

RE:Cooper III Rev. 4-Elev - 1-Roof

Site Information:

Project Customer: DRB Raleigh Project Name: DRB Raleigh Model Track
Lot/Block:00.0174 Subdivision:The Farm at Neill's Creek

Model: Cooper III Rev. 4

Address:193 Appleseed Dr LILLINGTON,NC 27546

City: State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014

Design Program: MiTek 20/20 25.3

Wind Code: ASCE 7-16

Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Wind Speed: 120 mph

Floor Load: N/A psf

Roof Load: 37.0 psf

Mean Roof Height (feet): 25

Exposure Category: B

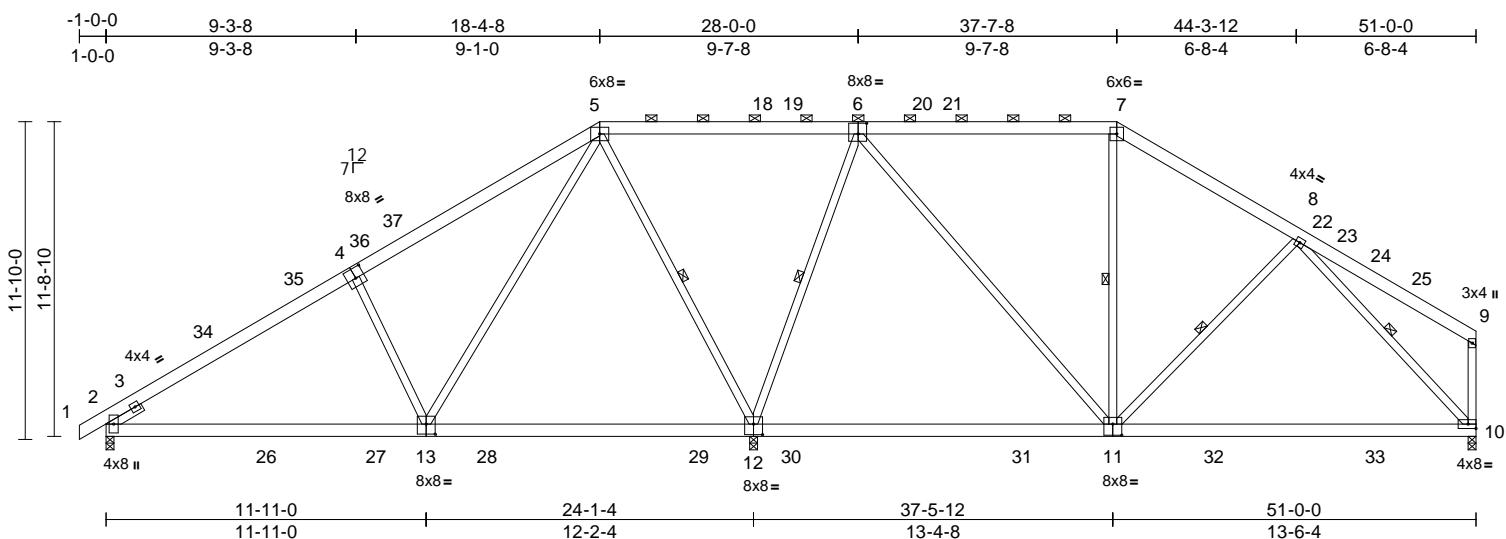
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	I75869567	A1A	8/25/25	28	I75869600	PB4	8/25/25
2	I75869611	A1CT	8/25/25	29	I75869606	PB5	8/25/25
3	I75869585	A1T	8/25/25	30	I75869593	VA1	8/25/25
4	I75869584	A3	8/25/25	31	I75869592	VA2	8/25/25
5	I75869586	A3GE	8/25/25	32	I75869604	VB1	8/25/25
6	I75869595	A4A	8/25/25	33	I75869601	VB4	8/25/25
7	I75869617	A4AT	8/25/25	34	I75869602	VB3	8/25/25
8	I75869610	A4T	8/25/25	35	I75869603	VB2	8/25/25
9	I75869608	A5	8/25/25	36	I75869605	VG4	8/25/25
10	I75869609	A5GE	8/25/25				
11	I75869564	B1	8/25/25				
12	I75869566	B1GE	8/25/25				
13	I75869590	C1	8/25/25				
14	I75869591	C1A	8/25/25				
15	I75869589	C1SGE	8/25/25				
16	I75869615	F1GE	8/25/25				
17	I75869616	F1	8/25/25				
18	I75869597	G2GE	8/25/25				
19	I75869598	G2	8/25/25				
20	I75869599	G2A	8/25/25				
21	I75869622	H2GE	8/25/25				
22	I75869623	H2	8/25/25				
23	I75869620	H1	8/25/25				
24	I75869568	P1	8/25/25				
25	I75869581	P1SGE	8/25/25				
26	I75869571	PB1	8/25/25				
27	I75869572	PB1GE	8/25/25				

The truss drawing(s) referenced above have been prepared by
Truss Engineering Co. under my direct supervision based on the parameters
provided by Structural, LLC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification
that the engineer named is licensed in the jurisdiction(s) identified and that the
designs comply with ANSI/TPI 1. These designs are based upon parameters
shown (e.g., loads, supports, dimensions, shapes and design codes), which were
given to MiTek or TRENCO. Any project specific information included is for MiTek's or
TRENCO's customers file reference purpose only, and was not taken into account in the
preparation of these designs. MiTek or TRENCO has not independently verified the
applicability of the design parameters or the designs for any particular building. Before use,
the building designer should verify applicability of design parameters and properly
incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


August 25,2025

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	A1A	Piggyback Base	1	1	Job Reference (optional)	I75869567

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:23
ID:bFWe8TNxnA2q4vi43k0QCqyAQoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?!

Page: 1

Scale = 1:85.8

Plate Offsets (X, Y): [2:0-4-2,0-1-6], [4:0-4-0,0-4-8], [6:0-3-12,0-4-12], [11:0-4-0,0-5-0], [12:0-4-0,0-4-12], [13:0-4-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.32	10-11	>989	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.52	10-11	>612	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 389 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
10-9,5-12,13-5,11-6:2x4 SP No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied.
WEBS 1 Row at midpt 5-12, 6-12, 7-11, 8-11, 8-10

REACTIONS (size) 2=0-3-8, 10=0-3-8, 12=0-3-8
Max Horiz 2=176 (LC 13)
Max Uplift 2=1 (LC 16)
Max Grav 2=986 (LC 33), 10=1101 (LC 54), 12=2538 (LC 49)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 5-7=689/368, 7-8=-843/98, 8-9=-201/79, 9-10=-218/56, 1-2=0/38, 2-5=-1156/102

BOT CHORD 2-10=-158/1062
WEBS 5-12=-1133/123, 6-12=-1333/117, 4-13=-626/177, 5-13=-23/1235, 7-11=-126/175, 6-11=0/952, 8-11=-272/202, 8-10=-885/90

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 1-0-0 to 4-1-3, Interior (1) 4-1-3 to 18-4-8, Exterior(2R) 18-4-8 to 25-7-1, Interior (1) 25-7-1 to 37-7-8, Exterior(2R) 37-7-8 to 44-10-1, Interior (1) 44-10-1 to 50-10-4 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at j(s) 2. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

Standard

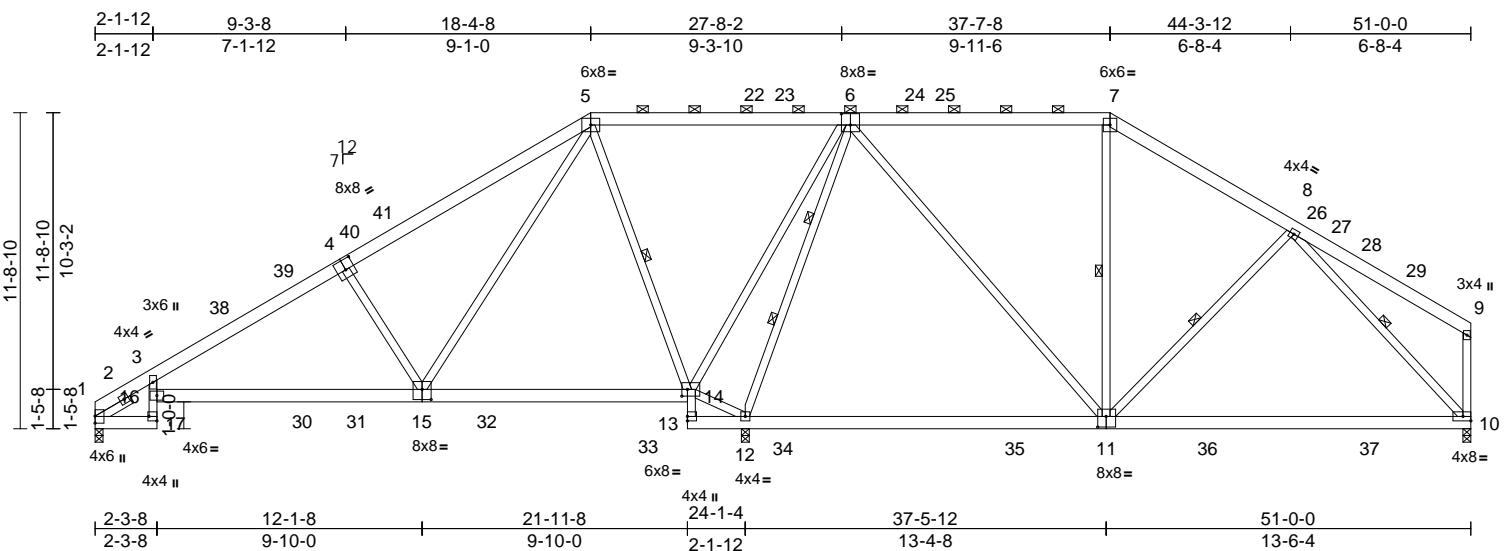
August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job	Truss A1CT	Truss Type Piggyback Base	Qty 1	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869611
-----	---------------	------------------------------	----------	----------	--	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:23

ID:bFWe8TNxnA2q4vi43k0QCqyAQoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?!

Page: 1

Scale = 1:85.4

Plate Offsets (X, Y): [4:0-4-0,0-4-8], [6:0-4-0,0-5-0], [11:0-3-12,0-4-12], [14:0-2-8,0-3-0], [15:0-4-0,0-4-8], [17:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.32	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.52	10-11	>616	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.12	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 405 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x6 SP No.2
BOT CHORD 2x6 SP No.2 *Except* 17-3:2x4 SP No.2,
14-13:2x4 SP No.3, 11-13:2x6 SP DSS

WEBS 2x4 SP No.3 *Except* 10-9,12-6,11-6:2x4 SP
No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied,
except end verticals, and 2-0-0 oc purlins
(6-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 7-11, 5-14, 8-11, 8-10
WEBS 2 Rows at 1/3 pts 6-12

REACTIONS (size) 1=0-3-8, 10=0-3-8, 12=0-3-8
Max Horiz 1=170 (LC 13)
Max Uplift 10=51 (LC 12)
Max Grav 1=609 (LC 51), 10=898 (LC 53),
12=3016 (LC 3)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 5-7=-482/859, 7-8=-593/169, 8-9=-197/81,
9-10=-214/57, 1-3=-690/32, 3-5=-736/88

BOT CHORD 1-17=-111/485, 16-17=-17/249, 3-16=0/391,
14-16=-348/690, 13-14=-422/0,
12-13=-341/0, 10-12=-609/514

WEBS 7-11=-267/89, 5-14=-1390/109,
6-12=-204/144, 12-14=-1015/191,
6-14=-41/742, 6-11=0/1237, 8-11=-356/142,
4-15=-698/176, 5-15=-25/1304,
8-10=-695/135

NOTES

1) Unbalanced roof live loads have been considered for
this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat.
II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0-0 to 5-1-3, Interior (1) 5-1-3 to 18-4-8,
Exterior(2R) 18-4-8 to 25-7-1, Interior (1) 25-7-1 to
37-7-8, Exterior(2R) 37-7-8 to 44-10-1, Interior (1)
44-10-1 to 50-10-4 zone; cantilever left and right
exposed ;C-C for members and forces & MWFRS for
reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25
Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL =
1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially
Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
design.
- Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation
about its center.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members, with BCDL = 10.0psf.
- One H.2.5A Simpson Strong-Tie connectors
recommended to connect truss to bearing walls due to
UPLIFT at jt(s) 10. This connection is for uplift only and
does not consider lateral forces.
- This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

