
Trenco
818 Soundside Rd
Edenton, NC 27932

Re: 252241-A
Lot 5 Turlington Landing

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

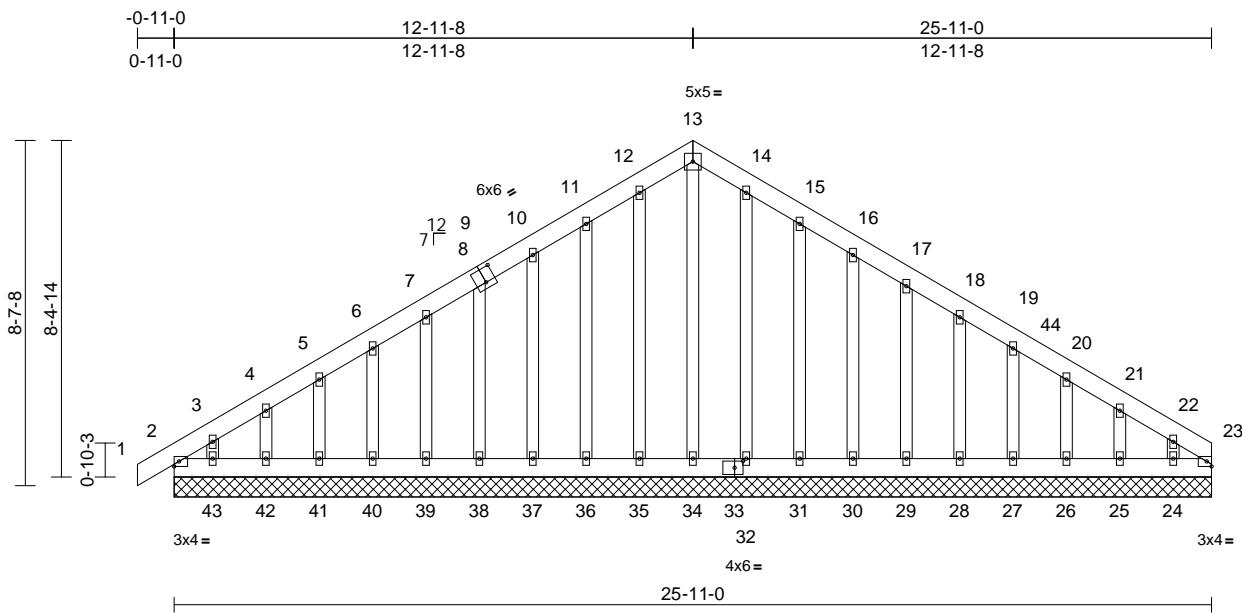
Pages or sheets covered by this seal: I77677653 thru I77677665

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

November 10,2025

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job 252241-A	Truss A1-GE	Truss Type GABLE	Qty 1	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677653
-----------------	----------------	---------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:11
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uTxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.6

Plate Offsets (X, Y): [9:0-3-0,0-4-4], [33:0-2-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	23	n/a	n/a	
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 242 lb FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=25-11-0, 23=25-11-0, 24=25-11-0, 25=25-11-0, 26=25-11-0, 27=25-11-0, 28=25-11-0, 29=25-11-0, 30=25-11-0, 31=25-11-0, 32=25-11-0, 34=25-11-0, 35=25-11-0, 36=25-11-0, 37=25-11-0, 38=25-11-0, 39=25-11-0, 40=25-11-0, 41=25-11-0, 42=25-11-0, 43=25-11-0

Max Horiz 2=241 (LC 11)

Max Uplift 2=100 (LC 8), 23=49 (LC 11), 24=101 (LC 13), 25=56 (LC 13), 26=51 (LC 13), 27=51 (LC 13), 28=51 (LC 13), 29=52 (LC 13), 30=56 (LC 13), 31=60 (LC 13), 32=2 (LC 13), 35=14 (LC 12), 36=58 (LC 12), 37=55 (LC 12), 38=52 (LC 12), 39=52 (LC 12), 40=51 (LC 12), 41=51 (LC 12), 42=59 (LC 12), 43=100 (LC 12)

Max Grav 2=185 (LC 20), 23=128 (LC 13), 24=126 (LC 20), 25=119 (LC 20), 26=116 (LC 20), 27=116 (LC 20), 28=116 (LC 20), 29=116 (LC 20), 30=117 (LC 20), 31=119 (LC 20), 32=105 (LC 1), 34=133 (LC 22), 35=118 (LC 19), 36=118 (LC 19), 37=116 (LC 19), 38=116 (LC 19), 39=116 (LC 19), 40=116 (LC 19), 41=115 (LC 19), 42=125 (LC 19), 43=111 (LC 10)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/11, 2-3=-259/199, 3-4=-191/166, 4-5=-164/147, 5-6=-144/132, 6-7=-133/128, 7-8=-121/133, 8-10=109/157, 10-11=104/182, 11-12=129/209, 12-13=-136/221, 13-14=-136/221, 14-15=-129/206, 15-16=-104/163, 16-17=-79/121, 17-18=-56/81, 18-19=-56/50, 19-20=-65/44, 20-21=-83/59, 21-22=-127/76, 22-23=-199/106

BOT CHORD 2-43=-81/166, 42-43=-81/166, 41-42=-81/166, 40-41=-81/166, 39-40=-81/166, 38-39=-81/166, 37-38=-81/166, 36-37=-81/166, 35-36=-81/166, 34-35=-81/166, 32-34=-81/166, 31-32=-81/166, 30-31=-81/166, 29-30=-81/166, 28-29=-81/166, 27-28=-81/166, 26-27=-81/166, 25-26=-81/166, 24-25=-81/166, 23-24=-81/166

WEBS 13-34=-116/37, 12-35=-91/30, 11-36=-91/74, 10-37=-89/71, 8-38=-89/68, 7-39=-89/67, 6-40=-89/68, 5-41=-88/66, 4-42=-97/79, 3-43=-89/105, 14-32=-78/18, 15-31=-93/76, 16-30=-91/72, 17-29=-89/68, 18-28=-89/67, 19-27=-89/68, 20-26=-89/70, 21-25=-93/78, 22-24=-93/104

