

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh Durham

Model: Grayson BC 3FL SP FE GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

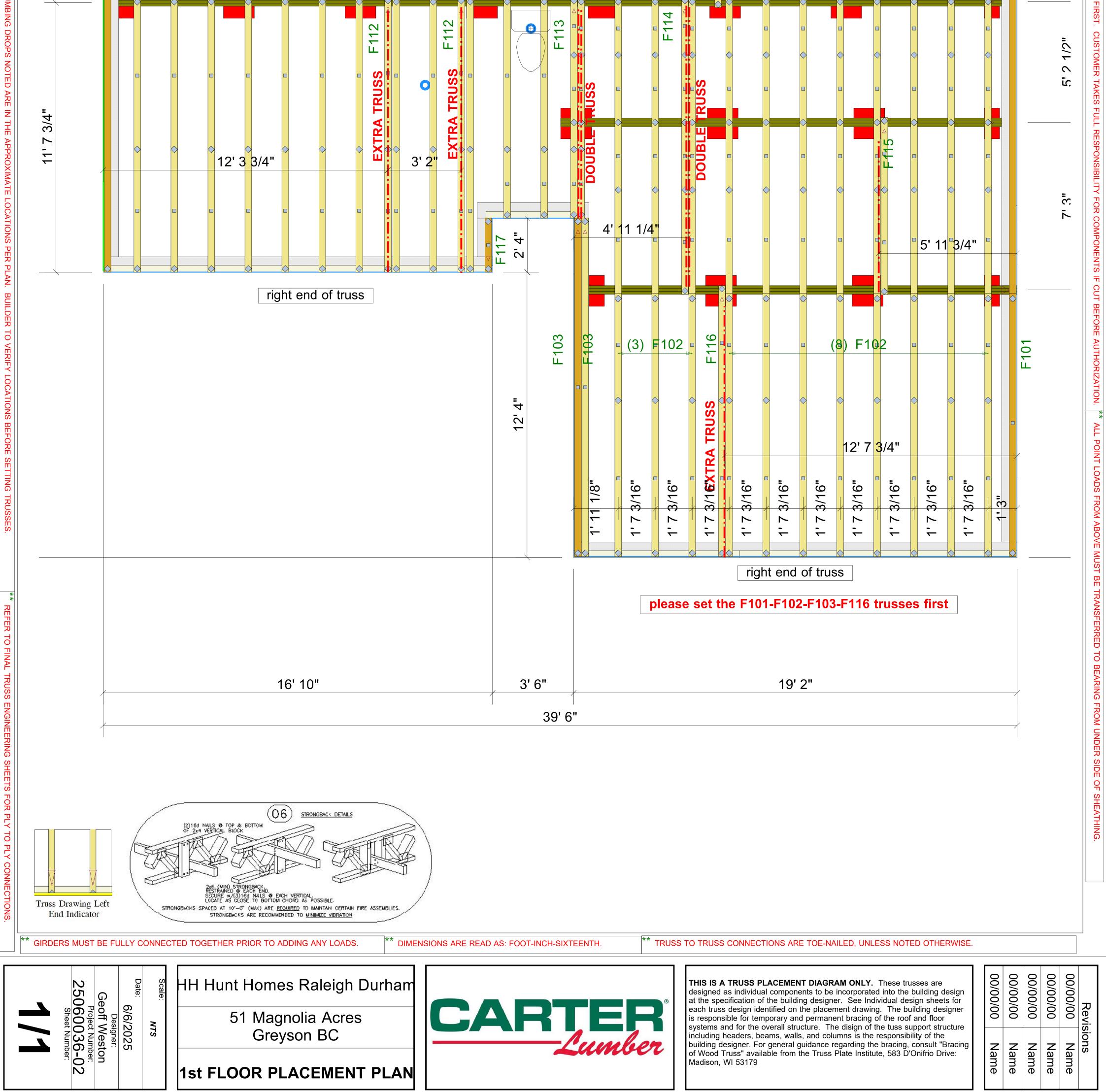
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____


*	
PLU	

FRAME	R MUST RE	<u></u>	PLANS W	HILE SET			S. ^{**} DAM				D NOT BE	INSTALLE		<u>39' 6"</u>					BEARING							
,							eft enc	l of tru	SS															left end	d of tru	ISS
/4"	F104	1.5 11/16"	1.73/16"	1' 7 3/16"	1' 7 3/16"	1' 7 3/16"	0) F1 .1 3/16"	1. 7 3/16" 02	1' 7 3/16"	1' 7 3/16"	1' 7 3/16"	1' 7 3/16"	2) F1(1' 7 3/16"	1' 7 3/16" F107	1.73/16" (2)	1.73/16"	S 1' 7 3/16" F111	1' 7 3/16"	1' 7 3/16" (5)	1. 7 3/16" L	1' 7 3/16"	1' 7 3/16"	1.73/16" (2)	F 109 	1-3"
15'61)]]								EXTRA TRUSS		5' 3" tchen	island			7'8"		

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION. ** ALL POINT LOADS FROM ABOVE MUST BE

General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

15' 5 3/4"

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25060036-02 51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I74025154 thru I74025170

My license renewal date for the state of North Carolina is December 31, 2025.

