

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH HUNT Model: LOT 54MA

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date:

*

	F	?evis	ions	
ctor.	00/00/		Nan	ne
otra	00/00/	00	Nam	ne
COL	00/00/	00	Nam	ne
d or	00/00/	00	Nan	ne
r an	00/00/	00	Nam	ne
lift connectors are the responsibilty of the bldg designe	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structu	including headers, been soluting is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison WI 53170	
ANSI/TPI 1, all			mber	
			- Cr	
	HHUT			ROOF PLACEMENT PLAN
	Scale:		S 2025 gner:	ROOF PLACEMENT PLAN
	Scale:		2025 gner: Jumber:	ROOF PLACEMENT PLAN
	INNH HH		S 2025 gner: Jumber: Jumber: Jumber:	ROOF PLACEMENT PLAN
	Scale: Date: Date: Scale:		2025 gner: Jumber: Jumber:	ROOF PLACEMENT PLAN
	Scale: Date: Date: 6	VT 5/11/2 Desig Toject N 5060 Sheet N 5060	S 2025 gner: Jumber: 2054 lumber: 3	ROOF PLACEMENT PLAN

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25060054-01 54 Magnolia Acers-Roof-Taylor BB RH FL

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I74128819 thru I74128838

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

June 12,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	A01	Piggyback Base Structural Gable	1	1	Ich Reference (ontional)	174128819

Plate Offsets (X, Y): [2:Edge,0-0-8], [9:0-3-4,0-2-0], [10:0-5-0,0-3-0], [11:0-3-0,0-0-8], [13:0-2-8,0-2-8], [19:0-3-4,0-2-0], [31:0-2-12,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.47 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.20 0.04	(loc) 37 37-38 32	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 286 lb	GRIP 244/190 D FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce 2x4 SP No.3 Left 2x4 SP No.3 Structural wood sh	pt* 32-31:2x4 SP No. 1-6-0 eathing directly applic	2 2 2 2	1-2=0/46, 2-4=-12' 6-7=-987/225, 7-9: 12-16=-760/243, 1 19-21=-951/270, 2 24-27=-951/152, 2 29-31=-893/89, 31 6-8=-228/108, 8-11 10-11=-127/910, 1 11-14=-153/31, 14	72/208, 4 =-972/27 6-19=-7 1-24=-99 7-29=-80 -32=-690 0=-276/1 1-13=-52 -15=-12	4-6=-1163/22 '5, 9-12=-751 59/243, 90/223, 37/99, 0/47, 42, 2/805, 7/78,	21, 1/240,	 Wir Vas II; E (3E Col 22- 25- exp me 	nd: ASCE ad=103m Exp B; Ei) -0-9-14 ner(3R) 7-8, Cori 10-7 to 3 loosed ; e mbers ai	7-16; nclosed to 2-5 11-10- ner(3R 32-4-2 nd ver nd forc	; Vult=130mph (CDL=6.0psf; BC d; MWFRS (env 5-1, Exterior(2N) -0 to 15-0-15, E t) 22-7-8 to 22- zone; cantilever tical left and rig tes & MWFRS fr	3-second gus DL=6.0psf; h relope) and C) 2-5-1 to 11- xterior(2N) 1{ (0-7, Exterior) r left and righ nt exposed;C or reactions s	st) =25ft; Cat. -C Corner 10-0, 5-0-15 to (2N) t -C for shown;
BOT CHORD WEBS JOINTS	2-0-0 oc purlins, c. 11-31. Rigid ceiling directl bracing. 1 Row at midpt 1 Brace at Jt(s): 17 8, 18, 22, 25, 28, 10	y applied or 6-0-0 oc 11-12, 16-17	BOT CHORD	15-17=-226/1436, 18-20=-224/1428, 22-25=-63/676, 25 26-28=-66/513, 28 30-31=-56/515 2-38=-161/943, 37 13-37=-60/709, 13 34-36=-55/103, 33 14-12=-280/103, 1	17-18=:2 20-22=-(-26=-63/ -30=-56/ -38=-58/ -14=0/7 -34=-22/ 6-17=-33	226/1436, 53/676, '676, '513, '527, 7, 13-36=-79 '147, 32-33=	1/259, -34/54	3) Tru onl see or o 4) TC Pla DO	nber DO ss desig y. For st Standar consult q LL: ASCI te DOL= L=1.15 F	L=1.60 ned fo uds ex rd Indu ualified E 7-16 1.15); Plate D	b) plate grip DOL r wind loads in t (posed to wind (listry Gable End d building design ; Pr=20.0 psf (rr Pg=20.0 psf; Pf PGL=1.15); Is=1 100: Ct=1 10	=1.33 he plane of th normal to the Details as ap ner as per AN cof LL: Lum E =18.9 psf (Lu .0; Rough Ca	ne truss face), plicable, NSI/TPI 1. DOL=1.15 im at B; Fully
REACTIONS	(size) 2=0-3-0, 34=17-1 Max Horiz 2=196 (L Max Uplift 32=-18 (34=-306 Max Grav 2=1032 3=408 36=723 (lb) - Maximum Con	32=17-11-0, 33=17- 1-0, 36=17-11-0 .C 10) LC 10), 33=-115 (LC (LC 2), 36=-12 (LC (LC 2), 32=721 (LC 2 (LC 30), 34=115 (LC (LC 2) mpression/Maximum	11-0, WEBS 14), 10), 10), NOTES	9-10=-131/488, 7- 9-10=-131/488, 7- 21-22=-51/51, 24- 27-28=-217/134, 2 10-38=-52/394, 10 15-36=-468/96, 20 26-33=-370/232, 1 20-36=-765/163, 2 31-33=-41/135, 4-	8-17=-30 3=-93/54 25=-159/ 9-30=-74 -37=-81 -37=-81 -34=-64/ 3-15=-19 6-34=-10 38=-149/	5//114, -, 18-19=-126 /90, 4/39, 6-38=-4 5/117, '418, 98/1458, 35/48, '116	5/497, 41/89,	5) Thi loa ove 6) Pro	s truss h d of 12.0 rhangs r vide ade	s, CS= as bee psf or non-co equate	2.00 times flat nocurrent with ot drainage to pre	greater of mir roof load of 1 her live loads vent, water po	n roof live 3.9 psf on onding.
	Tension		1) Unbalance	d roof live loads hav	e been o	considered fo	or				Q. 05		

this design.

