs 5) Plates cher about its ca	2x4 SP SS 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=0-3-0,4 Max Horiz 2=68 (LC Max Uplift 2=-62 (LC Max Grav 2=381 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-198// 2-4=-124/159 3-4=-264/169 E 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en c) -1-0-0 to 2-0-0, Inter ilever left and right exp & MWFRS for reactio plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Gs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with c cked for a plus or minu- enter.	athing directly applie applied. 4= Mechanical 12) 12), 4=-58 (LC 12) 23), 4=360 (LC 23) pression/Maximum 71 (3-second gust) DL=6.0psf; h=25ft; C welope) and C-C rior (1) 2-0-0 to 7-10- bosed; end vertical k welope) and C-C rior (1) 2-0-0 to 7-10- statistical k and the fill to 7-10- to	 6) This truss ha chord live lo 7) * This truss I on the botton 3-06-00 tall 1 chord and at 8) Refer to gird 9) Provide mechanism of the bearing plate 4. 10) One H2.5A 3 recommended UPLIFT at jt does not cor 11) This truss de structural we chord and 1/2 the bottom of LOAD CASE(S) cat. 4 eft ers .15 L = y is ive f on 	as been designed ad nonconcurren has been designe n chord in all are by 2-00-00 wide y other member er(s) for truss to hanical connecti e capable of with Simpson Strong- ed to connect tru (s) 2. This conne usider lateral forc sign requires that ood sheathing be 2" gypsum shee hord. Standard	d for a 10.0 t with any ed for a liv- as where will fit betw 's. truss conno on (by othe standing 5 Tie connec ss to beari cition is for ise. at a minimu applied di trock be ap	b) psf bottom other live load e load of 20.1 a rectangle veen the bottu- nections. ers) of truss is 8 lb uplift at j ctors ng walls due uplift only an um of 7/16" rectly to the to opplied directly	ads. Opsf om to joint to nd top y to				SEA 2867	EER. SK	

- overhangs non-concurrent with other live loads. 5) Plates checked for a plus or minus 5 degree rotation
- about its center.

July 2,2025

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	J1GE	Monopitch Structural Gable	1	1	Job Reference (optional)	174582815

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 Page: 1 ID:3Erhr_uzDfd5q6BNuEZcL5zeJyX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f File Fi

Scale = 1:43.4

Plate Offsets (X, Y): [2:0-4-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCCL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.54 0.64 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.22 0.00 0.16	(loc) 8-10 8-10 7 8-10	l/defl >999 >558 n/a >765	L/d 360 240 n/a 240	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly ((size) 2=0-4.8, 6 Max Uplit 2=-56 (LC 7=-169 (LC Max Grav 2=376 (LC 7=1076 (L (b) - Maximum Comp Tension 1-2=0/23, 2-3=-217/8 4-5=-28/9, 5-6=-23/5 2-8=-31/22, 7-8=-19/ 4-7=-266/171, 3-8=-2	athing directly applied applied. =1-11-8, 7=0-3-8 12) 12), 6=-397 (LC 2), C 12) c 2), 6=-83 (LC 12), C 23) pression/Maximum 80, 3-4=-67/46, 7 13, 6-7=-19/13 266/203	 4) TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 5) Unbalanced design. 6) This truss he load of 12.0 overhangs n 7) Plates check about its cer 8) Gable studs 9) This truss ha chord live lo 10) * This truss I on the botton 3-06-00 tall I chord and an 11) N/A 	7-16; Pr=20.0 psf 1.15); Pg=20.0 psf; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have b as been designed f psf or 2.00 times fl on-concurrent with ted for a plus or mi ter. spaced at 2-0-0 or s been designed f ad nonconcurrent has been designed n chord in all area: by 2-00-00 wide wi by other members.	(roof LL Pf=15.4 ; Rough O been cor or great at roof lo other lin other lin other lin other lin s where Il fit betv	:: Lum DOL= b psf (Lum DC Cat B; Partia asidered for the er of min roof pad of 15.4 p ve loads. agree rotation other live load e load of 20.1 a rectangle veen the bott	1.15 DL = ally his f live sf on n ads. 0psf om					
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner 			12) This truss de structural wo chord and 1/ the bottom c at. LOAD CASE(S) her	 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 							ROM NATION	

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 11-10-4 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	J1	Monopitch	6	1	Job Reference (optional)	174582816

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:41 ID:5KPyFiD4eGkHsw_ojFzyLezeQIC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42

Plate Offsets (X, Y): [2:0-5-2,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.93 0.63 0.16	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.20 0.00 0.11	(loc) 6-8 6-8 5 6-8	l/defl >999 >602 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp 8; E E Exterior(2E zone; cantil exposed; p forces & MI DOL=1.60 2) TCLL: ASC Plate DOL= 1.15 Plate L.15 Pla	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=0-4-8, 5 Max Horiz 2=85 (LC Max Uplift 2=-58 (LC 6=-178 (LU (lb) - Maximum Com Tension 1-2=0/23, 2-3=-142/S 2-6=-16/7, 5-6=0/0 3-6=-651/273, 4-5=-5 E 7-16; Vult=120mph ph; TCDL=6.0psf; BCI inclosed; MWFRS (en inclosed; MWFRS (en phate grip DOL=1.60) SF 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P DOL = 1.15); Is=1.0; F .0; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flat	athing directly applie applied. i= Mechanical, 6=0-3 12) 12), 5=-446 (LC 2), C 12) C 23) pression/Maximum 92, 3-4=-91/23 85/202 (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-0-0 to 11-11 cosed ; end vertical lit for members and hown; Lumber roof LL: Lum DOL=1 2f=15.4 psf (Lum DO Rough Cat B; Partiall en considered for thi : greater of min roof I : roof load of 15.4 psi ther live load	5) 6) 7) d. 3-8 8) 9) 10) 11) 11) 11) 11) 11) 11) 11) 11) 11	Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to girdd Provide mec bearing plate 5.) One H2.5A S recommende UPLIFT at jt(and does not) This truss de structural wo chord and 1// the bottom cl	ed for a plus or r ter. s been designed ad nonconcurren nas been designed n chord in all are by 2-00-00 wide v yo ther member er(s) for truss to hanical connectition capable of withs Simpson Strong- id to connect trus s) 2 and 6. This t consider lateral sign requires tha od sheathing be 2" gypsum sheet hord. Standard	ninus 5 de d for a 10.0 t d for a 10.0 ed for a live as where a will fit betw s. truss conn on (by othe standing 4 Tie connector forces. at a minimu applied di trock be ap	gree rotation psf bottom other live load a load of 20.0 a rectangle een the botto ections. ers) of truss t 46 lb uplift at tors ng walls due is for uplift of um of 7/16" rectly to the t pplied directly	ds. Dpsf om ∵joint to only rop / to			A State Stat	SEA 2867	ROJUL TT ALINST	

- Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL= 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on 4) overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 2,2025

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	J1A	Monopitch	1	1	Job Reference (optional)	174582817

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:42 ID:5KPyFiD4eGkHsw_ojFzyLezeQlC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.5

Plate Offsets (X, Y): [1:0-4-10,0-1-8]

Loading TCLL (roof)	(ps 20.	f) S I	pacing late Grip DOL	2-0-0 1.15		CSI TC	0.93	DEFL Vert(LL)	in -0.09	(loc) 5-7	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20	.0 Li	umber DOL	1.15		BC	0.64	Vert(CT)	-0.20	5-7	>595	240		
TCDL	10.	.0 Re	ep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.	.0* Co	ode	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.12	5-7	>999	240		
BCDL	10	.0											Weight: 55 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood Rigid ceiling dir (size) 1=0-4 Max Horiz 1=76 Max Horiz 1=76 Max Uplift 1=-36 5=-18 Max Grav 1=32 5=11	sheathii ectly app I-8, 4= M (LC 12) 3 (LC 12) 31 (LC 2) 1 (LC 2) 2 (LC 2)	ing directly applied blied. Mechanical, 5=0-3-), 4=-449 (LC 2), 2) , 4=93 (LC 12), 22)	6) 7) 8) 8 9) 10	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 4. One H2.5A S recommende UPLIFT at jt(and does not) This truss de	as been designed a chord in all areas y 2-00-00 wide wily y other members. er(s) for truss to tru- nanical connection capable of withsta- timpson Strong-Tie d to connect truss s) 1 and 5. This co- consider lateral for sign requires that a	I for a liv s where II fit betw uss conr h (by oth anding 4 e connec to beari ponection prces. a minim	e load of 20.0 a rectangle veen the botte ections. ers) of truss t 49 lb uplift at ctors ng walls due n is for uplift um of 7/16"	Dpsf om joint to only					
FORCES TOP CHORD BOT CHORD	Max Grav 1=321 (LC 2), 4=93 (LC 12), 5=1121 (LC 22) ORCES (lb) - Maximum Compression/Maximum Tension OP CHORD 1-2=-143/92, 2-3=-91/24 OT CHORD 1-5=-13/6, 4-5=0/0 Max Grav 1=321 (LC 2), 4=93 (LC 12), 5=1121 (LC 22) 10) This truss design requires that a m structural wood sheathing be applied chord and 1/2" gypsum sheetrock I the bottom chord. LOAD CASE(S) Standard								top / to					
WEBS	2-5=-652/274, 3	-4=-88/2	202											
NOTES														
 Wind: ASC Vasd=95m II; Exp B; I Exterior(2I zone; cant exposed;C reactions s DOL=1.60 	CE 7-16; Vult=120 nph; TCDL=6.0psf Enclosed; MWFR; E) 0-0-0 to 3-0-0, I tilever left and righ C-C for members a shown; Lumber D(mph (3-s ; BCDL= S (envelo Interior (and force DL=1.60	second gust) =6.0psf; h=25ft; Ca ope) and C-C (1) 3-0-0 to 11-9-12 ed ; porch left es & MWFRS for) plate grip	at. 2								A. A.	OR CA	ROJULI
 TCLL: AS(Plate DOL 1.15 Plate Exp.; Ce= 	CE 7-16; Pr=20.0 =1.15); Pg=20.0 p DOL = 1.15); Is= 1.0; Cs=1.00; Ct=	psf (roof osf; Pf=1 1.0; Rou 1.10	f LL: Lum DOL=1.1 15.4 psf (Lum DOL 1gh Cat B; Partially	15							THUN THUN		2867	
 Unbalance design. 	ed snow loads hav	e been o	considered for this	;								1.4	NGINE	EERICE
 Plates che about its c 	ecked for a plus or enter.	minus 5	5 degree rotation									11	MN L G	ALINS
5) This truss chord live	has been designe load nonconcurre	ed for a 1 nt with a	10.0 psf bottom any other live loads	5.									Ju	lv 2.2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	H1	Monopitch	6	1	Job Reference (optional)	174582818

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:41 ID:JnN?tmwmuZqv1ZnsKynd7mzqDbN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x6 SP No.2 Structural wood she 1-11-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=34 (LC Max Uplift 4=-13 (LC Max Grav 2=186 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-3=-192/	Athing directly applie applied or 10-0-0 or 4= Mechanical 13) 2 13) 2 23), 4=77 (LC 22) apression/Maximum 185	7) ed or 8) 9) c LO	* This truss on the botto 3-06-00 tall chord and a Refer to girc One H2.5A recommend UPLIFT at jt does not cor AD CASE(S)	has been designe m chord in all area by 2-00-00 wide w ny other members er(s) for truss to Simpson Strong-T ed to connect trus (s) 4. This connec sider lateral force Standard	d for a liv as where vill fit betw 3. truss conne is to beari tion is for is.	e load of 20. a rectangle een the bott nections. tors ng walls due uplift only a	Opsf om to nd				vvegnt. To ib	FT = 20%
BOT CHORD	2-4=-61/27												
NOTES 1) Wind: ASC Vasd=95m II; Exp B; I Exterior(2E for member Lumber DC 2) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs 5) Plates che about its c 6) This truss chord live	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left ers and forces & MWFI OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf; (.=1.15); Pg=20.0 psf; P DOL = 1.15); Is=1.0; f DOL = 1.15); Is=1.0; f 1.0; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with c exceed for a plus or mini- center. has been designed for load nonconcurrent with	(3-second gust) DL=6.0psf; h=25f; (ivelope) and C-C and right exposed; RS for reactions sho DL=1.60 roof LL: Lum DOL=/ Pf=15.4 psf (Lum DO Rough Cat B; Partia een considered for th r greater of min roof t roof load of 15.4 ps other live loads. us 5 degree rotation r a 10.0 psf bottom th any other live loa	Cat. C-C own; 1.15 DL = Ily his live sf on h ds.							. antitutes .	and an annumber of the second se	SEA 286	EER Stuin

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA 1111

July 2,2025

111

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	H1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	174582819

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:41 ID:YEuzB1qIn6q13LAKsGelo4zqDbV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

VERTICAL SUPPORT OF FREE END OF TC IS REQUIRED

Page: 1

Sca

Scale = 1:23.3												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%
	2x4 SP No 2		6) Plates cheo about its ce	ked for a plus or	minus 5 de	egree rotation	n					

1-11-8

BOT CHORD	2x6 SP N	0.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	1-11-8 oc	purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=1-11-8, 3=1-11-8, 4=1-11-8
	Max Horiz	2=35 (LC 16)
	Max Uplift	3=-12 (LC 16)
	Max Grav	2=187 (LC 23), 3=50 (LC 23), 4=38
		(LC 7)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/41,	2-3=-105/62
BOT CHORD	2-4=-43/3	4

NOTES

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 12 lb uplift at joint 3.