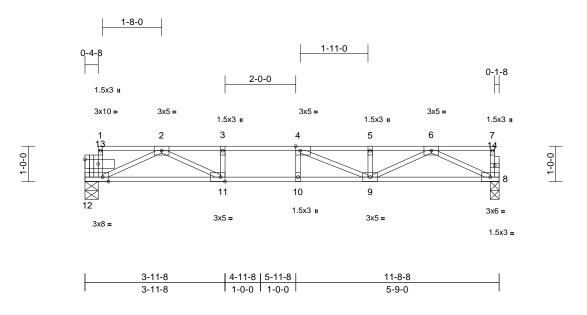
North Carolina COA: C-0844

June 9,2025

Galinski, John

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

25060036-02 Carter Components (S 0-0-1	0-4-8	rd, NC - 27332, 5 II 2		Supported Ga	Run: 8.73 S F		Print: 8.73			Industries	, Inc. Fr	i Jun 06 08:25:33 rCDoi7J4zJC?f		Page: 1
T	0-4-8	5 11												Page: 1
1-0-0														
1-0-0	3x											C	-1-8 -	
1-0-0	1 ,21 ↓ ↓ ↓	2												
1-0-0			3	4	5	6		7	8	3		9 1	0 2	_
	20					O				»				1-0-0
													≜ _11 ⊗	
		19	18	17	16	15	*****	14	1	3	****	12	3x5 =	
	3x8 : 3x1	= 0 =												
					11	-8-8							1	
Scale = 1:24						-8-8								
Plate Offsets (X, Y)					1									
L oading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00		TC BC	0.06 0.01	DEFL Vert(LL Vert(TL	.) n	in (loc) /a - /a -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	1
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES	1/TPI2014	WB Matrix-MR	0.03	Horiz(1	,		n/a	n/a	Weight: 50 lb	FT = 20	%F, 11%E
BOT CHORD 2x ² WEBS 2x ² DTHERS 2x ² BRACING 500 TOP CHORD Str 6-0 6-0 BOT CHORD Rig	0-0 oc purlins, ex gid ceiling directly acing. e) 11=11-8-4 14=11-8-4 17=11-8-4	eathing directly app cept end verticals. / applied or 10-0-0 8, 12=11-8-8, 13=1 8, 15=11-8-8, 16=1 8, 18=11-8-8, 19=1	1) lied or oc 1-8-8, 1-8-8,	(0.131" X 3") at their outer DAD CASE(S) Dead + Flo Plate Increa Uniform Lo Vert: 11-	or Live (balance ase=1.00 ads (lb/ft) 20=-8, 1-10=-80 ed Loads (lb)	acks to be a led by othe d): Lumber	attached r means	to walls s.						
Max	13=118 (I 15=117 (I 17=116 (I	8 C 1), 12=116 (LC 1 LC 1), 14=117 (LC LC 1), 16=118 (LC LC 1), 18=122 (LC C 1), 20=30 (LC 1)	1), 1),											
Te	insion	npression/Maximun -40/0, 1-2=-8/0, 2-3											1112.	
7-8 BOT CHORD 19	8=-8/0, 8-9=-8/0, 9 -20=0/8, 18-19=0	5-6=-8/0, 6-7=-8/0, 9-10=-8/0 /8, 17-18=0/8, 16-1 /8, 13-14=0/8, 12-1									and a	ORTH C	AROL	1.
11- WEBS 9-1 6-1	-12=0/8 12=-104/0, 8-13=- 15=-107/0, 5-16=-	-107/0, 7-14=-106/0 -107/0, 4-17=-106/0),							1111		SF.	WEZ	×
NOTES 1) All plates are 1 2) Gable requires 3) Truss to be fully braced against 4) Gable studs sp	continuous botto ly sheathed from o	s otherwise indicate m chord bearing. one face or securel It (i.e. diagonal web	у							THURS.	J. J	SEA SEA 286	77 NEER ALING	A


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

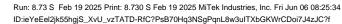
818 Soundside Road Edenton, NC 27932

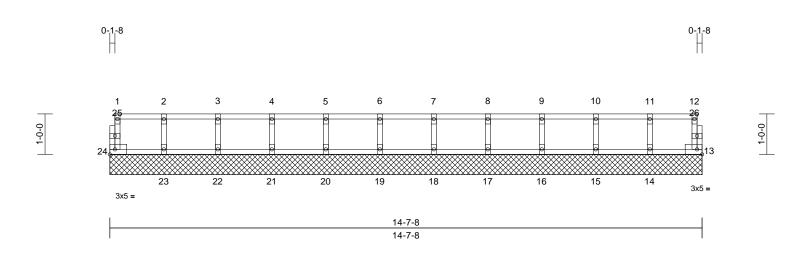
E i Ki

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F102	Floor	11	1	I74025155 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 ID:?_THi1qR3t_61llouVX7nNzTAT6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.6


Plate Offsets (X_Y)	[4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-2-0,Edge], [13:0-4-8,0-1-8]
	[4.0-1-0,Luge], [11.0-1-0,Luge], [12.0-2-0,Luge], [13.0-4-0,0-1-0]


Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00	CSI TC BC	0.58 0.77	DEFL Vert(LL) Vert(CT)	in -0.14 -0.18	(loc) 9-10 9-10	l/defl >989 >762	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-MSH	0.34	Horz(CT)	0.02	8	n/a	n/a	Weight: 57 lb	FT = 20%F, 11%E
LUMBER TOP CHORD SOT CHORD WEBS DTHERS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-0, ' Max Grav 8=497 (L0 (lb) - Maximum Com Tension 1-12=-317/0, 7-8=-6 2-3=-1558/0, 3-4=-1 5-6=-1443/0, 6-7=-4 11-12=0/959, 10-11: 8-9=0/878 3-11=-237/0, 4-10=- 2-11=0/712, 6-8=-97 	athing directly applie cept end verticals. applied or 10-0-0 or 12=0-4-8 C 1), 12=703 (LC 1) pression/Maximum 0/0, 1-2=-67/0, 558/0, 4-5=-1443/0, /0 =0/1558, 9-10=0/155 82/17, 2-12=-998/0, '3/0, 6-9=0/633,	Uniform Lo Vert: 8- Concentra Vert: 1=	oads (lb/ft) 12=-8, 1-7=-80 ted Loads (lb)		I						
 this desig All bearin Recomment 10-00-00 (0.131" X at their ou Hanger(s provided a selection responsib LOAD CASE(1) Dead +	5-9=-203/0, 4-9=-35 ced floor live loads have in. igs are assumed to be 5 end 2x6 strongbacks, o oc and fastened to eac (3") nails. Strongbacks uter ends or restrained) or other connection de sufficient to support con and 50 lb up at 0-5-4 or of such connection dev bility of others. (S) Standard Floor Live (balanced): I crease=1.00	e been considered fo SP No.2 . n edge, spaced at h truss with 3-10d to be attached to w by other means. evice(s) shall be ncentrated load(s) 29 n top chord. The des rice(s) is the	alls 54 sign/							State State	SEA 286	EEP. 64

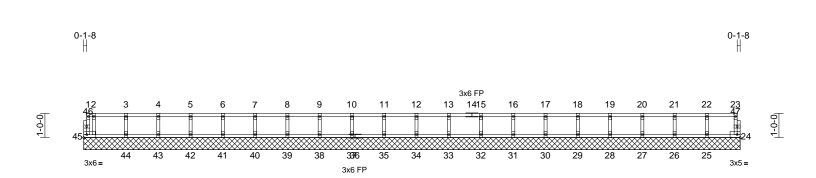
TRENCO A MITek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH	
25060036-02	F103	Floor Supported Gable	2	1	Job Reference (optional)	
Carter Components (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	025 Print: 8.	730 S Feb 19	9 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 Page:	: 1

Scale = 1:28.4

Scale = 1:28.4												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	(n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	13	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI201	4 Matrix-MR							Weight: 58 lb	FT = 20%F, 11%E
LUMBER			6) Recon	nmend 2x6 strongback	ks, on edge	, spaced at						
TOP CHORD	2x4 SP No.2(flat)			00 oc and fastened to								
BOT CHORD	2x4 SP No.2(flat)			" X 3") nails. Strongba			alls					
WEBS	2x4 SP No.3(flat)			r outer ends or restrair	ned by othe	er means.						
OTHERS	2x4 SP No.3(flat)		LOAD CA	SE(S) Standard								
BRACING												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.		\$									
REACTIONS		3, 14=14-7-8, 15=14	,									
		8, 17=14-7-8, 18=14										
		3, 20=14-7-8, 21=14 3, 23=14-7-8, 24=14										
	Max Grav 13=43 (L0	, ,	-7-0									
		_C 1), 16=117 (LC 1))									
		_C 1), 18=117 (LC 1)										
		_C 1), 20=117 (LC 1)										
	21=117 (l	_C 1), 22=118 (LC 1)),									
	23=115 (l	_C 1), 24=44 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension		0/0									
TOP CHORD	1-24=-41/0, 12-13=-	, ,	-9/0,									lu.
	3-4=-9/0, 4-5=-9/0, 5 7-8=-9/0, 8-9=-9/0, 9	, ,	0								N'' CA	Dille
	11-12=-9/0	9-10=-9/0, 10-11=-9/	0,								THUT	NO III
BOT CHORD	23-24=0/9, 22-23=0	/9. 21-22=0/9. 20-21	=0/9.							S	OFFESS	ich Mile
	,	/9, 17-18=0/9, 16-17	,							33	101	N. 7 -
	15-16=0/9, 14-15=0	/9, 13-14=0/9								S 9	4 16 /	15: 2
WEBS	11-14=-102/0, 10-15	5=-108/0, 9-16=-106/	'0,						-			: =
	8-17=-107/0, 7-18=-	, ,									SEA	L ; =
	5-20=-107/0, 4-21=-	106/0, 3-22=-107/0,									286	77 : E
	2-23=-104/0								-		. 2007	1 2
NOTES										-	SEA 2867	1 3
, ,	are 1.5x3 MT20 unless		l.							30	SNO.	- ERILDS
, ,	uires continuous botto	0								1	UL GIN	EF. G
	e fully sheathed from o ainst lateral movemen									1	NIO	AL 10
	ds spaced at 1-4-0 oc.	r (i.e. ulayonal web).									1112.0	a line line line line line line line line
	as are assumed to be \$	SP No.2 .										EER. St.