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTesk connectors. This design is based only upon parameters and received to be added to be adde and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	17//000/0
25060054-01	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	174128819
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 19	9 2025 MiTek Industries, Inc. Wed Jun 11 09:26:03	Page: 2

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 32, 12 lb uplift at joint 36, 306 lb uplift at joint 34 and 115 Ib uplift at joint 33.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:03 ID:p8n3d7nIDko7ysz8?ze8wiz86Tc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	A02	Piggyback Base	2	1	Job Reference (optional)	174128820

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:04 ID:Y3qzhpozlkse5JVkRX?NLFz7slp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

June 12,2025

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	A03	Piggyback Base	3	1	Job Reference (optional)	174128821

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:04 ID:2VJSivHZUjhYBpg7y4BS9Uz7sic-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

RENCO A MiTek Affiliate

4. GILP.... June 12,2025

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	B01	Common Supported Gable	1	1	Job Reference (optional)	174128822

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:05 ID:?iQVq1wp??N12yDJYjdtofz7shn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.7

Plate Offsets (X, Y): [22:Edge,0-5-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11- 1.15 1.15 YES IRC2	4 018/TPI2014	CSI TC BC WB Matrix-MSH	0.06 0.02 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-2-8 Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 SP No.3 1 wood shea burlins. ng directly 2=34-5-0, 25=34-5-0 32=34-5-0 32=34-5-0 32=34-5-0 32=34-5-0 32=34-5-0 23=34-5-0 23=34-5-0 23=34-5-0 24=-34 (Ld 24=-12 (Ld 30=-13 (Ld 37=-11 (Ld 24=-11 (Ld 23=-12 (Ld 37=-11 (Ld 37=-11 (Ld 23=-12 (Ld 37=-11 (Ld 37=-11 (Ld 21=-154 (L 28=155 (L 30=177 (L 38=155 (L 38=155 (L 38=155 (L 40=154 (L 42=116 (L)	-2-8, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 22=34-5-0, 24=34-5- , 26=34-5-0, 32=34-4- , 29=34-5-0, 30=34-4 , 33=34-5-0, 34=34-4- , 33=34-5-0, 34=34-4 , 40=34-5-0, 41=34-4 16) C 16), 25=-11 (LC 16 C 16), 25=-11 (LC 16 C 16), 32=-10 (LC 16 C 15), 36=-13 (LC 15 C 15), 36=-13 (LC 15 C 15), 36=-13 (LC 15 C 15), 42=-45 (LC 15 C 15), 42=-45 (LC 15 C 15), 42=-45 (LC 15 C 15), 42=-15 (LC 2 C 40), 25=160 (LC 2 C 40), 25=150 (LC 2 C 30), 34=193 (LC 2 C 22), 37=155 (LC 2 C 39), 39=155 (LC 2 C 39), 41=160 (LC 2 C 39)	do $.3$ d or -0, 5-0, 5-0, 5-0, 5-0, 5-0, 5-0, 5-0, 5	FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design.	(lb) - Maximum Cor Tension 1-2=0/24, 2-3=-44/; 4-5=-59/44, 5-6=-4; 8-9=-51/112, 9-10= 11-12=-88/217, 12- 13-14=-74/183, 14- 15-16=-51/112, 16- 19-20=-36/18, 20-2 22-23=0/24 2-42=-35/109, 31- 36-37=-35/109, 32- 30-32=-35/109, 32- 30-32=-35/109, 25- 24-25=-35/109, 25- 24-25=-35/10	npressi 37, 3-4= 9/53, 6- -60/147 13=-88, 15=-60, 18=-41, 1=-52/2 2=-35/1 40=-35, 38=-35, 33=-35, 30=-35, 28=-35, 24=-35, 34=-15, 7=-121, =-120/6 29=-12 27=-12 25=-12; e been of	on/Maximum 76/40, 8=-41/76, , 10-11=-74/1 /217, /147, /76, 18-19=-32 /7, 21-22=-39/ 09, /109, /	2/41, 36, (1/69, 80,	 Win Vas II; E (3E) Corr 35-3 vert forc DOI Trus only see or c Trus only see Trus or c Trus or	d: ASCE d=103m xp B; Ei) -0-10-2 ical left : es & MV _=1.60 p ss desig y. For st Standar onsult q L: ASCE e DOL= _=1.15 F ;; Ce=0. alancec gn. truss h l of 12.0 r	E 7-16 (http://www.action.com/ rolosee 2 to 2-77 et to 2-77 et canting and rig VFRS blate g voltate g volt	Vult=130mph (: CDL=6.0psf; BCI d; MWFRS (envv 7-2, Exterior(2N) 16 20-7-13, Ext lever left and rig th exposed;C-C for reactions sho rip DOL=1.33 r wind loads in tt goosed to wind (r istry Gable End d building desigr ; Pr=20.0 psf; Pf= JOL=1.15); Is=1. =1.00; Ct=1.10 loads have bee en designed for g 2.00 times flat r ncurrent, with oth SEA 0363	B-second gust) DL=6.0psf; h=25ft; Cat. slope) and C-C Corner 2-7-2 to 17-2-8, arior(2N) 20-7-13 to ht exposed ; end for members and wn; Lumber the plane of the truss normal to the face), Details as applicable, ier as per ANSI/TPI 1. of LL: Lum DOL=1.15 =13.9 psf (Lum 0; Rough Cat B; Fully In considered for this greater of min roof live oof load of 13.9 psf on the live loads. ACC ACC ACC ACC ACC ACC ACC AC