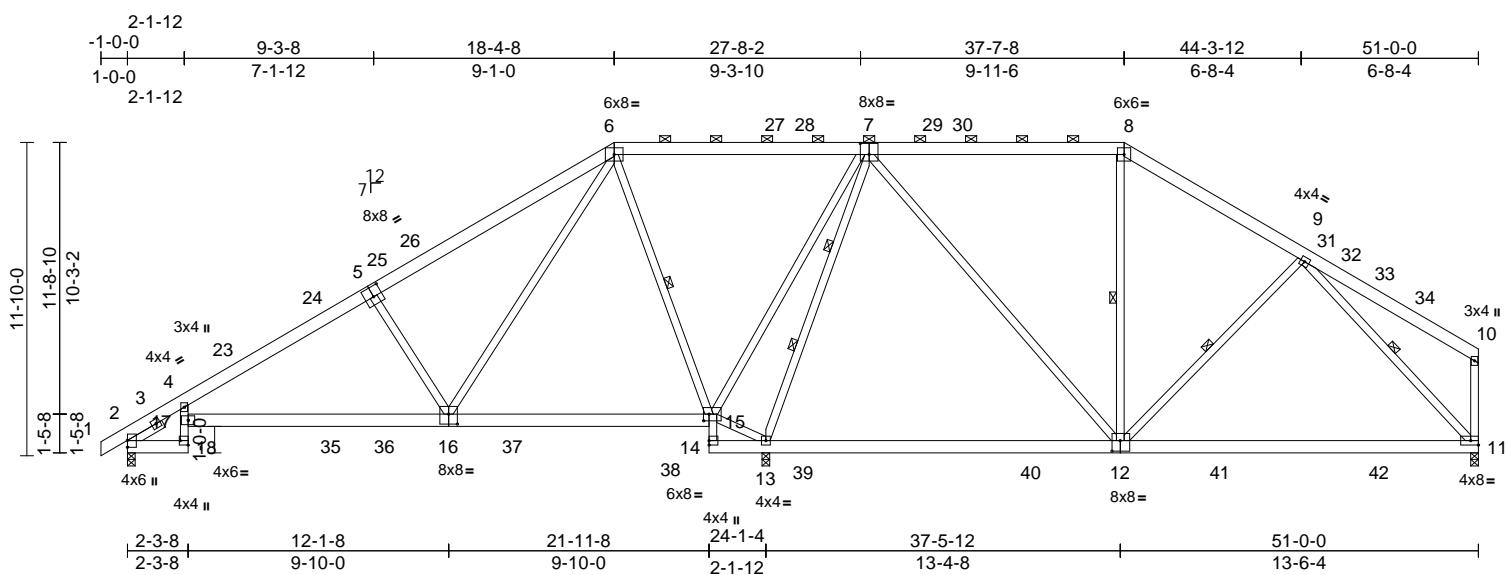
August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
Structural, LLC, Thurmont, MD - 21788,	A1T	Piggyback Base	1	1	Job Reference (optional)	I75869585

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:24

ID:bFWe8TNxnA2q4vi43k0QCqyAQoy-RfC?PsB70Hq3NSgPqnL8w3uTXbGKWrCDoi7J4zJC?!

Page: 1

Scale = 1:87

Plate Offsets (X, Y): [5:0-4-0,0-4-8], [7:0-4-0,0-5-0], [12:0-3-12,0-4-12], [15:0-2-8,0-3-0], [16:0-4-0,0-4-8], [18:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.32	11-12	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.52	11-12	>616	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.11	11	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 407 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x6 SP No.2
BOT CHORD 2x6 SP No.2 *Except* 18-4:2x4 SP No.2, 15-14:2x4 SP No.3, 12-14:2x6 SP DSS
WEBS 2x4 SP No.3 *Except* 11-10,13-7,12-7:2x4 SP No.2
SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-8.
BOT CHORD Rigid ceiling directly applied.
WEBS 1 Row at midpt 6-15, 8-12, 9-11, 9-12
WEBS 2 Rows at 1/3 pts 7-13
REACTIONS (size) 2=0-3-8, 11=0-3-8, 13=0-3-8
Max Horiz 2=176 (LC 13)
Max Uplift 11=51 (LC 12)
Max Grav 2=654 (LC 52), 11=900 (LC 54), 13=3009 (LC 3)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-4=-685/30, 4-6=-739/88, 6-8=-483/852, 8-9=-594/169, 9-10=-197/81, 10-11=-214/57
BOT CHORD 2-18=-111/479, 17-18=-17/243, 4-17=0/387, 15-17=-343/692, 14-15=-421/0, 13-14=-341/0, 11-13=-604/521
WEBS 6-15=-1386/109, 8-12=-264/88, 9-11=-704/135, 7-13=-2013/144, 13-15=-1008/185, 7-15=-417/41, 9-12=-354/140, 7-12=0/1234, 5-16=-696/176, 6-16=-25/1301

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 1-0-0 to 4-1-3, Interior (1) 4-1-3 to 18-4-8, Exterior(2R) 18-4-8 to 25-7-1, Interior (1) 25-7-1 to 37-7-8, Exterior(2R) 37-7-8 to 44-10-1, Interior (1) 44-10-1 to 50-10-4 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

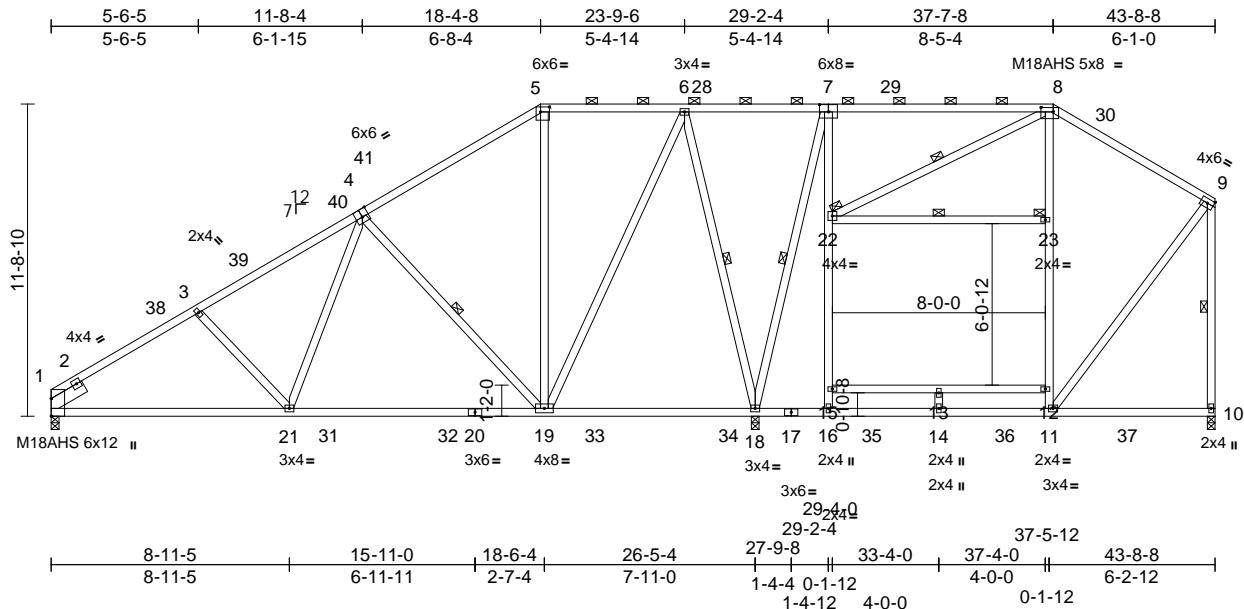
Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss A3	Truss Type Attic	Qty 6	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869584
-----	-------------	---------------------	----------	----------	--	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:25
ID:eW?e6daPLXKyNUOUDcC2wYyATYH-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.5

Plate Offsets (X, Y): [4:0-3-0,Edge], [5:0-4-0,0-2-4], [7:0-4-0,0-3-4], [8:0-5-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.29	19-21	>999	240	M18AHS	186/179
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.47	19-21	>678	180	MT20	244/190
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS	Attic	-0.06	11-16	>999	360		
BCDL	10.0									Weight: 339 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 7-8,4-1:2x4 SP SS

BOT CHORD 2x4 SP No.2 *Except* 15-12:2x4 SP No.3, 17-20:2x4 SP SS

WEBS 2x4 SP No.3 *Except*

7-16,8-11,22-23,6-19:2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 5-8.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 4-19, 22-23, 9-10, 8-22, 7-18, 6-18

JOINTS 1 Brace at Jt(s): 22, 23

REACTIONS (size) 1=0-3-8, 10=0-3-8, 18=0-3-8

Max Horiz 1=186 (LC 16)

Max Grav 1=1287 (LC 53), 10=985 (LC 55), 18=1909 (LC 50)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 5-6=783/86, 6-8=-397/55, 8-9=-524/0, 9-10=-870/0, 1-3=1822/190, 3-5=-1704/53

BOT CHORD 1-21=200/1574, 19-21=-74/1351,

18-19=0/429, 16-18=0/390, 14-16=0/386, 11-14=0/386, 10-11=-4/19

WEBS 4-19=-814/108, 5-19=0/238, 15-16=0/303, 15-22=0/338, 7-22=0/347, 11-12=-242/119,

12-23=-217/139, 8-23=-217/139, 9-11=0/642,

13-15=0/9, 12-13=0/9, 22-23=-2/10,

13-14=0/70, 8-22=-26/0, 6-19=-42/905,

7-18=-943/0, 6-18=-919/81, 4-21=0/474,

3-21=-156/105

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 4-4-7, Interior (1) 4-4-7 to 18-4-8, Exterior(2R) 18-4-8 to 24-6-11, Interior (1) 24-6-11 to 37-7-8, Exterior(2E) 37-7-8 to 43-6-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) 200.0lb AC unit load placed on the bottom chord, 33-4-0 from left end, supported at two points, 5-0-0 apart.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) The Fabrication Tolerance at joint 8 = 16%
- 9) Plates checked for a plus or minus 5 degree rotation about its center.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) Standard

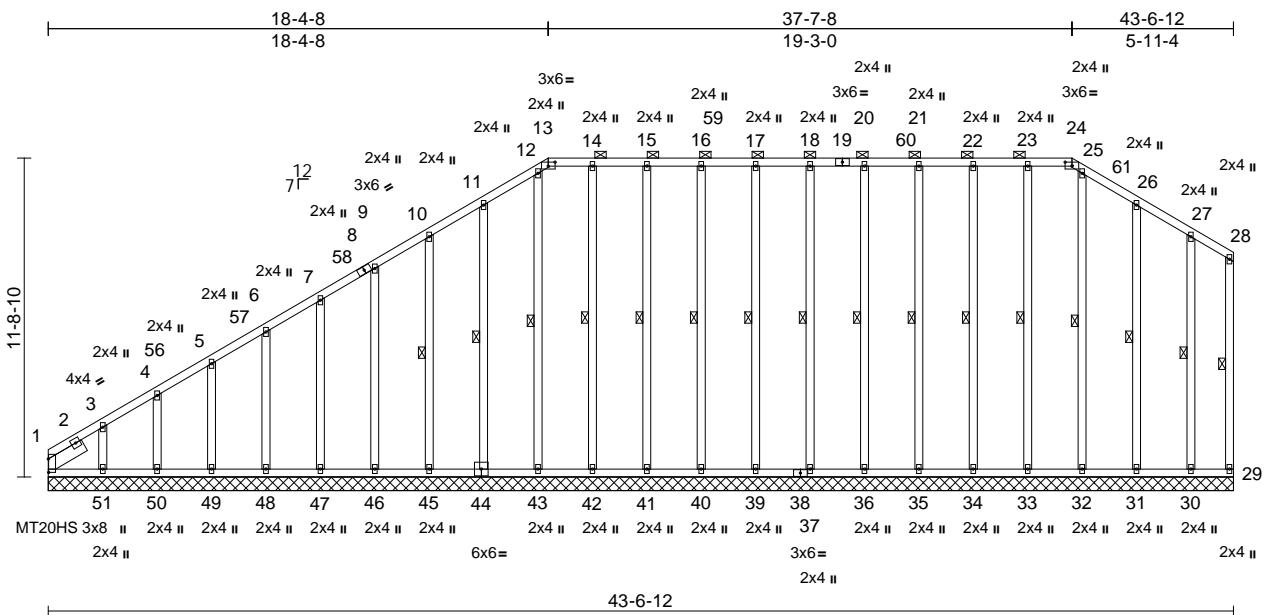
August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	A3GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	I75869586

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:26

ID:J4xyVLkTXkyNlxh_nWisyAQ0e-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.7

Plate Offsets (X, Y): [1:0-5-15,0-0-2], [13:0-3-0,0-1-12], [24:0-3-0,0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	0.05	Vert(TL)	n/a	-	n/a	999	MT20HS	187/143
TCDL	7.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	1	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								Weight: 428 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-7-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 13-24.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 28-29, 18-37, 17-39, 16-40, 15-41, 14-42, 12-43, 11-44, 10-45, 20-36, 21-35, 22-34, 23-33, 25-32, 26-31, 27-30

REACTIONS (size) 1=43-6-12, 29=43-6-12, 30=43-6-12, 31=43-6-12, 32=43-6-12, 33=43-6-12, 34=43-6-12, 35=43-6-12, 36=43-6-12, 37=43-6-12, 39=43-6-12, 40=43-6-12, 41=43-6-12, 42=43-6-12, 43=43-6-12, 44=43-6-12, 45=43-6-12, 46=43-6-12, 47=43-6-12, 48=43-6-12, 49=43-6-12, 50=43-6-12, 51=43-6-12

