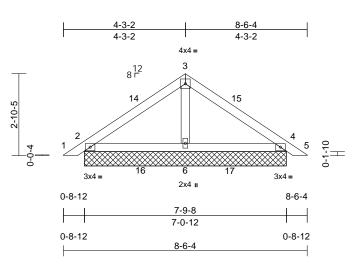


RE. C	Stonefield F	Pav 3						Trenco
	formation							818 Soundside Rd
		r: DRB Raleio	nh Proie	ect Na	ne [.] DRB R	aleigh Model	Track	Edenton, NC 27932
	ock: 00.00					DRB Raleig		
	: Stonefield			_				
		ze Leaf Drive LILI	INGTON,	NC 2754	16			
City:			,		tate: NC			
		ngineering C				ndividual Tru	uss Design	
	•	Special Load	•	dition	•			
		C2021/TPI20	14			esign Program		
	Code: ASCE					•		Envelope)/C-C hybrid Wind ASCE 7-16
	peed: 120 r oad: 40.0 p	1			Fl	oor Load: N/A	A psf	
	Roof Height				F	xposure Categ	ory: B	
Mean r	toor nergin	(leet): 23			L	xposure Categ	ory. D	
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date	
1	174680557	PB1GE	7/7/25					
2 3	174680559 174680560	A1J	7/7/25 7/7/25	29 30	174680604 174680605	A1E A1H	7/7/25 7/7/25	
4	174680561	A1K	7/7/25 7/7/25 7/7/25	31	174680606	PB1	7/7/25 7/7/25 7/7/25	
5	174680562		7/7/25	32 33	174680607 174680608	V2 V3	7/7/25	
6 7	174680565 174680566	M1GE M1	7/7/25	33 34 35	174680609	V4	7/7/25 7/7/25 7/7/25 7/7/25 7/7/25	
8 9	174680567 174680568	M2 M2GE	7/7/25	35 36	174680610 174680611	V5 V6	7/7/25 7/7/25	
10	174680569	M3A	7/7/25	37	174680612	V7	7/7/25	
11 12	174680570 174680571	M3 M3GE	7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25	38	174680614	A1CT	7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25	
13	174680572		1/1/20	39 40	174680615 174680616	A1DT A1ET	7/7/25 7/7/25	
14 15	174680583 174680584		7/7/25	41 42	174680616 174680617	CIAGR	7/7/25	
16	174680585 174680585 174680586	V11	7/7/25	43	174680618 174680619	C1GE	7/7/25	
17 18	174680586 174680587	D3GE D3A	7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25	44	174680620	V1	7/7/25	
19	174680588	D3	7/7/25					
20 21	174680589 174680590	M7GE	7/7/25					
22	174680592 174680593	C2GE C2GR	7/7/25 7/7/25 7/7/25 7/7/25 7/7/25 7/7/25					
23 24	174680594	B1GE	7/7/25					
25 26	174680595 174680596	B1 B1A	7/7/25					
27 28	174680597	A1AGE	1/1/25					
20	174680598	AIGE	7/7/25					

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified designs comply with ANSI/TPL1 Theory shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	PB1GE	Piggyback	2	1	Job Reference (optional)	174680557

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:37 ID:bPW0ZYwQQd2O3W0A80BCJFzuHYB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

zone; cantilever left and right exposed ; end vertical left

MWFRS for reactions shown; Lumber DOL=1.60 plate

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

and right exposed;C-C for members and forces &

grip DOL=1.60

Exp.: Ce=1.0: Cs=1.00: Ct=1.10

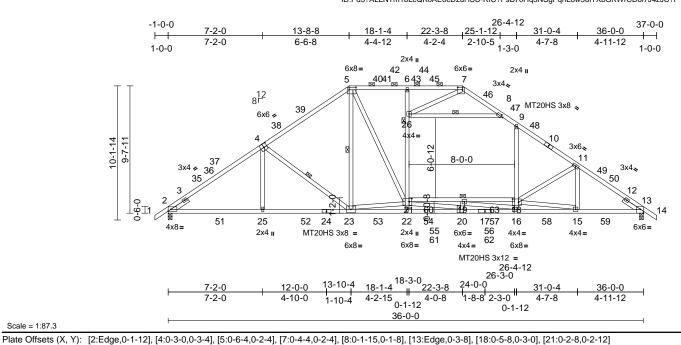
3)

4)

design.

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-AS	0.41 0.64 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly	, 4=7-0-12, 6=7-0-12 15) 16), 4=-6 (LC 17) C 49), 4=340 (LC 57),	8) 9)	load of 12.0 j overhangs n Plates check about its cen Gable requir This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	s been designed for on-concurrent with ed for a plus or miter. es continuous both s been designed find nonconcurrent was been designed n chord in all areas y 2-00-00 wide will y other members.	at roof lo other liv nus 5 de om chor or a 10.0 vith any for a liv s where	bad of 15.4 ps ve loads. egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle	sf on n ds. Dpsf					
this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-170/ 4-5=0/22 2-6=-8/86, 4-6=-10/8 3-6=-233/10 d roof live loads have E 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) 0-3-5 to 3-3-5, Inter 8) 4-3-8 to 7-5-0, Inter	69, 3-4=-170/69, 36 been considered for (3-second gust) DL=6.0psf; h=25ft; C tyelope) and C-C ior (1) 3-3-5 to 4-3-8,	12 at. 13	load of 250.0 panels and a Bottom Chor) This truss de structural wo chord and 1// the bottom cl) See Standar Detail for Co	d Industry Piggyba nnection to base tr fied building design	ead loca long the vith any a minim oplied d ock be a ck Trus uss as a	tted at all mid Top Chord a other live loa um of 7/16" irectly to the t oplied directly s Connection	and ds. top / to				NITH CA	ROLLIN

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1J	Attic	1	1	Job Reference (optional)	174680559

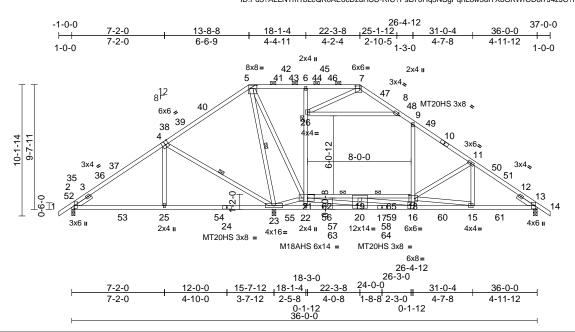
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:28 ID:Pd3?ALLNTm1bLcQK0AEocDzuHSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:87.3
---------	--------

			_											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	1.00	Vert(LL)	-0.22	18-19	>999	360	MT20	244/190	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.46	18-19	>929	240	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.09	13	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.07	18	>999	240			
BCDL	10.0					-						Weight: 259 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS JOINTS REACTIONS	1-6-0 Structural wood she except 2-0-0 oc purlins (3-5 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 26	t* ::2x4 SP No.2 1-6-0, Right 2x4 SP N athing directly appliec -7 max.): 5-7. applied. 8-26, 4-23, 5-23	o.3 I, 3)	Vasd=95mpf II; Exp B; En Exterior(2E) 22-3-8, Exter to 37-0-0 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0	7-16; Vult=120m ; TCDL=6.0psf; closed; MWFRS -1-0-0 to 2-7-3, In 13-8-8 to 18-9-11 ior(2R) 22-3-8 to e; cantilever left nd right exposed FRS for reaction ate grip DOL=1.6 7-16; Pr=20.0 ps DL = 1.15); Is=1. ; Cs=1.00; Ct=1. snow loads have	BCDL=6. (envelope nterior (1)), Interior 27-4-9, I and right ;C-C for n s shown; 60 sf (roof LL f; Pf=20. 0; Rough 10, Lu=50	Dpsf; h=25ft; () and C-C 2-7-3 to 13-8 (1) 18-9-10 tc therior (1) 27- exposed ; enu- nembers and Lumber :: Lum DOL=1 - psf (Lum DC Cat B; Partial)-0-0	-8,) 4-9 d I.15 JL = Iy	load pan Bott 15) This stru cho the 16) Gra or th bott	d of 250. els and tom Cho s truss d ctural w rd and 1 bottom o phical p ne orient om chor c room o	Olb live at all p ord, nor esign r ood sh /2" gyp chord. urlin re tation o rd. checke	epresentation doe of the purlin along d for L/360 deflec	located at all mid the Top Chord a any other live loa ninum of 7/16" d directly to the t e applied directly s not depict the s t he top and/or	l and ads. top y to
	Max Horiz 2=157 (LC Max Grav 2=1958 (L		52) 5)	This truss ha	s been designed osf or 2.00 times									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	overhangs n	on-concurrent with nit load placed o	th other liv	/e loads.							
TOP CHORD	1-2=0/52, 2-5=-2918 6-7=-2389/0, 7-8=-1- 9-11=-3122/0, 11-13	, ,		Provide adeo	supported at tw juate drainage to MT20 plates un	prevent	vater ponding						unin.	
BOT CHORD	2-25=0/2419, 23-25= 20-22=-428/739, 16- 15-16=0/3370, 13-15 18-19=-1063/319 4-25=0/363, 21-22=0	=0/2419, 22-23=-250/ -20=0/2890, 5=0/2772, 19-21=-718 0/448, 21-26=-11/582	779, 9) 3/13, 10] , 11]	Plates check about its cen This truss ha chord live loa * This truss h	ed for a plus or n ter. s been designed id nonconcurrent as been designe	for a 10.0 with any d for a liv	egree rotation) psf bottom other live load e load of 20.0	ds.				ORTH CA		1
NOTES 1) Unbalance	8-26=-1411/0, 7-26=	-18=-430/101, -21=0/3343),)73, 12)	on the bottor 3-06-00 tall b chord and ar Ceiling dead Wall dead loa Bottom chord	n chord in all are y 2-00-00 wide v y other members load (5.0 psf) on ad (5.0psf) on me d live load (40.0 p bad (10.0 psf) ap	as where vill fit betv s. member ember(s). osf) and a	a rectangle veen the botto s). 8-9, 8-26; 21-26, 9-18 dditional botto	om om		THE PARTY	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 BERIN	MULLIULIU
this design												A. G		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1L	Attic	1	1	Job Reference (optional)	174680560

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:29 ID:Pd3?ALLNTm1bLcQK0AEocDzuHSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

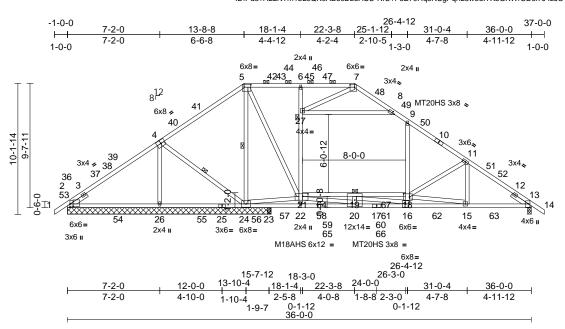
Page: 1

Scale = 1:89.1

Plate Offsets (X, Y): [2:0-2-9,0-0-4],	, [4:0-3-0,Edge], [5:0-	6-4,0-3-0)], [7:0-4-4,0-2-4	l], [8:0-1-15,0-1-8	8], [13:0-3	-2,0-1-4], [18	8:0-5-8,0	-3-0], [21	1:0-6-0,0	-3-0]		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-AS	0.81 0.99 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.45 0.06	(loc) 23-25 16-20 13 15-16	l/defl >754 >533 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS Weight: 260 lb	GRIP 244/190 187/143 186/179 FT = 20%
	No.2, 21-20:2x4 SP Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (4-6 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 26 (size) 2=0-3-0, 7 Max Horiz 2=-160 (L Max Grav 2=1282 (I 2=3-1345 (lb) - Maximum Com Tension 1-2=0/51, 2-5=-1790 6-7=-1421/0, 7-8=-9 9-11=-2020/0, 11-13 2-25=0/1419, 23-25 20-22=-1772/0, 16-2	1-6-0, Right 2x4 SP N eathing directly applied 5-9 max.): 5-7. applied. 4-23, 5-23 13=0-3-8, 23=0-3-8 (C 14) LC 42), 13=1744 (LC (LC 49) npression/Maximum D/0, 5-6=-1520/0,	40.3 1, 3 52), 5 2 9 22/0, 8807, 1 112/0	Vasd=95mpl II; Exp B; En Exterior(2E) 13-10-14, Ex 19-0-0 to 22: (1) 27-4-9 to exposed; er members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.() Unbalanced design.) This truss ha load of 12.0 overhangs n () 250.0lb AC (from left end () Provide adee () All plates are () This truss ha about its cer 0) This truss ha	7-16; Vult=120m n; TCDL=6.0psf; closed; MWFRS -1-0-0 to 2-7-3, li tterior(2R) 13-10- 3-8, Exterior(2R) 37-0-0 zone; car di vertical left and di vertical left and transformation (ST-00 plates and tertical di vertical di nonconcurrent as been designed	BCDL=6. (envelopenterior (1) -14 to 19- -22-3-8 tt statilever leid d right exp RS for read DOL=1.60 fr (roof LL fr; Pf=20.4 0; Rough 10, Lu=50 been con- for great flat roof l th other lin n the bott o points, prevent less other ninus 5 de- for a 10.0	Opsf; h=25ft; a) and C-C 2-7-3 to 0-0, Interior () 27-4-9, Inter ft and right toosed;C-C fo ctions shown 0 :: Lum DOL= 4 psf (Lum DOL Cat B; Partia 0-0-0 hsidered for t er of min rool bad of 15.4 p ve loads. om chord, 22 5-0-0 apart. water pondin. wise indicate agree rotation 0 psf bottom other live loa	1) rior r, 1.15 DL = ally his f live sf on 2-3-0 g. g. d. n	load par Bot 15) This stru- cho the 16) Gra or t bott 17) Atti LOAD (d of 250 hels and tom Cho s truss c loctural w ord and 1 bottom aphical p he orien tom cho c room c CASE(S	Olb liv(at all p ord, noo lesign ood st //2" gyl //2" gyl //2 gyl // gyl //2 gyl //2 gyl //2 gyl //2 gyl // gyl // gyl // gyl // gyl // gyl // gyl // gyl // gyl // gyl // gyl // gyl // g // g	en designed for a e and 3.0lb dead vanel points along nonconcurrent with requires that a m vantue applie posum sheetrock he apresentation doe of the purlin along d for L/360 deflect indard	moving concentrat located at all mid g the Top Chord an any other live loads inimum of 7/16" ed directly to the top be applied directly to ss not depict the siz g the top and/or ction.
WEBS NOTES 1) Unbalance this desigr	15-18=-1728/0, 7-26 20-21=0/4265, 4-23 5-23=-1552/0, 21-23 ed roof live loads have	26=-482/46, 18=-62/343, 5=0/454, 11-18=-660/ 5=0/805, 16-19=-72/1 =-734/64, 5-21=0/204 3=0/2141	13, 1 853,	on the bottor 3-06-00 tall t chord and ar 2) Ceiling dead Wall dead lo 3) Bottom chore	n chord in all are yy 2-00-00 wide v yy other member load (5.0 psf) on ad (5.0psf) on me d live load (40.0 p oad (10.0 psf) ap	as where vill fit betw s. member ember(s). osf) and a	a rectangle veen the bott (s). 8-9, 8-26 21-26, 9-18 dditional bott	om ; :om					EER.K

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

July 7,2025

ſ	Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
		A1K	Attic Structural Gable	1	1	Job Reference (optional)	174680561

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:29 ID:Pd3?ALLNTm1bLcQK0AEocDzuHSU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

9 Page: 1

Scale = 1:89.4

	X, T). [2.0-2-13,0-0-4	i, [2.0-2-12,0-2-4], [0.0	-0-4,0-2	-4], [7.0-4-4,0-2	2-4j, [0.0-1-10,0-1	-0], [13.0	,-3-2,0-1- 4], [10.0-5-0	,0- <u>J</u> -0],	[21.0-5-	0,0-2-0	, 	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.4/20.0 10.0 0.0*		2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.75 0.97 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.44 0.04	(loc) 18-19 16-20 13 15-16	l/defl >999 >552 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS	GRIP 244/190 187/143 186/179
BCDL	10.0											Weight: 259 lb	FT = 20%
	1-6-0 Structural wood she except 2-0-0 oc purlins (4-4 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 27 (size) 2=15-9-8 24=15-9-4 Max Horiz 2=-158 (L Max Uplift 23=-207 (L 23=198 (I 26=1104	0:2x4 SP No.2 1-6-0, Right 2x4 SP No eathing directly applied, 1-8 max.): 5-7. applied. 5-24, 4-24 , 13=0-3-8, 23=0-3-8, 8, 26=15-9-8 .C 14) (LC 84) C 42), 13=1841 (LC 52 LC 97), 24=1057 (LC 5 (LC 42)	1) 2) 5.3 , 3) 4) 2), 5)	this design. Wind: ASCE Vasd=95mph II; Exp B; En Exterior(2E) Exterior(2R) 22-3-8, Exter to 37-0-0 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DI Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0	roof live loads ha 7-16; Vult=120m ;; TCDL=6.0psf; E closed; MWFRS (1-0-0 to 2-7-3, Ir 13-8-8 to 18-9-10 ior(2R) 22-3-8 to the; cantilever left RS for reactions ate grip DOL=1.6 7-16; Pr=20.0 ps 15); Pg=20.0 ps 0L= 1.15); Is=1.0 ; CS=1.00; Ct=1. snow loads have s been designed osf or 2.00 times on-concurrent wit	ph (3-sec 3CDL=6. (envelope (terior (1))), Interior 27-4-9, 1 and right C-C for r s shown; 0 sf (roof LI f; Pf=20.4); Rough 10, Lu=50 been cor for great flat roof h	cond gust) Dpsf; h=25ft; and C-C 2-7-3 to 13-8 (1) 18-9-10 t nterior (1) 27 exposed; er exposed; er hombers and Lumber L: Lum DOL= b psf (Lum DC Cat B; Partia D-0-0 isidered for th er of min roof pad of 15.4 p	Cat. 3-8, o -4-9 nd 1.15 DL = illy his	cho 18- 14) N/A 15) This loac pan Bot 16) This stru cho the 17) Gra or ti bott	s truss h d of 250 lels and tom Chc s truss d lottural w wrd and 1 bottom uphical p he orien tom choi c room c	load (as bee .0lb live at all p ord, not lesign i ood sh /2" gyf chord. urlin re tation o rd. checke	10.0 psf) applied en designed for a e and 3.0lb deac banel points alon nconcurrent with requires that a n heathing be appl psum sheetrock epresentation do of the purlin alon d for L/360 defle	and additional bottom d only to room. 19-21, a moving concentrated d located at all mid ug the Top Chord and nany other live loads. ninimum of 7/16" ied directly to the top be applied directly to res not depict the size ug the top and/or action.
FORCES	(lb) - Maximum Com Tension 1-2=0/45, 2-5=-1253		,	from left end	nit load placed or supported at two quate drainage to	points,	5-0-0 apart.				J.	WH CA	ROUT
BOT CHORD	2-26=0/684, 24-26= 22-23=-1133/0, 20-2 16-20=0/2465, 15-1 19-21=-1010/0, 18-7 8-27=-991/0, 4-26= 21-27=-324/300, 6-2 16-18=-218/178, 9-7 5-24=-1317/0, 7-27=	3=-2762/0, 13-14=0/52 0/685, 23-24=-1133/0, 22=-1405/0, 6=0/3736, 13-15=0/22 9=-2163/0 929/0, 21-22=0/493, 27=-470/51, 18=-2/387, 19-20=-707 =0/933, 4-24=-27/331, =0/1697, 11-15=0/424, 18=-1524/0,	37, 32, 10 11 70, 12	Plates check about its cen) This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) Ceiling dead	MT20 plates unl ed for a plus or m ter. s been designed d nonconcurrent has been designe n chord in all area y 2-00-00 wide w ny other members load (5.0 psf) on me	hinus 5 de for a 10. with any d for a liv as where vill fit betw s. member	egree rotation 0 psf bottom other live loa e load of 20.1 a rectangle ween the botto (s). 8-9, 8-27;	n ads. Opsf om		4.1111		SEA 0363	EER H

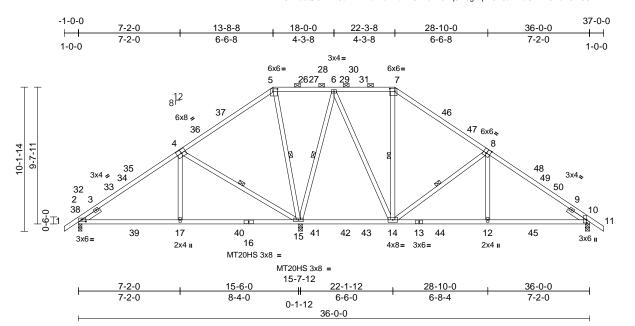

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X, Y): [2:0-2-13,0-0-4], [2:0-2-12,0-2-4], [5:0-6-4,0-2-4], [7:0-4-4,0-2-4], [8:0-1-15,0-1-8], [13:0-3-2,0-1-4], [18:0-5-8,0-3-0], [21:0-5-0,0-2-8]