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulcapes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSE2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	17 ((00000
25060054-01	B01	Common Supported Gable	1	1	Job Reference (optional)	1/4128822

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 34, 13 lb uplift at joint 36, 11 lb uplift at joint 37, 12 lb uplift at joint 38, 11 lb uplift at joint 39, 12 lb uplift at joint 40, 10 lb uplift at joint 41, 45 lb uplift at joint 42, 10 lb uplift at joint 32, 13 lb uplift at joint 30, 11 lb uplift at joint 29, 12 lb uplift at joint 28, 11 lb uplift at joint 27, 12 lb uplift at joint 26, 11 lb uplift at joint 25 and 34 lb uplift at joint 24.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:05 ID:?iQVq1wp??N12yDJYjdtofz7shn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

111111

June 12,2025

Mannanana

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	B02	Common	4	1	Job Reference (optional)	174128823

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:05 ID:E6Ddmn3g3vfT9x9B93fh7Tz86Zi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- SI IDFR Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 -- 1-6-0 BRACING
- TOP CHORD
- Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing **REACTIONS** (size) 2=0-3-8, 12=0-3-8 Max Horiz 2=-71 (LC 16) Max Grav 2=1536 (LC 3), 12=1536 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/25, 2-4=-3121/252, 4-6=-2949/237, 6-7=-2209/246, 7-8=-2209/246, 8-10=-2949/237, 10-12=-3121/252,
- 12-13=0/25 BOT CHORD 2-18=-158/2789, 16-18=-108/2454, 14-16=-110/2454, 12-14=-160/2790 WEBS 7-16=-64/1359. 8-16=-733/128. 8-14=0/437. 10-14=-218/106, 6-16=-733/128, 6-18=0/437, 4-18=-218/106

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-2 to 2-7-2, Interior (1) 2-7-2 to 17-2-8, Exterior(2R) 17-2-8 to 20-7-13, Interior (1) 20-7-13 to 35-3-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Unbalanced snow loads have been considered for this
- 4) desian. This truss has been designed for greater of min roof live
- 5) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. All plates are 3x5 MT20 unless otherwise indicated. 6)
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8)
- All bearings are assumed to be SP No.1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

ORT WWWWWWWW SEAL 036322 G minim June 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	B03	Common	5	1	Job Reference (optional)	174128824

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:05 ID:XS8HEA83Q3YTV?BX31HKvxz86Zb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

GI minim June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	C01	Common Supported Gable	2	1	Job Reference (optional)	174128825

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:05 ID:He_A4rCmYPrPmApk3MOGHiz86ao-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1.65.3	
ocale -	1.00.0	