Max Horiz 1=187 (LC 16)

Max Uplift 1=--88 (LC 14), 29=--5 (LC 17),

30=--16 (LC 17), 31=--22 (LC 17),

33=--4 (LC 13), 34=--4 (LC 12),

35=--3 (LC 13), 36=--3 (LC 13),

37=--3 (LC 12), 39=--3 (LC 12),

40=--3 (LC 13), 41=--5 (LC 12),

42=--3 (LC 13), 43=--2 (LC 13),

44=--20 (LC 16), 45=--18 (LC 16),

46=--17 (LC 16), 47=--18 (LC 16),

48=--16 (LC 16), 49=--23 (LC 16),

51=--113 (LC 16)

Max Grav 1=179 (LC 16), 29=59 (LC 43),

30=188 (LC 43), 31=221 (LC 43),

32=165 (LC 43), 33=211 (LC 42),

34=210 (LC 42), 35=209 (LC 42),

36=209 (LC 42), 37=209 (LC 42),

39=209 (LC 42), 40=209 (LC 42),

41=210 (LC 42), 42=210 (LC 42),

43=167 (LC 43), 44=216 (LC 43),

45=207 (LC 43), 46=209 (LC 43),

47=212 (LC 43), 48=188 (LC 43),

49=151 (LC 32), 50=143 (LC 2),

51=214 (LC 32)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1=--230/168, 3=--171/129, 4=--149/121, 5=--125/107, 6=--104/101, 7=--85/89, 9=--79/80, 10=--72/70, 11=--70/85, 12=--60/82, 13=--56/83, 14=--56/83, 15=--56/83, 16=--56/83, 17=--56/83, 18=--56/83, 20=--56/83, 21=--56/83, 22=--56/83, 23=--56/83, 24=--56/83, 25=--60/79, 26=--60/79, 27=--44/50, 27=--24/36, 28=--47/14

BOT CHORD

1=51=--1/0, 50=51=--1/0, 49=50=--1/0, 48=49=--1/0, 47=48=--1/0, 46=47=--1/0, 45=46=--1/0, 43=45=--1/1, 42=43=--0/1, 41=42=0/1, 40=41=0/1, 39=40=0/1, 37=39=0/1, 36=37=0/1, 35=36=0/1, 34=35=0/1, 33=34=0/1, 32=33=0/1, 31=32=0/1, 30=31=0/1, 29=30=0/1

WEBS 18=37=--169/27, 17=39=--169/27, 16=40=--169/34, 15=41=--170/46, 14=42=--171/30, 12=43=--126/26, 11=44=--176/67, 10=45=--168/64, 9=46=--168/46, 7=47=--172/42, 6=48=--148/41, 5=49=--109/44, 4=50=--106/34, 3=51=--150/108, 20=36=--169/27, 21=35=--169/34, 22=34=--170/46, 23=33=--171/31, 25=32=--125/0, 26=31=--180/54, 27=30=--152/45

NOTES

1) Unbalanced roof live loads have been considered for this design.

August 25, 2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	A3GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	I75869586

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:26
ID:J4xyVLKTXkyNltxh_nWisAQ0e-RfC?PsB70Hq3NSgPqnL8w3uTXbGKWrCDoi7J4zJC?f

Page: 2

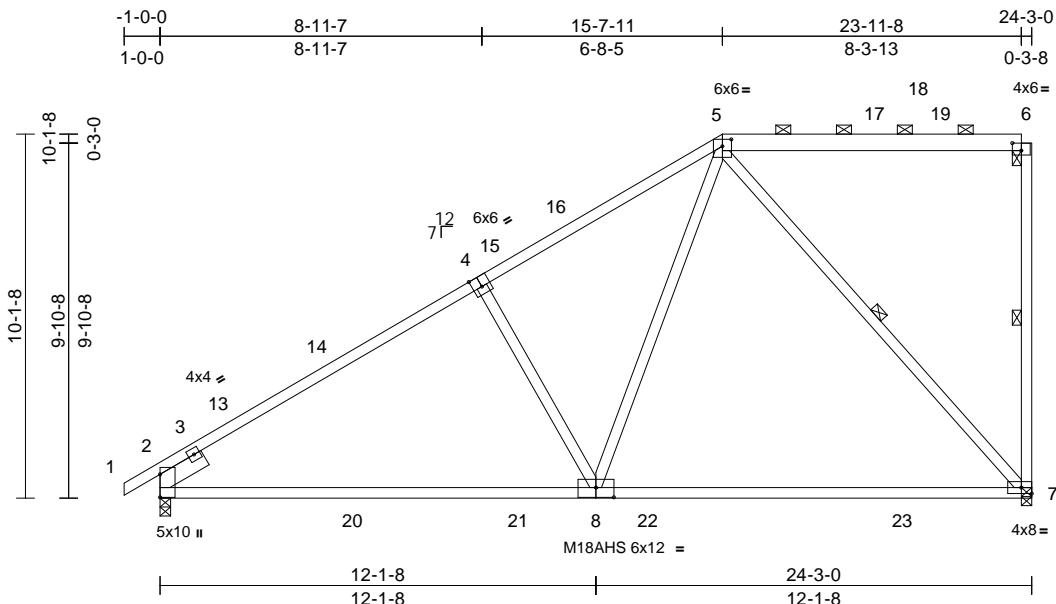
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 4-4-4, Interior (1) 4-4-4 to 18-4-8, Exterior(2R) 18-4-8 to 24-6-7, Interior (1) 24-6-7 to 37-7-8, Exterior(2E) 37-7-8 to 43-5-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) Plates checked for a plus or minus 5 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A

- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	A4A	Piggyback Base	1	1	Job Reference (optional)	I75869595

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:26
ID:X6fz5k6uCWTc9dlojlyCKbyAQcN-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.1

Plate Offsets (X, Y): [4:0-3-0,Edge], [5:0-3-0,0-2-5], [6:0-3-0,0-2-8], [8:0-6-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.66	7-8	>438	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-1.01	7-8	>285	180	M18AHS	186/179
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.03	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 145 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x6 SP No.2
BOT CHORD 2x4 SP DSS
WEBS 2x4 SP No.2 *Except* 8-5,4-8:2x4 SP No.3
SLIDER Left 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.
BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 6-7, 5-7

REACTIONS (size) 2=0-3-8, 7=0-3-8
Max Horiz 2=208 (LC 16)
Max Uplift 7=13 (LC 13)
Max Grav 2=1200 (LC 45), 7=1091 (LC 42)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-5=-1491/79, 5-6=-38/0, 6-7=-350/55

BOT CHORD 2-7=-267/1265

WEBS 5-7=-951/95, 5-8=0/1096, 4-8=-538/153

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 15-7-11, Exterior(2R) 15-7-11 to 19-10-10, Interior (1) 19-10-10 to 24-1-4 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at j(s) 7. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

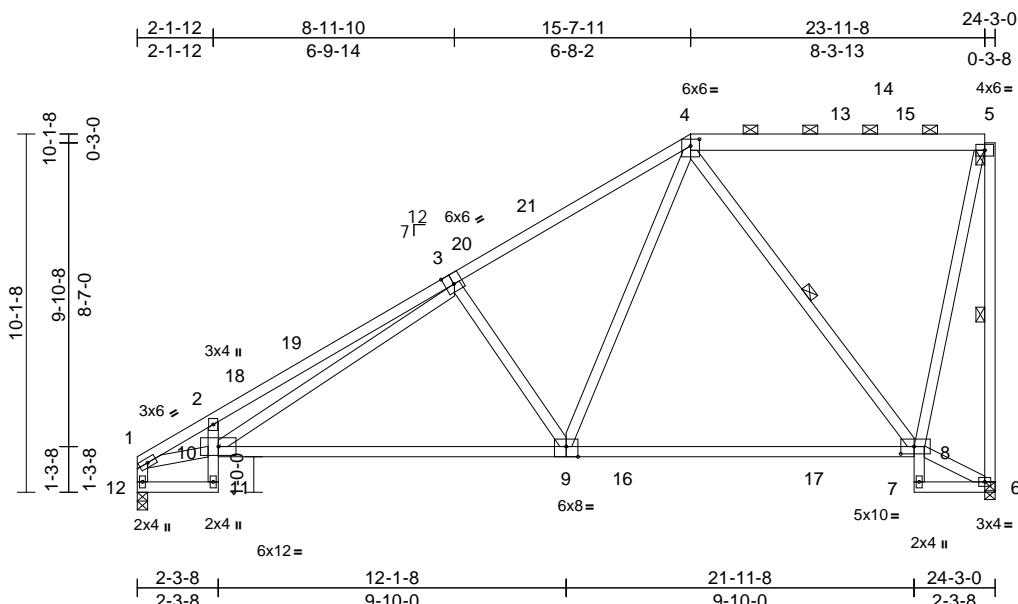
LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

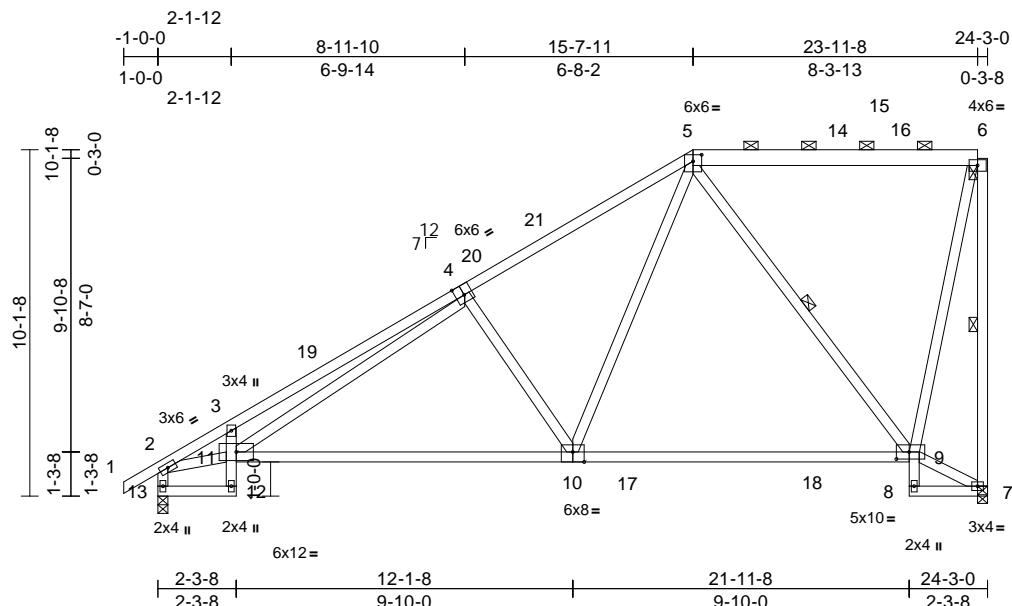

818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
A4AT		Piggyback Base	1	1	Job Reference (optional)	I75869617

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:26
ID:X6fz5k6uCWTC9dlojlyCKbyAQcN-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1



Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	A4T	Piggyback Base	1	1	Job Reference (optional)	I75869610

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:X6fz5k6uCWTC9dlojlyCkbyAQcN-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.3

Plate Offsets (X, Y): [4:0-3-0,Edge], [5:0-3-0,0-2-5], [9:0-4-8,0-2-8], [10:0-4-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.32	9-10	>899	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.49	9-10	>589	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.13	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 171 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x6 SP No.2
BOT CHORD 2x4 SP No.2 *Except* 12-3,9-8:2x4 SP No.3,
10-9,10-11:2x4 SP SS

WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied,
except end verticals, and 2-0-0 oc purlins
(6-0-0 max.): 5-6.