LOAD CASE(S) Standard

July 2,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	F1GE	Scissor Supported Gable	1	1	Job Reference (optional)	174582820

Run: 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Tue Jul 01 16:46:14 ID:_x5b?raJc7nutuhLfcKbDuzEM2?-kr8nhDWhcbPNB0mpnEm1dbfj8c?0ryQrabJDK?z0NPN

Scale = 1:52

Plate Offsets (X, Y): [1:0-3-1,0-1-0], [5:0-3-1,0-1-0]

DOL=1.60 plate grip DOL=1.60

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.10	11-14	>975	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.23	11-14	>438	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.01	1	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.08	11-14	>999	240		
BCDL	10.0											Weight: 72 lb	FT = 20%
LUMBER			3)	Truss desigr	ned for wind loads i	n the p	lane of the tru	SS	17) This	s truss de	esign i	equires that a mi	nimum of 7/16"
TOP CHORD	2x4 SP No.2			only. For stu	ds exposed to wind	l (norm	al to the face)	,	stru	ctural wo	ood sh	eathing be applie	ed directly to the top
BOT CHORD	2x4 SP No.2			see Standard	I Industry Gable En	d Deta	ils as applicab	ole,	cho	rd and 1	/2" gy	osum sheetrock b	be applied directly to
OTHERS	2x4 SP No.3			or consult qu	alified building desi	gner as	s per ANSI/TP	Y 1.	the	bottom c	chord.		
BRACING			4)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL=1	.15	LOAD	CASE(S)	Sta	ndard	
TOP CHORD	Structural wood shea	athing directly applied.		Plate DOL=1	.15); Pg=20.0 psf; I	Pf=15.4	psf (Lum DO	L =					
BOT CHORD	Rigid ceiling directly	applied.		1.15 Plate DO	DL = 1.15); ls=1.0;	Rough	Cat B; Partial	ly					
REACTIONS	(lb/size) 1=283/0-3	3-0 5=338/9-10-10	-	Exp.; Ce=1.0	; Cs=1.00; Ct=1.10								
	7=807/9-1	0-10. 8=-358/0-3-8.	5)	Unbalanced	snow loads have be	een cor	isidered for th	IS					
	10=-367/0)-3-8, 11=819/9-7-2		design.				P					
	Max Horiz 1=-33 (LC	21)	6)	I his truss has	s been designed to	r great	er of min roof	live					
	Max Uplift 5=-18 (LC	, 13), 8=-402 (LC 2),			DSI OF 2.00 times ha	ath an li	bad of 15.4 ps	i on					
	10=-413 (l	LC 2)	7)	Overnangs no	on-concurrent with	other in	re loads.						
	Max Grav 1=320 (LC	C 2), 5=384 (LC 2), 7=9	949 ''	about its cont	tor	us 5 ut	egree rotation						
	(LC 24), 8	B=10 (LC 13), 10=7 (LC	C 8)	Gable stude	enaced at 2-0-0 oc								
	12), 11=96	61 (LC 23)	0)	This trues ha	s been designed fo	r a 10 i) nef bottom						
FORCES	(lb) - Maximum Com	pression/Maximum	3)	chord live loa	d nonconcurrent w	ith anv	other live load	łe					
	Tension		10) * This truss h	as been designed	for a liv	e load of 20 0	nsf					
TOP CHORD	1-18=-340/93, 18-19	9=-285/94,		on the bottom	n chord in all areas	where	a rectangle	p0.					
	2-19=-229/108, 2-3=	-392/189, 3-4=-390/18	86,	3-06-00 tall b	v 2-00-00 wide will	fit betv	veen the botto	m					
	4-20=-230/104, 20-2	21=-286/90,		chord and an	y other members.								U11.
	5-21=-340/89, 5-6=0)/26	11) All bearings a	are assumed to be	SP No.	2 crushing					White CA	Dalle
BOT CHORD	1-11=-55/311, 10-11	=-11/255, 9-10=-29/32	25,	capacity of 56	65 psi.		0					inth on	70/11
	8-9=-29/324, 7-8=-12	2/256, 5-7=-21/310	12) Bearing at joi	int(s) 1, 5, 7, 5 cons	siders p	arallel to grain	n			S	OFFESS	ik MAN
WEBS	3-9=-202/518, 2-11=	-605/261, 4-7=-600/25	58	value using A	NSI/TPI 1 angle to	grain f	ormula. Build	ing			24		1. 7 -
NOTES				designer sho	uld verify capacity of	of bear	ng surface.			-	2	FA Je	ny
1) Unbalance	ed roof live loads have	been considered for	13) Provide mech	nanical connection	(by oth	ers) of truss to)		-		/*	. 19 a. a
this design	n.			bearing plate	at joint(s) 1.						. :	SEA	L : =
2) Wind: AS(CE 7-16; Vult=120mph	(3-second gust)	14) Provide mech	nanical connection	(by oth	ers) of truss to)		=	- :	2067	: :
Vasd=95n	nph; TCDL=6.0psf; BCI	DL=6.0psf; h=25ft; Cat	it.	bearing plate	capable of withsta	nding 4	02 lb uplift at	joint		1		2007	1 1 2
II; Exp B;	Enclosed; MWFRS (en	velope) and C-C Corn	ner	8 and 413 lb	uplift at joint 10.					-			1 3
(3E) 0-0-0	to 3-0-0, Exterior(2N)	3-0-0 to 10-4-12,	15) N/A							-	1. A.	Airs
Corner(3F	r) 10-4-12 to 13-4-12, E	Exterior(2N) 13-4-12 to	0								1,0	O. NGINI	EENATY
21-9-8 zoi	ne; cantilever left and ri	ight exposed ; end									11	YA,	in Si'
vertical lei	n and right exposed;C-0	tor members and	40		or ohim roquired t	o nro: -!						LG	ALIUN
	VIVVERS FOR REACTIONS SP	nown; Lumber	16	Develed plate surface with t	e or shim required t	o provi s) 11 s	ue iuii bearing	I				1111111	11111
FORCES FORCES TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanci this desig 2) Wind: ASI Vasd=95r II; Exp B; (3E) 0-0-(Corner(3F 21-9-8 zo vertical le forces & M DOL=1.6(Structural wood shea Rigid ceiling directly (Ib/size) 1=283/0-3 7=807/9-1 10=-367/0 Max Horiz 1=-33 (LC Max Uplift 5=-18 (LC 10=-413 (I Max Grav 1=320 (LC (LC 24), 8 12), 11=96 (Ib) - Maximum Comp Tension 1-18=-340/93, 18-19 2-19=-229/108, 2-3= 4-20=-230/104, 20-2 5-21=-340/89, 5-6=0 1-11=-55/311, 10-11: 8-9=-29/324, 7-8=-12 3-9=-202/518, 2-11= ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en ne; cantilever left and ri t and right exposed;C-6 MWFRS for reactions sf VDE 16 - 00 - 160	athing directly applied. applied. 3-0, 5=338/9-10-10, 10-10, 8=-358/0-3-8, 10-3-8, 11=819/9-7-2; 21) 21) 21) 22), 5=384 (LC 2), 7=5 3=10 (LC 13), 10=7 (LC 61 (LC 23) pression/Maximum 9=-285/94, 392/189, 3-4=-390/18 2/256, 5-7=-21/310 605/261, 4-7=-600/25 been considered for (3-second gust) DL=6.0psf; h=25ft; Cai ivelope) and C-C Corn velope) and C-C Corn 3-0-0 to 10-4-12, Exterior(2N) 13-4-12 to ight exposed ; end C for members and hown; Lumber	4) 5) 6) 949 7) 2 8) 9) 10 86, 11 25, 11 12 58 13 14 t. t. t. er 15 2 16	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design. This truss hai load of 12.0 p overhangs no Plates check about its cent Gable studs s This truss ha on the bottom 3-06-00 tall b chord live load) * This truss h on the bottom 3-06-00 tall b chord and an) All bearings a capacity of 56) Bearing at joi value using A designer sho) Provide mect bearing plate 8 and 413 lb) N/A	7-16; Pr=20.0 psf i .15); Pg=20.0 psf i .15); Pg=20.0 psf; I DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 snow loads have be s been designed for the concurrent with i ed for a plus or min- ter. spaced at 2-0-0 oc. s been designed for in chord in all areas y 2-00-00 wide will y other members. are assumed to be 55 psi. Int(s) 1, 5, 7, 5 const NSI/TPI 1 angle to uld verify capacity of nanical connection at joint(s) 1. hanical connection apable of withsta uplift at joint 10. e or shim required to truss chord at joint(s) to truss chord at j	roof LL Pf=15.4 Rough eaen cor r great t roof lk t roof lk t roof lk t roof a liv where fit betv SP No. siders p grain f of bear (by oth nding 4	Lum DOL=1 psf (Lum DO Cat B; Partial asidered for the er of min roof jo bad of 15.4 ps loads. agree rotation 0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing warallel to grain ormula. Build ng surface. ers) of truss to 02 lb uplift at de full bearing 3, 10.	.15 IL = Iy is live fon ds. psf m n ing p joint	LOAD	CASE(S)	Sta	NATIONAL G	ROUL ALINGUIN

16) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 8, 10.

July 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	F1	Scissor	4	1	Job Reference (optional)	174582821

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:41 ID:t_tYP1qUfaRwu7nNNWCWZKzEM1g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-2-13,0-0-12], [5:0-2-13,0-0-12]

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.46 0.47 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.54 0.22 0.13	(loc) 7 7-10 5 7	l/defl >999 >464 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2F 21-9-8 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1 4) Unbalance design. 5) This truss I	2x4 SP No.2 2x4 SP SS 2x4 SP SS 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 5 Max Horiz 1=-33 (LC Max Grav 1=830 (LC (lb) - Maximum Com Tension 1-2=-3318/376, 2-3= 3-4=-2587/211, 4-5= 1-7=-311/3176, 5-7= 3-7=-13/1312, 4-7=-1 d roof live loads have E 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) 0-0-0 to 3-0-0, Interi R) 10-4-12 to 13-4-12, e; cantilever left and r and right exposed; C- WFRS for reactions si plate grip DOL=1.60 E7-16; PT=20.0 psf; F DOL = 1.15); Is=1.0; F I.0; Cs=1.00; Ct=1.10 d snow loads have be has been designed for	athing directly applie applied. 5=0-3-8 21) 2 2), 5=893 (LC 2) pression/Maximum -2588/218, -3305/384, 5-6=0/26 -322/3162 805/206, 2-7=-816/2 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C or (1) 3-0-0 to 10-4- Interior (1) 13-4-12 t ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 If=15.4 psf (Lum DO Rough Cat B; Partiall en considered for thi	6) 7) 8) d. 9) 10) 5 11 LO 5 11 LO 5 11 LO 5 12, 0	Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho 0 This truss de structural wo chord and 11. AD CASE(S)	ed for a plus or m ter. Is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members int(s) 1, 5 conside TPI 1 angle to gra build verify capacit isign requires that od sheathing be a 2" gypsum sheetr hord. Standard	inus 5 de for a 10.0 with any d for a liv as where ill fit betw - ers paralle in formula y of beari a minim applied di ock be ap	egree rotation opsf bottom other live loa e load of 20.0 a rectangle veen the botto el to grain val a. Building ng surface. um of 7/16" rectly to the t opplied directly	ds. Dpsf om ue top / to				SEA 2867	L ALINSTIN	

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

July 2,2025

GA

111

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	F1A	Scissor	1	1	Job Reference (optional)	174582822

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:41 ID:LRyLBB2nQ6iM2u9qRIXkI6zEM1O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.7

Plate Offsets (X, Y): [1:0-2-13,0-0-12], [5:0-2-13,0-0-12]

	, , L = _, = =	1) [
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻ 6)	I/TPI2014 This truss ha chord live loa	CSI TC BC WB Matrix-AS	0.46 0.47 0.55 or a 10. vith any	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) 0 psf bottom other live loa	in -0.25 -0.54 0.22 0.13	(loc) 6 6-12 5 6	l/defl >999 >464 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%	
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP SS 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 5 Max Horiz 1=28 (LC Max Grav 1=832 (LC	athing directly applied applied. i=0-3-8 16) 2 2), 5=832 (LC 2)	7) d. 8) 9)	* This truss h on the bottor 3-06-00 tall h chord and ar Bearing at jo using ANSI/7 designer sho This truss de structural wo	has been designed in chord in all areas by 2-00-00 wide wil by other members. int(s) 1, 5 consider (FPI 1 angle to grain uld verify capacity esign requires that hod sheathing be a	for a lives where If the two s parall of bear a minim pplied d	e load of 20.0 a rectangle veen the bott el to grain va a. Building ing surface. um of 7/16" irectly to the	0psf om lue top						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-3326/400, 2-3= 3-4=-2597/233, 4-5= 1-6=-351/3184, 5-6= 3-6=-22/1319, 4-6=-8	pression/Maximum 2597/228, 3326/397 343/3184 816/209, 2-6=-816/20	LC 08	chord and 1/ the bottom c DAD CASE(S)	2" gypsum sheetro hord. Standard	ock be a	pplied directly	y to						
 Unbalance this design Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Exterior(2E 20-9-8 zon vertical leff forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=' Unbalance design. Plates che about its c 	d roof live loads have E 7-16; Vult=120mph uph; TCDL=6.0psf; BCI Enclosed; MWFRS (en- E) 0-0-0 to 3-0-0, Interi 2) 10-4-12 to 13-4-12, ue; cantilever left and ri t and right exposed;C-1 IWFRS for reactions si plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P DOL = 1.15); IS=1.0; F 1.0; CS=1.00; Ct=1.10 rd snow loads have be cked for a plus or minu- enter.	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C or (1) 3-0-0 to 10-4-1 Interior (1) 13-4-12 tr ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. If=15.4 psf (Lum DOI Rough Cat B; Partial! en considered for thi us 5 degree rotation	at. 2, 0 L = y s							10000	and Annuments	SEA 2867	EER.ST	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) July 2,2025