Plate Offsets (X, Y): [13:Edge,0-3-8], [20:0-2-0,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TP	12014	CSI TC BC WB Matrix-MR	0.11 0.08 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(lo	ic) / - - 14	′defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 171 lt	GRIP 244/190 5 FT = 20	0	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Bigid ceiling directly	eathing directly applied coept end verticals.	тор с _{d or} вот с	CHORD 1	1-27=-120/79, 1-2=- 3-4=-118/101, 4-5=- 5-7=-171/272, 7-8=- 3-10=-100/127, 10- 12-13=-136/108, 13 26-27=-83/120, 25-2 24-25=-83/120, 23-2 22-23=-83/120, 21-2	-177/14 -106/12 -171/27 11=-90/ -14=-9: 26=-83/ 24=-83/ 22=-83/	8, 2-3=-127/1 7, 5-6=-133/2 2, 8-9=-133/2 64, 11-12=-1(2/50 120, 120, 120, 120,	10, 06, 06, 00/74,	6) (7) - 8) (9) -	Gable Truss f braced Gable * This on the 3-06-0 chord a All bea	requir to be f again studs truss f bottor 0 tall f and an arings	tes con fully sh nst late space nas be m cho oy 2-0 ny oth are as	ntinuous bottom neathed from or eral movement id at 2-0-0 oc. en designed fo rd in all areas 0-00 wide will fi er members. asumed to be S	chord bean ne face or s (i.e. diagor r a live loan (here a rec t between P No.2.	aring. securely nal web). d of 20.0psf tangle the bottom	
WEBS REACTIONS	Angle Centry Greecy bracing. 1 Row at midpt (size) 14=23-6- 17=23-6- 24=23-6- 24=23-6- 27=23-6- Max Horiz 27=-190 Max Uplift 14=-58 (I 16=-28 (I 18=-41 (I 22=-31 (I)	7-21, 6-22, 8-19 0, 15=23-6-0, 16=23- 0, 18=23-6-0, 19=23- 0, 22=23-6-0, 23=23- 0, 25=23-6-0, 26=23- 0 (LC 9) _C 12), 15=-85 (LC 14 _C 14), 17=-39 (LC 14 _C 14), 19=-30 (LC 14 _C 13), 23=-40 (LC 13	6-0, WEBS 6-0, 6-0, 1), NOTE (), 1) Ur (), 1) Ur (), 2) W	19-2183/120, 18-1983/120, 1 17-1883/120, 16-1783/120, 1 17-1883/120, 16-1783/120, 1 15-1683/120, 16-1783/120, 1 WEBS 7-21283/123, 6-22145/79, 5-23148/100, 4-24146/92, 3-25146/94, 2-26151/131, 8-19145/79, 9-18148/100, 10-17146/92, 11-16146/94, 12-15150/131 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)							 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at join 27, 58 lb uplift at joint 14, 31 lb uplift at joint 22, 40 lb uplift at joint 23, 39 lb uplift at joint 24, 27 lb uplift at joint 26, 30 lb uplift at joint 19, 41 lb uplift at joint 18, 39 lb uplift at joint 17, 28 lb uplift at joint 16 and 85 lb uplift at joint 15. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 an R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 					
FORCES	24=-39 (i 26=-91 (i Max Grav 14=124 (16=160 (21=199 (23=163 (25=157 ((lb) - Maximum Con Tension	LC 13), 25=-27 (LC 13 LC 13), 27=-93 (LC 11 LC 9), 15=188 (LC 29 LC 29), 17=165 (LC 2 LC 29), 19=169 (LC 2 LC 14), 22=171 (LC 2 LC 28), 24=166 (LC 2 LC 28), 26=198 (LC 2 LC 10) npression/Maximum), V₂), V₂), (3) 9), Ca 9), 23 9), 23 8), Ca 8), Ca 8), D0 8), D0 8), D1 8), D1 9, Ca 9, Ca 8, Ca 9, Ca 9	sd=103mp Exp B; En: E) 0-1-12 tr mrer(3R) 1 -4-4 zone; tritcal left a ces & MW DL=1.60 pl uss design ly. For stu e Standarc consult qu CLL: ASCE ate DOL=1 DL=1.15 Pl p; Ce=0.9 plates are	bh; TCDL=6.0psf; B closed; MWFRS (er o 3-1-12, Exterior(2 1-9-0 to 14-9-0, Ex cantilever left and ind right exposed;C- FRS for reactions s ate grip DOL=1.33 ed for wind loads in ids exposed to wind d industry Gable En alified building desi 7-16; Pr=20.0 psf; I ate DOL=1.15); Is= 0; Cs=1.00; Ct=1.10 ; 2x4 MT20 unless c	CDL=6 nvelope N) 3-1- terior(2 right ex- C for n hown; n the pla I (norm d Deta gner as (roof LL Pf=13.9 1.0; Rc otherwi	.0psf; h=25ft;) and C-C Co 12 to 11-9-0, N) 14-9-0 to posed ; end nembers and Lumber ane of the trus al to the face) ils as applicab s per ANSI/TF : Lum DOL=1 psf (Lum sugh Cat B; Fit se indicated.	Cat. rner ss , le, 11. .15 ully			Comment		SE/ 0363	AROK AL 322 AL GILBE	A MARINA AND AND AND AND AND AND AND AND AND A	

June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	C02	Common	7	1	Job Reference (optional)	174128826

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:05 ID:1ZJdLi4ohW?kUkdgYdiDTtz86cG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.82 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.06	(loc) 9-14 9-14 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shee 3-7-11 oc purlins. Rigid ceiling directly bracing, Except: 4-9-10 oc bracing: 1 (size) 1=0-3-8, 7 Max Horiz 1=184 (LC Max Grav 1=1382 (L	t* 8-4,16-4:2x4 SP N I-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 1-13. *=0-3-8 C 12) .C 28), 7=1382 (LC 3	2) No.2 No.3 d or 5 3) 4) 29) 5)	Wind: ASCE Vasd=103mp II; Exp B; End Exterior(2E) 23-6-0 zone; vertical left an forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 200.0lb AC u from left end, * This truss h	7-16; Vult=130mpł h; TCDL=6.0psf; E closed; MWFRS (e 0-0-0 to 3-0-0, Intei 11-9-0 to 14-9-0, Ir cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.33 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 nit load placed on i supported at two p as been designed	n (3-sec 3CDL=6 nvelope rior (1) : terior (right ex -C for n shown; (roof LL Pf=13.9 =1.0; Rc) the bott booints, { for a liv	ond gust) .0psf; h=25ft and C-C 3-0-0 to 11-9 1) 14-9-0 to posed ; end hembers and Lumber : Lum DOL= psf (Lum nugh Cat B; F om chord, 11 5-0-0 apart. e load of 20.1	; Cat. -0, 1 1.15 Fully 1-9-0 Opsf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-3=-1900/0, 3-4=-19	pression/Maximum 910/57, 4-5=-1910/5	7,	on the botton 3-06-00 tall b chord and an	n chord in all areas y 2-00-00 wide will y other members, y	where fit betw with BC	a rectangle /een the bott DL = 10.0ps	om f.					
BOT CHORD	5-/=-1900/0 1-16=-95/1365, 14-1 8-9=0/1908, 7-8=-48 11-13=-1196/0, 10-1 4-10=0/1077, 8-10=(4-15=0/1077, 3-16=- 13-14=0/234, 9-11=(8-11=-1324/0	6=0/1908, 9-14=0/1 //1359, 13-15=0/49, 1=0/49 /1090, 15-16=0/109 .373/219, 5-8=-373/2 0/234, 13-16=-1324/	6) 908, 7) 10, LC 219, 0,	All bearings a This truss is o International R802.10.2 ar	are assumed to be designed in accord Residential Code s id referenced stand Standard	SP No. ance w sections dard AN	2 . ith the 2018 . R502.11.1 a ISI/TPI 1.	and		4	A	ORTH CA	ROIN

