

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

# Builder: HH Hunt Homes Raleigh Durham



# Model: Grayson BC 3FL SP FE GLH

THE PLACEMENT PLAN NOTES:

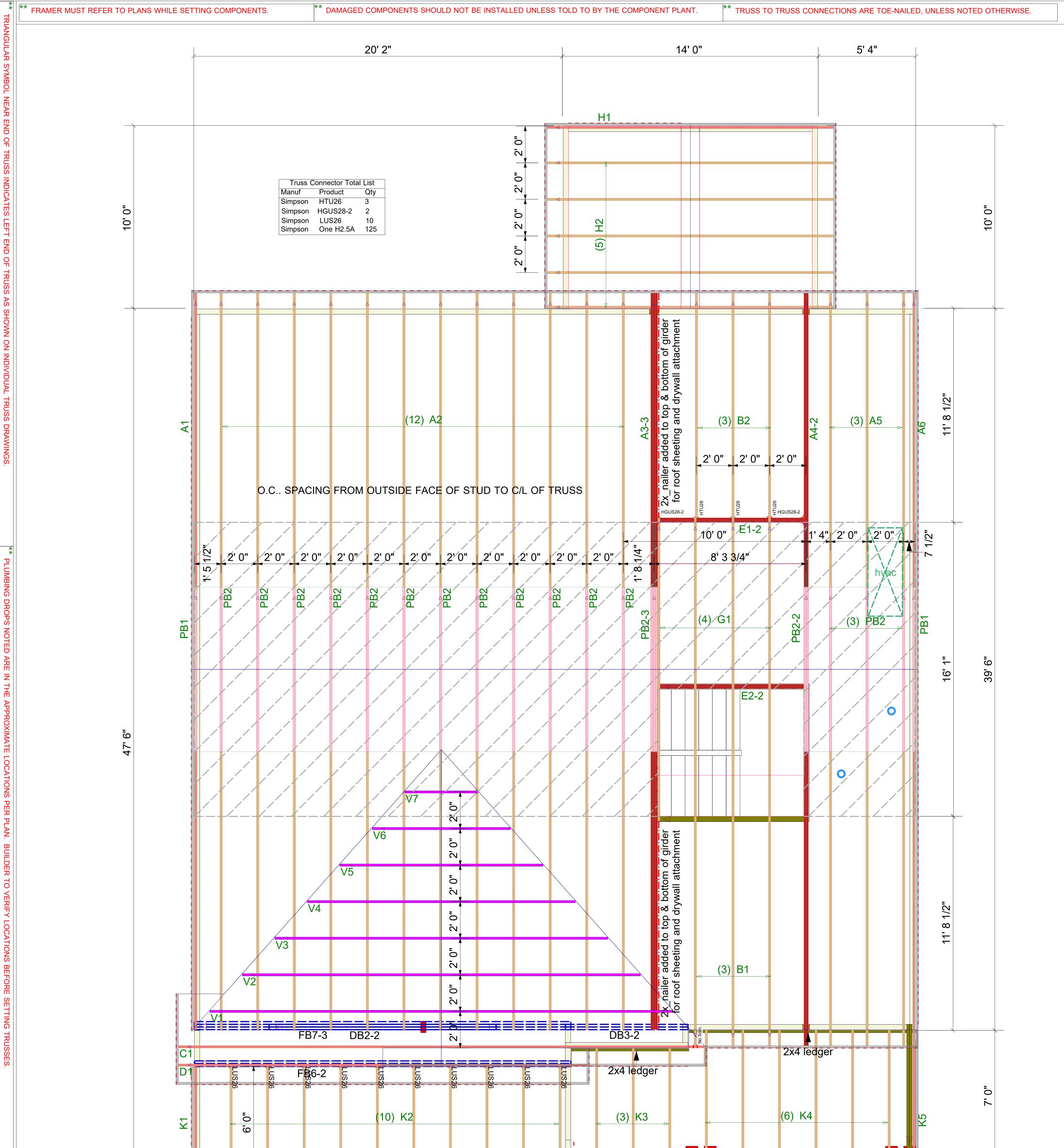
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

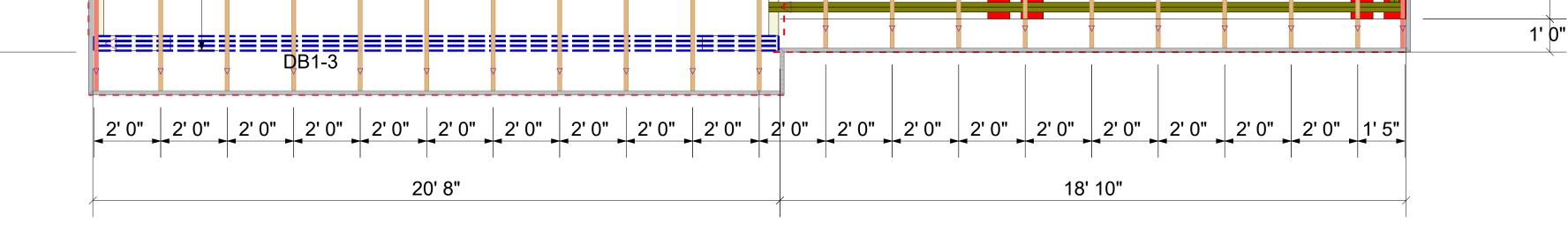
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

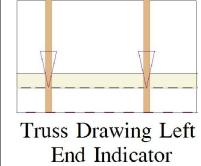
8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: \_\_\_\_\_

Date: \_\_\_\_\_






**General Notes:** 

\*\* CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST

MBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER . TO VERIFY LOCATIONS BEFORE SETTING TRUSSES





Designer

NTS

\*\* All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI \*\* DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. \*\* GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. 1, all uplift connectors are the responsibility of the bldg designer and or contractor. HH Hunt Homes Raleigh Durham Date: THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the Geoff Weston Project Number: 25060036-01 specification of the building designer. See Individual design sheets for each truss 6/9/2025

51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH **ROOF PLACEMENT PLAN** 

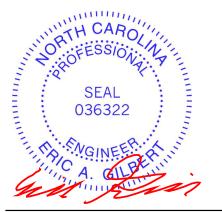


design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179

| Name  | 00/00/00  |
|-------|-----------|
| Name  | 00/00/00  |
| sions | Revisions |



Trenco 818 Soundside Rd Edenton, NC 27932


Re: 25060036-01 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH

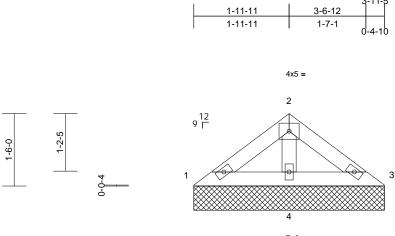
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I74037050 thru I74037080

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844




June 9,2025

# Gilbert, Eric

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V7    | Valley     | 1   | 1   | I74037050<br>Job Reference (optional)           |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:49 ID:GeFQfpmEKuyk3qpjgwuiofz9?sZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



2x4 II 2x4 🍫 2x4 💊

3-11-5

Scale = 1:23.9

| Scale = 1.23.9                                                                                        |                                                                                                                                                                                                                                |                                                                                                                    |                                        |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      |                             |                                         |                                 |                                    |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|-----------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                            | 0.04<br>0.07<br>0.02                                                                                                                                | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                         | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                | PLATES<br>MT20<br>Weight: 13 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| -                                                                                                     | 10.0                                                                                                                                                                                                                           |                                                                                                                    |                                        |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | L                                                                                                                                                        |                          |                      |                             |                                         | Weight. 15 lb                   | 11 = 2078                          |
|                                                                                                       | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>3-11-5 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=3-11-5,<br>Max Horiz 1=-31 (LC<br>Max Uplift 1=-4 (LC<br>(LC 14)<br>Max Grav 1=75 (LC | applied or 6-0-0 oc<br>3=3-11-5, 4=3-11-5<br>2 12)<br>14), 3=-9 (LC 15), 4                                         | 9)<br>5 10<br>=-20 <sup>11</sup>       | design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>0) All bearing<br>Provide mec<br>bearing plate<br>9 lb uplift at j | snow loads have<br>es continuous bo<br>spaced at 4-0-0<br>as been designed<br>ad nonconcurrent<br>has been designed<br>n chord in all are:<br>by 2-00-00 wide v<br>y other members<br>are assumed to b<br>hanical connection<br>e capable of withs<br>ioint 3 and 20 lb u<br>designed in acco | ttom choi<br>oc.<br>for a 10.<br>with any<br>d for a liv<br>as where<br>vill fit betw<br>s.<br>oe SP No<br>on (by oth<br>standing 4<br>uplift at jo | rd bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle<br>ween the bott<br>2.<br>ers) of truss t<br>4 lb uplift at jo<br>int 4. | nds.<br>Opsf<br>om<br>to |                      |                             |                                         |                                 |                                    |
| FORCES                                                                                                | (LC 1)<br>(lb) - Maximum Com                                                                                                                                                                                                   | pression/Maximum                                                                                                   | 12                                     | International                                                                                                                                                                                                        | Residential Code                                                                                                                                                                                                                                                                              | e sections                                                                                                                                          | s R502.11.1 a                                                                                                                                            | and                      |                      |                             |                                         |                                 |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS                                                                        | Tension<br>1-2=-68/69, 2-3=-68<br>1-4=-58/57, 3-4=-58<br>2-4=-140/56                                                                                                                                                           | /69                                                                                                                | L                                      | DAD CASE(S)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | NG#TFT1.                                                                                                                                                 |                          |                      |                             |                                         |                                 |                                    |
| NOTES                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                    |                                        |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      |                             |                                         |                                 |                                    |
| <ol> <li>Unbalance<br/>this design</li> </ol>                                                         | ed roof live loads have<br>n.                                                                                                                                                                                                  | been considered fo                                                                                                 | r                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      |                             |                                         | minin                           | 11111                              |
| <ol> <li>Wind: ASC<br/>Vasd=103<br/>II; Exp B; I<br/>and C-C E<br/>exposed ;<br/>members ;</li> </ol> | CE 7-16; Vult=130mph<br>imph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>Exterior(2E) zone; cant<br>end vertical left and riu<br>and forces & MWFRS<br>OL=1.60 plate grip DC                                                     | CDL=6.0psf; h=25ft<br>ivelope) exterior zor<br>ilever left and right<br>ght exposed;C-C for<br>for reactions shown | ne                                     |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      | 4                           | AND | OR OF ESS                       |                                    |
| <ol> <li>Truss desi<br/>only. For<br/>see Stand<br/>or consult</li> <li>TCLL: ASC</li> </ol>          | igned for wind loads in<br>studs exposed to wind<br>lard Industry Gable En<br>qualified building desi<br>CE 7-16; Pr=20.0 psf (L<br>_=1.15); Pf=20.0 psf (L                                                                    | the plane of the tru<br>(normal to the face<br>d Details as applica<br>gner as per ANSI/TI<br>roof LL: Lum DOL=    | ),<br>ble,<br>PI 1.<br>1.15            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      | 1110 P                      |                                         | 0363                            | EER A                              |
|                                                                                                       | 5); Is=1.0; Rough Cat E                                                                                                                                                                                                        |                                                                                                                    |                                        |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                          |                      |                             | 1                                       | A.C                             | ILBE                               |

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

G١ 111111111

June 9,2025

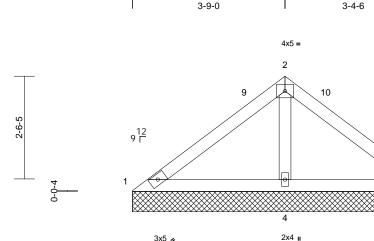
Page: 1

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V6    | Valley     | 1   | 1   | I74037051<br>Job Reference (optional)           |

3-9-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-10-0


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:49 ID:Os?wpSjkGfSlaDVxR4pmepz9?sd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-6

Page: 1

3

3x5 💊



7-6-0

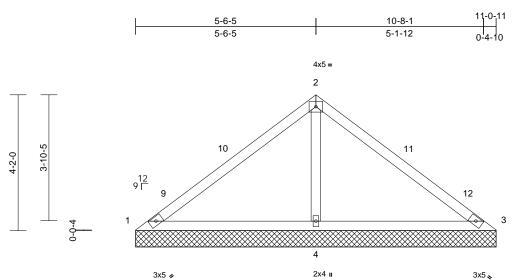
| Scale = | 1:28.3 |
|---------|--------|
|---------|--------|

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                             | 0.27<br>0.28<br>0.09                                                                                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                           | in<br>n/a<br>n/a<br>0.00                   | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 27 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>7-6-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=7-6-0, 3<br>Max Horiz 1=-62 (LC<br>Max Grav 1=104 (LC<br>4=-67 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-89/249, 2-3=-8 | applied or 6-0-0 oc<br>3=7-6-0, 4=7-6-0<br>10)<br>21), 3=-20 (LC 20),<br>14)<br>2 20), 3=104 (LC 21)<br>pression/Maximum<br>9/249 | 6;<br>7;<br>8;<br>9;<br>7              | Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Cti<br>Unbalancet<br>design.<br>Gable requiri<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>D) All bearings a<br>1) Provide mec<br>bearing platt<br>1, 20 lb upliff<br>2) This truss is<br>International | 7-16; Pr=20.0  <br>.15); Pf=20.0 p;<br>ls=1.0; Rough C<br>=1.10<br>snow loads hav<br>es continuous b<br>spaced at 4-0-0<br>s been designe<br>ad nonconcurrer<br>as been designe<br>n chord in all ar<br>by 2-00-00 wide<br>are assumed to<br>hanical connect<br>e capable of with<br>at joint 3 and 6<br>designed in acc<br>Residential Coo<br>nd referenced s | sf (Lum DC<br>Cat B; Fully<br>e been cor<br>ottom chor<br>oc.<br>d for a 10.0<br>t with any<br>ned for a liv<br>eas where<br>will fit betw<br>rs.<br>be SP No.<br>ion (by oth<br>sstanding 2<br>7 Ib uplift a<br>ordance wide<br>sections | DL=1.15 Plate<br>Exp.; Ce=0.9<br>hsidered for the<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.1<br>a rectangle<br>ween the both<br>2.<br>ers) of truss the<br>20 buplift at ji<br>th joint 4.<br>ith the 2018<br>s R502.11.1 a | e<br>);<br>ds.<br>Dpsf<br>om<br>io<br>oint |                      |                             |                          |                                 |                                    |
| NOTES                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                   | L                                      | DAD CASE(S)                                                                                                                                                                                                                                                                                                                | Standard                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                            |                      |                             |                          |                                 |                                    |

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-6-5, Exterior(2E) 4-6-5 to 7-6-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 June 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY A Mittek Affiliate

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V5    | Valley     | 1   | 1   | Job Reference (optional)                        |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:49 ID:V5mPz4gDDRys6cCACEkqTzz9?sh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

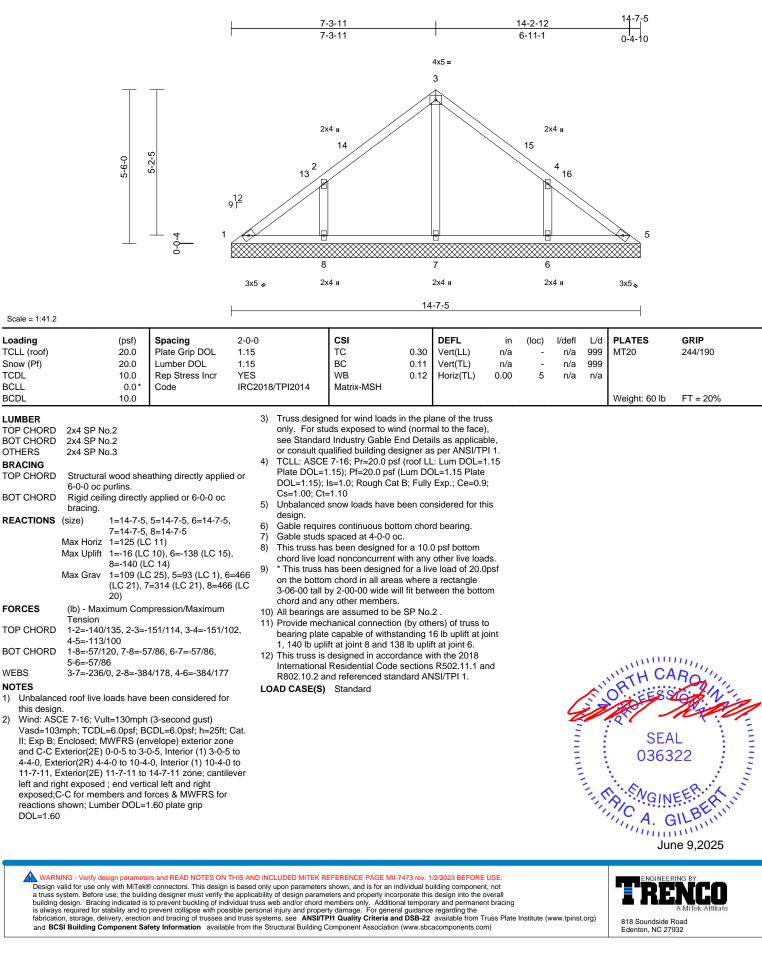


11-0-11

| Scale = 1:35.3                                                                               |                                                                                                                              |                                                                                                                             |                                                                           | Г                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                          |                              |                      |                             |                          |                                 |                                    |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  |                                                                                                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201   | 18/TPI2014                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                               | 0.60<br>0.52<br>0.24                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                | in<br>n/a<br>n/a<br>0.01     | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 41 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.<br>Structural v<br>10-0 oc p<br>Rigid ceilin<br>bracing.<br>(size) 1<br>Max Horiz 1<br>Max Uplift 1<br>Max Grav 1 | 2<br>.3<br>wood shea<br>ourlins.<br>g directly<br>1=11-0-11<br>1=-94 (LC<br>1=-78 (LC<br>4=-122 (LC<br>1=74 (LC<br>1=74 (LC | 21), 3=-78 (LC 20),<br>C 14)<br>20), 3=74 (LC 21), 4                      | 5<br>d or 6<br>7<br>8<br>-11 9<br>=924 1 | Plate DOL=1<br>DOL=1.15); I<br>Cs=1.00; Ct=1.00; Ct=<br>Unbalanced<br>design.<br>Gable require<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and ar<br>0) All bearings a | 7-16; Pr=20.0 ps<br>.15); Pf=20.0 psf<br>is=1.0; Rough Ca<br>.1.10<br>snow loads have<br>es continuous bo<br>spaced at 4-0-0 d<br>s been designed<br>ad nonconcurrent<br>nas been designed<br>n chord in all are:<br>y 2-00-00 wide v<br>y other members<br>are assumed to b<br>hanical connectic | (Lum DC<br>at B; Fully<br>been cor<br>ttom chor<br>oc.<br>for a 10.0<br>with any<br>d for a liv<br>as where<br>vill fit betw<br>s.<br>pe SP No. | DL=1.15 Plate<br>Exp.; Ce=0.9<br>Insidered for t<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>2. | e<br>);<br>ds.<br>Dpsf<br>om |                      |                             |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                                            | Tension<br>1-2=-133/4                                                                                                        | 75, 2-3=-´<br>85, 3-4=-\$<br>84                                                                                             |                                                                           | 1                                        | bearing plate<br>1, 78 lb uplift<br>2) This truss is<br>International                                                                                                                                                                      | e capable of withs<br>at joint 3 and 12<br>designed in acco<br>Residential Code<br>nd referenced sta                                                                                                                                                                                              | standing 7<br>2 lb uplift<br>ordance w<br>e sections                                                                                            | 78 lb uplift at j<br>at joint 4.<br>ith the 2018<br>8 R502.11.1 a                                                                                        | oint                         |                      |                             |                          |                                 |                                    |

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-1-0, Exterior(2E) 8-1-0 to 11-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

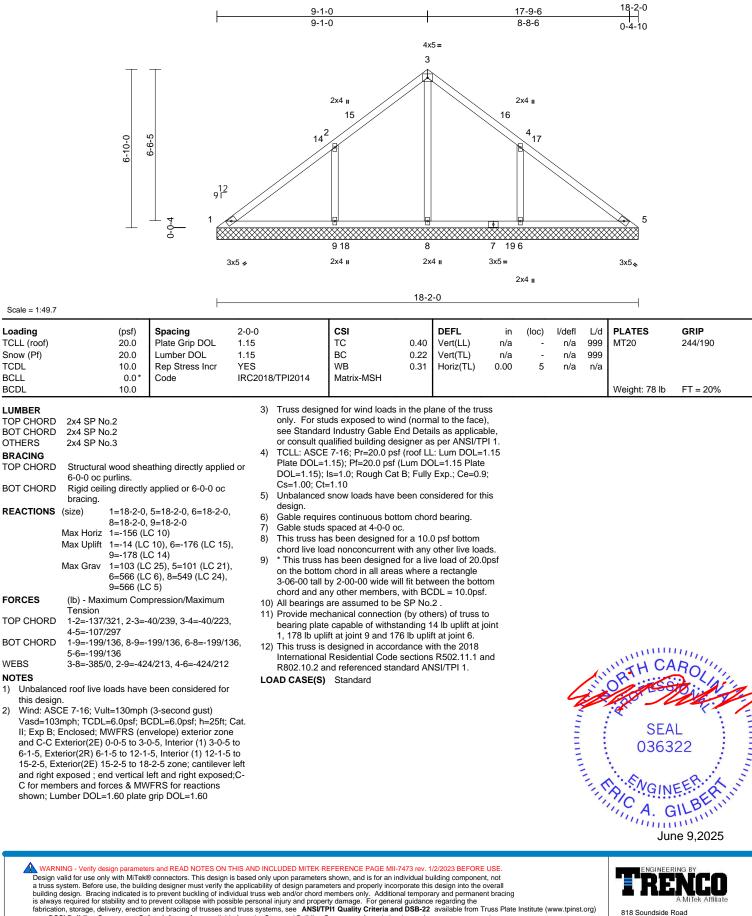



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V4    | Valley     | 1   | 1   | I74037053<br>Job Reference (optional)           |