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	C1GE	Common Supported Gable	1	1	Job Reference (optional)	174582826

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:40 Page: 1 ID:DOltnopqo9cB92ueN0OIFdzqF3n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

H

Scale = 1	:68.2
-----------	-------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-AS	0.10 0.10 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 126 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=16-10-1 14=16-10 16=16-10 20=16-10 Max Horiz 2=-151 (L Max Uplift 2=-35 (LC 14=-35 (L 14=-35 (L 14=-231 (L 16=-231 (L 18=-231 (L 18=-231 (L) 18=-231 (L)	1-6-0, Right 2x4 SP 1 athing directly applie applied. 7-17 8, 12=16-10-8, -8, 15=16-10-8, -8, 15=16-10-8, -8, 17=16-10-8, -8, 17=16-10-8, -17=16-10-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-8, -17=16-10-10-8, -17=16-10-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=16-10-10, -17=10-10, -17=10-10, -17=10-10,-10=10, -10=10,-10=10,-10=10,	No.3 ed. 3, 7), 4, 7), 6), 5, 6), 5, 31), 6) 2), 6,	OTES) Unbalanced this design.) Wind: ASCE Vasd=95mpH II; Exp B; Env (3E) -1-0-0 tc (3R) 8-5-4 to zone; cantile and right exp MWFRS for I grip DOL=1.6) Truss design only. For stu see Standarc or consult qu) TCLL: ASCE Plate DOL=1 1.15 Plate DU Exp.; Ce=1.0) Unbalanced design.) This truss ha load of 12.0 p overhangs no	roof live loads ha 7-16; Vult=120m n; TCDL=6.0psf; E closed; MWFRS (b 2-0-0, Exterior(2 11-5-4, Exterior(ver left and right (osed; C-C for mei reactions shown; 50 ed for wind loads dis exposed to wid l ndustry Gable E alified building de 7-16; Pr=20.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Sg=1.0; Ct=1. snow loads have s been designed ps for 2.00 times on-concurrent wit	ve been of gh (3-sec 3CDL=6. (envelope 2N) 2-0-0 2N) 11-5- exposed mbers an Lumber I in the pl. nd (norm End Deta signer as of (roof LL f; Pf=15.4); Rough 10 been cor for greate flat roof Ich fat roof Ich flat roof Ich	considered fo pops; h=25ft; (a) and C-C Cx to 8-5-4, Cor 4 to 17-10-8 ; end vertical di forces & DOL=1.60 pla ane of the true al to the face ils as applical s per ANSI/TF .: Lum DOL=' L psf (Lum DC C at B; Partia nsidered for the er of min roof pad of 15.4 ps ve loads.	r Cat. orner ner left ss ble, Pl 1. 1.15 DL = lly live sf on	 13) Problem bea 2, 3 at jc bea 2, 3 at jc bea set set the LOAD (vide mer ring plat 7 lb uplit joint 20, 3 b uplift at 2 and 1 reled plat ace with s truss d ctural w rd and 1 bottom o CASE(S)	chanicc e capa ft at joi 55 lb uj ut joint t oint t toint t truss esign n cod sh /2" gyy chord.	al connection (b) able of withstand nt 18, 28 lb uplif plift at joint 16, 2 14, 12 lb upliff at plift at joint 12. him required to p chord at joint(s) requires that a m ieathing be appli sourn sheetrock ndard	rothers) of truss to ng 35 lb uplift at join at joint 19, 86 lb upl 3 lb uplift at joint 15, joint 12, 35 lb uplift rovide full bearing 12, 25. inimum of 7/16" ad directly to the top be applied directly to	t ift at
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/58, 2-4=-137/ 5-6=-111/145, 6-7=- 8-9=-100/144, 9-10= 12-13=0/58	npression/Maximum 109, 4-5=-122/71, 144/236, 7-8=-144/2 =-102/46, 10-12=-109	7) 8) 236, 10 9/78, 1	 7) All plates are MT20 plates unless otherwise indicated. 8) Plates checked for a plus or minus 5 degree rotation about its center. 9) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom 								L		
BOT CHORD	2-20=-56/171, 19-20 18-19=-56/171, 16-1 15-16=-56/171, 14-1 12-14=-56/171 7-17=-264/106, 6-18 5-19=-123/116, 4-20 8-16=-190/105, 9-15 10-14=-149/163)=-56/171, 18=-56/171, 15=-56/171, 3=-190/106, 0=-153/164, 5=-124/116,	1:	chord live loa 2) * This truss h on the botton 3-06-00 tall b chord and an	au nonconcurrent has been designe n chord in all area by 2-00-00 wide w ly other members	with any d for a liv as where vill fit betv s.	outer live loa re load of 20.0 a rectangle veen the botto	us.)psf om		11 Province	annun in	OFN L.G	EEP. St.	

July 2,2025

ENGINEERING BY EREENCED A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	D1GE	Common Supported Gable	1	1	Job Reference (optional)	174582827

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:40 ID:OWT15ZxkCY_d_kEIWq4KCyzqF3c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.12 0.11 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 66 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood sl 6-0-0 oc purlins. Rigid ceiling direc	- 1-6-0, Right 2x4 SP N neathing directly applied ly applied or 10-0-0 oc	2) o.3 I or 3)	Wind: ASCE Vasd=95mpt II; Exp B; En (3E) -1-0-0 to (3R) 5-2-8 to cantilever lef right exposed for reactions DOL=1.60 Truss design	7-16; Vult=120mµ n; TCDL=6.0psf; E closed; MWFRS (b 2-0-0, Exterior(2 8-2-8, Exterior(2) t and right expose d;C-C for member shown; Lumber D ed for wind loads	ph (3-sec 3CDL=6. envelope N) 2-0-0 N) 8-2-8 ed ; end v s and for 0OL=1.60 in the pl	cond gust) Dpsf; h=25ft; () and C-C Cc to 5-2-8, Corr to 11-5-0 zon- retrical left an rces & MWFR) plate grip ane of the true	Cat. orner ner e; d 2S	14) Bev surf LOAD (reled pla ace with CASE(S	ite or s n truss) Sta	him required to p chord at joint(s) ndard	provide full bearing 8, 17.
REACTIONS	bracing. (size) 2=10-5- 11=10-1 Max Horiz 2=-99 (Max Uplift 2=-13 (10=-74 Max Grav 2=249 (10=302 12=302	0, 8=10-5-0, 10=10-5-0 -0, 12=10-5-0 C 14) (LC 17), 8=-6 (LC 16), (LC 17), 11=-26 (LC 15 (LC 16) LC 2), 8=249 (LC 2), (LC 24), 11=149 (LC 1 ⁺) (LC 23)	, 4)), 5) 7), 6)	only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DOL=1 L.15 Plate DOL=1 Unbalanced design. This truss ha	Ids exposed to win d Industry Gable E alified building de 7-16; Pr=20.0 ps .15); Pg=20.0 ps DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have s been designed	nd (norm End Deta signer as f (roof LL ; Pf=15.4); Rough 10 been cor for greate	al to the face, ils as applicat s per ANSI/TF L: Lum DOL=' l psf (Lum DC Cat B; Partial nsidered for th er of min roof), ble, PI 1. 1.15 DL = Ily his live					
FORCES TOP CHORD	(lb) - Maximum Co Tension 1-2=0/58, 2-4=-11 5-6=-202/280, 6-8	mpression/Maximum 0/114, 4-5=-202/278, =-100/109_8-9=0/58	7) 8)	overhangs n All plates are Plates check	on-concurrent with MT20 plates unle ed for a plus or m	n other lives other lives other	ve loads. wise indicate egree rotation	d.				WILL CA	Rout
BOT CHORD WEBS	2-12=-13/87, 11-1 8-10=-13/87 5-11=-336/198, 4- 6-10=-232/218	12=-13/87, 10-11=-13/87 12=-232/219,	, 9) 10 11	about its cen Gable require) Gable studs) This truss ha	ter. es continuous bot spaced at 2-0-0 o s been designed	tom chor c. for a 10.0	d bearing.) psf bottom	do			ALL		
NOTES		a haan aanaidarad far	12	chord live loa ?) * This truss h	ad nonconcurrent has been designed	with any d for a liv	e load of 20.0	as.)psf				SEA	

Unbalanced roof live loads have been considered for 1) this design.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 2, 6 lb uplift at joint 8, 26 lb uplift at joint 11, 76 lb uplift at joint 12, 74 lb uplift at joint 10, 13 lb uplift at joint 2 and 6 Ib uplift at joint 8.

MANNAN MARTINE 1111111 2867

July 2,2025

GA 1111

111

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	D1GR	Common Girder	2	2	Job Reference (optional)	174582828

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:40 ID:YLBnv?OV46uBgXWWjBhAF2zqF?9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Loading (ps) Spacing 2-0-7 CSI 0.0 DEFL in (loc) Uddef Lumber DL TCUL (nod) 200 Plate Grip DOL 1.15 TC 0.07 Vert(CT) 0.00 5.6 >999 240 TCDL 0.01 Code Reg Stress Incr NO Vert(CT) 0.00 5.6 >999 240 Weight: 1.21 No Vert(CT) 0.00 5.6 >999 240 Weight: 1.21 No Vert(CT) 0.00 5.6 >999 240 Weight: 1.21 No 1.15 TC 0.00 5.6 >999 240 Weight: 1.21 No 1.15 TC 0.00 5.6 >999 240 Weight: 1.15 TC 0.00 5.6 >999 240 Weight: 1.15 TC 0.00 Feide Jone Jone Jone Jone Jone Jone Jone Jon													
 1.0F CHORD 2x8 SP No.2 WEBS 2x8 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 4-0-5-8, 6-0-5-8 Max Horiz 6-63 (LC 9) Max Grav 4-3046 (LC 25), 6-4175 (LC 26) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2-2128/0, 2-3-2228/0, 3-4-2339/0, 1-2-2-1287/0 Bottom 1-2-2-1287/0 Bottom 1-2-2-1287/0 Bottom 1-2-2-1287/0 Bottom 1-2-2-1287/0 Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. NOTES NOTES 10 2-ply truss to be connected together with 10d (0.131*x37) nails as follows: 2x4 - 1 row at 0-9-0 oc. Nottes down as fare considered for fing as follows: 2x4 - 1 row at 0-9-0 oc. Nottes down as fare considered as follows: 2x4 - 1 row at 0-9-0 oc. Nottes down as fare considered as follows: 2x4 - 1 row at 0-9-0 oc. Nottes down as fare been considered for fing as follows: 2x4 - 1 row at 0-9-0 oc. Nottes down as fare been considered for fing (b) hy connections have been considered for this design. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. Nottes domore the of (b) ro tack (B) fare in the LOAD CASE(S) Section. Ply to phy connections have been perior provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Wind: ASCE 7-16, Vult=120mph (3-second gust) vasa-456mph; TCDL-660, p5; Hc2E6, Cast. 	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI2014 5) TCLL: /	CSI TC BC WB Matrix-MP	0.30 0.72 0.56	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.00 0.00	(loc) 5-6 5-6 4 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
 For CES (10) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2128/0, 2-3=-2228/0, 3-4=-2339/0, 1-6=-2187/0 BOT CHORD 5-6=-63/63, 4-5=0/0 WEBS 2-5=0/2777, 3-5=0/1702, 1-5=0/1604 NOTES NOTES NOTES COAD CASE(5) Standard Deat + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15, Plate Increase=1.15 Diade + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15, Plate Increase=1.15 Wet to connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as font (F) or back (B face in the LOAD CASE(5) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbasanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Wasd=95mph; TCDL=6.0psf; h=25f; Cat. 	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=0-5-8, 6 Max Horiz 6=63 (LC Max Grav 4=3046 (L Max Grav 4=3046) (L	athing directly applied cept end verticals. applied or 10-0-0 oc 6=0-5-8 9) _C 25), 6=4175 (LC 2	Plate D 1.15 Pl Exp.; C 6) Unbala design. 7) Plates of about it 8) This tru chord li 9) * This t on the l 3-06-00	OL=1.15); Pg=20.0 ps ate DOL = 1.15); Is=1 e=1.0; Cs=1.00; Ct=1 need snow loads have shecked for a plus or r s center. ss has been designed ve load nonconcurren uss has been designed tall by 2-00-00 wide	sf; Pf=15.4 .0; Rough .10 e been cou minus 5 du d for a 10. at with any ed for a liv eas where will fit bety	4 psf (Lum D Cat B; Partia nsidered for t egree rotatio 0 psf bottom other live loa re load of 20. a rectangle veen the bot	OL = ally this n ads. 0psf tom					
II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60	 FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(s) s provided tu unless oth 3) Unbalance this design 4) Wind: ASC Vasd=95m II; Exp B; I and right e DOL=1.60 	(Ib) - Maximum Com Tension 1-2=-2128/0, 2-3=-2 1-6=-2187/0 5-6=-63/63, 4-5=0/0 2-5=0/2777, 3-5=0/1 at to be connected toge 1) nails as follows: is connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: excted as follows: 2x4 - tre considered equally oted as front (F) or ba- section. Ply to ply conr o distribute only loads herwise indicated. ad roof live loads have n. CE 7-16; Vult=120mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; Lumber DOL	pression/Maximum 228/0, 3-4=-2339/0, 702, 1-5=0/1604 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA hections have been noted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=25ft; Ci velope); cantilever le L=1.60 plate grip	chord a 10) Use Sir Truss) : 1-7-4 fr back fa 11) Fill all r LOAD CAS 1) Dead Increa Unifor Ver Conce Ver 11= AD	nd any other member npson Strong-Tie HUS or equivalent spaced a om the left end to 7-7- ce of bottom chord. ail holes where hange E(S) Standard + Snow (balanced): L se=1.15 m Loads (lb/ft) :: 1-2=-51, 2-3=-51, 4- ntrated Loads (lb) :: 5=-1272 (B), 9=-127- -1272 (B)	'S. S26 (14-1 at 2-0-0 or 4 to conn er is in cor umber Inc -6=-20 79 (B), 10:	0d Girder, 4- c max. startir ect truss(es) ntact with lun rease=1.15, =-1272 (B),	10d ng at to Plate			A A A A A A A A A A A A A A A A A A A	SEA 2867	BOUL L T ALMSTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	C1GR	Common Girder	2	2	Job Reference (optional)	174582829