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E)-0-11-0 to 3-7-8, Exterior(2N) 3-7-8 to 12-11-8, Corner(3R) 12-11-8 to 17-4-5, Exterior(2N) 17-4-5 to 25-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 (||) MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

November 10, 2025

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss A1-GE	Truss Type GABLE	Qty 1	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677653
-----------------	----------------	---------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:11
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

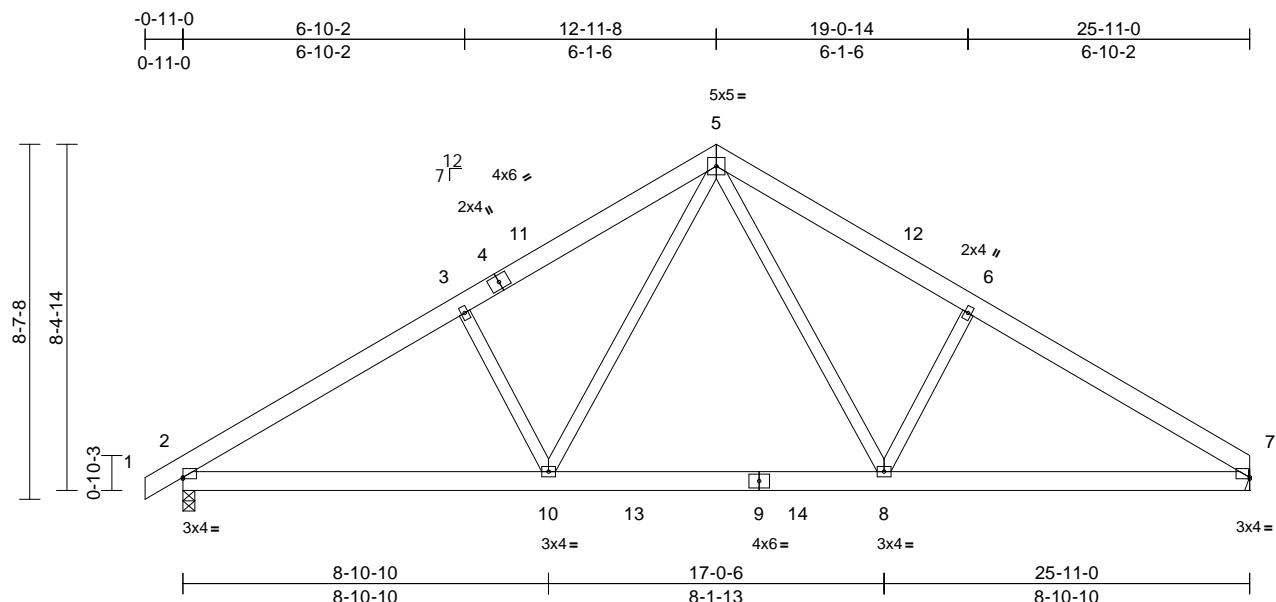
Page: 2

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 23, 100 lb uplift at joint 2, 14 lb uplift at joint 35, 58 lb uplift at joint 36, 55 lb uplift at joint 37, 52 lb uplift at joint 38, 52 lb uplift at joint 39, 51 lb uplift at joint 40, 51 lb uplift at joint 41, 59 lb uplift at joint 42, 100 lb uplift at joint 43, 2 lb uplift at joint 32, 60 lb uplift at joint 31, 56 lb uplift at joint 30, 52 lb uplift at joint 29, 51 lb uplift at joint 28, 51 lb uplift at joint 27, 51 lb uplift at joint 26, 56 lb uplift at joint 25 and 101 lb uplift at joint 24.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

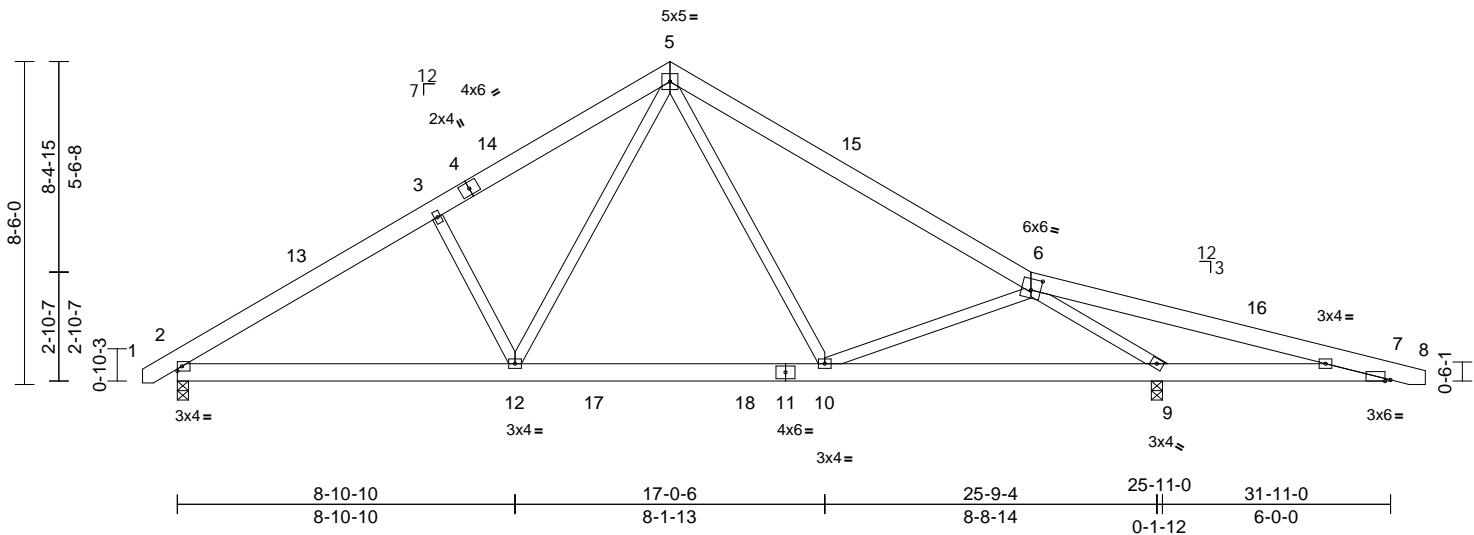

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 252241-A	Truss A2	Truss Type COMMON	Qty 11	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677654
-----------------	-------------	----------------------	-----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:12
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1