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1M	Piggyback Base	1	1	Job Reference (optional)	174680562

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:31 ID:VClx?caQvcLL223uMW2BcEzuHPb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

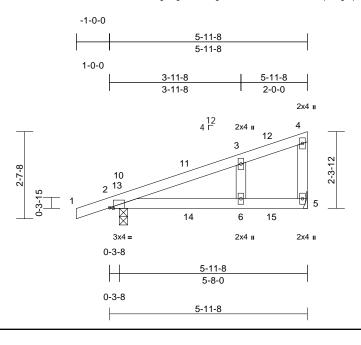
Scale = 1:81.1

Plate Offsets (X	(, Y): [2:0-2-5,Edge],	[5:0-3-12,0-2-0], [7:0	-4-4,0-2-4	l], [8:0-3-0,Edg	je], [10:0-2-9,0-0-4	l]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.74 0.54 0.44	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.33 0.02	(loc) 15-17 15-17 2 17-24	l/defl >680 >553 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 220 lb	GRIP 244/190 187/143 FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	(size) 2=0-3-0, 1 Max Horiz 2=-157 (L) Max Grav 2=647 (LC 15=1951 ((lb) - Maximum Com Tension 5-6=-7/307, 6-7=-33 2-5=-704/381, 7-10= 2-17=-50/584, 15-17 14-15=-108/114, 12- 7-14=-193/58, 6-15= 4-15=-850/52, 4-17= 8-12=0/392, 5-15=-4	I-6-0, Right 2x4 SP N athing directly applied -0 max.): 5-7. applied. 7-14, 6-15, 4-15, 8-1 5-15 00=0-3-8, 15=0-3-8 C 14) C 49), 10=940 (LC 51 (LC 47) pression/Maximum 3/129, 1-2=0/51, -:1126/105, 10-11=0/ :=-50/584, 14=0/864, 10-12=0/8 :-891/30, 6-14=0/875 0/418, 8-14=-767/60 199/27	1, 3) 4, (4)), 5) (52 8) (65 9) , 10	Vasd=95mph II; Exp B; Enn Exterior(2E) 13-8-8, Exter to 22-3-8, Ex 27-4-3 to 37- end vertical I forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs n Provide adec All plates are Plates check about its cen This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall t chord and ar) This truss ha	7-16; Vult=120mp 7; TCDL=6.0psf; B closed; MWFRS ((-1-0-0 to 2-6-14, Ir ior(2R) 13-8-8 to ' terior(2R) 22-3-8 to 0-0 zone; cantileve eft and right expos FRS for reactions ate grip DOL=1.60 7-16; Pr=20.0 psf; DL = 1.15); Is=1.00 ; Cs=1.00; Ct=1.1 snow loads have to s been designed f pon-concurrent with uate drainage to p MT20 plates unle ed for a plus or miter. s been designed f id nonconcurrent with uas been designed f an chord in all areas y 2-00-00 wide wity y other members, s been designed f lb live and 3.0lb d t all panel points a	CDL=6. cDL=6. envelope nterior (1 18-9-3.1 (1 8-9-3.1 (1) o 27-4-2 er left ar sed;C-C shown;) f (roof LL Pf=20.4 ; Rough 0, Lu=50 or greate at roof lu or greate at roof lu or a 10. with any l for a liv s where ll fit betw with BC or a ano or a ano sed loca	Dipsf; h=25ft; and C-C) 2-6-14 to) 2-6-14 to) 2-6-14 to interior (1) 18 i, Interior (1) ad right expo for members Lumber : Lum DOL= 4 psf (Lum Di- Cat B; Partia)-0-0 isidered for t er of min roo pad of 15.4 p re loads. water pondin wise indicate agree rotation) psf bottom other live load e load of 20. a rectangle reen the bott DL = 10.0ps ing concent ted at all mid	B-9-3 sed; and c1.15 OL = ally this f live sof on g. ed. n g. ed. n ads. 0psf f. rated	or th	ne orien om cho	tation (of the purlin along	ROLIN

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

ENGINEERING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

GILD.... July 7,2025

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3	
	M1GE	Monopitch Structural Gable	1	1	Job Reference (optional)	174680565

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:35 ID:PWBgIPEgwH1ZSA5gEumzRxzuW25-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.7

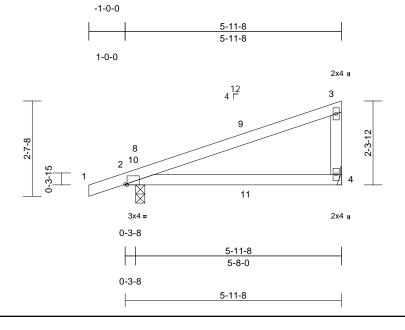
Plate Offsets (X, Y): [2:0-1-6,Edge]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.67	DEFL Vert(LL)	in -0.12	(loc) 6-9	l/defl >596	L/d 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.18	6-9	>381	240		211,100
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.10	6-9	>731	240		
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		4)	Unbalanced design.	snow loads have l	been coi	nsidered for	this					
BOT CHORD			5)		as been designed f	for areat	er of min roo	f live					
WEBS	2x4 SP No.3		0,		psf or 2.00 times f								
OTHERS	2x4 SP No.3				on-concurrent with								
BRACING			6)	Plates check	ked for a plus or m	inus 5 d	egree rotatio	n					
TOP CHORD	Structural wood she	athing directly applie	d.	about its cer									
	except end verticals		7)		spaced at 2-0-0 of								
BOT CHORD													
REACTIONS	(size) 2=0-3-0, 5	5= Mechanical	0)										
	Max Horiz 2=53 (LC	12)	9)		has been designed m chord in all area			.opsi					
	Max Uplift 2=-52 (LC	2 12), 5=-42 (LC 12)			by 2-00-00 wide wi			tom					
	Max Grav 2=391 (L0	C 44), 5=368 (LC 43)			ny other members.		veen the bot	lom					
FORCES	(lb) - Maximum Com	pression/Maximum	1(er(s) for truss to tr		nections.						
	Tension				hanical connection			to					
TOP CHORD	1-2=0/26, 2-3=-214/-	46, 3-4=-38/67,		bearing plate	e capable of withst	anding 4	12 lb uplift at	joint					
	4-5=-310/98			5.									
BOT CHORD		0	12		Simpson Strong-Ti								
WEBS	3-6=-126/126				ed to connect truss								
NOTES				,	(s) 2. This connect		r uplift only a	ind					
	CE 7-16; Vult=120mph				nsider lateral force			and a st				MILLIN	Ultra Contractor
	nph; TCDL=6.0psf; BC		Cat. 13	,	as been designed f		0					W'TH CA	Rolly
	Enclosed; MWFRS (er		•		Olb live and 3.0lb d at all panel points a						N	OR FESE	A Lill
	E) -1-0-0 to 2-0-0, Inte				rd, nonconcurrent						1.	O' FESS	toiz Vill
,	tilever left and right exp	,			esign requires that					6	25	IP /	City
	porch left and right exp s & MWFRS for reaction		ers '		ood sheathing be a			top				10	
) plate grip DOL=1.60	IIS SHOWII, LUIIDEI			2" gypsum sheetro					-		CLV.	r 1 E
DOL-1.00	place grip DOL-1.00						••	•		_		SEA	

DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

the bottom chord. LOAD CASE(S) Standard


SEAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	M1	Monopitch	5	1	Job Reference (optional)	174680566

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:35 ID:zsmwVPH7LgVeO190IS9CIzzuZtL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.7

Plate Offsets (X, Y): [2:0-0-10,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-AS	0.79 0.88 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.21 0.00 0.08	(loc) 4-7 4-7 2 4-7	l/defl >489 >338 n/a >833	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (REACTIONS (REACTIONS (NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=95mg I; Exp B; Ei Exterior(2E	Vax Horiz 2=53 (LC Vax Uplift 2=-52 (LC Vax Grav 2=391 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-216/ 2-4=-87/186 d roof live loads have	applied. 4= Mechanical 12) 5 (12), 4=-42 (LC 12) 5 (12), 4=-368 (LC 42) pression/Maximum 52, 3-4=-311/123 been considered for (3-second gust) DL=6.0psf; h=25ft; Ci vielope) and C-C rior (1) 2-0-0 to 5-9-1	abou 7) This chorc 8) * This d, on th 3-06- chorc 9) Refei 10) Provi beari 4. 11) One recor UPLI does 12) This load pane Botto 13) This stat. struc chorc 2 the b	s checked for a plus or n its center. Iruss has been designed tive load nonconcurrent s truss has been designe e bottom chord in all area to girder(s) for truss to t de mechanical connection ng plate capable of withs H2.5A Simpson Strong-T nmended to connect trus FT at jt(s) 2. This connect not consider lateral force truss has been designed of 250.0lb live and 3.0lb o ls and at all panel points m Chord, nonconcurrent truss design requires tha tural wood sheathing be d and 1/2" gypsum sheet ottom chord. ASE(5) Standard	for a 10. with any d for a liv as where vill fit betw russ conr on (by oth tanding 4 Tie conne is to bear tion is for s. for a mo dead loca along the with any t a minim	D psf bottom other live load e load of 20.1 a rectangle veen the bott nections. ers) of truss i 21 b uplift at j ctors ing walls due r uplift only an ving concentri ted at all mic D Chord a um of 7/16" irectly to the	ads. Opsf com to joint e to nd rated d and ads. top				WH CA	ROLIN

DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15); Pf=15.4 psf (Lum DOL 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

G

mm July 7,2025

SEAL

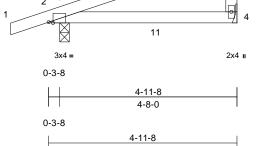
036322

VIIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Contraction of the


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	M2	Monopitch	4	1	Job Reference (optional)	174680567

2-3-8

ID:xb8j6tRj8B2INdJkAF2j5JzuW1r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 4-11-8 4-11-8 1-0-0 2x4 🛛 12 4 Г 3 0 9 1-11-12 8 10 2 9 4 ς μ

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:35

Page: 1

Scale = 1:30.3

Plate Offsets (X, Y): [2:0-1-6,Edge]

zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on

overhangs non-concurrent with other live loads.

DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3)

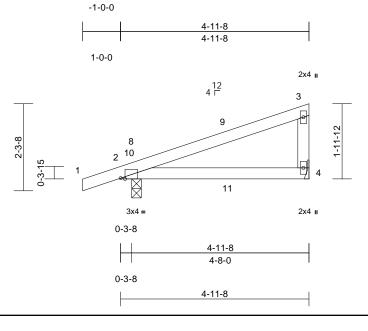
4)

5)

design.

		-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	TPI2014	CSI TC BC WB Matrix-AS	0.61 0.67 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >730 >530 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD SOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD SOT CHORD BOT CHORD SOT CHORD SOT CHORD SOT CHORD REACTIONS SOT CHORD SOT CHORD REACTIONS SOT CHORD SOT CHOR	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-0,4 Max Horiz 2=46 (LC Max Uplift 2=-47 (LC Max Grav 2=371 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-197/ 2-4=-66/170 ed roof live loads have	A pplied. 4 = Mechanical 12) C 12), 4=-34 (LC 12) C 43), 4=-347 (LC 42) pression/Maximum 49, 3-4=-301/100 been considered for a (3-second gust)	r [2017] 2017]	about its cer This truss ha chord live loc * This truss I on the botton 3-06-00 tall I chord and an Refer to gird Provide mec bearing plate 4. One H2.5A S recommende UPLIFT at jt does not cor This truss ha load of 250.0 panels and a Bottom Choi This truss de structural wo	as been designed ad nonconcurrent nas been designed n chord in all are: yo 2-00-00 wide v hy other members er(s) for truss to t hanical connectic e capable of withs Simpson Strong-T ad to connect trus (s) 2. This connect usider lateral force is been designed Olb live and 3.0lb at all panel points rd, nonconcurrent sign requires tha pod sheathing be	I for a 10.0 t with any ed for a liv as where will fit betw s. Truss conro on (by oth standing 3 Fie conne is to bear ction is for es. I for a mov dead loca along the t with any t a minim	D psf bottom other live load e load of 20.1 a rectangle veen the bott nections. ers) of truss i 44 lb uplift at j ctors ing walls due ving concentri ted at all mic other live load other live load um of 7/16" irectly to the	ads. Opsf com to joint e to nd rated d and ads. top					
 Unbalance this design Wind: ASC Vasd=95n II; Exp B; 	n. CE 7-16; Vult=120mph	n (3-second gust) DL=6.0psf; h=25ft; (nvelope) and C-C	r F 13) ⁻ Cat. S	panels and a Bottom Chor This truss de structural wo	at all panel points d, nonconcurrent esign requires tha bod sheathing be [2" gypsum sheet hord.	along the t with any at a minim applied d	Top Chord a other live loa um of 7/16" irectly to the	and ads. top				TH CA	ROLIN

the bottom chord. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	M2GE	Monopitch Structural Gable	1	1	Job Reference (optional)	174680568

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:35 ID:XH??2gcVrUpJ3rfNR_BI?fGzuW1d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.3

Plate Offsets (X, Y): [2:0-1-6,Edge]

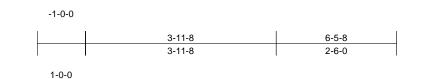
											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-AS	0.61 0.67 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.11 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >730 >530 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(Z zone; canti exposed; p and forces DOL=1.60 3) Truss desig only. For s see Standa or consult d 4) TCLL: ASC Plate DOL 1.15 Plate	Max Horiz 2=46 (LC Max Uplift 2=-47 (LC Max Grav 2=371 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-197/ 2-4=-66/170 d roof live loads have	applied. 4= Mechanical 12) C 12), 4=-34 (LC 12) C 43), 4=347 (LC 42) pression/Maximum 49, 3-4=-301/100 been considered for (3-second gust) DL=6.0psf; h=25ft; C twelope) and C-C rior (1) 2-0-0 to 4-9-1 posed; end vertical 1 bosed;C-C for memb ons shown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 7=15.4 psf (Lum DO Rough Cat B; Partial	load overt 7) Plate abou 8) Gable 9) This chorc 10) * This chorc 10) * This chorc 11) Refer 12) Provi beari 4. 13) One I recor 14) This 12) Provi beari 4. 13) One I recor 14) This 120 Provi beari 4. 13) One I recor 14) This 120 Provi beari 4. 13) One I recor 14) This 120 Provi beari 4. 13) One I recor 10) * This 10) * This 4. 13) One I recor to act 10) * This 10) * This 12) Provi beari 4. 13) One I recor 10) * This 10) * This 12) Provi beari 4. 13) One I recor to act 10) * This 10) * This 1	russ has been designed of 12.0 psf or 2.00 times angs non-concurrent wi s checked for a plus or r its center. e studs spaced at 2-0-0 russ has been designed live load nonconcurrent to girden been designed a bottom chord in all are 00 tall by 2-00-00 wide v and any other members to girder(s) for truss to f de mechanical connecting plate capable of withs 12.5A Simpson Strong mmended to connect trus FT at jt(s) 2. This conner not consider lateral force russ has been designed of 250.0lb live and 3.0lb s and at all panel points m Chord, nonconcurrent russ design requires tha ural wood sheathing be and 1/2" gypsum sheet ottom chord. ASE(S) Standard	flat roof lift th other lift minus 5 de oc. If for a 10.1 t with any ed for a livias where will fit betw s. truss conno on (by oth standing 3 Tie conne ss to bear ction is for es. If for a mor dead loca along the t with any at a minim	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa rectangle veen the bott hections. ers) of truss 84 lb uplift at ctors ing walls due r uplift only a ving concent ated at all mid other live loa other live loa other live loa other live tothe	osf on n ads. Opsf tom to joint e to nd rated d and ads. top				SEA 0363	• –

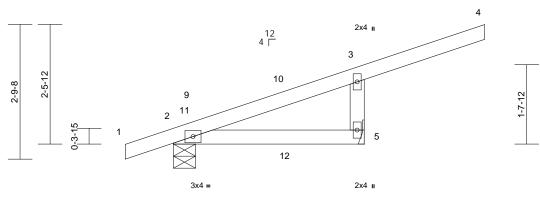
- DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G


mm


July 7,2025

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3	
	МЗА	Monopitch	3	1	Job Reference (optional)	174680569

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:?I4pqppnc04IDYIu2zdEO3zuW1L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:	23.9
------------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.67 0.46 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.04 0.00 -0.01	(loc) 5-8 5-8 2 5-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
	3-11-8 oc purlins, e Rigid ceiling directly bracing.	 applied or 10-0-0 oc 5= Mechanical 12) 12), 5=-51 (LC 13) 	8) 9)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 5. 0) One H2.5A S recommende UPLIFT at jt(s been designed f ad nonconcurrent has been designec n chord in all area by 2-00-00 wide wi hy other members. er(s) for truss to tr hanical connection capable of withst Simpson Strong-Ti d to connect truss s) 2. This connect	with any f for a liv s where ill fit betw uss conr h (by oth anding f e conne to bear ion is fo	other live loa e load of 20.0 a rectangle veen the botton nections. ers) of truss t if lb uplift at j ctors ing walls due	Opsf om oo oint to					
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-169/	pression/Maximum	11	 This truss has load of 250.0 panels and a 	sider lateral force s been designed f lb live and 3.0lb d t all panel points a	or a more ead located	ated at all mid Top Chord a	and					
Vasd=95m II; Exp B; E Exterior(2E zone; canti exposed;C reactions s DOL=1.60	Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte ilever left and right ex t-C for members and f shown; Lumber DOL=	DL=6.0psf; h=25ft; Ca nvelope) and C-C rior (1) 2-0-0 to 6-5-8 posed ; end vertical le orces & MWFRS for	at. ft	Bottom Chor	d, nonconcurrent Standard	with any	other live loa	ds.		Cy.	The second se	ORTH CA	

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

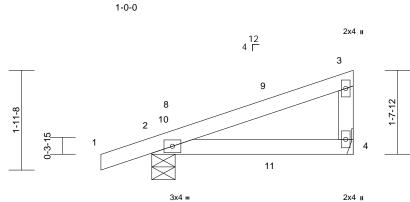
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	M3	Monopitch	6	1	Job Reference (optional)	174680570

3-11-8 3-11-8

3-11-8


-1-0-0

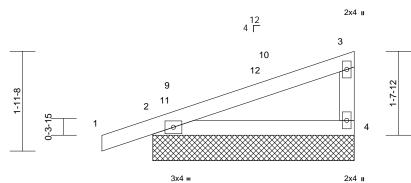
Structural, LLC, Thurmont, MD - 21788,

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:?l4pqppnc04IDYlu2zdEO3zuW1L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:22.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.47 0.48 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.05 0.00 0.01	(loc) 4-7 4-7 2 4-7	l/defl >999 >912 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E zone; cant exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Max Horiz 2=38 (LC Max Grav 2=38 (LC (Max Grav 2=352 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-179/ 2-4=-21/151 CE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte ilever left and right ex, i-C for members and f ishown; Lumber DOL=1 CE 7-16; Pr=20.0 psf; E DOL = 1.15); Is=1.0; 1 DOL = 1.15); Is=1.0; 1 .0; Cs=1.00; Ct=1.10 d snow loads have be has been designed fo 0 psf or 2.00 times fla non-concurrent with of cked for a plus or min	r applied or 10-0-0 oc 4= Mechanical 12) C 12) C 47), 4=327 (LC 42) ppression/Maximum 47, 3-4=-289/67 a (3-second gust) DL=6.0psf; h=25ft; C nvelope) and C-C rior (1) 2-0-0 to 3-9-1 posed ; end vertical la orces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=1 Pf=15.4 psf (Lum DOL Rough Cat B; Partiall een considered for thi r greater of min roof I t roof load of 15.4 psi other live loads.	chord live loc 7) * This truss I on the bottoo 3-06-00 tall I chord and an 8) Refer to gird 9) One H2.5A S recommende UPLIFT at jt does not cor 10) This truss he load of 250.0 panels and a Bottom Chor LOAD CASE(S) at. 2 s ive	as been designed f ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide win y other members. er(s) for truss to tri Simpson Strong-Ti ed to connect truss (s) 2. This connect sider lateral forces is been designed f Olb live and 3.0lb d it all panel points a d, nonconcurrent to Standard	with any d for a liv s where ill fit betw uss conne conne to bear to bear to bear to a mov lead loca along the	other live load e load of 20.1 a rectangle veen the bottinections. ctors ing walls due r uplift only ar ving concentrited at all mid e Top Chord a	Opsf om to nd rated I and		4		SEA 0363	AL 322	