1)

2)

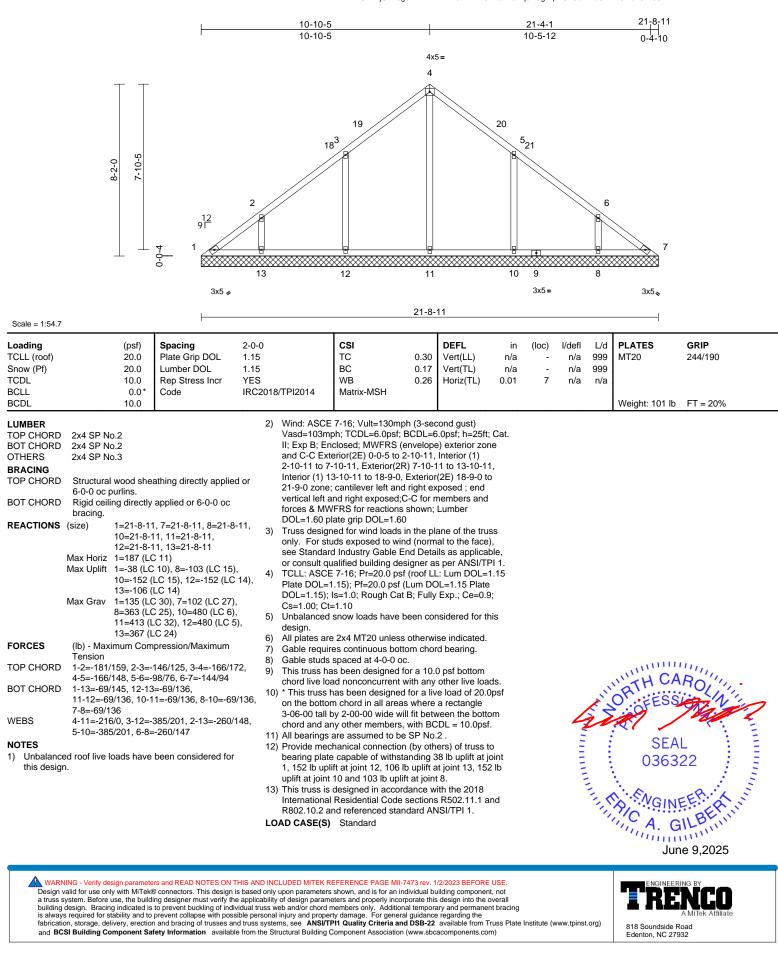

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:49 ID:5W4GL3eLwWZIF8TbX6B7sLz9?sk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V3    | Valley     | 1   | 1   | Job Reference (optional)                        |

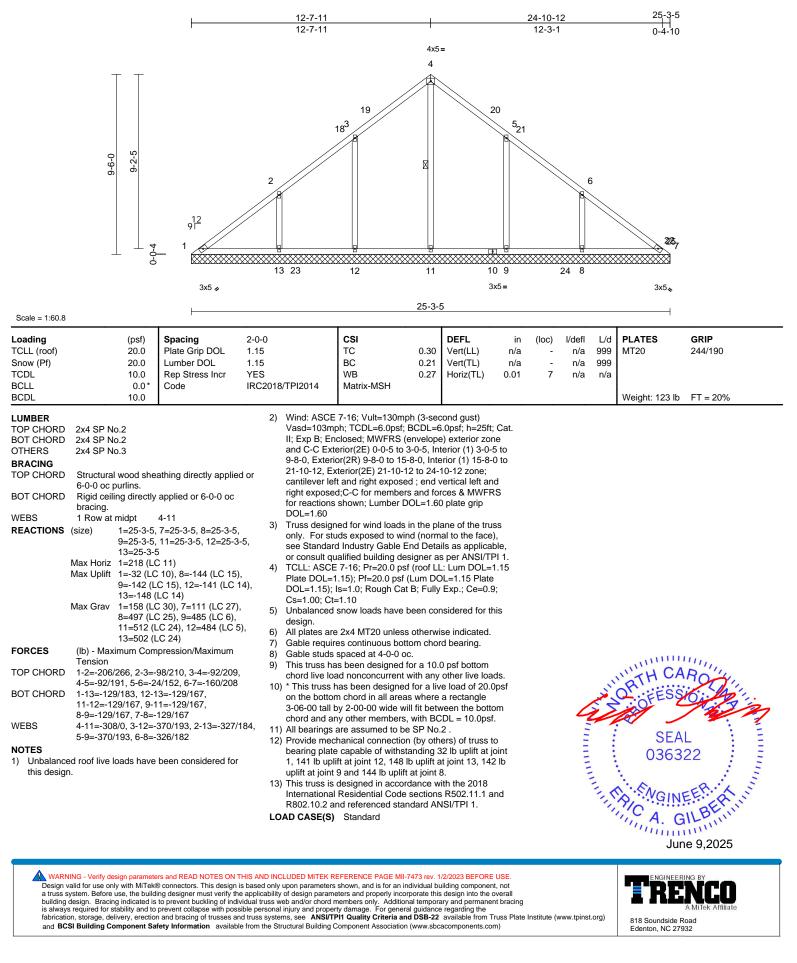
Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:49 ID:gxP8j1bSdbBjOgk0s\_dQEiz9?sn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1




and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V2    | Valley     | 1   | 1   | I74037055<br>Job Reference (optional)           |

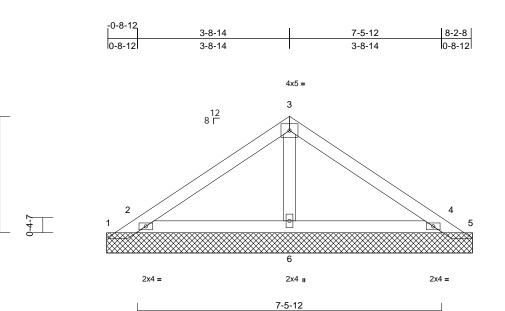

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:49 ID:LSZ2EjCYn8g6K4Att11D7E291Zk-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | V1    | Valley     | 1   | 1   | I74037056<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:49 ID:LSZ2EjCYn8g6K4Att11D7Ez91Zk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1




| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | PB2-3 | Piggyback  | 1   | 3   | I74037057<br>Job Reference (optional)           |

2-10-6

3-0-0

### Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:48 ID:tejEXeMFt6iQJc4tKy3CySz91LL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



WEBS

NOTES

2)

3)

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.11 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC        | 0.04 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB        | 0.01 | Horiz(TL) | 0.00 | 4     | n/a    | n/a |               |          |
| BCLL        | 0.0*  | Code            | IRC2018/TPI2014 | Matrix-MP |      |           |      |       |        |     |               |          |
| BCDL        | 10.0  |                 |                 |           |      |           |      |       |        |     | Weight: 91 lb | FT = 20% |

| TOP CHORD | 2x4 SP N    | 0.2                                 |
|-----------|-------------|-------------------------------------|
| BOT CHORD | 2x4 SP N    | 0.2                                 |
| OTHERS    | 2x4 SP N    | 0.3                                 |
| BRACING   |             |                                     |
| TOP CHORD | Structural  | wood sheathing directly applied or  |
|           | 6-0-0 oc p  | ourlins.                            |
| BOT CHORD | Rigid ceili | ing directly applied or 10-0-0 oc   |
|           | bracing.    |                                     |
| REACTIONS | (size)      | 1=9-0-0, 2=9-0-0, 4=9-0-0, 5=9-0-0, |
|           |             | 6=9-0-0                             |
|           | Max Horiz   | 1=-66 (LC 10)                       |
|           | Max Uplift  | 1=-274 (LC 21), 2=-147 (LC 14),     |
|           |             | 4=-136 (LC 15), 5=-272 (LC 22)      |
|           | Max Grav    | 1=109 (LC 14), 2=618 (LC 21),       |
|           |             | 4=606 (LC 22), 5=83 (LC 15),        |
|           |             | 6=233 (LC 21)                       |
| FORCES    | (lb) - Max  | imum Compression/Maximum            |
|           | Tension     |                                     |
| TOP CHORD | 1-2=-97/1   | 85, 2-3=-154/117, 3-4=-154/116,     |
|           | 4-5=-70/1   | 83                                  |
| BOT CHORD | 2-6=-111/   | /73, 4-6=-111/73                    |

3-6=-128/26

follows: 2x4 - 1 row at 0-9-0 oc.

follows: 2x4 - 1 row at 0-9-0 oc.

unless otherwise indicated.

this design.

1) 3-ply truss to be connected together as follows:

Top chords connected with 10d (0.131"x3") nails as

All loads are considered equally applied to all plies,

CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for

Bottom chords connected with 10d (0.131"x3") nails as

except if noted as front (F) or back (B) face in the LOAD

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 5-8-11, Exterior(2E) 5-8-11 to 8-8-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 5) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 7) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 9)

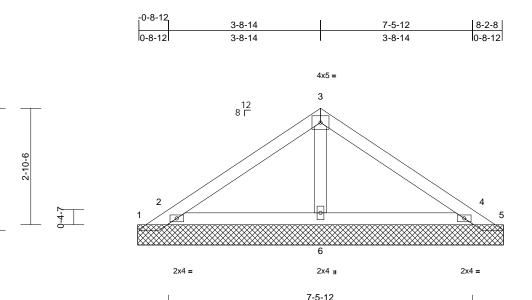
10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- \* This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 274 lb uplift at joint 1 and 272 lb uplift at joint 5.
- 14) N/A
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| ſ | Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|---|-------------|-------|------------|-----|-----|-------------------------------------------------|
|   | 25060036-01 | PB2-2 | Piggyback  | 1   | 2   | I74037058<br>Job Reference (optional)           |

3-0-0

# Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:48 ID:A5sYbKRBJXkhvUJlpR1j7bz90bT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





| Scale | _ / | 1.20.2 |  |
|-------|-----|--------|--|
| Scale | = 1 | 1:28.3 |  |

BOT CHORD

WEBS

NOTES

2)

3)

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.18 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC        | 0.05 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB        | 0.01 | Horiz(TL) | 0.00 | 4     | n/a    | n/a |               |          |
| BCLL        | 0.0*  | Code            | IRC2018/TPI2014 | Matrix-MP |      |           |      |       |        |     |               |          |
| BCDL        | 10.0  |                 |                 |           |      |           |      |       |        |     | Weight: 61 lb | FT = 20% |

|           | 274 01 14   | 0.2                                 |
|-----------|-------------|-------------------------------------|
| BOT CHORD | 2x4 SP N    | 0.2                                 |
| OTHERS    | 2x4 SP N    | 0.3                                 |
| BRACING   |             |                                     |
| TOP CHORD | Structural  | wood sheathing directly applied or  |
|           | 6-0-0 oc p  | ourlins.                            |
| BOT CHORD | Rigid ceili | ing directly applied or 10-0-0 oc   |
|           | bracing.    |                                     |
| REACTIONS | (size)      | 1=9-0-0, 2=9-0-0, 4=9-0-0, 5=9-0-0, |
|           |             | 6=9-0-0                             |
|           | Max Horiz   | 1=-66 (LC 10)                       |
|           | Max Uplift  | 1=-284 (LC 21), 2=-149 (LC 14),     |
|           |             | 4=-138 (LC 15), 5=-281 (LC 22)      |
|           | Max Grav    |                                     |
|           |             | 4=618 (LC 22), 5=86 (LC 15),        |
|           |             | 6=228 (LC 21)                       |
| FORCES    | (lb) - Max  | imum Compression/Maximum            |
|           | Tension     |                                     |
| TOP CHORD | 1-2=-98/1   | 90, 2-3=-156/133, 3-4=-156/132,     |
|           | 4-5=-72/1   | 89                                  |

2-6=-119/74, 4-6=-119/74

Bottom chords connected with 10d (0.131"x3") nails as

except if noted as front (F) or back (B) face in the LOAD

All loads are considered equally applied to all plies,

CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for

3-6=-125/25

follows: 2x4 - 1 row at 0-9-0 oc.

follows: 2x4 - 1 row at 0-9-0 oc.

unless otherwise indicated.

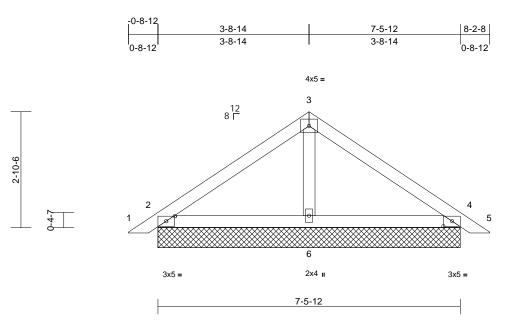
this design.

1) 2-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 5-8-11, Exterior(2E) 5-8-11 to 8-8-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 5) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 7) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 284 lb uplift at joint 1 and 281 lb uplift at joint 5.
- 14) N/A
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | PB2   | Piggyback  | 14  | 1   | I74037059<br>Job Reference (optional)           |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:tF?g1NCw0qYFiwbgJJW\_a1z91ZI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = 1:28.5   |     |                 |            |
|------------------|-----|-----------------|------------|
| Plate Offsets (X | Y)· | [2.0-2-9.0-1-8] | [4.0-2-9.0 |

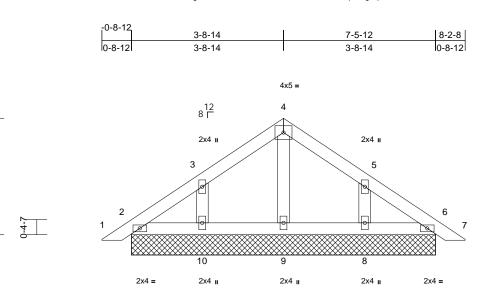
3-0-0

| Plate Offsets                                                                                                                                                                   | (X, Y): [2:0-2-9,0-1-8],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , [4:0-2-9,0-1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                  |                      |                             |                          |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                     | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28<br>0.29<br>0.02                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                   | in<br>n/a<br>n/a<br>0.00                         | (loc)<br>-<br>-<br>2 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 30 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| this desig<br>2) Wind: AS<br>Vasd=100<br>II; Exp B;<br>and C-C I<br>to 5-8-11,<br>left and rig<br>exposed;(<br>reactions<br>DOL=1.60<br>3) Truss des<br>only. For<br>see Stance | <ul> <li>2x4 SP No.2<br/>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 oc purlins.</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>(size) 2=7-5-12,<br/>Max Horiz 2=-66 (LC<br/>Max Uplift 2=-39 (LC<br/>6=263 (LC<br/>(Ib) - Maximum Com<br/>Tension</li> <li>1-2=0/26, 2-3=-178/<br/>4-5=0/26</li> <li>2-6=-23/74, 4-6=-11,<br/>3-6=-109/14</li> <li>2-6=-23/74, 4-6=-11,<br/>3-6=-109/14</li> <li>2-6 (CE 7-16; Vult=130mph<br/>3mph; TCDL=6.0psf; Bi<br/>Enclosed; MWFRS (er<br/>Exterior(2E) 0-3-5 to 3-,<br/>, Exterior(2E) 0-3-5 to 3-,<br/>, Exterior(2E) 5-8-11 to<br/>ight exposed ; end verti<br/>shown; Lumber DOL=</li> </ul> | <ul> <li>214), 4=-48 (LC 15)</li> <li>21), 4=296 (LC 22),</li> <li>21)</li> <li>apression/Maximum</li> <li>94, 3-4=-178/94,</li> <li>/74</li> <li>been considered for</li> <li>(3-second gust)</li> <li>CDL=6.0psf; h=25ff; (<br/>avelope) exterior zone</li> <li>3-5, Exterior(2R) 3-3-<br/>8-8-11 zone; cantilev</li> <li>orces &amp; MWFRS for</li> <li>1.60 plate grip</li> <li>the plane of the truss:</li> <li>(normal to the face),</li> <li>d Details as applicable</li> </ul> | Plate DO<br>DOL=1.1<br>Cs=1.00;<br>5) Unbaland<br>design.<br>6) This truss<br>load of 1:<br>overhang<br>7) Gable est<br>9) This truss<br>chord live<br>9) This truss<br>chord live<br>9) This truss<br>chord live<br>10) * This truss<br>chord an<br>11) All bearin<br>12) N/A<br>13) This truss<br>Internatio<br>R802.10<br>Cat.<br>14) See Star<br>Detail for<br>5 consult q<br>rer LOAD CASE | CE 7-16; Pr=20.0 p<br>=1.15); Pf=20.0 ps<br>5); Is=1.0; Rough Ci<br>Ct=1.10<br>ed snow loads have<br>thas been designed<br>to psf or 1.00 times<br>s non-concurrent wi<br>juires continuous bc<br>ds spaced at 4-0-0<br>has been designed<br>load nonconcurren<br>s has been designed<br>tom chord in all are<br>all by 2-00-00 wide to<br>any other member<br>gs are assumed to I<br>to is designed in acco<br>nal Residential Cod<br>2 and referenced sta<br>dard Industry Piggy<br>Connection to base<br>jalified building des<br>(S) Standard | of (Lum DC<br>at B; Fully<br>e been cor<br>d for great<br>flat roof li<br>ith other lip<br>ottom chor<br>oc.<br>d for a 10.4<br>t with any<br>ed for a liv<br>eas where<br>will fit betw<br>rs.<br>be SP No.<br>ordance w<br>le sections<br>andard AN<br>back Truss as a | DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for the<br>er of min roof<br>bad of 20.0 p<br>re loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>reen the both<br>2 . | e<br>9;<br>f live<br>sf on<br>dds.<br>0psf<br>om |                      | 4                           |                          | SEA<br>0363                     | L 22<br>EEERCH LIN                 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

June 9,2025


| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | PB1   | Piggyback  | 2   | 1   | I74037060<br>Job Reference (optional)           |

2-10-6

3-0-0

## Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:EGo\_gnsXF7z3JcDa5XvCPDz91R8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

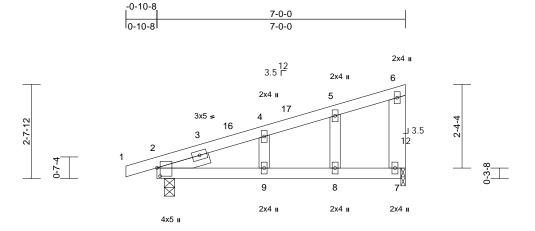


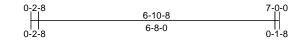
7-5-12

|             |             |                        |                        |                   |                | 1                  |             | · · · ·         |        |       |        |     | 1             |          |
|-------------|-------------|------------------------|------------------------|-------------------|----------------|--------------------|-------------|-----------------|--------|-------|--------|-----|---------------|----------|
| Loading     |             | (psf)                  | Spacing                | 2-0-0             |                | CSI                |             | DEFL            | in     | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) |             | 20.0                   | Plate Grip DOL         | 1.15              |                | TC                 | 0.08        | Vert(LL)        | n/a    | -     | n/a    | 999 | MT20          | 244/190  |
| Snow (Pf)   |             | 20.0                   | Lumber DOL             | 1.15              |                | BC                 | 0.03        | Vert(CT)        | n/a    | -     | n/a    | 999 |               |          |
| TCDL        |             | 10.0                   | Rep Stress Incr        | YES               |                | WB                 | 0.04        | Horz(CT)        | 0.00   | 6     | n/a    | n/a |               |          |
| BCLL        |             | 0.0*                   | Code                   | IRC201            | 8/TPI2014      | Matrix-MP          |             |                 |        |       |        |     |               |          |
| BCDL        |             | 10.0                   |                        |                   |                |                    |             |                 |        |       |        |     | Weight: 33 lb | FT = 20% |
| LUMBER      |             |                        |                        | 3                 | Truss design   | ed for wind loads  | s in the pl | ane of the tru  | SS     |       |        |     |               |          |
| TOP CHORD   | 2x4 SP No   | o.2                    |                        |                   |                | ids exposed to w   |             |                 |        |       |        |     |               |          |
| BOT CHORD   | 2x4 SP No   | o.2                    |                        |                   | see Standard   | d Industry Gable   | End Deta    | ils as applica  | ble,   |       |        |     |               |          |
| OTHERS      | 2x4 SP No   | o.3                    |                        |                   |                | alified building d |             |                 |        |       |        |     |               |          |
| BRACING     |             |                        |                        | 4)                |                | 7-16; Pr=20.0 p    |             |                 |        |       |        |     |               |          |
| TOP CHORD   | Structural  | wood shea              | athing directly applie | ed or             |                | .15); Pf=20.0 ps   | •           |                 |        |       |        |     |               |          |
|             | 6-0-0 oc p  | ourlins.               | • • • •                |                   |                | ls=1.0; Rough Ca   | at B; Fully | Exp.; Ce=0.9    | 9;     |       |        |     |               |          |
| BOT CHORD   | Rigid ceili | ng directly            | applied or 10-0-0 o    | c _               | Cs=1.00; Ct=   |                    | h           |                 |        |       |        |     |               |          |
|             | bracing.    |                        |                        | 5                 | design.        | snow loads have    | been cor    | nsidered for ti | nis    |       |        |     |               |          |
| REACTIONS   | (size)      | 2=7-5-12,              | 6=7-5-12, 8=7-5-12     | <u>,</u> 6        |                | is been designed   | for great   | er of min roof  | livo   |       |        |     |               |          |
|             |             |                        | 10=7-5-12              | 0,                |                | psf or 1.00 times  |             |                 |        |       |        |     |               |          |
|             | Max Horiz   |                        |                        |                   |                | on-concurrent wi   |             |                 | 01 011 |       |        |     |               |          |
|             | Max Uplift  |                        | 15), 6=-3 (LC 15), 8   | <sup>=-69</sup> 7 | 0              | es continuous bo   |             |                 |        |       |        |     |               |          |
|             |             | · //                   | 0=-70 (LC 14)          | . 8               |                | spaced at 2-0-0    |             | 5               |        |       |        |     |               |          |
|             | Max Grav    |                        | 21), 6=141 (LC 22      |                   | This truss ha  | is been designed   | for a 10.   | 0 psf bottom    |        |       |        |     |               |          |
|             |             | 8=261 (LC<br>10=261 (L | 22), 9=120 (LC 21      | ),                | chord live loa | ad nonconcurrent   | t with any  | other live loa  | ids.   |       |        |     |               |          |
|             |             | `                      | ,                      | 10                |                | nas been designe   |             |                 | Opsf   |       |        |     |               |          |
| FORCES      | (ID) - Max  |                        | pression/Maximum       |                   |                | n chord in all are |             |                 |        |       |        |     |               |          |
| TOP CHORD   |             | 2-3-50/46              | 6, 3-4=-85/76,         |                   |                | y 2-00-00 wide v   |             | veen the botte  | om     |       |        |     |               |          |
|             | ,           |                        | /33, 6-7=0/26          |                   |                | y other member     |             | -               |        |       |        |     |               |          |
| BOT CHORD   |             |                        | 18/59, 8-9=-18/59,     |                   | , 0            | are assumed to b   | be SP No.   | .2.             |        |       |        |     |               |          |
|             | 6-8=-18/5   | ,                      |                        | 1:                | 2) N/A         |                    |             |                 |        |       |        |     | mm            | 1111     |
| WEBS        |             |                        | 3/127, 5-8=-213/127    | 7                 |                |                    |             |                 |        |       |        |     | WITH CA       | Pall     |
| NOTES       |             |                        |                        |                   |                |                    |             |                 |        |       |        | 1   | alri          | 01/1     |
|             |             |                        |                        |                   |                |                    |             |                 |        |       |        | 1   |               |          |

