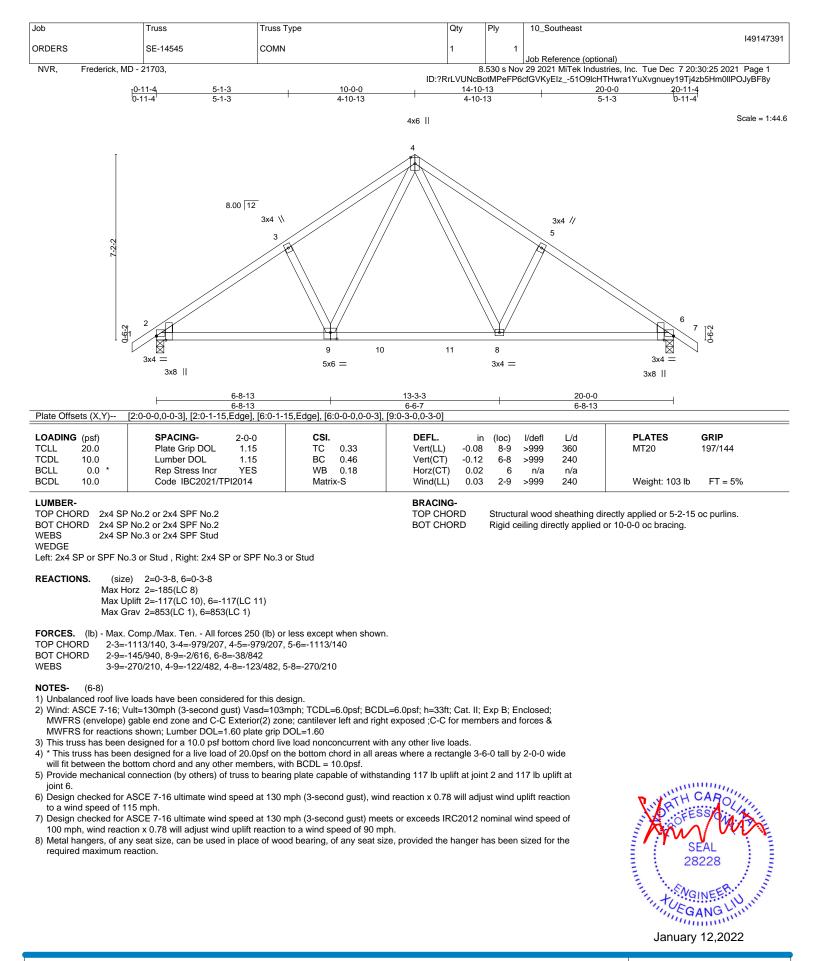
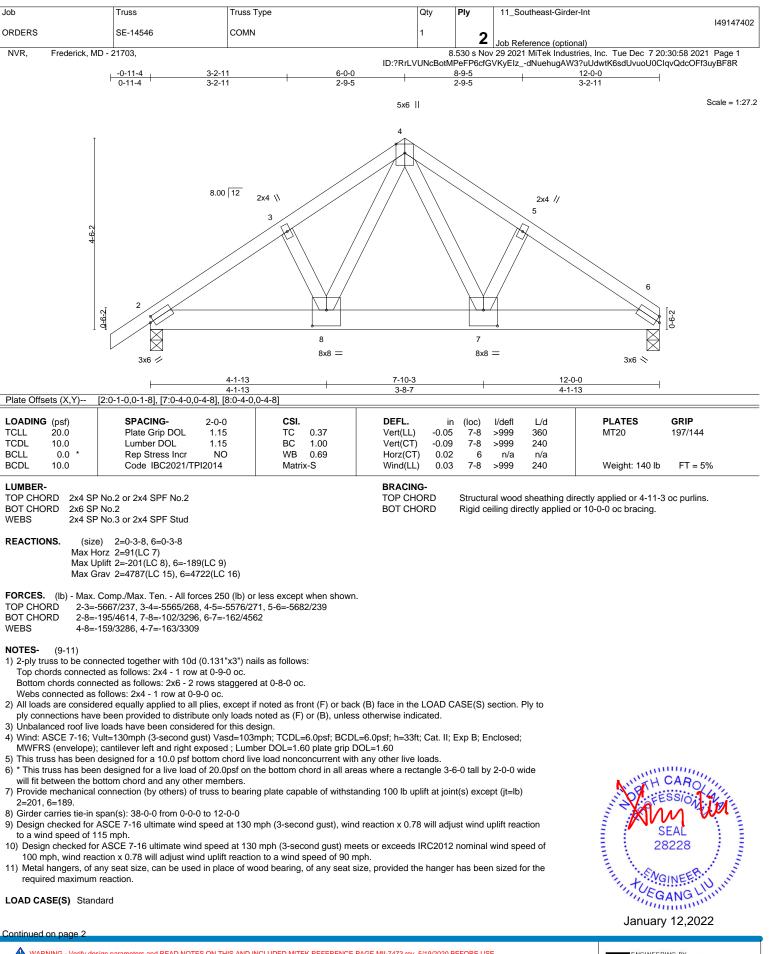

AT SE-18425

MODEL ADDEL ADDEL ARXING TITLE TRUSS BRACING DRAWN BY DRAWN BY DATE: OPTION OPTION DRAWN BY DATE: DATE: DATE: DATE: DPTION		
DRAWING TITLE TRUSS BRACING DRAWN BY DATE: DATE: OPTION OPTION	© NVR, Inc., The owner, expressly reserves its copyright and other property rights	
TRUSS BRACING DATE: DATE: DATE: OPTION OPTION		
OPTION DESCRIPTION OPTION	whatsoever, nor are they to be	COMM-LOI KIPLING VILLAGE - OOI9
	5285 Westview Drive, Suite 100 Frederick, MD 21703 Frederick, MD 21703	STREET ADDRESS APT. NO.
		STATE ZIP
		FUQUAY VARINA NC 27526

TRUSS BRACING NOTES:


- IF TRUSS DOES NOT APPEAR ON THIS TRUSS BRACING SHEET, NO ADDITIONAL LATERAL BRACING IS
- SHEET, NO ADDITIONAL LATERAL BRACING IS REQUIRED.
 2X4 SPF#2 LATERAL BRACES SHALL BE NAILED TO MINIMUM (3) TRUSS MEMBERS WITH MINIMUM (2) IOD NAILS. PROVISIONS MUST BE MADE AT ENDS OR SPECIFIED INTERVALS TO RESTRAIN OR ANCHOR LATERAL BRACING.
 NEEN THE BRACE DETAIL 2005 IN CREATING TO THE STATE OF THE STA
- LATERAL BRACING.
 WEB "T" BRACE, DETAIL **3/RF-IC**, IS REQUIRED WHERE LATERAL BRACING IS NOT CONTINUOUS ACROSS THREE (3) OR MORE TRUSSES AND MAY BE USED IN LIEU OF 2X4 LATERAL BRACING.
 DIAGONAL BRACING REQUIRED WHEN LATERAL BRACING IS REQUIRED (4/RF-IC)
 STUDDED GABLE BRACING DETAIL (I/RF-IC) TO BE UTILIZED FOR TRUSSES 6'-9" IN HEIGHT OR GREATER.
 PARTIALLY SHEATHED GABLES SEE (5/RE-IC) EOR "I"