July 7,2025

INFEDING 818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

J	ob	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
		M3GE	Monopitch Supported Gable	1	1	Job Reference (optional)	174680571

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:X5aHl6DUr9E4gcnEUPjzD0zuW0q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-11-8

Scale = 1:22.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MP	0.47 0.49 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95m II; Exp B; E (3E) -1-0-C cantilever exposed;C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=3-11-8, Max Horiz 2=38 (LC Max Uplift 2=-14 (LC Max Grav 2=352 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-179/ 2-4=-37/151 CE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er 0 to 2-0-0, Exterior(2N) left and right exposed c-C for members and fi shown; Lumber DOL= ⁻	xcept end verticals. applied or 10-0-0 oc 4=3-11-8 12) C 43), 4=339 (LC 47) pression/Maximum 47, 3-4=-289/107 (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C Cc) 2-0-0 to 3-9-12 zon ; end vertical left orces & MWFRS for	8 5 1) 1 1 Cat. L ormer	 load of 12.0 overhangs n Plates check about its cer Gable requir Gable studs This truss ha chord live lo * This truss lo on the botton 3-06-00 tall 1 chord and aa Provide mee bearing plate 2 and 14 lb o This truss ha load of 250.0 panels and a 	es continuous botto spaced at 2-0-0 oc as been designed fo ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. thanical connection e capable of withsta uplift at joint 2. as been designed fo Dib live and 3.0lb de at all panel points al rd, nonconcurrent w	at roof le other linus 5 de om chor or a 10. vith any for a liv where lift betw (by oth unding 1 or a more and loca ong the	bad of 15.4 p ve loads. egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 4 lb uplift at j ving concentr ted at all mid P Top Chord a	sf on n dds. Opsf oom to joint rated and				NITH CA	ROUT

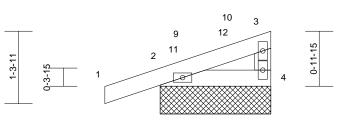
- DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	M3AGE	Monopitch Supported Gable	1	1	Job Reference (optional)	174680572

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:t7QxPRLe5N1TQDVS1aTqQ6ztfd6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

-1-0-0

1-0-0

2x4 =

2-0-0

2x4 II

Scale = 1:20.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=2-0-0, - Max Horiz 2=24 (LC Max Uplift 2=-22 (LC Max Grav 2=315 (LC	4=2-0-0 12) C 12) C 43), 4=308 (LC 47)	10	about its cer Gable requir Gable studs This truss ha chord live lo) * This truss l on the bottoo 3-06-00 tall l chord and an bearing plate 2 and 22 lb o 20 This truss ha	es continuous be spaced at 2-0-0 as been designe ad nonconcurrer nas been design m chord in all are by 2-00-00 wide ny other membeu chanical connecti e capable of with uplift at joint 2. as been designed	ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw rs. on (by oth standing 2 d for a mor	d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 22 lb uplift at ving concenti	ads. Opsf tom joint rated					
FORCES	(lb) - Maximum Corr Tension	npression/Maximum		load of 250.0	Olb live and 3.0lb	dead loca	ted at all mic	d					

TOP CHORD 1-2=0/26, 2-3=-134/46, 3-4=-267/39 BOT CHORD 2-4=-25/94

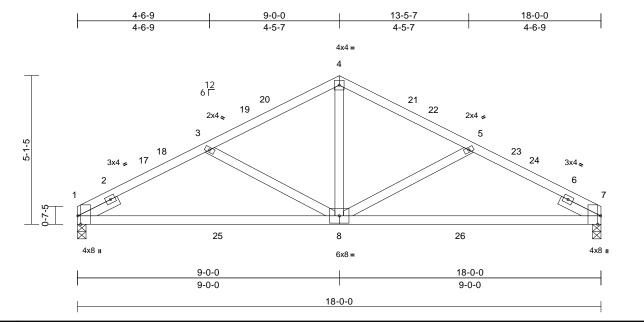
NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

mmini ORTH Within the state 1111111111 SEAL 036322 G minin July 7,2025

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

J	lob	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
		D3B	Common	2	1	Job Reference (optional)	174680583

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:34 ID:NLLMsAVMfiJt51hXRIVy9GzuZuM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.6

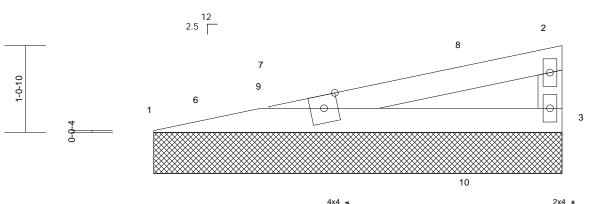
Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-3-8,Edge]

	, , , , , <u>, [</u> = -, <u>-</u> g-],	[
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		1/TPI2014	CSI TC BC WB Matrix-AS	0.55 0.56 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.33 0.02 0.02	(loc) 8-15 8-15 7 8	l/defl >819 >636 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
	2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 - 1-6-0 Structural wood she Rigid ceiling directly	athing directly applie applied. 7=0-3-8 : 12)	No.3 7)	about its cer This truss ha chord live loo * This truss h on the bottou 3-06-00 tall h chord and an This truss ha load of 250.0 panels and a Bottom Chor	ted for a plus or n tter. as been designed ad nonconcurrent has been designe m chord in all are- by 2-00-00 wide v ny other members as been designed Olb live and 3.0lb at all panel points 'd, nonconcurrent sign requires tha	I for a 10.0 t with any ed for a liv as where will fit betw s. I for a mov dead loca along the t with any) psf bottom other live loz e load of 20. a rectangle veen the bott ving concentr ted at all mic Top Chord a other live loz	ads. Opsf om rated J and					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-3=-1090/174, 3-4= 5-7=-1090/174 1-7=-109/917 4-8=0/487, 5-8=-332	-836/136, 4-5=-836,	Ĺ	structural wo	ood sheathing be '2" gypsum sheet hord.	applied d	rectly to the						
 this design Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Exterior(2F 17-10-4 zc vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=' 	ad roof live loads have L CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) 0-1-12 to 3-1-12, Int N) 9-0-0 to 12-0-0, Inte one; cantilever left and t and right exposed;C- 1WFRS for reactions si plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F DOL = 1.15); Fg=20.0 psf (=1.15); Cs=1.00; Ct=1.10 ad snow loads have be	(3-second gust) DL=6.0psf; h=25ft; (welope) and C-C erior (1) 3-1-12 to 9 rior (1) 12-0-0 to right exposed ; end C for members and hown; Lumber roof LL: Lum DOL= ² Pf=15.4 psf (Lum DOL Rough Cat B; Partial	Cat. -0-0, 1.15 DL = Ily							C. HILLING		SEA 0363	EER ALU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 7,2025


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	V10	Valley	1	1	Job Reference (optional)	174680584

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 03 15:47:38 ID:_J1GejO9E47myTOFTvN5uRzJ4mb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4x4 =

4-11-7

Scale = 1:14											1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.88	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		9) This truss chord live 10) * This trus on the bot	ds spaced at 4-0-0 has been designe load nonconcurren s has been design tom chord in all ar Il by 2-00-00 wide	d for a 10. nt with any led for a liv eas where	other live loa ve load of 20. a rectangle	ads. .0psf					
TOP CHORD BOT CHORD	Structural wood she except end verticals Rigid ceiling directly		chord and 11) This truss	any other membe has been designe	rs. d for a mo	ving concent	rated					

panels and at all panel points along the Top Chord and

Bottom Chord, nonconcurrent with any other live loads.

structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to

12) This truss design requires that a minimum of 7/16"

the bottom chord.

LOAD CASE(S) Standard

- **REACTIONS** (size) 1=4-11-7, 3=4-11-7 Max Horiz 1=19 (LC 12) Max Grav 1=349 (LC 43), 3=349 (LC 42)
- FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=-752/226, 2-3=-302/78 BOT CHORD 1-3=-264/734

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-3 to 2-9-15, Interior (1) 2-9-15 to 4-10-14 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

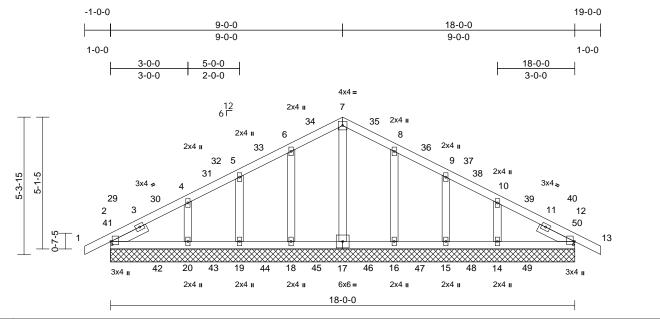
Plates checked for a plus or minus 5 degree rotation 6) about its center.

7) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Structural, LLC, Thurmont, MD - 21788,		1 un: 25.20 S May 13 2025 :KegbHYDJ4GvXpZUCH				k Industrie	es, Inc. TXbGł		I74680585
2.5 T	ID: 5-9-1					qnL8w3ul 9-9-1	TXbGŀ		Page: 1
2-0-1									-
2-0-1	2-9-1		I	I		4-0-0)		
2-0-1									1
2-0-1								2)	(4 m
2-0-1			2	2x4 ш				3	1
2-0-1			2			11		0	-
		10							
1	8 9 12		e						
₹ 1	OT]					4
********	4x4 =	13	5	5		14	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SI (4 II
	777 2		2	2x4 u					
		9-9-	-1						
Scale = 1:22.2									
	2-0-0 CSI 1.15 TC	0.44	DEFL Vert(LL)		in (loc) /a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
	1.15 BC YES WB	0.80 0.07	Vert(TL) Horiz(TL)		/a - 01 5	n/a n/a	999 n/a		
CLL 0.0* Code I CDL 10.0	IRC2021/TPI2014 Mat	trix-AS						Weight: 30 lb	FT = 20%
$\begin{array}{llllllllllllllllllllllllllllllllllll$	about its center. 7) Gable requires cor 8) Gable studs space 9) This truss has bee chord live load nor 10) * This truss has be on the bottom choi 3-06-00 tall by 2-0 chord and any oth 11) Provide mechanic bearing plate capa 12) This truss has bee load of 250.0lb live	en designed for a 10.0 nconcurrent with any een designed for a live ord in all areas where 00-00 wide will fit betw eer members. al connection (by othe able of withstanding 3	d bearing. 0 psf bottor other live I e load of 2 a rectangle veen the bo ers) of trus 8 lb uplift at ving concented at all m	m loads. 20.0psf e ottom ss to t joint 4. ntrated nid					
OT CHORD 1-5=-253/683, 4-5=-39/51 VEBS 2-5=-378/248 IOTES) Unbalanced roof live loads have been considered for	Bottom Chord, nor 13) This truss design r structural wood sh	nconcurrent with any	other live I um of 7/16 irectly to th	loads. 5" ne top					
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) and C-C Corne (3E) 0-1-3 to 2-9-15, Exterior(2N) 2-9-15 to 9-8-8 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 	er					G	A.	OR DEESS	ROUT
Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL= 1.15 Plate DOL= 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10	5					trunner.			EP. K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

EN

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	D3GE	Common Supported Gable	1	1	Job Reference (optional)	174680586

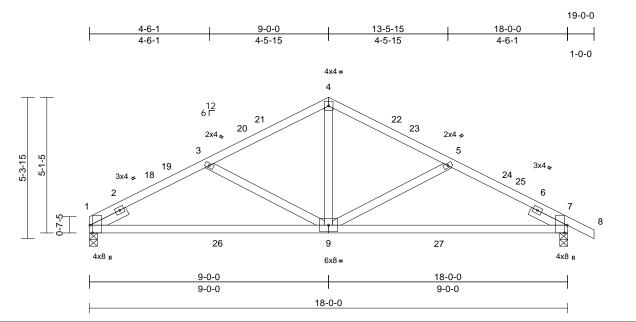
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:34 ID:jQSGxB7rVhy2QW_cIMSDYDzuZw8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.7 Plate Offsets (X, Y): [2:0-1-8,0-0-9], [12:0-1-8,0-0-9]

Plate Offsets (X, Y): [2:0-1-8,0-0-9],	[12:0-1-8,0-0-9]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.23 0.26 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
	1-6-0 Structural wood she Rigid ceiling directly (size) 2=18-0-0, 15=18-0-0 18=18-0-0 Max Horiz 2=-43 (LC Max Uplift 14=-14 (L 16=-6 (LC 19=-3 (LC Max Grav 2=337 (LC 14=367 (L 16=337 (L	12=18-0-0, 14=18-0-0, 16=18-0-0, 16=18-0-0, 20=18-0, 20=18-0, 20=18-0, 20=18-0, 20=17, 15=-4 (LC 17), 17), 18=-7 (LC 16), 21), 12=337 (LC 16), 27), 12=337 (LC 8), C 79), 15=321 (LC 76), 275), 19=321 (LC 76), 275), 19=321 (LC 76), 275), 19=321 (LC 76), 275), 20=210, 20=20, 20	-0, 3) -0, -0 -0 4) , 5) 3), 6)	Vasd=95mpl II; Exp B; En (3E) -1-0-0 tr (3R) 9-0-0 to cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0	7-16; Vult=120mp n; TCDL=6.0psf; Bi closed; MWFRS (e p 2-0-0, Exterior(21 p 12-0-0, Exterior(21 t and right exposed d;C-C for members shown; Lumber Di- med for wind loads in uds exposed to wind d Industry Gable E tailfied building des ; 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.11 snow loads have to the been designed fip on-concurrent with	CDL=6. envelopp N) 2-0-0 N) 12-0 d ; end v s and fo OL=1.60 in the pl dd (norm nd Deta signer a i (roof LI Pf=15.4; Rough 0 been col or great at roof I	Dipsf; h=25ft; (a) and C-C Cc to 9-0, Cor -0 to 19-0-0 z vertical left an rcces & MWFR 0 plate grip ane of the true al to the face ils as applical s per ANSI/TF L: Lum DOL= C Cat B; Partia asidered for th er of min roof coad of 15.4 ps	orner ner one; d SS ss), ble, Pl 1. 1.15 DL = Ily his live	loac pan Bott 14) This stru choi	d of 250 els and tom Cho s truss o ctural w rd and bottom	0.0lb live ord, no design vood sh 1/2" gy chord.	e and 3.0lb dead panel points alon nconcurrent with requires that a m neathing be appli psum sheetrock	moving concentrated located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to
FORCES	(lb) - Maximum Com Tension 1-2=0/36, 2-4=-233/3	•	7)	7) Plates checked for a plus or minus 5 degree rotation about its center.								ROUT	
	5-6=-83/106, 6-7=-1	04/149, 7-8=-104/149 81/66, 10-12=-233/35	, ,,	10) This trues has been designed for a 10.0 per better									Real ,
BOT CHORD	2-20=-6/65, 19-20=- 16-18=-6/65, 15-16= 12-14=-6/65	-6/65, 14-15=-6/65,		11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 536322								L 22	
WEBS		-285/71, 5-19=-279/6 -285/71, 9-15=-279/6	~ [′]	 10) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 18, 3 lb uplift at joint 19, 17 lb uplift at joint 20, 6 lb uplift at joint 14. 14. 							ERIX I		
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for			t at joint 19, 17 lb u lb uplift at joint 15							A. C	ILBERTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	D3A	Common	3	1	Job Reference (optional)	174680587

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:34 ID:NLLMsAVMfiJt51hXRIVy9GzuZuM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

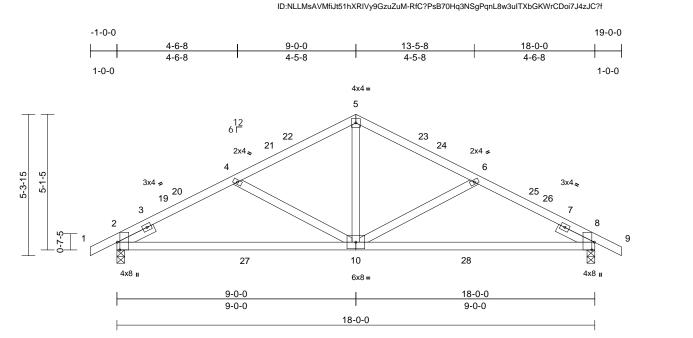
Page: 1

Scale = 1:43.4

Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-3-8,Edge]