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 5-8-11, Exterior(2E) 5-8-11 to 8-8-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type                 | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|----------------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | К5    | Monopitch Structural Gable | 1   | 1   | I74037061<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:rF\_0JM6N2I9OaXhKWaw1cGz9?tP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





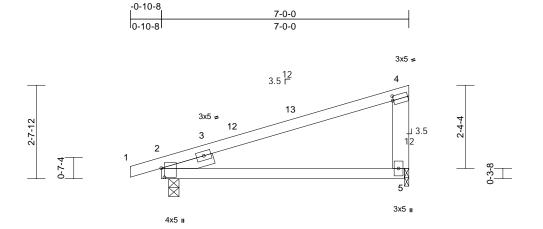
Scale = 1:32.5

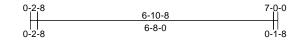
Plate Offsets (X, Y): [2:0-2-14,0-1-1]

|                                                                                     | (,, , ,). [2.0-2-14,0-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| Loading                                                                             | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacing                                                                                                                                                                                                                                                                                                        | 2-0-0                                                        |                                                                                                                                                                                                                                                                                                                                                        | csi                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                | DEFL                                                                                                                                                                                                                             | in                                             | (loc) | l/defl      | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES        | GRIP     |
| TCLL (roof)                                                                         | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plate Grip DOL                                                                                                                                                                                                                                                                                                 | 1.15                                                         |                                                                                                                                                                                                                                                                                                                                                        | TC                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.66                                                                                                                                                                                           | Vert(LL)                                                                                                                                                                                                                         | -0.16                                          | 8-9   | >496        | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20          | 244/190  |
| Snow (Pf)                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lumber DOL                                                                                                                                                                                                                                                                                                     | 1.15                                                         |                                                                                                                                                                                                                                                                                                                                                        | BC                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73                                                                                                                                                                                           | Vert(CT)                                                                                                                                                                                                                         | -0.26                                          | 8-9   | >309        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |
| TCDL                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                                                                                                                                                                                                | YES                                                          |                                                                                                                                                                                                                                                                                                                                                        | WB                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                           | Horz(CT)                                                                                                                                                                                                                         | 0.04                                           | 2     | n/a         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |
| BCLL                                                                                | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                                                                                                                           | IRC201                                                       | 8/TPI2014                                                                                                                                                                                                                                                                                                                                              | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| BCDL                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 33 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD        | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.3 *Except Left 2x4 SP No.3</li> <li>Structural wood she 6-0-0 oc purlins.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | 1-6-0<br>athing directly applie                                                                                                                                                                                                                                                                                |                                                              | Plate DOL=<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0                                                                                                                                                                                                                                                     | 7-16; Pr=20.0 ps<br>1.15); Pf=20.0 ps<br>Is=1.0; Rough Ca<br>=1.10<br>snow loads have<br>as been designed<br>psf or 1.00 times i<br>on-concurrent wit                                                                                                                                                                                                                                                                             | (Lum DC<br>t B; Fully<br>been cor<br>for great<br>flat roof le                                                                                                                                 | DL=1.15 Plate<br>Exp.; Ce=0.<br>Insidered for t<br>er of min root<br>bad of 20.0 p                                                                                                                                               | e<br>9;<br>his<br>f live                       |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| BOT CHORD                                                                           | <ol> <li>Rigid ceiling directly<br/>bracing.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                              | applied or 10-0-0 oc                                                                                                                                                                                                                                                                                           | 6                                                            |                                                                                                                                                                                                                                                                                                                                                        | spaced at 2-0-0 o                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| Vasd=10<br>II; Exp B;<br>and C-C<br>4-8-12, E<br>and right<br>C for mer<br>shown; L | <ul> <li>(size) 2=0-3-8, 1</li> <li>Max Horiz 2=90 (LC Max Uplift 2=-74 (LC Max Grav 2=442 (LC (Ib) - Maximum Corr Tension 0) 1-2=0/15, 2-4=-189/ 5-6=-31/65, 6-7=-18</li> <li>2-9=-29/43, 8-9=-29</li> <li>4-9=-79/81, 5-8=-70</li> <li>SCE 7-16; Vult=130mph (3mph; TCDL=6.0psf; B); Enclosed; MWFRS (er Exterior(2E) 0-1-0 to 3-exterior(2E) 0-1-0 to 3-exterior(2E) 4-8-12 to 7-exposed; end vertical mbers and forces &amp; MW, unber DOL=1.60 plate</li> </ul> | 13)<br>10), 7=-46 (LC 14)<br>21), 7=336 (LC 21)<br>pression/Maximum<br>60, 4-5=-45/60,<br>8/103<br>/43, 7-8=-29/43<br>/85<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>welope) exterior zon<br>1-0, Interior (1) 3-1-0<br>8-12 zone; cantileve<br>left and right expose<br>/FRS for reactions<br>grip DOL=1.60 | 9<br>1<br>1<br>Cat. 1<br>te<br>1 to<br>r left<br>d;C- 1<br>L | <ul> <li>chord live lo.</li> <li>This truss is</li> <li>on the bottoo</li> <li>3-06-00 tall lochord and ai</li> <li>Bearings are SP No.2.</li> <li>Bearing At jc using ANSI/designer shot</li> <li>Provide mec</li> <li>pearing plate</li> <li>One H2.5A S recommend</li> <li>UPLIFT at jt and does no</li> <li>This truss is International</li> </ul> | as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w<br>hy other members<br>a assumed to be: ,<br>bint(s) 7 considers<br>TPI 1 angle to gra<br>buld verify capacit<br>chanical connection<br>e at joint(s) 7.<br>Simpson Strong-T<br>ed to connect trus<br>(s) 2 and 7. This c<br>t consider lateral f<br>designed in accol<br>Residential Code<br>nd referenced sta<br>Standard | with any<br>d for a live<br>as where<br>rill fit betw<br>Joint 2 SI<br>parallel 1<br>in formul<br>y of bear<br>n (by oth<br>ie conne<br>s to bear<br>connectio<br>forces.<br>dance we sections | other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>> No.2 , Join<br>to grain value<br>a. Building<br>ing surface.<br>ers) of truss<br>ctors<br>ing walls due<br>n is for uplift<br>ith the 2018<br>s R502.11.1 a | Opsf<br>com<br>t 7<br>to<br>to<br>e to<br>only |       | Ch. and the | in the second se | SEA<br>0363   | 22       |
|                                                                                     | signed for wind loads in<br>r studs exposed to wind                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N             |          |

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)


TRENCO AMITEK Affiliate


818 Soundside Road Edenton, NC 27932

4. GILP

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | К4    | Monopitch  | 6   | 1   | I74037062<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:4AS8V?c1xOsMY4TG2I9BvPz9?u3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





| Scale = 1:32.6       |                                 |
|----------------------|---------------------------------|
| Plate Offsets (X Y): | [2:0-3-2 0-1-1] [4:0-0-5 0-1-8] |

| Loading      | (psf)                              | Spacing                                                                                  | 2-0-0                                                                       |                                                                                       | CSI                                      |             | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------------|------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|-------------|---------------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof)  | 20.0                               | Plate Grip DOL                                                                           | 1.15                                                                        |                                                                                       | TC                                       | 0.67        | Vert(LL)      | -0.04 | 5-10  | >999   | 240 | MT20          | 244/190  |
| Snow (Pf)    | 20.0                               | Lumber DOL                                                                               | 1.15                                                                        |                                                                                       | BC                                       | 0.41        | Vert(CT)      | -0.07 | 5-10  | >999   | 180 |               |          |
| TCDL         | 10.0                               | Rep Stress Incr                                                                          | YES                                                                         |                                                                                       | WB                                       | 0.00        | Horz(CT)      | 0.01  | 2     | n/a    | n/a |               |          |
| BCLL         | 0.0*                               | Code                                                                                     | IRC2018                                                                     | 8/TPI2014                                                                             | Matrix-MR                                |             |               |       |       |        |     |               |          |
| BCDL         | 10.0                               |                                                                                          |                                                                             |                                                                                       |                                          |             |               |       |       |        |     | Weight: 30 lb | FT = 20% |
| LUMBER       |                                    |                                                                                          | 5)                                                                          | This truss ha                                                                         | s been designed                          | for a 10.0  | ) psf bottom  |       |       |        |     |               |          |
| TOP CHORD    | 2x4 SP No.2                        |                                                                                          | -,                                                                          |                                                                                       | ad nonconcurrent                         |             |               | ads.  |       |        |     |               |          |
| BOT CHORD    | 2x4 SP No.2                        |                                                                                          | 6)                                                                          | * This truss h                                                                        | as been designed                         | d for a liv | e load of 20. | 0psf  |       |        |     |               |          |
| OTHERS       | 2x6 SP No.2                        |                                                                                          |                                                                             |                                                                                       | n chord in all area                      |             |               |       |       |        |     |               |          |
| SLIDER       | Left 2x4 SP No.3 1                 | 3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members. |                                                                             |                                                                                       |                                          |             |               |       |       |        |     |               |          |
| BRACING      |                                    | 7)                                                                                       |                                                                             |                                                                                       |                                          |             | + E           |       |       |        |     |               |          |
| TOP CHORD    | 5                                  |                                                                                          |                                                                             | <ol> <li>Bearings are assumed to be: Joint 2 SP No.2, Joint 5<br/>SP No.2.</li> </ol> |                                          |             |               |       |       |        |     |               |          |
|              | 6-0-0 oc purlins.                  | . 8)                                                                                     | <ol> <li>Bearing at joint(s) 5 considers parallel to grain value</li> </ol> |                                                                                       |                                          |             |               |       |       |        |     |               |          |
| BOT CHORD    | Rigid ceiling directly<br>bracing. | applied or 10-0-0 oc                                                                     | ;                                                                           |                                                                                       | PI 1 angle to grai                       |             |               |       |       |        |     |               |          |
| REACTIONS    | (size) 2=0-3-8, 5                  | 5_0.1.9                                                                                  |                                                                             |                                                                                       | uld verify capacity                      |             |               |       |       |        |     |               |          |
| REACTIONS    | Max Horiz 2=97 (LC                 |                                                                                          | 9)                                                                          |                                                                                       | hanical connection                       | n (by oth   | ers) of truss | to    |       |        |     |               |          |
|              | Max Uplift 2=-73 (LC               | ,                                                                                        | 10                                                                          | bearing plate                                                                         |                                          |             |               |       |       |        |     |               |          |
|              | Max Grav 2=442 (LC                 |                                                                                          | ) 10                                                                        | ,                                                                                     | Simpson Strong-Ti<br>ed to connect truss |             |               | to    |       |        |     |               |          |
| FORCES       | (lb) - Maximum Com                 | ,. , ,                                                                                   |                                                                             |                                                                                       | s) 2 and 5. This c                       |             |               |       |       |        |     |               |          |
|              | Tension                            |                                                                                          |                                                                             |                                                                                       | consider lateral f                       |             |               | only  |       |        |     |               |          |
| TOP CHORD    | 1-2=0/15, 2-4=-277/8               | 86, 4-5=-230/177                                                                         | 11                                                                          | ) This truss is                                                                       | designed in accor                        | dance w     | ith the 2018  |       |       |        |     |               |          |
| BOT CHORD    | 2-5=-132/237                       |                                                                                          |                                                                             | International                                                                         | Residential Code                         | sections    | R502.11.1 a   | and   |       |        |     |               |          |
| NOTES        |                                    |                                                                                          |                                                                             | R802.10.2 a                                                                           | nd referenced star                       | ndard AN    | ISI/TPI 1.    |       |       |        |     |               |          |
| 1) Wind: ASC | CE 7-16; Vult=130mph               | (3-second gust)                                                                          | LC                                                                          | DAD CASE(S)                                                                           | Standard                                 |             |               |       |       |        |     |               |          |
|              | mph; TCDL=6.0psf; B0               |                                                                                          |                                                                             |                                                                                       |                                          |             |               |       |       |        |     | munn          | 11111    |
|              | Enclosed; MWFRS (en                |                                                                                          |                                                                             |                                                                                       |                                          |             |               |       |       |        |     | WITH CA       | Bally    |
|              | xterior(2E) 0-1-0 to 3-            |                                                                                          |                                                                             |                                                                                       |                                          |             |               |       |       |        | 1   | A             | CYL MA   |

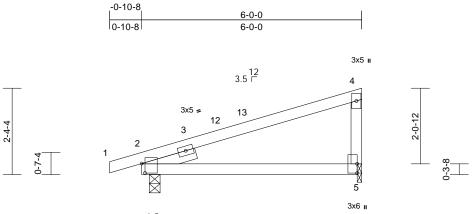
- Vasd=103mpn; TCDL=6.0psr; BCDL=6.0psr; h=25tr; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-0 to 3-1-0, Interior (1) 3-1-0 to 4-8-12, Exterior(2E) 4-8-12 to 7-8-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

A. GILBER

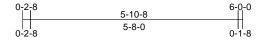
SEAL

036322

THE CONTRACTOR OF STREET


June 9,2025

AMITEK Affiliate B18 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | КЗ    | Monopitch  | 3   | 1   | I74037063<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:oIOdqTbm7O1Sj35Sc1CKSPz9?zF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



4x5 🛚



Scale = 1:31.4

# Plate Offsets (X, Y): [2:0-3-2,0-1-1]

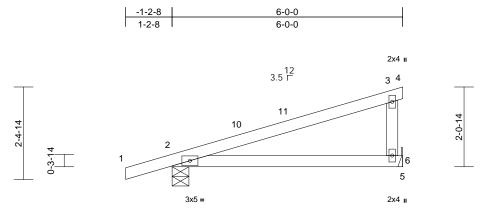
| Loading     | (psf)                                                | Spacing             | 2-0-0              |               | csi                                        |          | DEFL            | in    | (loc)        | l/defl | L/d     | PLATES        | GRIP                                     |
|-------------|------------------------------------------------------|---------------------|--------------------|---------------|--------------------------------------------|----------|-----------------|-------|--------------|--------|---------|---------------|------------------------------------------|
| TCLL (roof) | 20.0                                                 | Plate Grip DOL      | 1.15               |               | тс                                         | 0.83     | Vert(LL)        | -0.02 | <u>5</u> -10 | >999   | 240     | MT20          | 244/190                                  |
| Snow (Pf)   | 20.0                                                 | Lumber DOL          | 1.15               |               | BC                                         | 0.29     | Vert(CT)        | -0.04 | 5-10         | >999   | 180     |               |                                          |
| TCDL        | 10.0                                                 | Rep Stress Incr     | YES                |               | WB                                         | 0.00     | Horz(CT)        | 0.01  | 2            | n/a    | n/a     |               |                                          |
| BCLL        | 0.0*                                                 | Code                | IRC2018            | 8/TPI2014     | Matrix-MR                                  |          |                 |       |              |        |         |               |                                          |
| BCDL        | 10.0                                                 |                     |                    |               |                                            |          |                 |       |              |        |         | Weight: 24 lb | FT = 20%                                 |
| LUMBER      |                                                      |                     | 5)                 | This truss ha | as been designed f                         | or a 10. | 0 psf bottom    |       |              |        |         |               |                                          |
| TOP CHORD   | 2x4 SP No.2                                          |                     | -,                 |               | ad nonconcurrent                           |          |                 | ads.  |              |        |         |               |                                          |
| BOT CHORD   |                                                      |                     | 6)                 |               | has been designed                          |          |                 |       |              |        |         |               |                                          |
| OTHERS      | 2x4 SP No.3                                          |                     |                    | on the botto  | m chord in all area                        | s where  | a rectangle     |       |              |        |         |               |                                          |
| SLIDER      | Left 2x4 SP No.3 1                                   | 1-6-0               |                    |               | by 2-00-00 wide wi                         |          | veen the bott   | om    |              |        |         |               |                                          |
| BRACING     |                                                      |                     | odor 7)            |               | ny other members.                          |          |                 | _     |              |        |         |               |                                          |
| TOP CHORD   | Structural wood she                                  |                     | e assumed to be: J | oint 2 S      | P No.2 , Joint                             | t 5      |                 |       |              |        |         |               |                                          |
|             | 6-0-0 oc purlins.                                    |                     | 0)                 | SP No.3.      | int(a) E considera                         | norollal |                 |       |              |        |         |               |                                          |
| BOT CHORD   | 0 0 ,                                                | applied or 10-0-0 o | c 8)               |               | pint(s) 5 considers<br>TPI 1 angle to grai |          |                 | •     |              |        |         |               |                                          |
|             | bracing.                                             |                     |                    |               | ould verify capacity                       |          |                 |       |              |        |         |               |                                          |
| REACTIONS   | (,                                                   |                     | 9)                 |               | chanical connection                        |          |                 | to    |              |        |         |               |                                          |
|             | Max Horiz 2=85 (LC                                   |                     | - /                |               | e at joint(s) 5.                           | . ()     | ,               |       |              |        |         |               |                                          |
|             | Max Uplift 2=-68 (LC                                 |                     |                    | ) One H2.5A   | Simpson Strong-Ti                          | e conne  | ctors           |       |              |        |         |               |                                          |
|             | Max Grav 2=421 (LC                                   |                     |                    | recommend     | ed to connect truss                        | to bear  | ing walls due   | e to  |              |        |         |               |                                          |
| FORCES      | (lb) - Maximum Com                                   | pression/Maximum    |                    |               | (s) 2 and 5. This co                       |          | n is for uplift | only  |              |        |         |               |                                          |
|             | Tension                                              |                     |                    |               | ot consider lateral f                      |          |                 |       |              |        |         |               |                                          |
| TOP CHORD   | ,                                                    | 92, 4-5=-191/155    | 11                 |               | designed in accor                          |          |                 |       |              |        |         |               |                                          |
| BOT CHORD   | 2-5=-108/188                                         |                     |                    |               | Residential Code                           |          |                 | and   |              |        |         |               |                                          |
| NOTES       |                                                      |                     |                    |               | ind referenced star                        | idard Ar | NSI/TPT1.       |       |              |        |         |               |                                          |
|             | CE 7-16; Vult=130mph                                 |                     |                    | DAD CASE(S)   | Standard                                   |          |                 |       |              |        |         |               |                                          |
|             | Bmph; TCDL=6.0psf; B                                 |                     | ,                  |               |                                            |          |                 |       |              |        |         |               | 1111                                     |
|             | Enclosed; MWFRS (en                                  |                     |                    |               |                                            |          |                 |       |              |        |         | "TH CA        | Roill                                    |
|             | Exterior(2E) 0-1-0 to 3-                             |                     |                    |               |                                            |          |                 |       |              | 1      | ORTH CA | ALL'          |                                          |
|             | xterior(2E) 3-9-12 to 6-<br>exposed ; end vertical l |                     |                    |               |                                            |          |                 |       |              |        | 1       | FESS          | Dir Vin                                  |
| and fight e | exposed, end ventical i                              | en anu nynt expose  | su,o-              |               |                                            |          |                 |       |              |        | 25      | 110 1         | 1 al |

shown; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

C for members and forces & MWFRS for reactions

- Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 June 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | К2    | Monopitch  | 10  | 1   | I74037064<br>Job Reference (optional)           |

### Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:JC8GeR8VOWvUJcwOaq2Bb5z90?7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