Job 252241-A	Truss A3	Truss Type Roof Special	Qty 10	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677655
-----------------	-------------	----------------------------	-----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:12
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

-0-11-0 6-8-14 12-11-8 22-5-8 31-11-0 32-10-0
0-11-0 6-8-14 6-2-10 9-6-0 9-5-8 0-11-0

Scale = 1:60.6

Plate Offsets (X, Y): [6:0-3-0,0-3-8], [7:0-1-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.08	10-12	>999	360	MT20	
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.12	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.02	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.03	10-12	>999	240	Weight: 210 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-7-11 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 7-9.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 2 and 127 lb uplift at joint 9.

LOAD CASE(S) Standard

REACTIONS (size)

2=0-3-8, 9=0-3-8
Max Horiz 2=-193 (LC 10)
Max Uplift 2=-72 (LC 12), 9=-127 (LC 13)
Max Grav 2=1217 (LC 19), 9=1757 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/6, 2-3=-1669/400, 3-5=-1537/460, 5-6=-1415/268, 6-7=-986/1250, 7-8=0/8
BOT CHORD 2-12=-223/1475, 10-12=-12/976, 9-10=-70/1236, 7-9=-1144/1007
WEBS 5-10=0/449, 6-10=-192/193, 6-9=-2513/1187, 5-12=-183/775, 3-12=-323/284

NOTES

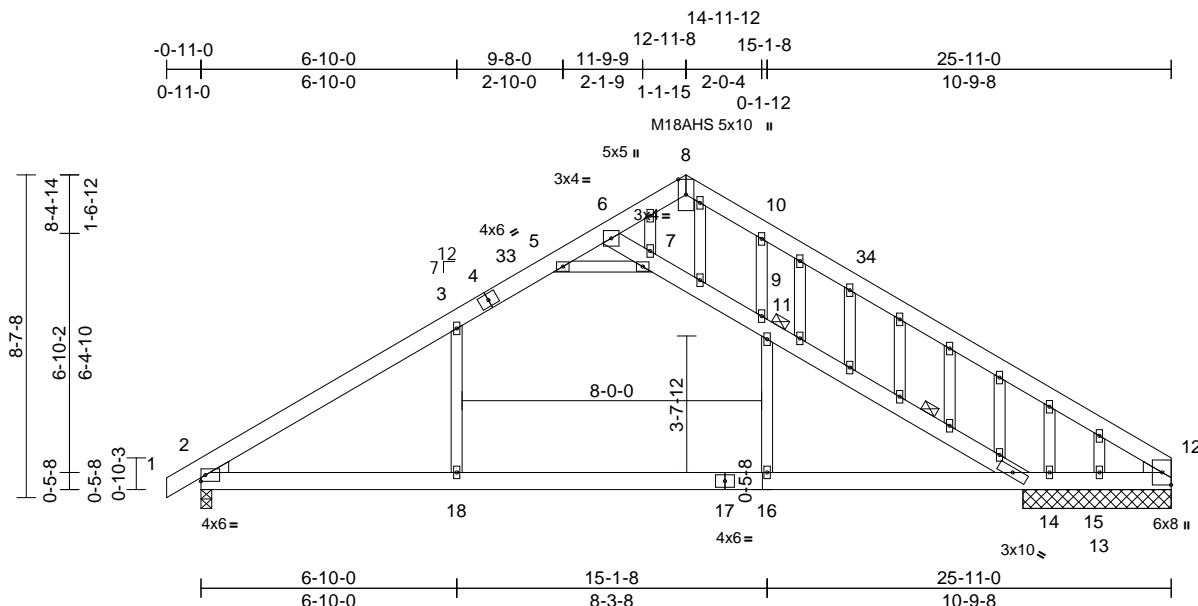
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -0-9-5 to 3-7-8, Interior (1) 3-7-8 to 12-11-8, Exterior(2R) 12-11-8 to 17-4-5, Interior (1) 17-4-5 to 32-7-7 zone; cantilever right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss A4-GE	Truss Type GABLE	Qty 1	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677656
-----------------	----------------	---------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:12
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

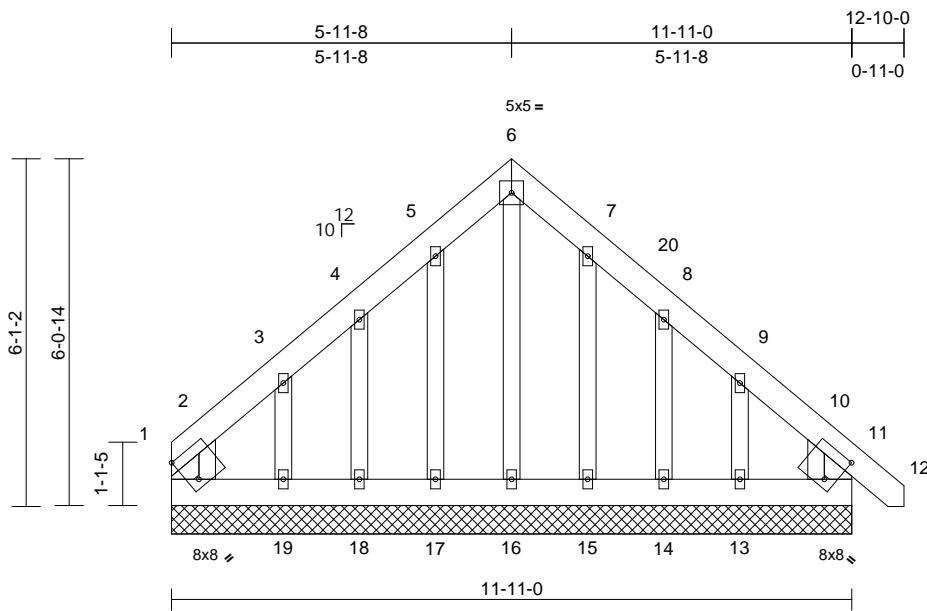
Page: 1

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DS8-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss B1GE	Truss Type GABLE	Qty 2	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677657
-----------------	---------------	---------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.4