Loading (ps) Pspecing 2-0-0 Prise Gr (P CSI C 0.6 Vert(L) in (pc) (vdef) L/d PATES GRIP TCUL (co) 15.4200 Immer DOL 115 TC 0.66 Vert(CT) 0.33 9-12 >560 240 BCL 0.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >599 240 BCDL 1.00 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >599 240 BCDL 1.00 Z44 SP S Stocker IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 BCDL 1.00 Z44 SP No.3 Intersonance Intersonanconconcurr														-
TCLL (fool) 20.0 Plate Grip DOL 1.15 TC 0.68 Vert(L) -0.26 6-12 >820.080 MT20 244/190 Show (PI/Pg) 10.00 Rep Stress Incr YES WB 0.18 Word(CT) -0.33 9-12 >636 240 Weight: 85 lb FT = 20% LUMBER 0.00 ECL 0.00 ECd IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 LUMBER 10.00 Exd SP No.3 - 16-0 Right 24 SP No.3 - 16-0 Rist cells and	Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (PtrPg) 15.4/20.0 TCDL Lumber DOL 1.15 Rep Stress Incr BC 0.56 WB Veri(CT) 0.03 9-12 >636 240 Horz(CT) 0.02 7 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 LUMBER 10.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 LUMBER 10.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 BCD CHORD 2x4 SP No.3 S This truss has been designed for greater of min roof live load of 12.0 ps for 2.00 times flat roof load of 15.4 ps for overhangs non-concurrent with other live loads. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center.	•						0.56							
TCDL 10.0 BCLL Rep Stress Incr YES Code WB 0.18 Matrix-AS Horz(CT) 0.02 7 n/a n/a BCDL 10.0 10.0 Code IRC2021/TPI2014 WB 0.18 Horz(CT) 0.02 7 n/a n/a BCDL 10.0 10.0 Code IRC2021/TPI2014 WB 0.18 Horz(CT) 0.02 7 n/a n/a LUMBER TOP CHORD 2x4 SP No.3 F This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on onconcurrent with any other live loads. Plates checked for a 10.0 psf bottom chord live load for 2.00 times flat roof loads. Plates checked for a 10.0 psf bottom chord inve load nonconcurrent with any other live loads. Plates checked for a 10.0 psf bottom chord inve load or 20.0 bit live load for 20.0 bit more chord and any other members. Plates checked for a moving concentrated load of 250.0 bit live and 3.0 bit dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. Plates checked bit psechoses divers to the top chord and 1/2" gypsum sheetrock be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10 Wind: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95	· · ·					-		``'						
BCLL BCD 0.0* BCO Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.02 9-12 >999 240 LUMBER TOP CHORD 2x4 SP No.2 Status	(0)					-		``'						
BCDL 10.0 Weight: 85 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a flat of load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Plates checked for a plus or minus 5 degree rotation about its center. TOP CHORD STRUCTINE Structural wood sheathing directly applied. REACTIONS Structural wood sheathing directly applied. Rigid ceiling directly applied. 6) Plates checked for a plus or minus 5 degree rotation chord live load of 20.0psf on the bottom chord in all areas where a rectangle 3:0-60 tail lby 2:0-00 wide will fib tetween the bottom chord and any other inveloads. 8 This truss has been designed for a nowing concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and bottom Chord, nonconcurrent with any other live loads. TOP CHORD TOP CHORD 1-7-e36/915 4-5-8-33/118, -7-e-101/168, 7-8-80/42 5) This truss has been designed for a mowing concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and bottom Chord, nonconcurrent with thany other live loads. 1) This truss design requires that a minimum of 7/16° structural wood sheathing be applied directly to the top chord and 1/2° gypsum sheetrock be applied directly to the top chord and 1/2° gypsum sheetrock be applied directly to the top chord and 1/2° gyps			1 1		/TPI2014		0.10						1	
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 SLIDER Left 2x4 SP No.3 SLIDER Left 2x4 SP No.3 - 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. BOT CHORD (b) - Maximum Compression/Maximum Tension TOP CHORD 1-38(7915 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-38029175 BOT CHORD 1-3802915 WEBS 4-9-0/484, 5-9330/116, 3-9333/118 NOTES 1 Wond: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; B:2DL=6.0psf; h=25ft; Cat. II; Exp B: Enclosed; MWERS (envelope) and C-C Exterior(2E) 9-0-11-2 to 3-1-12, Interior (1) 12-0-0, to 19-0-0 Exterior(2E) 9-0-11-2 to 3-1-12, Interior (1) 12-0-0, to 19-0-0 			oode	11(02021	1/11/2014			WING(EE)	0.02	5 12	2000	240	Weight: 85 lb	FT – 20%
TOP CHORD 2x4 SP No.2 load of 12.0 ps for 2.00 times flat foo load of 15.4 ps fon overhangs non-concurrent with other live loads. BOT CHORD 2x4 SP No.3 load of 12.0 ps for 2.00 times flat foo load of 15.4 ps fon overhangs non-concurrent with other live loads. SLIDER Left 2x4 SP No.3 - 1-6-0, Right 2x4 SP No.3 - 1-6-0, Right 2x4 SP No.3 - 1-6-0 Plates checked for a plus or minus 5 degree rotation about its center. BRACING Structural wood sheathing directly applied. Plates checked for a plus or minus 5 degree rotation chord live load on 20.0ps for the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. FORCES (b) - Maximum Compression/Maximum Tension This truss has been designed for a moving concentrated load of 250.0b live and 3.0b dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, noncourrent with any other live loads. NOTES 1.3=-1092/174, 3-4=-333/116, 3-9=-333/118 10 This truss fasting the applied directly to the top chord and 12/2 wypsum sheetrock be applied directly to the top chord and 12/2 wypsum sheetrock be applied directly to the top chord. NOTES 1) Wind: ASCE 7-16; Wult=120mph (3-second gust) was sheet for the bottom chord. LOAD CASE(S) Standard 1) Wind: ASCE 7-16; Wult=120mph (3-second gust) was sheet for the bottom chord. LOAD CASE(S) Standard Visterior(2E) 0-11/2 to 3-1-12; Interior (1) 12-0-0, tore 10; 10-0-0, Exterior(2E) 9-0-12 to 3-1-12; Interior (1) 12-0-0,	0002	10.0							-	-			Wolght. 66 lb	11-2070
 BOT CHORD 2x4 SP SS vo.3 WEBS 2x4 SP No.3 (Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. *This truss has been designed for a noving concentrated load of 250.00 bit ve and 3.00 bit be and 3.00 bit be and 3.00 bit be and 3.00 bit be and 5.00 bit ve and 3.00 bit sector. FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-31092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=-042 BOT CHORD 1-7-8-60/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES Wind: ASCE 7-16; Vult=120mph (3-second gust) vasde-9mph; TCDL=6.0psf; h=25f; Cat. I; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-112 to 31-12, Interior (1) 13-12 to 9-0, pterior (1) 12-0-0, hterior (1) 12-0-0, hterior (1) 12-0-0, hterior (1) 12-0-0, hterior (1) 12-0-0, here (1) 12-0-0, he	LUMBER			5)	This truss ha	as been designed	for great	er of min root	live					
 WEBS 2x4 SP No.3 2x4 SP No.4 2x4 SP No.4 2x4 SP No.4 2x4 SP No.4	TOP CHORD	2x4 SP No.2			load of 12.0	psf or 2.00 times f	flat roof l	oad of 15.4 p	sf on					
SLIDER Left 2x4 SP No.3 - 1-6-0, Right 2x4 SP No.3 - 1-6-0, Right 2x4 SP No.3 - 1-6-0 about its center. 1-6-0 1-6-0 1-6-0 BRACING Structural wood sheathing directly applied. 7) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other inveload of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other inveload of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other inveload of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=-0/42 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the top chord. NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for this design. CASE(-1) (3-1-12, 0) tal-0-0, 0 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vaad=95mph; TCDL=6.0psf; h=25ft; Ccat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2B) 0-0-112 to 3-1-12, interior (1) 12-0-0 CASE(S) Standard 1) Unbalanced root live loads have been onsidered for this design. CADI-6.0psf; hCDL=6.0psf; hCDL=6.0psf; h=25ft; Ccat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2	BOT CHORD	2x4 SP SS												
 This trust has been designed for a 10.0 psf bottom chord live loads. This trust has been designed for a 10.0 psf bottom chord live loads. This trust has been designed for a live load on concurrent with any other live loads. This trust has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. This trust has been designed for a moving concentrated load of 25.000 live and 3.01b dead located at all mid panels and at all panel points alloing the Top Chord and Bottom Chord, nonconcurrent with any other live loads. TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=04/2 BOT CHORD 1-7=-86/915 WTEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-12 to 9-0-0. Structural wood sheating the applied directly to the top chord and 1/2* gypsum sheatrock be applied directly to the 2-00, therein (1) 1-12 to 9-0-0. 	WEBS	2x4 SP No.3		6)	Plates check	ed for a plus or m	ninus 5 de	egree rotatior	۱					
BRACING TOP CHORD BOT CHORD Structural wood sheathing directly applied. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz * - This truss has been designed for a live load of 250.0b live and 3.0lb dead locate at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. FORCES (b) - Maximum Compression/Maximum Tension Structural wood sheathing be applied directly to the top chord and any other members. OT CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for this design. LoAD CASE(S) 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 13-1-12; to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 Standard	SLIDER	Left 2x4 SP No.3 1	1-6-0, Right 2x4 SP N	Vo.3										
 bracking bracking brown considered for a live load of 20.0psf constant of the bottom chord in all areas where a rectangle a. 10-3-8, 7=0-3-8 max Horiz 1=-45 (LC 17) Max Grav 1=706 (LC 2), 7=779 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=-042 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 Notes 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0 Exterior(2E) 0-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 10) This truss design equires that a minimum of 7/16" 5-7=-1101/169, 7-8=-033/118 LOAD CASE(S) Standard 10) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2E) 0-1-12 to 3-1-0, Interior (1) 2-0-0 to 19-0-0 		1-6-0		7)										
 TOP CHORD Structural wood sheathing directly applied. BOT CHORD (b) - Maximum Compression/Maximum Tension ToP CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 CHORD 1-7=-86/915 CHORD 1-7=-86/915 CHORD 1-7=-86/915 CHORD 1-7=-66/915 CHORD 1-7=-60/921/74, 1-2=-333/118 CHORD 1-7=-66/915 CHORD 1-7=-60/921/74, 1-2=-5330/116, 3-9=-333/118 CHORD 1-7=-60/921/74, 1-2=-521; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(22R) 9-0-0 to 12-0-0, Interior (1) 3-1-12 to 9-0-0, Exterior(22R) 9-0-0 to 12-0-0, Interior (1) 2-0-0 to 19-0-0 	BRACING													
BOT CHORD Rigid ceiling directly applied. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz		Structural wood she	athing directly applie	d. 8)					0psf					
 REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=-45 (LC 17) Max Grav 1=706 (LC 2), 7=779 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-3=-86/915 OT CHORD 1-7=-86/915 NOTES 10 This truss has been considered for this design. 2) Winct ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 12-0-0 to 19-0-0 Source All and any other members. 3-06-00 all by 2-00-00, wide will fit between the bottom chord. 3-06-01 and yo ther members. TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 Structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 10 Unbalanced roof live loads have been considered for this design. 2) Winct ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2E) 0-10 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 	BOT CHORD													
 Max Horiz 1=-45 (LC 17) Max Grav 1=706 (LC 2), 7=779 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 12-0-0 Standard This trus has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 12-0-0 Standard 	REACTIONS	• • •						veen the bott	om					
 Max Grav 1=706 (LC 2), 7=779 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0, Exterior(2E) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 structural wood sheathing be applied directly to the top the bottom chord. 		· · · ·		0)										
 FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES 10) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-O C-Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0, Exterior(2E) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 		· · · · · · · · · · · · · · · · · · ·	,	9)										
 Tension ToP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 BOT S NOTES 10 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0, Exterior(2E) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 		load of 250.0 live and 5.0 b dead located at all mid												
 TOP CHORD 1-3=-1092/174, 3-4=-832/135, 4-5=-831/131, 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 IO This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0, Exterior(2E) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 	TORCES		pression/maximum											
 5-7=-1101/169, 7-8=0/42 BOT CHORD 1-7=-86/915 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 NOTES I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0, Exterior(2E) 0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 	TOP CHORD		-832/135 4-5831/	131 10					ius.					
BOT CHORD 1-7=-86/915 chord and 1/2" gypsum sheetrock be applied directly to WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 chord and 1/2" gypsum sheetrock be applied directly to NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for LOAD CASE(S) Standard 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. LOAD CASE(S) Standard 1) Exterior(2E) 0-1-12 to 3-1-12; Interior (1) 3-1-12 to 90-0, Exterior(2E) 0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 Standard				101, 10					ton					
 WEBS 4-9=0/484, 5-9=-330/116, 3-9=-333/118 the bottom chord. NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 	BOT CHORD		•											
NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Standard 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. I; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 Image: Comparison of the temperature of the temperature of temperature)/116. 3-9=-333/118						y 10					
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0 		,,		10										
this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0.0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0		ad roof live loads have	been considered for		///D 0///02(0)	Otandara								
2) Wind: AŠCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0	,		been considered for											111
Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0			(3-second qust)										11111 01	D'III
II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0				at								1	NTH UF	NON'I
Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-0-0, Exterior(2R) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 19-0-0												1	n'ires	in the
				0-0,							/	22	A P	M. an
zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & SEAL MWFRS for reactions shown; Lumber DOL=1.60 plate 0026222	Exterior(2F	R) 9-0-0 to 12-0-0, Inte	erior (1) 12-0-0 to 19-	0-0							9			RUI
and right exposed;C-C for members and forces & SEAL MWFRS for reactions shown; Lumber DOL=1.60 plate 026222	zone; cant	tilever left and right exp	oosed; end vertical le	eft										N 1 1 E
MWFRS for reactions shown; Lumber DOL=1.60 plate	and right e	exposed;C-C for memb	ers and forces &								-		SEA	1. E
			mber DOL=1.60 plat	е							=			• –
grp DOL=1.60	grip DOL=										=		0363	22 : 2
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15	,	/ I \									-	0	1	1 2
Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =											1	1. A	A 1. 3	
1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially											20	S. SNGIN	EEN: AS	
Exp.; Ce=1.0; Cs=1.00; Ct=1.10												1	AL GIN	5. 64 1
4) Unbalanced snow loads have been considered for this design	,	ed snow loads have be	en considered for thi	S								1	IL A C	BEN

4) Unbalanced snow loads have been considered for this design.



GI

minim July 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3	
	D3	Common	1	1	Job Reference (optional)	174680588

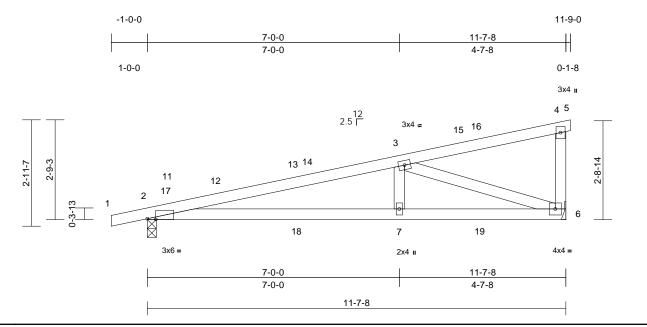
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:34

Page: 1

Scale = 1:43.4 Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-3-8,Edge]

Plate Offsets ()	X, Y): [2:0-3-8,Edge],	[8:0-3-8,Edge]										-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.55 0.56 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.33 0.02 0.02	(loc) 10-17 10-17 8 10	l/defl >819 >639 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASS Vasd=95m II; Exp B; E Exterior(2E Exterior(2E Exterior(2F zone; cant and right e MWFRS fc grip DOL= 3) TCLL: ASC Plate DOL 1.15 Plate Exp; Ce=1	1-6-0 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 8 Max Horiz 2=43 (LC Max Grav 2=777 (LC (lb) - Maximum Com Tension 1-2=0/42, 2-4=-1099 5-6=-825/130, 6-8=- 2-8=-81/900 5-10=0/482, 6-10=-3 ed roof live loads have L E 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inter R) 9-0-0 to 12-0-0, Inter R) 9-0-0 to 12-0-0, Inter Ryosed; C-C for membor or reactions shown; Lu	3=0-3-8 15) C 2), 8=777 (LC 2) pression/Maximum 0/164, 4-5=-825/130, 1099/164, 8-9=0/42 129/116, 4-10=-329/11 been considered for (3-second gust) DL=6.0psf; h=25ft; Ci velope) and C-C rior (1) 2-0-0 to 9-0-0, orior (1) 12-0-0 to 9-0-0, orior (1) 12-0-0 to 9-0-0, orior (1) 12-0-0 to 9-0-0, erior (1) 12-0-0 to 9-0, erior (1) 12-0-0 to 9-0,	10.3 7) 1. 8) 9) 10 116 10 10 10 10 10 10 10 10 10 10	load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar This truss ha load of 250.0 panels and a Bottom Chor)) This truss de structural wo	s been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members, is been designed f blo live and 3.0lb d t all panel points a d, nonconcurrent v sign requires that od sheathing be a 2" gypsum sheetro hord.	at roof lo other liv nus 5 de or a 10.0 with any I for a liv s where Il fit betw or a mov ead loca- along the with any a minim pplied d	bad of 15.4 p: ve loads. agree rotation 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottow ving concentri ted at all mid Top Chord a other live loa other live loa um of 7/16"	sfon n dds. Dpsf om aated aand dds. top		6		SEA 0363	L 22 EERRALIUM	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



July 7,2025

Job	Truss	uss Truss Type Qty		Ply	Stonefield Rev 3	
	M7	Monopitch	5	1	Job Reference (optional)	174680589

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:zoBjG8jXHAH7xV?n0?vGRrzJ4q2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32

Plate Offsets (X, Y): [2:0-2-13,Edge]

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

DOL=1.60

design.

3)

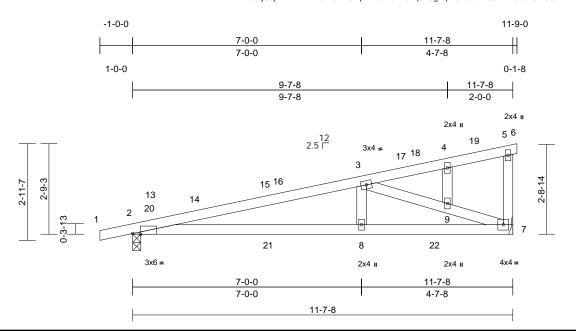
4)

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.76 0.99 0.49	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.27 0.02 0.09	(loc) 7-10 7-10 6 7-10	l/defl >813 >519 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly	applied. 6= Mechanical 12) 2 12), 6=-79 (LC 12) C 2), 6=513 (LC 23)	8) 9)	load of 12.0 overhangs n Plates check about its cen This truss h chord live loa * This truss h on the bottor 3-06-00 tall k chord and ar Refer to gird Provide mec	as been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide win by other members. er(s) for truss to tru hanical connectior	lat roof I o ther Ii or a 10. with any I for a liv s where Il fit betv uss coni n (by oth	bad of 15.4 p ve loads. egree rotation D psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss 1	sfon n nds. Opsf om to					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E	Tension 1-2=0/17, 2-3=-1116 4-5=-4/0, 4-6=-287/6 2-7=-471/1076, 6-7= 3-7=-78/380, 3-6=-1 ed roof live loads have	5/422, 3-4=-97/12, 52 =-471/1076 105/484 been considered for (3-second gust) :DL=6.0psf; h=25ft; C; vvelope) and C-C rior (1) 2-0-0 to 11-9-0	12) at. 13)	6.) One H2.5A S recommende UPLIFT at jtt does not cor) This truss ha load of 250.0 panels and a Bottom Chor) This truss de structural wo		e conne to bear ion is fo or a mo ead loca along the with any a minim pplied d	ctors ing walls due ruplift only ar ving concentr tted at all mid of Top Chord a other live loa um of 7/16" irectly to the	to nd rated l and ads. top		L	2	PTH CA	ROLIN

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minin July 7,2025


SEAL

Mannanana an

Job	Truss	Qty	Ply	Stonefield Rev 3		
	M7GE	Monopitch Structural Gable	1	1	Job Reference (optional)	174680590

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:36 ID:zoBjG8jXHAH7xV?n0?vGRrzJ4q2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

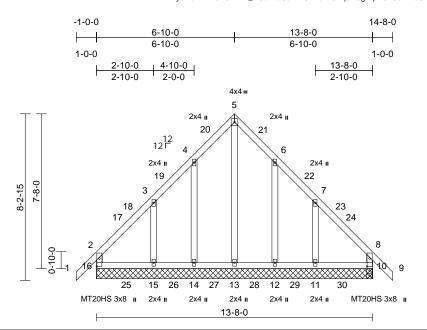
Page: 1

Scale = 1:35.2

Plate Offsets (X, Y): [2:0-2-13,Edge]

			-			-							
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.76 0.99	DEFL Vert(LL) Vert(CT)	in -0.17 -0.27	(loc) 8-12 8-12	l/defl >811 >517	L/d 360 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.02	7	n/a	n/a	1	
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.10	8-12	>999	240		
BCDL	10.0					-						Weight: 50 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-0,7 Max Horiz 2=60 (LC Max Uplift 2=-88 (LC Max Grav 2=522 (LC	applied. 7= Mechanical 12) 12), 7=-79 (LC 12)	4) 5) d, 6) 7) 8) 9)	Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cer Gable studs This truss ha	7-16; Pr=20.0 ps .15); Pg=20.0 ps OL = 1.15); Is=1.0; Cs=1.00; Ct=1. snow loads have us been designed psf or 2.00 times on-concurrent wit ed for a plus or m ter. spaced at 2-0-0 o is been designed ad nonconcurrent	f; Pf=15.4 0; Rough 10 been cor for great flat roof le h other lin hinus 5 de bc. for a 10.1	Losf (Lum Do Cat B; Partia hisidered for t er of min roo bad of 15.4 p ve loads. logree rotation	OL = ally this f live osf on n					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	,	nas been designe n chord in all area			0psf					
TOP CHORD	1-2=0/17, 2-3=-1109	, ,		3-06-00 tall I	oy 2-00-00 wide w	vill fit betw		tom					
BOT CHORD	4-5=-57/14, 5-6=-4/0 2-8=-468/1069, 7-8=		11		ny other members er(s) for truss to t		ections						
WEBS	3-8=-79/381, 3-9=-1 4-9=-92/20) Provide med	hanical connections contractions and the second sec	n (by oth	ers) of truss						
NOTES				7.		-		•				minin	1111
 this design Wind: ASC Vasd=95m II; Exp B; I Exterior(2I zone; cant right exposition DOL=1.60 Truss desionly. For some set on the set of the	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Intei illever left and right exp sed;C-C for members is ns shown; Lumber DO	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-0-0 to 11-9 osed ; porch left and and forces & MWFRS L=1.60 plate grip the plane of the truss (normal to the face), d Details as applicabl	at. 0 1 3 15 s e, LC	recommende UPLIFT at jt does not cor) This truss ha load of 250.0 panels and a Bottom Choi) This truss de structural wo		to bear tion is for es. for a mor dead loca along the with any t a minim applied d	ing walls due ruplift only a ving concent ted at all mid Top Chord other live loa um of 7/16" irectly to the	nd rated d and ads. top		2	A A A A A A A A A A A A A A A A A A A	SEA 0363	L

```
LOAD CASE(S) Standard
```



G mm July 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3	
	C2GE	Common Supported Gable	1	1	Job Reference (optional)	174680592

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:33 ID:ybmbAL1xtSA5D4ltV_m6oVzuGul-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