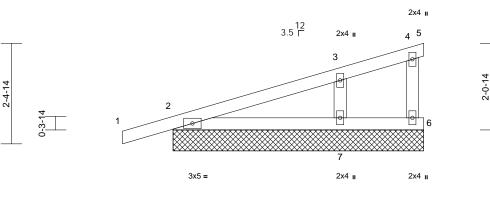


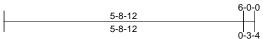
Scale = 1:30

| Loading             | (psf)                                       | Spacing             | 2-0-0 |              | CSI                                       |           | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP          |
|---------------------|---------------------------------------------|---------------------|-------|--------------|-------------------------------------------|-----------|---------------|-------|-------|--------|-----|---------------|---------------|
| TCLL (roof)         | 20.0                                        | Plate Grip DOL      | 1.15  |              | TC                                        | 0.64      | Vert(LL)      | -0.08 | 6-9   | >874   | 240 | MT20          | 244/190       |
| Snow (Pf)           | 20.0                                        | Lumber DOL          | 1.15  |              | BC                                        | 0.51      | Vert(CT)      | -0.14 | 6-9   | >495   | 180 |               |               |
| TCDL                | 10.0                                        | Rep Stress Incr     | YES   |              | WB                                        | 0.00      | Horz(CT)      | 0.00  | 2     | n/a    | n/a |               |               |
| BCLL                | 0.0*                                        | Code                | IRC20 | )18/TPI2014  | Matrix-MP                                 |           |               |       |       |        |     |               |               |
| BCDL                | 10.0                                        |                     | -     |              |                                           | -         |               |       |       |        |     | Weight: 22 lb | FT = 20%      |
| LUMBER<br>TOP CHORD | 2x4 SP No.2                                 |                     |       |              | as been designed<br>ad nonconcurrent      |           |               | ads   |       |        |     |               |               |
| BOT CHORD           | 2x4 SP No.2                                 |                     |       |              | has been designe                          |           |               |       |       |        |     |               |               |
| WEBS                | 2x4 SP No.3                                 |                     |       |              | m chord in all are                        |           |               |       |       |        |     |               |               |
| BRACING             |                                             |                     |       |              | by 2-00-00 wide v                         |           | veen the bott | tom   |       |        |     |               |               |
| TOP CHORD           | Structural wood she                         |                     | ed or |              | ny other member                           |           |               |       |       |        |     |               |               |
|                     | 6-0-0 oc purlins, ex                        |                     |       |              | e assumed to be:<br>ler(s) for truss to t |           |               |       |       |        |     |               |               |
| BOT CHORD           | Rigid ceiling directly                      | applied or 10-0-0 o | C     | , 0          | chanical connection                       |           |               | to    |       |        |     |               |               |
| REACTIONS           | bracing.<br>(size) 2=0-5-4, 6               | 6= Mechanical       |       |              | e capable of with                         |           |               |       |       |        |     |               |               |
|                     | Max Horiz 2=75 (LC                          |                     |       | 6.           |                                           | -         |               |       |       |        |     |               |               |
|                     | Max Uplift 2=-81 (LC                        |                     |       |              | Simpson Strong-T                          |           |               |       |       |        |     |               |               |
|                     | Max Grav 2=423 (L0                          |                     |       |              | ed to connect trus<br>(s) 2. This connect |           | 0             |       |       |        |     |               |               |
| FORCES              | (lb) - Maximum Corr                         |                     | '     |              | nsider lateral force                      |           | upint only a  | ina   |       |        |     |               |               |
|                     | Tension                                     |                     |       |              | designed in acco                          |           | ith the 2018  |       |       |        |     |               |               |
| TOP CHORD           | 1-2=0/29, 2-3=-137/                         | 59, 3-4=-7/0,       |       |              | I Residential Code                        |           |               | and   |       |        |     |               |               |
|                     | 3-6=-232/144                                | 0                   |       |              | ind referenced sta                        | andard AN | ISI/TPI 1.    |       |       |        |     |               |               |
| BOT CHORD           | 2-6=-30/147, 5-6=0/                         | 0                   |       | LOAD CASE(S) | Standard                                  |           |               |       |       |        |     |               |               |
| NOTES               |                                             | (2 accord suct)     |       |              |                                           |           |               |       |       |        |     |               |               |
|                     | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B |                     | Cat   |              |                                           |           |               |       |       |        |     |               |               |
|                     | Enclosed; MWFRS (er                         |                     | ,     |              |                                           |           |               |       |       |        |     |               | 11.5          |
|                     | Exterior(2E) -1-2-8 to 1                    |                     |       |              |                                           |           |               |       |       |        |     | WITH CA       | 1111          |
|                     | erior(2E) 3-0-0 to 6-0-0                    |                     |       |              |                                           |           |               |       |       |        |     | ITH UF        | Bally         |
|                     | exposed ; end vertical                      |                     | ed;C- |              |                                           |           |               |       |       |        | J.  | ON SECK       | in Aller      |
|                     | bers and forces & MW                        |                     |       |              |                                           |           |               |       |       | /      | 52  | FLUC          | Vizin         |
| snown; Lu           | mber DOL=1.60 plate                         | grip DOL=1.60       |       |              |                                           |           |               |       |       | 9      | V   |               |               |
| 2) TCLL: AS         | CE 7-16; Pr=20.0 psf (                      | roof LL: Lum DOL=   | 1.15  |              |                                           |           |               |       |       |        | 1   |               | 1 1 I I I     |
|                     | .=1.15); Pf=20.0 psf (L                     |                     |       |              |                                           |           |               |       |       | =      |     | SEA           | ∖L <u>:</u> Ξ |
|                     |                                             |                     | •     |              |                                           |           |               |       |       | -      |     | 0000          |               |

- 2) Fold: AGE 710, Fie20.0 psf (Lum DOL=1.15) Fie20.0 psf (Lum DOL=1.15)
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 June 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


| Job         | Truss | Truss Type                | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|---------------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | K1    | Monopitch Supported Gable | 1   | 1   | I74037065<br>Job Reference (optional)           |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:YgfEzi1UG3vdMOIs69vJGPz90?F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





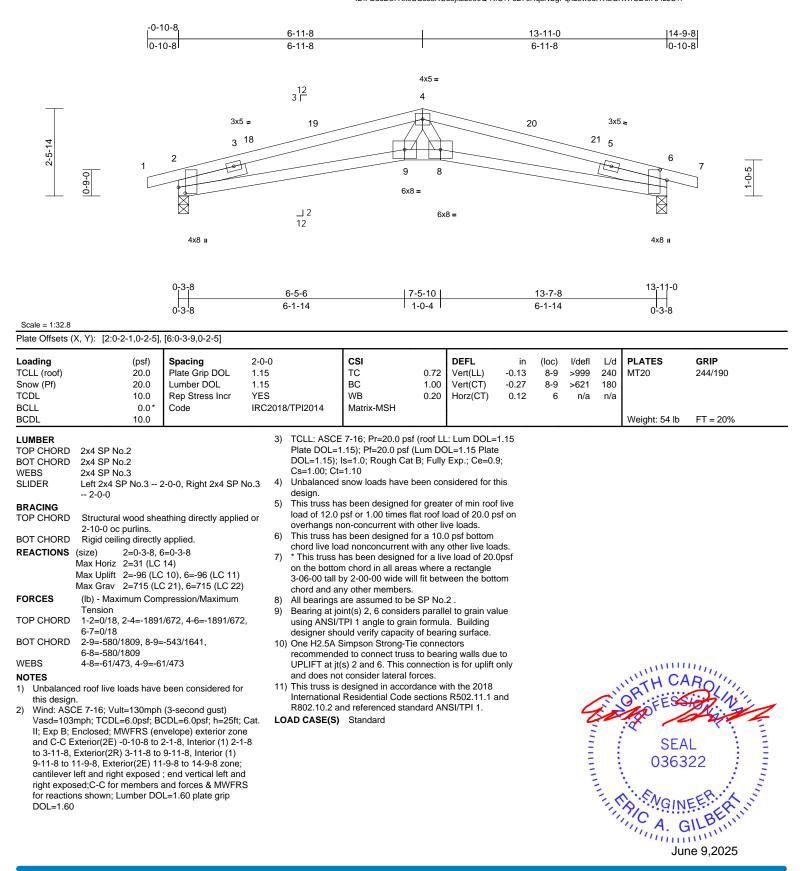


Scale = 1:27.6

| 00010 = 1.27.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                  |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                   | 1-11-4<br>1.15<br>1.15<br>YES<br>IRC2018                                            | 3/TPI2014                                                                                                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                              | 0.24<br>0.37<br>0.08                                                                                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                            | in<br>n/a<br>n/a<br>0.00                         | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 24 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASI<br>Vasd=103<br>II; Exp B;<br>and C-C<br>to 6-0-0 z<br>vertical lei | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 2=6-0-0, 4<br>Max Horiz 2=72 (LC<br>Max Uplift 2=-63 (LC<br>Max Uplift 2=-63 (LC<br>Max Grav 2=301 (LC<br>(LC 7), 7=<br>(lb) - Maximum Com<br>Tension<br>1-2=0/29, 2-3=-63/7<br>4-6=0/77<br>2-7=-38/88, 6-7=-21<br>3-7=-327/254<br>CE 7-16; Vult=130mph<br>Bmph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>Corner(3E) -1-2-8 to 1-<br>one; cantilever left and<br>ft and right exposed;C- | cept end verticals.<br>applied or 10-0-0 or<br>5=6-0-0, 6=6-0-0, 7=<br>11)<br>2 10), 7=-36 (LC 14)<br>C 21), 5=63 (LC 21),<br>402 (LC 21)<br>apression/Maximum<br>8, 3-4=-43/29, 4-5=-<br>/38<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>velope) exterior zor<br>9-8, Exterior(2N) 1-9<br>right exposed ; end<br>C for members and | 6)<br>ed or 7)<br>8)<br>6-0-0<br>6=57 10<br>6=57 11<br>7/17, 12<br>7/17, LC<br>Cat. | design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>chord and ar<br>) All bearings<br>Dervide mec<br>bearing plate<br>2, 36 lb upliff<br>) This truss is<br>International | snow loads have<br>ss been designed<br>psf or 1.00 times<br>on-concurrent wit<br>es continuous bo<br>spaced at 2-0-0 o<br>ts been designed<br>ad nonconcurrent<br>has been designe<br>n chord in all area<br>by 2-00-00 wide w<br>by other members<br>are assumed to b<br>hanical connectic<br>e capable of withs<br>at joint 7 and 63<br>designed in acco<br>Residential Code<br>nd referenced sta<br>Standard | for great<br>flat roof It<br>h other Ii<br>ttom chor<br>oc.<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>vill fit betw<br>s.<br>e SP No.<br>n (by oth<br>tanding 6<br>Ib uplift a<br>rdance w<br>e sections | er of min roof<br>pad of 20.0 p:<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>2.<br>ers) of truss t<br>i3 lb uplift at j<br>ti joint 2.<br>ti ti th the 2018<br>s R502.11.1 a | live<br>sf on<br>ds.<br>Dpsf<br>om<br>ro<br>oint |                      |                             | A STATE OF THE STA | OR FESS                         | ROUL                               |
| DOL=1.60<br>2) Truss des<br>only. For<br>see Stand<br>or consult<br>3) TCLL: AS<br>Plate DOL                                                                                                                          | MWFRS for reactions s<br>) plate grip DOL=1.60<br>signed for wind loads in<br>studs exposed to wind<br>dard Industry Gable En<br>t qualified building desi<br>(CE 7-16; Pr=20.0 psf (<br>L=1.15); Pf=20.0 psf (<br>L=1.0; Rough Cat E                                                                                                                                                                                                                                                                                                                           | the plane of the trus<br>I (normal to the face)<br>d Details as applicat<br>gner as per ANSI/TF<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate                                                                                                                                                                                           | ),<br>ble,<br>PI 1.<br>I.15                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                  |                      | 1111WAS                     | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEA<br>0363                     | • –                                |

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




G minim

June 9,2025

| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | H2    | Roof Special | 5   | 1   | I74037066<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:48 ID:FEduD37Rx0SGss3RCu3jkbz900Q-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

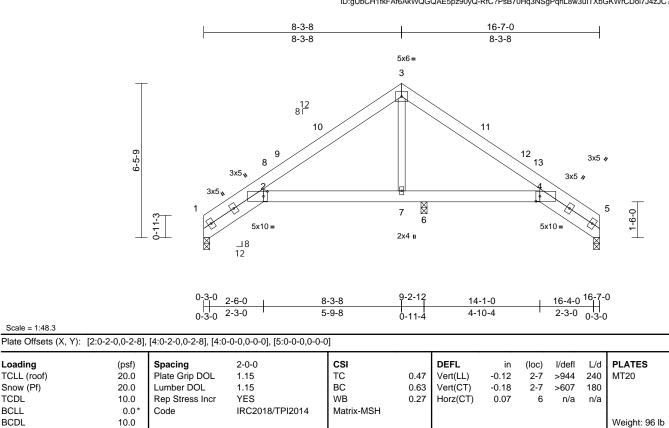


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

| Job         | Truss | Truss Type                   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | H1    | Roof Special Supported Gable | 1   | 1   | I74037067<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47  $ID: MTNNNh4wtnyqNFmgz3_nZlz900U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$  Page: 1

|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł                                                                                                                                                                                                                                                                                                                                                                     | -0-10-8<br>0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          | <u>6-11-8</u><br>6-11-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | - <u>11-0</u><br>-11-8                                                                                      |                                                                                                                                                    |                                                                                                                        | 14-9-8<br> <br>0-10-8                                                                                                                                                                                  |                                    |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| - 2-5-14                                                                                | 2-5-14<br>0-9-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                     | 2<br>4x5 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3x5 =<br>3                                                                                                                                               | 3 <sup>12</sup><br>2x4 #<br>4<br>27<br>4<br>4<br>27<br>4<br>18<br>2x4 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x4 II<br>5<br>17<br>2x4 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4x5 =<br>6<br>16 15 14<br>5x10 =<br>3x5                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2x4  <br>7<br>13<br>2x4  <br>2x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                              | 2x4  <br>8<br>12<br>2x4                                                                                     |                                                                                                                                                    | 3x5:<br>9                                                                                                              | 10                                                                                                                                                                                                     | 11 6<br>0-<br>1-                   |
| Scale = 1:35.1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       | 0-3-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | 2<br>12<br>6-5-6<br>6-1-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-5-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | <u>3-7-8</u><br>5-1-14                                                                                      |                                                                                                                                                    |                                                                                                                        | 13-11-0<br> - <br>0-3-8                                                                                                                                                                                |                                    |
| Plate Offsets ()<br>Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCLL<br>BCDL | <u>,X,Y): [2.0-0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                         | 3], [10:0-1-13,0-<br>Spacing<br>Plate Grip DO<br>Lumber DOL<br>Rep Stress Ind<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-<br>DL 1.14<br>1.14<br>nor YES                                                                                                                       | 15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09<br>0.08<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in<br>n/a<br>n/a<br>0.00                                                                                        | (loc)<br>-<br>-<br>2                                                                                        | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                        | L/d<br>999<br>999<br>n/a                                                                                               | PLATES<br>MT20<br>Weight: 55 lb                                                                                                                                                                        | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                                         | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>Left 2x4 SP</li> <li>No.3 1-6-1</li> <li>Structural w</li> <li>6-0-0 oc pur</li> <li>Rigid ceiling</li> <li>bracing.</li> <li>(size)</li> <li>2:</li> <li>1:</li> <li>Max Horiz</li> <li>2:</li> <li>Max Uplift</li> <li>1:</li> <li>Max Grav</li> <li>1:</li> <li>1:</li> <li>Max Grav</li> <li>2:</li> <li>5:</li> <li>6=-82/108</li> <li>8-10=-89/39</li> <li>2-18=-5/58,</li> <li>15-16=-2/51</li> <li>12-13=-4/53</li> </ul> | .2<br>.3<br>P No.3 1-<br>-13<br>wood shea<br>urlins.<br>g directly a<br>2=13-11-0,<br>12=13-11-1<br>14=13-11-1<br>16=13-11-1<br>18=-31 (LC 1<br>12=-46 (LC<br>12=-45 (LC<br>15=-11 (LC 7),<br>15=-11 (LC 7),<br>17=48-48 (LC<br>2=230 (LC 7),<br>17=48-48 (LC<br>12=284 (LC<br>14=49 (LC<br>(LC 7),<br>17=8-39<br>1,<br>14-15=<br>3,<br>1,<br>14-15=<br>3,<br>5-17=-1 | 14)<br>C 10), 10=-54 (LC<br>C 15), 13=-31 (L<br>C 10), 17=-30 (L<br>C 10), 17=-30 (L<br>C 14)<br>C 21), 10=230 (L<br>C 22), 13=193 (L<br>C 21), 1<br>100 (LC<br>21), 15=90 (LC<br>21), 15=90 (LC<br>21), 15=90 (LC<br>21), 15=90 (LC<br>21), 13=14<br>(LC 21), 1<br>100 (LC<br>21), 10=230 (LC<br>21), 10 | Applied or<br>)-0 oc<br>,<br>,<br>,<br>(LC 11),<br>(LC 11),<br>(LC 11),<br>(LC 22),<br>(LC 22),<br>; 1), 16=49<br>18=284<br>num<br>(72,<br>(54,<br>4/54, | <ul> <li>this des</li> <li>Wind: A</li> <li>Vasd=1</li> <li>II; Exp E</li> <li>and C-C</li> <li>to 3-11-</li> <li>9-11-8 ti</li> <li>cantilev</li> <li>right exp</li> <li>for reac</li> <li>DOL=1.</li> <li>3) Truss d</li> <li>only. Fr</li> <li>see Sta</li> <li>or const</li> <li>4) TCLL: A</li> <li>Plate to</li> <li>DOL=1.</li> <li>Cs=1.00</li> <li>5) Unbalar</li> <li>design.</li> <li>6) This true</li> <li>load of</li> <li>overhar</li> <li>7) All plate</li> <li>8) Gable s</li> <li>10) This true</li> <li>chord line</li> <li>11) * This true</li> <li>chord line</li> </ul> | sign.<br>ASCE 7<br>103mpl B; Enc<br>C Corn<br>-8, Cor<br>to 11-5<br>ver left<br>tyoesed<br>ctions s<br>.60<br>designet<br>for stuct<br>sult quarter<br>or stuct<br>sult sult sult sult sult sult sult sult | roof live loads I<br>7-16; Vult=130<br>bh; TCDL=6.0p<br>closed; MWFR:<br>ner(3E) -0-10-6<br>9-8, Corner(3E)<br>t and right expo<br>d;C-C for memt<br>shown; Lumbe<br>ed for wind loa<br>tds exposed to<br>d Industry Gabl<br>alified building<br>7-16; Pr=20.0<br>15); Pf=20.0 p<br>Is=1.0; Rough (<br>=1.10<br>snow loads hav<br>the scontinuous to<br>spaced at 2-0-(<br>the scontinuous to<br>spaced at 2-0-(<br>the scontinuous to<br>spaced at 2-0-0<br>to sbeen designed<br>an onconcurrent<br>to spaced at 2-0-0<br>to sbeen designed<br>an onconcurrent<br>to spaced at 2-0-0<br>to sbeen designed<br>an onconcurrent<br>to spaced at 2-0-0<br>to wide<br>the scontinuous to<br>spaced at 2-0-0<br>to sbeen designed<br>an onconcurrent<br>to spaced at 2-0-0<br>to sbeen designed<br>an onconcurrent<br>to spaced at 2-0-0<br>to the member<br>are assumed to | Omph (3-sec<br>osf; BCDL=6<br>S (envelope<br>8 to 2-1-8, E<br>-8 to 9-11-8,<br>) 11-9-8 to<br>osed ; end v<br>bers and for<br>er DOL=1.60<br>ads in the pla<br>wind (norm.<br>le End Detail<br>of designer as<br>psf (roof LL<br>osf (Lum DO<br>Cat B; Fully<br>we been con<br>ed for greate<br>es flat roof lc<br>with other liv<br>less otherwis<br>bottom chor-<br>o oc.<br>ed for a 10.0<br>ent with any<br>ined for a liv<br>irreas where<br>e will fit betw<br>ers. | cond gust)<br>cond gust)<br>const; h=25ft;<br>exterior zon<br>exterior(2N) 2-<br>Exterior(2N) 14-9-8 zone;<br>vertical left and<br>cces & MWFR<br>plate grip<br>ane of the trus<br>ane of the trus<br>ane of the trus<br>plate grip<br>ane of the trus<br>provide the face)<br>ils as applicat<br>s per ANSI/TP<br>: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th<br>er of min roof 1<br>and of 20.0 ps<br>ve loads.<br>se indicated.<br>d bearing.<br>D psf bottom<br>other live loac<br>e load of 20.0<br>a rectangle<br>veen the botto | Cat.<br>ne<br>-1-8<br>d<br>SS<br>ss<br>),<br>ble,<br>-1 1.<br>1.15<br>-;<br>his<br>live<br>sf on<br>ds.<br>)psf | bear<br>2, 52<br>at jo<br>45 lt<br>at jo<br>14) Beve<br>surfa<br>12.<br>15) This<br>Inter<br>R80:<br>LOAD C | ring plat<br>4 lb upli<br>bint 17, 4<br>b uplifa<br>bint 10, -<br>reled plat<br>acce with<br>s truss is<br>mationa<br>22.10.2 a<br><b>CASE(S</b> ) | ate capa<br>lift at joi<br>48 lb up<br>at joint<br>ate or si<br>h truss<br>is desig<br>al Resid<br>and refi<br>5) Star | able of withstand<br>int 10, 11 lb uplift<br>iplift at joint 18, 1<br>12, 46 lb uplift at<br>shim required to<br>chord at joint(s)<br>gned in accordan<br>dential Code se<br>ferenced standa<br>indard | • -                                |
| Design va<br>a truss sy<br>building c<br>is always<br>fabricatio                        | valid for use only w<br>system. Before use<br>g design. Bracing ir<br>ys required for stab<br>tion, storage, delive                                                                                                                                                                                                                                                                                                                                                                  | with MiTek®<br>se, the buildin<br>indicated is to<br>bility and to p<br>very, erection                                                                                                                                                                                                                                                                                | ers and READ NOTES<br>© connectors. This d<br>ling designer must ve<br>to prevent buckling<br>prevent collapse wit<br>n and bracing of trus<br>ifety Information an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | design is base<br>verify the appli-<br>of individual t<br>ith possible pe<br>sses and truss                                                              | eed only upon parar<br>blicability of design p<br>I truss web and/or c<br>personal injury and<br>ss systems, see A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | meters s<br>paramet<br>chord me<br>property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | shown, and is for a<br>eters and properly in<br>nembers only. Add<br>ty damage. For ge<br>PI1 Quality Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an individual bu<br>incorporate this<br>ditional tempora<br>eneral guidance<br>a and DSB-22                                                                                                                                                                                                                                                                                                                                                                               | ilding component<br>design into the o<br>ary and permanen<br>regarding the<br>available from Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t, not<br>overall<br>nt bracing<br>russ Plate                                                                   |                                                                                                             | vww.tpins                                                                                                                                          | it.org)                                                                                                                | 818 Soundside<br>Edenton, NC 2                                                                                                                                                                         |                                    |


| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | G1    | Roof Special | 4   | 1   | I74037068<br>Job Reference (optional)           |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47 ID:gUbCH1fkFAf6AkWQGQAE5pz90yQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%



| L | UM | BE | R   |
|---|----|----|-----|
| т | OP | CH | ORI |

Scale = 1:48.3

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

| LUMBER    |                                                                    |   |
|-----------|--------------------------------------------------------------------|---|
| TOP CHORD | 2x6 SP No.2                                                        |   |
| BOT CHORD | 2x6 SP No.2                                                        |   |
| WEBS      | 2x4 SP No.3                                                        |   |
| BRACING   |                                                                    |   |
| TOP CHORD | Structural wood sheathing directly applied of<br>6-0-0 oc purlins. | r |
| BOT CHORD | Rigid ceiling directly applied or 6-0-0 oc bracing.                |   |
| REACTIONS | (size) 1=0-3-0, 5=0-3-0, 6=0-3-0                                   |   |
|           | Max Horiz 1=134 (LC 11)                                            |   |
|           | Max Uplift 1=-16 (LC 14), 5=-23 (LC 15),                           |   |
|           | 6=-79 (LC 14)                                                      |   |
|           | Max Grav 1=318 (LC 20), 5=156 (LC 21),<br>6=1012 (LC 21)           |   |
| FORCES    | (lb) - Maximum Compression/Maximum                                 |   |
|           | Tension                                                            |   |
| TOP CHORD | 1-2=-172/117, 2-3=-62/356, 3-4=-64/425,                            |   |
|           | 4-5=-64/39                                                         |   |
| BOT CHORD | 2-7=-246/167, 6-7=-246/167, 4-6=-246/167                           |   |
| WEBS      | 3-7=-714/148                                                       |   |
| NOTES     |                                                                    |   |
|           |                                                                    |   |