Plate Offsets (X, Y): [1:Edge,0-6-5], [11:0-2-3,0-6-5]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S						Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2
SLIDER Left 2x4 SP No.2 -- 0-7-14, Right 2x4 SP No.2 -- 0-7-14

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=11-11-0, 11=11-11-0, 13=11-11-0,
14=11-11-0, 15=11-11-0,
16=11-11-0, 17=11-11-0,
18=11-11-0, 19=11-11-0
Max Horiz 1=170 (LC 10)
Max Uplift 1=-53 (LC 8), 11=-45 (LC 9),
13=-141 (LC 13), 14=-78 (LC 13),
15=-39 (LC 13), 17=-39 (LC 12),
18=-63 (LC 12), 19=-186 (LC 12)
Max Grav 1=139 (LC 20), 11=170 (LC 19),
13=174 (LC 20), 14=116 (LC 20),
15=119 (LC 20), 16=111 (LC 12),
17=117 (LC 19), 18=114 (LC 19),
19=182 (LC 19)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-124/62, 2-3=-114/92, 3-4=-76/68,
4-5=-99/173, 5-6=-120/230, 6-7=-120/230,
7-8=-99/181, 8-9=-93/84, 9-10=-109/93,
10-11=-130/74, 11-12=0/26

BOT CHORD 1-19=-82/189, 18-19=-82/189,
17-18=-82/189, 16-17=-82/189,
15-16=-82/189, 14-15=-82/189,
13-14=-82/189, 11-13=-90/198

WEBS 6-16=-166/53, 5-17=-88/71, 4-18=-101/160,
3-19=-129/242, 7-15=-90/64, 8-14=-101/154,
9-13=-132/191

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-4-10 to 4-7-8, Exterior(2N) 4-7-8 to 5-11-8, Corner(3R) 5-11-8 to 10-4-5, Exterior(2N) 10-4-5 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 (||) MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1, 45 lb uplift at joint 11, 39 lb uplift at joint 17, 63 lb uplift at joint 18, 186 lb uplift at joint 19, 39 lb uplift at joint 15, 78 lb uplift at joint 14 and 141 lb uplift at joint 13.

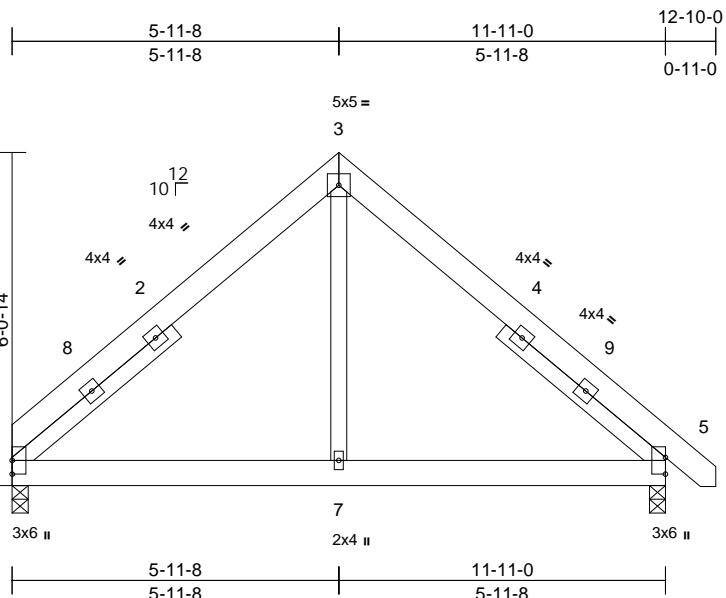
LOAD CASE(S) Standard

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss B2	Truss Type COMMON	Qty 4	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677658
-----------------	-------------	----------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.01	1-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(CT)	-0.02	1-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	Wind(LL)	0.01	5-7	>999	240	Weight: 87 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2
SLIDER Left 2x4 SP No.2 -- 3-9-13, Right 2x4 SP No.2 -- 3-9-13

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 29 lb uplift at joint 5.

LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 6'-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=-134 (LC 8)

Max Uplift 1=-18 (LC 12), 5=-29 (LC 13)

Max Grav 1=475 (LC 1), 5=525 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=-491/202, 3-5=-518/203, 5-6=0/4

BOT CHORD 1-7=0/307, 5-7=0/307

WEBS 3-7=0/278

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0 to 4-4-13, Interior (1) 4-4-13 to 5-11-8,
Exterior(2R) 5-11-8 to 10-4-5, Interior (1) 10-4-5 to
12-8-5 zone; C-C for members and forces & MWFRS for
reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