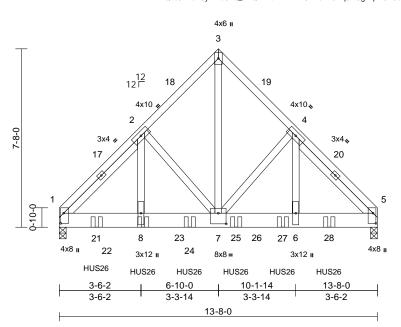
Scale = 1:57

	x, i). [10.0 + 12,0 i	0]; [10:0 + 12;0 1 0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.30 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	15-16 10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 90 lb	GRIP 244/190 187/143 FT = 20%
	6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 10=13-8-0 13=13-8-0 16=13-8-0 Max Horiz 16=140 (L Max Uplift 10=-17 (L 12=-26 (L 12=-26 (L 12=-28 (L 12=328 (L	applied or 6-0-0 oc), 11=13-8-0, 12=13-8-), 14=13-8-0, 15=13-8-) C 15) C 13), 11=-73 (LC 17), C 17), 14=-26 (LC 16), C 16), 16=-30 (LC 12) C 65), 11=353 (LC 64) C 63), 13=317 (LC 62) C 61), 15=353 (LC 60)	3) 0, 0, 4)), 5)	Vasd=95mpf II; Exp B; En (3E) -1-0-0 tt (3R) 6-10-0 tz zone; cantile and right exp MWFRS for I grip DOL=1.4 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0	7-16; Vult=120mpl ; TCDL=6.0psf; BC closed; MWFRS (e b 2-0-0, Exterior(2N o 9-10-0, Exterior(2N ver left and right ex- losed; C-C for mem reactions shown; L 50 ed for wind loads in ids exposed to wind l ndustry Gable Er alified building des 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.11 snow loads have b s been designed for psf or 2.00 times file on-concurrent with	CDL=6. nvelope 1) 2-0-0 2N) 9-1 cposed bers ar umber l n the pl d (norm nd Deta igner a: (roof LL Pf=15.4 Rough) een cor or great at roof lu	Dipsf; h=25ft; (a) and C-C Cc to 6-10-0, CC to 6-10-0, CC ; end vertical d forces & DOL=1.60 pla ane of the true al to the face ils as applical s per ANSI/TF .: Lum DOL= t psf (Lum DC Cat B; Partia nsidered for th er of min roof pad of 15.4 ps	orner orner left ate ss), ble, PI 1. 1.15 DL = Ily his live	bea 16, upli join 14) This load pan	ring plat 17 lb up ft at join t 11. s truss h d of 250. els and tom Cho	te capa blift at jo t 15, 20 as bee .0lb live at all p ord, nor	able of withstandi bint 10, 26 lb upli 6 lb uplift at joint en designed for a e and 3.0lb dead banel points along nconcurrent with	v others) of truss to ing 30 lb uplift at joint ft at joint 14, 74 lb 12 and 73 lb uplift at moving concentrated located at all mid g the Top Chord and any other live loads.
FORCES	(lb) - Maximum Com Tension 1-2=0/66, 2-3=-163/4 4-5=-157/272, 5-6=- 7-8=-163/69, 8-9=0// 8-10=-311/114	83, 3-4=-133/177, 157/272, 6-7=-133/177	8) ', 9)	All plates are Plates check about its cen Truss to be f braced again	MT20 plates unlesed for a plus or mir ter. ully sheathed from ust lateral movemer	ss othei nus 5 de one fac nt (i.e. c	wise indicate egree rotation e or securely) ,		4	111	ORTH CA	ROL
BOT CHORD	8-10=-311/114 15-16=-57/106, 14-1 13-14=-57/106, 12-1 11-12=-57/106, 10-1 5-13=-312/122, 4-14 3-15=-295/185, 6-12 7-11=-295/185	3=-57/106, 1=-57/106 =-283/111,	11)) This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b	spaced at 2-0-0 oc s been designed fo ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members.	or a 10. vith any for a liv where	other live loa e load of 20.0 a rectangle	Opsf				SEA 0363	22

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


GILB Unuminity (

July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	C2GR	Common Girder	1	2	Job Reference (optional)	174680593

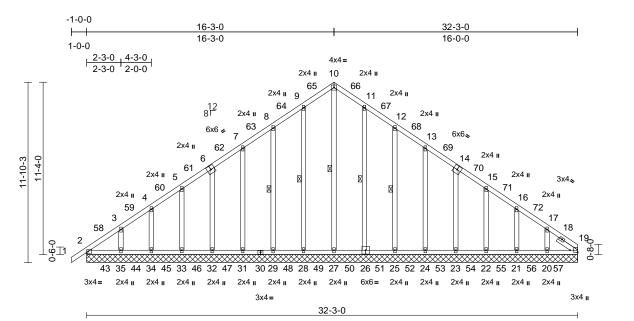
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:33 ID:QveJIWeB9yVmd8Bs_ZxQ?VzuHmm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.5

Plate Offsets (X, Y): [1:0-5-4,0-1-7], [5:0-5-4,0-1-7], [7:0-4-0,0-5-8]

	, , , , , , , , , , , , , , , , , , ,	[,										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS 7-16; Vult=120mp	0.23 0.21 1.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.01 0.00	(loc) 6-7 6-7 5 7	I/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 238 lb	GRIP 244/190 FT = 20% 4-10d Girder, 4-10d
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x8 SP DSS 2x4 SP No.3 Left 2x4 SP No.3 4 No.3 4-5-15 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie	d or 6)	Vasd=95mpl II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	h; TCDL=6.0psf; E closed; MWFRS (bosed; end vertice =1.60 plate grip E 7-16; Pr=20.0 psf .15); Pg=20.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have	CDL=6.6 envelope al left and ODL=1.60 f (roof LL ; Pf=15.4 ; Rough 0 been cor	Dopsf; h=25f; b); cantilever d right expose c: Lum DOL= l psf (Lum DO Cat B; Partia nsidered for th	Cat. left ed; 1.15 DL = ally his	Tru: 1-7- bac 13) Fill LOAD (1) De Inc Ur	ss) or ec -4 from t k face o all nail h CASE(S) ead + Sn crease= hiform Lo	uivale he left f bottor oles w) Star ow (ba 1.15 bads (lt 3=-51,	nt spaced at 2-0- end to 11-7-4 to m chord. here hanger is in ndard alanced): Lumber b/ft) 3-5=-51, 9-13=-2	0 oc max. starting at connect truss(es) to contact with lumber. Increase=1.15, Plate
	(size) 1=0-3-8, 5 Max Horiz 1=107 (LC Max Grav 1=5047 (L	C 9)	7) 8) 25)	about its cen	ed for a plus or m ter.	inus 5 de	egree rotation	1				(B), 21=-1115 (B 27=-1115 (B), 28	
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-3416/0, 2-3=-3 4-5=-3337/0 1-8=0/3562, 7-8=0/3 5-6=0/3471 2-8=-4/2000, 2-7=-1: 4-7=-1324/0, 4-6=-4.	721/0, 3-4=-3721/0, 535, 6-7=0/3446, 389/0, 3-7=0/4981,										TH CA	
 (0.131"x3" Top chords oc. Bottom cho staggered Web connel All loads an except if nu CASE(S) s provided to unless other 	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-7-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or bar section. Ply to ply conr o distribute only loads erwise indicated. d roof live loads have	ther with 10d 5: 2x4 - 1 row at 0-9-0 ows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	9) 10 AD	chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) This truss ha load of 250.0 panels and a	as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members is been designed bib live and 3.0lb d tt all panel points a d, nonconcurrent	with any I for a liv s where ill fit betv for a move ead located along the	other live loa e load of 20.0 a rectangle veen the botto ving concentr tted at all mid Top Chord a	Opsf om rated I and		C. Contraction	SS	SEA 0363	L L L L B E E E R R H H I I I I I I I I I I I I I I I I


July 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174680594

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:31 ID:mZq0DiKNcLLJiTK0LOvL6azuH7s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.7	
----------------	--

Plate Offsets (X, Y): [19:Edge,0-5-14]

					-								-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	-	CSI TC BC WB Matrix-AS	0.22 0.21 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) -4=-142/117,	in n/a 0.01	19	- n/a - n/a 9 n/a	L/d 999 999 n/a E 7-16	PLATES MT20 Weight: 240 lb ; Pr=20.0 psf (roo	GRIP 244/190 FT = 20% of LL: Lum DOL=1.1
TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Right 2x4 SP No.3 -	athing directly applied	•	CHORD	4-5=-125/103, 5-7= 8-9=-115/164, 9-10 10-11=-138/205, 11 12-13=-91/115, 13- 16-17=-89/73, 17-1 2-35=-96/125, 34-3 33-34=-60/125, 32-3 31-32=-63/127, 29- 28-29=-63/127, 27- 28-29=-63/127, 27- 29-29-29-29-29-29-20- 29-29-29-29-20-20-20-20-20-20-20-20-20-20-20-20-20-	205, 14/164, /75, 15-16=-91 /81 /25, /125, /127, /127,	1/71,	1. E 5) U 6) T lo 0 ^v 7) P	15 Plate I xp.; Ce=1 nbalanced esign. his truss h ad of 12.0 verhangs lates chec	DOL = .0; Cs= d snow has bee) psf or non-col cked for	1.15); Is=1.0; Ro 1.00; Ct=1.10 loads have beer on designed for g 2.00 times flat ro ncurrent with oth	15.4 psf (Lum DOL ugh Cat B; Partially a considered for this reater of min roof liv pof load of 15.4 psf of er live loads. 5 degree rotation	
REACTIONS	21=32-3- 24=32-3- 27=32-3- 31=32-3- 34=32-3- Max Horiz 2=180 (L1 Max Uplift 2=-33 (LC 20=-43 (L 22=-13 (L 22=-13 (L 22=-16 (L)	C 12), 19=-8 (LC 15), LC 17), 21=-9 (LC 17), LC 17), 23=-15 (LC 17), LC 17), 25=-19 (LC 17)	-0, -0, -0, WEB -0, NOT	S ES	25-27=-64/127, 24- 23-24=-64/127, 22- 21-22=-61/125, 20- 19-20=-61/125 10-27=-221/69, 9-2 7-31=-279/64, 6-32 4-34=-284/61, 3-35 12-25=-272/67, 13- 14-23=-274/61, 15- 16-21=-284/59, 17-	23=-61, 21=-61, 8=-272, =-273,6 =-293,7 24=-27 22=-27 20=-29	/125, /125, /47, 8-29=-272 51, 5-33=-278/ 70, 11-26=-273 9/64, 7/57, 0/81	2/67, 57, 3/47,	8) G 9) G 10) T ch 11) * oi 3-	able studs nis truss h nord live lo This truss n the botto 06-00 tall	ires cor s space has bee bad nor has be om cho by 2-0	een designed for rd in all areas wh	10.0 psf bottom any other live loads a live load of 20.0ps
$\begin{array}{c} 20=30 \ ({\rm LC}\ 17), 28=30 \ ({\rm LC}\ 16), \\ 29=-17 \ ({\rm LC}\ 16), 31=-16 \ ({\rm LC}\ 16), \\ 32=-15 \ ({\rm LC}\ 16), 33=-13 \ ({\rm LC}\ 16), \\ 34=-10 \ ({\rm LC}\ 16), 35=-32 \ ({\rm LC}\ 16), \\ 34=-10 \ ({\rm LC}\ 16), 35=-32 \ ({\rm LC}\ 16), \\ 34=-10 \ ({\rm LC}\ 16), 35=-32 \ ({\rm LC}\ 16), \\ 20=341 \ ({\rm LC}\ 111), 21=332 \ ({\rm LC}\ 110), \\ 22=331 \ ({\rm LC}\ 101), 23=332 \ ({\rm LC}\ 101), \\ 22=331 \ ({\rm LC}\ 102), 23=332 \ ({\rm LC}\ 103), 24=331 \ ({\rm LC}\ 105), \\ 108), 24=336 \ ({\rm LC}\ 107), 25=331 \ 20ne; ca \\ 108), 24=336 \ ({\rm LC}\ 107), 25=331 \ 20ne; ca \\ 108), 24=336 \ ({\rm LC}\ 107), 25=331 \ 20ne; ca \\ 108), 24=336 \ ({\rm LC}\ 105), \\ 27=324 \ ({\rm LC}\ 104), 28=333 \ ({\rm LC}\ 05), \\ 103), 29=333 \ ({\rm LC}\ 102), 31=335 \ 30 \ Truss \ de \\ 33=331 \ ({\rm LC}\ 99), 34=331 \ ({\rm LC}\ 98), \\ 35=342 \ ({\rm LC}\ 97) \ 5ee \ 5tar \\ \end{array}$					CE 7-16; Vult=120mph (3-second gust) hph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) and C-C Corner 0 to 2-3-0, Exterior(2N) 2-3-0 to 16-3-0, Corner 0 to 19-5-11, Exterior(2N) 19-5-11 to 32-3-0 illever left and right exposed; end vertical left exposed; C-C for members and forces & or reactions shown; Lumber DOL=1.60 plate						A MARTINE AND A	SEA 0363	L 22 L L BERTIN
	I ENSION											Ju	ly 7,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174680594
Structural, LLC, Thurmont, MD -	21788,	Run: 25.20 S May 13	2025 Print:	25.2.0 S May	/ 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:31	Page: 2

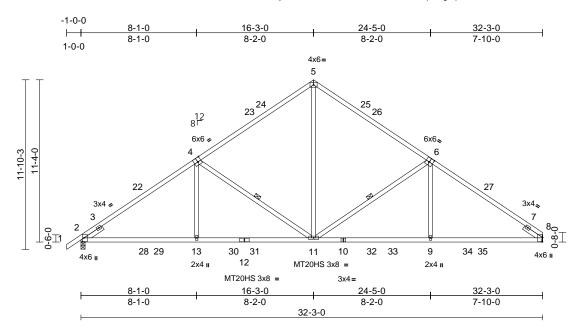
ID:mZq0DiKNcLLJiTK0LOvL6azuH7s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788.

12) N/A

- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	B1	Common	6	1	Job Reference (optional)	174680595

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:31 ID:e0W9EjWs2Onzzra_1XnckuzuHoD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.5

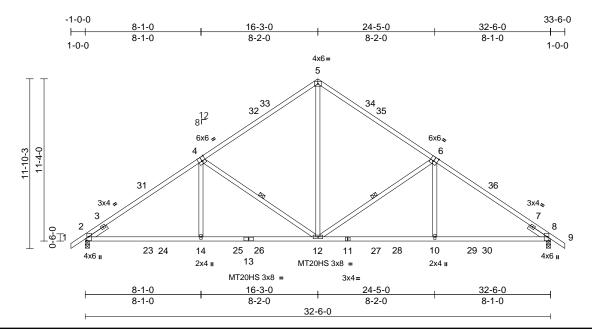
Plate Offsets (X, Y): [2:0-3-2,0-1-4], [4:0-3-0,Edge], [6:0-3-0,0-3-4], [8:0-3-9,0-0-3]

					1								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.30	9-11	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.41	9-11	>935	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-AS		Wind(LL)	0.04	13-16	>999	240		
BCDL	10.0											Weight: 172 lb	FT = 20%
	Rigid ceiling directly 1 Row at midpt	1-6-0, Right 2x4 SP athing directly applie applied. 4-11, 6-11 8= Mechanical C 13)	2 No.3 ed.	 design. This truss ha load of 12.0 overhangs n All plates area Plates check about its cer This truss ha chord live lo * This truss lo on the botton 3-06-00 tall l 	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	for great flat roof I h other li ess othe hinus 5 d for a 10. with any d for a liv as where vill fit betv	er of min roo pad of 15.4 p ve loads. wise indicate egree rotatio 0 psf bottom other live loa e load of 20. a rectangle veen the bot	of live osf on ed. n ads. .0psf tom					
FORCES	(lb) - Maximum Corr	,. ·	,		ny other members ler(s) for truss to t			sf.					
	Tension				as been designed			rated					
TOP CHORD	1-2=0/52, 2-5=-2105	5/139, 5-8=-2090/139			Olb live and 3.0lb								
BOT CHORD	2-13=0/1795, 11-13 8-9=-89/1651	=0/1795, 9-11=0/165	51,		at all panel points rd, nonconcurrent								
WEBS	5-11=-12/1069, 4-11 6-11=-749/106, 6-9=	,	410,	12) This truss de	esign requires that	t a minim	um of 7/16"						
NOTES	,				2" gypsum sheeti								U.,
1) Unbalance	ed roof live loads have	been considered for	r	the bottom of	hord.							White CA	Dall
, this desigr	۱.			OAD CASE(S)	Standard							"ath un	10/11/10
2) Wind: ASC Vasd=95m II; Exp B; I Exterior(21 16-3-0, Ex 19-5-11 to exposed ; members a Lumber D0	CE 7-16; Vult=120mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-2-11, Int terior(2R) 16-3-0 to 11 32-3-0 zone; cantilev end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16: Pr=20.0 psf (DL=6.0psf; h=25ff; C hvelope) and C-C erior (1) 2-2-11 to 9-5-11, Interior (1) er left and right ght exposed;C-C for for reactions shown; DL=1.60	Cat. ;							Mr. and and and a		SEA 0363	• -
Plate DOL	=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0;	Pf=15.4 psf (Lum DO)L =								in s	ACAGIN	EFER

- Exterior(2E) -1-0-0 to 2-2-11, Interior (1) 2-2-11 to 16-3-0, Exterior(2R) 16-3-0 to 19-5-11, Interior (1) 19-5-11 to 32-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G

minn July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	B1A	Common	3	1	Job Reference (optional)	174680596

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:31 ID:e0W9EjWs2Onzzra_1XnckuzuHoD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.5

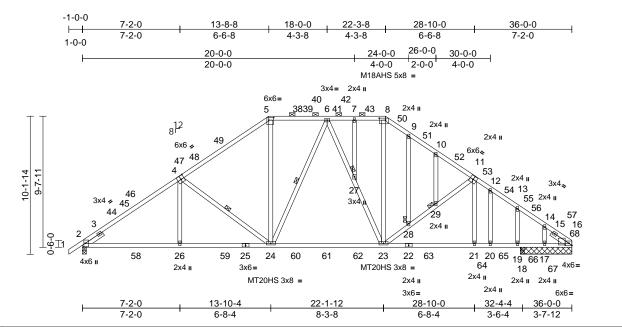
Plate Offsets (X, Y): [2:0-3-2,0-1-4], [4:0-3-0,Edge], [6:0-3-0,Edge], [8:0-3-2,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.85 0.60 0.44	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.41 0.06 0.04	12-14 8	l/defl >999 >953 n/a >999	L/d 360 240 n/a 240	MT20	GRIP 244/190 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP SS *Except* 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=-184 (L Max Grav 2=1556 (L (lb) - Maximum Com Tension 1-2=0/52, 2-5=-2112 8-9=0/52 2-14=0/1807, 12-14: 8-10=0/1679 5-12=-11/1078, 4-14 6-10=0/411, 6-12=-7	1-6-0, Right 2x4 SP I athing directly applie applied. 4-12, 6-12 3=0-3-8 C 14) C 30), 8=1556 (LC 3 pression/Maximum 2/138, 5-8=-2112/138 =0/1807, 10-12=0/16 4=0/411, 4-12=-769/1 769/106	5) No.3 6) 7) d. 8) 9) 31) 10 3, 11 3, 106, LC	design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall t chord and ar D) This truss ha load of 250.0 panels and a Bottom Chor 1) This truss de structural wo	is been designed fr ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide will by other members, is been designed fr bib live and 3.0lb du t all panel points a d, nonconcurrent v isign requires that od sheathing be an 2" gypsum sheetro hord.	or great at roof I other li ss other nus 5 d or a 10. with any I for a liv s where I fit bett with BC or a mo ead loca along the with any a minim pplied d	er of min roo oad of 15.4 p ve loads. rwise indicate egree rotatio 0 psf bottom other live loa ve load of 20. a rectangle ween the bot CDL = 10.0ps ving concent ated at all mine > Top Chord other live loa other live loa um of 7/16" irectly to the	of live osf on ed. n ads. .0psf tom sf. trated d and ads. top				WTH CA	RO/ 11
this design											E.	OFFESS	DA: Vill

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-3-0, Interior (1) 2-3-0 to 16-3-0, Exterior(2R) 16-3-0 to 19-6-0, Interior (1) 19-6-0 to 33-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1AGE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174680597

Scale = 1:84.7

Run: 25.20 E May 15 2025 Print: 25.2.0 E May 15 2025 MiTek Industries, Inc. Mon Jul 07 07:24:46 ID:1qmrViBn7zeF2kuVH0yvenzuHOp-kj8XHKCVLJSItEbx1Bblttfc7zk9N_VFerp_ZPz_hcn

Page: 1

Plate Offsets (X, Y): [2:0-3-2,0-1-4], [4:0-3-0,0-3-4], [5:0-4-4,0-2-4], [8:0-5-8,0-1-12], [16:0-3-7,0-1-8]