BOT CHORD Rigid ceiling directly applied.
WEBS 1 Row at midpt 6-7, 5-9

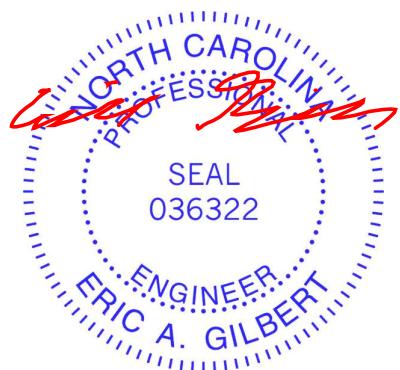
REACTIONS (size) 7=0-3-8, 13=0-3-8
Max Horiz 13=203 (LC 16)
Max Uplift 7=14 (LC 13)
Max Grav 7=1044 (LC 42), 13=1149 (LC 45)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 5-6=-222/0, 6-7=-1104/38, 2-13=-1115/30,
1-2=0/44, 2-3=-2365/66, 3-5=-2757/177

BOT CHORD 12-13=-113/159, 11-12=-23/45,
3-11=-281/125, 9-11=-123/1420, 8-9=-9/25,
7-8=-293/0

WEBS 5-9=-786/109, 2-11=-139/1908, 7-9=0/332,
6-9=0/984, 4-11=-184/1193, 4-10=-636/151,
5-10=0/1044


NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0 to 2-0-14, Interior (1) 2-0-14 to 15-7-11, Exterior(2R) 15-7-11 to 19-10-10, Interior (1) 19-10-10 to 24-1-4 zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

Standard

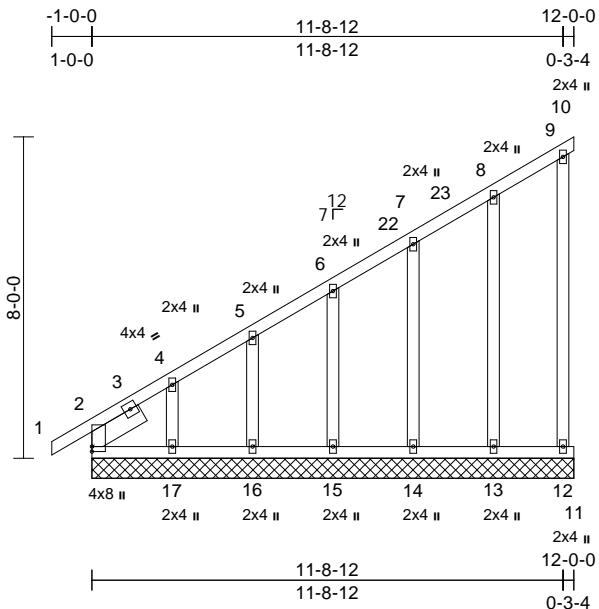
August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932



Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof
	A5GE	Monopitch Supported Gable	1	1	Job Reference (optional)

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:edDe3RcDvYg7BT2hCWrvlyATeh-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (PfPg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 84 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 -- 1-6-3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=12-0-0, 10=12-0-0, 11=12-0-0, 12-12-0-0, 13=12-0-0, 14=12-0-0, 15=12-0-0, 16=12-0-0, 17=12-0-0
Max Horiz 2=162 (LC 16)
Max Uplift 2=-6 (LC 14), 10=-3 (LC 16), 11=-23 (LC 7), 13=-20 (LC 16), 14=-16 (LC 16), 15=-22 (LC 16), 17=-96 (LC 16)
Max Grav 2=150 (LC 32), 10=11 (LC 23), 11=-7 (LC 12), 12=94 (LC 23), 13=197 (LC 23), 14=171 (LC 23), 15=149 (LC 30), 16=148 (LC 2), 17=175 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/38, 2-4=-369/180, 4-5=-264/126, 5-6=219/104, 6-7=-161/75, 7-8=104/48, 8-9=-41/19, 9-10=-5/4
BOT CHORD 2-17=0/0, 16-17=0/0, 15-16=0/0, 14-15=0/0, 13-14=0/0, 12-13=0/0, 11-12=0/0
WEBS 8-13=-159/117, 7-14=-131/96, 6-15=-108/99, 5-16=-109/73, 4-17=-138/205, 9-12=-61/47

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 12-0-0 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 2, 23 lb uplift at joint 11, 3 lb uplift at joint 10, 20 lb uplift at joint 13, 16 lb uplift at joint 14, 22 lb uplift at joint 15, 96 lb uplift at joint 17 and 6 lb uplift at joint 2.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

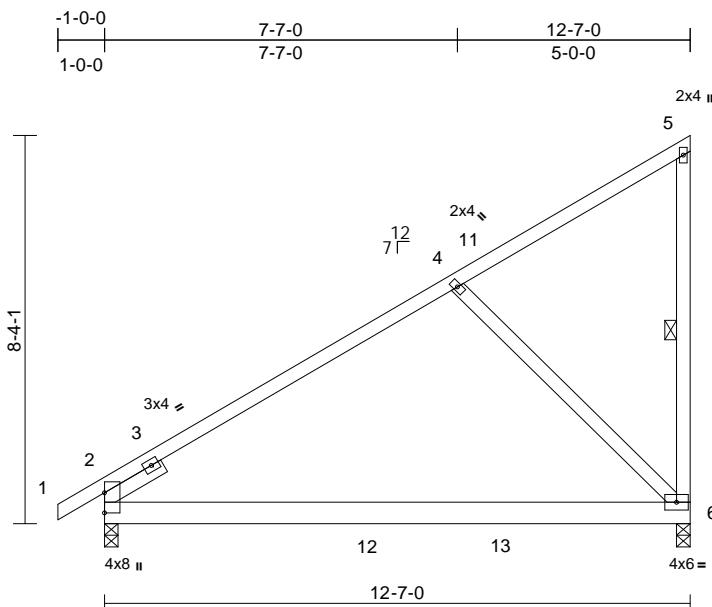
LOAD CASE(S) Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
B1		Monopitch	6	1	Job Reference (optional)	I75869564

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:PG_85eDjrFYDCiYm7kID4syAUC2-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:49.5

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.32	6-9	>462	240		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.57	6-9	>262	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 76 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 5-6

REACTIONS (size) 2=0-3-8, 6=0-3-8

Max Horiz 2=168 (LC 16)

Max Uplift 6=62 (LC 16)

Max Grav 2=587 (LC 30), 6=577 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-4=-990/0, 4-5=-126/54, 5-6=137/61

BOT CHORD 2-6=-330/299

WEBS 4-6=-386/201

NOTES

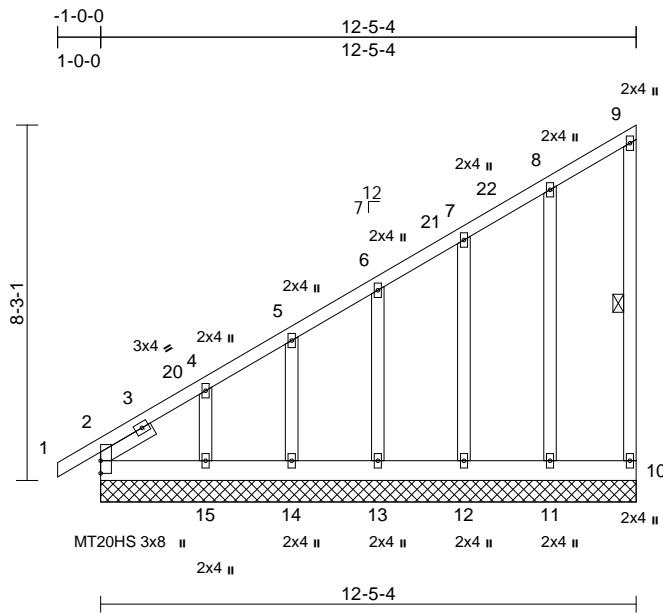
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 12-5-4 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL; Lum DOL=1.25
Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.0 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	B1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	I75869566

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:TcLy68?pJP9wQnb6WFvmpsyAUCL-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.5

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20HS	187/143
Snow (PfPg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 96 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 -- 1-5-3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 9-10

REACTIONS (size) 2=12-5-4, 10=12-5-4, 11=12-5-4, 12=12-5-4, 13=12-5-4, 14=12-5-4, 15=12-5-4

Max Horiz 2=166 (LC 16)

Max Uplift 10=9 (LC 16), 11=16 (LC 16), 12=17 (LC 16), 13=23 (LC 16), 15=86 (LC 16)

Max Grav 2=152 (LC 32), 10=74 (LC 23), 11=203 (LC 23), 12=173 (LC 23), 13=152 (LC 30), 14=140 (LC 2), 15=197 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-4=-339/165, 4-5=-257/122, 5-6=-210/99, 6-7=-153/71, 7-8=-97/45, 8-9=-42/22, 9-10=-58/45

BOT CHORD 2-15=-1/1, 14-15=-1/1, 13-14=-1/1, 12-13=-1/1, 11-12=-1/1, 10-11=-1/1

WEBS 8-11=-161/116, 7-12=-134/95, 6-13=-109/96, 5-14=-106/77, 4-15=-123/155

NOTES

1) Unbalanced roof live loads have been considered for this design.

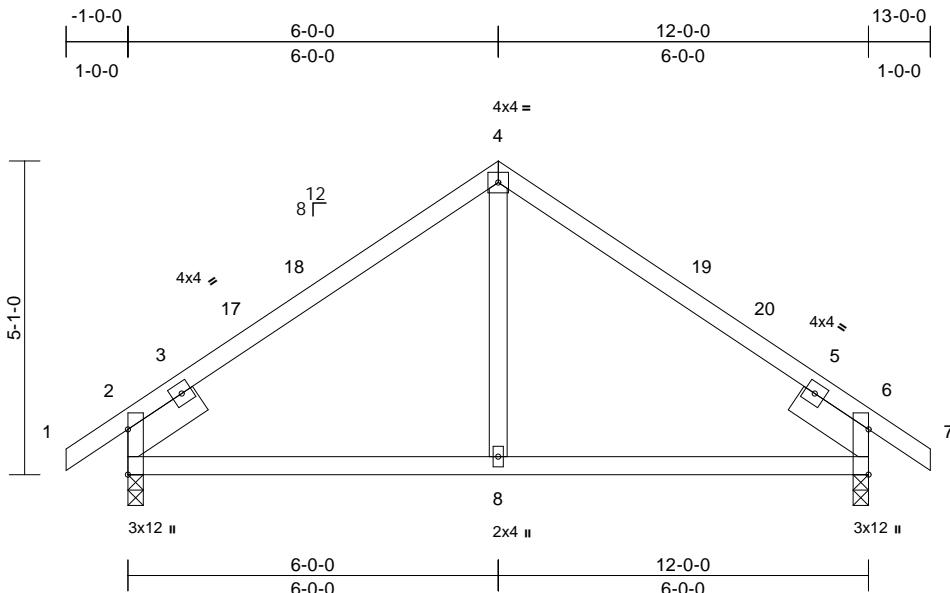
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 12-3-8 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 10, 16 lb uplift at joint 11, 17 lb uplift at joint 12, 23 lb uplift at joint 13 and 86 lb uplift at joint 15.

14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss C1	Truss Type Common	Qty 4	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869590
-----	-------------	----------------------	----------	----------	--	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:HVv5MQfmTnPHdoydAL6hibzjYIA-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.03	8-11	>999	240		
Snow (PfPg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.05	8-11	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 57 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2
-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size)

2=0-3-0, 6=0-3-0
Max Horiz 2=-75 (LC 14)
Max Uplift 2=-22 (LC 13), 6=-22 (LC 12)
Max Grav 2=498 (LC 2), 6=498 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/42, 2-4=-447/225, 4-6=-447/225,
6-7=0/42

BOT CHORD 2-8=88/309, 6-8=-87/309

WEBS 4-8=87/238

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0,
Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0
zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25
Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2 and 22 lb uplift at joint 6.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S)

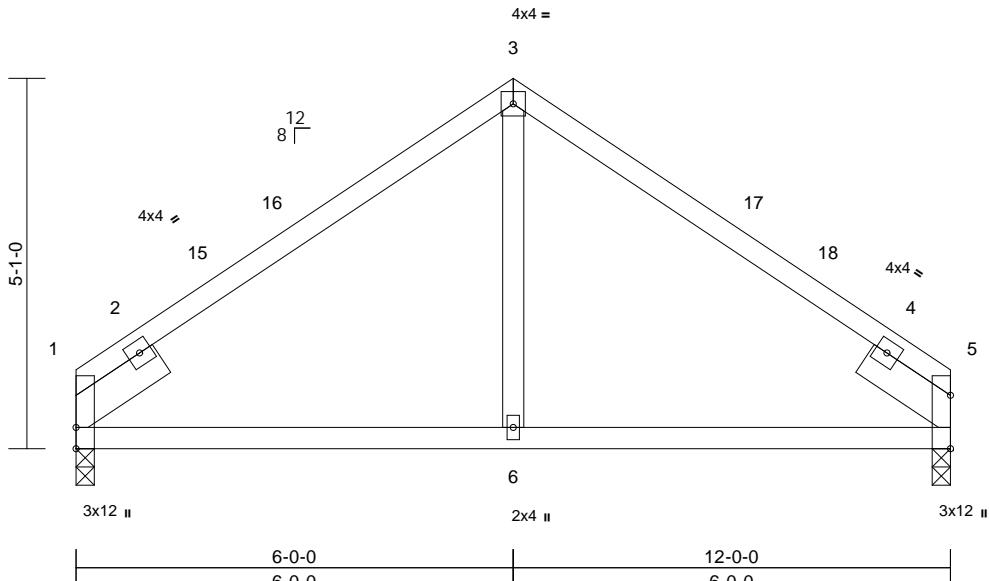
Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss C1A	Truss Type Common	Qty 1	Ply 1	Cooper III Rev.4 -Elev - 1-Roof Job Reference (optional)	I75869591
-----	--------------	----------------------	----------	----------	---	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:27
ID:IIUN3sHITRq1EdLQfYXfGMzjYkN-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.14	6-9	>999	240		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.13	6-9	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	Horz(CT)	-0.08	1	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 53 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2
-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-0, 5=0-3-0