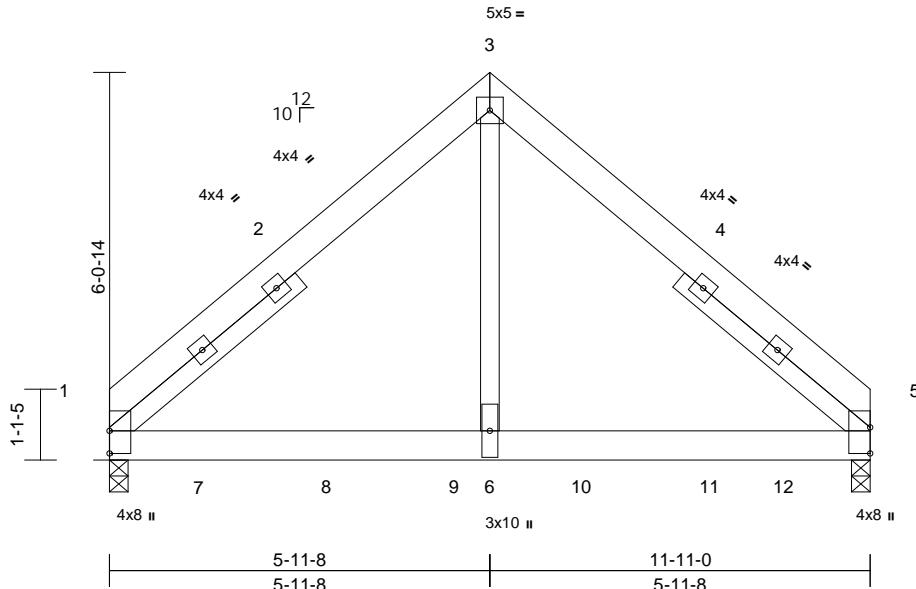
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

November 10, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss B3-GR	Truss Type COMMON GIRDER	Qty 1	Ply 2	Lot 5 Turlington Landing Job Reference (optional)	I77677659
-----------------	----------------	-----------------------------	----------	-----------------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.06	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(CT)	-0.12	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	Wind(LL)	0.04	5-6	>999	240	Weight: 169 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP 2400F 2.0E
WEBS 2x4 SP No.2
SLIDER Left 2x4 SP No.2 -- 3-9-13, Right 2x4 SP No.2 -- 3-9-13

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8
Max Horiz 1=133 (LC 6)
Max Uplift 1=216 (LC 8), 5=237 (LC 9)
Max Grav 1=3831 (LC 15), 5=4190 (LC 16)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=3702/259, 3-5=3679/257
BOT CHORD 1-6=131/2713, 5-6=131/2713
WEBS 3-6=190/4420

NOTES

- 1-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-8-0 oc.
Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 216 lb uplift at joint 1 and 237 lb uplift at joint 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1193 lb down and 69 lb up at 1-4-12, 1193 lb down and 69 lb up at 3-4-12, 1193 lb down and 69 lb up at 5-4-12, 1193 lb down and 69 lb up at 7-4-12, and 1193 lb down and 69 lb up at 9-4-12, and 1193 lb down and 69 lb up at 10-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

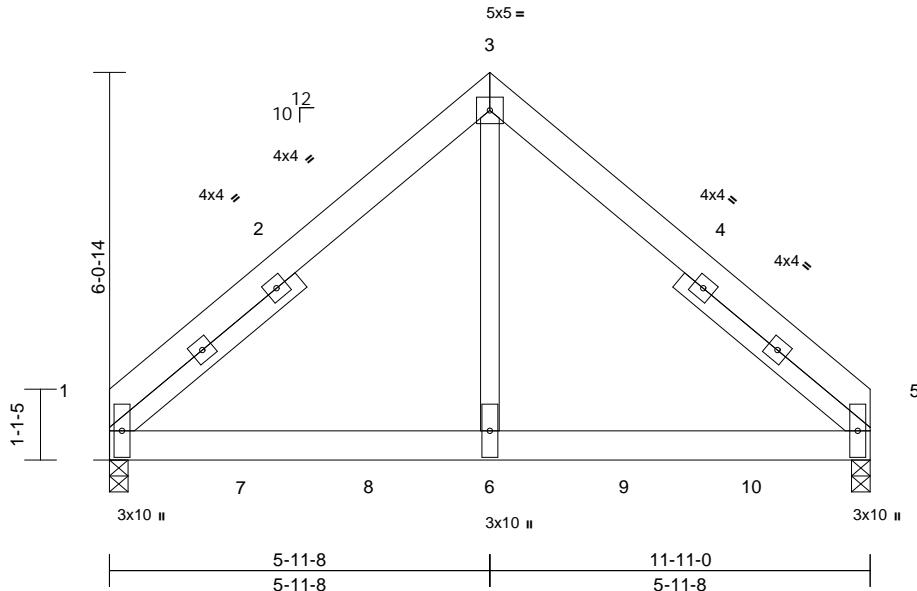
LOAD CASE(S)

Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (lb/ft)
Vert: 1-3=60, 3-5=60, 1-5=20
Concentrated Loads (lb)
Vert: 7=1007 (B), 8=1007 (B), 9=1007 (B), 10=1007 (B), 11=1007 (B), 12=1007 (B)

November 10, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 252241-A	Truss B4-GR	Truss Type COMMON GIRDER	Qty 1	Ply 2	Lot 5 Turlington Landing Job Reference (optional)	I77677660
-----------------	----------------	-----------------------------	----------	-----------------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Plate Offsets (X, Y): [1:0-5-0,0-0-13], [5:0-5-10,0-0-13]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.06	1-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(CT)	-0.11	1-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	Wind(LL)	0.03	1-6	>999	240	Weight: 169 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2
SLIDER Left 2x4 SP No.2 -- 3-9-13, Right 2x4 SP No.2 -- 3-9-13

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=133 (LC 25)

Max Uplift 1=189 (LC 8), 5=194 (LC 9)

Max Grav 1=3372 (LC 15), 5=3456 (LC 16)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=3469/244, 3-5=3467/244

BOT CHORD 1-6=121/2539, 5-6=121/2539

WEBS 3-6=171/4135

NOTES

- 1-ply truss to be connected together with 10d (0.131"X3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