		1	:									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.28	23-24	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.58	Vert(CT)	-0.41	23-24	>938	240	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.08	16	n/a	n/a	MT20HS	187/143
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.03	21-23	>999	240		
BCDL	10.0										Weight: 250 lb	FT = 20%
LUMBER			TOP CHORD	5-38=-1486/88, 3	8-39=-14	86/88,		2) Wii	nd: ASC	E 7-16;	; Vult=120mph (3	-second gust)
TOP CHORD	2x4 SP No.2			39-40=-1486/88,	6-40=-14	86/88,		Va	sd=95m	ph; TCI	DL=6.0psf; BCDL	.=6.0psf; h=25ft; Cat.
BOT CHORD	2x4 SP SS			6-41=-1464/92, 4							d; MWFRS (enve	
WEBS	2x4 SP No.3 *Excer	ot* 5-24,8-23:2x4 SP	No.2	7-42=-1464/92, 7		,			· ·	,) to 2-6-14, Interi	· · /
OTHERS	2x4 SP No.3			8-43=-1464/92, 2			3/0,					-3, Interior (1) 18-9-3
SLIDER	Left 2x4 SP No.3	1-6-0, Right 2x4 SP	No.3	44-45=-2389/0, 4							(2R) 22-3-8 to 27	
	1-6-0			4-46=-2264/0, 4-4								ft and right exposed ;
BRACING				47-48=-1907/27, 5-49=-1777/66, 8							for reactions sho	C-C for members and
TOP CHORD	Structural wood she	eathing directly applie	ed,	9-50=-1700/57, 9		,					rip DOL=1.60	wii, Lumber
	except			10-51=-1777/43,								e plane of the truss
	2-0-0 oc purlins (4-4			11-52=-1855/15,								ormal to the face),
BOT CHORD	Rigid ceiling directly			12-53=-2091/0, 1								Details as applicable,
WEBS	1 Row at midpt	6-24, 4-24		13-54=-2211/0, 1								er as per ANSI/TPI 1.
JOINTS	1 Brace at Jt(s): 27, 28, 29	1		55-56=-2073/0, 1	4-56=-21	10/0,						of LL: Lum DOL=1.15
	,			14-15=-2203/0, 1	5-16=-13	47/0,						20.4 psf (Lum DOL =
	All bearings 3-9-8. ex		3-8	16-57=-1501/0, 1	6-57=-15	16/0		1.1	5 Plate I	DOL =	1.15); Is=1.0; Ro	ugh Cat B; Partially
	Max Horiz 2=154 (L		BOT CHORD	2-58=0/2054, 26-								u=50-0-0; Min. flat
	Max Uplift All uplift	100 (lb) or less at join 7=-298 (LC 55)	t(S)	25-59=0/2054, 24								harge applied to all
	Max Grav All reaction		tioint	60-61=0/1482, 61							with slopes less	than 0.500/12 in
		cept 2=1719 (LC 49),		22-23=0/1772, 22				aco	cordance	e with II	BC 1608.3.4.	
		(LC 47), 18=572 (LC		21-64=0/1772, 20							mmm	1111,
FORCES		lax. Ten All forces	,	19-65=0/1772, 18		,	,				WAH CA	ROUL
TORGES	(lb) or less except w		200	17-66=0/1772, 17 16-68=0/1772, 16			1772,			1	A	- Sille
		men snown.	WEBS	5-24=0/668, 8-23						~	O'.EESS	6.14
			WED3	23-27=-262/93, 4						3		NAM
				11-21=-28/319, 2		,	<i>i</i> 1,		<u> </u>	n	2	
				28-29=-479/64, 1					-		054	n 196
				13-19=-346/34		,			-		SEA	• —
			NOTES								0363	22 : =
				ed roof live loads ha	ave been i	considered fo	r					- 1 - 2
			this design		,					-	1. Contraction 1. Con	1 5
			5							21	N. ENO	-ERIX S
										1	S, GIN	EF. A.S
										1	0363	BEIN

NOTES

G minn July 7,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1AGE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174680597

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 8)
- 9) Plates checked for a plus or minus 5 degree rotation about its center.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 297 lb uplift at joint
- 17. 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid
- panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 15) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run; 25.20 E May 15 2025 Print; 25.2.0 E May 15 2025 MiTek Industries, Inc. Mon Jul 07 07:24:46 ID:1qmrViBn7zeF2kuVH0yvenzuHOp-kj8XHKCVLJSItEbx1Bblttfc7zk9N_VFerp_ZPz_hcn

Page: 2

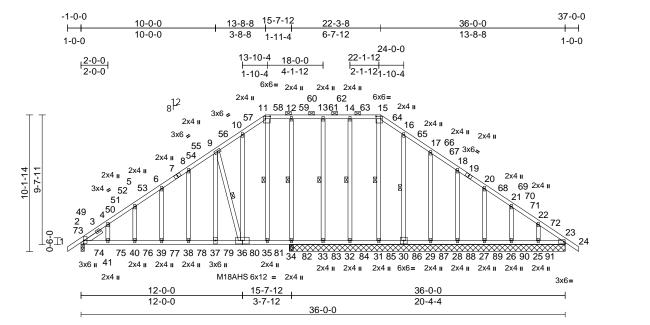
GILB 11111111 July 7,2025 WILLING THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

111111

SEAL 036322


ORT

Contraction of the

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1GE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174680598

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:27 ID:4b4Pntx3BxAFggbNijiRsSzuHYA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.7

Plate Offsets (X, Y): [2:0-2-9.0-0-4], [11:0-4-4.0-2-4], [15:0-4-4.0-2-4]

Plate Offsets (Plate Offsets (X, Y): [2:0-2-9,0-0-4], [11:0-4-4,0-2-4], [15:0-4-4,0-2-4]																
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	2	(psf) 20.0 0.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2) 2021/TPI2014	CSI TC BC WB Matrix-AS	0.92 0.72 0.46	Vert(CT) - Horz(CT)		23	l/defl >483 >293 n/a >767	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 282 lb	GRIP 244/190 186/179 FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP S 2x4 SP N 2x4 SP N Left 2x4 S Structura except 2-0-0 oc	S o.3 SP No.3 7 I wood she purlins (5-4 ing directly	athing directly appli -6 max.): 11-15.		TOP CHORD	1-2=0/51, 2-4=-16 5-6=-1568/358, 6 8-9=-1457/396, 9 10-11=-921/334, 12-13=-871/333, 14-15=-871/333, 16-17=-1098/365 18-20=-1091/305 21-22=-1057/245 23-24=0/45 2-41=-236/1289, 39-40=-236/1289,	/378, 7/402, 71/333, 71/333, 077/385, 1089/333, 1090/276, 1090/216, 36/1289,		Vas II; E Exte 22-3 27-4 expe read DOI	-second gust) =6.0psf; h=25ft; C lope) and C-C · (1) 2-7-3 to 13-8- rior (1) 18-9-10 to ·10, Interior (1) eft and right exposed; porch le es & MWFRS for 0 plate grip e plane of the trus	-8, o						
REACTIONS	(size)	2=0-3-0, 2 26=20-6-0 29=20-6-0 32=20-6-0	13-33, 11-35, 12-3 23=20-6-0, 25=20-6 0, 27=20-6-0, 28=20 0, 30=20-6-0, 31=20 0, 33=20-6-0, 34=20	4, 9-36 -0,)-6-0,)-6-0,	WEBS	34-35=-128/890, 32-33=-128/890, 29-31=-126/884, 27-28=-126/884, 25-26=-126/884,	-38=-236/1289, 35-37=-236/1289, -35=-128/800, 33-34=-128/890, -33=-128/890, 31-32=-128/890, -31=-126/884, 28-29=-126/884, -28=-126/884, 26-27=-126/884, -26=-126/884, 23-25=-126/884					 only. For studs exposed to wind (normal to the face) see Standard Industry Gable End Details as applicat or consult qualified building designer as per ANSI/TP TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DO 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partial Exp:: Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 					
	Max Horiz 2-159 (LC 15)					20-27=-281/39, 18-28=-278/39, 17-29=-281/67, 16-30=-255/49, 15-31=-172/445, 14-32=-275/34, 13-33=-231/81, 11-35=-103/241, 10-36=-142/567, 9-37=-225/874, 8-38=-134/109, 6-39=-161/85, 5-40=-157/91,								considered for th			
		141), 27= (LC 139), 30=318 (L 32=366 (L 134), 34=	LC 142), 26=344 (L0 330 (LC 140), 28=3 29=339 (LC 138), LC 137), 31=117 (L0 LC 135), 33=200 (L0 653 (LC 50)	NOTES 1) Unbalance this design	4-41=-141/105, 12-34=-340/49, 9-36=-1460/391 Inced roof live loads have been considered for sign.					Num		SEA 0363	L 22	Mannun			
FORCES	(Ib) - Max Tension	timum Com	pression/Maximum										ALC A. G	L 22 EER.H.H.			

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) ENGINEERING BY RENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3				
	A1GE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174680598			
Structural, LLC, Thurmont, MD -	21788,	Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:27							

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- 8) All plates are MT20 plates unless otherwise indicated. 9) Plates checked for a plus or minus 5 degree rotation about its center.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) N/A

- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:27 ID:4b4Pntx3BxAFggbNijiRsSzuHYA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> Variation WWWWWWWW SEAL 036322 GILB minin July 7,2025

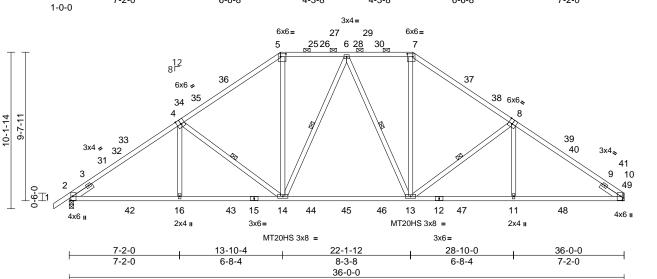
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1E	Piggyback Base	4	1	Job Reference (optional)	174680604

13-8-8

6-6-8

Structural, LLC, Thurmont, MD - 21788.


-1-0-0

7-2-0

7-2-0

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:26

Page: 1 ID:VCIx?caQvcLL223uMW2BcEzuHPb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 18-0-0 22-3-8 28-10-0 36-0-0 4-3-8 4-3-8 6-6-8 7-2-0 3x4= 6x6= 6x6= 27 29 2526 ⊠ 5 6 28 30 7


Scale = 1:74.7

Plate Offsets ((X, Y): [2:0-3-2,0-1-4],	, [4:0-3-0,Edge], [5:0	-4-4,0-2-4]	, [7:0-4-4,0-2	-4], [8:0-3-0,Edge]], [10:0-3-	2,0-1-4]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.87 0.59 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.43 0.08 0.04	(loc) 13-14 13-14 10 11-19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 216 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0		No.2 No.3 4)	Plate DOL= 1.15 Plate I Exp.; Ce=1 Unbalanced design.	E 7-16; Pr=20.0 p (1.15); Pg=20.0 ps (200 = 1.15); Is=1 (0; Cs=1.00; Ct=1 (1 snow loads have	sf; Pf=20.4 .0; Rough .10, Lu=5 e been co	4 psf (Lum D0 Cat B; Partia 0-0-0 nsidered for t	OL = ally his					
BRACING TOP CHORD BOT CHORD WEBS REACTIONS		5-0 max.): 5-7. 2 applied. 6-14, 6-13, 4-14, 8- 10= Mechanical C 15)	6) 7) 13 8) 9)	load of 12.0 overhangs i Provide ade All plates an Plates chec about its ce This truss h chord live lo	as been designed bad nonconcurren	flat roof I th other li prevent less othe minus 5 d d for a 10. t with any	oad of 15.4 p ve loads. water pondin rwise indicate egree rotation 0 psf bottom other live loa	esfon g. ed. n ads.					
FORCES	(lb) - Maximum Com Tension 5-6=-1543/91, 6-7=-		<i>,</i> 10	on the botto 3-06-00 tall	has been designed om chord in all are by 2-00-00 wide	eas where	a rectangle veen the bott	om					
BOT CHORD	2-5=-2507/64, 7-10=	=-2530/69 =0/2103, 13-14=0/1		 chord and any other members, with BCDL = 10.0psf. 11) Refer to girder(s) for truss to truss connections. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid 									
WEBS	5-14=0/706, 7-13=0, 6-13=-254/99, 4-14= 8-13=-715/71, 8-11=	/712, 6-14=-259/98, =-683/71, 4-16=0/36		panels and Bottom Cho	at all panel points ord, nonconcurren lesign requires that	along the t with any	e Top Chord a other live loa	and				WITH CA	ROLI
NOTES 1) Unbalance this design	ed roof live loads have	been considered fo		structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.									
2) Wind: AS	 CE 7-16; Vult=120mph nph: TCDL=6.0psf: BC			14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or									

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-6-14, Interior (1) 2-6-14 to 13-8-8, Exterior(2R) 13-8-8 to 18-9-3, Interior (1) 18-9-3 to 22-3-8, Exterior(2R) 22-3-8 to 27-4-3, Interior (1) 27-4-3 to 35-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

or the orientatior of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 25.20 E May 15 2025 Print: 25.2.0 E May 15 2025 MiTek Industries, Inc. Mon Jul 07 07:27:34 ID:VCIx?caQvcLL223uMW2BcEzuHPb-mQPozTG7JYtAHMbc_uecmjigAVluC?NHkI_zXZz_ha7

-1-0-0 28-10-0 36-0-0 7-2-0 13-8-8 18-0-0 22-3-8 -7-2-0 6-6-8 4-3-8 4-3-8 6-6-8 7-2-0 1-0-0 3x4= 6x6= 6x6= 28 30 5 26 27 ⊠⊠⊠⊠ 6 29 31 7 8¹² 37 38 6x6 🍫 39 _{6x6} _♦ 36 35 4 8 10-1-14 9-7-11 40 34 4x4 🧔 33 41 4x4 32 42 9 10 51 9 9___1 43 17 44 16 15 45 46 47 14 13 48 12 49 50 11 4x6 🛛 4x6 II 2x4 II 3x6= MT20HS 3x8 = 2x4 II MT20HS 3x8 = 3x6= 7-2-0 13-10-4 22-1-12 28-10-0 32-4-4 36-0-0 7-2-0 3-7-12 6-8-4 8-3-8 6-8-4 3-6-4

Scale = 1:71.4 Plate Offsets (X, Y): [2:0-0-0,0-0-0], [2:0-3-2,0-1-4], [4:0-3-0,Edge], [5:0-4-4,0-2-4], [7:0-4-4,0-2-4], [8:0-3-0,Edge], [10:0-3-2,0-1-4]

							• • •		-					
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 20.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.87 0.58	DEFL Vert(LL) Vert(CT)	in -0.28 -0.41		l/defl >999 >933	L/d 360 240	PLATES MT20 MT20HS	GRIP 244/190 187/143	
TCDL BCLL	10.0 0.0*	Rep Stress Incr	YES	1/TPI2014	WB Matrix-AS	0.25	Horz(CT)	0.08 0.03	10 12-14	n/a >999	n/a 240			
BCDL	10.0	Code	IRC202	1/1912014	Matrix-A5		Wind(LL)	0.03	12-14	>999	240	Weight: 216 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP SS 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (4-5 Rigid ceiling directly 1 Row at midpt (b/size) 2=1352/0 11=191/0 Max Horiz 2=154 (LC Max Grav 2=1732 (L 11=374 (L (b) or less except w 5-26=-1508/91, 26-2 27-28=-1508/91, 26-2 27-28=-1508/91, 26-2 27-28=-1508/91, 26-2 27-28=-1508/91, 26-2 30-31=-1495/94, 7-3 2-3=-1521/0, 3-32=- 33-34=-2396/0, 4-34 4-35=-1949/24, 35-3 7-38=-1788/69, 38-3 8-39=-1932/30, 8-40 40-41=-2274/0, 9-41 10-42=-1272/0, 10-4 2-43=0/2073, 17-43=	applied. 6-15, 6-14, 4-15, 8-14 3-8, 10=1140/3-9-8, 3-8 C 15) C 49), 10=1454 (LC 4 C 91) ax. Ten All forces 29 hen shown. 27=-1508/91, 30=-1495/94, 31=-1495/94, 32=-3289/0, 66=-1933/29, 37=-1803/68, 99=-1796/47, =-2187/9, =-2167/9, =-2167/9, =-2145/0, 9-10=-1042 12=-1286/0 =0/2073, 17-44=0/207	40.2 N(0.3 1) 2) 1, 4 47), 3) 50 0, 4) 50 0, 4) 50 (), 5) (), (), (), (), (), (), (), ()	Cortes Ottes Unbalanced this design. Wind: ASCE Vasd=95mpH II; Exp B; En- Exterior(2E) 13-8-8, Exter to 22-3-8, Ex 27-4-3 to 36- end vertical H forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 roof snow loa exposed surf accordance V Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adec All plates are Plates check about its cen	5-15=0/683, 7-14 4-17=0/366, 4-15- 3-14=-563/75 roof live loads ha 7-16; Vult=120m n; TCDL=6.0psf; E closed; MWFRS 1 -1-0-0 to 2-6-14, ior(2R) 13-8-8 to terior(2R) 22-3-8 0-0 zone; cantile eft and right expo FRS for reactions ate grip DOL=1.6 7-16; Pr=20.0 psi .15); Pg=20.0 psi .15	=-686/71, ve been of ph (3-sec 3CDL=6.0 envelope interior (1 18-9-3, li to 27-4-2 ver left ar sed;C-Cr s shown; 0 of (roof LL ; Pf=20.4); Rough 10, Lu=50 surcharc less than been cor for great flat roof lo h other lis prevent v ess other inus 5 de	8-12=0/307, considered for cond gust) Dpsf; h=25ft; C e) and C-C) 2-6-14 to interior (1) 18-4 , Interior (1) 18-4 , Interior (1) ad right expose for members a Lumber :: Lum DOL=1 Psf (Lum DO Cat B; Partial D-0-0; Min. flat pe applied to a 0.500/12 in asidered for th er of min roof bad of 15.4 ps <i>ve</i> loads. water ponding wise indicated agree rotation	2at. 9-3 ed; and .15 L = ly it III is fon	load pan Bott 12) This stru cho the 13) Gra or ti bott LOAD (d of 250. els and tom Cho s truss d ctural w rd and 1 bottom o phical p he orien om cho CASE(S	Olb livv at all p rd, noi lesign 1 ood sf /2" gyl chord. urlin re tation (rd.) Sta	en designed for a e and 3.0lb dead vanel points alony nconcurrent with requires that a m teathing be appli psum sheetrock l appresentation doo of the purlin alon	moving concentrate located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to as not depict the size g the top and/or	d s. o o o e
	45-46=0/1511, 46-47 13-14=0/1881, 13-48 12-49=0/1881, 11-49	6=0/2073, 15-45=0/15 7=0/1511, 14-47=0/15 8=0/1881, 12-48=0/18 9=0/1881, 11-50=0/18 1=0/1881, 10-51=0/18	511, 511, 181, 10 181,	chord live loa 0) * This truss h on the botton 3-06-00 tall b	s been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members	with any d for a liv as where rill fit betw	other live load e load of 20.0 a rectangle veen the botto	psf m		ŝ		A C A. C		

July 7,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss Truss Type Q		Qty	Ply	Stonefield Rev 3		
	PB1	Piggyback	15	1	Job Reference (optional)	174680606	

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 03 15:47:37 ID:kFR4826vLkOUpaV0tbxBIvzuHWf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-2 8-6-4 4-3-2 4-3-2

4-3-2

Scale = 1:40.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 29 lb	FT = 20%
UMBER 5) Unbalanced snow loads have been considered for this												

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift	0.3
FORCES	. ,	imum Compression/Maximum
TOP CHORD	Tension 1-2=0/22.	2-3=-170/69. 3-4=-170/69.
	4-5=0/22	
BOT CHORD	2-6=-8/86	6, 4-6=-10/86
WEBS	3-6=-233/	/10

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-5 to 3-3-5, Interior (1) 3-3-5 to 4-3-8, Exterior(2R) 4-3-8 to 7-5-0, Interior (1) 7-5-0 to 8-3-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 4-0-0 oc. 9)

12) N/A

- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord
- 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	V2	Valley	1	1	Job Reference (optional)	174680607

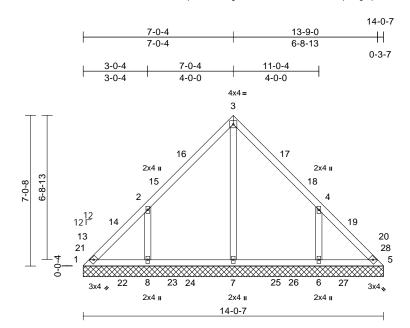
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:37 ID:e_Bqz0s?GDOv1gBv0G?_JrztW0c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.5