- OF THE WEB MEMBER IDENTIFIED IN THE OF GREATER.
 6. PARTIALLY SHEATHED GABLES, SEE (5/RF-IC) FOR "L" BRACING WHEN REQUIRED.
 7. LATERAL BRACING CAN BE APPLIED TO EITHER SIDE OF THE WEB MEMBER IDENTIFIED IN THE DRAWING.
 8. SHEATHING (OSB OR GYPSUM) REPLACES LATERAL AND DIAGONAL TRUSS BRACING.



28228 VGINEER. UEGANGLUU 12.2022

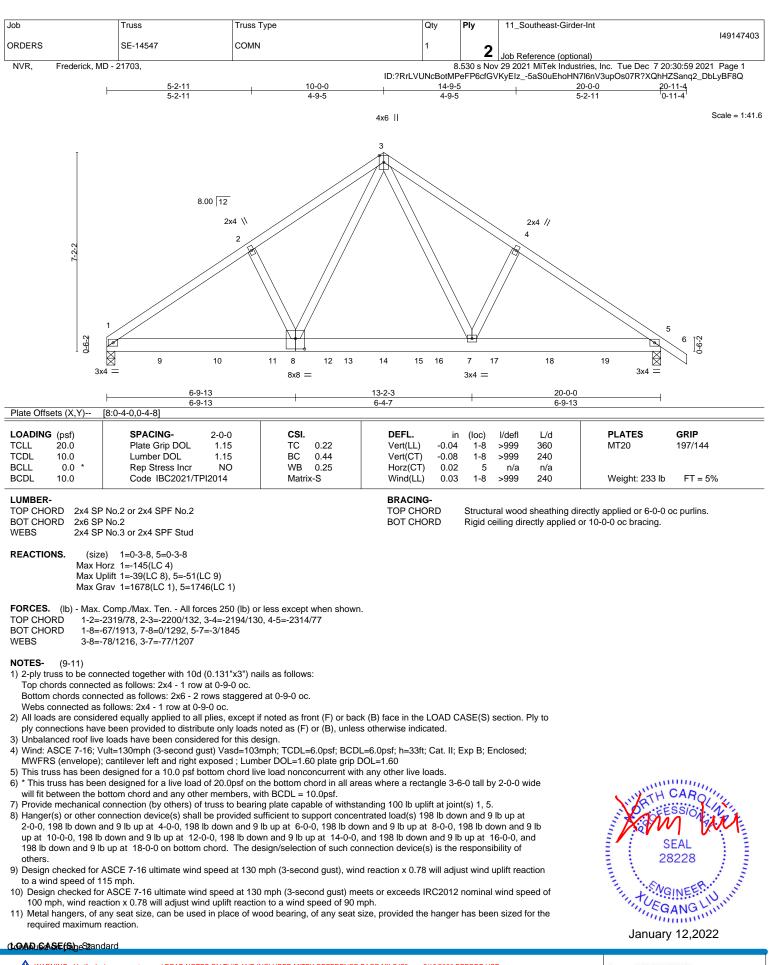
LOAD CASE(S) Standard

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road

Edenton, NC 27932

-	ob	Truss	Truss Type	Qty	Ply	11_Southeast-Girder-Int
						149147402
	DRDERS	SE-14546	COMN	1	2	
					_	Job Reference (optional)
	NVR, Frederick, MD - 2	21703,		8	.530 s Nov	29 2021 MiTek Industries, Inc. Tue Dec 7 20:30:58 2021 Page 2


8.530 s Nov 29 2021 MiTek Industries, Inc. Tue Dec 7 20:30:58 2021 Page 2 ID:?RrLVUNcBotMPeFP6cfGVKyEIz_-dNuehugAW3?uUdwtK6sdUvuoU0ClqvQdcOFf3uyBF8R

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 2-6=-734(B=-714), 1-4=-60, 4-6=-60

COAD GASE (S) geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

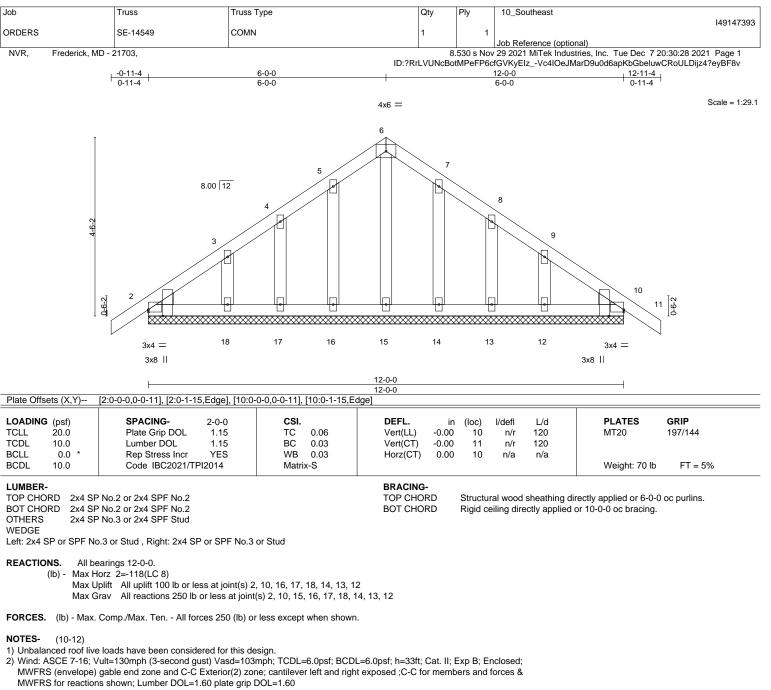
818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11_Southeast-Girder-Int
					I49147403
ORDERS	SE-14547	COMN	1	2	
					Job Reference (optional)
NVR, Frederick, MD - 2	21703,		8	.530 s Nov	29 2021 MiTek Industries, Inc. Tue Dec 7 20:30:59 2021 Page 2