4) Gable studs spaced at 1-4-0 oc. 5) All bearings are assumed to be SP No.2 .

June 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

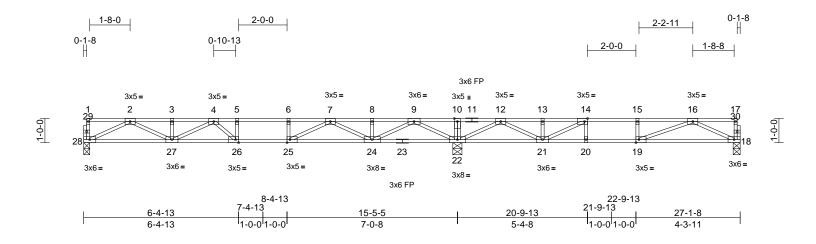
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F104	Floor Supported Gable	1	1	I74025157 Job Reference (optional)

Page: 1

<u>27-1-8</u> 27-1-8

Scale = 1:47.6

Scale = 1:47.6											-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.07 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 24=27-1-{ 30=27-1-{ 30=27-1-{ 33=27-1-{ 40=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 43=27-1-{ 10}{26=119}(l 32=117 (l 34=117 (l 34=117 (l 43=113 (l 45=68 (L0	applied or 10-0-0 oc 3, 25=27-1-8, 26=27-1 3, 38=27-1-8, 29=27-1 3, 34=27-1-8, 35=27-1 3, 34=27-1-8, 35=27-1 3, 34=27-1-8, 35=27-1 3, 44=27-1-8, 45=27-1 C 1), 25=112 (LC 1), LC 1), 25=112 (LC 1), LC 1), 35=117 (LC 1), LC 1), 35=117 (LC 1), LC 1), 35=117 (LC 1), LC 1), 35=117 (LC 1), LC 1), 43=117 (LC 1), LC 1), 40=117 (LC 1), LC 1), 42=118 (LC 1), LC 1), 44=130 (LC 1), C 1),	WEBS I-8, I-9,	44-45=0/14, 43-44 41-42=0/14, 40-41 38-39=0/14, 37-36 34-35=0/14, 33-34 31-32=0/14, 30-31 28-29=0/14, 27-25 25-26=0/14, 24-25 22-25=-104/0, 21- 19-28=-107/0, 15- 12-34=-107/0, 15- 12-34=-100-10, 15- 12-34=-100-10, 15- 12-34=-100-10, 15- 12-34=-10	I=0/14, 3 3=0/14, 3 4=0/14, 3 I=0/14, 3 I=0/14, 2 3=0/14, 2 5=0/14 26=-108, 29=-107, 32=-107, 32=-107,0, =-107/0,	9-40=0/14, 5-37=0/14, 2-33=0/14, 6-27=0/14, 6-27=0/14, (0, 20-27=-106 (0, 17-30=-107 (0, 10-37=-107 7-40=-107/0, 4-43=-104/0, wise indicated. d bearing. te or securely liagonal web). 2. a, spaced at s with 3-10d attached to wa	/0, /0, /0,			And the second se	ORTH CA	ROULT
FORCES TOP CHORD		5/0, 1-2=0/1, 2-3=-14/0 0, 5-6=-14/0, 6-7=-14/ 0, 9-10=-14/0, =-14/0, 12-13=-14/0, =-14/0, 16-17=-14/0, =-14/0, 19-20=-14/0,	- /							S MANUTATION STATE	SEA 2867	EER. K.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 ID:Aq60S_IgT1DyJqleXEQjX6zTATC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F105	Floor	10	1	I74025158 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 ID:Aq60S_lgT1DyJqleXEQjX6zTATC-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:47.6

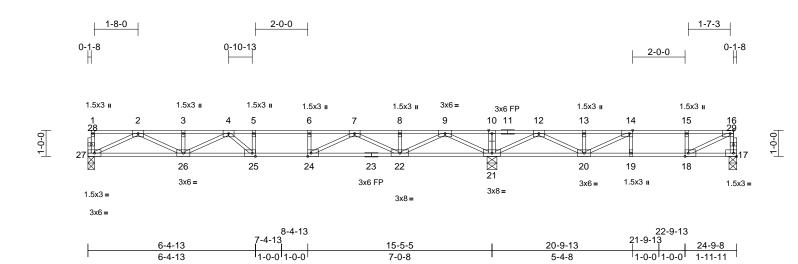
Scale = 1:47.6													
Plate Offsets ()	X, Y): [14:0-1-8,Edge], [19:0-1-8,Edge], [25:0-1-8,Edg	e], [26:0-1-8,	Edge]								
Loading	(psf)	Spacing	1-7-3		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.69	Vert(LL)	-0.18	26	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.83	Vert(CT)	-0.24	26-27	>765	360		
BCLL	0.0	Rep Stress Incr	YES		WB	0.58	Horz(CT)	0.04	18	n/a	n/a		
BCDL	5.0	Code	IRC2021/	TPI2014	Matrix-MSH			_				Weight: 129 lb	FT = 20%F, 11%E
LUMBER			4)	Provide mec	hanical connectio	on (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.2(flat)				at joint(s) 28.	()							
BOT CHORD	2x4 SP No.2(flat)				2x6 strongbacks	s, on edge	, spaced at						
WEBS	2x4 SP No.3(flat)			10-00-00 oc	and fastened to e	each truss	with 3-10d						
DTHERS	2x4 SP No.3(flat)			(0.131" X 3")	nails. Strongbad	cks to be	attached to w	valls					
BRACING					ends or restraine								
TOP CHORD	Structural wood she	athing directly applie			o not erect truss	backward	ds.						
	6-0-0 oc purlins, ex	cept end verticals.	LOA	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc											
	bracing.												
REACTIONS	(size) 18=0-3-8,	22=0-4-8, 28=0-3-0)										
	Max Grav 18=433 (L		1),										
	28=592 (L	_C 3)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-28=-57/0, 17-18=-												
	2-3=-1802/0, 3-4=-1	, ,											
	5-6=-2263/0, 6-7=-2												
	8-9=-1078/134, 9-10		779,										
	12-13=-788/552, 13- 14-15=-1221/134, 1												
	16-17=-4/0	5-10=-1221/134,											
BOT CHORD	27-28=0/1074, 26-2	7=0/2188 25-26=0/	2263										1111
	24-25=0/1779, 22-24	,	2200,									WAH CA	Roile
	21-22=-885/113, 20-	,									1	Ritit	in allot
	19-20=-134/1221, 18	8-19=0/768										1.109	Qui Vie
NEBS	5-26=-148/65, 6-25=	-254/0, 10-22=-165	/0,								5	4 h N	4.9: "
	14-20=0/121, 15-19	=-155/47, 2-28=-119	91/0,							-		ig right	S 1
	2-27=0/816, 3-27=-1									-		SEA	1 : -
	4-26=-190/259, 9-22	,	213,							=		ULA	<u>-</u> : =
	8-24=-151/0, 7-24=-	, , ,								=		2867	7 : 5
	12-22=-1231/0, 12-2									-			1 3
	16-18=-847/0, 14-21	=-830/0, 16-19=-17	2/485								1	SEA 2867	- 1. E
NOTES											20	6 SNOW	ERIT
,	d floor live loads have	been considered for	or								11	YA GIN	SI
this design		and a mode a finally of									1	INI G	ALIM
/	are 1.5x3 MT20 unless		J.									L.G.	in the second se
All bearing	s are assumed to be \$	5P INO.2.											1. S.