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:40 ID:LdwTsZ9eaZ6TXosg7EhxbjzqEpr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

Plate Offsets (X, Y): [1:0-7-0,0-3-4], [5:0-2-8,0-7-0], [7:0-8-0,0-4-0]

	,			-	·										
Loac TCLI	ling _ (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.22	DEFL Vert(LL)	in -0.06	(loc) 7-9	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
Snov	v (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.13	7-9	>999	240	M18AHS	186/179	
TCD	L	10.0	Rep Stress Incr	NO		WB	0.94	Horz(CT)	0.01	5	n/a	n/a			
BCLI	L	0.0*	Code	IRC202	1/TPI2014	Matrix-MS		Wind(LL)	0.00	7	>999	240			
BCD	L	10.0											Weight: 328 lb	FT = 20%	
LUM	BER			4)	Wind: ASCE	7-16; Vult=120m	ph (3-sec	ond gust)			Vert: 1-:	3=-51,	3-5=-51, 1-5=-20		
TOP	CHORD	2x6 SP DSS			Vasd=95mpl	n; TCDL=6.0psf; E	BCDL=6.0	0psf; h=25ft;	Cat.	Co	oncentra	ted Loa	ads (lb)		
вот	CHORD	2x10 SP DSS			II; Exp B; En	closed; MWFRS ((envelope); cantilever	left		Vert: 8=	-2234	(B), 7=-2234 (B),	12=-1843 (B),
WEB	S	2x4 SP No.3 *Except	t* 1-1,5-5:2x6 SP No	o.2,	and right exp	osed ; end vertica	al left and	I right expose	ed;		13=-223	34 (B),	14=-2234 (B), 15	=-2234 (B), 1	6=-2234
		7-3:2x4 SP SS		-	Lumber DOL	=1.60 plate grip L	JOL=1.60				(B), 17=	-2234	(B)		
BRA	CING			5	ICLL: ASCE	15); Pr=20.0 ps		: Lum DOL=	1.15 I						
TOP	CHORD	Structural wood shea	athing directly applie	ed or	1 15 Plate D	.15), Pg=20.0 psi ∩I = 1 15) le=1 (), FI=10.4	Cat B: Partia	JL = ∥v						
		5-5-6 oc purlins.				$C_{e} = 1.13$, $B_{e} = 1.0$	10	Cat D, T artia	iiy						
BOI	CHORD	Rigid ceiling directly	applied or 10-0-0 oc	6	Unbalanced	snow loads have	heen cor	sidered for th	nis						
		bracing.		0,	design.		50011 001		10						
REA	CTIONS	(size) 1=0-3-8, 5	5=0-3-8	7	All plates are	MT20 plates unl	ess other	wise indicate	d.						
		Max Horiz 1=131 (LC	;11) "	8	Plates check	ed for a plus or m	ninus 5 de	egree rotatior	n						
		Max Grav 1=10864 (LC 21), 5=9891 (LC	; 21)	about its cen	ter.		•							
FOR	CES	(lb) - Maximum Com	pression/Maximum	9)	This truss ha	s been designed	for a 10.0) psf bottom							
					chord live loa	ad nonconcurrent	with any	other live loa	ds.						
IOP	CHORD	1-2=-10877/0, 2-3=-1	/656/0, 3-4=-7897/0), 10)) * This truss h	as been designe	d for a liv	e load of 20.0	Opsf						
олт		4-5=-10430/0	707 6 7 0/7250		on the bottor	n chord in all area	as where	a rectangle							
501	CHORD	1-9=0/0014, 7-9=0/7 5-6=0/7576	121, 0-1=0/1330,		3-06-00 tall t	y 2-00-00 wide w	all fit betw	leen the botto	om						
WER	2	3-7-0/10598 2-73	360/0 2-9-0/4592	4	chord and ar	iy other members	i. 	امريما معام							
VVLL		4-7=-2742/0 4-6=0/3	3731	1	i) Bearing at jo	Int(S) 1, 5 conside	in formula	ei to grain vai	ue					1.	
иот	FS				designer sho	uld verify capacit	n ionnua v of beari	a. Duiluing					1111 CA	- 11 m	
1) 2	-olv truss	to be connected toget	ber with 10d	1:	2) Use Simpson	Strong-Tie HUS	28 (22-1)	ng Sunace.)d Girder 8-1	b0l				TH UA	ROIL	
(0 131"x3") nails as follows:			Truss) or equ	ivalent spaced at	t 2-0-0 oc	max. startin	d at			5	n	1.M.	1
ì	Fop chord	s connected as follows	: 2x6 - 2 rows		4-9-12 from	he left end to 10-	9-12 to c	onnect truss(es)			22			12
s	staggered	at 0-9-0 oc.			to back face	of bottom chord.		·	,				44	Maj.	-
E	Bottom ch	ords connected as follo	ows: 2x10 - 2 rows	1:	Fill all nail ho	les where hange	r is in cor	tact with lum	ber.		-			- 1 ÷	Ξ
s	staggered	at 0-4-0 oc.		1-	 Hanger(s) or 	other connection	device(s) shall be			=		SEA	L 1	=
١	Neb conn	ected as follows: 2x4 -	1 row at 0-9-0 oc.		provided suff	icient to support of	concentra	ted load(s) 2	036		=	:	2007	- :	=
2) A	All loads a	re considered equally a	applied to all plies,		lb down at 1	-6-4, 2523 lb dow	n at 2-9-	12, and 2523	3 lb		=	. :	2007	/ :	-
e	except if n	oted as front (F) or bac	ck (B) face in the LO	DAD	down at 12-	9-12, and 2523 lb	down at	14-9-12 on						100	
0	CASE(S) s	section. Ply to ply conn	ections have been		bottom chore	I. The design/sel	ection of	such connec	tion			2	1. A.	ain	3
provided to distribute only loads noted as (F) or (B),					aevice(s) is t	ne responsibility of	or others.					1,0	O. SVGINI	Ent	2
ι 	uniess oth	erwise indicated.	hann ann ddan 17	L	DAD CASE(S)	Standard						11	YA	"IN"	S
3) (Jupalance	ed roof live loads have	been considered for	r 1)	Dead + Sno	w (balanced): Lu	mber Inc	rease=1.15, I	Plate				L.G.	ALI	
τ	nis desigr	1.			Increase=1	.15 ada (llh/ft)							1111111	11111	

- provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for
- this design.
- LOAD CASE(S) Standard
 - 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

July 2,2025

111111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1B	Attic	5	1	Job Reference (optional)	174582831

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:37 ID:fSjG7qIATs2aNwZYVS_NigzqEup-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:102

Plate Offsets (X, Y): [2:0-2-7,Edge], [5:0-3-0,Edge], [6:0-3-0,0-1-12], [8:0-4-0,0-2-4], [9:0-3-0,Edge]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-AS	0.93 0.78 0.80	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.37 -0.66 0.17 0.12	(loc) 20-22 20-22 12 20-22	l/defl >999 >772 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 299 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP SS *Except* 2x4 SP No.3 *Except 23-24:2x4 SP No.2 Left 2x4 SP No.3 - 2 Structural wood shere except end verticals, (3-4-10 max.): 6-8. Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 23, 24 (size) 2=0-3-8, 1 Max Horiz 2=075 (LC Max Grav 2=2526 (L (lb) - Maximum Com Tension 6-7=-2798/0, 7-8=-2(1-2=0/47, 2-4=-4146 8-10=-3402/0, 10-11 2-22=0/3632, 20-22= 15-16=0/3592, 13-15 18-19=-230/248, 17- 19-20=-841/89, 9-15= 4-22=-245/112, 9-13 10-12=-3313/0	19-17:2x4 SP No.2 t* 6-20,8-15:2x4 SP 2-6-0 athing directly applie , and 2-0-0 oc purlins applied. 5-20, 9-15, 9-13, 10 22= Mechanical C 13) C 54), 12=2543 (LC pression/Maximum 686/0, 11-12=-183/1 /0, 4-6=-4024/0, =-206/13 =0/3250, 16-20=0/35 5=0/2887, 12-13=0/2 18=-25/498 3=0/1428, 6-23=0/13 8=-24/102, =-397/81, 8=-1416/0, :-464/149, 5-22=0/56 ==-175/17, 10-13=0/5	2) SSS, d, s 3) -12 4) 56) 5) 7, 7) (6) 7, 7) (92, 9) 528, 79, 10 79, 117, 11 50, 12	Wind: ASCE Vasd=95mph II; Exp B; Enc Exterior(2E) 26-9-0, Exter 32-9-13 to 42 exposed ; en and forces & DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 tj overhangs no 250.0lb AC u from left end, Provide adec All plates are Plates check about its cen) This truss ha chord live loa chord live loa chord and an) Bottom choro chord dead lo 17-18	7-16; Vult=120mp ; TCDL=6.0ps; B closed; MWFRS (e -1-0-0 to 3-3-8, Int 18-2-0 to 24-2-13, ior(2R) 26-9-0 to 3 2-9-4 zone; cantile d vertical left expo MWFRS for react ate grip DOL=1.60 7-16; Pr=20.0 psf; DL = 1.15); Is=1.00 b; Cs=1.00; Ct=1.1 snow loads have b is been designed f pon-concurrent with init load placed on , supported at two yuate drainage to p MT20 plates unle ded for a plus or mit ter. is been designed f ad nonconcurrent with in so been designed f ad nonconcurrent with as been designed f ad nonconcurrent with in chord in all areas by 2-00-00 wide wi yy other members, d live load (20.0 psf) app	h (3-sec CDL=6.0 cDL=6.0 envelope erior (1) Interior 32-9-13, ver left a ssed;C-C ions sho) (roof LL Pf=20.4; Rough 0, Lu=50 been cor or greate at roof lo other list the bott points, § prevent v ss other nus 5 de or a 10.0 with any I for a liv s where II fit betw with BC of) and a lied only	cond gust) Dpsf; h=25ft; () and C-C 3-3-8 to 18-2 (1) 24-2-13 tt Interior (1) and right C for members wm; Lumber L Lum DOL= 1 psf (Lum DC Cat B; Partia 0-0-0 Isidered for th er of min roof pad of 15.4 pp ve loads. om chord, 22 5-0-0 apart. water ponding wise indicate agree rotation 0 psf bottom other live loa a rectangle veen the botto DL = 10.0psf dditional bottot to room. 18-	Cat. 2-0, 0 s 1.15 DL = Illy his live sf on 2-5-8 g. d. 0 ds. Dpsf om 5 om 19,	14) This stru- cho the 15) Gra or t bott 16) Atti LOAD (s truss d cctural w rd and 1 bottom o phical p he orient c room c CASE(S)	esign 1 ood sh /2" gyr chord. urlin re tation 0 d. Star	requires that a mi eathing be applie osum sheetrock to presentation doe of the purlin along d for L/360 deflect ndard	Normal Sector Se	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	13) Refer to girde	er(s) for truss to tru	uss conr	nections.				111	NN L.G	ALINS	

NOTE

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1A	Piggyback Base	1	1	Job Reference (optional)	174582832

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:37 ID:nJeJhLUeOzOg8_20E1kMgKzqEtH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.8