8.530 s Nov 29 2021 MiTek Industries, Inc. Tue Dec 7 20:30:59 2021 Page 2 ID:?RrLVUNcBotMPeFP6cfGVKyEIz_-5aS0uEhoHN7l6nV3upOs07R?XQhHZSanq2_DbLyBF8Q

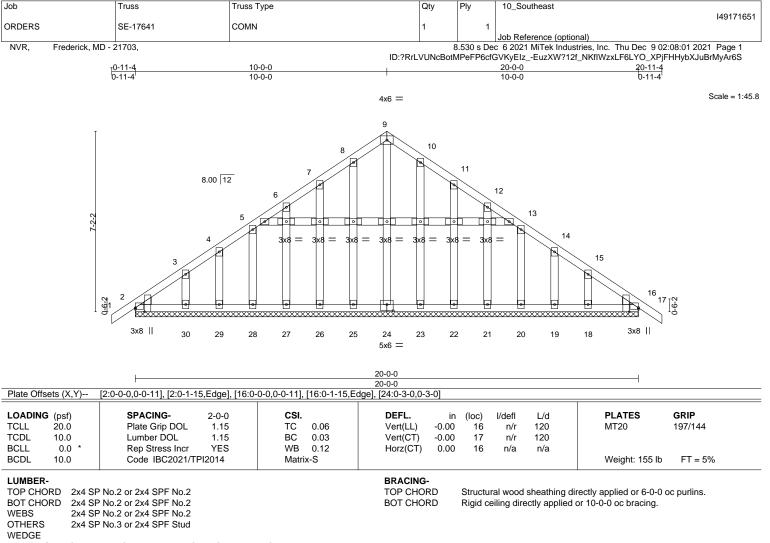
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

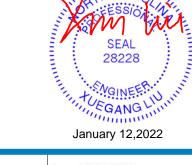
Vert: 1-5=-20, 1-3=-60, 3-6=-60 Concentrated Loads (lb)

Vert: 9=-198(F) 10=-198(F) 11=-198(F) 12=-198(F) 14=-198(F) 16=-198(F) 17=-198(F) 18=-198(F) 19=-198(F)



- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 16, 17, 18, 14. 13. 12.
- 10) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 11) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 12) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

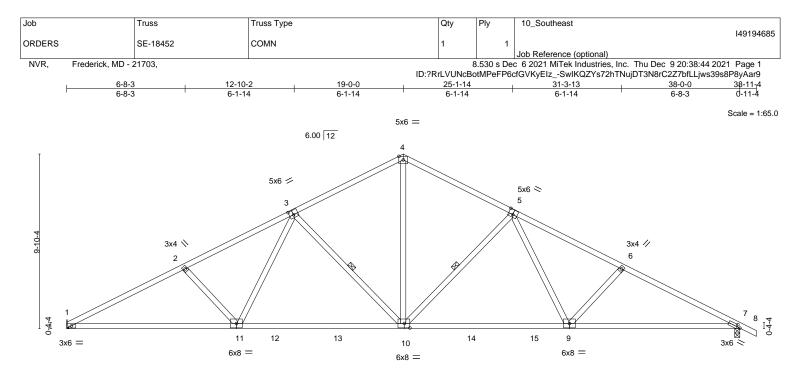
Left: 2x4 SP or SPF No.3 or Stud , Right: 2x4 SP or SPF No.3 or Stud


REACTIONS. All bearings 20-0-0.

- (lb) Max Horz 2=-185(LC 8)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 25, 26, 27, 28, 29, 30, 23, 22. 21. 20. 19. 18 Max Grav All reactions 250 lb or less at joint(s) 2, 16, 24, 25, 26, 27, 28, 29, 30,
 - 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(10-13)


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18,
- 10) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 11) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 12) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.
- 13) Framing and bracing of the gable end frame shall be provided by the building designer.

NUMBER OF STREET

TH CARO

L	9-9-3	19-0-0		28-2-			38-0-0		
Plate Offsets (X,Y)	<u>9-9-3</u> [3:0-2-12,0-3-0], [5:0-3-0,0-3-4], [7:0-2-	9-2-13 5 0-1-81 [10:0-3-12 0-3-0]	1	9-2-	-13	'	9-9-3		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.96 BC 0.94 WB 0.52	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.51 1 0.12	9-10 1-11 7	l/defl L/d >999 360 >897 240 n/a n/a	PLATES MT20	GRIP 197/144	
BCDL 10.0	Code IBC2021/TPI2014	Matrix-S	Wind(LL)	0.13	10	>999 240	Weight: 194 lb	FT = 5%	
LUMBER- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 *Except* 1-3: 2x4 SP No.2D BOT CHORD 2x4 SP No.2D *Except* 7-9,1-11: 2x4 SP No.1 WEBS 2x4 SP No.3 or 2x4 SPF Stud REACTIONS. (size) (size) 7=0-3-8, 1=Mechanical Max Horz 1=-178(LC 11) Max Grav 7=1577(LC 1), 1=-195(LC 10) Max Grav 7=1577(LC 1), 1=1511(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2848/387, 2-3=-2585/356, 3-4=-1783/288, 4-5=-1791/289, 5-6=-2570/352, 6-7=-2820/378 BOT CHORD 1-11=-424/2485, 10-11=-240/1999, 9-10=-96/1991, 7-9=-242/2452 WEBS 2-11=-370/234, 3-11=-56/569, 3-10=-709/267, 4-10=-127/1208, 5-10=-694/266, 5-9=-54/555, 6-9=-347/224									
,	live loads have been considered for this de	0	0.0		- D. E.	-l di			

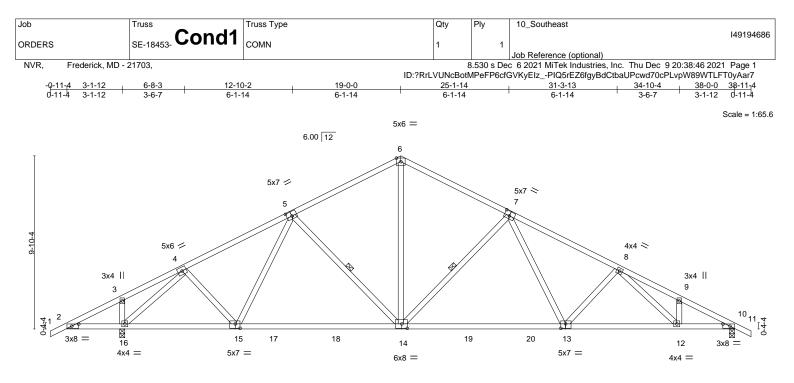
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=219, 1=195.