NOTES

3) All bearings are assumed to be SP No.2.

June 9,2025

munn


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F106	Floor	2	1	I74025159 Job Reference (optional)

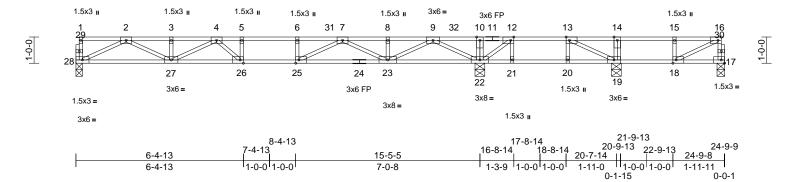
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 ID:Aq60S_lgT1DyJqleXEQjX6zTATC-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44

Plate Offsets ((X, Y): [14:0-1-8,Edge]. [16:0-1-8.Edge]. [1	8:0-1-8.Ec	dae]. [24:0-1-8	Edge], [25:0-1-8.	Edael							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES	1/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.83 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.24 0.03	(loc) 25 25-26 21	l/defl >999 >766 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 6-0-0 oc , 21=0-4-8, 27=0-3-0 .C 3) .C 4), 21=1358 (LC 1	d or 6) 7) LC	bearing plate One H2.5A S recommende UPLIFT at jtt does not cor Recommence 10-00-00 oc (0.131" X 3") at their outer	hanical connection e at joint(s) 27. Simpson Strong-Ti ed to connect truss (s) 17. This conne sider lateral force (2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine to not erect truss l Standard	ie conne s to bear ction is fo s. , on edge ach truss ks to be d by othe	ctors ing walls due or uplift only e, spaced at s with 3-10d attached to v er means.	e to and					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-27=-57/0, 16-17=- 2-3=-1799/0, 3-4=-1 5-6=-2257/0, 6-7=-2	npression/Maximum 317/48, 1-2=-4/0, 799/0, 4-5=-2257/0, 257/0, 7-8=-1068/18)=0/1805, 10-12=0/18 -14=-432/566,											
BOT CHORD	19-20=-171/578, 18- 17-18=-3/23 5-25=-143/71, 6-24=	2=-548/47, 20-21=-90	01/0,								A State	OR. ISS	ROULA
this desigr 2) All plates a	2-26=0/814, 3-26=-1 4-25=-201/250, 9-21 8-22=-151/0, 7-22=- 12-21=-1089/0, 12-2 14-20=-596/0, 16-18 ed floor live loads have	136/0, 4-26=-431/0, I=-1540/0, 9-22=0/12 854/0, 7-24=0/779, 20=0/765, 13-20=-163 3=-187/623 the been considered for therwise indicated.	217, 3/21,							1111111	S THE STATE	SEA 2867	E.P. St.

June 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

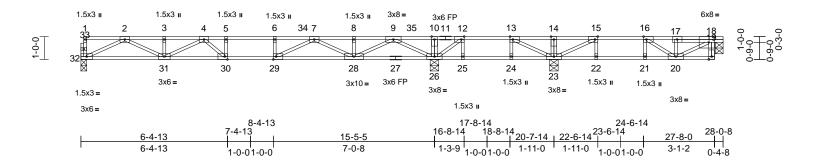
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F107	Floor	1	1	I74025160 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:34 ID:bPo940oYmybXAI1DDM_Q9IzTAT9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44

Plate Offsets (X, Y): [12:0-1-8,Edge]], [13:0-1-8,Edge], [16:0-1-	8,Edge], [18:0-1-8	8,Edge], [25:0-1-8,E	dge], [2	6:0-1-8,Edge]					
Loading (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Spacing 1-7- Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC)	CSI TC BC WB Matrix-MSH	1.00 0.85 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.26 0.04	(loc) 25-26 25-26 17	l/defl >976 >714 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%F, 11%E
$\begin{array}{c} \text{BOT CHORD} & \begin{array}{c} 6 -0 & \text{oc} \ \text{vurlens}, \ \text{exc} \\ \text{Rigid ceilling directly} \\ \text{bracing.} \\ \end{array} \\ \textbf{REACTIONS} & (\text{size}) & 17 = 0 \cdot 3 \cdot 8, \\ & 28 = 0 \cdot 3 \cdot 0, \\ & 28 = 0 \cdot 3 \cdot 0, \\ & 28 = 0 \cdot 3 \cdot 0, \\ & 28 = 0 \cdot 3 \cdot 0, \\ & & 17 = 0 \cdot 5 \cdot 0, \\ & & & 17 = 0 \cdot 5 \cdot 0, \\ & & & & 17 = 0 \cdot 5 \cdot 0, \\ & & & & & 17 = 0 \cdot 5 \cdot 0, \\ & & & & & & 17 = 0 \cdot 5 \cdot 0, \\ & & & & & & & & & & \\ & & & & & & & $	applied or 6-0-0 oc 19=0-4-8, 22=0-4-8, 3) 10 4), 19=554 (LC 4), (LC 1), 28=627 (LC 14) pression/Maximum 276/34, 1-2=-4/0, 937/0, 4-5=-2548/0, 548/0, 7-8=-1540/0, 1/920, 10-12=0/920, 14=-349/166, 16=-349/166, 16=-349/166, 16=-349/166, 2-0/2396, 25-26=0/2548, 3=0/586, 21-22=-311/523, 20=-311/523, 18=-2/20 199/0, 10-22=-59/0, =-172/0, 14-19=-427/0, i=-1266/0, 2-27=0/891, 515/0, 4-26=-34/427, 0/1100, 8-23=-138/0, 1/586, 12-22=-1000/0, 19=-375/630 been considered for	 4) Provide metbearing plat 5) One H2.5A recommend UPLIFT at ji does not co 6) Load case(sidesigner mutbearing) 6) Load case(sidesigner mutbearing) 7) Recommend 10-00-00 oct (0.131" X 3") at their oute 8) CAUTION, I 9) In the LOAE of the truss LOAD CASE(S) 1) Dead + Fide Plate Incret Uniform Lo Vert: 17 	oor Live (balanced): ase=1.00	(by oth e connecto bear to bear tion is for modified verify that s. on edge coch truss s to be l by othe ackward loads a F) or ba	ers) of truss i ng walls due or uplift only a d. Building at they are co e, spaced at with 3-10d attached to w or means. is. oplied to the ck (B).	to and orrect valls face 00,				SEA 2867	ROLL T E.P. SC IIII