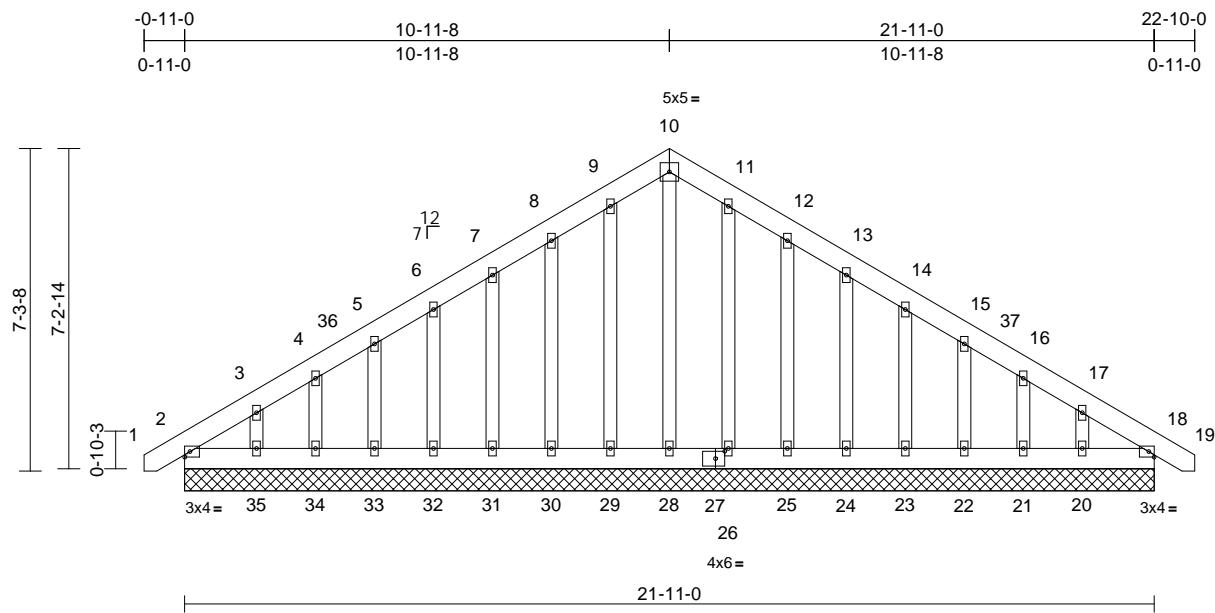
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 1 and 194 lb uplift at joint 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1193 lb down and 69 lb up at 2-0-12, 1193 lb down and 69 lb up at 4-0-12, 1193 lb down and 69 lb up at 6-0-12, and 1193 lb down and 69 lb up at 8-0-12, and 1193 lb down and 69 lb up at 10-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (lb/ft)
Vert: 1-3=60, 3-5=60, 1-5=-20
Concentrated Loads (lb)
Vert: 6=-1007 (B), 7=-1007 (B), 8=-1007 (B), 9=-1007 (B), 10=-1007 (B)

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job 252241-A	Truss D01GE	Truss Type GABLE	Qty 1	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677661
-----------------	----------------	---------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.1

Plate Offsets (X, Y): [27:0-2-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	18	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 193 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=21-11-0, 18=21-11-0, 20=21-11-0, 21=21-11-0, 22=21-11-0, 23=21-11-0, 24=21-11-0, 25=21-11-0, 26=21-11-0, 28=21-11-0, 29=21-11-0, 30=21-11-0, 31=21-11-0, 32=21-11-0, 33=21-11-0, 34=21-11-0, 35=21-11-0

Max Horiz 2=-205 (LC 10)

Max Uplift 2=-61 (LC 8), 18=-10 (LC 9), 20=-86 (LC 13), 21=-51 (LC 13), 22=-51 (LC 13), 23=-51 (LC 13), 24=-55 (LC 13), 25=-60 (LC 13), 26=-11 (LC 13), 29=-21 (LC 12), 30=-58 (LC 12), 31=-54 (LC 12), 32=-51 (LC 12), 33=-51 (LC 12), 34=-52 (LC 12), 35=-95 (LC 12)

Max Grav 2=158 (LC 20), 18=127 (LC 1), 20=139 (LC 20), 21=113 (LC 20), 22=116 (LC 20), 23=116 (LC 20), 24=117 (LC 20), 25=119 (LC 20), 26=106 (LC 20), 28=123 (LC 22), 29=118 (LC 19), 30=118 (LC 19), 31=116 (LC 19), 32=116 (LC 19), 33=116 (LC 19), 34=113 (LC 19), 35=149 (LC 19)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/6, 2-3=-199/164, 3-4=-144/128, 4-5=-123/112, 5-6=-113/109, 6-7=-101/124, 7-8=-90/148, 8-9=-108/184, 9-10=-118/204, 10-11=-118/204, 11-12=-108/184, 12-13=-83/138, 13-14=-59/94, 14-15=-51/52, 15-16=-60/37, 16-17=-74/52, 17-18=-143/82, 18-19=0/6

BOT CHORD

2-35=-69/144, 34-35=-69/144, 33-34=-69/144, 32-33=-69/144, 31-32=-69/144, 30-31=-69/144, 29-30=-69/144, 28-29=-69/144, 26-28=-69/144, 25-26=-69/144, 24-25=-69/144, 23-24=-69/144, 22-23=-69/144, 21-22=-69/144, 20-21=-69/144, 18-20=-69/144

WEBS

10-28=-10/26, 9-29=-91/37, 8-30=-91/76, 7-31=-89/72, 6-32=-89/68, 5-33=-89/69, 4-34=-90/80, 3-35=-112/109, 11-26=-80/27, 12-25=-93/76, 13-24=-90/72, 14-23=-89/68, 15-22=-89/69, 16-21=-89/80, 17-20=-104/108

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-9-5 to 3-7-8, Exterior(2N) 3-7-8 to 10-11-8, Corner(3R) 10-11-8 to 15-4-5, Exterior(2N) 15-4-5 to 22-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 (||) MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 2, 21 lb uplift at joint 29, 58 lb uplift at joint 30, 54 lb uplift at joint 31, 51 lb uplift at joint 32, 51 lb uplift at joint 33, 52 lb uplift at joint 34, 95 lb uplift at joint 35, 10 lb uplift at joint 18, 11 lb uplift at joint 26, 60 lb uplift at joint 25, 55 lb uplift at joint 24, 51 lb uplift at joint 23, 51 lb uplift at joint 22, 51 lb uplift at joint 21 and 86 lb uplift at joint 20.