7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

		9-3 7-7	<u>19-0-0</u> 9-2-13			-2-13 2-13		+ 34-10-4 6-7-7	38-0-0	
Plate Offsets (X			0-3-8,0-3-0], [10:0-4-13,0-1-8], [13	:0-3-4,0-3-0],	-		0], [15:0-3-4,0		J-1-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Lumber Rep Stre	DOL 1.15 DOL 1.15	CSI. TC 0.52 BC 0.94 WB 0.99 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 1 -0.40 1 0.08 0.09		l/defl L/4 >999 360 >999 240 n/a n/4 >999 240	0 MT20 0 a	GRIP 197/144 FT = 5%	
BOT CHORD	2x4 SP No.2 or 2x4 SF 2x4 SP No.2D *Except 10-13: 2x4 SP 2250F 2-15: 2x4 SP No.2 or 2 2x4 SP No.3 or 2x4 SF	.9E or 2x4 SPF 21(x4 SPF No.2	00F 1.8E	BRACING- TOP CHOF BOT CHOF WEBS	RD S RD I	Rigid ce		thing directly applied or 3-4-1 applied or 2-2-0 oc bracing. 5-14, 7-14	1 oc purlins.	[MCT]
REACTIONS. (size) 10=0-3-8, 16=0-3-8 Max Horz 16=171(LC 10) Max Uplift 10=-212(LC 11), 16=-237(LC 10) Max Grav 10=1437(LC 1), 16=1712(LC 1)										
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-111/370, 3-4=-55/371, 4-5=-1644/226, 5-6=-1481/271, 6-7=-1486/249, 7-8=-2237/335, 8-9=-2565/393, 9-10=-2643/335										

BOT CHORD 2-16=-285/136, 15-16=-218/1188, 14-15=-169/1455, 13-14=-60/1715, 12-13=-210/2167, 10-12=-239/2280 WEBS 4-15=0/393, 5-14=-362/222, 6-14=-115/960, 7-14=-691/274, 7-13=-50/514,

NOTES-(6-8)

1) Unbalanced roof live loads have been considered for this design.

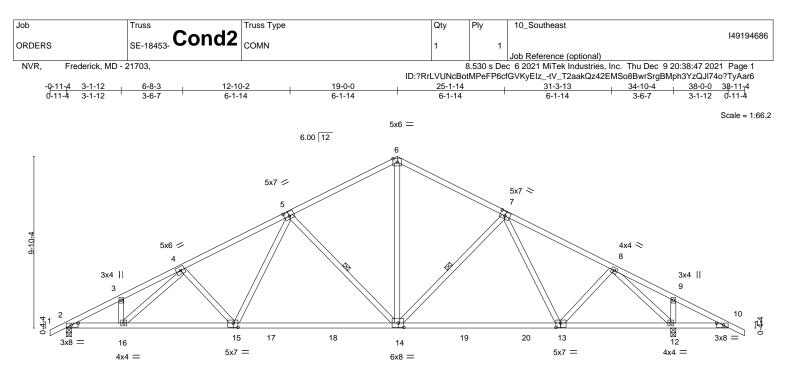
8-13=-355/194, 4-16=-2001/255

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=212, 16=237.


6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

	0 3-1 ₁ 12 9-9-3 0 0-1 ¹ -12 6-7-7 - [2:0-4-13,0-1-8], [5:0-3-8,0-3-0], [7:0-3-	<u>19-0-0</u> 9-2-13 -8,0-3-0], [10:0-4-13,0-1-8], [<u></u>	8-2-13 9-2-13 3-12,0-3-0], [15:0-	3-4,0-3-0]	34-10-4 6-7-7	38-0-0 3-1-12			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2021/TPI2014	CSI. TC 0.52 BC 0.94 WB 0.98 Matrix-S	Vert(LL) -0.21		L/d 360 240 n/a 240	PLATES MT20 Weight: 213 lb	GRIP 197/144 FT = 5%			
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 3-4-11 oc purlin BOT CHORD 2x4 SP No.2D *Except* BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. 10-13: 2x4 SP 2250F 1.9E or 2x4 SPF No.2 WEBS 1 Row at midpt 5-14, 7-14								[MCT]		
Ma Ma										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2649/334, 3-4=-2571/392, 4-5=-2231/333, 5-6=-1478/247, 6-7=-1485/271, 7-8=-1641/226, 8-9=-54/370, 9-10=-109/367										
BOT CHORD 2-16=-409/2285, 15-16=-381/2167, 14-15=-228/1715, 13-14=-71/1455, 12-13=-58/1156, 10-12=-284/135 WEBS 4-15=-358/194, 5-15=-48/513, 5-14=-694/274, 6-14=-114/958, 7-14=-359/222, 8-13=0/392, 8-12=-2000/253										

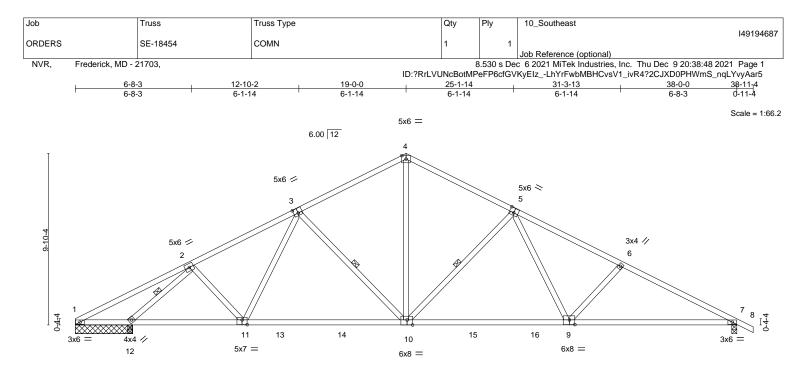
NOTES- (6-8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=212, 12=237.

6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

 Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

	3-0-0	9-9-3	19-0-0		28-2-13		38-0-0	
	3-0-0	6-9-3	9-2-13	I	9-2-13		9-9-3	I
Plate Offs	sets (X,Y)	[3:0-3-0,0-3-4], [5:0-3-0,0-3-4]	, [9:0-3-12,0-3-4], [10:0-3-1	2,Edge], [11:0-3-8,0-3	-4]			
LOADING TCLL TCDL	G (psf) 20.0 10.0	Plate Grip DOL 1.	-0 CSI. 15 TC 0.75 15 BC 1.00		in (loc -0.24 9-1) -0.45 7-	0 >999 3	L/d PLATES 60 MT20 40	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YI Code IBC2021/TPI201	ES WB 0.59 4 Matrix-S	Horz(C ⁻ Wind(Ll	,		n/a 40 Weight: 201 lb	FT = 5%

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 *Except* BOT CHORD

7-9: 2x4 SP No.2D WEBS 2x4 SP No.3 or 2x4 SPF Stud

BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 2-4-0 oc purlins. Rigid ceiling directly applied or 2-2-0 oc bracing. 1 Row at midpt 3-10, 5-10, 2-12

REACTIONS. All bearings 3-3-8 except (jt=length) 7=0-3-8.