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	C03	Common	10	1	Job Reference (optional)	174128827

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:05 ID:1ZJdLi4ohW?kUkdgYdiDTtz86cG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.4

Fiale	Unsels	(^,	·). [1.0-2-	-12,0-	0-7]	, [7.0	J-J-1	1,0-0	•/]	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCCL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.85 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.45 0.03	(loc) 8-10 8-10 7	l/defl >973 >624 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 4-3-0 oc purlins. Rigid ceiling directly bracing	t* 10-3,8-5:2x4 SP -6-0, Right 2x4 SP athing directly appli applied or 10-0-0 o	4) No.3 5) 6) ed or LC c	* This truss h on the botton 3-06-00 tall b chord and an All bearings a This truss is International R802.10.2 ar DAD CASE(S)	as been designed n chord in all areas by 2-00-00 wide wil y other members, are assumed to be designed in accorc Residential Code s and referenced stan Standard	for a liv s where I fit betw with BC SP No. Jance wi sections dard AN	e load of 20.1 a rectangle veen the bott DL = 10.0psi 2. th the 2018 R502.11.1 <i>e</i> ISI/TPI 1.	Opsf om f. and						
REACTIONS	bracing. ONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=184 (LC 10) Max Grav 1=1100 (LC 28) 7=1100 (LC 29)													
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	1-3=-1516/129, 3-4= 4-5=-1529/266, 5-7=	-1529/266, -1516/129												
BOT CHORD WEBS	1-10=-139/1073, 8-1 4-8=-122/813, 4-10= 3-10=-381/212, 5-8=	0=0/692, 7-8=-91/1 -122/813, -381/212	067										1	
NOTES												MILL CA	Dille	
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; Exterior(2) 	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) 0-0-0 to 3-0-0, Interi						Contra la contra	AN	ORTH CA	2	7			

Exterior(2R) 11-9-0 to 14-9-0, Interior (1) 14-9-0 to 23-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 3) DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	D01	Common Structural Gable	1	1	Job Reference (optional)	174128828

TCDL

BCLL

BCDL

WFBS

WEDGE

WEBS

NOTES

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:05 ID:mxlgHlg8E3n3ZyYj 1SUWFz7sv?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G minim June 12,2025

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	D02	Common	1	1	Job Reference (optional)	174128829

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:06 ID:I0GjeDtAT ooUPmowOkE9dz7sul-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.1														
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.18	DEFL Vert(LL)	in -0.01	(loc) 7-8	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	-0.06	8-11	>999	180	-		
TCDL	10.0	Rep Stress Incr	YES		WB	0.23	Horz(CT)	0.01	7	n/a	n/a			
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 85 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc	athing directly applied cept end verticals.	4) 5) or 6)	This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall b chord and ar All bearings	is been designed psf or 2.00 times on-concurrent wit has been designe in chord in all area by 2-00-00 wide w hy other members are assumed to b	for greate flat roof lo h other liv d for a liv as where vill fit betw a. e SP No.	er of min roof oad of 13.9 p ve loads. e load of 20.1 a rectangle veen the bott 2.	f live sf on 0psf om						

- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 7=0-3-8 Max Horiz 2=143 (LC 12) Max Grav 2=638 (LC 2), 7=586 (LC 2) (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/40, 2-3=-728/137, 3-4=-581/148,
- 4-5=-580/146, 5-6=-168/59, 6-7=-163/50 2-8=-93/530, 7-8=-72/448 BOT CHORD WEBS 4-8=-78/414, 5-8=-143/134, 5-7=-563/108, 3-8=-249/141

NOTES

FORCES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-14 to 2-2-2, Interior (1) 2-2-2 to 7-9-0, Exterior(2R) 7-9-0 to 10-9-0, Interior (1) 10-9-0 to 14-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	HJ1	Monopitch	1	1	Job Reference (optional)	174128830

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:06 ID:Jx17H6RrKjF9AKrXxAuQvEz7sfp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.6 Plate Offsets (X, Y): [2:0-2-10,0-0-2]

		-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood she 2-7-12 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-4-9, 5 Max Horiz 2=59 (LC Max Uplift 2=-7 (LC Max Grav 2=189 (LC (Ib) - Maximum Com Toncion	1-6-0 athing directly appli xcept end verticals. applied or 10-0-0 o 5= Mechanical 12) 13), 5=-10 (LC 10) C 2), 5=91 (LC 29) ipression/Maximum	4) 5) 6) c 8) LO	* This truss I on the bottor 3-06-00 tall I chord and ar Bearings are Refer to gird Provide mec bearing plate 5 and 7 Ib up This truss is International R802.10.2 a AD CASE(S)	has been designed in chord in all area by 2-00-00 wide win y other members. e assumed to be: J er(s) for truss to tri shanical connection e capable of withst blift at joint 2. designed in accord Residential Code ind referenced star Standard	I for a liv s where ill fit betw oint 2 SI russ con h (by oth anding 1 dance w sections ndard AN	e load of 20.0 a rectangle veen the botto P No.2 . nections. ers) of truss t 0 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om oint ind					
TOP CHORD BOT CHORD	1-2=0/46, 2-4=-87/6 2-5=-78/99	4, 4-5=-97/77											
NOTES 1) Wind: AS Vasd=100 II; Exp B; Exterior(2 zone; can and right MWFRS f	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er E2) -1-2-6 to 1-9-10, Int titlever left and right exp exposed;C-C for memb for reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; hvelope) and C-C erior (1) 1-9-10 to 2- posed; end vertical bers and forces & mber DOL=1.60 pla	Cat. -6-0 left							4	A	ORTH CA	ROUT

- grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	M01	Monopitch	9	1	Job Reference (optional)	174128831

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:06 ID:fvq0KpV_8FtRG5kVjjUbcHz7sfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 1-11-8 oc purlins, et	athing directly applied	 6) Refer to gird 7) Provide merestimation 8) This truss is International R802.10.2 a LOAD CASE(S) 	er(s) for truss to tru hanical connection e capable of withsta designed in accorda Residential Code s nd referenced stanc Standard	(by oth nding 2 ance w ections lard AN	nections. ers) of truss to 0 lb uplift at jo ith the 2018 i R502.11.1 ar ISI/TPI 1.	o vint nd					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc										
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=59 (LC Max Uplift 4=-20 (LC Max Grav 2=133 (LC	= Mechanical 12) 10) 22), 4=72 (LC 29)										
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/40, 2-3=-87/69 2-4=-108/76	9, 3-4=-84/95										
NOTES												
 Wind: ASC Vasd=103 II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=(This truss load of 12. overhangs * This truss on the bott 3-06-00 tal chord and Bearings a 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) zone; cantilever left: and right exposed;C-/ WFRS for reactions sl plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 has been designed for op sf or 2.00 times flat non-concurrent with o s has been designed for om chord in all areas I by 2-00-00 wide will i I by 2-00-00 wide will i	(3-second gust) DL=6.0psf; h=25ft; velope) and C-C and right exposed; e C for members and hown; Lumber roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fu roof load of 13.9 psf ther live loads. or a live load of 20.0; where a rectangle fit between the botton ht 2 SP No.2.	Cat. and .15 .lly ive f on osf m						W. HILLING		SEA 0363	L 22 LBERTUU

June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	PB1	Piggyback	1	1	Job Reference (optional)	174128832

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:06 ID:tmfJCRl2h7YQiZpluYcgrHz86Te-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:	36
------------	----

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20 13.9/20 10 0 10	sf) .0 .0 .0 .0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dir bracing. (size) 2=9-6 10=9 Max Horiz 2=-71 Max Uplift 8=-51 Max Grav 2=13	d shea rectly 6-1, 6 9-6-1 8 (LC 7 (LC 33 (LC	athing directly applie applied or 10-0-0 oc 3=9-6-1, 8=9-6-1, 9= 11) 14), 10=-57 (LC 13) 2 2), 6=133 (LC 2), 8	3 d or ; 5 9-6-1, ; 6 =240 8	 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Gable requir Gable studies * This truss h on the bottor 	ed for wind loads i ids exposed to win d Industry Gable Er ialified building des 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is 0; Cs=1.00; Ct=1.11 is been designed for psf or 2.00 times fi on-concurrent with es continuous bott spaced at 2-0-0 oc has been designed n chord in all areas	n the pl d (norm nd Deta signer a: (roof LL Pf=13.9 =1.0; Re 0 or great at roof le other li other li	ane of the tru al to the face ils as applica is per ANSI/TI :: Lum DOL= 9 psf (Lum bugh Cat B; F er of min roof bad of 13.9 p: ve loads. d bearing. e load of 20.0 a rectangle	ss), ble, PI 1. 1.15 fully flive sf on					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 II; Exp B; Exterior(2 5-4-12, E> to 10-6-10 vertical lef forces & M DOL=1.60	(ib) - Maximum Tension 1-2=0/19, 2-3=- 4-5=-111/108, 5 2-10=-33/85, 9- 6-8=-33/85 4-9=-73/26, 3-1 ed roof live loads I n. CE 7-16; Vult=130 3mpt; TCDL=6.0p Enclosed; MWFR3 E) 0-2-14 to 3-4-1 tkterior(2R) 5-4-12 0 zone; cantilever I ft and right expose WWFRS for reactic 0 plate grip DOL=1	Com 83/5: 5-6=-1 10=-: 0=-2 have 0=-2 have 0=-2 have 0=-2 have 10=-: S (en 2, Int to 8 left a- left a- left a- left a- s si 1.33	pression/Maximum 3, 3-4=-111/110, 66/35, 6-7=0/19 33/85, 8-9=-33/85, 12/171, 5-8=-212/17/ been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C erior (1) 3-4-12 to 4-12, Interior (1) 8-4- nd right exposed ; er C for members and hown; Lumber	9 1 0 1 Cat. -12 nd	 3-06-00 tall ticchord and ar All bearings. Provide mec bearing plate 10 and 57 lb This truss is International R802.10.2 ar See Standar Detail for Co consult quali 	by 2-00-00 wide will by other members. are assumed to be hanical connection a capable of withsta uplift at joint 8. designed in accorc Residential Code and referenced stan d Industry Piggyba nnection to base tr fied building design Standard	I fit betw SP No. (by oth anding 5 dance w sections dard AN ock Trus uss as a her.	veen the both 2 . ers) of truss t 7 lb uplift at j 8 R502.11.1 a ISI/TPI 1. s Connection applicable, or	om oint and		M. Commerce		SEA 0363	EER. HUILING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 12,2025

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	PB2	Piggyback	5	1	Job Reference (optional)	174128833

4-9-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:06 ID:4tGaTTnL?QknU9wYtpU8o1z7slq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-6-1

0-7-7

Page: 1

Scale =	1:36
---------	------

Plate Offsets (X, Y): [2:0-3-1,0-1-8], [4:0-3-1,0-1-8]