LOAD CASE(S)

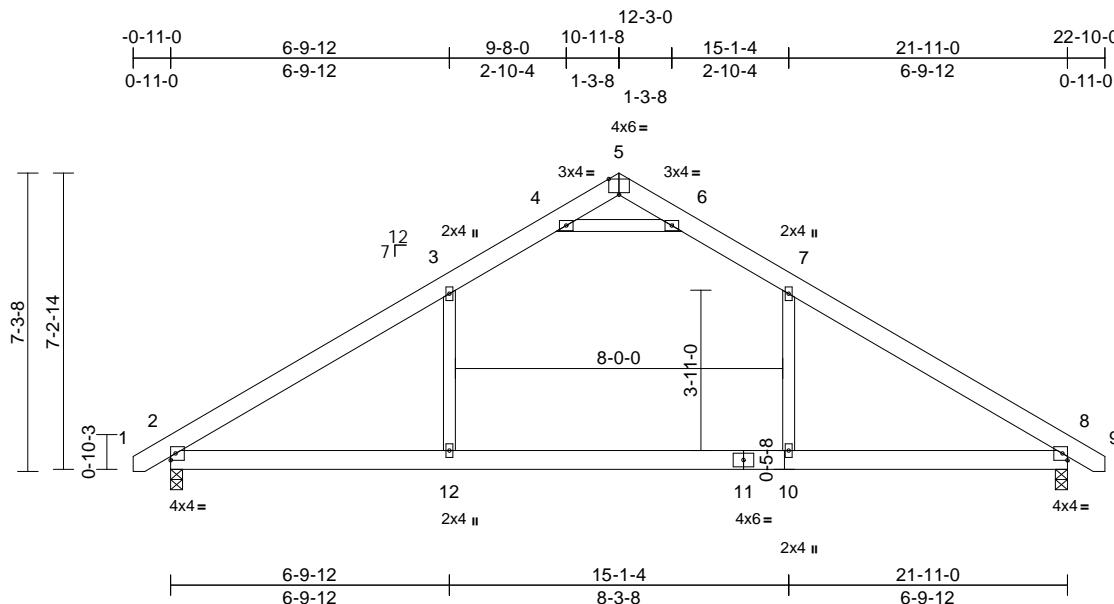
Standard

November 10, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss D02	Truss Type COMMON	Qty 6	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677662
-----------------	--------------	----------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.30 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.3

Plate Offsets (X, Y): [5:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.18	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(CT)	-0.28	10-12	>920	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	Wind(LL)	0.11	2-12	>999	240	Weight: 133 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP No.1
WEBS 2x4 SP No.2

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint

2 and 61 lb uplift at joint 8.

LOAD CASE(S) Standard

BRACING
TOP CHORD Structural wood sheathing directly applied or 5-4-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 8=0-3-8
Max Horiz 2=164 (LC 11)
Max Uplift 2=61 (LC 12), 8=61 (LC 13)
Max Grav 2=1146 (LC 19), 8=1146 (LC 20)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/6, 2-3=-1551/218, 3-4=-1122/281, 4-5=-139/822, 5-6=-139/824, 6-7=-1121/281, 7-8=-1551/218, 8-9=0/6

BOT CHORD 2-12=-76/1203, 10-12=-76/1203, 8-10=-76/1203

WEBS 7-10=0/530, 3-12=0/530, 4-6=-2085/471

NOTES

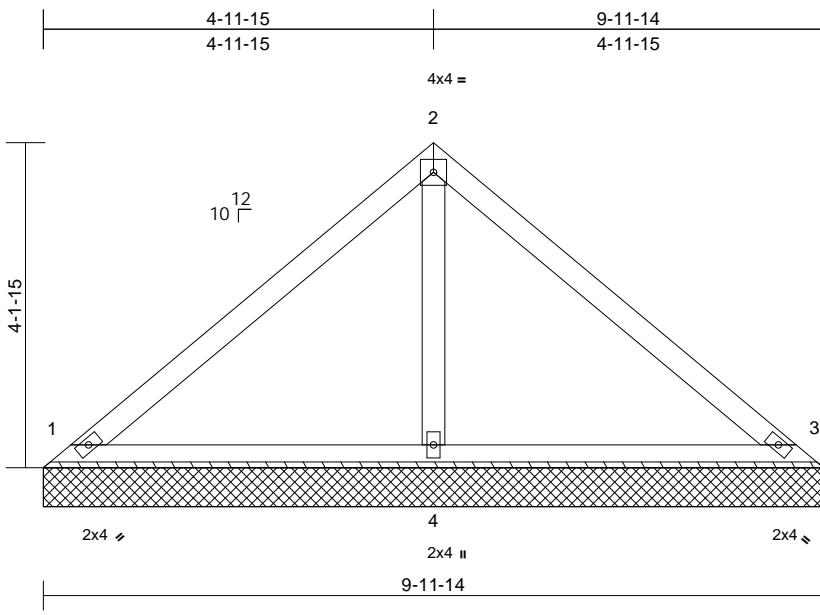
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -0-9-5 to 3-7-8, Interior (1) 3-7-8 to 10-11-8, Exterior(2R) 10-11-8 to 15-1-4, Interior (1) 15-1-4 to 22-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss V1	Truss Type Valley	Qty 2	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677663
-----------------	-------------	----------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S						Weight: 38 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=9-11-14, 3=9-11-14, 4=9-11-14

Max Horiz 1=-92 (LC 10)
Max Uplift 1=-22 (LC 13), 3=-30 (LC 13)
Max Grav 1=196 (LC 1), 3=196 (LC 1), 4=342 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-161/94, 2-3=-152/104
BOT CHORD 1-4=-18/71, 3-4=-18/71
WEBS 2-4=-205/125

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 30 lb uplift at joint 3.