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-0 to 3-2-0, Interior (1) 3-2-0 to 5-3-8, Exterior(2R) 5-3-8 to 11-3-8, Interior (1) 11-3-8 to 13-5-0, Exterior(2E) 13-5-0 to 16-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 7)

| 8) | Bearing at joint(s) 1, 5 considers parallel to grain value |
|----|------------------------------------------------------------|
|    | using ANSI/TPI 1 angle to grain formula. Building          |
|    | designer should verify capacity of bearing surface.        |

One H2.5A Simpson Strong-Tie connectors 9) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 6, and 5. This connection is for uplift only and does not consider lateral forces.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

| Job         | Truss | Truss Type  | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-------------|-----|-----|-------------------------------------------------|
| 25060036-01 | E2-2  | Flat Girder | 1   | 2   | I74037069<br>Job Reference (optional)           |

2x4 🛛

2

3x5 🛛

Ø

1

Ø,

8-11-2

8-0-0

2x4 II

3

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47 ID:SGXEtNqPUhMKlyRMhucpBaz9196-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

\_

3x5 ш 5

P

Ø

2x4 II

4



 2-0-0
 CSI
 DEFL
 in
 (loc)

 2-0-0
 CSI
 DEFL
 in
 (loc)

 0L
 1.15
 TC
 0.78
 Dert(LL)
 n/a

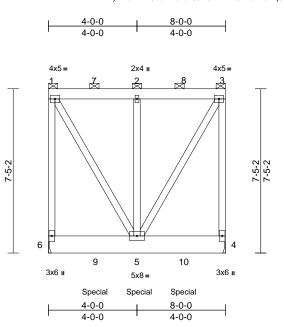
 0L
 1.15
 BC
 0.02
 Vert(TL)
 n/a

 VB
 0.31
 Horiz(TL)
 0.00
 6

Scale = 1:54.1

# Plate Offsets (X, Y): [6:Edge,0-3-8]

| Loading<br>TCLL (roof)               | (psf)<br>20.0                                                                                                                                                            | Spacing<br>Plate Grip DOL                 | 2-0-0<br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             | CSI<br>TC                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.78                                                                                                                                                                            | DEFL<br>Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in<br>n/a                                                            | (loc)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l/defl<br>n/a | L/d<br>999 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |  |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------|------------------------|--|--|--|--|
| Snow (Pf)                            | 20.0                                                                                                                                                                     | Lumber DOL                                | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             | BC                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                            | Vert(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a           | 999        |                |                        |  |  |  |  |
| TCDL<br>BCLL                         | 10.0<br>0.0*                                                                                                                                                             | Rep Stress Incr<br>Code                   | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/TPI2014                                                                                                                                                                                                                                                                                   | WB<br>Matrix-MR                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                                            | Horiz(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a           | n/a        |                |                        |  |  |  |  |
| BCDL                                 | 10.0                                                                                                                                                                     | Code                                      | IKC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5/TF12014                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |            | Weight: 204 lb | FT = 20%               |  |  |  |  |
|                                      |                                                                                                                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | except if note<br>CASE(S) sec<br>provided to c<br>unless othern<br>Wind: ASCE<br>Vasd=103mp<br>II; Exp B; Enn<br>cantilever lef<br>right exposed<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct=<br>Unbalanced | considered equal<br>ed as front (F) or b<br>totion. Ply to ply co<br>listribute only load<br>wise indicated.<br>7-16; Vult=130mp<br>bi; TCDL=6.0psf;<br>closed; MWFRS ((<br>t and right exposed<br>d; Lumber DOL=1<br>ed for wind loads<br>tds exposed to wind<br>d Industry Gable E<br>alified building de<br>7-16; Pr=20.0 psf<br>.15); Pf=20.0 psf<br>.15); Pf=20.0 psf<br>.15); Offer and the<br>set of the total share l | ack (B)<br>nnection<br>s noted<br>bh (3-sec<br>BCDL=6<br>envelope<br>d; end v<br>60 plate<br>in the pl<br>nd (norm<br>nd Deta<br>signer as<br>f (roof LL<br>(Lum DC<br>B; Fully | face in the LC<br>s have been<br>as (F) or (B),<br>.opsf; h=25ft;<br>.opsf; h=25ft; h=25ft;<br>.opsf; h=25ft; h=25ft; h=25ft; | ; Cat.<br>ne;<br>6d<br>60<br>ss<br>),<br>ble,<br>Pl 1.<br>1.15<br>9; | <ul> <li>15) This truss is designed in accordance with the 2018<br/>International Residential Code sections R502.11.1 and<br/>R802.10.2 and referenced standard ANSI/TPI 1.</li> <li>16) Graphical purlin representation does not depict the size<br/>or the orientation of the purlin along the top and/or<br/>bottom chord.</li> <li>17) Hanger(s) or other connection device(s) shall be<br/>provided sufficient to support concentrated load(s) 994<br/>Ib down and 64 lb up at 0-1-12, 972 lb down and 52 lb<br/>up at 2-0-12, and 972 lb down and 52 lb up at 4-1-8,<br/>and 972 lb down and 52 lb up at 6-1-8 on top chord.<br/>The design/selection of such connection device(s) is th<br/>responsibility of others.</li> <li>LOAD CASE(5) Standard</li> <li>1) Dead + Snow (balanced): Lumber Increase=1.15, Pla<br/>Increase=1.15<br/>Uniform Loads (lb/ft)<br/>Vert: 1-5=-60, 6-10=-20<br/>Concentrated Loads (lb)<br/>Vert: 1=-956, 3=-892, 2=-892, 4=-892</li> </ul> |               |            |                |                        |  |  |  |  |
| FORCES                               | (lb) - Maximum Com<br>Tension                                                                                                                                            |                                           | <ul><li>8) Gable requires continuous bottom chord bearing.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | TH CARO    |                |                        |  |  |  |  |
| TOP CHORD                            | 3-4=-34/15, 4-5=-34                                                                                                                                                      | 2=-34/15, 2-3=-34/15<br>/15. 5-6=-161/164 | , 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             | ully sheathed from<br>st lateral moveme                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | ORTEESSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |            |                |                        |  |  |  |  |
| BOT CHORD                            | 9-10=-180/154, 8-9=                                                                                                                                                      | -180/154, 7-8=-180/                       | 154, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 | lagonal web)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |            |                |                        |  |  |  |  |
| Top chore<br>follows: 2<br>Bottom ch | 6-7=-180/154<br>3-8=-1030/83, 2-9=-<br>st to be connected toge<br>ds connected with 10d<br>2x4 - 1 row at 0-9-0 oc.<br>hords connected with 1<br>2x10 - 2 rows staggered | 235 11<br>12<br>as 13                     | <ul> <li>a) (able studs spaced at 2-0-0 oc.</li> <li>b) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>c) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> <li>a) All bearings are assumed to be SP 2400F 2.0E.</li> <li>b) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 459 lb uplift at joint 10, 408 lb uplift at joint 6, 55 lb uplift at joint 8, 523 lb uplift at joint 9 and 522 lb uplift at joint 7.</li> </ul> |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | SEAL<br>036322<br>A. GILBERT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                |                        |  |  |  |  |


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

i renlu

| Job         | Truss | Truss Type  | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-------------|-----|-----|-------------------------------------------------|
| 25060036-01 | E1-2  | Flat Girder | 1   | 2   | I74037070<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47 ID:mPykN0PmxLCsoENeZo786lz91LH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1



#### Scale = 1:52.1

| Loading         (psf)         Spacing         2-0           TCLL (roof)         20.0         Plate Grip DOL         1.1           Snow (Pf)         20.0         Lumber DOL         1.1           TCDL         10.0         Rep Stress Incr         NC           BCLL         0.0*         Code         IRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BC                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30<br>0.08<br>0.28                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                           | in<br>-0.01<br>-0.02<br>0.00                 | (loc)<br>5<br>5<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a |                                | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------|--------------------------|--------------------------------|------------------------------------|
| LUMBER           TOP CHORD $2x6$ SP No.2           BOT CHORD $2x10$ SP 2400F 2.0E           WEBS $2x4$ SP No.3           BRACING         700 CHORD           TOP CHORD $2-0-0$ oc purlins (6-0-0 max.): 1-3, except end verticals.           BOT CHORD         Rigid ceiling directly applied or 10-0-0 oc bracing.           REACTIONS         (size)         4= Mechanical, 6= Mechanical Max Horiz           Max Uplift         4=354 (LC 9), 6=-348 (LC 8) Max Grav         4=1622 (LC 1), 6=1861 (LC 1)           FORCES         (lb) - Maximum Compression/Maximum Tension         Top CHORD         1-6=-1444/292, 1-2=-543/92, 2-3=-543/92, 3-4=-1167/289           BOT CHORD         5-6=-204/183, 4-5=-87/66         WEBS         1-5=-291/1129, 2-5=-835/93, 3-5=-291/1129           NOTES         1)         2-ply truss to be connected together with 10d (0.131"x3") nails as follows:         10 | <ul> <li>Plate DOL=1<br/>DOL=1.15); I<br/>Cs=1.00; Ct=</li> <li>Unbalanced a<br/>design.</li> <li>Provide aded</li> <li>Provide aded</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss h<br/>on the bottom</li> <li>3-06-00 tall b<br/>chord and an</li> <li>Refer to girde</li> <li>Provide mediber to<br/>bearing plate</li> <li>and 354 lb</li> <li>This truss is a<br/>International<br/>R802.10.2 ar</li> <li>Graphical pu</li> </ul> | snow loads have been<br>uate drainage to pre-<br>s been designed for<br>id nonconcurrent wit<br>as been designed for<br>n chord in all areas w<br>y 2-00-00 wide will f<br>y other members.<br>er(s) for truss to trus-<br>nanical connection (I<br>capable of withstan<br>uplift at joint 4.<br>designed in accorda<br>Residential Code se<br>ad referenced standar<br>fin representation d<br>tion of the purlin alo | Im DO<br>Fully<br>en con<br>event v<br>a 10.0<br>h any<br>or a livy<br>where<br>it betw<br>s conn<br>by othe<br>ding 3<br>nce wi<br>ctions<br>ard AN<br>oes nc | L=1.15 Plate<br>Exp.; Ce=0.5<br>sidered for th<br>vater ponding<br>p sf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>reen the botto<br>ections.<br>ers) of truss t<br>48 lb uplift at<br>th the 2018<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s | );<br>j.<br>ds.<br>jpsf<br>om<br>joint<br>nd |                      |                               |                          | B), 1=-290, 2=-25<br>=-600 (B) | 8, 7=-258, 8=-258,                 |

- (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
   Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
   II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 309 lb down and 9 lb up at 0-1-12, 298 lb down and 14 lb up at 2-0-12, and 298 lb down and 14 lb up at 4-1-8, and 298 lb down and 14 lb up at 6-1-8 on top chord, and 607 lb down and 140 lb up at 2-1-8, and 607 lb down and 140 lb up at 4-1-8, and 607 lb down and 140 lb up at 6-1-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
  - Vert: 1-3=-60, 4-6=-20 Concentrated Loads (lb)

SEAL 036322 June 9,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type             | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | D1    | Common Supported Gable | 1   | 1   | I74037071<br>Job Reference (optional)           |

Scale = 1:56.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

2x4 SP No.3

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

1 Row at midpt

Max Horiz 25=-218 (LC 12)

Structural wood sheathing directly applied or

7-20

24=20-7-0. 25=20-7-0

14=20-7-0, 15=20-7-0, 16=20-7-0,

18=20-7-0, 19=20-7-0, 20=20-7-0,

21=20-7-0, 22=20-7-0, 23=20-7-0,

14=-40 (LC 11), 15=-118 (LC 15),

16=-52 (LC 15), 18=-74 (LC 15),

19=-60 (LC 15), 21=-61 (LC 14),

22=-74 (LC 14), 23=-50 (LC 14),

24=-125 (LC 14), 25=-72 (LC 10)

14=172 (LC 25), 15=207 (LC 26),

16=161 (LC 26), 18=216 (LC 22),

19=266 (LC 22), 20=225 (LC 15),

21=266 (LC 21), 22=216 (LC 21),

23=160 (LC 1), 24=217 (LC 25),

25=197 (LC 26)

(lb) - Maximum Compression/Maximum

2-25=-164/67, 1-2=0/37, 2-3=-152/139,

12-13=0/37, 12-14=-142/63

24-25=-92/128, 23-24=-92/128

22-23=-92/128, 21-22=-92/128,

20-21=-92/128, 19-20=-92/128,

18-19=-92/128, 16-18=-92/128,

15-16=-92/128, 14-15=-92/128

3-4=-114/107, 4-5=-100/139, 5-6=-113/213,

6-7=-149/278, 7-8=-149/278, 8-9=-113/213,

9-10=-81/137, 10-11=-83/81, 11-12=-112/97,

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

TCDL

BCLL

BCDL

WFBS

WEBS

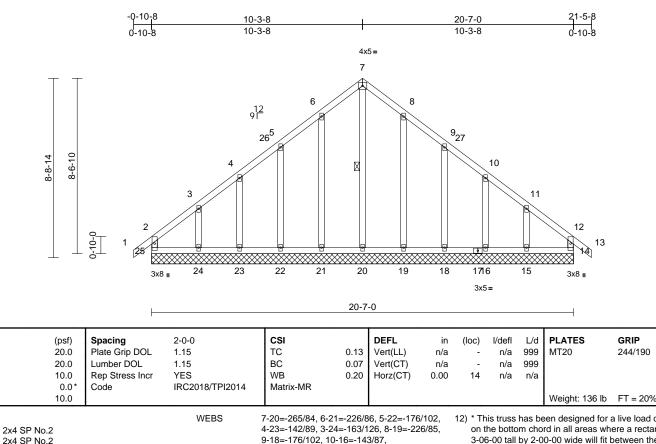
FORCES

TOP CHORD

BOT CHORD

OTHERS

BRACING


TOP CHORD

BOT CHORD

**REACTIONS** (size)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:47 ID:TRcRzWqlpKJpM0feF86sDJz900p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



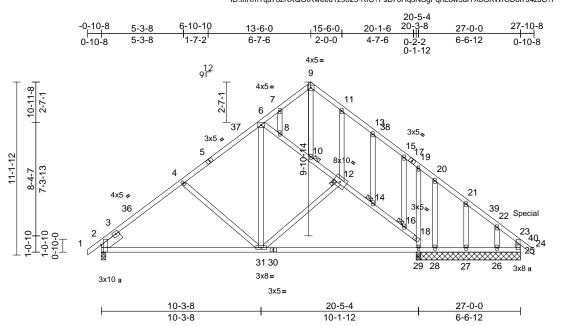
### NOTES

Unbalanced roof live loads have been considered for 1) this design.

11-15=-159/125

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-3-8, Exterior(2N) 2-3-8 to 7-3-8, Corner(3R) 7-3-8 to 13-3-8, Exterior(2N) 13-3-8 to 18-3-8. Corner(3E) 18-3-8 to 21-5-8 zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 25, 40 lb uplift at joint 14, 61 lb uplift at joint 21, 74 lb uplift at joint 22, 50 lb uplift at joint 23, 125 lb uplift at joint 24, 60 lb uplift at joint 19, 74 lb uplift at joint 18, 52 Ib uplift at joint 16 and 118 lb uplift at joint 15.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type              | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-------------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | C1    | Common Structural Gable | 1   | 1   | I74037072<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47 ID:tff/RmTqJ78zRXQ0tRweeu1z9025-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:74.2

| Plate Offsets (X, | , Y): | [2:0-5-10,Edge] |
|-------------------|-------|-----------------|
|-------------------|-------|-----------------|

| Loading<br>TCLL (roof)<br>Snow (Pf)                                                                                                                                                                                                                                                                                                                                  | (psf)<br>20.0<br>20.0                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL            | 2-0-0<br>1.15<br>1.15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC                                                                                                                                                                                  | 0.39<br>0.84                                                | DEFL<br>Vert(LL)<br>Vert(CT)                                     |      | (loc)<br>31-34<br>31-34               | l/defl<br>>999<br>>794                                                                                                                                                                                      | L/d<br>240<br>180                                | PLATES<br>MT20                          | <b>GRIP</b><br>244/190                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|
| TCDL                                                                                                                                                                                                                                                                                                                                                                 | 10.0                                      | Rep Stress Incr                                           | YES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WB                                                                                                                                                                                               | 0.73                                                        | Horz(CT)                                                         | 0.03 | 25                                    | n/a                                                                                                                                                                                                         | n/a                                              | 1                                       |                                                                                          |
| BCLL                                                                                                                                                                                                                                                                                                                                                                 | 0.0*                                      | Code                                                      | IRC201                | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix-MSH                                                                                                                                                                                       |                                                             | , ,                                                              |      |                                       |                                                                                                                                                                                                             |                                                  |                                         |                                                                                          |
| BCDL                                                                                                                                                                                                                                                                                                                                                                 | 10.0                                      |                                                           | _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                             |                                                                  |      |                                       |                                                                                                                                                                                                             |                                                  | Weight: 199 lb                          | FT = 20%                                                                                 |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD                                                                                                                                                                                                                                                                                 | No.2<br>2x4 SP No.3<br>Left 2x6 SP No.2 1 | t* 25-23,19-29:2x4 Sl<br>I-6-0<br>athing directly applied | ₽ W                   | 'EBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-31=-227/889, 29-<br>28-29=-49/333, 27-<br>26-27=-49/333, 25-<br>9-10=-66/132, 7-8=<br>13-14=-93/48, 15-11<br>21-27=-179/96, 22-<br>6-31=-33/457, 4-31:<br>12-31=-166/100, 18<br>18-19=-420/200 | 28=-49<br>26=-49<br>-102/44<br>6=-16/6<br>26=-13<br>=-310/1 | /333,<br>/333<br>I, 11-12=-225<br>52, 20-28=-21<br>1/242,<br>93, |      | , chc<br>10) * TI<br>on<br>3-0<br>chc | ord live lo<br>nis truss<br>the botto<br>6-00 tall<br>ord and a<br>bearings                                                                                                                                 | bad noi<br>has be<br>om cho<br>by 2-0<br>iny oth | een designed for<br>ord in all areas wh | any other live loads.<br>a live load of 20.0psf<br>ere a rectangle<br>between the bottom |
|                                                                                                                                                                                                                                                                                                                                                                      | 5-2-15 oc purlins, et                     |                                                           | N                     | OTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |                                                             |                                                                  |      |                                       |                                                                                                                                                                                                             |                                                  |                                         |                                                                                          |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                            | Rigid ceiling directly<br>bracing.        | applied or 10-0-0 oc                                      | 1)                    | Unbalanced this design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | roof live loads have                                                                                                                                                                             | e been                                                      | considered fo                                                    | r    |                                       |                                                                                                                                                                                                             |                                                  |                                         |                                                                                          |
| JOINTS                                                                                                                                                                                                                                                                                                                                                               | 1 Brace at Jt(s): 10,                     |                                                           | 2)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-16; Vult=130mpt                                                                                                                                                                                |                                                             |                                                                  | Cat  |                                       |                                                                                                                                                                                                             |                                                  | ned in accordanc                        | e with the 2018<br>ions R502.11.1 and                                                    |
| 14, 16, 12<br><b>REACTIONS</b> (size) 2=0-3-8, 25=6-8-8, 26=6-8-8, 27=6-8-8, 28=6-8-8, 29=0-3-8<br>Max Horiz 2=268 (LC 13)<br>Max Uplift 2=-72 (LC 56), 25=-264 (LC 11), 26=-332 (LC 57), 27=-46 (LC 15), 28=-383 (LC 7), 29=-130 (LC 15)<br>Max Grav 2=979 (LC 46), 25=647 (LC 28), 26=154 (LC 11), 27=235 (LC 26), 28=-73 (LC 14), 29=1022 (LC 22)                 |                                           |                                                           |                       | <ul> <li>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.</li> <li>II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 10-3-8, Corner(3R) 10-3-8 to 16-6-0, Exterior(2N) 16-6-0 to 24-10-8, Corner(3E) 24-10-8 to 27-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>3) Truss designed for wind loads in the plane of the truss</li> </ul>                                       |                                                                                                                                                                                                  |                                                             |                                                                  |      |                                       | <ul> <li>R802.10.2 and referenced standard ANSI/TPI 1.</li> <li>14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> </ul> |                                                  |                                         |                                                                                          |
| FORCES                                                                                                                                                                                                                                                                                                                                                               | (lb) - Maximum Com                        | pression/Maximum                                          | ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uds exposed to wind<br>d Industry Gable Er                                                                                                                                                       |                                                             |                                                                  |      |                                       |                                                                                                                                                                                                             | AN'                                              | OR                                      | A IN'S                                                                                   |
| Tension<br>TOP CHORD 1-2=0/32, 2-4=-1138/140, 4-6=-933/139,<br>6-7=-340/78, 7-9=-326/118, 9-11=-280/114,<br>11-13=-291/64, 13-15=-313/37,<br>15-19=-366/31, 19-20=-269/38,<br>20-21=-374/28, 21-22=-381/40,<br>22-23=-499/73, 23-24=-96/130,<br>23-25=-536/245, 6-8=-570/149,<br>8-10=-617/174, 10-12=-538/146,<br>12-14=-628/207, 14-16=-674/234,<br>16-18=-641/224 |                                           |                                                           | ,                     | or consult qualified building designer as per ANSI/TPI 1.<br>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15<br>Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br>Cs=1.00; Ct=1.10<br>Unbalanced snow loads have been considered for this<br>design.<br>This truss has been designed for greater of min roof live<br>load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on<br>overhangs non-concurrent with other live loads.<br>All plates are 2x4 MT20 unless otherwise indicated.<br>Gable studs spaced at 2-0-0 oc. |                                                                                                                                                                                                  |                                                             |                                                                  |      |                                       | SEAL<br>036322                                                                                                                                                                                              |                                                  |                                         |                                                                                          |