June 9,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F108	Floor	8	1	I74025161 Job Reference (optional)

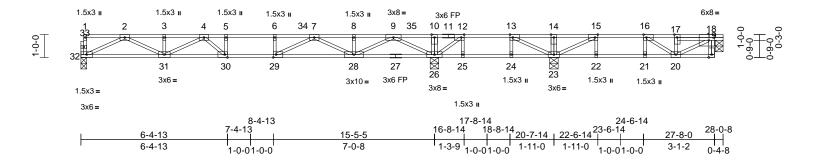
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:3bMXHLpBXGkOnScPm4VfhyzTAT8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.3

oading	(psf)	Spacing	1-7-3		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	40.0	Plate Grip DOL	1.00		TC	0.87	Vert(LL)	-0.18	29-30	>999	480	MT20	244/190
CDL	10.0	Lumber DOL	1.00		BC	0.99	Vert(CT)	-0.28	29	>654	360		
SCLL	0.0	Rep Stress Incr	NO		WB	0.66	Horz(CT)	0.04	26	n/a	n/a		
BCDL	5.0	Code	IRC202	1/TPI2014	Matrix-MSH					-		Weight: 136 lb	FT = 20%F, 11%
JMBER			N	OTES									
OP CHORD	2x4 SP No.2(flat) *E No.1(flat)	Except* 11-18:2x4 SP	• 1)	Unbalanced this design.	floor live loads ha	/e been	considered f	or					
OT CHORD	2x4 SP No.2(flat)		2)	0	3x5 MT20 unless	otherwi	se indicated.						
/EBS	2x4 SP No.3(flat)		3)		are assumed to be								
THERS	2x4 SP No.3(flat)		4)		hanical connectior	i (by oth	ers) of truss	to					
RACING					at joint(s) 32.								
OP CHORD	Structural wood she 6-0-0 oc purlins, ex	eathing directly applie	ed or 5)		1 has/have been st review loads to			orrect					
BOT CHORD	Rigid ceiling directly bracing.		6)		led use of this trus 2x6 strongbacks,		, spaced at						
REACTIONS	0	, 23=0-4-8, 26=0-4-8	,		and fastened to each								
	32=0-3-0				nails. Strongback			walls					
	Max Grav 18=611 (1 26=1272	LC 4), 23=870 (LC 4) (LC 16), 32=646 (LC		Gap betwee	n inside of top cho	rd bearii	ng and first						
ORCES	(lb) - Maximum Con Tension	npression/Maximum		CAUTION, D	ertical web shall r o not erect truss b	ackwar	ds.						
OP CHORD	1-32=-58/0, 18-19=-	-7/1. 1-2=-4/0.	9)		CASE(S) section,			face					
		2013/0, 4-5=-2709/0,			re noted as front (F) or ba	ск (В).						
	5-6=-2709/0, 6-7=-2	2709/0, 7-8=-1685/0,		DAD CASE(S)		Lumbo		00					
	,	0/1431, 10-12=0/143	,	Plate Increa	or Live (balanced)	Lumbe	increase=1	.00,					
		=0/825, 14-15=0/825	5,	Uniform Lo								SEA 2867	1111
	15-16=-1008/117, 1	6-17=-894/0,			32=-8, 1-34=-80, 3	4-35=-1	27 14-35=-8	30				L'L'L CA	Pall
OT CHORD	17-18=-898/0	1=0/2513, 29-30=0/2	200		80 (F=-100)			,			N	A	- Ville
		8=0/478, 25-26=-918			. ,						3.	O' FESS	SAV 1
	24-25=-918/0, 23-24		, 0,								: <	4X //	12:7 -
	22-23=-117/1008, 2	,										10th 10	K :
	20-21=-117/1008, 1											SEA	r 1 3
VEBS		0=0/1008, 10-26=-53	/5,							=	:	SLA	- : :
	14-23=-238/0, 12-26	,								=		2867	7 : 3
	13-23=-191/397, 16	,											1 3
		-175/1, 12-25=0/152, -1309/0, 2-31=0/934,									1	N. A.	A 1. 2
	3-31=-143/0, 4-31=-	, ,									2,4	O SNGINI	ENTE
	,	=0/1377, 8-28=-221/0).								11	YA,	NSIN
	,	0/511, 15-23=-1560/0	,									LG	E.P. Structure
	15-22=0/159, 16-21	=-178/0										1111111	11111
													0.0005

June 9,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

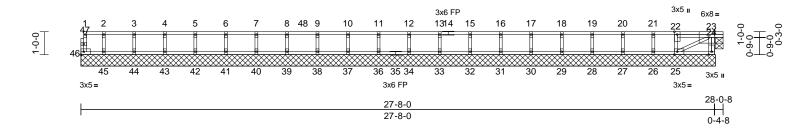
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F109	Floor	3	1	I74025162 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:3bMXHLpBXGkOnScPm4VfhyzTAT8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:50.3

	()		476						4				
.oading	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00		CSI TC	0.96	DEFL Vert(LL)	in -0.18	(loc) 29-30	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
CDL		Lumber DOL	1.00		BC		Vert(LL)	-0.18	29-30 29-30	>999 >659	480 360	W120	244/190
	10.0 0.0	Rep Stress Incr	1.00 NO		WB	0.84 0.65	Horz(CT)	-0.28 0.04	29-30 26	>o59 n/a	360 n/a		
						0.65		0.04	20	n/a	n/a	Woight: 126 lb	ET - 200/E 110/I
CDL UMBER OP CHORD OT CHORD /EBS ITHERS RACING OP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exe		1 2 3 4 d or	 this design. All plates are All bearings and Provide mechanism bearing plate 18. 	Matrix-MSH floor live loads have 3x5 MT20 unless are assumed to be hanical connection capable of withst	otherwi SP No. n (by oth anding 1	se indicated. 2 . ers) of truss 1 lb uplift at	to				Weight: 136 lb	FT = 20%F, 11%E
OT CHORD	32=0-3-0 Max Uplift 18=-11 (L Max Grav 18=262 (L	23=0-4-8, 26=0-4-8, C 3)	(16)	designer mus for the intend Recommend 10-00-00 oc (0.131" X 3") at their outer	1 has/have been st review loads to led use of this trus 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained	verify thats s. on edge ach truss ks to be d by othe	at they are co e, spaced at s with 3-10d attached to v er means.						
ORCES	(lb) - Maximum Com Tension		. 1	diagonal or v	n inside of top cho ertical web shall r	ot excee	ed 0.500in.						
OP CHORD	1-32=-58/0, 18-19=- 2-3=-2007/0, 3-4=-2 5-6=-2697/0, 6-7=-2 8-9=-1665/0, 9-10=0	007/0, 4-5=-2697/0, 697/0, 7-8=-1665/0, //1350, 10-12=0/1350 =0/757, 14-15=0/757,	L 1),	OAD CASE(S)) Dead + Floo Plate Increa Uniform Loa	or Live (balanced) ase=1.00	: Lumbe	r Increase=1					WITH CA	Bost
OT CHORD	31-32=0/1177, 30-3	8=0/457, 25-26=-918/ =-918/0, 22=-282/359,	,								N.V.	A le	No.
VEBS	17-20=-199/0, 18-20 14-23=-153/0, 12-26 13-23=-206/354, 16- 6-29=-175/1, 12-25= 15-22=0/124, 16-21= 2-31=0/930, 3-31=-1	=-9/434, 10-26=-56/0 =-726/0, :20=0/327, 5-30=-258 :0/147, 13-24=-94/0, =-132/0, 2-32=-1305// 43/0, 4-31=-557/0, 913/0, 9-28=0/1367,	9/0,							111WE	S. S	SEA 2867	E.P. St. 111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road Edenton, NC 27932