Max Horiz 1=64 (LC 49)
Max Uplift 1=496 (LC 47), 5=496 (LC 46)
Max Grav 1=743 (LC 38), 5=743 (LC 39)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=881/843, 3-5=881/846
BOT CHORD 1-6=694/730, 5-6=694/730
WEBS 3-6=88/240

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-0-0,
Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 12-0-0
zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25
Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Plates checked for a plus or minus 5 degree rotation about its center.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 1 and 496 lb uplift at joint 5.
- This truss has been designed for a total drag load of 100 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 12-0-0 for 100.0 plf.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss C1SGE	Truss Type Common Supported Gable	Qty 1	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869589
-----	----------------	--------------------------------------	----------	----------	--	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:28
ID:DcVRCIUL0AWPKUlnhLAbRzjYIP-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.06	15-16	>999	240		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.08	15-16	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 72 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 -- 1-6-9, Right 2x6 SP No.2 -- 1-6-9

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=0-3-0, 10=0-3-0
Max Horiz 2=75 (LC 14)
Max Uplift 2=22 (LC 13), 10=22 (LC 12)
Max Grav 2=498 (LC 2), 10=498 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/42, 2-4=-441/196, 4-5=-400/214, 5-6=-377/247, 6-7=-377/247, 7-8=-400/214,

8-10=-441/196, 10-11=0/42

BOT CHORD 2-16=-92/314, 15-16=-92/314, 14-15=-92/314, 13-14=-92/314,

12-13=-92/314, 10-12=-92/314

WEBS 6-14=-155/201, 5-15=-84/45, 4-16=-30/48, 7-13=-84/45, 8-12=-28/48

NOTES

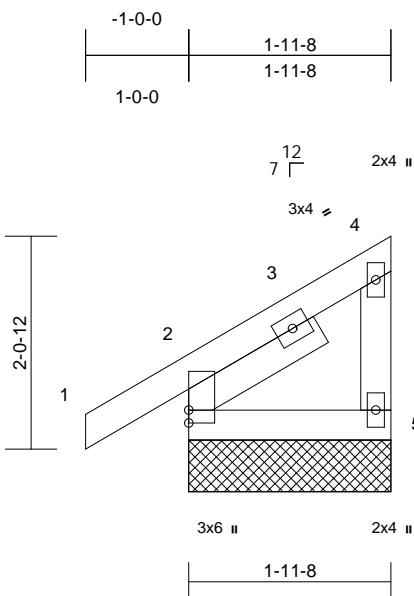
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2 and 22 lb uplift at joint 10.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	F1GE	Monopitch Supported Gable	2	1	Job Reference (optional)	I75869615

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:28
ID:yEL_0esNbjOqZGuHrfXvgzhCGX-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (PfPg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP						Weight: 12 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=1-11-8, 5=1-11-8

Max Horiz 2=33 (LC 16)

Max Uplift 5=13 (LC 16)

Max Grav 2=167 (LC 23), 5=61 (LC 23)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-4=-45/40, 4-5=-48/79

BOT CHORD 2-5=0/0

NOTES

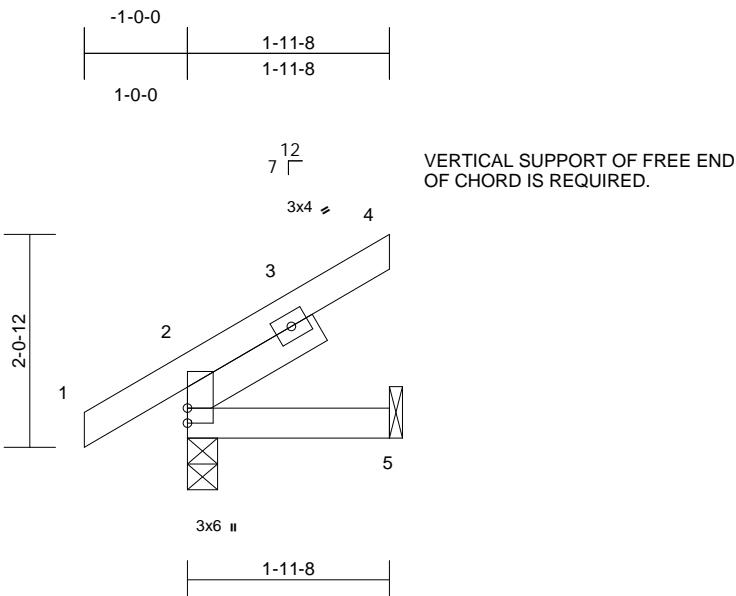
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 5.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 6.

LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	F1	Monopitch	2	1	Job Reference (optional)	I75869616

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:28
ID:q?av?v?u?x?u?G?u?C?4?V?c?Z?4?W?h?C?G?T?R?f?C?P?b?7?H?q?3?N?g?P?q?n?L?8?w?3?u?T?x?b?G?K?W?r?C?D?i?7?J?4?z?J?c?f?

Page: 1

Scale = 1:22.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.00	5-8	>999	240		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.01	5-8	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP						Weight: 10 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 5= Mechanical
Max Horiz 2=34 (LC 13)
Max Uplift 5=-21 (LC 13)
Max Grav 2=175 (LC 22), 5=74 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/38, 2-4=-400/311
BOT CHORD 2-5=-202/106

NOTES

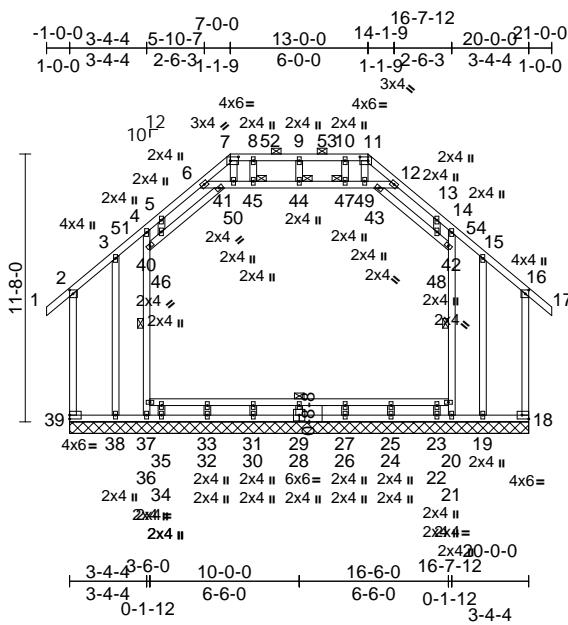
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 5.

LOAD CASE(S) Standard


August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job	Truss G2GE	Truss Type Attic Supported Gable	Qty 1	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)
Structural, LLC, Thurmont, MD - 21788,			Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:29 ID:mxq81MBDPzMr0edlruQkezjYAL-RIC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f		I75869597 Page: 1

Scale = 1:100.4

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [7:0-4-4,0-2-0], [11:0-4-4,0-2-0], [16:0-2-0,0-1-12], [18:Edge,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.95	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	0.42	Vert(CT)	n/a	-	n/a	999	
TCDL	7.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.00	18	n/a	n/a	
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS							Weight: 189 lb FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except* 4-37,14-20,6-12:2x4
SP No.2
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (5-6-2 max.): 7-11.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 4-37, 14-20

JOINTS 1 Brace at Jt(s): 44,

45, 47

REACTIONS (size) 18=20-0-0, 19=20-0-0, 20=20-0-0,
23=20-0-0, 25=20-0-0, 27=20-0-0,
29=20-0-0, 31=20-0-0, 33=20-0-0,
35=20-0-0, 37=20-0-0, 38=20-0-0,
39=20-0-0

Max Horiz 39=238 (LC 14)

Max Uplift 18=261 (LC 13), 19=531 (LC 49),
20=3 (LC 13), 23=3 (LC 12),
35=3 (LC 13), 37=4 (LC 12),
38=533 (LC 51), 39=263 (LC 12)

Max Grav 18=504 (LC 50), 19=314 (LC 15),
20=878 (LC 42), 23=204 (LC 52),
25=246 (LC 23), 27=238 (LC 23),
29=241 (LC 23), 31=238 (LC 23),
33=246 (LC 23), 35=204 (LC 50),
37=878 (LC 42), 38=317 (LC 14),
39=506 (LC 52)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

2-39=333/193, 1-2=0/68, 2-3=207/139,
3-4=2/213, 4-5=235/295, 5-6=256/290,
6-7=934/42, 7-8=932/44, 8-9=932/44,
9-10=932/44, 10-11=932/44, 11-12=934/66,
12-13=260/296, 13-14=241/301,
14-15=0/213, 15-16=206/138, 16-17=0/68,
16-18=332/192

BOT CHORD

38-39=148/180, 37-38=-148/180,
35-37=191/142, 33-35=191/142,
31-33=191/142, 27-31=191/142,
25-27=191/142, 23-25=191/142,
20-23=191/142, 19-20=125/155,
18-19=125/155, 34-36=0/166, 32-34=0/166,
30-32=0/166, 28-30=0/166, 26-28=0/166,
24-26=0/166, 22-24=0/166, 21-22=0/166

WEBS

36-37=-838/37, 36-40=-852/37,
4-40=642/68, 20-21=-838/0, 21-42=-852/0,
14-42=642/72, 6-41=-25/1011, 41-50=0/861,
45-50=0/877, 44-45=0/877, 44-47=0/877,
47-49=0/877, 43-49=0/861, 12-43=-24/1011,
40-46=-326/139, 41-46=-266/139,
43-48=-270/144, 42-48=-330/144,
9-44=-77/31, 28-29=-120/0, 8-45=-32/69,
30-31=-119/0, 32-33=-122/0, 5-46=-121/13,
34-35=-105/0, 3-38=-92/388, 10-47=-32/69,
26-27=-119/0, 24-25=-122/0, 13-48=-121/10,
22-23=-105/0, 15-19=-90/387,
11-49=-75/132, 7-50=-72/132

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 7-0-0, Exterior(2R) 7-0-0 to 11-2-15, Interior (1) 11-2-15 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior (1) 17-2-15 to 21-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.

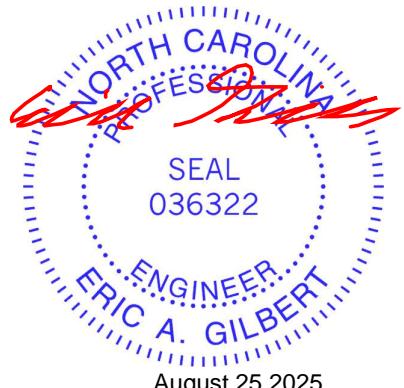
August 25, 2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss G2GE	Truss Type Attic Supported Gable	Qty 1	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869597
-----	---------------	-------------------------------------	----------	----------	--	-----------


Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:29
ID:mxq81MBDPzMr0edlruQkezjYAL-RIC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

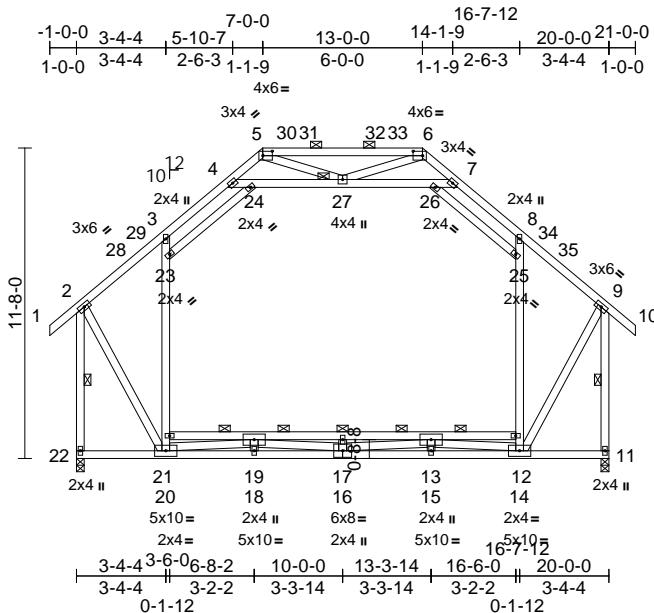
Page: 2

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Plates checked for a plus or minus 5 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (10.0 psf) on member(s). 6-41, 41-50, 45-50, 44-45, 44-47, 47-49, 43-49, 12-43
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 263 lb uplift at joint 39, 261 lb uplift at joint 18, 4 lb uplift at joint 37, 3 lb uplift at joint 20, 3 lb uplift at joint 35, 533 lb uplift at joint 38, 3 lb uplift at joint 23 and 531 lb uplift at joint 19.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

August 25, 2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss G2	Truss Type Attic	Qty 2	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)	I75869598
-----	-------------	---------------------	----------	----------	--	-----------

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:28
ID:xPIKG2y7xqRWZPhGNyFo7xjYOr-fC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.6

Plate Offsets (X, Y): [5:0-4-4,0-2-0], [6:0-4-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.31	16	>759	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.49	16	>481	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.05	11	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS	Attic	-0.25	14-20	>626	360		
BCDL	10.0									Weight: 203 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP SS *Except* 20-14:2x4 SP No.2
 WEBS 2x4 SP No.3 *Except* 3-21,8-12,4-7:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (5-0-8 max.): 5-6.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 2-22, 9-11