			_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.50 0.78 0.36	Vert(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-8-7, 7=16-8-7, Max Horiz 1=-131 (L Max Uplift 1=-17 (LC (LC 17), 8 Max Grav 1=297 (LC	5=16-8-7, 6=16-8-7, 8=16-8-7 C 12) 2 12), 5=-3 (LC 40), 6= 3=-91 (LC 16) C 45), 5=297 (LC 51), C 30), 7=475 (LC 29),	or 5) 6) 89 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa	ed for wind loads uds exposed to wind d Industry Gable E ialified building des 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have to teed for a plus or mitter. es continuous bott spaced at 4-0-0 of is been designed f ad nonconcurrent has been designed n chord in all area	Id (norm nd Deta signer a (roof LI Pf=15.4 ; Rough 0 been col nus 5 d om chol 2. or a 10. with any f or a liv	al to the face) ils as applicat s per ANSI/TF 4 psf (Lum DC Cat B; Partial nsidered for th egree rotation rd bearing. 0 psf bottom other live loar re load of 20.0), ble, Pl 1. 1.15 JL = Ily his ds.					
FORCES TOP CHORD BOT CHORD WEBS NOTES	4-5=-269/238	139/157, 3-4=-139/14 111/119, 5-6=-111/17 9/192, 4-6=-349/191	3	3-06-00 tall t chord and ar Provide mec bearing plate 1, 3 lb uplift at joint 6. 2) This truss ha	y 2-00-00 wide wi y other members, hanical connection capable of withstat joint 5, 91 lb uplies been designed f	Il fit betw with BC (by oth anding 1 ift at join or a mo	veen the botto CDL = 10.0psf. ers) of truss to 17 lb uplift at jo t 8 and 89 lb o ving concentra	o oint uplift ated				WTH CA	ROUT

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 8-4-8, Exterior(2R) 8-4-8 to 11-4-8, Interior (1) 11-4-8 to 16-8-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
 LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3		
	V3	Valley	1	1	Job Reference (optional)	174680608	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:37 ID:e_Bqz0s?GDOv1gBv0G?_JrztW0c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

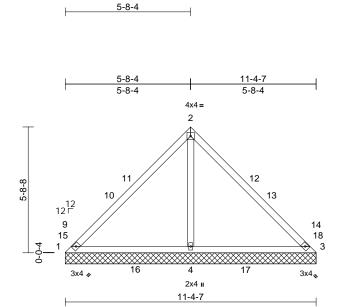
Page: 1

Scale = 1:53.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.44 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 1=14-0 7=14-0 Max Horiz 1=-109 Max Uplift 1=-18 8=-76 Max Grav 1=298	heathing directly applie ctly applied or 6-0-0 oc -7, 5=14-0-7, 6=14-0-7 -7, 8=14-0-7 0 (LC 14) (LC 12), 6=-74 (LC 17), (LC 16) (LC 34), 5=298 (LC 55 (LC 34), 7=404 (LC 64	5) '6) 7) 8) 9)	only. For stu see Standar, or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cer Gable requir Gable studs This truss ha chord live loa	es continuous spaced at 4-0 is been desigr ad nonconcurr	o wind (norm ble End Detai g designer as g designer as p opsf (roof LL p sf; Pf=15.4 =1.0; Rough =1.10 ave been cor or minus 5 de bottom chor -0 oc. ed for a 10.0 ent with any	al to the face ils as applica s per ANSI/TI : Lum DOL= t psf (Lum DC Cat B; Partia asidered for th egree rotation d bearing. D psf bottom other live loa), ble, Pl 1. 1.15 DL = Illy his n					
FORCES		(LC 33) ompression/Maximum	10	3-06-00 tall b	n chord in all a	areas where le will fit betw	a rectangle	om					
TOP CHORD		3=-182/118, 3-4=-182/1	12, 11) Provide mec		ction (by oth	ers) of truss t	to					
BOT CHORD	1-8=-52/169, 7-8	=-52/93, 6-7=-52/93,		1, 76 lb uplif	e capable of w at joint 8 and	74 lb uplift a	it joint 6.						10.
WEBS NOTES	5-6=-52/169 3-7=-240/0, 2-8=-	334/200, 4-6=-334/200	12		is been desigr Ib live and 3.0 It all panel poi)lb dead loca	ited at all mid	I				TH CA	ROUT

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-4 to 3-0-8, Interior (1) 3-0-8 to 7-0-8, Exterior(2R) 7-0-8 to 10-0-8, Interior (1) 10-0-8 to 14-0-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Bottom Chord, nonconcurrent with any other live loads.
- LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	V4	Valley	2	1	Job Reference (optional)	174680609

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 03 15:47:37 ID:o2JigkIGZtfEcYppi4?vwKztVqQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MS	0.77 0.68 0.39	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
	Max Horiz 1=-88 (LC Max Uplift 1=-88 (LC 4=-18 (LC	applied or 6-0-0 oc 3=11-4-7, 4=11-4-7 12) 550), 3=-88 (LC 49), 16) C 43), 3=255 (LC 47) C 2)	6) 7) 8) 9) 10	Plate DOL= 1.15 Plate D Exp.; Ce=1. Unbalanced design. Plates checl about its cer Gable requin Gable studs This truss ha chord live lo) * This truss on the botto 3-06-00 tall chord and a	E 7-16; $Pr=20.0 \ p$ 1.15); $Pg=20.0 \ p$ OL = 1.15); Is=1 0; $Cs=1.00; Ct='$ snow loads hav ked for a plus or nter. res continuous b spaced at 4-0-0 as been designe ad nonconcurrer has been design m chord in all and by 2-00-00 wide my other membe shanical connect	sf; Pf=15.4 1.0; Rough 1.10 e been cor minus 5 de ottom chor oc. d for a 10.0 nt with any led for a liv eas where will fit betw rs.	 psf (Lum Do Cat B; Partia nsidered for t egree rotation d bearing. D psf bottom other live lose e load of 20. a rectangle veen the bott 	OL = ally this n ads. .0psf tom					

TOP CHORD 1-2=-189/384, 2-3=-189/384 BOT CHORD 1-4=-245/206, 3-4=-245/206 WEBS 2-4 = -694/307

NOTES

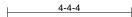
Unbalanced roof live loads have been considered for 1) this design.

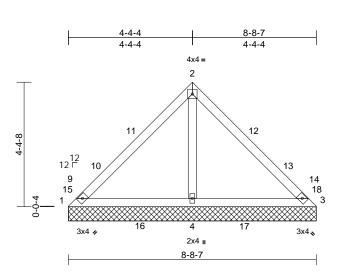
Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-8-8, Exterior(2R) 5-8-8 to 8-8-8, Interior (1) 8-8-8 to 11-4-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- bearing plate capable of withstanding 88 lb uplift at joint 1, 88 lb uplift at joint 3 and 18 lb uplift at joint 4.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	o	Truss	Truss Type Qty Ply Stonefield Rev 3				
		V5	Valley	2	1	Job Reference (optional)	174680610

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:37 ID:o2JigkIGZtfEcYppi4?vwKztVqQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

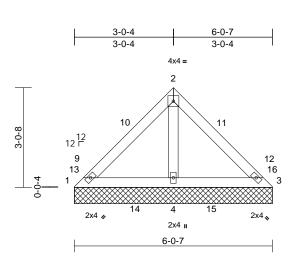
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014	CSI TC BC WB Matrix-MP	0.59 0.79 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
	8-8-7 oc purlins. Rigid ceiling directly bracing. (size) 1=8-8-7, 5 Max Horiz 1=-67 (LC Max Uplift 1=-72 (LC 4=-13 (LC Max Grav 1=264 (LC 4=654 (LC	3=8-8-7, 4=8-8-7 2 41) 2 41), 3=-72 (LC 40), 2 (LC 40), 2 (LC 47) 2 (LC 47) 2 (LC 47) 2 (LC 47) 2 (LC 47) 2 (LC 47) 3 (LC	Plat 1.15 Exp 5) Unb dor 6) Plat abo 7) Gab 8) Gab 9) This choi 10) * Th on t 3-00	te DOL=1 5 Plate D0 0.; Ce=1.0 balanced ign. tes check but its cen ble require ble studs s truss ha ord live loa his truss h the bottom 6-00 tall b	7-16; Pr=20.0 psf, .15); Pg=20.0 psf; OL = 1.15); Is=1.0; b; Cs=1.00; Ct=1.11 snow loads have b ed for a plus or min ter. es continuous botto spaced at 4-0-0 oc s been designed f ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wil yy other members.	Pf=15.4 Rough Deen cor nus 5 de om chor c. or a 10.0 vith any for a liv s where	 psf (Lum DO Cat B; Partial psidered for the pgree rotation d bearing. psf bottom other live loace e load of 20.0 a rectangle 	L = ly is ds. psf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-197/305, 2-3=- 1-4=-197/206, 3-4=-	197/305	11) Prov bea 1, 7	vide mecl aring plate '2 lb uplift	hanical connection capable of withsta at joint 3 and 13 lk	anding 7 o uplift a	2 lb uplift at jo t joint 4.	pint					

- BOT CHORD 1-4=-197/206, 3-4=-197/206 WEBS 2-4=-485/277 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-4-8, Exterior(2R) 4-4-8 to 7-4-8, Interior (1) 7-4-8 to 8-8-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


TREEXING BY A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	V6	Valley	2	1	Job Reference (optional)	174680611

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 03 15:47:37 ID:o2JigkIGZtfEcYppi4?vwKztVqQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-4

Scale = 1:35.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.46	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%
LUMBER	LUMBER 5) Unbalanced snow loads have been considered for this											

TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=6-0-7, 3=6-0-7, 4=6-0-7
	Max Horiz	1=-45 (LC 14)
	Max Uplift	1=-30 (LC 50), 3=-30 (LC 48)
	Max Grav	1=276 (LC 47), 3=276 (LC 51), 4=457 (LC 54)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-212/	/203, 2-3=-212/203
BOT CHORD	1-4=-112/	/133, 3-4=-112/133
WEBS	2-4=-308/	(170
NOTES		

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

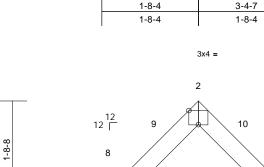
- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)

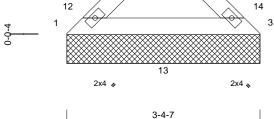
or

- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 1 and 30 lb uplift at joint 3.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

mmini TH CAR VIIIIII SEAL 036322 G mum July 7,2025

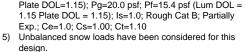
Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	V7	Valley	2	1	Job Reference (optional)	174680612

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:38 ID:o2JigkIGZtfEcYppi4?vwKztVqQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11

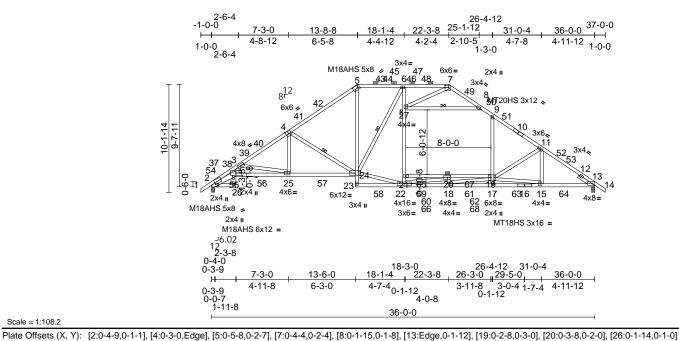


Scale = 1:20.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.20	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.45 0.00	Vert(TL) Horiz(TL)	n/a 0.00	- 3	n/a n/a	999 n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP	0.00		0.00	3	n/a	n/a		
		Code	11(02021/1112014	IVIAUIX-IVII							Weight: 11 lb	FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 3) Truss desi only. For s	10.0 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-4-7 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-7, 5 Max Horiz 1=-24 (LC Max Grav 1=320 (LC (Ib) - Maximum Com 1-2=-350/72, 2-3=-3 1-3=-52/242 ed roof live loads have brack for the second structure of the Direct second structure of the Di	applied or 10-0-0 or 3=3-4-7 (12) C 43), 3=320 (LC 47 pression/Maximum 50/74 been considered for (3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C and right exposed C for members and hown; Lumber the plane of the true (normal to the face)	8) Gable stu 9) This trus: chord live ed or 10) * This tru on the bc 3-06-00 t chord an 11) This trus: load of 2: panels an Bottom C LOAD CASE r Cat. end ss),	quires continuous bo dds spaced at 4-0-0 s has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide d any other member has been designed 50.0lb live and 3.0lb d at all panel point hord, nonconcurren (S) Standard	oc. d for a 10.0 ht with any ed for a liv eas where will fit betw rs. d for a more d for a more d dor d dor	0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ving concentr. ated at all mid e Top Chord a	Dpsf om ated and				Weight: 11 lb	FT = 20%
4) TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1	qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10	roof LL: Lum DOL= Pf=15.4 psf (Lum DC Rough Cat B; Partia	1.15 DL = Ily						11144		0363	• -
,	ed snow loads have be	en considered for th	nis							1	PUGIN	F.F. ER IN
,	cked for a plus or min	us 5 degree rotation									A. C	ILBLUM
about its c	enter.										2000	1111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	A1CT	Attic	1	1	Job Reference (optional)	174680614

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:24 ID:Pd3?ALLNTm1bLcQK0AEocDzuHSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:108.2

			-	-							-	-	-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁴	I/TPI2014	CSI TC BC WB Matrix-AS	0.92 0.90 0.92	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.64 0.29	(loc) 17-18 17-18 13 17-18	l/defl >999 >676 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS MT18HS Weight: 270 lb	GRIP 244/190 187/143 186/179 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	No.2, 6-22,9-17,27-8 Right 2x4 SP No.3 -	28-29:2x4 SP No.2 bt* 26-3,29-26:2x6 SP 8:2x4 SP No.2 - 1-6-0 eathing directly applied.	2)	this design. Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) 22-3-8, Exter to 37-0-0 zor vertical left a	roof live loads ha 7-16; Vult=120r ;; TCDL=6.0p8; (dosed; MWFRS -1-0-0 to 2-6-4, li 13-8-8 to 18-9-11 ior(2R) 22-3-8 to he; cantilever leat dright exposed FRS for reaction	nph (3-sec BCDL=6. (envelope nterior (1) 0, Interior 27-4-9, I and right ;C-C for n	cond gust) Opsf; h=25ft; h e) and C-C 2-6-4 to 13-8 (1) 18-9-10 t nterior (1) 27 exposed ; en nembers and	Cat. 3-8, o -4-9 nd	usir des 14) This load pan Bott 15) This stru cho	ng ANSI, igner sh s truss h d of 250. els and tom Cho s truss d ctural w	/TPI 1 a lould ve las bee .0lb live at all p ord, nor lesign r rood sh l/2" gyp	2 considers para angle to grain for erify capacity of b an designed for a e and 3.0lb dead banel points along inconcurrent with requires that a m leathing be applied posum sheetrock b	mula. Building pearing surface moving concel located at all n g the Top Chord any other live I inimum of 7/16 ed directly to th	g entrated mid rd and loads. S" ne top
	Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 27 (size) 2=0-3-8, Max Horiz 2=-158 (L Max Grav 2=1929 (I	4)	 DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (Pf=20.4 psf (Lum DOL= 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this 									g the top and/o		
FORCES	(lb) - Maximum Com Tension		ý 5)		s been designed									
TOP CHORD	1-2=0/45, 2-3=-6492 5-6=-2044/0, 6-7=-1		6)), 7)	overhangs n 250.0lb AC ι from left end	psf or 2.00 times on-concurrent wi init load placed o , supported at tw guate drainage to	th other liven the bott the bott to points, the bott	ve loads. om chord, 22 5-0-0 apart.	2-3-0				WITH CA	RO	
BOT CHORD	23-24=-38/129, 5-24 22-23=-132/107, 18 17-18=0/4125, 15-1 20-21=0/477, 19-20 3-26=0/1961, 4-25= 22-24=0/2035, 6-24	-22=0/4081, 7=0/4067, 13-15=0/26	6, 8) 9) 21, 10 5, 11	All plates are Plates check about its cen) This truss ha chord live loa) * This truss h on the bottor	MT20 plates un ed for a plus or r	less other ninus 5 de for a 10.0 t with any ed for a liv as where	wise indicate egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle	ed. n ads. Opsf		A STITLE	in	10000	L 22	Manna .
NOTES	9-19=0/588, 8-27=- 18-20=-99/174, 20-2 18-19=-173/987, 11	1197/0, 7-27=0/1170, 22=-2640/0,	12	chord and ar Bottom chore	y 2-00-00 wide v y other members d live load (20.0 p oad (20.0 psf) ap	s. osf) and a	dditional bott	om				SEA 0363		annun 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3				
	A1DT	Attic	3	1	Job Reference (optional)	174680615			

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:25 ID:gFoO16ugK59RiHCxW2XpoCzuHQU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

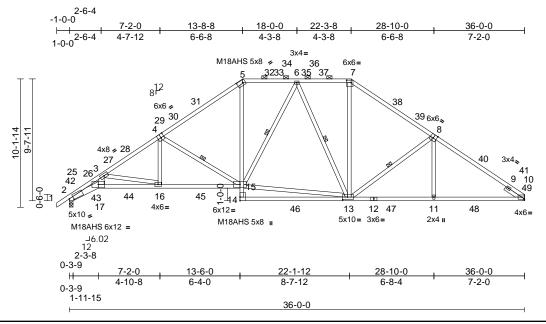
Page: 1

Scale = 1:108.2

	λ, 1). [2.0-4-9,0-1-1],	, [4.0-3-0, Luge], [3.0-0	5-12,0-2-0	J, [1.0-4-4,0-2	4j, [0.0-1-13,0-1-	·oj, [10.0-	2-0,0-3-0], [1	3.0-3-0,	0-2-0j, [2	.5.0-1-1-	+,0-1-0	1		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.93 1.00 0.93	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.65 0.30	16-17	l/defl >999 >659 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS MT18HS Weight: 268 lb	GRIP 244/190 187/143 186/179 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.3 *Excep No.2, 6-21,9-16,26-8 Right 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (3-1	17-28,15-13:2x4 SP N 17 25-3,28-25:2x6 SP 3:2x4 SP No.2 - 1-6-0 athing directly applied 0-7 max.): 5-7.	, p.2	Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2E) 22-3-8, Exterior to 35-11-4 zc vertical left a forces & MW DOL=1.60 pl TCLL: ASCE	7-16; Vult=120m n; TCDL=6.0psf; closed; MWFRS -1-0-0 to 2-6-4, Ir 13-8-8 to 18-9-3, ior(2R) 22-3-8 to ne; cantilever lef nd right exposed FRS for reaction ate grip DOL=1.6 7-16; Pr=2.0.0 pc	BCDL=6. (envelope nterior (1) 1nterior (27-4-2, I t and righ ;C-C for r s shown; 50 sf (roof LI	Opsf; h=25f; e) and C-C 2-6-4 to 13-8 1) 18-9-3 to nterior (1) 27- it exposed ; e nembers and Lumber L: Lum DOL=	8-8, -4-2 end I	load pan Bot 16) This stru cho the 17) Gra or the bott	d of 250 hels and tom Cho s truss d ictural w ord and 1 bottom iphical p he orien tom cho	Olb live at all p ord, nor esign r ood sh /2" gyp chord. urlin re tation o rd.	en designed for a e and 3.0lb dead anel points alon inconcurrent with requires that a m neathing be appli posum sheetrock epresentation do of the purlin alon	located at all m g the Top Chord any other live l inimum of 7/16 ed directly to th be applied direct es not depict the g the top and/or	hid d and oads. " e top ctly to e size
	1 Brace at Jt(s): 26 (size) 2=0-3-8, 7 Max Horiz 2=154 (L0	4-23, 6-23, 8-26 13= Mechanical	5)	1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha	.15); Pg=20.0 ps DL = 1.15); Is=1. b; Cs=1.00; Ct=1. snow loads have s been designed osf or 2.00 times	0; Rough 10, Lu=5 been cor for great	Cat B; Partia 0-0-0 nsidered for th er of min roof	ally his f live	LOAD (d for L/360 defle ndard	cuon.	
FORCES	(lb) - Maximum Com Tension		,	overhangs n	on-concurrent wit	th other liv	ve loads.							
TOP CHORD	1-2=0/45, 2-3=-6510 5-6=-2053/0, 6-7=-1	937/0, 7-8=-1239/0,	7)	from left end Provide adeo		o points, prevent	5-0-0 apart. water ponding	g.				mmm	11111	
5-6=-2053/0, 6-7=-1937/0, 7-8=-1239/0, 8-9=-2268/0, 9-11=-2693/0, 11-13=-3286/0 7) Provide adequate drainage to prevent water ponding. BOT CHORD 2-25=0/5693, 24-25=0/4856, 23-24=0/3005, 22-23=-39/128, 5-23=0/1056, 21-22=-132/107, 17-21=0/4110, 16-17=0/4168, 14-16=0/4101, 13-14=0/2682, 19-20=0/491, 18-19=-2128/0 7) Provide adequate drainage to prevent water ponding. WEBS 3-25=0/1966, 4-24=0/430, 4-23=-1091/1, 21-23=0/2047, 6-23=-281/72, 20-21=0/483, 20-26=0/540, 6-26=-324/210, 16-18=0/4114, 9-18=0/597, 8-26=-1208/0, 7-26=0/1174, 11-14=0/437, 11-18=-694/43, 14-18=-1532/0, 17-18=-188/975, 3-24=-1892/0 7) Provide adequate drainage to prevent water ponding. 8 All plates are MT20 plates unless otherwise indicated. 9) Plates checked for a plus or minus 5 degree rotation about its center. WEBS 3-25=0/1966, 4-24=0/630, 4-23=-1091/1, 21-23=0/2047, 6-23=-281/72, 20-21=0/483, 20-26=0/540, 6-26=-324/210, 16-18=0/414, 9-18=-0/597, 8-26=-1208/0, 7-26=0/1174, 11-14=0/437, 11-18=-694/43, 14-18=-1532/0, 17-18=-188/975, 3-24=-1892/0 7) Provide adequate drainage to prevent water ponding. 8 Plates otherwise indicated. 10 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8 9 3-06-00 tall by 2-00-00 wide will fit between the bottom chord dead load (20.0 psf) applied only to room. 19-20, 18-19 9 13) Refer to girder(s) for truss to truss connections.										Grander	è	SEA 0363	L 22 EER	Mannung
NOTES 1) Unbalance this design	d roof live loads have			Bearing at jo using ANSI/1	int(s) 2 considers PI 1 angle to gra uld verify capacit	a parallel ain formul	to grain value a. Building	9				201111	ILBERT	5