(lb) - Max Horz 1=-178(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) except 7=-214(LC 11), 1=-168(LC 26), 12=-219(LC 10) Max Grav All reactions 250 lb or less at joint(s) 1 except 7=1436(LC 1), 12=1785(LC 1), 12=1785(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-133/701, 2-3=-1658/251, 3-4=-1475/277, 4-5=-1481/254, 5-6=-2261/343,

6-7=-2513/368

BOT CHORD 1-12=-540/196, 11-12=-259/1183, 10-11=-175/1446, 9-10=-62/1714, 7-9=-233/2179 2-11=0/385, 3-10=-372/222, 4-10=-116/944, 5-10=-694/267, 5-9=-56/552, 6-9=-350/224, WEBS 2-12=-2367/367

NOTES-(6-8)

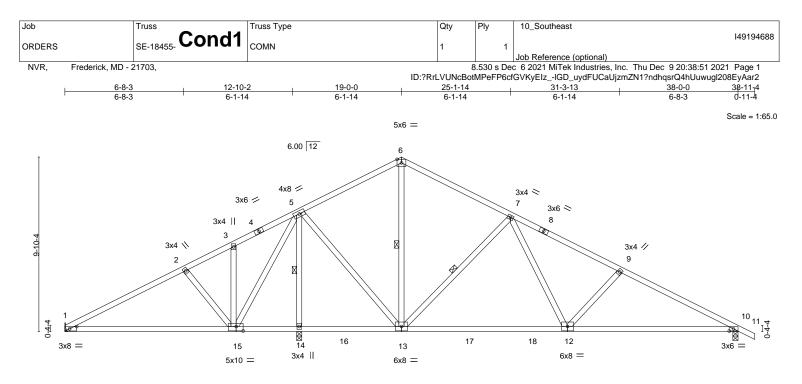
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 214 lb uplift at joint 7, 168 lb uplift at joint 1 and 219 lb uplift at joint 12.


6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

	<u>9-9-3</u> 9-9-3	13-1- 3-3-1	-	19-0-0 5-11-0		-	2-13 2-13			<u>38-0-0</u> 9-9-3		
Plate Offsets (X,Y)	- [1:0-4-13,0-1-8], [10:0-2-	13,0-1-8], [15:	0-4-12,0-3-0]							т		
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.24	Ì-15	>654	360	MT20	197/144	
TCDL 10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.51	1-15	>311	240			
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.02	10	n/a	n/a			
BCDL 10.0	Code IBC2021/TF	PI2014	Matrix-	s	Wind(LL)	0.07 1	0-12	>999	240	Weight: 210 lb	FT = 5%	
LUMBER-				·	BRACING-					·		[MCT]

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2

BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 *Except* 10-12: 2x4 SP No.1, 12-13: 2x4 SP No.2D

WEBS 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 10=0-3-8, 1=Mechanical, 14=0-3-8 Max Horz 1=-178(I C 11) Max Uplift 10=-178(LC 11), 1=-43(LC 10), 14=-234(LC 10) Max Grav 10=936(LC 1), 1=379(LC 23), 14=1842(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-359/138, 5-6=-360/200, 6-7=-366/176, 7-9=-1176/263, 9-10=-1432/289
- BOT CHORD 1-15=-122/270, 14-15=-398/234, 13-14=-398/234, 12-13=0/732, 10-12=-163/1220
- WEBS 2-15=-385/222, 5-15=-115/591, 5-13=-58/984, 7-13=-710/266, 7-12=-53/581,
 - 9-12=-364/226, 5-14=-1800/253

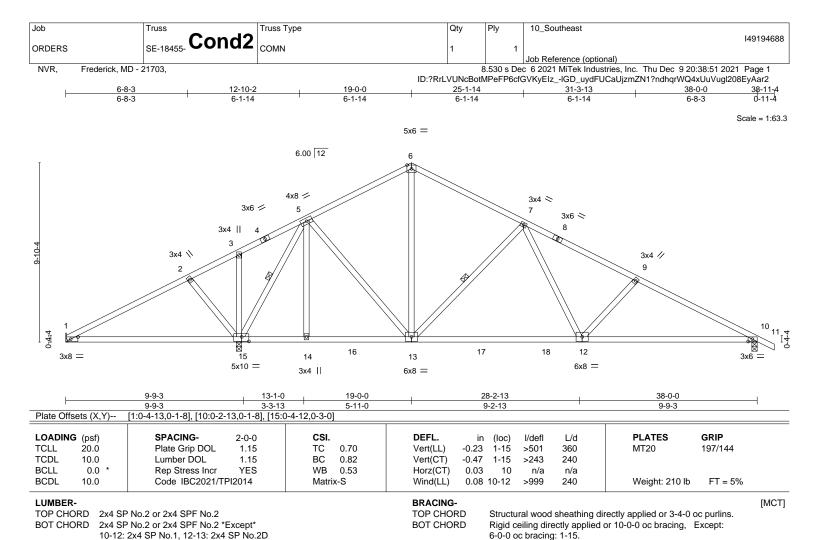
NOTES-(7-9)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 10, 43 lb uplift at joint 1 and 234 lb uplift at joint 14.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.


Structural wood sheathing directly applied or 3-10-14 oc purlins.

6-13, 7-13, 5-14

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

WEBS

1 Row at midpt

NOTES- (7-9)

WEBS

REACTIONS.

TOP CHORD

BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for this design.

7-12=-52/575, 9-12=-358/225

2x4 SP No.3 or 2x4 SPF Stud

Max Horz 1=-178(I C 11)

9-10=-1796/318

(size) 15=0-3-8, 10=0-3-8, 1=Mechanical

Max Uplift 15=-250(LC 10), 10=-192(LC 11), 1=-26(LC 24) Max Grav 15=1863(LC 1), 10=1104(LC 1), 1=205(LC 23) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-2=-59/377, 2-3=-76/524, 3-5=-41/602, 5-6=-731/229, 6-7=-740/206, 7-9=-1542/292,

1-15=-301/192, 14-15=0/307, 13-14=0/307, 12-13=-14/1062, 10-12=-189/1543

2-15=-378/221, 5-15=-1472/162, 5-13=-24/559, 6-13=-74/330, 7-13=-705/265,

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 250 lb uplift at joint 15, 192 lb uplift at joint 10 and 26 lb uplift at joint 1.