JOINTS 1 Brace at Jt(s): 27

REACTIONS (size) 11=0-3-8, 22=0-3-8

Max Horiz 22=238 (LC 14)

Max Grav 11=1572 (LC 48), 22=1572 (LC 48)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/68, 2-3=-800/28, 3-4=-748/214, 4-5=-700/98, 5-6=-696/99, 6-7=-700/100, 7-8=-749/216, 8-9=-800/27, 9-10=0/68, 2-22=-1619/0, 9-11=-1621/0

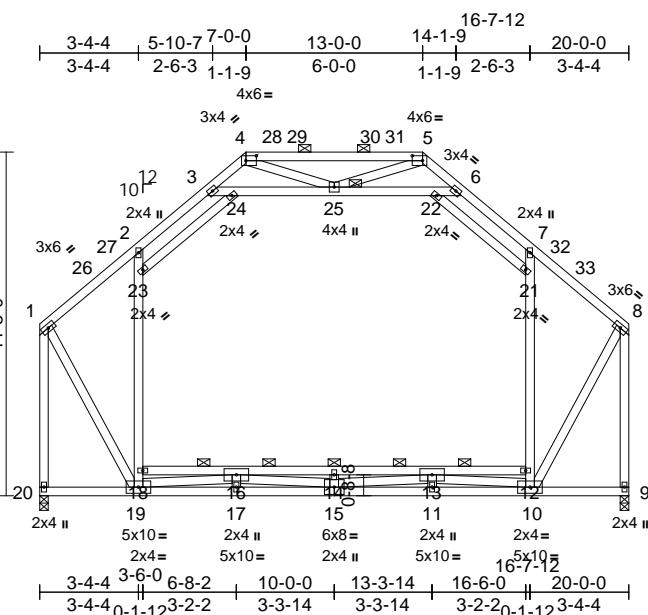
BOT CHORD 21-22=-226/239, 19-21=0/2990, 13-19=0/2990, 12-13=0/2990, 11-12=-75/85, 18-20=-159/315, 16-18=-3522/0, 15-16=-3522/0, 14-15=-165/320

WEBS 20-21=-386/121, 20-23=-346/194, 3-23=-286/232, 12-14=-386/92, 14-25=-346/194, 8-25=-286/232, 4-24=-572/344, 24-27=-559/246, 26-27=-562/246, 7-26=-571/344, 23-24=-247/163, 25-26=-249/166, 2-21=0/1107, 9-12=0/1109, 18-19=-73/68, 13-15=-79/68, 16-17=-324/0, 12-15=-2747/0, 15-17=0/1031, 17-18=0/1012, 18-21=-2747/0, 5-27=-8/153, 6-27=-8/151

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 7-0-0, Exterior(2R) 7-0-0 to 11-2-15, Interior (1) 11-2-15 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior (1) 17-2-15 to 21-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (10.0 psf) on member(s). 3-4, 7-8, 4-24, 24-27, 26-27, 7-26
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-20, 16-18, 15-16, 14-15

August 25, 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
 A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job	Truss G2A	Truss Type Attic	Qty 8	Ply 1	Cooper III Rev.4-Elev - 1-Roof Job Reference (optional)
Structural, LLC, Thurmont, MD - 21788,					Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:29 ID:Cjr_uS4aEpexjwDTO9JwV9zjYFe-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f I75869599 Page: 1

Scale = 1:78.2

Plate Offsets (X, Y): [4:0-4-4,0-2-0], [5:0-4-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.31	14	>764	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.49	14	>484	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.05	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS	Attic	-0.25	12-18	>627	360		
BCDL	10.0									Weight: 199 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP SS *Except* 18-12:2x4 SP No.2
WEBS 2x4 SP No.3 *Except* 2-19,7-10,3-6:2x4 SP No.2, 20-1,9-8:2x4 SP SS

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (5-0-8 max.): 4-5.
BOT CHORD Rigid ceiling directly applied.

JOINTS 1 Brace at Jt(s): 25

REACTIONS (size) 9=0-3-8, 20=0-3-8

Max Horiz 20=196 (LC 14)

Max Grav 9=1488 (LC 51), 20=1488 (LC 51)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=802/19, 2-3=-746/188, 3-4=-698/114, 4-5=-695/110, 5-6=-698/117, 6-7=-708/124, 7-8=-789/0, 1-20=-1527/0, 8-9=-1543/0

BOT CHORD 19-20=-134/152, 17-19=0/2986, 11-17=0/2986, 10-11=0/2986, 9-10=-4/14, 16-18=-129/277, 14-16=-3519/0, 13-14=-3519/0, 12-13=-140/302

WEBS 18-19=-392/134, 18-23=-352/194, 2-23=-295/232, 10-12=-392/101, 12-21=-352/194, 7-21=-295/232, 3-24=-584/339, 24-25=-552/242, 22-25=-579/242, 6-22=-538/339, 21-22=-231/142, 23-24=-211/136, 14-15=-324/0, 11-13=-77/67, 16-17=-69/67, 1-19=0/1089, 8-10=0/1092, 10-13=-2741/0, 13-15=0/1015, 15-16=0/1012, 16-19=-2741/0, 4-25=0/148, 5-25=0/151

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-4-4, Interior (1) 3-4-4 to 7-0-0, Exterior(2R) 7-0-0 to 11-2-15, Interior (1) 11-2-15 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior (1) 17-2-15 to 19-10-4 zone; cantilever left and right exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 2-3, 6-7, 3-24, 24-25, 22-25, 6-22
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-18, 14-16, 13-14, 12-13
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- Attic room checked for L/360 deflection.

LOAD CASE(S)

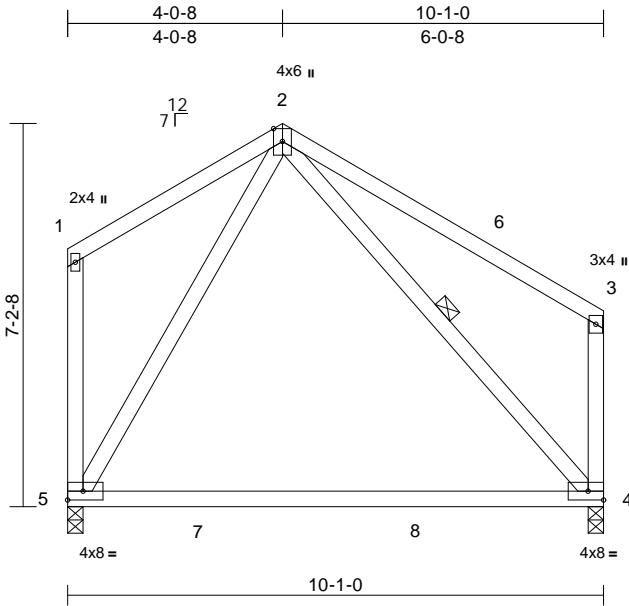
Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
	H1	Common	3	1	Job Reference (optional)	I75869620

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:29
ID:OCYxcFg_g7uhGIMK3KD69jzXSW-RFC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.36	4-5	>327	240		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	-0.58	4-5	>203	180		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 68 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP SS
WEBS 2x4 SP No.3 *Except* 5-1,4-3:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.
BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 2-4

REACTIONS (size) 4=0-3-8, 5=0-3-8

Max Horiz 5=54 (LC 12)

Max Uplift 5=3 (LC 17)

Max Grav 4=421 (LC 30), 5=439 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-132/37, 2-3=-198/80, 1-5=-165/50, 3-4=-222/111

BOT CHORD 4-5=6/135

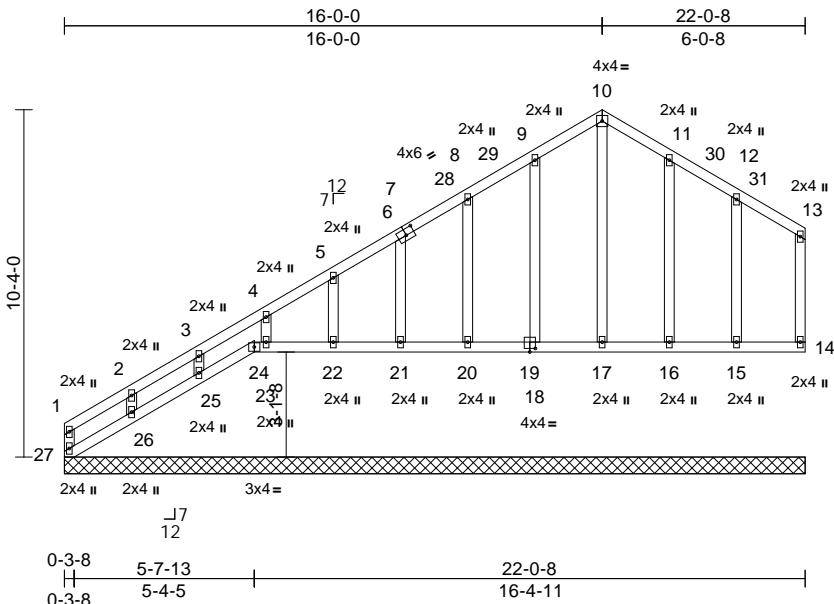
WEBS 2-4=-91/50, 2-5=-186/119

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 6-8-15 to 9-8-15, Interior (1) 9-8-15 to 10-7-11, Exterior(2R) 10-7-11 to 13-7-11, Interior (1) 13-7-11 to 16-6-7 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
Structural, LLC, Thurmont, MD - 21788,	H2GE	Roof Special Supported Gable	1	1	Job Reference (optional)	I75869622

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:30 Page: 1
ID:zpHXHo17OX4LnSExu?2YwmzjXTM-Rfc?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?

Scale = 1:68.6

Plate Offsets (X, Y): [7:0-3-0,0-2-4], [19:0-2-0,0-1-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS							
BCDL	10.0										
Weight: 128 lb FT = 20%											

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING
TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 14=22-0-8, 15=22-0-8, 16=22-0-8, 17=22-0-8, 18=22-0-8, 20=22-0-8, 21=22-0-8, 22=22-0-8, 23=22-0-8, 24=22-0-8, 25=22-0-8, 26=22-0-8, 27=22-0-8

Max Horiz 27=154 (LC 16)

Max Uplift 14=14 (LC 16), 15=16 (LC 17), 16=16 (LC 17), 18=17 (LC 16), 20=18 (LC 16), 21=18 (LC 16), 22=16 (LC 16), 23=21 (LC 16), 24=7 (LC 16), 26=122 (LC 16), 27=91 (LC 14)

Max Grav 14=64 (LC 2), 15=173 (LC 23), 16=203 (LC 23), 17=140 (LC 32), 18=204 (LC 22), 20=169 (LC 22), 21=148 (LC 35), 22=149 (LC 2), 23=141 (LC 2), 24=18 (LC 14), 25=144 (LC 2), 26=214 (LC 29), 27=167 (LC 16)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-27=-112/71, 1-2=-184/141, 2-3=-131/107, 3-4=-115/99, 4-5=-94/84, 5-6=-73/71, 6-8=-67/64, 8-9=-61/68, 9-10=-69/99, 10-11=-69/97, 11-12=-47/59, 12-13=-26/28, 13-14=-47/28

BOT CHORD

WEBS 10-17=-100/9, 9-18=-164/59, 8-20=-128/52, 6-21=-108/49, 5-22=-108/48, 4-23=-110/52, 3-25=-107/38, 2-26=-141/101, 11-16=-164/59, 12-15=-132/49

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 16-0-0, Exterior(2R) 16-0-0 to 19-0-0, Interior (1) 19-0-0 to 21-10-12 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 27, 7 lb uplift at joint 24, 14 lb uplift at joint 14, 17 lb uplift at joint 18, 18 lb uplift at joint 20, 18 lb uplift at joint 21, 16 lb uplift at joint 22, 21 lb uplift at joint 23, 122 lb uplift at joint 26, 16 lb uplift at joint 16 and 16 lb uplift at joint 15.

13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 24, 14, 17, 18, 20, 21, 22, 23, 25, 26, 16, 15.