INFEDING

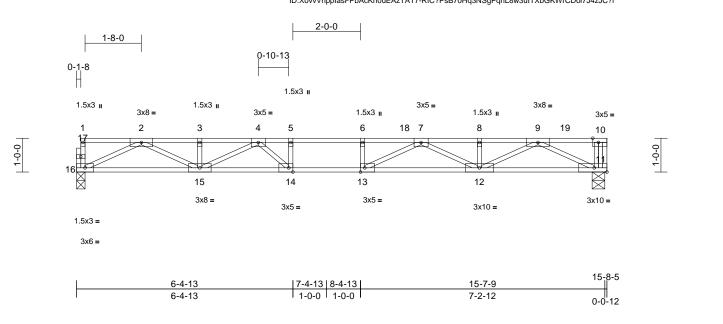
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F110	Floor Supported Gable	1	1	I74025163 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:XovvVhpplasFPbAcKn0uEAzTAT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.3

Plate Offsets (X, Y): [23	:0-3-0,Edge]	, [25:0-1-8,Edge]											
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00		CSI TC BC	0.07 0.01	DEFL Vert(LL) Vert(CT)	in n/a 0.00	(loc) - 24-25	l/defl n/a >999	L/d 999 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	NO IRC202	21/TPI2014	WB Matrix-MSH	0.03	Horz(CT)	0.00	23	n/a	n/a	Weight: 114 lb	FT = 20%F, 11%E
LUMBER TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I OTHERS 2x4 SP I BRACING TOP CHORD Structure 6-0-0 oc BOT CHORD Rigid ce bracing. REACTIONS (size) FORCES (lb) - Ma Tension TOP CHORD 1-46=-2' 3-4=-1/0 7-8=-1/0 11-12= 15-16= 18-19=-'	No.2(flat) No.2(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.3(flat) No.2(flat)	athing directly applied sept end verticals. applied or 10-0-0 oc 24=27-8-8, 25=27-8- 3, 30=27-8-8, 34=27-4 4, 33=27-8-8, 34=27-4 5, 33=27-8-8, 34=27-4 5, 37=27-8-8, 34=27-4 5, 43=27-8-8, 34=27-4 5, 43=27-8-8, 44=27-4 5, 43=27-8-8, 44=27-4 5, 43=27-8-8, 44=27-4 6, 43=27-8-8 21), 24=5 (LC 1), 25= 96 (LC 1), 27=122 (5 (LC 1), 29=118 (LC 1), C 1), 33=117 (LC 1), C 1), 33=118 (LC 1), C 1), 33=118 (LC 1), C 1), 33=118 (LC 1), C 1), 33=118 (LC 1), C 1), 43=117 (LC 1), C 1), 44=120 (LC 1), C 1), 44=120 (LC 1), C 1), 44=23 (LC 1) pression/Maximum /0, 1-2=-1/0, 2-3=-1/0, -10=-1/0, 10-11=-1/0 1/0, 13-15=-1/0, 1/0, 17-18=-1/0, 1/0, 20-21=-1/0,	est est est est est est est est	VEBS VEBS VEBS All plates are Truss to be f braced agair Gable studs All bearings Load case(s; designer mu for the intend 10-00-00 oc (0.131" X3 designer mu for the intend 10-00-00 oc (0.131" X3 d	45-46=0/1, 44-45=(44-42=0/1, 40-41=(37-38=0/1, 36-37=(32-33=0/1, 31-32=(28-29=0/1, 27-28=(24-25=0/0 22-25=-109/0, 23-2 20-27=-110/0, 19-2 17-30=-107/0, 16-3 13-33=-107/0, 12-3 10-37=-107/0, 12-3 10-37=-107/0, 6-41= 4-43=-106/0, 3-44= e 1.5x3 MT20 unles 'ully sheathed from st lateral movemen spaced at 1-4-0 oc are assumed to be) 1 has/have been st review loads to v ded use of this trus: 1 2x6 strongbacks, and fastened to ea o nails. Strongbacks, and fastened to ea o not erect truss b Standard or Live (balanced): ase=1.00	D/1, 39 D/1, 34 D/1, 30 D/1, 26 25=0/2, 2 25=0/2, 2	40=0/1, 38-39 46=0/1, 33-34 31=0/1, 29-30 27=0/1, 25-26 21-26=-88/0, 0, 18-29=-107 0, 15-32=-107 0, 15-32=-107/0, 5-42=-107/0, 2-45=-95/0 wise indicated e or securely iagonal web). 2. 4. Building at they are con a, spaced at with 3-10d attached to with 3-10d attached to with 3-10d	=0/1, =0/1, =0/1, =0/1, =0/1, 7/0, 7/0, 7/0, 0,				SEA 2867	ROUTE L

June 9,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F111	Floor	1	1	I74025164 Job Reference (optional)

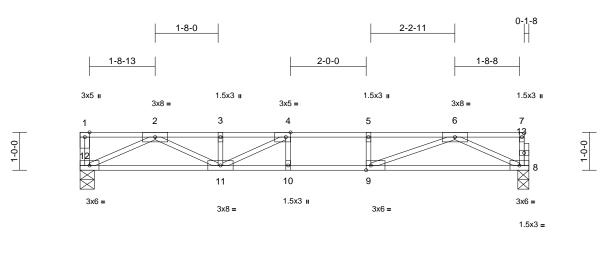
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:XovvVhppIasFPbAcKn0uEAzTAT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.1

Plate Offsets (X, Y): [10:0-2-0,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge]