7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5-15, 7-13

1		9-9-3	13-1-0)	19-0-0	1		28-2-13		1	38-0-0	1	
		9-9-3	3-3-13	3	5-11-0	1		9-2-13			9-9-3		
Plate Offsets	s (X,Y)	[1:0-4-13,0-1-8], [10:0-2-13	,0-1-8], [15:0)-4-12,0-3-0]									_
LOADING ((psf)	SPACING-	2-0-0	CSI.		DE	EFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.81	Ve	ert(LL)	-0.30 12-13	>999	360	MT20	197/144	
TCDL 1	10.0	Lumber DOL	1.15	BC	0.95	Ve	rt(CT)	-0.54 12-13	>776	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.50	Ho	orz(CT)	0.12 10	n/a	n/a			
BCDL 1	10.0	Code IBC2021/TPI2	2014	Matri	x-S	Wi	nd(LL)	0.14 14-15	>999	240	Weight: 210 lb	FT = 5%	

	0.0	0000 120202 1, 11 12011		210		
LUMBER-			BRACING-			[MCT]
TOP CHORD	2x4 SP	No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheathing di	rectly applied or 2-2-0 oc purlins.	
BOT CHORD	2x4 SP	No.2 or 2x4 SPF No.2 *Except*	BOT CHORD	Rigid ceiling directly applied	or 2-2-0 oc bracing.	
	10-12: 3	2x4 SP No.1, 12-13: 2x4 SP No.2D	WEBS	1 Row at midpt 5	5-13, 7-13	
WEBS	2x4 SP	No 3 or 2x4 SPE Stud				

REACTIONS. (size) 10=0-3-8, 1=3-0-0, 16=0-3-8 Max Horz 1=-178(LC 15) Max Uplift 10=-224(LC 11), 1=-228(LC 10) Max Grav 10=1561(LC 1), 1=1307(LC 1), 16=296(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-2696/414, 2-3=-2435/375, 3-5=-2383/411, 5-6=-1740/300, 6-7=-1749/298, 7-9=-2537/362, 9-10=-2787/387

 BOT CHORD
 1-16=-447/2326, 15-16=-447/2326, 14-15=-233/1913, 13-14=-233/1913, 12-13=-103/1959, 10-12=-250/2422

 WEBS
 2-15=-330/221, 5-15=-144/433, 5-13=-668/258, 6-13=-140/1156, 7-13=-699/264, 7-12=-51/566, 9-12=-347/224

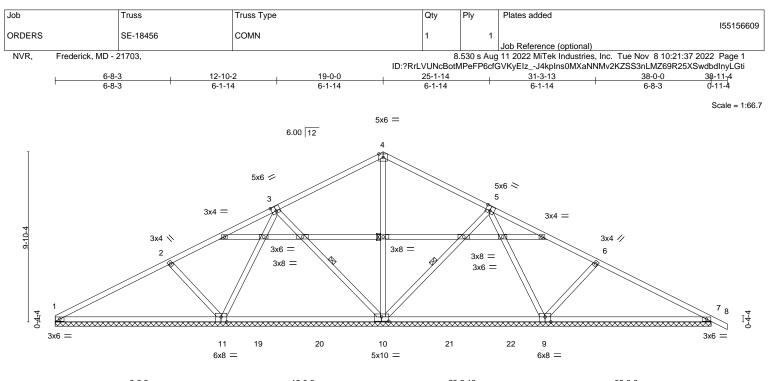
NOTES- (6-8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 224 lb uplift at joint 10 and 228 lb uplift at joint 1.

6) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.

7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.

8) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

	L	9-9-3		19-0	-0		28-2	2-13			38-0-0	
	1	9-9-3	1	9-2-1	13	1	9-2	-13		1	9-9-3	1
Plate Offse	ets (X,Y)	[3:0-3-0,0-3-4], [5:0-3-0,0)-3-4], [9:0-4-0),Edge], [10:0)-5-0,0-3-0],	[11:0-4-0,Edge]						
-												
OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.Ó	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	0.03	` ź	n/r	120	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	0.07	8	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code IBC2021/TI	PI2014	Matri	x-S						Weight: 221 lb	FT = 5%

LUMBER-	BRACING-		
TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheat	thing directly applied or 6-0-0 oc purlins.
BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2	BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc bracing, Except:
WEBS 2x4 SP No.3 or 2x4 SPF Stud		6-0-0 oc bracing: 10-1	11.
	WEBS	1 Row at midpt	3-10, 4-10, 5-10

REACTIONS. All bearings 38-0-0.

(lb) - Max Horz 1=-178(LC 15)

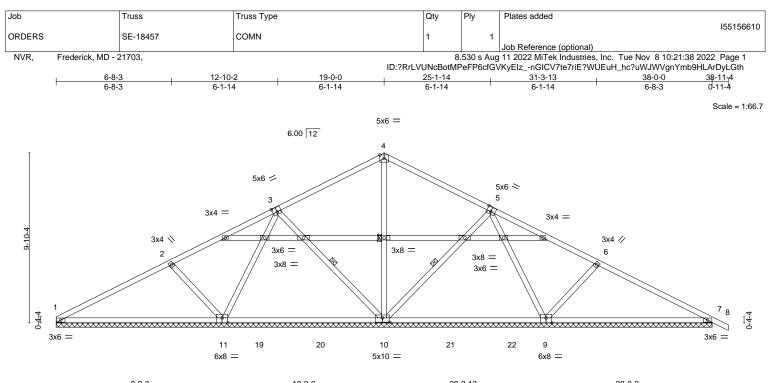
Max Uplift All uplift 100 lb or less at joint(s) 10, 7, 1 except 11=-175(LC 10), 9=-158(LC 11) Max Grav All reactions 250 lb or less at joint(s) except 11=834(LC 23), 10=764(LC 2), 9=837(LC 24), 7=380(LC 24), 7=3

24), 1=320(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-11=-402/239, 3-11=-359/131, 4-10=-386/50, 5-9=-364/116, 6-9=-397/233

NOTES- (7-9)


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 7, 1 except (jt=lb) 11=175, 9=158.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.

November 9,2022

	L	9-9-3		19-0-	0		28-2	2-13			38-0-0	
	I	9-9-3	I.	9-2-1	3		9-2-	-13		1	9-9-3	I
Plate Offse	ets (X,Y)	[3:0-3-0,0-3-4], [5:0-3-0,0-3	-4], [9:0-4-0	,Edge], [10:0	-5-0,0-3-0], [11:0-4-0,Edge]						
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	0.03	8	n/r	120	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	0.07	8	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code IBC2021/TPI2	2014	Matrix	<-S						Weight: 221 lb	FT = 5%
						1					-	

LUMBER-	BRACING-		
TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheathing direct	ly applied or 6-0-0 oc purlins.
BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied or 1	0-0-0 oc bracing, Except:
WEBS 2x4 SP No.3 or 2x4 SPF Stud		6-0-0 oc bracing: 10-11.	
	WEBS	1 Row at midpt 3-10), 4-10, 5-10

REACTIONS. All bearings 38-0-0.