Plate Offsets	(X, Y): [2:Edge,0-1-12], [5:0-3-0,Edge], [6:0-	3-0,0-1-1	2], [8:0-3-0,0-	1-12], [9:0-3-0,Eo	dge]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.99 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.55 0.14 0.06	(loc) 16-18 16-18 12 16-18	l/defl >999 >936 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 279 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 Left 2x4 SP No.3 Structural wood she except end verticals (4-0-2 max.): 6-8. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=175 (LC Max Gray 2=2094 (I	14-12:2x4 SP No.2 1-6-0 athing directly applied, , and 2-0-0 oc purlins applied. 7-16, 7-15, 9-13, 9-15 10-12, 5-16 12= Mechanical C 13) C 52). 12=2056 (LC 5	2) , 3) 4) ⁴⁾	Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) 26-9-0, Exte ad 52-9-13 to 4: exposed; er and forces & DOL=1.60 pt TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced	7-16; Vult=120m 7; TCDL=6.0psf; closed; MWFRS -1-0-0 to 3-3-8, li 18-2-0 to 24-2-1; rior(2R) 26-9-0 tc 2-9-4 zone; cantil d vertical left exp MWFRS for rear ate grip DOL=1.6; 7-16; Pr=20.0 ps OL = 1.15; Ps=20.0 ps OL = 1.15; Is=1. b; Cs=1.00; Ct=1. snow loads have	nph (3-sec BCDL=6.((envelope nterior (1) 3, Interior 32-9-13, lever left abosed;C-C ctions sho 50 sf (roof LL sf; Pf=20.4 0; Rough 10, Lu=5(been cor	ond gust))psf; h=25ft;) and C-C 3-3-8 to 18- (1) 24-2-13 Interior (1) ind right for membe wn; Lumber : Lum DOL= psf (Lum D Cat B; Partia)-0-0 isidered for the set of the s	Cat. 2-0, to rs =1.15 OL = ally this					
FORCES	(lb) - Maximum Com	pression/Maximum	5)	This truss ha	is been designed	for great	er of min roo	of live					
TOP CHORD	1-2=0/47, 2-4=-3365 6-7=-2012/88, 7-8=- 10-11=-176/28, 11-1	5/0, 4-6=-3217/67, 1942/86, 8-10=-2693/6 2=-165/27	69, 6) 7)	overhangs n Provide adeo	on-concurrent wi quate drainage to MT20 plates up	th other lives other	ve loads. vater pondin wise indicat	ng.					
BOT CHORD	2-18=0/2957, 16-18= 13-15=0/2209, 12-1	=0/2533, 15-16=0/1993	2, 8)	Plates check	ed for a plus or r	ninus 5 de	gree rotatio	n					in the
WEBS	6-16=0/933, 7-16=-2 8-15=0/888, 4-18=-2 9-13=-38/156, 9-15= 10-12=-2642/0, 5-16	226/155, 7-15=-360/98 278/94, 5-18=0/598, 550/93, 10-13=0/384 5=-844/75	, 9) , 10	This truss ha chord live loa) * This truss h on the bottor	ner. Is been designed ad nonconcurrent has been designe n chord in all are	l for a 10.0 t with any ed for a liv as where) psf bottom other live loa e load of 20. a rectangle	ads. .0psf			N.C.	ORTHCA	ROLLER AND
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for	11 12 13	3-06-00 tall h chord and ar) Refer to gird) This truss de structural wo chord and 1/ the bottom c) Graphical pu or the orienta bottom chord	by 2-00-00 wide w by other members er(s) for truss to i sign requires that od sheathing be 2" gypsum sheet hord. rlin representatic tion of the purlin d. Standard	will fit betw s, with BC truss conr at a minim applied di rrock be ap on does no along the	veen the bott DL = 10.0ps vections. um of 7/16" rectly to the oplied directl ot depict the top and/or	tom sf. top ly to size			J. M.	SEA 2867	E.B. St.

LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1	Piggyback Base	5	1	Job Reference (optional)	174582833

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:35 Page: 1 ID:65IoG2Q0i7YzKaH8cect94zqEqn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.8

Vate Offsets (X, Y): [2:Edge,0-1-12], [5:0-3-0,Edge], [6:0-3-0,0-1-12], [8:0-3-0,0-1-12], [9:0-3-0,Edge]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES RC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.99 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.55 0.14 0.06	(loc) 17-19 17-19 13 17-19	l/defl >999 >936 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 281 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shee except end verticals, (4-0-2 max.): 6-8. Rigid ceiling directly 1 Row at midpt	15-13:2x4 SP No.2 I-6-0 athing directly applied, , and 2-0-0 oc purlins applied. 5-17, 7-17, 7-16, 9-14, 9-16, 10-13	2) 3)	Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) 26-9-0, Exter 32-9-13 to 43 exposed; er members an Lumber DOL TCLL: ASCE Plate DOL=1 115 Plate D	7-16; Vult=120m; ; TCDL=6.0psf; E closed; MWFRS (-1-0-0 to 3-3-8, In 18-2-0 to 24-2-13 rior(2R) 26-9-0 to 3-11-0 zone; canti d vertical left and d forces & MWFR =1.60 plate grip E 7-16; Pr=20.0 psf 15); Pg=20.0 psf 0 = 115; ls=10	bh (3-sec 3CDL=6. envelope terior (1) , Interior 32-9-13, lever left right exp S for rea DOL=1.6 f (roof LI ; Pf=20.4	cond gust) Opsf; h=25ft; and C-C 3-3-8 to 18- (1) 24-2-13 i Interior (1) and right ossed; C-C fo ictions shown : Lum DOL= t psf (Lum D) Cat B: Partic	Cat. 2-0, to r n; :1.15 OL =					
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=195 (LC Max Grav 2=2093 (L	3=0-3-8 2 15) .C 49), 13=2110 (LC 51) 4)	1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	OL = 1.15); IS=1.0); Cs=1.00; Ct=1.1 snow loads have l); Rough 0, Lu=5 been coi	Cat B; Partia 0-0-0 nsidered for t	ally his					
FORCES	(lb) - Maximum Com Tension 1-2=0/47, 2-4=-3363 6-7=-2011/86, 7-8=-' 10-11=-190/48, 11-1	pression/Maximum /0, 4-6=-3216/65, 1940/88, 8-10=-2689/6 2=0/47, 11-13=-240/60	5) 8, 6)	This truss ha load of 12.0 overhangs n Provide adeo	s been designed to psf or 2.00 times f on-concurrent with quate drainage to	for great lat roof l n other li prevent	er of min roo bad of 15.4 p ve loads. water pondin	f live osf on g.					
BOT CHORD WEBS	2-19=0/2966, 17-19= 14-16=0/2207, 13-14 4-19=-278/94, 5-19= 6-17=0/932, 7-17=-2	=0/2543, 16-17=0/1999 4=0/2003 -0/598, 5-17=-844/75, -25/160, 7-16360/98	, 8) 9)	Plates check about its cen This truss ha	ed for a plus or m ter. s been designed f	inus 5 d	o psf bottom	n n				TH CA	ROUT
NOTES 1) Unbalance this design	8-16=0/887, 10-14=(9-16=-550/94, 10-13 ed roof live loads have n.	0/386, 9-14=-40/153, =-2630/0 been considered for	10) 11) 12) LO	* This truss f on the bottor 3-06-00 tail k chord and ard This truss de structural wo chord and 1/ the bottom c Graphical pu or the orienta bottom chord AD CASE(S)	has been designed in chord in all area by 2-00-00 wide w by other members sign requires that od sheathing be a 2" gypsum sheetre hord. rlin representation ation of the purlin b Standard	a for a liv s where ill fit betv, with BC a minim applied d ock be a n does n along the	e load of 20. a rectangle veen the bott DL = 10.0ps um of 7/16" irrectly to the pplied directl ot depict the top and/or	Opsf tom tf. y to size			State State	SEA 2867 Chiny L. G	E.P. Strund

1111111111

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	174582834

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:38 ID:ttEqrPbgxeFBwnC4262SFrzqF1T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale -	1.104.2
	1.104.2

Plate Offsets (X, Y): [11:0-3-0,0-1-12], [16:0-3-0,0-1-12]

	, , ,	/ -	1) [)]									-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 20.0 0.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-A3	0.30 0.22 0.23 S	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.01	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 342 I	GRIP 244/190 b FT = 209	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural except er (6-0-0 ma Rigid ceili 1 Row at (size)	0.2 0.2 0.3 0.3 I wood shea od verticals, ing directly midpt 2=42-11-0	athing directly applied, and 2-0-0 oc purlins applied. 13-38, 12-39, 10-40, 9-42, 14-37, 15-36, 17-35, 18-33), 27-42-11-0,	I, FORCES TOP CHORD	Max Grav (lb) - Maxir Tension 1-2=0/41,2 4-5=-164/1 8-9=-175/2	2=276 (LC 31), 2 28=239 (LC 31), 30=229 (LC 41), 32=220 (LC 41), 35=184 (LC 41), 37=223 (LC 40), 39=211 (LC 40), 42=227 (LC 41), 44=213 (LC 41), 46=55 (LC 41), 46=55 (LC 41), 46=55 (LC 41), 47=227/176, 358, 56=-164/17, 56, 9-10=-204/37, 558, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 56, 9-10=-204/37, 568, 56=-164/17, 568, 56=-164/17, 568, 56=-164/17, 568, 56=-166/17, 568, 56=-166/17, 568, 56=-166, 568, 56=-166/17, 568, 568, 568, 568, 568, 568, 568, 568	27=226 (LC ; 29=163 (LC 31=219 (LC 33=227 (LC 36=211 (LC 38=223 (LC 40=184 (LC 43=222 (LC 45=255 (LC 45=255 (LC 45=255 (LC 45=256 (LC) 45=256 (LC) 45=255 (LC) 45=256 (2), 41), 41), 41), 40), 40), 40), 41), 41), 30) 217,	NOTES 1) Unt this 2) Wir Vas II; E (3E (3R Cor 43- vert forc DO 3) Tru only	alanced design. d: ASCE d=95mp xp B; Er) -1-0-0 t) 18-2-0 ner(3R) 11-0 zon ical left a es & MV L=1.60 p ss desig /. For st	d roof li E 7-16; bh; TCI nclosed to 3-3- to 22- 26-9-0 ne; can and rig VFRS blate gi ned fo uds ex	ve loads have Vult=120mph DL=6.0psf; BCI d; MWFRS (en 8, Exterior(2N) 5-8, Exterior(2I) to 31-0-8, Ext tilever left and ht exposed;C-1 for reactions sl rip DOL=1.60 r wind loads in posed to wind	been conside (3-second gu DL=6.0psf; h: velope) and (3-3-8 to 18-2 V) 22-5-8 to 2 erior(2N) 31- right exposed to for membe hown; Lumbe the plane of (normal to th	ared for ust) =25ft; Cat. C-C Corner 2-0, Corner 2-0, Corner 26-9-0, 0-8 to d; end rs and and the truss the truss the face),
	Max Horiz Max Uplift	28=42-11: 30=42-11: 35=42-11: 35=42-11: 37=42-11: 42=42-11: 42=42-11: 44=42-11: 46=42-11: 2=194 (LC 2=-26 (LC 30=-13 (Li 32=-9 (LC 37=-1 (LC 44=-10 (Li 46=-5 (LC	-0, 29=42-11-0, -0, 31=42-11-0, -0, 33=42-11-0, -0, 36=42-11-0, -0, 38=42-11-0, -0, 40=42-11-0, -0, 43=42-11-0, -0, 47=42-11-0, -12), 28=-42 (LC 17), -12), 28=-42 (LC 17), -17), 33=-22 (LC 17), -12), 38=-2 (LC 17), -12), 38=-2 (LC 16), -16), 43=-9 (LC 16), -16), 45=-12 (LC 16), -12), 47=-36 (LC 16)	bot chord), ^{),} webs	10-11=-186 12-13=-186 14-15=-186 18-19=-177 21-22=-130 23-24=-91/ 25-27=-192 2-47=-112/ 44-45=-21/ 40-42=-21/ 33-35=-21/ 33-35=-21/ 33-35=-21/ 13-38=-186 14-44=-177/ 15-36=-177 18-33=-186 23-29=-122	5/273, 11-12=-18 5/273, 11-12=-18 5/281, 13-14=-11 5/281, 13-16=-18 5/273, 17-18=-20 5/256, 19-21=-18 5/256, 19-21=-18 5/258, 19-21=-18 5/258, 19-21=-18 69, 39-40=-21/6 69, 39-40=-21/6 69, 39-30=-21/6 69, 39-30=-21/6 69, 39-30=-21/6 69 5/47, 12-39=-17 5/4, 5-45=-201/6 129, 14-37=-18 1/19, 17-35=-144 7/72, 19-32=-188 1/29, 24-38=-173 5/42, 24-28=-173 5/42, 24-28=-173	30/281, 30/281, 30/281, 30/281, 30/281, 30/281, 33/217, 05/136, 42, 25-26=0 69, 45-46=-2 9, 42-43=-2 9, 38-39=-2 9, 38-39=-2 9, 31-32=-2 9, 31-32=-2 9, 28-29=-2 1/21, 72, 8-43=-18 2, 4-46=-67/ 3/47, 4/0, 1/54, 3/58, 3/97	/47, 21/69, 1/69, 1/69, 1/69, 1/69, 31/54, 24,	see or c Plat Exp	Standar onsult q L: ASCI e DOL= 5 Plate E .; Ce=1.	rd Indu ualified E 7-16 1.15); DOL = 0; Cs=	stry Gable End d building desig ; Pr=20.0 psf; P 1.15); Is=1.0; F 1.00; Ct=1.10, SE 280	I Details as a ner as per A oof LL: Lum f=20.4 psf (L cough Cat B; Lu=50-0-0 ARO AL 777	pplicable, NSI/TPI 1. DOL=1.15 um DOL = Partially