_oading FCLL (roof) Snow (Pf/Pg FCDL SCLL SCDL	(psf) 20.0) 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.26 0.27 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORE BOT CHORE DTHERS BRACING FOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=9-6-1, 4 Max Horiz 2=81 (LC 	athing directly applie applied or 10-0-0 oc 4=9-6-1, 6=9-6-1 12)	4) 5) ed or 5 (2) (3) (4) (5) (6) (7) (8)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss h on the bottor	7-16; Pr=20.0 psf. .15); Pg=20.0 psf; late DOL=1.15); Isb cs cs=1.00; Ct=1.1 s been designed fip psf or 2.00 times fi pon-concurrent with es continuous bott spaced at 4-0-0 oc has been designed n chord in all areas	(roof LI Pf=13.5 =1.0; Ro or great at roof le other li oom chor c. for a liv s where	: Lum DOL=) psf (Lum)ugh Cat B; F er of min roof aad of 13.9 p: /e loads. d bearing. e load of 20.0 a rectangle	1.15 Fully Flive sf on Opsf					
FORCES	Max Uplift 2=-12 (LC Max Grav 2=265 (LC (LC 2) (Ib) - Maximum Com Tension 1 -2=0/19, 2-3=-243/ 4-5=0/19	∑ 13), 4=-19 (LC 14) C 2), 4=265 (LC 2), 6 npression/Maximum 177, 3-4=-243/171,	6=278 9) 10	3-06-00 tail t chord and ar All bearings) Provide mec bearing plate 2, 19 lb uplift uplift at joint	by 2-00-00 wide will any other members. are assumed to be hanical connection e capable of withsta at joint 4, 12 lb up 4. decigned in accorr	SP No. (by oth anding 1 lift at joi	2 . ers) of truss t 2 lb uplift at j nt 2 and 19 lk	to joint o					
BOT CHORE WEBS NOTES 1) Unbalan this desig 2) Wind: AS Vasd=10 II; Exp B	2-6=-65/111, 4-6=-5 3-6=-111/1 ced roof live loads have gn. SCE 7-16; Vult=130mph 30mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er	3/111 been considered for (3-second gust) CDL=6.0psf; h=25ft; hvelope) and C-C Co	11 12 12 Cat. orner	htternational R802.10.2 at See Standar Detail for Co consult quali	Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	dance w sections dard AN lick Trus uss as a ner.	is R502.11.1 a ISI/TPI 1. ISI/TPI 1. S Connection applicable, or	Ind		4	THE REAL PROPERTY AND A DECIMAL OF A DECIMAL	OR OFESS	ROUT

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Corn (3E) 0-2-14 to 3-2-14, Exterior(2N) 3-2-14 to 5-4-12, Corner(3R) 5-4-12 to 8-4-12, Exterior(2N) 8-4-12 to 10-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	SPA01	Roof Special Structural Gable	1	1	Job Reference (optional)	174128834

6x12 II

8-4-0

4-0-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

o-10-8

4-3-12

4-3-12

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Jun 11 09:26:06 ID: RIQxb0AMrge4?BPCiuEngz7PCt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-4-4

4-0-4

12 5 [6 2x4 u 2x4 II 5x6 ≠ 5 7 31 5x6 🗢 30 3x5 ≠ Δ 8 32 3x5 ≈ 4-2-11 29 З 9 17 19 Not 2x4 II 15 14 13 21/1 0-6-0 12 16 2x4 I 5x6 = 2x4 II 3x5 II _2 2x4 II 12 5x6 = 8-10-2 0-3-8 7-9-14 16-4-8 0-3-8 7-6-6 1-0-4 7-6-6 Plate Offsets (X, Y): [2:0-1-1,0-0-2], [6:0-2-8,0-3-0], [10:0-1-12,0-0-2] Spacing 1-11-4 CSI DEFL in l/defl L/d (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.15 Vert(LL) 0.00 16-23 >999 240 13.9/20.0 Lumber DOL 1.15 BC 0.12 Vert(CT) -0.01 16-23 >999 180 10.0 Rep Stress Incr WB 0.27 Horz(CT) YES 0.00 25 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No 2 II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP No 2 Exterior(2E) -0-10-2 to 2-1-14, Interior (1) 2-1-14 to 2x4 SP No.3 8-1-2, Exterior(2R) 8-1-2 to 11-1-2, Interior (1) 11-1-2 to 2x4 SP No.3 17-6-2 zone; cantilever left and right exposed ; end Left 2x4 SP No.3 -- 2-6-0, Right 2x4 SP No.3 vertical left and right exposed;C-C for members and -- 2-6-0 forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Structural wood sheathing directly applied or 3) Truss designed for wind loads in the plane of the truss 6-0-0 oc purlins. only. For studs exposed to wind (normal to the face), Rigid ceiling directly applied or 10-0-0 oc see Standard Industry Gable End Details as applicable, bracing. or consult qualified building designer as per ANSI/TPI 1. **REACTIONS** (size) 2=16-8-0, 10=16-8-0, 12=16-8-0, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) 13=16-8-0, 14=16-8-0, 15=16-8-0, Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 16=16-8-0 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Max Horiz 2=-34 (LC 16) Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Max Uplift 2=-12 (LC 11), 10=-22 (LC 16), 5) Unbalanced snow loads have been considered for this 14=-26 (LC 19) design. Max Grav 2=252 (LC 2), 10=249 (LC 40), This truss has been designed for greater of min roof live 6) 12=309 (LC 23), 13=160 (LC 2), load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

overhangs non-concurrent with other live loads.

on the bottom chord in all areas where a rectangle

10) Provide mechanical connection (by others) of truss to

11) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

bearing plate capable of withstanding 12 lb uplift at joint

International Residential Code sections R502.11.1 and

2, 22 lb uplift at joint 10, 26 lb uplift at joint 14, 12 lb uplift

Gable studs spaced at 2-0-0 oc.

chord and any other members.

at joint 2 and 22 lb uplift at joint 10.