	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,], [9-1			· · · ·					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.64	Vert(LL)	-0.24	12-13	>781	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	1.00	Vert(CT)	-0.38	12-13	>481	360		
BCLL	0.0	Rep Stress Incr	NO		WB	0.67	Horz(CT)	0.06	11	n/a	n/a		
BCDL	5.0	Code	IRC2021	/TPI2014	Matrix-MSH							Weight: 77 lb	FT = 20%F, 11%E
LUMBER			1)	Dead + Flo	or Live (balanced)): Lumbe	r Increase=1	.00,					
TOP CHORD	2x4 SP 2400F 2.0E	(flat)		Plate Increa	ase=1.00								
BOT CHORD	2x4 SP No.1(flat)			Uniform Loa	· · ·								
WEBS	2x4 SP No.3(flat)			Vert: 11-	16=-10, 1-18=-100	0, 18-19=	=-140, 10-19	=-100					
OTHERS	2x4 SP No.3(flat)												
BRACING													
TOP CHORD	Structural wood she	athing directly applie	ed or										
	6-0-0 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С										
REACTIONS	· · ·	, 16=0-3-0											
	Max Grav 11=993 (<i>,,</i>)										
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-16=-75/0, 10-11=-	·82/0, 1-2=-5/0,											
	2-3=-2813/0, 3-4=-2												
	5-6=-4005/0, 6-7=-4												
	8-9=-3147/0, 9-10=0												
BOT CHORD	15-16=0/1620, 14-1 12-13=0/3841, 11-1		4005,										
WEBS	5-14=-457/0, 6-13=-	183/20, 2-16=-1797	/0,										
	2-15=0/1337, 3-15=	-194/0, 4-15=-865/0	,										1111
	,	170/507, 7-12=-778/	,									N' U CA	Dalle
	8-12=-230/0, 9-12=0	0/1400, 9-11=-2099/	0									"ath or	NOI'L
NOTES											5	O	Sid March
1) Unbalance	ed floor live loads have	e been considered fo	or								22		11: 7 2
this desigr											2	411	Rev. :
	gs are assumed to be											A PIP	1 1 1 E
	e(s) 1 has/have been n									=	:	SEA	L : =
	nust review loads to v		rrect									286	77 :
	ended use of this truss and 2x6 strongbacks, c									-		200	1 i E
,	oc and fastened to eac	0 / 1									-	N	1 5
	3") nails. Strongbacks		alls								20	. En	RINS
	ter ends or restrained		ans								1.	O, GIN	EFFICE
	, Do not erect truss ba										11	ORTH CA SEA 286	IN IN
LOAD CASE												N L.G	AL
												Ju	ne 9,2025

June 9,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

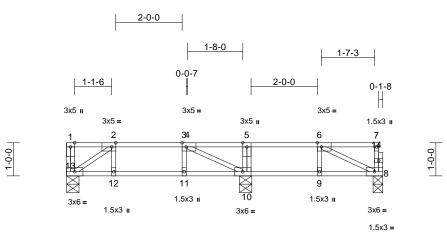
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F112	Floor	2	1	I74025165 Job Reference (optional)

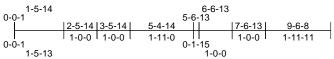
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:XovvVhpplasFPbAcKn0uEAzTAT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-6-13	6-6-13 7-6-13	11-10-8
5-6-13	1-0-0 1-0-0	4-3-11

Scale = 1:30.5

Plate Offsets (X, Y): [4:0-1-8,Edge], [9:0-1-8,Edge]


Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.79 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.29 0.03	(loc) 10-11 10-11 8	l/defl >622 >481 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	 2x4 SP No.1(flat) 2x4 SP 2400F 2.0E(2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 4-11-7 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-3-8, Max Grav 8=1093 (I (Ib) - Maximum Com Tension 1-12=-141/0, 7-8=-1 2-3=-3189/0, 3-4=-3 5-6=-3541/0, 6-7=-9 11-12=0/2019, 10-1 8-9=0/2011 	(flat) eathing directly applic except end verticals. r applied or 10-0-0 o 12=0-4-8 LC 1), 12=1105 (LC apression/Maximum 28/0, 1-2=0/0, 1189/0, 4-5=-3541/0, //0 1=0/3541, 9-10=0/3	ed or c 1) 541,								Weight. 57 ib	
WEBS	4-10=-196/71, 5-9=- 3-11=-392/0, 2-11=(6-8=-2219/0, 6-9=0/)/1311, 2-12=-2231/	,									ш.,
this desig 2) All bearin 3) Recomm 10-00-00 (0.131" X at their of 4) CAUTION 5) In the LO of the true LOAD CASE 1) Dead + Plate In- Uniform	ced floor live loads have gn. logs are assumed to be : loc and fastened to ead (3") nails. Strongbacks, uter ends or restrained N, Do not erect truss ba AD CASE(S) section, li liss are noted as front (F (S) Standard Floor Live (balanced): I crease=1.00 h Loads (lb/ft) 8-12=-10, 1-7=-180 (F=	SP 2400F 2.0E . on edge, spaced at ch truss with 3-10d s to be attached to w by other means. ackwards. oads applied to the f or back (B). Lumber Increase=1.	alls ace							and States	SEA 286	EER St.


TRENCO A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

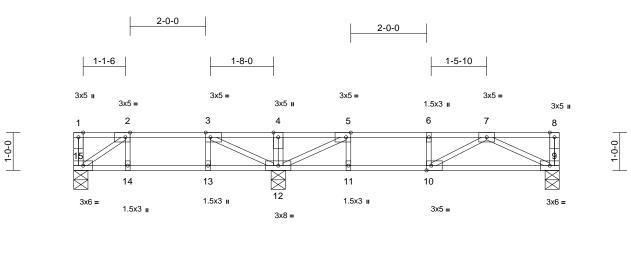
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F113	Floor	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:XovvVhpplasFPbAcKn0uEAzTAT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.8

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [6:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.73 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.07 0.01	(loc) 8-9 8-9 8	l/defl >900 >674 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex 	eathing directly applie	Vert: 8-1	Matrix-MSH 13=-10, 1-7=-180 (F⊧	=-80)	<u> </u>					Weight: 45 lb	FT = 20%F, 11%E
REACTIONS	(size) 8=0-3-8, Max Grav 8=466 (L 13=555 (
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-13=-56/56, 7-8=-1 2-3=-824/0, 3-4=-82 5-6=-613/0, 6-7=-11 12-13=0/824, 11-12	npression/Maximum 50/0, 1-2=0/0, 24/0, 4-5=-613/0, /0 =0/824, 10-11=0/824	4,									
WEBS	9-10=0/613, 8-9=0/0 2-12=0/128, 3-11=- 6-9=-73/0, 2-13=-99 6-8=-672/0											in the second se
 this desig All bearin Recommendation 10-00-00 (0.131" X at their or CAUTION In the LO 	ed floor live loads have in. igs are assumed to be end 2x6 strongbacks, of oc and fastened to ear 3") nails. Strongbacks uter ends or restrained N, Do not erect truss ba AD CASE(S) section, I ss are noted as front (F	SP No.2 . on edge, spaced at ch truss with 3-10d s to be attached to w by other means. ackwards. oads applied to the f	alls						CONTRACT OF CONTRACT	Number of Street	OR DEFESS SEA 2867	EER SK man
1) Dead + Plate Inc	(S) Standard Floor Live (balanced): crease=1.00 Loads (lb/ft)	, , ,	00,								Jur	ALINSHITT ne 9,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

AMITek Affiliate 818 Soundside Road Edenton, NC 27932

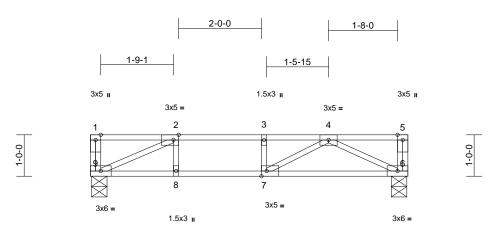
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F114	Floor	1	1	I74025167 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:XovvVhpplasFPbAcKn0uEAzTAT7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Ĺ	1-5-14	2-5-14	3-5-14	5-4-14	7-3-14	8-3-14	9-3-14	12-10-0
ſ	1-5-14	1-0-0	1-0-0	1-11-0	1-11-0	1-0-0	1-0-0	3-6-2