July 2,2025

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	174582834

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Plates checked for a plus or minus 5 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint
- 2, 2 lb uplift at joint 38, 19 lb uplift at joint 42, 9 lb uplift at joint 43, 10 lb uplift at joint 44, 12 lb uplift at joint 45, 5 lb uplift at joint 46, 36 lb uplift at joint 47, 1 lb uplift at joint 37, 22 lb uplift at joint 33, 9 lb uplift at joint 32, 10 lb uplift at joint 31, 13 lb uplift at joint 30, 42 lb uplift at joint 28 and 26 lb uplift at joint 2.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:38 ID:ttEqrPbgxeFBwnC4262SFrzqF1T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

818 Soundside Road Edenton, NC 27932

July 2,2025

WWWWWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

The Rest of the South of the So

ORTH

CA

SEAL 28677

L. GAL

11111

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	PB1	Piggyback	13	1	Job Reference (optional)	174582835

Run; 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Tue Jul 01 16:50:00 ID:MKKddZpziAWe4ZaX5uMg_ezqF1B-6KoD7UFSN1tIII2F0ip1nF0QeiEqoDj6Ym3AFvz0NLr

Scale = 1:26.9

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021,	/TPI2014	CSI TC BC WB Matrix-AS	0.39 0.23 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	I/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly s (lb/size) 1=-243/8-7 4=524/8-7 Max Horiz 1=-37 (LC Max Uplift 1=-302 (LC Max Grav 1=-19 (LC 4=660 (LC	athing directly applied applied. 7-0, 2=537/8-7-0, -0, 5=-240/8-7-0 14) C 23), 5=-299 (LC 24) 16), 2=673 (LC 23), 24), 5=-27 (LC 17)	5) 6) d. 7) 8) 9) 10) 4)	Unbalanced a design. Plates check about its cen Gable require Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and am	snow loads have b ed for a plus or min ter. es continuous botto spaced at 4-0-0 oc s been designed for do nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will by other members. are assumed to be	peen cor nus 5 dr om chor c. or a 10. vith any for a liv s where Il fit betv SP No.	sidered for the egree rotation d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing	his n nds. Opsf om						
	(lb) - Maximum Comp Tension	pression/Maximum	12)	capacity of 50 Provide mech	65 psi. hanical connection	(by oth	ers) of truss t	to						
IOF CHURD	4-5=-17/178	12/04, 3-4=-212/71,		bearing plate	capable of withsta	anding 3	02 lb uplift at	t joint						
BOT CHORD	2-4=-141/140		13)	This truss de	sign requires that	a minim	um of 7/16"							
NOTES 1) Unbalance this design	ed roof live loads have l n.	been considered for	,	structural wo chord and 1/2 the bottom ch	od sheathing be ap 2" gypsum sheetro nord.	pplied d ock be a	irectly to the to plied directly	top y to						
2) Wind: AS(CE 7-16; Vult=120mph	(3-second gust)	14)	See Standard	d Industry Piggyba	ck Trus	s Connection	1				, mining	11111	

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 4-3-8, Exterior(2R) 4-3-8 to 7-3-8, Interior (1) 7-3-8 to 8-3-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- Detail for Connection to base truss as applicable, or
- consult qualified building designer. LOAD CASE(S) Standard

July 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2			
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174582836		

Run: 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Tue Jul 01 16:50:39 ID:EN5Z1k48ldAf5nhaqoEcK3zqF0s-TqfzIqjwB0omUlWloO0AtT79ARYIQqMrWK0k88z0NLE

Scale = 1:84.7

Plate Offsets (late Offsets (X, Y): [8:0-3-0,Edge], [14:0-3-0,Edge]															
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(p 20 15.4/20 10 (10	sf)).0).0).0).0).0*).0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	021/TPI2014	CSI TC BC WB Matrix-AS	0.17 0.14 0.13	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.01 0.01	(loc 22-4 38-4 2 38-4	c) l/defl 4 >999 1 >999 0 n/a 1 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 264 It	GRIP 244/190		
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural woor Rigid ceiling di 1 Row at midpl	d shea rectly t	athing directly appli applied. 11-30, 10-31, 9-32, 12-29, 13-28	ed.	TOP CHORD	1-2=0/41, 2-3=-18 4-5=-143/94, 5-6= 7-8=-133/144, 8-4 9-45=-115/156, 9- 10-11=-176/231, - 12-13=-158/198, - 14-46=-132/145, - 15-16=-110/117, - 18-19=-117/23, 15	6/126, 3 -140/92, 5=-132/1 10=-158, 1-12=-1 3-46=-1 4-15=-1 4-15=-1 6-17=-8 -20=-13	-4=-167/87, 6-7=-133/117, 45, /198, 76/231, 15/156, 33/144, 9/77, 17-18=-9 5/57, 20-21=0/	,)2/35, /41	3)	Truss desig only. For st wee Standar or consult q CLL: ASCI Plate DOL= .15 Plate I Exp.; Ce=1. Jnbalanced	ined fo uds ex od Indu ualified E 7-16 1.15); DOL = 0; Cs= snow	rr wind loads in posed to wind I ustry Gable End d building desig ; Pr=20.0 psf (rr Pg=20.0 psf, Pl 1.15); Is=1.0; R =1.00; Ct=1.10 loads have bee	the plane of the normal to the fa Details as appl ner as per ANS sof LL: Lum Dof =15.4 psf (Lum ough Cat B; Pa en considered fo	e truss ace), licable, I/TPI 1. DL=1.15 DOL = rtially	
REACTIONS	12-29, 13-28 12-29, 13-28 (lb/size) 2=215/36-11-0, 22=306/36-11-0, 22=306/36-11-0, 23=69/36-11-0, 24=159/36-11-0, 26=142/36-11-0, 26=142/36-11-0, 29=141/36-11-0, 30=91/36-11-0, 31=141/36-11-0, 32=142/36-11-0, 34=142/36-11-0, 35=138/36-11-0, 36=159/36-11-0, 37=69/36-11-0, 38=306/36-11-0, 38=306/36-11-0 Max Horiz 2=-182 (LC 14)				BOT CHORD	2-38=-100/128, 3; 36-37=-43/128, 3; 34-35=-43/128, 3; 30-31=-43/128, 2; 28-29=-43/128, 2; 26-27=-43/128, 2; 24-25=-43/128, 2; 22-23=-43/128, 2; 11-30=-177/87, 10	/128, /128, /128, /128, /128, /128, /128, /128, /128		 6) This truss has been designed for greater of min root load of 12.0 psf or 2.00 times flat roof load of 15.4 p overhangs non-concurrent with other live loads. 7) Plates checked for a plus or minus 5 degree rotation about its center. 8) Gable studs spaced at 2-0-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load 10) * This truss has been designed for a live load of 20. 							
	Max Uplifit 2=-2 23=- 25=- 28=- 31=- 34=- 36=- Max Gray, 2=-2	·10 (LC 1 ·10 (LC ·14 (LC ·14 (LC ·10 (LC ·12 (LC	(2), 22=-30 (LC 17) (17), 24=-12 (LC 17) (2), 26=-10 (LC 17) (2), 29=-1 (LC 17) (16), 32=-13 (LC 16) (16), 35=-10 (LC 12) (16), 38=-33 (LC 12) (16), 38=-33 (LC 22)	9, 7), 17), 6), 6), 16), 16)	NOTES	9-32=-142/61, 7-34=-120/54, 6-35=-118/54, 5-36=-131/60, 4-37=-70/36, 3-38=-244/105, 12-29=-172/40, 13-28=-142/61, 15-26=-120/54, 16-25=-118/54, 17-24=-131/60, 18-23=-70/36, 19-22=-242/106							0-00 wide will fi er members.	RO	oottom	
FORCES	22=2 22=2 24=2 26=2 29=2 31=2 34=2 38=2 (b) Maximum	180 (LC 351 (L 180 (L 161 (L 212 (L 212 (L 161 (L 355 (L	C 30), 23–78 (LC 2), C 31), 25–156 (LC C 37), 28–182 (LC C 24), 30–148 (LC C 23), 32–182 (LC C 36), 35–156 (LC C 30), 37–78 (LC 2 C 30)	, 2), 24), 17), 23), 2), 2),	 Unbalanced this design. Wind: ASC Vasd=95my II; Exp B; E (3E) -10-0 (3R) 18-5-8 zone; cantil and right ex 	2ed roof live loads have been considered for gn. 3CE 7-16; Vult=120mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. ; Enclosed; MWFRS (envelope) and C-C Corner I-0 to 2-8-5, Exterior(2N) 2-8-5 to 18-5-8, Corner 5-8 to 22-1-13, Exterior(2N) 22-1-13 to 37-11-0 ntilever left and right exposed ; end vertical left exposed;C-C for members and forces &						ALL STREET		AL 77	Mannan .	
I GAOLO	Tension	0011			MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60						in the second second					

July 2,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174582836

- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 2, 4 lb uplift at joint 31, 13 lb uplift at joint 32, 10 lb uplift at joint 34, 10 lb uplift at joint 35, 12 lb uplift at joint 36, 33 lb uplift at joint 38, 1 lb uplift at joint 29, 14 lb uplift at joint 28, 10 lb uplift at joint 26, 10 lb uplift at joint 25, 12 Ib uplift at joint 24, 2 lb uplift at joint 23, 30 lb uplift at joint 22 and 2 lb uplift at joint 2.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 25.20 E May 29 2025 Print: 25.2.0 E May 29 2025 MiTek Industries, Inc. Tue Jul 01 16:50:39 ID:EN5Z1k48ldAf5nhaqoEcK3zqF0s-TqfzIqjwB0omUIWIoO0AtT79ARYIQqMrWK0k88z0NLE

Page: 2

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	B1	Common	5	1	Job Reference (optional)	174582837

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:39 ID:uyLX7fQKwXpY4EP81OGP?AzqF0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.3

Plate Offsets (X, Y): [2:0-0-0,0-0-0], [2:Edge,0-1-12], [10:Edge,0-1-12]

		0, 1,1	0,										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.50 0.96 0.58	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.52 0.11 0.06	(loc) 14-16 14-16 10 12-14	l/defl >999 >844 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 207 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x4 SP No.3	ht* 15-13:2x4 SP SS 1-6-0, Right 2x4 SP N athing directly applied applied. 7-14, 5-14 10=0-3-8 C 14) _C 30), 10=1745 (LC apression/Maximum)=-2671/78, 10-11=0/- 1/78, 4-6=-2521/150 =0/1939, 12-14=0/185 =-701/112, 7-12=0/65 =-700/112, 5-16=0/65	3) lo.3 4) 5) d. 6) 7) 31) 8) 9) 47, 51, 10 20, 20,	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar) This truss de structural wo chord and 11/ the bottom c	7-16; Pr=20.0 psf. .15); Pg=20.0 psf. .15); Pg=20.0 psf. OL = 1.15); Is=1.0; 0; Cs=1.00; Ct=1.10; o; Cs=1.00; Ct=1.10; so been designed for psf or 2.00 times fit con-concurrent with MT20 plates unless end for a plus or mir ter. is been designed for ad nonconcurrent with been designed for ad nonconcurrent with ter. is been designed for ad nonconcurrent with been designed for ad nonconcurrent with ter. is been designed for ad nonconcurrent with is been designed for ad nonc	(roof LI Pf=15.4 Rough) een cor or great at roof li other li ss other hus 5 di or a 10.4 vith any for a liv with BC a minim oplied di ck be a	L: Lum DOL= 4 psf (Lum DC Cat B; Partia 1 usidered for t er of min rool ad of 15.4 p ve loads. wise indicate egree rotation 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps um of 7/16" irectly to the pplied directly	:1.15 OL = ally his f live ssf on ed. n ed. n ads. 0psf top y to					
NOTES 1) Unbalance	ed roof live loads have	been considered for									11 A	ORIESS	

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-8-5, Interior (1) 2-8-5 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-13, Interior (1) 22-1-13 to 37-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	B1A	Common	1	1	Job Reference (optional)	174582838

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:39 ID:qtX8gzsvSbMROm938yvrTmzqF?r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.3