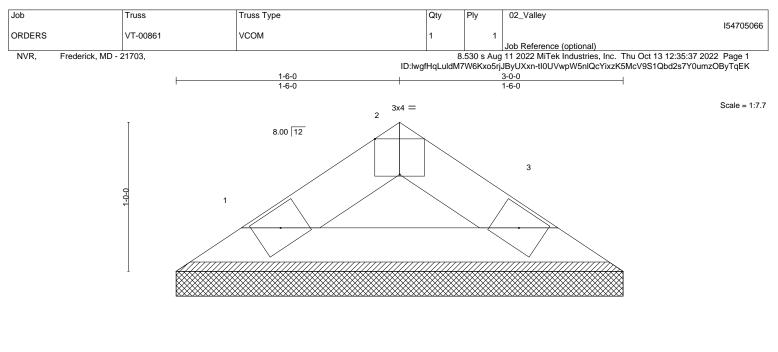
(lb) - Max Horz 1=-178(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 10, 7, 1 except 11=-175(LC 10), 9=-158(LC 11) Max Grav All reactions 250 lb or less at joint(s) except 11=834(LC 23), 10=764(LC 2), 9=837(LC 24), 7=380(LC 24), 1=320(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-11=-402/239, 3-11=-359/131, 4-10=-386/50, 5-9=-364/116, 6-9=-397/233

NOTES- (7-10)


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 7, 1 except (jt=lb) 11=175, 9=158.
- 7) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 115 mph.
- 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph.
- 9) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the required maximum reaction.
- 10) Framing and bracing of the gable end frame shall be provided by the building designer.

November 9,2022

3x4 💋

3x4 📎

3-0-0 3-0-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-CSI. DEFL. PLATES GRIP 2-0-0 in (loc) I/defl I/d TCLL 30.0 Plate Grip DOL 1.15 тс 0.08 Vert(LL) 999 197/144 n/a n/a MT20 (Roof Snow=30.0) BC Lumber DOL 1.15 0.08 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IBC2021/TPI2014 Matrix-P Weight: 8 lb FT = 5% BCDI 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 1=3-0-0, 3=3-0-0 Max Horz 1=23(LC 11) Max Uplift 1=-22(LC 12), 3=-22(LC 13) Max Grav 1=108(LC 18), 3=108(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

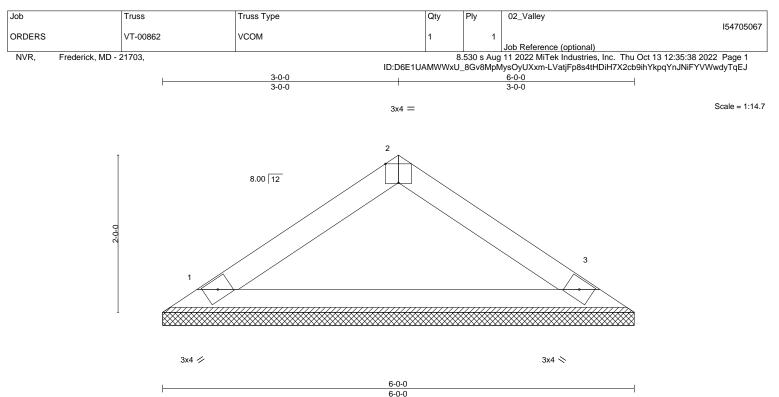
NOTES- (7)

 Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces &

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

OADING (psf) CLL 30.0 Roof Snow=30.0)	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2021/TPI2014	CSI. TC 0.41 BC 0.55 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 5%
LUMBER-	0.3 or 2x4 SPF Stud		BRACING- TOP CHORD	N		haathing div	ectly applied or 6-0-0	oo ourling

BOT CHORD

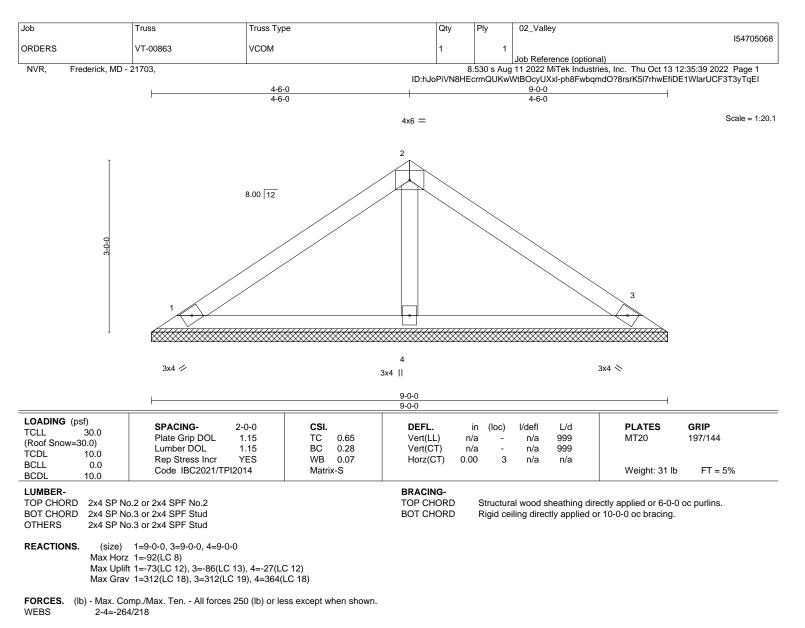
Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.3 or 2x4 SPF Stud BOT CHORD 2x4 SP No.3 or 2x4 SPF Stud

REACTIONS. (size) 1=6-0-0, 3=6-0-0 Max Horz 1=58(LC 9) Max Uplift 1=-54(LC 12), 3=-54(LC 13) Max Grav 1=292(LC 18), 3=292(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(7)


- 1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces &
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

October 13,2022

NOTES- (7)