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oblage with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)



June 9,2025

| Job         | Truss | Truss Type              | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |  |  |
|-------------|-------|-------------------------|-----|-----|-------------------------------------------------|--|--|
| 25060036-01 | C1    | Common Structural Gable | 1   | 1   | I74037072<br>Job Reference (optional)           |  |  |

- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 204 Ib down and 171 lb up at 27-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 16) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
  - Uniform Loads (lb/ft)
    - Vert: 1-6=-60, 6-9=-60, 9-23=-60, 23-24=-60,
    - 25-32=-20
    - Concentrated Loads (lb) Vert: 40=56 (B)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:47 ID:tffRmTqJ78zRXQOtRweeu1z9025-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Review Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | B2    | Monopitch  | 3   | 1   | I74037073<br>Job Reference (optional)           |

8<sup>12</sup> 3x5 💋 14 4

5-8-8

5-8-8

-q-10<u>-</u>8

0-10-8

8-6-9

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:57.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

WFBS

WEBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

SI IDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:46 ID:tejEXeMFt6iQJc4tKy3CySz91LL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3x5 II 5<sup>6</sup>

> > 8-4-5

11-5-0

5-8-8

Page: 1

GRIP

244/190

FT = 20%

1111111111

3x5 -3 0-6-0 8 9 7 2x4 II 3x6= 3x5 II 11-5-0 5-8-8 11-1-12 H 0-3-4 5-8-8 5-5-4 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (loc) Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.03 8-9 >999 240 MT20 BC Lumber DOL 1 15 0.30 Vert(CT) -0.05 8-9 >999 180 Rep Stress Incr YES WB 0.48 Horz(CT) 0.01 2 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 68 lb 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Left 2x4 SP No.3 -- 1-6-0 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom 6-0-0 oc purlins, except end verticals. chord and any other members. Rigid ceiling directly applied or 10-0-0 oc Bearings are assumed to be: Joint 2 SP No.2 . 7) 8) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 9) 2=0-3-8, 8= Mechanical bearing plate capable of withstanding 128 lb uplift at joint Max Horiz 2=289 (LC 13) Max Uplift 2=-32 (LC 14), 8=-128 (LC 14) 10) One H2.5A Simpson Strong-Tie connectors Max Grav 2=535 (LC 21), 8=620 (LC 21) recommended to connect truss to bearing walls due to (lb) - Maximum Compression/Maximum UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 1-2=0/29, 2-4=-401/114, 4-5=-194/164, 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 2-9=-217/512, 8-9=-102/512, 7-8=0/0 R802.10.2 and referenced standard ANSI/TPI 1. 4-9=0/247, 4-8=-542/194 LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-5-0, Exterior(2E) 8-5-0 to 11-5-0 zone; cantilever left VIIIIIIIIIIIII and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions SEAL shown; Lumber DOL=1.60 plate grip DOL=1.60 036322 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3)

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No 3

bracing.

Tension

(size)

1 Row at midpt

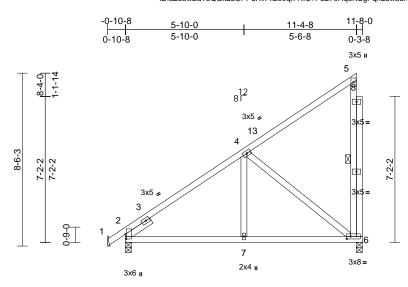
5-6=-15/0, 5-8=-260/71

0.0

5-8

Unbalanced snow loads have been considered for this design.




G mm June 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | B1    | Monopitch  | 3   | 1   | I74037074<br>Job Reference (optional)           |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:46 ID:sZe3wEaT5QGkLuOPPdRvPxz90qn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| Scale = 1:56.7        |                                   |
|-----------------------|-----------------------------------|
| Plate Offsets (X, Y): | [2:0-2-13,0-0-7], [6:0-2-4,0-1-8] |

| Plate Offsets                                                                                   | (X, Y): [2:0-2-13,0-0-7                                                                                                                                                                                                                                                                           | ], [6:0-2-4,0-1-8]                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                   |                                                                                                                           |                                                                                                                                |                                                                                                                                                                  |                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD |                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201       | Plate DOL=1                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH<br>7-16; Pr=20.0 ps<br>.15); Pf=20.0 psf<br>Is=1.0; Rough Cat                         | (Lum DC                                                                                                                        | L=1.15 Plate                                                                                                                                                     | е                                        | (loc)<br>6-7<br>6-7<br>6 | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 79 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS              | 2x4 SP No.3<br>2x4 SP No.3<br>Left 2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                                                                            | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>5-6<br>inical, 2=0-3-8, 6=0-<br>C 11)<br>C 25), 2=-190 (LC 1<br>C 14)<br>C 14), 2=670 (LC 25)                                 | 5)<br>3-8 6)<br>4), 8)                       | Cs=1.00; Ct:<br>Unbalanced<br>design.<br>This truss ha<br>chord live lo:<br>* This truss I<br>on the bottoo<br>3-06-00 tall I<br>chord and at<br>Bearings are<br>SP No.2.<br>Refer to gird<br>Provide mect<br>bearing plate<br>1. | , 0                                                                                                                       | been cor<br>for a 10.<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>Joint 2 \$<br>uss conr<br>n (by oth<br>anding 1 | sidered for t<br>) psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>SP No.2, Joi<br>nections.<br>ers) of truss<br>71 lb uplift a | his<br>ads.<br>Opsf<br>com<br>nt 6<br>to |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |
| Vasd=103<br>II; Exp B;<br>and C-C E<br>to 8-2-12,<br>left and rig<br>exposed;0                  | 5-6=-229/76<br>2-7=-84/485, 6-7=-8<br>4-7=0/242, 4-6=-506<br>CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; Bt<br>Enclosed; MWFRS (er<br>Exterior(2E) -0-9-12 to :<br>Exterior(2E) -0-9-12 to :<br>Exterior(2E) 8-2-12 to<br>ght exposed ; end vertii<br>c-C for members and fi<br>shown; Lumber DOL= | 415/286, 4-5=-197/1<br>4/485<br>//177<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>ivelope) exterior zon<br>2-2-4, Interior (1) 2-2<br>11-2-12 zone; cantil<br>cal left and right<br>orces & MWFRS for | 66,<br>10<br>LC<br>Cat.<br>ie<br>2-4<br>ever | recommende<br>UPLIFT at jt<br>and does no<br>) This truss is<br>International                                                                                                                                                     | ed to connect truss<br>s) 2 and 6. This consider lateral f<br>designed in accor<br>Residential Code<br>nd referenced star | s to bear<br>onnectio<br>orces.<br>dance w<br>sections                                                                         | ng walls due<br>n is for uplift<br>ith the 2018<br>R502.11.1 a                                                                                                   | only                                     |                          | Contraction of the second seco | 2                        | SEA<br>0363                     | L 22<br>EERHAU                     |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job                      |                           | Truss                                            |                                                                                                                                         | Truss Type               |                                                                                                                                  | Qty                              | Ply                               | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH                                                      |
|--------------------------|---------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------|
| 25060036-0               | )1                        | A6                                               |                                                                                                                                         | Attic Supported G        | able                                                                                                                             | 1                                | 1                                 | 174037075                                                                                            |
| Carter Componer          |                           |                                                  | d, NC - 27332,                                                                                                                          |                          |                                                                                                                                  | eb 19 2025 Print:                | 8.730 S Feb 1                     | Job Reference (optional)           9 2025 MiTek Industries, Inc. Fri Jun 06 13:02:46         Page: 1 |
|                          | , i                       | ,.                                               |                                                                                                                                         |                          | PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f                                                                                          |                                  |                                   |                                                                                                      |
|                          |                           | -0-10-8                                          | 6-11-8 7                                                                                                                                | -0-13 11-6-4 13-4        | 15-2-8<br>-12                                                                                                                    | 24-2-8                           | 26-0                              | 27-10-12<br>)-4 _ 32-4-3 32-5-8 39-5-0 40-3-8                                                        |
|                          |                           | 0-10-8                                           | 6-11-8                                                                                                                                  | )-1-5 4-5-7 1-1          | )-8                                                                                                                              | 9-0-0                            | 1-9-                              | 12 4-5-7 0-1-5 6-11-8 0-10-8<br>1-10-8                                                               |
|                          |                           |                                                  |                                                                                                                                         |                          | 1-9-12 2x4 II                                                                                                                    |                                  | 4x8=                              | 1-10-0                                                                                               |
|                          |                           |                                                  |                                                                                                                                         |                          | 4x8=                                                                                                                             | 2x4 II                           | 2x4 II                            |                                                                                                      |
|                          |                           |                                                  |                                                                                                                                         | 4x5 ı                    | ·                                                                                                                                |                                  | <sup>(4</sup> <b>ii</b><br>5 1617 | 4x5 II                                                                                               |
| n- <del>1</del>          | -2-10-11<br>-6<br>1-11-9  |                                                  |                                                                                                                                         | 12<br>8F 2x4 II          | 0                                                                                                                                |                                  |                                   | 5x10 ∕<br>∕ 18                                                                                       |
| 10-1                     | - <u>-</u>                |                                                  |                                                                                                                                         | 2x4 II 9                 |                                                                                                                                  | 2 51 56                          |                                   | 2x4 II                                                                                               |
|                          | - <u>+</u>                |                                                  | 2x4                                                                                                                                     | 8x10 - 8                 | 53 52<br>3x8 II                                                                                                                  | 2 51 56<br>3x8 ii                | 5 57<br>3x8 II                    | 20 2x4 II 8x10                                                                                       |
| 4                        |                           |                                                  |                                                                                                                                         | 67                       |                                                                                                                                  |                                  | (8 11                             | 21,22                                                                                                |
| 11-3-4                   | 2 2                       |                                                  | 2x4    5                                                                                                                                |                          |                                                                                                                                  |                                  |                                   | 22 2x4 II<br>23 2x4 II                                                                               |
| -                        | <u>7-11-12</u><br>7-11-12 |                                                  | 4                                                                                                                                       | 55                       |                                                                                                                                  |                                  |                                   |                                                                                                      |
|                          | ř ř                       |                                                  | 67                                                                                                                                      | 3x8 II                   |                                                                                                                                  |                                  |                                   | 3x8 a 800 25                                                                                         |
|                          | ọ_                        | 1 <sup>2</sup>                                   |                                                                                                                                         | 54                       |                                                                                                                                  |                                  |                                   | 58 26 27                                                                                             |
|                          |                           |                                                  |                                                                                                                                         |                          |                                                                                                                                  |                                  |                                   |                                                                                                      |
|                          |                           | 5.                                               | 50 49 48<br>8=                                                                                                                          | 4746 45 44<br>5x6=       | 43 4421 40<br>6x8=                                                                                                               | ) 39 38                          | 3 3376 5<br>6x8=                  | 35 34 33 3231 30 29 28<br>5x6= 5x8=                                                                  |
|                          |                           | 1                                                | 7-0-13                                                                                                                                  | 11-6-4                   | 0.0-                                                                                                                             | 27-10-12                         | 0.0-                              | , 32-4-3 , 39-5-0 ,                                                                                  |
| Scale = 1:80.6           |                           |                                                  | 7-0-13                                                                                                                                  | 4-5-7                    |                                                                                                                                  | 16-4-8                           |                                   | 4-5-7 7-0-13                                                                                         |
| Plate Offsets ()         | X, Y): [6:0-              | 5-0,0-4-8],                                      | [11:0-4-0,0-2-13], [1                                                                                                                   | 7:0-4-0,0-2-13], [22:0-  | 5-0,0-4-8]                                                                                                                       |                                  |                                   |                                                                                                      |
| Loading                  |                           | (psf)                                            | Spacing                                                                                                                                 | 2-0-0                    | CSI                                                                                                                              | DE                               | FL                                | in (loc) l/defl L/d PLATES GRIP                                                                      |
| TCLL (roof)<br>Snow (Pf) |                           | 20.0<br>20.0                                     | Plate Grip DOL<br>Lumber DOL                                                                                                            | 1.15<br>1.15             | TC<br>BC                                                                                                                         |                                  |                                   | n/a - n/a 999 MT20 244/190<br>n/a - n/a 999                                                          |
| TCDL                     |                           | 10.0                                             | Rep Stress Incr                                                                                                                         | YES                      | WB                                                                                                                               |                                  | . ,                               | 00 26 n/a n/a                                                                                        |
| BCLL<br>BCDL             |                           | 0.0*<br>10.0                                     | Code                                                                                                                                    | IRC2018/TPI2014          | Matrix-MSH                                                                                                                       |                                  |                                   | Weight: 494 lb FT = 20%                                                                              |
| LUMBER                   |                           |                                                  |                                                                                                                                         | (                        | Max Grav 2=185                                                                                                                   | (LC 54), 26=1                    | 66 (LC 42).                       | WEBS 6-55=-32/61, 54-55=-32/59, 44-54=-34/63,                                                        |
| TOP CHORD                | 2x6 SP 24<br>SP No.2      | 00F 2.0E                                         | *Except* 9-10,19-18                                                                                                                     | 2x6                      | 28=15                                                                                                                            | 3 (LC 27), 29=<br>0 (LC 27), 31= | 176 (LC 27),                      | 9-44=-166/59, 19-34=-166/54, 34-58=-44/70, 58-59=-42/66, 22-59=-43/68, 10-53=-53/97,                 |
| BOT CHORD                | 2x10 SP 2                 | 400F 2.0E                                        | E                                                                                                                                       |                          | 32=13                                                                                                                            | 3 (LC 42), 33=                   | 213 (LC 46),                      | 52-53=-53/97, 51-52=-53/97, 51-56=-53/97,                                                            |
| WEBS<br>OTHERS           | 2x4 SP No<br>2x4 SP No    |                                                  | t* 10-18:2x4 SP No.:                                                                                                                    | 2                        |                                                                                                                                  | 2 (LC 54), 35=<br>4 (LC 43), 38= |                                   | 56-57=-53/97, 18-57=-53/97, 6-47=-65/6,<br>22-31=-65/6, 14-51=-191/53, 39-51=-193/55,                |
| BRACING                  |                           |                                                  |                                                                                                                                         |                          |                                                                                                                                  | 3 (LC 41), 40=<br>4 (LC 45), 43= | ( ),                              | 13-52=-187/51, 40-52=-185/49,<br>12-53=-124/36, 42-53=-125/36,                                       |
| TOP CHORD                | 6-0-0 oc p                | ourlins, exc                                     |                                                                                                                                         | a or                     | 44=22                                                                                                                            | 1 (LC 52), 45=                   | 213 (LC 44),                      | 10-43=-184/46, 8-54=-176/77,                                                                         |
| BOT CHORD                |                           | · ·                                              | -0 max.): 11-17.<br>applied or 10-0-0 oc                                                                                                |                          | 48=13                                                                                                                            | 8 (LC 42), 47=<br>2 (LC 26), 49= |                                   | 45-54=-175/72, 7-55=-106/30,<br>46-55=-104/32, 5-48=-97/50, 4-49=-140/89,                            |
| WEBS                     | bracing.<br>1 Row at i    |                                                  | 39-51, 40-52, 42-53                                                                                                                     | 500050                   | 50=16<br>(lb) - Maximum C                                                                                                        | 2 (LC 26)<br>ompression/M        | aximum                            | 3-50=-103/66, 15-56=-187/51,<br>38-56=-185/49, 16-57=-124/17,                                        |
| WEBS                     | T NOW at I                | •                                                | 10-43, 38-56, 36-57                                                                                                                     | 1                        | Tension<br>1-2=0/29, 2-3=-18                                                                                                     |                                  |                                   | 36-57=-125/18, 18-35=-184/35,<br>20-58=-176/77, 33-58=-175/71,                                       |
| JOINTS                   | 1 Brace at                |                                                  | 18-35                                                                                                                                   | TOP CHORD                | 4-5=-173/119, 5-                                                                                                                 | 7=-150/118, 7-                   |                                   | 21-59=-106/27, 32-59=-104/30,                                                                        |
|                          | 52, 53, 54<br>58          | , 56, 57,                                        |                                                                                                                                         |                          | 8-9=-150/160, 9-<br>10-11=-109/104,                                                                                              |                                  | 12-13=-76/9                       | 23-30=-97/49, 24-29=-140/90, 25-28=-103/65<br>7, NOTES                                               |
| REACTIONS                |                           |                                                  | 26=39-5-0, 28=39-5                                                                                                                      |                          | 13-14=-76/97, 14<br>16-17=-76/97, 17                                                                                             |                                  | 5-16=-76/97,                      | <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> </ol>             |
|                          |                           |                                                  | ), 30=39-5-0, 31=39-<br>), 33=39-5-0, 34=39-                                                                                            | ,                        | 18-19=-132/141,                                                                                                                  | 19-20=-130/10                    |                                   | uno ucogn.                                                                                           |
|                          |                           |                                                  | ), 36=39-5-0, 38=39-<br>), 40=39-5-0, 42=39-                                                                                            |                          | 20-21=-120/78, 2<br>24-25=-129/50, 2                                                                                             |                                  |                                   | 7.                                                                                                   |
|                          |                           | 43=39-5-0                                        | ), 44=39-5-0, 45=39-                                                                                                                    | 5-0, BOT CHORD           | 2-50=-103/179, 4                                                                                                                 | 9-50=-103/179                    | 9,                                | ALL ALL                                                                                              |
|                          |                           | 49=39-5-0                                        | ), 47=39-5-0, 48=39-<br>), 50=39-5-0                                                                                                    | J-0,                     | 48-49=-103/179,<br>46-47=-103/179,                                                                                               | 47-48=-103/17                    | 79,                               | The state                                                                                            |
|                          | Max Horiz<br>Max Uplift   |                                                  | C 13)<br>C 10), 26=-5 (LC 11),                                                                                                          |                          | 44-45=-103/179,                                                                                                                  | 43-44=-92/198                    | 3,                                | E 10 TO TO THE                                                                                       |
|                          | -1                        | 28=-60 (L                                        | C 15), 29=-62 (LC 14)<br>C 15), 31=-1 (LC 14)                                                                                           |                          | 42-43=-92/198, 4<br>39-40=-92/198, 3                                                                                             |                                  |                                   | E SEAL E                                                                                             |
|                          |                           | 32=-10 (L                                        | C 15), 33=-48 (LC 1                                                                                                                     | 5),                      | 39-40=-92/198, 38-39=-92/198,<br>36-38=-92/198, 35-36=-92/198,<br>34-35=-89/196, 33-34=-60/150,<br>32-33=-60/150, 31-32=-60/150, |                                  |                                   | 036322                                                                                               |
|                          |                           | 34=-83 (l                                        | C 15), 35=-9 (LC 15)                                                                                                                    | ,                        |                                                                                                                                  |                                  |                                   |                                                                                                      |
|                          |                           |                                                  | C 11), 39=-31 (LC 1)                                                                                                                    |                          |                                                                                                                                  |                                  |                                   | A LAND ALL S                                                                                         |
|                          |                           | 38=-25 (L<br>40=-24 (L                           | C 11), 39=-31 (LC 1)<br>C 11), 42=-13 (LC 1)                                                                                            | D),<br>1),               | 30-31=-60/150, 2<br>28-29=-60/150, 2                                                                                             | 9-30=-60/150,                    |                                   | NGINEER                                                                                              |
|                          |                           | 38=-25 (L<br>40=-24 (L<br>43=-20 (L<br>45=-50 (L | C 11), 39=-31 (LC 1)<br>C 11), 42=-13 (LC 1)<br>C 14), 44=-82 (LC 1)<br>C 14), 46=-12 (LC 1)                                            | D),<br>1),<br>4),<br>4), | 30-31=-60/150, 2                                                                                                                 | 9-30=-60/150,                    |                                   | A GILBERT                                                                                            |
|                          |                           | 38=-25 (L<br>40=-24 (L<br>43=-20 (L<br>45=-50 (L | C 11), 39=-31 (LC 10<br>C 11), 42=-13 (LC 1<br>C 14), 44=-82 (LC 1<br>C 14), 46=-12 (LC 1<br>C 14), 46=-12 (LC 1<br>C 14), 49=-61 (LC 1 | D),<br>1),<br>4),<br>4), | 30-31=-60/150, 2                                                                                                                 | 9-30=-60/150,                    |                                   | SEAL<br>036322<br>A. GILBERT                                                                         |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