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and proponent and the component development description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3				
	A1ET	Piggyback Base	2	1	Job Reference (optional)	174680616			

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries. Inc. Thu Jul 03 15:47:26 ID:VCIx?caQvcLL223uMW2BcEzuHPb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.1

Plate Offsets (X, Y): [2:0-3-13,0-2-7], [4:0-3-0,Edge], [5:0-5-8,0-2-7], [7:0-4-4,0-2-4], [8:0-3-0,Edge], [13:0-4-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	-	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	-0.29	13-14	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.50	13-14	>863	240	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	YES	WB	0.71	Horz(CT)	0.22	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.07	16-17	>999	240		
BCDL	10.0										Weight: 233 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP SS *Except*	s (envelope	Dpsf; h=25ft; and C-C		stru cho	ctural w	ood sh /2" gyp		nimum of 7/16" d directly to the top e applied directly to			
WEBS SLIDER	5-14:2x4 SP No.2 2x4 SP No.3 *Excep Right 2x4 SP No.3 -	Exterior(2R)	-1-0-0 to 2-6-4, Interior (1) 2-6-4 to 13-8-8, 13-8-8 to 18-9-3, Interior (1) 18-9-3 to rior(2R) 22-3-8 to 27-4-2, Interior (1) 27-4-2				15) Gra	phical p	urlin re	presentation doe of the purlin along	s not depict the size the top and/or	

BRACING TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-4-14 max.): 5-7. BOT CHORD Rigid ceiling directly applied. WEBS 4-15, 6-13, 8-13, 6-15 1 Row at midpt REACTIONS 2=0-3-8. 10= Mechanical (size) Max Horiz 2=154 (LC 13) Max Grav 2=1662 (LC 41), 10=1606 (LC 41) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/45, 2-3=-5484/0, 3-5=-3029/52 5-6=-1591/85, 6-7=-1441/88, 7-10=-2453/67 BOT CHORD 2-17=0/4800, 16-17=0/4102, 15-16=0/2491, 14-15=0/212, 5-15=0/694, 13-14=-18/321, 11-13=0/1970, 10-11=0/1969 WEBS 3-17=0/1647, 3-16=-1639/0, 4-16=0/580, 4-15=-1031/45, 6-13=-398/88, 7-13=0/575, 8-11=0/373, 8-13=-668/71, 13-15=0/1351, 6-15=-117/203

NOTES

Unbalanced roof live loads have been considered for 1) this design.

to 35-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4)
- Unbalanced snow loads have been considered for this desian. 5)
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6) All plates are MT20 plates unless otherwise indicated. 7)
- Plates checked for a plus or minus 5 degree rotation 8) about its center.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3		
	C1AGR	Common Girder	1	2	Job Reference (optional)	174680617	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:32 ID:UffDsd5yDCkbDvU4v2Xa1NzuH5a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-7-0 18-7-0 4-7-0 9-3-8 14-0-0 4-7-0 4-8-8 4-8-8 4-7-0 1-0-0 4x8 II 3 12 12 15 4x6 🅢 14 3x6、 13 16 2 4 64 5 -10-0 6 Ш n'n Ш шЩш Ш 18 10 19 21 9 22 2324 8 26 4x8 II 4x4= $\begin{array}{c} 4x8 \text{ II} \\ \text{HUS28 HUS28} \\ \text{HUS26 HUS26} \\ \begin{array}{c} 8x8 = & 20 \\ \text{HUS26 HUS26} \\ \begin{array}{c} 10x10 = \\ \text{HUS26 HUS26} \\ \end{array} \\ \begin{array}{c} 10x10 = \\ \text{HUS26 HUS26} \\ \end{array} \end{array}$ 25 8x8= HUS28 HUS26 0-1-12 18-7-0 4-7-0 9-3-8 14-0-0 18-5-4 ╟ 4-8-8 4-5-4 4-8-8 4-5-4 0-1-12 0-1-12 18-7-0

Scale = 1:80.9

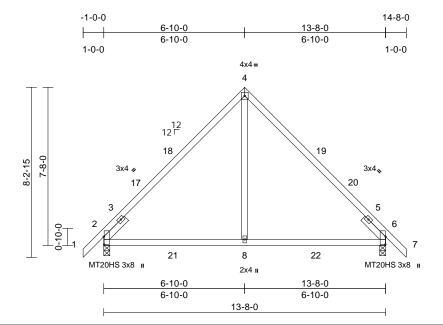
Plate Offsets (X, Y): [1:Edge,0-1-7], [5:0-2-12,0-1-8], [8:0-3-8,0-6-0], [9:0-5-0,0-6-0], [10:0-3-8,0-6-0]

Н

11-1-8

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.62	Vert(LL)	-0.08	9-10	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		вс	0.36	Vert(CT)	-0.16	9-10	>999	240		
TCDL	10.0	Rep Stress Incr	NO		WB	0.87	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MS		Wind(LL)	0.00	9	>999	240		
BCDL	10.0								-		-	Weight: 336 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SP DSS 2x4 SP No.2 *Excep SP No.3 Structural wood she 4-4-5 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, 4	athing directly applie cept end verticals. applied or 10-0-0 oc	x4 5) d or 6)	Vasd=95mpH II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	7-16; Vult=120mp n; TCDL=6.0psf; B closed; MWFRS (losed; end vertica =1.60 plate grip D 7-16; Pr=20.0 psf; 0L = 1.15); Is=1.0 b; Cs=1.00; Ct=1.1 snow loads have I	CDL=6.0 envelope al left and OOL=1.60 f (roof LL ; Pf=15.4 ; Rough 0 been cor	Dpsf; h=25f; h e); cantilever d right expose) :: Lum DOL= l psf (Lum DC Cat B; Partia nsidered for th	Cat. left ed; 1.15 DL = Illy his	Tru 6-4 bac 16) Fill LOAD (1) De Inc Ur	ss) or ec 4 from t k face o all nail h CASE(S) ead + Sn crease= hiform Lo	quivale he left f botto oles w oow (ba 1.15 bads (l 3=-51,	nt spaced at 2-0 end to 14-4-4 to m chord. /here hanger is ir ndard alanced): Lumbe b/ft) 3-5=-51, 5-6=-5 ⁻	14-10d Girder, 4-10d -0 oc max. starting at connect truss(es) to n contact with lumber. r Increase=1.15, Plate 1, 7-11=-20
	Max Horiz 11=-193 (Max Grav 7=7292 (L	LC 8) .C 20), 11=9748 (LC	19)	load of 12.0 overhangs n	s been designed f psf or 2.00 times fl on-concurrent with	lat roof lo	bad of 15.4 p /e loads.	sf on		Vert: 10 19=-158	=-2043 36 (B),	3 (B), 11=-2051 ((B), 18=-2043 (B), 2=-1579 (B), 24=-1579 3)
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	Plates check about its cen	ed for a plus or mi ter.	inus 5 de	egree rotation	1		(2), 20		(2), 20 1010 (2	-,
TOP CHORD BOT CHORD WEBS		66, 1-11=-6703/0,	10) 24,	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and an	s been designed f ad nonconcurrent v nas been designed n chord in all area by 2-00-00 wide wi y other members. int(s) 11, 7 consid	with any d for a liv s where ill fit betw	other live loa e load of 20.0 a rectangle veen the botto	Opsf om					11111
NOTES			,		PI 1 angle to grain							ITH UF	ROUL
 (0.131"x3") Top chords oc. Bottom cho staggered Web conne 2) All loads an except ifn m CASE(S) s provided to unless other 	to be connected toge) nails as follows: s connected as follows ords connected as follows at 0-5-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated. d roof live loads have	s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. lections have been noted as (F) or (B),) 13) AD) This truss ha load of 250.0 panels and a Bottom Chor) Use Simpsor Truss) or equ 0-4-4 from th back face of) Use Simpsor Truss) or equ	uld verify capacity s been designed f llb live and 3.0lb d t all panel points a d, nonconcurrent i strong-Tie HUS2 uivalent spaced at e left end to 16-4- bottom chord. n Strong-Tie HUS2 uivalent at 4-4-4 fr back face of bottom	for a moviead loca along the with any 28 (22-10 14-0-0 c 4 to coni 26 (14-10 om the le	ving concentr ted at all mid Top Chord a other live loa Od Girder, 8-1 oc max. startii nect truss(es Od Girder, 6-1	l and ids. IOd ng at) to		M. minner		SEA 0363	EER.HT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3				
	C2	Common	1	1	Job Reference (optional)	174680618			

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:33 ID:EDS98QdPZpByWu2AcBJGiBzIMuK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

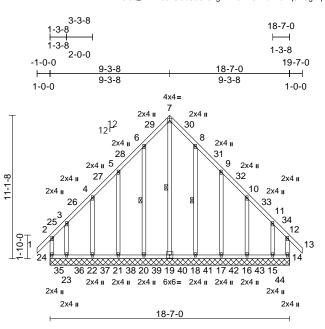
Scale = 1:55.9

Plate Offsets (X, Y):	[2:0-4-9,0-0-3], [6:0-4-9,0-0-3]
-----------------------	----------------------------------

													-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.93 0.16	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.24 0.04 0.06	(loc) 8-11 8-11 2 8-11	l/defl >862 >696 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 69 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly appli applied or 2-2-0 oc 5=0-3-8 C 14)	6) 7) ed or 8) 9)	design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cer This truss ha chord live loo * This truss ha on the botton 3-06-00 tail I chord and an	snow loads have as been designed psf or 2.00 times on-concurrent wit a MT20 plates unl ted for a plus or m tter. as been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members as been designed	for great flat roof le th other lin less other ninus 5 de for a 10.0 with any d for a liv as where vill fit betv s, with BC	er of min roo bad of 15.4 p ve loads. wise indicate agree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	f live osf on ed. n ads. .0psf tom					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/58, 2-4=-633/2 6-7=0/58 2-8=-150/405, 6-8=-	286, 4-6=-632/287,		panels and a	Dib live and 3.0lb of at all panel points rd, nonconcurrent Standard	along the	Top Chord	and					
WEBS	4-8=0/417												
NOTES												MILLI	11111
this design 2) Wind: ASC Vasd=95m II; Exp B; I Exterior(2I Exterior(2I 14-8-0 zor vertical lef forces & M DOL=1.60 3) TCLL: ASC Plate DOL 1.15 Plate	ed roof live loads have h. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inter R) 6-10-0 to 9-10-0, Inter R) 6-10-0 to 9-10-0, Inter cantilever left and r ft and right exposed;C- WFRS for reactions s o plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (_=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; f (100, C2 4, 00); C4 4, 00)	(3-second gust) DL=6.0psf; h=25ft; ivelope) and C-C rior (1) 2-0-0 to 6-10 terior (1) 9-10-0 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL= Pf=15.4 psf (Lum DC Rough Cat B; Partia	Cat.)-0, 1.15 DL =							4	The second secon	SEA 0363	• –

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


GI

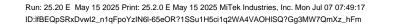
minin July 7,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3	
	C1GE	Common Supported Gable	1	1	Job Reference (optional)	174680619

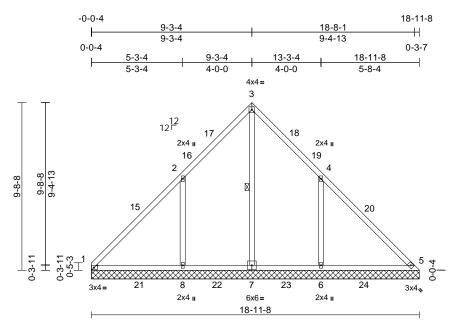
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Thu Jul 03 15:47:32 ID:8fse_MWN08LSI5uUo6?97gzIMk8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:89.4


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MR	0.25 0.19 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 • FT = 20%
FORCES	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 14=18-7-(20=18-7-(23=18-7-(23=18-7-(Max Horiz 24=203 (L 16=-29 (L 21=-47 (L 23=-183 (L 16=336 (L 20=336 (L 20=336 (L 22=336 (L 24=300 (L (Lb) - Maximum Com Tension	applied or 6-0-0 oc 7-19, 6-20, 8-18 0, 15=18-7-0, 16=18-7 0, 18=18-7-0, 22=18-7 0, 21=18-7-0, 22=18-7 0, 24=18-7-0 .C 15) LC 13), 15=-173 (LC 17) C 17), 17=-47 (LC 17) C 17), 20=-27 (LC 16) C 16), 22=-28 (LC 16) LC 13), 24=-198 (LC 16) LC 13), 24=-198 (LC 16) LC 13), 24=-198 (LC 16) .C 71), 17=-32 (LC 76) .C 77), 19=332 (LC 76) .C 75), 21=332 (LC 74) .C 73), 23=311 (LC 72) .C 71) .pression/Maximum	WEB or -0, 1) L -0, 2) V -0, 2) V -0, 2) V (; , (; , (; , ri), 3) T ;), 3) T ;), s ;), s ;), 4) T F F 1	ES Jnbalanced I his design. Vind: ASCE (Sad=95mph I; Exp B; End 3E) -1-0-0 tc 3E) -1-0-0 tc 3E] -1-0-0	23-24=-106/102, 2 21-22=-106/102, 2 18-20=-106/102, 1 16-17=-106/102, 1 4-15=-106/102, 1 -19=-430/258, 6- -21=-278/107, 4- 3-23=-265/115, 8- -17=-278/107, 10 11-15=-265/112 roof live loads hav 7-16; Vult=120mp r; TCDL=6.0psf; E closed; MWFRS (2-0-0, Exterior(2 12-3-8, Exterior(2 t and right expose closed; MWFRS (2-0-0, Exterior(2 12-3-8, Exterior(2 t and right expose d; C-C for member shown; Lumber D ed for wind loads ds exposed to wii 1 ndustry Gable E alified building de 7-16; Pr=20.0 ps 15); Pg=-20.0 ps 15); Pg=-20.0 ps 15); Pg=-20.0 ps	20-21=-1 17-18=-1 15-16=-1 20=-279, 22=-284, 18=-279, 22=-284, 18=-279, 0-16=-28 we been in oph (3-sec 3CDL=6, envelope N) 2-0-0 2N) 12-3 ad; end v s and fo DOL=1.60 in the pl nd (norm End Deta signer at f (roof LI ; Pf=15.4; ; Rough	06/102, 06/102, 06/102, 06/102, 776, /98, 776, 4/98, considered fo cond gust) 0psf; h=25ft; (0) and C-C Cat to 9-3-8, Cor -8 to 19-7-0 z vertical left an rcces & MWFR 0) plate grip ane of the tru: ial to the face is per ANSI/TF :: Lum DOL=: 4 psf (Lum DOL	Cat. priner one; dd SS ss), ble, PI 1. 1.15 DL =	bra 10) Gal 11) Thi cho 12) * Th on 1 3-0 cho 13) Pro bea 24, upli join lb u 14) This loac par Bot LOAD (ced agai ole studs s truss h rrd live lo nis truss the botto 6-00 tall rrd and a vide me tring plat 183 lb u ft at join t 23, 27 pplift at join t 23, 27 pplift at join tom Cho CASE(S)	nst lati s space as bee and non-has be m choo by 2-0 ny oth has be chanic e capa plift at 121, 22 bb upliff init 16 as bee Olb livv at all p rrd, non Star	eral movement (ed at 2-0-0 oc. an designed for a nconcurrent with een designed for a in all areas w 0-00 wide will fit er members. al connection (b able of withstance joint 14, 27 Ib u 8 Ib uplift at joint 18, 47 and 173 Ib uplift en designed for a e and 3.0Ib deace and points alor nconcurrent with ndard	a moving concentrated d located at all mid ng the Top Chord and n any other live loads.
TOP CHORD	6-7=-264/347, 7-8=- 9-10=-128/184, 10-1	128/184, 5-6=-203/27 264/347, 8-9=-203/27	5, 5) U ^{5,} 6) T 127 0 7) P a	Jnbalanced : lesign. This truss ha oad of 12.0 p overhangs no Plates check about its cen	snow loads have s been designed osf or 2.00 times f on-concurrent with ed for a plus or m	been cor for great flat roof le n other li inus 5 de	er of min roof oad of 15.4 ps ve loads. egree rotation	live sf on		1111111		SEA 0363	S22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road Edenton, NC 27932

July 7,2025

Job	Truss	Truss Type Qty Ply Stonefield Rev 3 Valley 1 1		Stonefield Rev 3	
	V1			1	Job Reference (optional)

Page: 1

Scale = 1:66.6

Plate Offsets (X, Y): [1:0-2-6,0-1-8]

													1
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.67	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.33	Horiz(TL)	-0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MS								
BCDL	10.0					-						Weight: 97 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she	athing directly applie	,	Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) 18-7-12 zone	7-16; Vult=120m h; TCDL=6.0psf; E closed; MWFRS (0-0-4 to 3-0-4, Ini 9-3-8 to 12-3-8, I e; cantilever left a ind right exposed;	BCDL=6. (envelope terior (1) nterior (1 nd right e	Dpsf; h=25ft; and C-C 3-0-4 to 9-3-8) 12-3-8 to exposed ; end	B, 1					
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc		forces & MW DOL=1.60 p	/FRS for reactions late grip DOL=1.6	s shown; 60	Lumber						
WEBS	1 Row at midpt	3-7	3)		ned for wind loads								
REACTIONS	All bearings 18-11-8.				uds exposed to wi d Industry Gable I								
(lb) -	Max Horiz 1=-150 (L	C 12)			alified building de								
	17), 8=-11 Max Grav All reactio (s) 1, 5 ex	-257 (LC 51), 6=-111 7 (LC 16)	1 (ĹC ⁺⁾ t joint 5)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1. snow loads have	f; Pf=15.4 0; Rough 10	l psf (Lum D0 Cat B; Partia	OL = ally					
FORCES	(lb) - Max. Comp./Ma		250 6)	Plates check	ed for a plus or m	ninus 5 de	egree rotatior	า					
TOP CHORD	 (lb) or less except when shown. 1-15=-94/472, 2-15=-71/518, 2-16=-26/439, 16-17=-20/444, 3-17=-5/484, 3-18=-6/482, 18-19=-21/442, 4-19=-32/437, 4-20=0/518, 5-20=-8/472 			Gable studs This truss ha	nter. es continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent	oc. for a 10.	0 psf bottom	ads				WITH CA	ROLA
BOT CHORD	7-22=-334/60, 7-23= 6-24=-334/60, 5-24=	-334/60, 6-23=-334/ -334/60	60,)) * This truss h on the bottor	nas been designe m chord in all area by 2-00-00 wide w	d for a liv as where	e load of 20. a rectangle	0psf		6	N	O PESS	There
WEBS	3-7=-715/0, 2-8=-36	0/209, 4-6=-366/208			ny other members					-		SEA	1 i E
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12	bearing plate 1, 117 lb upl uplift at joint 2) This truss ha load of 250.0 panels and a Bottom Chor	as been designed Olb live and 3.0lb o at all panel points rd, nonconcurrent	tanding 2 b uplift at for a mo dead loca along the	257 Ib uplift a joint 6 and 2 ving concentrated at all mice Top Chord a	t joint 57 lb rated 1 and			A A A A A A A A A A A A A A A A A A A		EER AL
			LC	DAD CASE(S)	Standard							201111	ily 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