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [5:0-1-8,Edge], [10:0-1-8,Edge]


Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.96 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.18 0.02	(loc) 9-10 9-10 9	l/defl >673 >490 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.	d or	oads (lb/ft) 15=-10, 1-8=-180 (F=-80)							
	bracing. REACTIONS (size) 9=0-4-8, 12=0-4-8 Max Grav 9=709 (LC 7), 12=1208 (LC 8), 15=514 (LC 10)											
FORCES	FORCES (Ib) - Maximum Compression/Maximum											
TOP CHORD	Tension OP CHORD 1-15=-70/33, 8-9=-126/0, 1-2=0/0, 2-3=-734/0, 3-4=-140/194, 4-5=-140/194, 5-6=-1410/0, 6-7=-1410/0, 7-8=0/0											
BOT CHORD	14-15=0/734, 13-14= 11-12=0/1410, 10-1	=0/734, 12-13=0/734	,									
WEBS	2-14=0/85, 3-13=-35 5-11=0/138, 6-10=-1 3-12=-854/0, 5-12=- 7-10=0/350	5/8, 4-12=-302/0, 190/0, 2-15=-884/0,										
NOTES	a di f ha a an Usana la an da da an sa		_							S	RTHUR	79111
this design	ed floor live loads have n.	e been considered to	r							22	O' EPS	N. VS'
	are 3x5 MT20 unless o									-		2 7 1 2
 5-11=0/138, 6-10=-190/0, 2-15=-884/0, 3-12=-854/0, 5-12=-1476/0, 7-9=-1261/0, 7-10=0/350 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 3x5 MT20 unless otherwise indicated. 3) All bearings are assumed to be SP No.2. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards. 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 												
6) In the LOA) CAUTION, Do not erect truss backwards.) In the LOAD CASE(S) section, loads applied to the face										S.ENOW	ERIL
of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard											E. NS IN	
1) Dead + F	S) Standard Floor Live (balanced): L rease=1.00	_umber Increase=1.0	00,								L.G	ALING THE 9,2025
											Jur	ne 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:30.5

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F115	Floor	1	1	I74025168 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:?_THi1qR3t_61IlouVX7nNzTAT6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

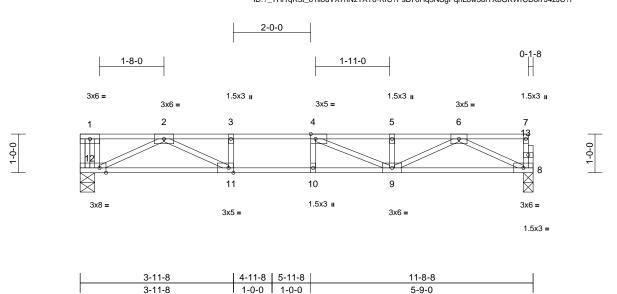
Scale = 1:27.8

Plate Offsets (X, Y): [2:0-1-8,Edge], [7:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.90 0.85 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.16 0.01	(loc) 6-7 6-7 6	l/defl >723 >543 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%F, 11%E
	0.0	oud		Matrix Mort							Weight: 00 lb	1 1 - 20 /01 , 11 /0L
TOP CHORD BOT CHORD WEBS												
BRACING												
TOP CHORD	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 6=0-4-8, 9 Max Grav 6=623 (LC											
FORCES	(lb) - Maximum Com											
TOP CHORD												
BOT CHORD	,	224, 6-7=0/995										
WEBS	2-8=0/120, 3-7=-186 4-6=-1107/0, 4-7=0/-											
NOTES	ed floor live loads have	been considered fo	or.									
this desigr												
3) Recomme	end 2x6 strongbacks, o	n edge, spaced at									"TH CA	BO
(0.131" X	oc and fastened to eac 3") nails. Strongbacks	to be attached to w	alls							and and	OR	in the
	ter ends or restrained AD CASE(S) section, lo		ace							35		MA: THE
of the trus	s are noted as front (F) or back (B).									SEA	1 1 1 E
1) Dead + F Plate Inc Uniform I	Floor Live (balanced): L rease=1.00 Loads (lb/ft)		00,								SEA 286	77
Vert: 6	δ-9=-8, 1-5=-160 (F=-8	U)								in all	OKNGIN	EEPSKIII
											L.G	AL

June 9,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

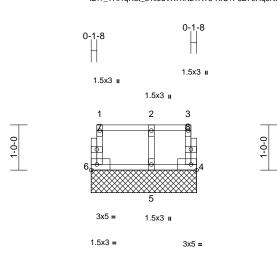
Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH
25060036-02	F116	Floor	1	1	I74025169 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:35 ID:?_THi1qR3t_61IlouVX7nNzTAT6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.8

Plate Offsets (X, Y): [4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-2-0,Edge]


Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 NO	CSI TC BC WB	0.80 0.96 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.25 0.03	(loc) 9-10 9-10 8	l/defl >713 >543 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 58 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 12=0-4-8 C 1), 12=782 (LC 1) pression/Maximum 7/0, 1-2=0/0, 399/0, 4-5=-2239/0, /0	Uniform I Vert: 8 ed or	_oads (lb/ft) -12=-8, 1-7=-130 (F	=-50)						u vroignit, où lù	1 1 - 20 /01 , 11 /0L
WEBS	3-11=-375/0, 4-10=-),									
	6-9=0/971, 5-9=-328 2-12=-1606/0, 2-11=											
 this design 2) All bearing 3) Provide me bearing pla 4) Recomment 10-00-00 ct (0.131" X at their out 5) CAUTION, 6) In the LOA of the truss LOAD CASE(\$ 1) Dead + F 	is are assumed to be s echanical connection (ate at joint(s) 8. nd 2x6 strongbacks, o oc and fastened to eac and fastened to eac and fastened to eac ter ends or restrained b, Do not erect truss ba AD CASE(S) section, lo s are noted as front (F	SP No.1. (by others) of truss to n edge, spaced at th truss with 3-10d to be attached to we by other means. ckwards. bads applied to the fa) or back (B).	o alls ace							and an annumber	SEA 2867	EER Stuning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	51 Magnolia Acres-Crawl-Grayson BC 3FL SP FE GLH			
25060036-02	F117	Floor Supported Gable	1	1	I74025170 Job Reference (optional)			

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 06 08:25:36 ID:?_THi1qR3t_61IlouVX7nNzTAT6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x3 =

Scale = 1:25.5

Scale = 1:25.5												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MR							Weight: 12 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)	-						·				

OTHERS	2X4 SP N	0.3(liat)			
BRACING					
TOP CHORD	Structural wood sheathing directly applied or				
	2-4-0 oc p	ourlins, except end verticals.			
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc				
	bracing.				
REACTIONS	(size)	4=2-4-0, 5=2-4-0, 6=2-4-0			
	Max Grav	4=33 (LC 1), 5=93 (LC 1), 6=48			
		(LC 1)			
FORCES	(lb) - Maximum Compression/Maximum				
	Tension				
TOP CHORD	1-6=-44/0, 3-4=-28/0, 1-2=-9/0, 2-3=-9/0				
BOT CHORD	5-6=0/9, 4-5=0/9				
WEBS	2-5=-86/0)			

NOTES

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) All bearings are assumed to be SP No.2 .

5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

June 9,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