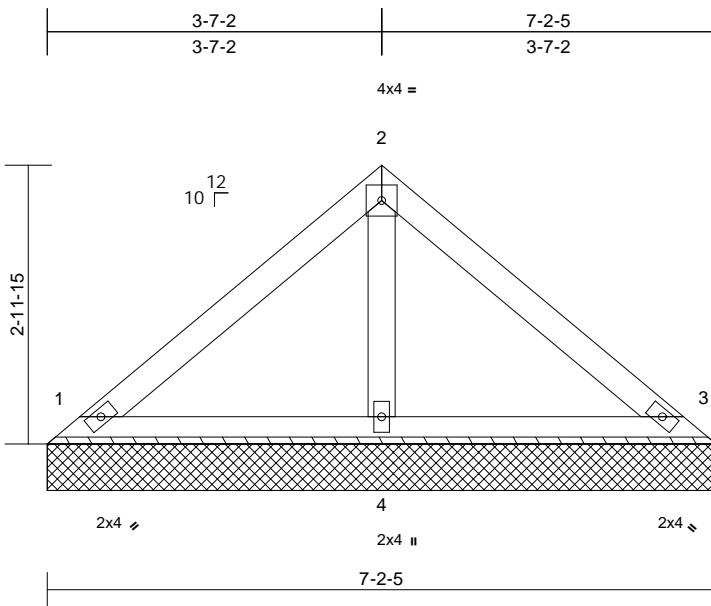
LOAD CASE(S) Standard

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss V2	Truss Type Valley	Qty 2	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677664
-----------------	-------------	----------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P						Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=7-2-5, 3=7-2-5, 4=7-2-5

Max Horiz 1=64 (LC 8)
Max Uplift 1=22 (LC 13), 3=28 (LC 13)
Max Grav 1=148 (LC 1), 3=148 (LC 1), 4=215 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=102/74, 2-3=93/81
BOT CHORD 1-4=-15/46, 3-4=-15/46
WEBS 2-4=-136/98

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 28 lb uplift at joint 3.

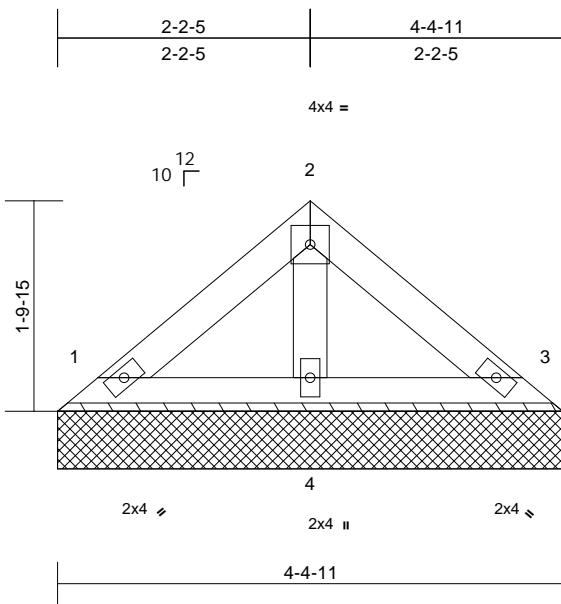
LOAD CASE(S) Standard

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 252241-A	Truss V3	Truss Type Valley	Qty 2	Ply 1	Lot 5 Turlington Landing Job Reference (optional)	I77677665
-----------------	-------------	----------------------	----------	----------	--	-----------

Comtech, Inc, Fayetteville, NC - 28314,

Run: 25.30 S Oct 2 2025 Print: 25.3.0 S Oct 2 2025 MiTek Industries, Inc. Mon Nov 10 13:12:13
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P						Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1
BOT CHORD 2x4 SP No.1
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-4-11 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=4-4-11, 3=4-4-11, 4=4-4-11
Max Horiz 1=36 (LC 9)
Max Uplift 1=12 (LC 13), 3=16 (LC 13)
Max Grav 1=83 (LC 1), 3=83 (LC 1), 4=121 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=57/47, 2-3=52/52
BOT CHORD 1-4=-8/26, 3-4=-8/26
WEBS 2-4=-76/65

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 0-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 16 lb uplift at joint 3.

LOAD CASE(S) Standard

November 10, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

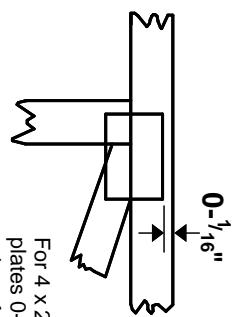

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ " from outside edge of truss.

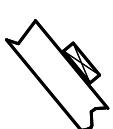
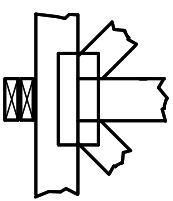

* Plate location details available in MiTek software or upon request.

PLATE SIZE

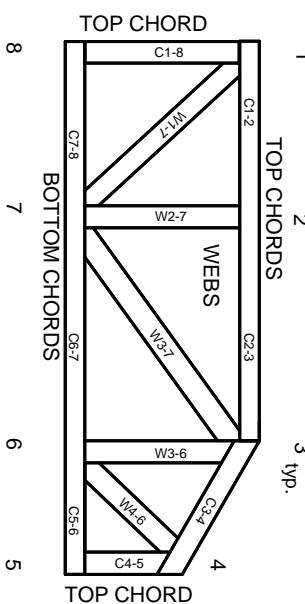
4 x 4


LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.



Industry Standards:

- ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
- DSB-22: Design Standard for Bracing.
- BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

- Cut members to bear tightly against each other.

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

- Carb is a non-structural consideration and is the responsibility of truss fabricator. General practice is to carb for dead load deflection.

- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

- Top chords must be sheathed or purlins provided at spacing indicated on design.

- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

- Connections not shown are the responsibility of others.

- Do not cut or alter truss member or plate without prior approval of an engineer.

- Install and load vertically unless indicated otherwise.

- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

- Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

- The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®
ENGINEERING BY
TRENO®
A MiTek Affiliate