14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S)

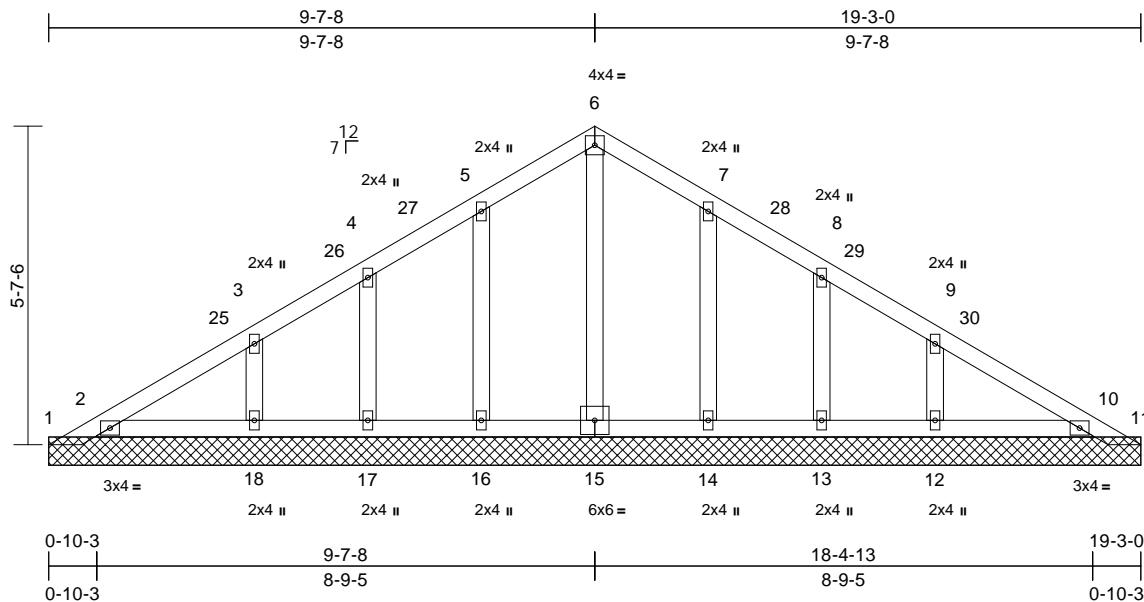
August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DDS-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932



Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
PB1GE		Piggyback	1	1	Job Reference (optional)	I75869572

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:30
ID:TS?fUnlpBF1wyFUnXlr0o7yAU_T-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS							
BCDL	10.0										
										Weight: 90 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=19-3-0, 2=19-3-0, 6=19-3-0,
10=19-3-0, 11=19-3-0, 12=19-3-0,
13=19-3-0, 14=19-3-0, 15=19-3-0,
16=19-3-0, 17=19-3-0, 18=19-3-0
Max Horiz 1=-87 (LC 14)
Max Uplift 1=-87 (LC 30), 2=-3 (LC 16),
11=-50 (LC 31), 12=-23 (LC 17),
13=-16 (LC 17), 14=-19 (LC 17),
16=-19 (LC 16), 17=-16 (LC 16),
18=-22 (LC 16)
Max Grav 1=48 (LC 13), 2=216 (LC 30),
6=102 (LC 2), 10=196 (LC 2), 11=8
(LC 17), 12=188 (LC 37), 13=158
(LC 24), 14=204 (LC 24), 15=79
(LC 7), 16=204 (LC 23), 17=158
(LC 23), 18=189 (LC 36)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=-99/127, 2-3=-69/72, 3-4=-64/57,
4-5=-56/67, 5-6=-71/99, 6-7=-71/97,
7-8=-48/63, 8-9=-34/30, 9-10=-39/41,
10-11=-5/46
BOT CHORD 2-18=-29/45, 17-18=-27/45, 16-17=-27/45,
14-16=-27/45, 13-14=-27/45, 12-13=-27/45,
10-12=-27/45
WEBS 6-15=0/0, 5-16=-163/62, 4-17=-124/48,
3-18=-131/56, 7-14=-163/62, 8-13=-124/48,
9-12=-130/56

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-3-8 to 3-3-8, Interior (1) 3-3-8 to 9-7-8,
Exterior(2R) 9-7-8 to 12-7-8, Interior (1) 12-7-8 to
18-11-8 zone; cantilever left and right exposed; end
vertical left and right exposed; C-C for members and
forces & MWFRS for reactions shown; Lumber
DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25
Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =
1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially
Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation
about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- 11) Bearing at joint(s) 6 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 3 lb uplift at joint 2,
87 lb uplift at joint 1, 50 lb uplift at joint 11, 19 lb uplift at
joint 16, 16 lb uplift at joint 17, 22 lb uplift at joint 18, 19
lb uplift at joint 14, 16 lb uplift at joint 13, 23 lb uplift at
joint 12 and 3 lb uplift at joint 2.

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

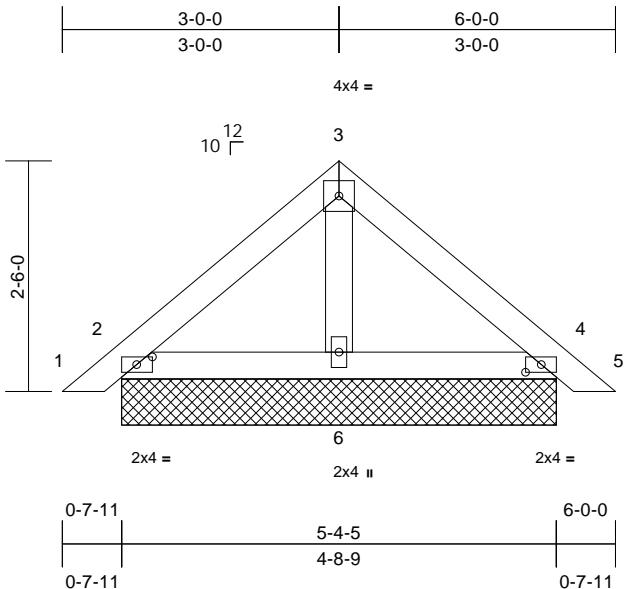
LOAD CASE(S)

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
PB4		Piggyback	11	1	Job Reference (optional)	I75869600

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:31
ID:3eWpRgvcucx44nOV86Asy5zjYov-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:25

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=4-8-9, 4=4-8-9, 6=4-8-9
Max Horiz 2=37 (LC 14)
Max Uplift 2=7 (LC 16), 4=11 (LC 17)
Max Grav 2=154 (LC 23), 4=154 (LC 24),
6=141 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/20, 2-3=-84/59, 3-4=-84/64, 4-5=0/20
BOT CHORD 2-6=-9/36, 4-6=-6/36
WEBS 3-6=-54/1

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

7) Plates checked for a plus or minus 5 degree rotation about its center.

8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 4-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

12) N/A

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

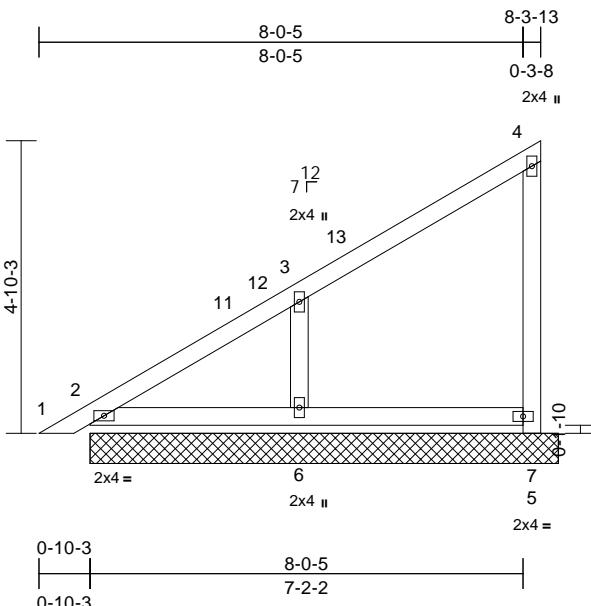
LOAD CASE(S) Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
PB5		Piggyback	3	1	Job Reference (optional)	I75869606

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:31
ID: _SUzh1LF2rFSm2?pLkn5FzzjXmJ-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.2

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 34 lb	FT = 20%
BCLL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=7-9-2, 6=7-9-2, 7=7-9-2

Max Horiz 2=99 (LC 16)
Max Uplift 6=41 (LC 16), 7=13 (LC 16)
Max Grav 2=126 (LC 2), 6=384 (LC 23),
7=149 (LC 23)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/21, 2-3=-217/111, 3-4=-88/45
BOT CHORD 2-6=-39/38, 5-6=0/0
WEBS 3-6=-293/266, 5-7=-149/88, 4-5=-119/108

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-3-8 to 3-3-8, Exterior(2N) 3-3-8 to 8-2-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL; Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 7. This connection is for uplift only and does not consider lateral forces.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

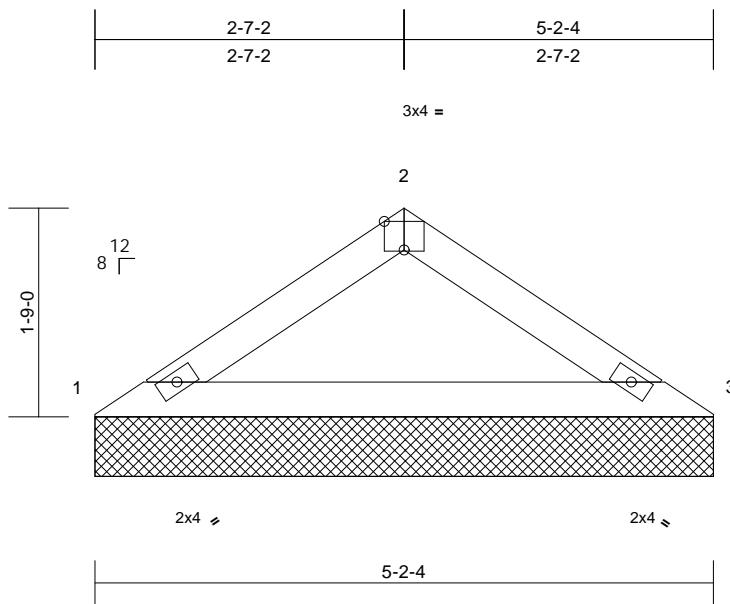
LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VA1		Valley	1	1	Job Reference (optional)	I75869593

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:31
ID:S_vfJZgvpBCpV8LkzLWPzjYmb-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS

(size) 1=5-2-4, 3=5-2-4
Max Horiz 1=25 (LC 14)
Max Grav 1=201 (LC 22), 3=201 (LC 23)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-303/111, 2-3=-303/111

BOT CHORD 1-3=-82/242

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCCL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

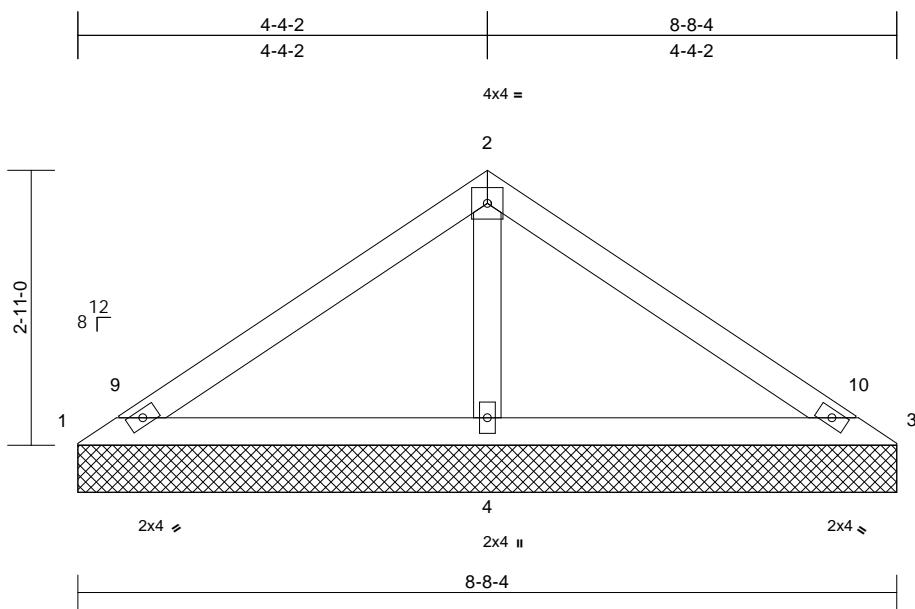
LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VA2		Valley	1	1	Job Reference (optional)	I75869592

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:oyibl0dpkLZUlaN57HZWDTzjYmW-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:24.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 30 lb	FT = 20%
BCLL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=8-8-4, 3=8-8-4, 4=8-8-4
Max Horiz 1=44 (LC 12)
Max Uplift 1=27 (LC 23), 3=27 (LC 22), 4=1 (LC 16)
Max Grav 1=69 (LC 22), 3=69 (LC 23), 4=583 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=90/266, 2-3=90/266
BOT CHORD 1-4=-190/136, 3-4=-190/136
WEBS 2-4=-428/183

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-4-8, Exterior(2R) 4-4-8 to 7-4-8, Interior (1) 7-4-8 to 8-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1, 27 lb uplift at joint 3 and 1 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S)

Standard

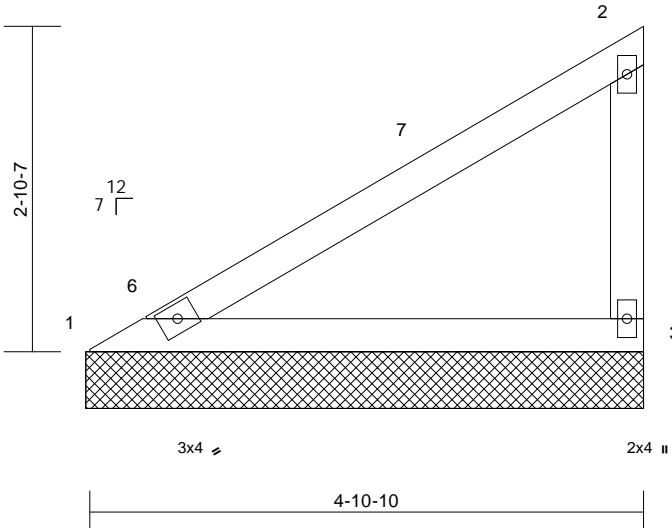
August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VB1		Valley	2	1	Job Reference (optional)	I75869604

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.3.0 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:R8EgX9mOYDsF689owsl8YGzjY8l-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

2x4 //

Scale = 1:20.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 18 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

7) Gable requires continuous bottom chord bearing.