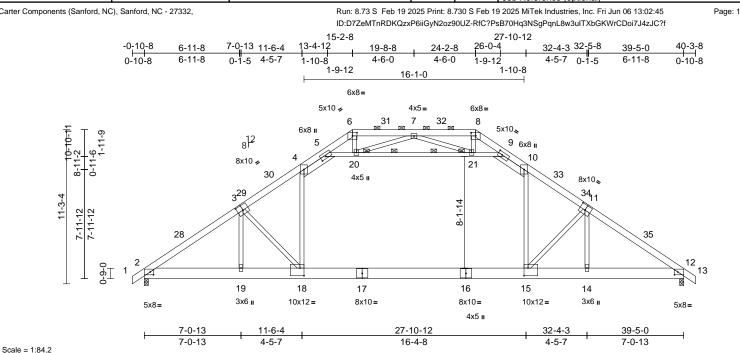


| Job         | Truss | Truss Type            | Qty Ply |   | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-----------------------|---------|---|-------------------------------------------------|
| 25060036-01 | A6    | Attic Supported Gable | 1       | 1 | I74037075<br>Job Reference (optional)           |

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-0-13, Interior (1) 3-0-13 to 9-7-10, Exterior(2R) 9-7-10 to 29-8-8, Interior (1) 29-8-8 to 36-4-3, Exterior(2E) 36-4-3 to 40-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 3x6 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP 2400F 2.0E .
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 2, 5 lb uplift at joint 26, 82 lb uplift at joint 44, 83 lb uplift at joint 39, 24 lb uplift at joint 41, 18 uplift at joint 42, 10 lb uplift at joint 43, 50 lb uplift at joint 45, 12 lb uplift at joint 46, 30 lb uplift at joint 48, 61 lb uplift at joint 49, 63 lb uplift at joint 50, 25 lb uplift at joint 38, 9 lb uplift at joint 35, 48 lb uplift at joint 33, 10 lb uplift at joint 32, 28 lb uplift at joint 33, 10 lb uplift at joint 35, 26 lb uplift at joint 36, 9 lb uplift at joint 35, 48 lb uplift at joint 33, 10 lb uplift at joint 32, 28 lb uplift at joint 30, 62 lb uplift at joint 29, 60 lb uplift at joint 28 and 55 lb uplift at joint 2.
- 15) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 60.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



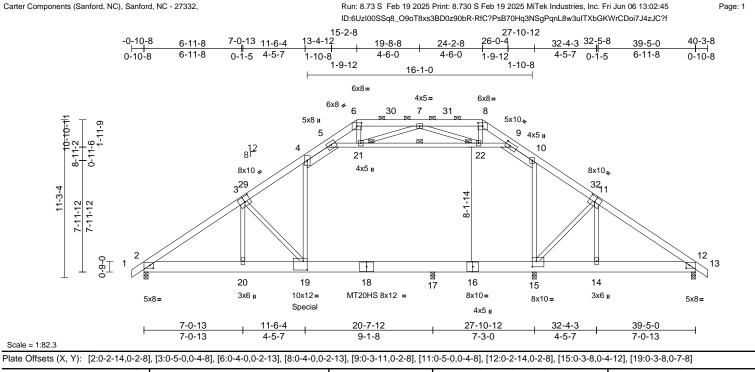
#### 818 Soundside Road Edenton, NC 27932

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:46 ID:ER4UXzbbdJM4\_xevB0ZOMXz90Lm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A5    | Attic      | 2   | 1   | I74037076<br>Job Reference (optional)           |



| -                    | [2:0-2-14,0-2-8], [3:0-5-0,0-4-8], [5:0-4-11,0-1-11], [6:0-4-0,0-2-13], [8:0-4-0,0-2-13], [9:0-3-11,0-2-8], [11:0-5-0,0-4-8], [12:0-2-14,0-2-8], [15:0-3-8,0-6-12], |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plate Offsets (X, Y) | : [18:0-3-8,0-6-12]                                                                                                                                                 |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7): [10:0 0 0;0 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2j                                                                                                                                                                                                                                                                                                                         |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |                                        |                                             |                                      |                                           |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                   | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                             | 0.54<br>0.45<br>0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Attic                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.56<br>0.04                                                                                     | (loc)<br>15-18<br>15-18<br>12<br>15-18 | l/defl<br>>999<br>>843<br>n/a<br>>824       | L/d<br>240<br>180<br>n/a<br>360      | PLATES<br>MT20<br>Weight: 368 lb          | <b>GRIP</b><br>244/190<br>FT = 20% |
| BOT CHORD 22<br>WEBS 22<br>BRACING 24<br>TOP CHORD 8<br>BOT CHORD 8<br>WEBS 22<br>JOINTS 1<br>27<br>REACTIONS (siz<br>Ma<br>bot CHORD 1<br>5-<br>TOP CHORD 1-<br>5-<br>8<br>BOT CHORD 1-<br>5-<br>8<br>BOT CHORD 1-<br>5-<br>8<br>BOT CHORD 1-<br>5-<br>8<br>10<br>BOT CHORD 1-<br>5-<br>8<br>10<br>BOT CHORD 1-<br>5-<br>8<br>10<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>8<br>12<br>8<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | 0.2<br>(10 SP 2400F 2.0E<br>(4 SP No.3 *Except<br>tructural wood shea<br>-9-0 oc purlins, exc<br>-0-0 oc purlins, exc<br>-0-0 oc purlins (6-0-<br>igid ceiling directly<br>racing.<br>Rows at 1/3 pts<br>Brace at Jt(s): 20,<br>1<br>(2) 2=0-3-8, 1<br>(2) 2=0-17, 1<br>(2 | t* 5-9:2x4 SP No.2<br>athing directly applied<br>ept<br>-0 max.): 6-8.<br>applied or 10-0-0 oc<br>20-21<br>(2=0-3-8<br>C 13)<br>.C 48), 12=2248 (LC<br>pression/Maximum<br>/0, 4-5=-2786/56,<br>535/388, 7-8=-535/38<br>-2786/56,<br>3=0/29<br>9=-9/3094,<br>12-14=0/31<br>i=0/1452, 10-15=0/14<br>0=-3168/0,<br>=-3168/0, | d or<br>3)<br>48)<br>5)<br>6)<br>7)<br>38,<br>8)<br>092<br>152,<br>9)<br>226,<br>10<br>11 | Vasd=103mp<br>II; Exp B; Enn<br>and C-C Extt<br>3-0-13 to 9-7<br>(1) 29-9-6 to<br>cantilever lef<br>right exposed<br>for reactions<br>DOL=1.60<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15; I<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>chord and ar<br>Ceiling dead<br>5-20, 20-21,<br>(s).4-18, 10-')<br>Bottom chord<br>chord dead I<br>(s).21, 20, 20-21,<br>(s).4-18, 10-')<br>Bottom chord<br>chord dead I<br>(s).21, 20, 20-21,<br>(s).21, 20, 20, 20, 21,<br>(s).21, 20, 20, 21, | snow loads have to<br>s been designed for<br>performation 1.00 times fit<br>on-concurrent with<br>quate drainage to<br>p s been designed<br>fad nonconcurrent<br>has been designed<br>n chord in all areas<br>by 2-00-00 wide with<br>the members.<br>load (5.0 psf) on r<br>9-21; Wall dead to | BCDL=6<br>envelope<br>o 3-0-13<br>o 3-0-13<br>o 3-0-13<br>o 3-0-13<br>o 3-0-13<br>o 3-0-14<br>c (roof LL<br>(Lum DC)<br>B; Fully<br>been cor<br>or great<br>at roof la<br>or ther line<br>or a 10.0<br>with any<br>for a liv<br>s where<br>ll fit betw<br>nember<br>o date c line<br>o the s line<br>o ther line<br>o the s line o the s line<br>o the s line o t | .0psf; h= $25ft$<br>e) exterior zor<br>Interior (1)<br>29:9-6, Interior<br>3 to 40-3-8 zr<br>ertical left and<br>ces & MWFF<br>0 plate grip<br>:: Lum DOL=<br>U=1.15 Plate<br>Exp.; Ce=0.5<br>asidered for th<br>er of min roof<br>pad of 20.0 pr<br>e loads.<br>water ponding<br>0 psf bottom<br>other live load<br>a rectangle<br>veen the botth<br>(s). 4-5, 9-10,<br>psf) on member<br>dditional botth<br>o room. 15-1<br>OF 2.0E.<br>th the 2018<br>R502.11.1 a | ne<br>rior<br>one;<br>id<br>RS<br>1.15<br>2;<br>his<br>f live<br>sf on<br>g.<br>ds.<br>Opsf<br>om | or ti<br>boti<br>14) Attii<br>LOAD (   | he orien<br>iom choic<br>c room c<br>CASE(S | tation d<br>rd.<br>checkee<br>) Star | of the purlin along<br>d for L/360 deflec | ROLLY                              |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



June 9,2025

| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A4-2  | Attic Girder | 1   | 2   | I74037077<br>Job Reference (optional)           |



|                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                          |                                                                                                                                                                               |                            |                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading                                                                                                      | (psf)                                                                                                                                                                                                                                 | Spacing                                                                                                                                                       | 2-0-0                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                | csi                                                            |                                                                                                                                          | DEFL                                                                                                                                                                          | in                         | (loc)                                                                                                                                   | l/defl                                                                                                                                                                                                             | L/d                                                                                                                                                                      | PLATES                                                                                                                                                                                                                                                                                                             | GRIP                                                                                                                                                                                                                                                                                  |
| TCLL (roof)                                                                                                  | 20.0                                                                                                                                                                                                                                  | Plate Grip DOL                                                                                                                                                | 1.15                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                | тс                                                             | 0.67                                                                                                                                     | Vert(LL)                                                                                                                                                                      | -0.27                      | 17-19                                                                                                                                   | >928                                                                                                                                                                                                               | 240                                                                                                                                                                      | MT20                                                                                                                                                                                                                                                                                                               | 244/190                                                                                                                                                                                                                                                                               |
| Snow (Pf)                                                                                                    | 20.0                                                                                                                                                                                                                                  | Lumber DOL                                                                                                                                                    | 1.15                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                | BC                                                             | 0.57                                                                                                                                     | Vert(CT)                                                                                                                                                                      | -0.44                      |                                                                                                                                         | >566                                                                                                                                                                                                               | 180                                                                                                                                                                      | MT20HS                                                                                                                                                                                                                                                                                                             | 187/143                                                                                                                                                                                                                                                                               |
| TCDL                                                                                                         | 10.0                                                                                                                                                                                                                                  | Rep Stress Incr                                                                                                                                               | NO                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                | WB                                                             | 0.61                                                                                                                                     | · · ·                                                                                                                                                                         | 0.04                       | 12                                                                                                                                      | n/a                                                                                                                                                                                                                | n/a                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |
| BCLL                                                                                                         | 0.0*                                                                                                                                                                                                                                  | Code                                                                                                                                                          | IRC201                                                                                                                                                                                                                                                                                                                                              | 8/TPI2014                                                                                                                                                                                                                                                                      | Matrix-MSH                                                     |                                                                                                                                          | Attic                                                                                                                                                                         |                            | 17-19                                                                                                                                   | >811                                                                                                                                                                                                               | 360                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |
| BCDL                                                                                                         | 10.0                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                          |                                                                                                                                                                               |                            |                                                                                                                                         |                                                                                                                                                                                                                    | Weight: 736 lb                                                                                                                                                           | FT = 20%                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>JOINTS<br>REACTIONS | 2x6 SP 2400F 2.0E<br>No.2<br>2x10 SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>1 Brace at Jt(s): 21,<br>22 | t* 5-9:2x4 SP No.2<br>athing directly applie<br>ept<br>-0 max.): 6-8.<br>applied or 10-0-0 oc<br>21-22<br>12=0-3-8, 15=0-3-8,<br>C 10)<br>: 12), 15=-2843 (LC | 6 SP<br>d or 2)<br>:<br>3)<br>4)                                                                                                                                                                                                                                                                                                                    | (0.131"x3") r<br>Top chords of<br>staggered at<br>Bottom chord<br>staggered at<br>Web connect<br>All loads are<br>except if nott<br>CASE(S) see<br>provided to of<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=103mp<br>II; Exp B; En<br>cantilever lef | ds connected as fo                                             | ws: 2x6 ·<br>ollows: 2<br>4 - 1 row<br>ly applie<br>back (B) i<br>onnection<br>is noted<br>ve been of<br>BCDL=6<br>envelope<br>ed; end v | 2 rows<br>x10 - 2 rows<br>at 0-9-0 oc.<br>d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>.0psf; h=25ft<br>exterior zor | or<br>;; Cat.<br>ne;<br>nd | 5-2<br>(s)<br>13) Bo<br>cha<br>15:<br>14) All<br>15) Pra<br>be<br>joir<br>16) Ora<br>UF<br>doa<br>17) Th<br>Int<br>R8<br>18) Loo<br>dei | 1, 21-22<br>4-19, 10<br>ttom cho<br>ord dead<br>17<br>bearings<br>ovide me<br>aring pla<br>tt 15.<br>e H2.5A<br>commenc<br>LIFT at j<br>es not cc<br>is truss is<br>ernationa<br>02.10.2 ;<br>ad case(<br>signer m | y, 9-22;<br>-15<br>rd live<br>load (!<br>s are as<br>chanic<br>te capa<br>Simps<br>ded to (<br>t(s) 2.<br>onsider<br>s desig<br>al Resi<br>and ref<br>s) 1, 3<br>ust rev | (5.0 psf) on merr<br>Wall dead load<br>load (40.0 psf) ar<br>5.0 psf) applied o<br>ssumed to be SP<br>al connection (by<br>able of withstandi<br>con Strong-Tie co<br>connect truss to b<br>This connection i<br>lateral forces.<br>Ined in accordanc<br>dential Code sect<br>ferenced standard<br>has/have been m | aber(s). 4-5, 9-10,<br>(5.0psf) on member<br>and additional bottom<br>inly to room. 17-19,<br>2400F 2.0E .<br>others) of truss to<br>ing 2843 lb uplift at<br>innectors<br>bearing walls due to<br>is for uplift only and<br>be with the 2018<br>tions R502.11.1 and<br>d ANSI/TPI 1. |
| FORCES                                                                                                       | 15=95 (LC<br>(Ib) - Maximum Com                                                                                                                                                                                                       | C 9), 17=4435 (LC 19<br>pression/Maximum                                                                                                                      | 9) 5)                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                | 7-16; Pr=20.0 ps<br>.15); Pf=20.0 psf                          |                                                                                                                                          | f LL: Lum DOL=1.15                                                                                                                                                            |                            |                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |
|                                                                                                              | Tension                                                                                                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                          |                                                                                                                                                                               |                            |                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                          | UNIT CA                                                                                                                                                                                                                                                                                                            | D'III                                                                                                                                                                                                                                                                                 |
| TOP CHORD                                                                                                    | 1-2=0/29, 2-4=-6491<br>5-6=-649/332, 6-7=-<br>8-9=-402/653, 9-10=<br>10-12=-5852/48, 12-                                                                                                                                              | 349/485, 7-8=0/1171<br>3874/91,<br>-13=0/29                                                                                                                   | <ul> <li>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br/>Cs=1.00; Ct=1.10</li> <li>Ourbalanced snow loads have been considered for this design.</li> <li>This truss has been designed for greater of min roof live</li> </ul>                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                          |                                                                                                                                                                               |                            |                                                                                                                                         | 2                                                                                                                                                                                                                  | in                                                                                                                                                                       | OPTH CA                                                                                                                                                                                                                                                                                                            | Roman                                                                                                                                                                                                                                                                                 |
| BOTCHORD                                                                                                     | 2-20=-77/5551, 19-2<br>17-19=0/4398, 15-17<br>12-14=0/4837                                                                                                                                                                            |                                                                                                                                                               | .836,<br>8)                                                                                                                                                                                                                                                                                                                                         | overhangs n                                                                                                                                                                                                                                                                    | psf or 1.00 times f<br>on-concurrent with<br>quate drainage to | h other liv                                                                                                                              | /e loads.                                                                                                                                                                     |                            |                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                          | SEA                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                     |
| WEBS<br>NOTES                                                                                                | 4-19=0/3016, 10-15=<br>21-22=-4709/0, 9-22<br>3-20=-116/814, 3-19<br>11-15=-778/128, 11-<br>8-22=-7/840, 7-21=-                                                                                                                       | 2=-5573/36,<br>=-1697/282,<br>14=0/284, 6-21=0/5                                                                                                              | 1, 5-21=-4851/0,       9)       All plates are MT20 plates unless otherwise indicated.       036322         36,       10)       This truss has been designed for a 10.0 psf bottom       chord live load nonconcurrent with any other live loads.         44, 6-21=0/571,       11)       * This truss has been designed for a live load of 20.0psf |                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                          |                                                                                                                                                                               |                            |                                                                                                                                         | EEP. KIN                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |

June 9,2025

# Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



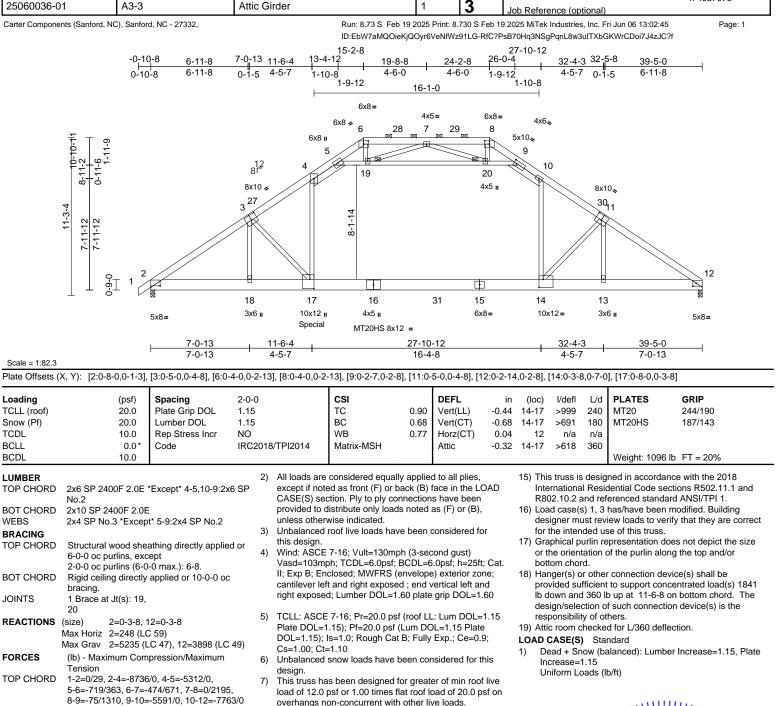
| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A4-2  | Attic Girder | 1   | 2   | I74037077<br>Job Reference (optional)           |

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1602 lb down and 366 lb up at 11-6-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

# 22) Attic room checked for L/360 deflection.

# LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
  - Uniform Loads (lb/ft) Vert: 1-4=-60, 4-5=-70, 5-6=-60, 6-8=-60, 8-9=-60, 9-10=-70, 10-13=-60, 19-23=-20, 17-19=-130 (F=-100), 15-17=-30, 15-26=-20, 5-21=-10,
  - 21-22=-10, 9-22=-10
  - Drag: 4-19=-10, 10-15=-10
  - Concentrated Loads (lb)
  - Vert: 19=-1602 (F)
- Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
  - Vert: 1-4=-50, 4-5=-60, 5-6=-50, 6-8=-50, 8-9=-50, 9-10=-60, 10-13=-50, 19-23=-20, 17-19=-415 (F=-325), 15-17=-90, 15-26=-20, 5-21=-10, 21-22=-10, 9-22=-10 Drag: 4-19=-10, 10-15=-10 Concentrated Loads (lb)
  - Vert: 19=-1113 (F)


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:45 ID:6UzI00SSq8\_O9oT8xs3BD0z90bR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A3-3  | Attic Girder | 1   | 3   | Job Reference (optional)                        |



Provide adequate drainage to prevent water ponding.

All plates are MT20 plates unless otherwise indicated.

chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom

5-19, 19-20, 9-20; Wall dead load (5.0psf) on member

13) Bottom chord live load (40.0 psf) and additional bottom

14) All bearings are assumed to be SP 2400F 2.0E .

chord dead load (5.0 psf) applied only to room. 14-17

11) \* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle

12) Ceiling dead load (5.0 psf) on member(s). 4-5, 9-10,

chord and any other members.