Plate Offsets	(X, Y):	[2:Edge,0-1-12],	, [10:Edge,0-1-12]
---------------	---------	------------------	--------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.50 0.97 0.58	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.31 -0.52 0.11 0.06	(loc) 13-15 13-15 10 11-13	l/defl >999 >844 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 206 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=178 (LC Max Grav 2=1746 (L	t* 12-14:2x4 SP SS -6-0, Right 2x4 SP athing directly applied applied. 5-13, 7-13 0=0-3-8 2 15) C 33), 10=1683 (LC	3) No.3 4) ed. 6) 7) 2 34)	 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen This truss ha 	7-16; Pr=20.0 p .15); Pg=20.0 p OL = 1.15); Is=1 0; Cs=1.00; Ct=1 snow loads have us been designed psf or 2.00 times on-concurrent wi ed for a plus or n ter. is been designed	osf (roof LL sf; Pf=15.4 .0; Rough .10 e been cor d for greate s flat roof k ith other lin hless other minus 5 de d for a 10.0	: Lum DOL= b psf (Lum DO Cat B; Partia asidered for t er of min rool bad of 15.4 p re loads. wise indicate agree rotation 0 psf bottom	1.15 OL = his f live sf on ed. n					
FORCES	(lb) - Maximum Com Tension 1-2=0/47, 2-4=-2673	pression/Maximum	9) ,	* This truss h on the bottor 3-06-00 tall b	nas been designe n chord in all are by 2-00-00 wide	ed for a liv eas where will fit betw	e load of 20. a rectangle veen the bott	Opsf					
BOT CHORD WEBS	0-0=-2529/151, 0-10 2-15=-13/2305, 13-1 10-11=-11/2245 6-13=-51/1416, 4-15 8-11=-288/107, 7-11 7-13=-703/113, 5-15	=-2830/33 5=0/1935, 11-13=0/ =-283/104, =0/627, 5-13=-700/ ⁻ =0/620	/1848, 1(112, L	chord and ar) This truss de structural wo chord and 1/ the bottom c OAD CASE(S)	by other member sign requires that od sheathing be 2" gypsum shee hord. Standard	at a minim applied di trock be ap	DL = 10.0ps um of 7/16" rectly to the oplied directly	top y to					Poly
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	r	(-)							A.A.	ORIESS	NA ANA

Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-8-0, Interior (1) 2-8-0 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-8, Interior (1) 22-1-8 to 36-9-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

July 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	B1B	Common	4	1	Job Reference (optional)	174582839

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.63 0.96 0.57	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.52 0.10 0.06	(loc) 13-15 13-15 10 11-13	l/defl >999 >847 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 205 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep SS 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=1742 (L (max) (Size) 2=0-3-8, 1 Max Grav 2=1742 (L (max) (Size) 2=0-3-8, 1	t* 12-10,12-14:2x4 S 1-6-0, Right 2x4 SP N athing directly applied applied. 5-13, 7-13 10= Mechanical C 13) .C 33), 10=1678 (LC pression/Maximum 1/78, 4-6=-2514/150,)=-2641/82 5=0/1927, 11-13=0/1 5=-283/104, =0/596, 5-13=-701/1 i=0/621	3) P 4) 40.3 5) d. 6) 7) 8) 34) 9) 18322, 10 11 12, LC	TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen This truss ha chord live loa * This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall b chord and ar) Refer to gird) This truss de structural wo chord and 1/ the bottom c DAD CASE(S)	7-16; Pr=20.0 p .15; Pg=20.0 ps OL = 1.15; Is=1. ; Cs=1.00; Ct=1. snow loads have s been designed besf or 2.00 times on-concurrent wi MT20 plates un ed for a plus or r ter. s been designed ad nonconcurrent nas been designed ad nonconcurrent in all are by 2-00-00 wide v y other members er(s) for truss to sign requires that od sheathing be 2" gypsum sheet hord. Standard	sf (roof LL sf; Pf=15.4 0; Rough 10 been con 1 for greate flat roof to th other liv less other ninus 5 de 1 for a 10.0 t with any ad for a liv as where will fit betw s, with BC truss conn t a minimi applied di rock be ap	:: Lum DOL= psf (Lum D) Cat B; Partia asidered for t er of min roo bad of 15.4 p re loads. wise indicate agree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. um of 7/16" rectly to the opplied directl	1.15 OL = ally his f live set on ed. n ads. 0psf om f. top y to				WHTH CA	ROUL
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; I Exterior(21 36-8-0 zor	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-8-0, Inter R) 18-5-8 to 22-1-8, Int e: cantilever left and r	been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) and C-C rior (1) 2-8-0 to 18-5- terior (1) 22-1-8 to ight exposed : end	at. 8,							. annun an	N.	SEAL SEAL SEAL	

vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	V5	Valley	1	1	Job Reference (optional)	174582840

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 Page: 1 ID:iUYEzqG6X1j9ZU3iPDXu6xzqF1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	15.	(psf) 20.0 .4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MS	0.27 0.17 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 6-0-0 oc pu Rigid ceilin bracing. (size) Max Horiz Max Uplift	.2 .2 .3 wood shea urlins. ig directly 1=13-4-12 7=13-4-12 1=104 (LC 1=-20 (LC 8=-74 (LC 1=118 (LC	athing directly applied applied or 10-0-0 oc ; 5=13-4-12, 6=13-4- ; 8=13-4-12 ; 15) 12), 6=-71 (LC 17), 16) ; 30), 5=103 (LC 29),	3 d or -12, 6 7 8 9	 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cer Gable requir Gable studs This truss here the study of the study 	the d for wind loads and sexposed to wind a lndustry Gable E tailified building de 7-16; Pr=20.0 ps 1.15; Pg=20.0 ps 0L = 1.15; Is=1.0 0C = 1.15; Is=1.0 0C = 1.15; Is=1.0 tailing the second second tailing the second second tailing tail tail tailing tailing tail tailing tail tailing tailing	in the pl nd (norm ind Deta signer a: f (roof LI ; Pf=15.4 ; Rough 0 been cor inus 5 de tom chor c. for a 10.1 with any	ane of the tru: al to the face ils as applical s per ANSI/TF er ANSI/TF b psf (Lum DOL=' b psf (Lum DOC Cat B; Partia asidered for the egree rotation d bearing.	ss), ole, PI 1. 1.15 JL = Ily nis					
FORCES	(lb) - Maxir Tension	6=397 (LC 8=400 (LC num Com	: 30), 7=359 (LC 29), : 29) pression/Maximum	' 1	0) * This truss h on the bottor 3-06-00 tall h	nas been designed n chord in all area by 2-00-00 wide w	d for a liv s where ill fit betv	e load of 20.0 a rectangle veen the botto)psf om					
TOP CHORD	1-2=-134/1 4-5=-119/7	01, 2-3=- 2 0 7-84	172/132, 3-4=-171/13	^{33,} 1	1) Provide mec bearing plate	hanical connection capable of withst	n (by oth anding 2	ers) of truss t 0 lb uplift at j	o oint					
WEBS NOTES	5-6=-41/12 3-7=-169/0	20 9, 2-8=-293	8/271, 4-6=-291/264	L	1, 74 lb uplifi OAD CASE(S)	t at joint 8 and 71 Standard	b uplift a	t joint 6.					HTH CA	ROUIL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 6-8-10, Corner (3R) 6-8-10 to 9-8-10, Exterior(2N) 9-8-10 to 13-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	V4	Valley	1	1	Job Reference (optional)	174582841

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 Page: 1 ID:WNO4f37C7fLjkojaGQrJAczqF24-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:43

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014	CSI TC BC WB Matrix-MS	0.50 0.67 0.36	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-0-1 Max Horiz 1=86 (LC Max Uplift 1=-51 (LC 4=-16 (LC Max Grav 1=59 (LC (LC 2) (lb) - Maximum Con Tension	eathing directly applie / applied or 6-0-0 oc 2, 3=11-0-12, 4=11-0 15) C 23), 3=-49 (LC 35), C 16) 35), 3=62 (LC 36), 4 npression/Maximum	4) TCL Plat 1.15 Exp 5) Unb d or 6) Plat abo 7) Gat -12 9) This cho 10) * Tr e868 -00 cho 11) Pro bea	LL: ASCE 7 te DOL=1. ² 5 Plate DO 5.; Ce=1.0; balanced si sign. tes checke ble requires ble studs si s truss has s truss has the bottom 6-00 tall by ord and any wide mecha-	7-16; Pr=20.0 psf 15); Pg=20.0 psf; DL = 1.15); Is=1.0; Cs=1.00; Ct=1.10 now loads have b ed for a plus or mir er. s continuous botto paced at 4-0-0 oc been designed for d nonconcurrent w as been designed chord in all areas / 2-00-00 wide will / other members. anical connection capable of withsta	(roof LL Pf=15.4 Rough) een cor om chor or a 10.0 vith any for a liv s where I fit betw (by oth unding 5	.: Lum DOL=1 I psf (Lum DO Cat B; Partial asidered for th agree rotation d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 1 b uplift at ic	.15 L = ly is ds. psf m					
TOP CHORD BOT CHORD WEBS	1-2=-208/379, 2-3=- 1-4=-240/273, 3-4=- 2-4=-677/411	-211/376 -238/271	bea 1, 4 LOAD (Anny plate (19 lb uplift a CASE(S)	at joint 3 and 16 lk Standard	o uplift a	it joint 4.	лп					

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 5-6-10, Corner (3R) 5-6-10 to 8-6-10, Exterior(2N) 8-6-10 to 11-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

eft ie is

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	V3	Valley	2	1	Job Reference (optional)	174582842

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 ID:pRnIZe?xUa48XGyfgJfzmVzqF2E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.52 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		4) 5)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design	7-16; Pr=20.0 psf .15); Pg=20.0 psf; OL = 1.15); Is=1.0; I; Cs=1.00; Ct=1.10 snow loads have b	(roof LL Pf=15.4 Rough) een cor	: Lum DOL= psf (Lum DC Cat B; Partia usidered for th	1.15 DL = Ily nis					
BOT CHORD	Structural wood shea 8-9-4 oc purlins. Rigid ceiling directly bracing.	athing directly applied applied or 6-0-0 oc	for 6) 7)	Plates check about its cent Gable require	ed for a plus or mir ter. es continuous botto	nus 5 de om chor	egree rotation d bearing.	I					
REACTIONS	(size) 1=8-9-4, 3 Max Horiz 1=67 (LC Max Uplift 1=-39 (LC 4=-14 (LC Max Grav 1=56 (LC (LC 2)	3=8-9-4, 4=8-9-4 15) : 23), 3=-39 (LC 22), 16) 35), 3=56 (LC 36), 4=	8) 9) 10) =671	Gable studs s This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	spaced at 4-0-0 oc s been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will w other members	vith any for a liv where fit betv) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om					
FORCES	(lb) - Maximum Com Tension 1-2=-161/278 2-3=-'	pression/Maximum	11)	Provide mech bearing plate	hanical connection capable of withsta	(by oth inding 3	ers) of truss t 9 lb uplift at j	o oint					
BOT CHORD	1-4=-204/211, 3-4=-2	204/211			at joint 5 and 14 lb	uplint a	t joint 4.						

в WFBS 2-4=-502/286 NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-4-10, Exterior(2R) 4-4-10 to 7-4-10, Interior (1) 7-4-10 to 8-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

Solution and the solution of t ORTH THURSDAY THURSDAY SEAL 28677 GA1 1111 111

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	V2	Valley	2	1	Job Reference (optional)	174582843

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 ID:2qBZcf5GNEVwQa83DMI8hUzqF3Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	: 1:35.9
---------	----------

WEBS

00010 - 110010													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.29	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 26 lb	FT = 20%	
LUMBER			5) Unbalance	d snow loads hav	e been cor	sidered for th	his						
TOP CHORD	2x4 SP No.2		design.										
BOT CHORD	2x4 SP No.3		Plates check	cked for a plus or	minus 5 de	egree rotation	า						

TOF CHORD	2X4 OF IN	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-5-4 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=6-5-4, 3=6-5-4, 4=6-5-4
	Max Horiz	1=48 (LC 13)
	Max Uplift	3=-7 (LC 22)
	Max Grav	1=68 (LC 22), 3=60 (LC 23), 4=423
		(LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-98/1	52, 2-3=-78/157
BOT CHORD	1-4=-116/	(124, 3-4=-116/124

NOTES 1) Unbalanced roof live loads have been considered for this design.

2-4=-292/194

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- about its center.
- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 7 lb uplift at joint 3.

LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	V1	Valley	2	1	Job Reference (optional)	174582844

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 ID:hsOgZy17YhteJpG5Qoiz_QzqF3V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood shee 4-0-12 oc purlins. Rigid ceiling directly bracing. (size) 1=4-1-4, 3 Max Horiz 1=-30 (LC Max Grav 1=-174 (LC (lb) - Maximum Com Tension 1-2=-216/84, 2-3=-2	athing directly applie applied or 10-0-0 oc 3=4-1-4 : 14) C 22), 3=174 (LC 23) ipression/Maximum 16/86	 7) Gable requi 8) Gable stude 9) This truss h chord live lo 10) * This truss on the botto 3-06-00 tall chord and a 11) Beveled pla surface with LOAD CASE(S) 	res continuous botto spaced at 4-0-0 oc as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. te or shim required truss chord at joint Standard	orn chor c or a 10.0 vith any for a liv s where l fit betv to provi (s) 1, 3.	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto de full bearing	ds. Dpsf om g					
BOT CHORD	1-3=-66/148											
 NOTES Unbalance this design Wind: ASC Vasd=95n II; Exp B; I Exterior(2) vertical lef forces & M DOL=1.60 	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) zone; cantilever left t and right exposed;C- IWFRS for reactions si volate grip DOL=1.60	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C and right exposed ; C for members and hown; Lumber	Dat. end							and a second	OR ESS	RO
 Truss desi only. For see Stand 	igned for wind loads in studs exposed to wind ard Industry Gable End	the plane of the trus (normal to the face) d Details as applicab	ss , ile,							1	SEA	L
or consult 4) TCLL: AS Plate DOL 1.15 Plate Exp : Ce=	qualified building desig CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; F 1 0: Cs=1 00: Ct=1 10	gner as per ANSI/TP roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partial	'l 1. .15 L = Iy						1111		2867	17 - CR. D. W
5) Unbalance	ed snow loads have be	en considered for th	is							14	SAN GIN	NSTIN
 6) Plates che about its c 	ecked for a plus or minu	us 5 degree rotation									L.G	ALIM

6) Plates checked for a plus or minus 5 degree rotation about its center.