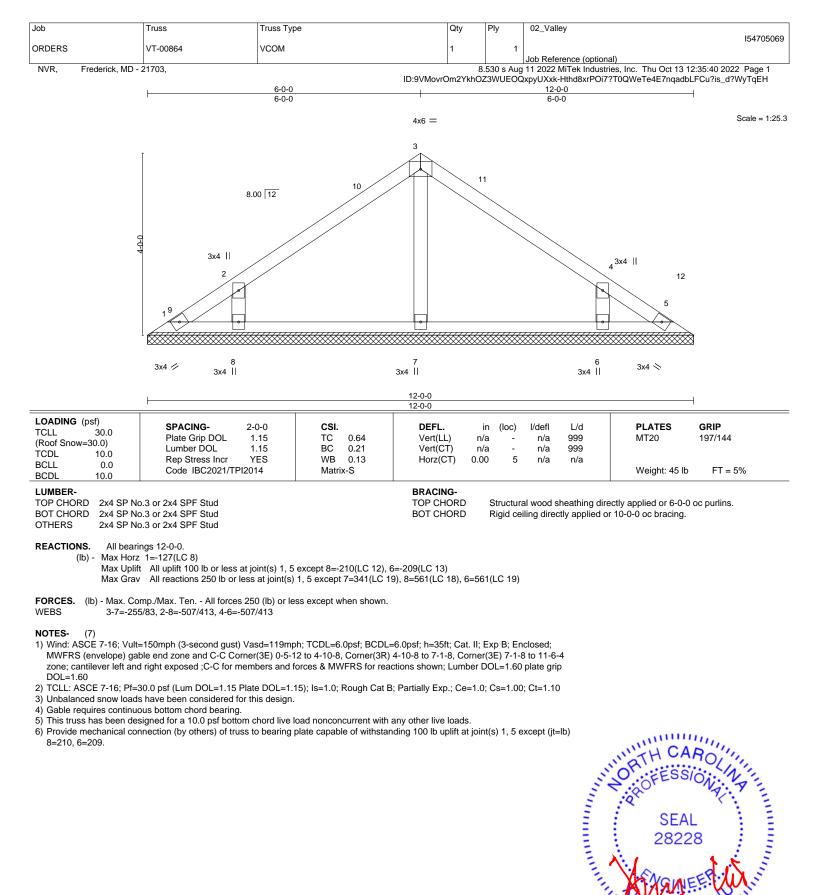
 Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

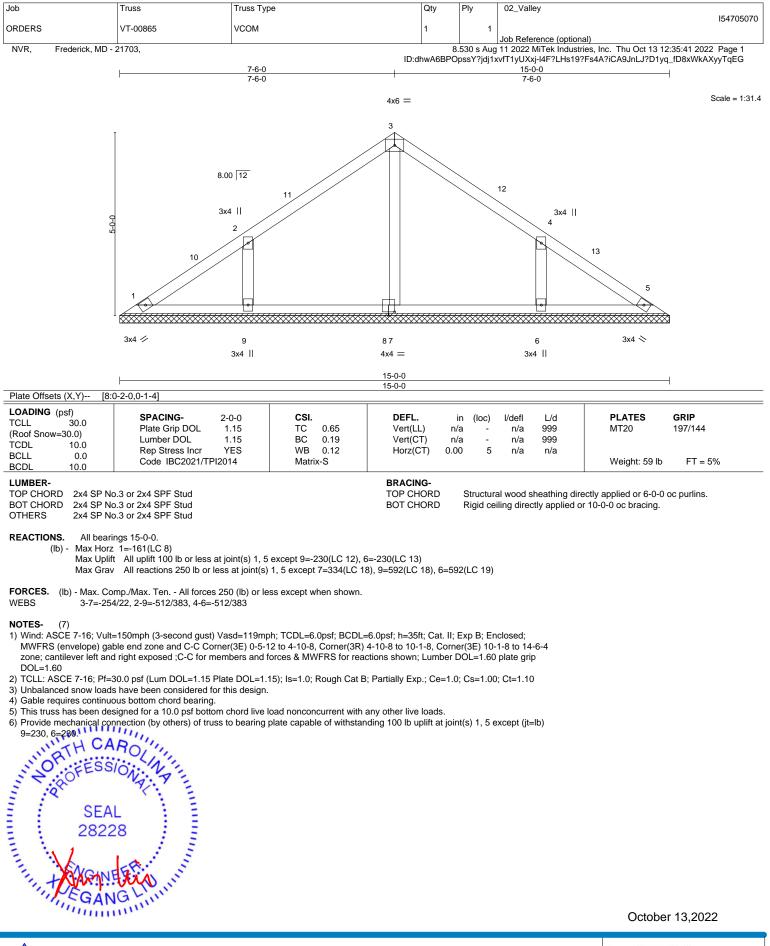
3) Unbalanced snow loads have been considered for this design.

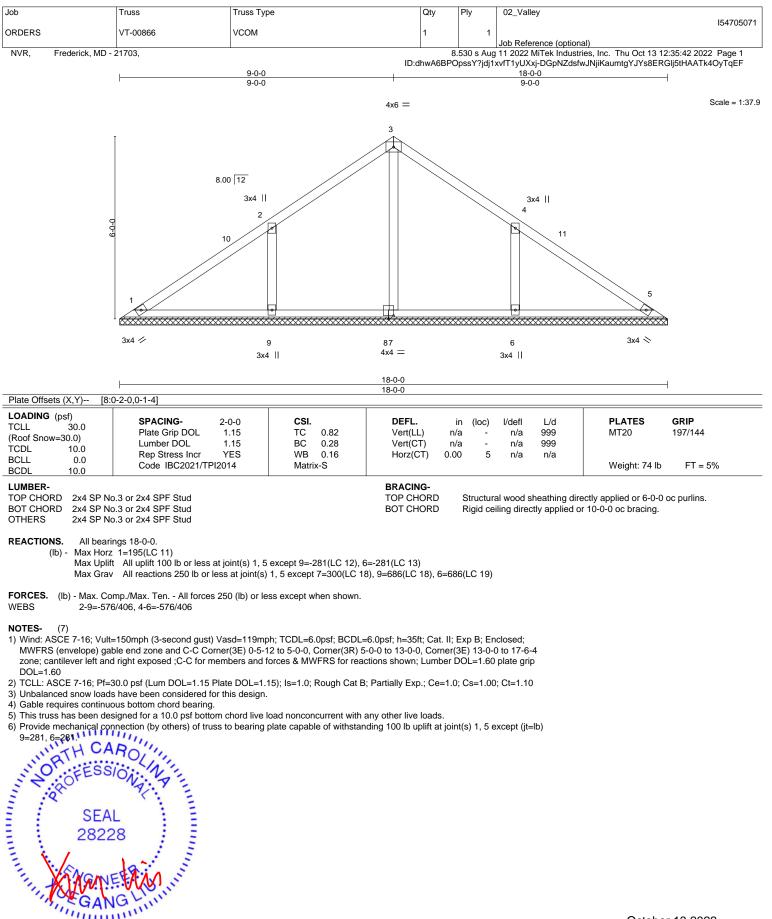
4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

October 13,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Edenton, NC 27932

October 13,2022

GANG

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 13,2022