10) This truss has been designed for a 10.0 psf bottom

2-18=0/7446, 17-18=0/7446, 14-17=0/6346, 13-14=0/4996, 12-13=0/4985 WEBS 4-17=0/5142, 10-14=0/3556, 5-19=-7012/0, 19-20=-7019/0, 9-20=-8604/0, 3-18=-867/786, 3-17=-1831/523, 11-14=-67/2406, 11-13=-3021/0, 6-19=0/639,

8-20=0/1308, 7-19=-377/441, 7-20=-1823/139 NOTES 3-ply truss to be connected together with 10d

Loading

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER

WEBS

JOINTS

FORCES

BOT CHORD

Continued on page 2

BRACING

1) (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc

minin June 9,2025



G

SEAL

036322

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

(s).4-17. 10-14

8)

9)

818 Soundside Road Edenton, NC 27932

 $\cap$ 

Web connected as follows: 2x4 - 1 row at 0-7-0 oc.

| Job         | Truss | Truss Type   | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|--------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A3-3  | Attic Girder | 1   | 3   | I74037078<br>Job Reference (optional)           |

Vert: 1-4=-60, 4-5=-70, 5-6=-60, 6-8=-60, 8-9=-60, 9-10=-70, 10-12=-60, 17-21=-20, 17-31=-130 (F=-100), 14-31=-30, 14-24=-20, 5-19=-10, 19-20=-10, 9-20=-10 Drag: 4-17=-10, 10-14=-10 Concentrated Loads (lb) Vert: 17=-1841 (B) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor:

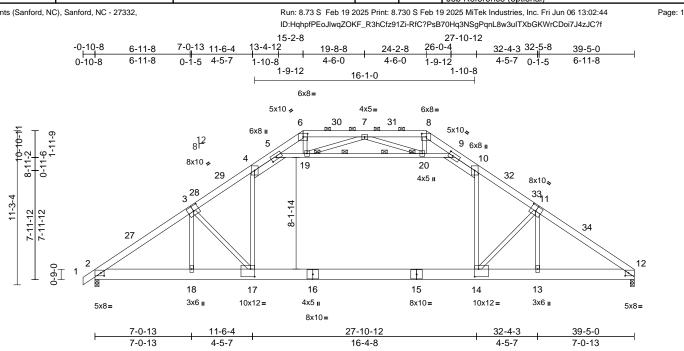
Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-50, 4-5=-60, 5-6=-50, 6-8=-50, 8-9=-50, 9-10=-60, 10-12=-50, 17-21=-20, 17-31=-415 (F=-325), 14-31=-90, 14-24=-20, 5-19=-10, 19-20=-10, 9-20=-10

Drag: 4-17=-10, 10-14=-10 Concentrated Loads (lb)

Vert: 17=-1291 (B)

3)


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 13:02:45 ID:EbW7aMQOieKjQOyr6VeNfWz91LG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

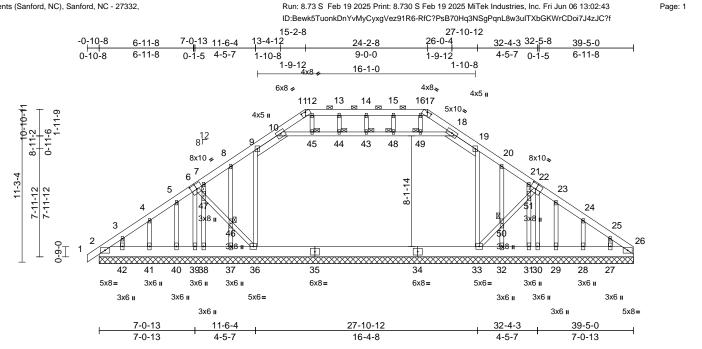


| Job         | Truss | Truss Type | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A2    | Attic      | 12  | 1   | I74037079<br>Job Reference (optional)           |



|                      | [2:0-2-14,0-2-8], [3:0-5-0,0-4-8], [5:0-4-11,0-1-11], [6:0-4-0,0-2-13], [8:0-4-0,0-2-13], [9:0-3-11,0-2-8], [11:0-5-0,0-4-8], [12:0-2-14,0-2-8], [14:0-3-8,0-6-12], |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plate Offsets (X, Y) | : [17:0-3-8,0-6-12]                                                                                                                                                 |

|                                                                       | ,, , ,): [11:0 0 0,0 0 1                                                                                                                       |                                                                          |                          |                                                                                                                                         |                                                                                                                                                                            |                                                                       |                                                                                                        |                         |                                 |         |               |                                                    |                       |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|---------|---------------|----------------------------------------------------|-----------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code       | 2)                       |                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                        |                                                                       |                                                                                                        | 0.04<br>-0.24           | 14-17<br>12<br>14-17<br>13) Gra |         |               |                                                    | s not depict the size |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD                | 2x6 SP 2400F 2.0E<br>No.2<br>2x10 SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>Structural wood she<br>4-8-15 oc purlins, ex<br>2-0-0 oc purlins (6-0 | t* 5-9:2x4 SP No.2<br>athing directly applie                             |                          | II; Exp B; En<br>and C-C Ext<br>3-0-13 to 9-7<br>(1) 29-9-6 to<br>zone; cantile<br>and right exp<br>MWFRS for                           | ph; TCDL=6.0psf;<br>closed; MWFRS (<br>erior(2E) -0-10-8 t<br>7-10, Exterior(2R)<br>35-5-11, Exterior(<br>ver left and right e<br>cossed;C-C for mer<br>reactions shown; I | envelope<br>o 3-0-13<br>9-7-10 to<br>(2E) 35-5<br>exposed<br>mbers ar | e) exterior zot<br>, Interior (1)<br>5 29-9-6, Inte<br>5-11 to 39-5-0<br>; end vertical<br>ad forces & | ne<br>rior<br>)<br>left | bot<br>14) Atti                 | tom cho | rd.<br>checke | of the purlin along<br>d for L/360 deflec<br>ndard | •                     |
| BOT CHORD<br>WEBS<br>JOINTS                                           | Rigid ceiling directly<br>bracing.<br>2 Rows at 1/3 pts<br>1 Brace at Jt(s): 19,                                                               | applied or 10-0-0 oc                                                     | 3)                       | Plate DOL=1                                                                                                                             | 7-16; Pr=20.0 ps<br>I.15); Pf=20.0 psf<br>Is=1.0; Rough Cat                                                                                                                | (Lum DC                                                               | DL=1.15 Plate                                                                                          | •                       |                                 |         |               |                                                    |                       |
|                                                                       | 20<br>(size) 2=0-3-8, 1<br>Max Horiz 2=248 (LC<br>Max Grav 2=2245 (L                                                                           | C 11)<br>LC 48), 12=2203 (LC                                             | 4)<br>48) <sup>5</sup> ) | Unbalanced<br>design.<br>This truss ha                                                                                                  | snow loads have as been designed to psf or 1.00 times f                                                                                                                    | for great                                                             | er of min rool                                                                                         | live                    |                                 |         |               |                                                    |                       |
| FORCES                                                                | (lb) - Maximum Com<br>Tension<br>1-2=0/29, 2-4=-3807<br>5-6=-783/266, 6-7=-                                                                    | 7/0, 4-5=-2786/59,<br>535/389, 7-8=-535/3                                |                          | Provide adeo<br>This truss ha                                                                                                           | on-concurrent with<br>quate drainage to<br>as been designed<br>ad nonconcurrent                                                                                            | prevent<br>for a 10.<br>with any                                      | water ponding<br>0 psf bottom<br>other live loa                                                        | ds.                     |                                 |         |               |                                                    |                       |
| BOT CHORD<br>WEBS                                                     | 8-9=-784/265, 9-10=<br>2-18=-19/3083, 17-1<br>14-17=0/2884, 13-14<br>3-17=-686/350, 4-17<br>11-14=-702/354, 5-1<br>19-20=-2654/0, 9-20         | 8=-18/3085,<br>4=0/3092, 12-13=0/3<br>'=0/1451, 10-14=0/14<br>9=-3167/0, | 091<br>452,<br>9)        | on the bottor<br>3-06-00 tall t<br>chord and ar<br>Ceiling dead                                                                         | nas been designed<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members.<br>I load (5.0 psf) on<br>9-20; Wall dead I                                             | is where<br>ill fit betv<br>member                                    | a rectangle<br>veen the bott<br>(s). 4-5, 9-10                                                         | om                      |                                 | 4       | ALL A         | OF THESS                                           |                       |
| NOTES<br>1) Unbalance<br>this design                                  | 8-20=-17/535, 7-19=<br>7-20=-768/226, 3-18<br>11-13=-578/163<br>ed roof live loads have<br>n.                                                  | 3=-585/154,                                                              | 1                        | <ul> <li>(s).4-17, 10-</li> <li>Bottom chord<br/>chord dead I</li> <li>All bearings</li> <li>This truss is<br/>International</li> </ul> |                                                                                                                                                                            | sf) and a<br>ied only<br>e SP 240<br>dance w<br>sections              | dditional bott<br>to room. 14-1<br>)0F 2.0E .<br>ith the 2018<br>s R502.11.1 a                         | om<br>7                 |                                 |         |               | SEA<br>0363                                        |                       |
|                                                                       |                                                                                                                                                |                                                                          |                          |                                                                                                                                         |                                                                                                                                                                            |                                                                       |                                                                                                        |                         |                                 |         |               | Jun                                                | e 9,2025              |


Scale = 1:84.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type            | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-----------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A1    | Attic Supported Gable | 1   | 1   | Job Reference (optional)                        |



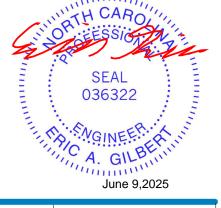
## Plate Offsets (X, Y): [6:0-5-0,0-4-8], [11:0-4-0,0-0-10], [17:0-4-0,0-0-10], [22:0-5-0,0-4-8]

| Loading<br>TCLL (roof)         (psf)<br>20.0         Spacing<br>20.0         2-0-0         CSI<br>TC         DEFL<br>TC         in         (loc)         //deft         Ld         PLATES         GRIP           Snow (Pf)         20.0         1.15         TC         0.21         Vert(LL)         n/a         999         MT20         244/190           TCDL         10.0         Rep Stress Incr         YES         BC         0.17         Vert(CT)         n/a         -         n/a         999         MT20         244/190           BCDL         0.0*         Code         IRC2018/TPI2014         Matrix-MSH         Vert(CT)         n/a         -         n/a         999         Weight: 407 lb         FT = 20%           LUMBER         10.0         2x6 SP 2400F 2.0E         *Except* 9-10,19-18:2x6         TOP CHORD         TOP CHORD         2x10 SP 2400F 2.0E         TOP CHORD         11-12=-1140/220, 12-13=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-1140/220, 14-15=-14-19=-904/215, 14-15=-1140/220, 14-15=-14-190/220, 14-15=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | κ, τ). [0.0 <sup>4</sup>                                                                                                                                                                            | -3-0,0-4-0],                                                                                                                                                                                                                                                                                                                                                                                                   | , [11.0-4-0,0-0-10], [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0-4-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,0-0-10 <u>]</u> , [22.0-      | 5-0,0-4-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOP CHORD         2x6 SP 2400F 2.0E *Except* 9-10,19-18:2x6<br>SP No.2         Tension         this design.           BOT CHORD         2x10 SP 2400F 2.0E         TOP CHORD         11-12=-1140/220, 12-13=-1140/220,<br>13-14=-1140/220, 14-15=-1140/220,<br>2x4 SP No.3 *Except* 10-18:2x4 SP No.2         15-16=-1140/220,<br>15-16=-1140/220, 16-17=-1140/220,<br>15-16=-1140/220, 16-17=-1140/220,<br>15-16=-7140/220, 16-17=-1140/220,<br>17-18=-1245/224, 18-19=-904/215,<br>BRACING         Vind: ASCE 7-16; Vult=130mph (3-second gust)           BRACING<br>TOP CHORD         Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except<br>2-0-0 oc purlins (6-0-0 max.): 11-17.         19-20=-761/159, 20-21=-766/115,<br>2-0-0 oc purlins (6-0-0 max.): 11-17.         21-23=-708/101, 23-24=-590/82,<br>24-25=-591/89, 25-26=-570/90, 1-2=0/29,<br>2-3=-570/139, 3-4=-590/132, 2, 27-10-12 to 35-5-11, Corner(3E) 35-5-11 to<br>39-5-0 zone; cantilever left and right exposed ; end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                                                |                                                                                                                                                                                                     | 20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                                   | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.15<br>1.15<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17                                                                                                                                                                                                                                                                                                                       | Vert(LL)<br>Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a<br>n/a                                  | -                                                                                                                                                                                 | n/a<br>n/a                                                                                                                                                                                                                             | 999<br>999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MT20                                                                                                                                                                                                                                                                                                                                                  | 244/190                                                                                                                                                                                                                                                   | ,<br>0                                                                                                                                                                                           |
| JOINTS       1 Brace at Jt(s): 43,<br>44, 45, 46, 48, 49,<br>50       9-10=-90/4/215, 10-11=-1245/224       Forces & MWFRS for reactions shown; Lumber<br>DOL=1.60 plate grip DOL=1.60         REACTIONS       (size)       2=39-50, 26=39-50, 27=39-50,<br>30=39-50, 32=39-50, 30=39-50,<br>31=39-50, 32=39-50, 30=39-50,<br>31=39-50, 32=39-50, 30=39-50,<br>31=39-50, 32=39-50, 30=39-50,<br>32=39-50, 40=39-50, 32=39-50,<br>32=39-50, 40=39-50, 32=39-50,<br>32=39-50, 40=39-50, 32=39-50,<br>42=39-35-0, 41=39-50,<br>32=39-50, 41=39-50,<br>42=39-39-50, 41=39-50,<br>42=39-39-50, 41=39-50,<br>32=39-50, 41=39-50,<br>32=39-50, 41=39-50,<br>32=39-50, 41=39-50,<br>42=39-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>26-27-73/469,<br>42-39-101/516, 18-49=-102/515,<br>6-39-189/15, 12-457/107, 44-56-143/56,<br>33-44=-147/56, 5-40=-153/56, 3-41=-146/90,<br>23-29=-101/516, 15-48=-53/27, 16-49=-71/107,<br>33=1534 (LC 21), 32=-179 (LC 42),<br>33=1534 (LC 21), 32=175 (LC 22), 40=178 (LC 42),<br>33=1534 (LC 21), 32=175 (LC 42),<br>33=1534 (LC 21), 32= | TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS<br>REACTIONS (S | SP No.2<br>2x10 SP :<br>2x4 SP N<br>2x4 SP N<br>Structura<br>6-0-0 oc  <br>2-0-0 oc  <br>2-0-0 oc  <br>Rigid ceil<br>bracing.<br>1 Brace a<br>44, 45, 46<br>50<br>(size)<br>Max Horiz<br>Max Uplift | 2400F 2.0E<br>lo.3 *Excep<br>lo.3<br>I wood she<br>purlins, exc<br>purlins (6-C<br>ing directly<br>at Jt(s): 43,<br>6, 48, 49,<br>2=39-5-0,<br>28=39-5-(<br>39=39-5-(<br>39=39-5-(<br>2=248 (LC<br>2=-62 (LC<br>27=-71 (L<br>29=-20 (L<br>39=-164 (<br>41=-62 (L<br>27=194 (l<br>29=-209 (l<br>39=-164 (<br>41=-62 (L<br>27=194 (l<br>29=209 (l<br>31=580 (l<br>33=1534<br>21), 37=-<br>21), 39=1<br>26), 41=1 | athing directly appli-<br>cept<br>-0 max.): 11-17.<br>-applied or 10-0-0 o<br>, 26=39-5-0, 27=39-<br>0, 29=39-5-0, 30=35<br>0, 32=39-5-0, 30=35<br>0, 32=39-5-0, 33=35<br>0, 40=39-5-0, 38=35<br>0, 40=39-5-0, 41=35<br>0, 41=39-5-0, 41=39-50<br>0, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=39-50, 41=3 | 2<br>ed or<br>5-0,<br>3-5-0,<br>3-5-0,<br>3-5-0,<br>3-5-0,<br>3-5-0,<br>3-5-0,<br>1),<br>(15),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(21),<br>(22),<br>(22),<br>(23),<br>(23),<br>(23),<br>(24),<br>(23),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24),<br>(24), | TOP CHORD<br>BOT CHORD<br>WEBS | Tension<br>11-12=-1140/220,<br>13-14=-1140/220,<br>15-16=-1140/220,<br>17-18=-1245/224,<br>19-20=-761/159, 2<br>21-23=-708/101, 2<br>24-25=-591/89, 25<br>2-3=-570/139, 3-4<br>5-7=-708/134, 7-8<br>9-10=-904/215, 10<br>2-42=-114/470, 31<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-114/471, 3<br>36-37=-73/470, 25<br>28-29=-73/469<br>6-47=-22/228, 46-<br>36-46=-22/234, 9-<br>19-33=-533/26, 33<br>50-51=-44/221, 22<br>10-45=-102/515, 4<br>43-44=-101/516, 1<br>6-39=-189/16, 22-<br>13-44=-53/27, 12-<br>37-46=-155/63, 7-<br>38-47=-157/36, 5-<br>3-42=-111/66, 15-<br>20-50=-143/66, 32<br>21-51=-165/35, 31<br>23-29=-153/50, 24 | 12-13=-<br>14-15=-<br>16-17=-<br>20-21=-7<br>3-24=-5<br>5-26=-57<br>=-590/13<br>=-766/14<br>1-11=-12<br>-42=-11<br>99-40=-1<br>13-36=-1<br>13-36=-1<br>13-36=-7<br>30=-73<br>30=-73<br>30=-73<br>36=-530<br>(-50=-47<br>-51=-46<br>4-45=-1<br>3-48=-1<br>3-48=-1<br>8-49=-1<br>30=-153<br>48=-53/2<br>(-50=-15<br>5-51=-15 | 1140/220,<br>1140/220,<br>1140/220,<br>904/215,<br>66/115,<br>90/82,<br>0/90, 1-2=0/2:<br>90/82,<br>0/90, 1-2=0/2:<br>90/82,<br>14, 8-9=-761/1<br>45/224<br>4/470,<br>14/471,<br>04/624,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/470,<br>14/471,<br>04/624,<br>14/470,<br>14/470,<br>14/470,<br>14/471,<br>04/624,<br>14/470,<br>14/470,<br>14/470,<br>14/471,<br>04/624,<br>14/470,<br>14/471,<br>04/624,<br>14/470,<br>14/471,<br>04/624,<br>14/470,<br>14/471,<br>04/624,<br>14/471,<br>04/624,<br>14/471,<br>02/515,<br>1/5, 14-43=-3,<br>3/55,<br>1/50, 4-41=-14,<br>27, 16-49=-7/15,<br>5/63,<br>7/36, | 9,<br>132,<br>159,<br>/20,<br>/66,<br>6/90, | 2) Wii<br>2) Wii<br>2) Wii<br>30<br>3-C<br>(2N<br>23-C<br>(2N<br>23-C<br>24<br>24<br>25<br>25<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | s design.<br>nd: ASC<br>sd=103n<br>Exp B; E d C-C Cc<br>-13 to 11<br>u) 19-1-1<br>terior(2N<br>5-0 zone<br>tical left<br>ces & MM<br>DL=1.60  <br>uss desig<br>y. For s<br>e Standa<br>consult c<br>LL: ASC<br>te DL=1.15)<br>=1.00; C | E 7-166<br>nph; TC<br>nclose<br>prmer(3<br>1-3-3, (<br>1-3-3, ( | ; Vult=130mph (3<br>CDL=6.0psf; BCL<br>d; MWFRS (erve<br>E) -0-10-8 to 3-0<br>Corner(3R) 11-3-<br>)-3-3, Corner(3R)<br>16ver left and rigi<br>ght exposed;C-C<br>for reactions sho<br>rip DOL=1.60<br>r wind loads in th<br>qosed to wind (r<br>istry Gable End I<br>d building design<br>; Pr=20.0 psf (rou<br>Pf=20.0 psf (Lun<br>D; Rough Cat B; F | A-second gu<br>DL=6.0ps; h<br>elope) exteri<br>-13, Exterio<br>3 to 19-1-13<br>) 20-3-3 to 2<br>Corner(3E) 3<br>for member<br>wm; Lumber<br>the plane of t<br>ormal to the<br>Details as a<br>er as per Al<br>of LL: Lum I<br>n DOL=1.15<br>Fully Exp.; C | st)<br>=25ft; Cat.<br>ior zone<br>r(2N)<br>3, Exterior<br>27-10-12,<br>35-5-11 to<br>; end<br>rs and<br>r<br>the truss<br>e face),<br>pplicable,<br>NSI/TPI 1.<br>DOL=1.15<br>i Plate<br>Ce=0.9; |

June 9,2025



Scale = 1:85


Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type            | Qty | Ply | 51 Magnolia Acres-Roof-Grayson BC 3FL SP FE GLH |
|-------------|-------|-----------------------|-----|-----|-------------------------------------------------|
| 25060036-01 | A1    | Attic Supported Gable | 1   | 1   | I74037080<br>Job Reference (optional)           |

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 18-19, 10-45, 44-45, 43-44, 43-48, 48-49, 18-49, 9-10; Wall dead load (5.0psf) on member(s).9-36, 19-33
- 14) All bearings are assumed to be SP 2400F 2.0E .
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 2, 35 lb uplift at joint 26, 164 lb uplift at joint 39, 165 lb uplift at joint 30, 991 lb uplift at joint 37, 23 lb uplift at joint 40, 62 lb uplift at joint 41, 64 lb uplift at joint 42, 991 Ib uplift at joint 32, 20 lb uplift at joint 29, 62 lb uplift at joint 28 and 71 lb uplift at joint 27.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Jun 06 13:02:43 ID:Bewk5TuonkDnYvMyCyxgVez91R6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