Thummen a

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	PB1GE	Piggyback	2	1	Job Reference (optional)	174582845

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:43 ID:a0Km3IM?jZ1HRyrWpB9ytRzeKPd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-1-13,Edge], [4:0-1-13,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.18 0.30 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=6-11-2, Max Horiz 2=37 (LC Max Uplift 2=-2 (LC - Max Grav 2=226 (LC 6=247 (LC (lb) - Maximum Com Tension	athing directly applied applied. 4=6-11-2, 6=6-11-2 15) 16), 4=-6 (LC 17) 2 23), 4=226 (LC 24), 2 2) pression/Maximum	5) 6) 1. 7) 8) 9) 10)	This truss ha load of 12.0 j overhangs nu Plates check about its cen Gable requirt This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an N/A	s been designed f psf or 2.00 times fi pn-concurrent with ed for a plus or mi ter. es continuous bott s been designed fi d nonconcurrent v has been designed n chord in all area by 2-00-00 wide wi by other members.	for great lat roof lo o ther liv inus 5 de com chor for a 10.0 with any d for a liv s where ill fit betw	er of min roof sad of 15.4 ps /// loads. egree rotation d bearing.) psf bottom other live loa re load of 20.0 a rectangle veen the botto	live sf on ds. Dpsf Dom					
BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=95n II; Exp B; I Exterior(2I Zone; cani and right e MWFRS fr grip DOL= 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 4) Unbalance	2-6=-5/51, 4-6=-7/51 3-6=-113/22 ad roof live loads have b. CE 7-16; Vult=120mph rph; TCDL=6.0psf; BC Enclosed; MWFRS (enc) D -3-11 to 3-3-11, Int R) 4-3-8 to 7-3-8, Interi liever left and right exp exposed; C-C for memb por reactions shown; Lu 1.60 CE 7-16; Pr=20.0 psf; F DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10 ad snow loads have be	been considered for (3-second gust) DL=6.0psf; h=25ft; Ca ivelope) and C-C erior (1) 3-3-11 to 4-3 ior (1) 7-3-8 to 8-3-5 oosed ; end vertical le eres and forces & mber DOL=1.60 plate roof LL: Lum DOL=1. Pf=15.4 psf (Lum DOL Rough Cat B; Partially een considered for this	11) 12) at. LO 8, ft 	This truss de structural wo chord and 1/2 the bottom cl See Standarr Detail for Co consult qualit AD CASE(S)	sign requires that od sheathing be a 2" gypsum sheetro hord. d Industry Piggyba nnection to base ti fied building desig Standard	a minim pplied di ock be ap ack Trus: russ as a ner.	um of 7/16" rectly to the t oplied directly s Connection applicable, or	top / to		. antitution .	and survey of the	SEA 286	EEP. Stunner

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1C	Attic	2	1	Job Reference (optional)	174582846

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:38 ID:fSjG7qIATs2aNwZYVS_NigzqEup-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.7

Plate Offsets (X, Y): [4:0-3-0,Edge], [5:0-3-0,0-1-12], [7:0-4-0,0-2-4], [8:0-3-0,0-3-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.96 0.96 0.71	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.46 -1.28 0.17 0.16	(loc) 19-21 16 11 19-21	l/defl >999 >399 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT20HS Weight: 295 lb	GRIP 244/190 186/179 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 *Except 5-19,7-14:2x4 SP SS Left 2x4 SP No.3 1 Structural wood sheat except end verticals, (2.6.15 max) := 2,	11-13:2x4 SP No.2 * 22-23:2x4 SP No.2 -6-0 athing directly applied and 2-0-0 oc purlins	2) , I,	Wind: ASCE Vasd=95mph II; Exp B; Enc Exterior(2E) (Exterior(2R) 1 26-9-0, Exter 32-9-13 to 42 exposed ;C-C reactions sho DOL=1.60	7-16; Vult=120mpl ; TCDL=6.0psf; BC closed; MWFRS (e 0-1-12 to 4-5-4, Int 18-2-0 to 24-2-13, ior(2R) 26-9-0 to 3 2-9-4 zone; cantilev C for members and wm; Lumber DOL=	n (3-sec CDL=6.0 nvelope erior (1) Interior 2-9-13, ver left a forces 1.60 pla	ond gust) oppsf; h=25ft; () and C-C 4-5-4 to 18-2 (1) 24-2-13 to Interior (1) and right & MWFRS fo ate grip	Cat. 2-0, o					
BOT CHORD WEBS JOINTS	Rigid ceiling directly Row at midpt Brace at Jt(s): 22, 23	applied. 4-19, 8-12, 9-11, 8-14	3) 4 4)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10; spow loads have b	(roof LL Pf=20.4 Rough), Lu=50 een cor	: Lum DOL= psf (Lum DC Cat B; Partia)-0-0 psidered for the	1.15 DL = Ily					
REACTIONS	(size) 1=0-3-8, 1 Max Horiz 1=168 (LC Max Grav 1=2257 (L	1= Mechanical 313) C 53), 11=2294 (LC §	55)	design. 250.0lb AC u	nit load placed on	the bott	om chord, 22	2-5-8					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6) 7)	Provide adeq	uate drainage to p	revent v	vater ponding wise indicate	g. d					
TOP CHORD	1-3=-3776/0, 3-5=-36 6-7=-2314/0, 7-9=-30 10-11=-174/20	631/0, 5-6=-2470/0, 037/0, 9-10=-191/19,	8)	Plates checke about its cent	ed for a plus or mir ter.	nus 5 de	egree rotation	1					1111
BOT CHORD	17-18=-486/249, 16- 19-21=0/2898, 15-19 12-14=0/2541, 11-12	17=0/0, 1-21=0/3306 =0/3464, 14-15=0/34 2=0/2266	, , 164, 10)	* This truss h on the bottom	as been designed to as been designed a chord in all areas	for a liv	other live loa e load of 20.0 a rectangle	ds. Opsf			A.V.	ORTHCA	N. S.
WEBS	22-23=-33/307, 18-1 5-22=0/1180, 14-23= 15-17=-106/0, 17-19 14-17=-1315/0, 6-22 6-23=-397/83, 4-19= 3-21=-266/106, 8-12 9-11=-2967/0, 8-14=	9=0/1208, 18-22=0/1. =0/1027, 7-23=0/1088 =-1203/0, =-265/126, =861/85, 4-21=0/589, =-124/71, 9-12=0/459 -499/133	247, 3, 11) 12) 9,	3-06-00 tall b chord and an Refer to girde This truss des structural woo chord and 1/2 the bottom ch	y 2-00-00 wide will y other members, er(s) for truss to tru sign requires that a od sheathing be ap 2" gypsum sheetro nord.	l fit betw with BC ss conr a minim oplied di ck be ap	veen the botto DL = 10.0psf vections. um of 7/16" rectly to the to pplied directly	om top / to		. ann ann ann ann ann ann ann ann ann an		SEAI 2867	7
NOTES 1) Unbalance this design	ed roof live loads have 1.	been considered for	13) 14) LO	Graphical pur or the orienta bottom chord Attic room ch	rlin representation tion of the purlin al ecked for L/360 de Standard	does no long the eflection	ot depict the s top and/or	size			in the	SHAN L. GI	EP. St.

- this design.
- 14) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

July 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonehaven Rev 2	
	A1CSGE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174582847

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 30 15:01:38 ID:hh?VwEh_IZQ36MBV_zkam_zqEX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

July 2,2025

818 Soundside Road Edenton, NC 27932

Scale = 1:102.3

Plate Offsets (X, Y): [4:0-3-0,Edge], [5:0-3-0,0-1-12], [9:0-4-0,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20 20.4/20 10 0 10	f) Spacing .0 Plate Grip DOL .0 Lumber DOL .0 Rep Stress Incr .0* Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.63 0.50 0.92	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.42 0.07 0.04	(loc) 24-26 24-26 19 24-26	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 333 lb	GRIP 244/190 187/143 FT = 20%			
LUMBER FOP CHORD 30T CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *E SP No.2 2x4 SP No.3 Left 2x4 SP No. Structural wood	xcept* 17-16,26-4,12-20 3 1-6-0 sheathing directly appli	WE):2x4 ied,	EBS 5 7 3 2 1 2 1 2 6 6		=-9/473, =-9/627, 17=-42/7 30=-8/5 1-32=-15 4=-854/ -46/13, 2=0/81,	7-28=-8/491, 51, 9-23=0/43 20-33=0/154 703, 34, 12-30=-8/ 599/0, 75, 8-27=-3/3 11-30=-17/6, 14-33=-350/2	31, 6, ⁄546, 44, 4,	10) This cho 11) * Tr 3-00 cho 12) N/A	s truss h rd live lo nis truss he botto 6-00 tall rd and a	as bee ad nor has be m cho by 2-0 ny oth	en designed for a nconcurrent with sen designed for rd in all areas wh 0-00 wide will fit er members, with	10.0 psf bott any other live a live load of ere a rectang between the BCDL = 10.	om ≥ loads. 20.0psf gle bottom .0psf.		
3OT CHORD WEBS JOINTS	except end vert (4-7-13 max.): 5 Rigid ceiling din 1 Row at midpt 1 Brace at Jt(s) 28, 29, 30, 32	icals, and 2-0-0 oc purli 5-9. ectly applied. 12-32, 4-24 : 27,	ns NC 1) 2)	TES Unbalanced i this design. Wind: ASCE Vasd=95mh	5-18=-1432/28, 19 roof live loads have 7-16; Vult=120mp ;; TCDL=6.0psf; B(9-33=-90 e been o h (3-sec CDL=6.0	considered for ond gust) Opsf; h=25ft; C	Cat.	13) This stru cho the 14) Gra	s truss d ctural we rd and 1 bottom o phical p	esign r ood sh /2" gyp chord. urlin re	requires that a mi eathing be applie osum sheetrock b presentation doe	nimum of 7/1 od directly to e applied dir s not depict to the top and	the top rectly to the size		
REACTIONS	(size) 1=0-3 19=0 Max Horiz 1=18 Max Uplift 17=-3 Max Grav 1=17 18=1	3-8, 17=6-3-8, 18=6-3-8 -3-8 4 (LC 15) 325 (LC 48) 37 (LC 48), 17=13 (LC ⁻¹ 458 (LC 46), 19=1187 (, 13), LC 46)	II; Exp B; End Exterior(2E) (Exterior(2R) 26-9-0, Exter 32-9-10 to 42 exposed ; en	Closed; MWFRS (e) -1-12 to 4-5-2, Int 18-2-0 to 24-2-10, ior(2R) 26-9-0 to 3 2-9-4 zone; cantiley d vertical left and r	erior (1) Interior 2-9-10, ver left a ight exp	e) and C-C 4-5-2 to 18-2 (1) 24-2-10 to Interior (1) and right osed;C-C for	2-0,	bott	om chor CASE(S)	d. Stai	ndard				
FORCES	(lb) - Maximum	Compression/Maximum		Lumber DOL	=1.60 plate grip D	Stor rea	ctions snown;)					WH CA	ROUL			
TOP CHORD	Lension 1-3=-2813/0, 3- 6-7=-1497/89, 7 9-10=-1354/89, 11-13=-1457/57 14-15=-316/17, 16-17=-14/20	5=-2661/76, 5-6=-1497/ '-8=-1182/105, 8-9=-118 10-11=-1402/69, ', 13-14=-428/36, 15-16=-116/55,	89, 3) 32/105, 4)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1	ed for wind loads i ds exposed to win I Industry Gable Er alified building des 7-16; Pr=20.0 psf; .15); Pg=20.0 psf;	n the pla d (norm nd Detai igner as (roof LL Pf=20.4	ane of the trus al to the face) Is as applicat per ANSI/TF Lum DOL=1 psf (Lum DC	ss))le,)l 1. .15)L =		1111.	and the second s	OR FESS SEA		AND		
3OT CHORD	16-1/=-144/30 1-26=0/2495, 2 21-23=0/911, 2 18-19=-569/52,	4-26=0/2044, 23-24=0/1 0-21=0/911, 19-20=-557 17-18=-476/52	370, 7/52, 5) 6) 7) 8)	 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. Plates checked for a plus or minus 5 degree rotation about its center. Orbit and the prevent of the prevent						28677 L. GALMONIUM						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Gable studs spaced at 2-0-0 oc.

9)