8) Gable studs spaced at 4-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 3.

12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

REACTIONS

(size) 1=4-11-1, 3=4-11-1

Max Horiz 1=57 (LC 16)
Max Uplift 3=19 (LC 16)

Max Grav 1=211 (LC 22), 3=226 (LC 22)

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 3.

15) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.

16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-349/63, 2-3=-153/76

BOT CHORD 1-3=-107/299

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-9-5
zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.

LOAD CASE(S)

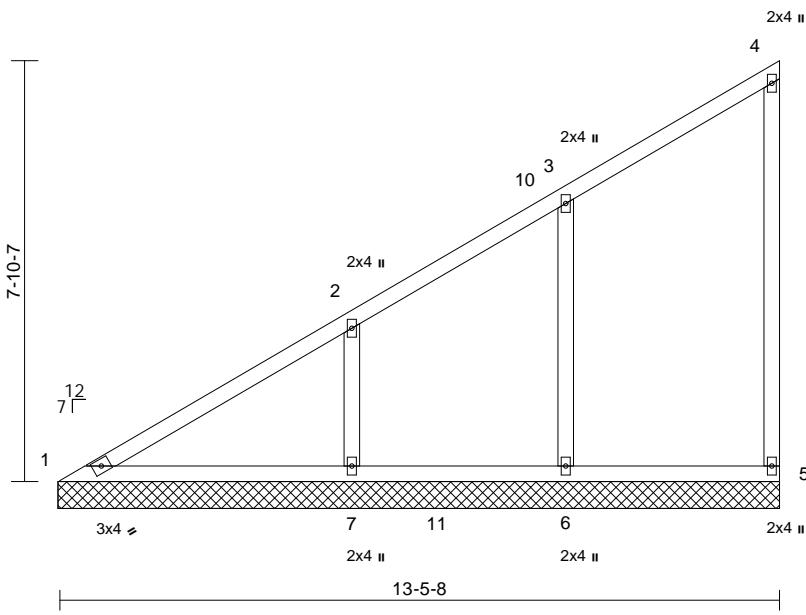
Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcaccomponents.com](#))

TRENCO
Engineering by
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VB4		Valley	1	1	Job Reference (optional)	I75869601

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:5jVdc47aj7W85ctN6SmxDNzjY7r-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 64 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=13-5-15, 5=13-5-15, 6=13-5-15, 7=13-5-15

Max Horiz 1=166 (LC 16)

Max Uplift 5=5-15 (LC 16), 6=35 (LC 16), 7=40 (LC 16)

Max Grav 1=177 (LC 31), 5=189 (LC 5), 6=395 (LC 5), 7=504 (LC 29)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-297/156, 2-3=-125/81, 3-4=-87/60, 4-5=-129/51

BOT CHORD 1-7=-72/259, 6-7=-1/6, 5-6=-1/6

WEBS 3-6=-259/132, 2-7=-287/141

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 13-4-3
zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber
DOL=1.60 plate grip DOL=1.60

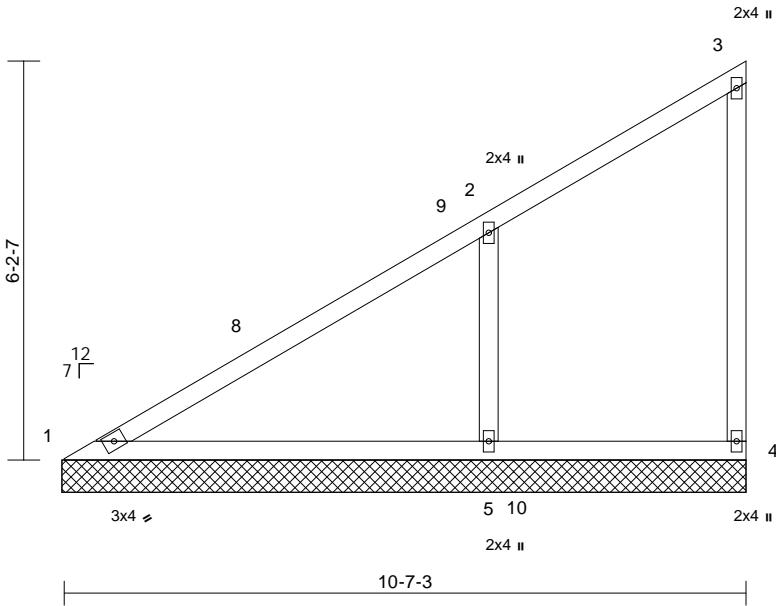
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 5, 35 lb uplift at joint 6 and 40 lb uplift at joint 7.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcaccomponents.com](#))

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VB3		Valley	2	1	Job Reference (optional)	I75869602

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:1r5yTxxAFWdGnIDUko?Q6DzjY84-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?

Page: 1

Scale = 1:35.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 46 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3

WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=10-7-10, 4=10-7-10, 5=10-7-10
Max Horiz 1=129 (LC 16)
Max Uplift 4=10 (LC 16), 5=54 (LC 16)
Max Grav 1=199 (LC 29), 4=132 (LC 5),
5=638 (LC 29)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-333/121, 2-3=-98/35, 3-4=-100/51

BOT CHORD 1-5=-84/316, 4-5=-2/2

WEBS 2-5=-374/177

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-5-14 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

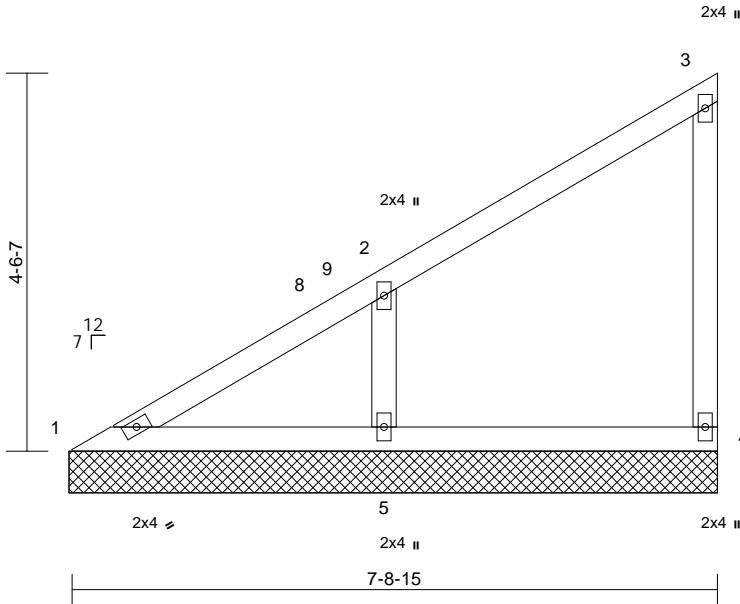
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 4 and 54 lb uplift at joint 5.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S)

Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from the Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcacomponents.com](#))

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VB2		Valley	2	1	Job Reference (optional)	I75869603

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:kU9j?YsnvMIGSDB8qqNnKlzjY8B-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 32 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.3
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING
TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=7-9-6, 4=7-9-6, 5=7-9-6
Max Horiz 1=93 (LC 16)
Max Uplift 4=14 (LC 16), 5=35 (LC 16)
Max Grav 1=105 (LC 2), 4=147 (LC 22),
5=397 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-148/89, 2-3=-88/45, 3-4=-118/63

BOT CHORD 1-5=-57/125, 4-5=0/0

WEBS 2-5=-300/158

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 7-7-10 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.00; Cs=1.00; Ct=1.10

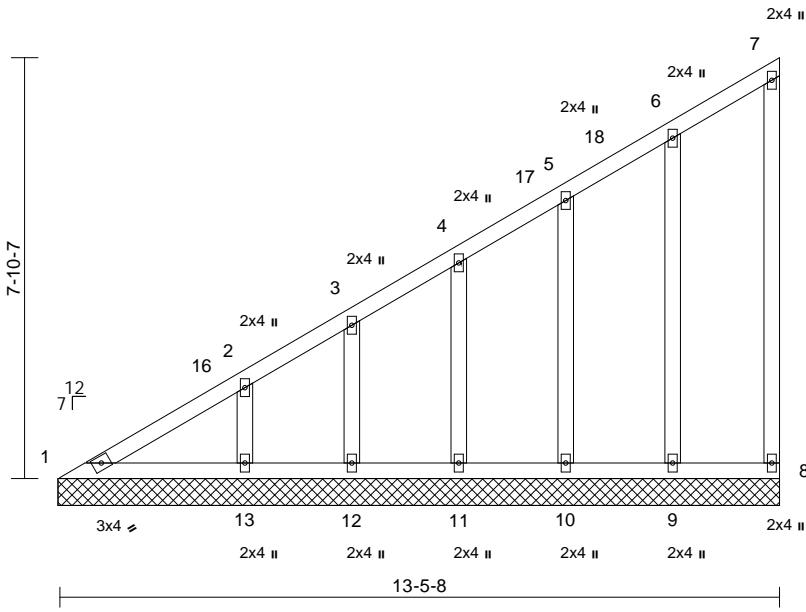
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 4 and 35 lb uplift at joint 5.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S)

Standard

August 25, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cooper III Rev.4-Elev - 1-Roof	
VG4		Valley	1	1	Job Reference (optional)	I75869605

Structural, LLC, Thurmont, MD - 21788,

Run: 25.30 S Aug 20 2025 Print: 25.30 S Aug 20 2025 MiTek Industries, Inc. Mon Aug 25 06:16:32
ID:VZiBpvM70G1UgODHf7d1bzjY7X-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999		
Snow (PfPg)	15.4/20.0	Lumber DOL	1.25	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS						Weight: 82 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.
BOT CHORD Rigid ceiling directly applied.
REACTIONS (size) 1=13-5-15, 8=13-5-15, 9=13-5-15, 10=13-5-15, 11=13-5-15, 12=13-5-15, 13=13-5-15
Max Horiz 1=166 (LC 16)
Max Uplift 8=8 (LC 16), 9=16 (LC 16), 10=18 (LC 16), 11=17 (LC 16), 12=19 (LC 16), 13=15 (LC 16)
Max Grav 1=112 (LC 31), 8=73 (LC 22), 9=204 (LC 22), 10=171 (LC 22), 11=159 (LC 2), 12=106 (LC 29), 13=261 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-316/161, 2-3=-253/116, 3-4=-202/97, 4-5=-149/69, 5-6=-94/43, 6-7=-43/21, 7-8=-58/43
BOT CHORD 1-13=-100/130, 12-13=-1/1, 11-12=-1/1, 10-11=-1/1, 9-10=-1/1, 8-9=-1/1
WEBS 6-9=-162/112, 5-10=-133/92, 4-11=-113/91, 3-12=-88/85, 2-13=-165/119

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust)
Vasd=95mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 13-4-3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); ls=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 8, 16 lb uplift at joint 9, 18 lb uplift at joint 10, 17 lb uplift at joint 11, 19 lb uplift at joint 12 and 15 lb uplift at joint 13.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

August 25, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

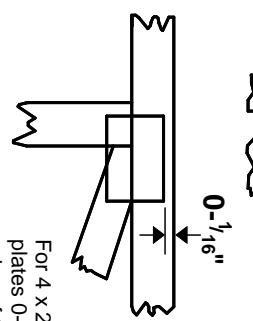

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

This symbol indicates the required direction of slots in connector plates.

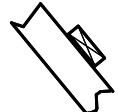
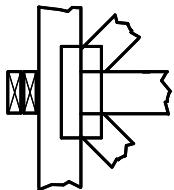

* Plate location details available in MiTek software or upon request.

PLATE SIZE

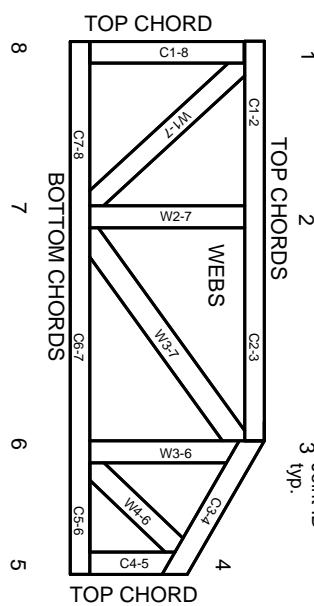
4 x 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.



Industry Standards:

- ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
- DSB-22: Design Standard for Bracing.
- BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®
ENGINEERING BY
TRENGO
A MiTek Affiliate