All bearings are assumed to be SP No.2

7)

8)

16=290 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/24, 2-4=-197/104, 4-5=-86/61, TOP CHORD 5-6=-65/82, 6-7=-63/79, 7-8=-87/54, 8-10=-192/99. 10-11=0/24 BOT CHORD 2-16=-38/181, 15-16=-38/177, 14-15=-3/61, 13-14=-4/62, 12-13=-31/177, 10-12=-32/181 WEBS 6-13=-20/6, 13-19=-162/96, 19-20=-144/88, 8-20=-176/101, 6-15=-65/22, 4-18=-175/103 17-18=-144/87, 15-17=-159/98, 6-14=-44/10, 5-17=-86/45, 16-18=-202/85, 7-19=-106/50, 12-20=-223/90

14=21 (LC 2), 15=199 (LC 22),

NOTES

Scale = 1:43.8

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

SLIDER

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Unbalanced roof live loads have been considered for 1) this design.

TH CAN ORTH Contraction of the SEAL 036322 G minim

June 12,2025

VIIIIIIIIIII

Page: 1

17-6-8

. 0-10-8

10

3x5 i

16-8-0

0-3-8

PLATES

Weight: 92 lb

MT20

1-3-1

GRIP

244/190

FT = 20%

16-8-0

4-3-12

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	SPA02	Roof Special	5	1	Job Reference (optional)	174128835

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:06 ID:9YTaFL93mE34viXWLWapk_z7PCi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.8

Plate Offsets (X, Y): [2:0-5-0,Edge], [8:0-5-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.60 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.07	(loc) 10-11 11-14 8	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI 30T CHORI WEBS SLIDER BRACING TOP CHORI 30T CHORI REACTIONS FORCES TOP CHORI BOT CHORI WEBS NOTES 1) Unbalan this desi	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she 4-5-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=36 (LC Max Grav 2=717 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-4=-1475 5-6=-1271/257, 6-8= 2-11=-264/1338, 10 8-10=-268/1339 5-10=-27/335, 6-10= 4-11=-248/148 ced roof live loads have 	2-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 3=0-3-8 15) 2 2), 8=717 (LC 2) pression/Maximum 5/351, 4-5=-1271/258 1476/352, 8-9=0/25 11=-107/1069, 248/148, 5-11=-27/ been considered for	3) No.3 4) 5) d or 5 6) 7) 8) 3, 9) 5 LC	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n * This truss th on the bottor 3-06-00 tall b chord and ar All bearings : Bearing at jo using ANSI/7 designer sho This truss is International R802.10.2 ar DAD CASE(S)	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.1; snow loads have b s been designed from the set of t	(roof LI Pf=13.9 =1.0; Ro o peen col or great at roof I other Ii for a liv s where II fit betv SP No rs parall n formul of bear dance w sections dard AN	:: Lum DOL= 9 psf (Lum ough Cat B; F er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott 2. el to grain va a. Building ing surface. ith the 2018 s R502.11.1 a JSI/TPI 1.	E1.15 Fully this f live psf on 0psf tom				OR TH CA	RO	*
2) Wind: A: Vasd=1(II; Exp B Exterior(8-4-0, E: 17-6-2 z vertical I forces & DOL=1.(gr. SCE 7-16; Vult=130mph 33mph; TCDL=6.0psf; B4 ; Enclosed; MWFRS (er (2E) -0-10-2 to 2-1-14, In xterior(2R) 8-4-0 to 11-4 one; cantilever left and r eft and right exposed;C- MWFRS for reactions s 50 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C iterior (1) 2-1-14 to -0, Interior (1) 11-4-C ight exposed ; end C for members and hown; Lumber	Cat.) to							M. HILLING		SEA 0363	L 22 EERER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minim G

June 12,2025

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	VL1	Valley	1	1	Job Reference (optional)	174128836

4-11-5

4-11-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-1-11

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:07 ID:2qZd2m ZPTnuch4CD3fWibz84Pf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-6-9

4-7-3

4x5 = 2 Page: 1

GRIP

244/190

FT = 20%

3-10-0 q 10 12 10 ⊏ 3 4 3x5 🍫 3x5 💊 9-10-11 2-0-0 CSI DEFL l/defl L/d PLATES Spacing in (loc) Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a n/a 999 MT20 BC 1 15 0.26 Lumber DOL Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.19 Horiz(TL) 0.00 3 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 38 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be SP No.2. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 30 lb uplift at joint 1, 30 lb uplift at joint 3 and 19 lb uplift at joint 4. This truss is designed in accordance with the 2018 10) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Scale = 1:33.6

Loading

TCDL

BCLL

BCDL

LUMBER

TCLL (roof)

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 9-10-11 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=9-10-11, 3=9-10-11, 4=9-10-11 Max Horiz 1=-74 (LC 9) Max Uplift 1=-30 (LC 35), 3=-30 (LC 34), 4=-19 (LC 13) 1=69 (LC 34), 3=69 (LC 35), 4=737 Max Grav (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-131/351, 2-3=-125/351 1-4=-256/185, 3-4=-256/185 BOT CHORD

(psf)

20.0

10.0

10.0

0.0

13 9/20 0

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-4=-665/280

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-11-10, Exterior(2R) 4-11-10 to 7-11-10, Interior (1) 7-11-10 to 9-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	VL2	Valley	1	1	Job Reference (optional)	174128837

2-5-11

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:07 ID:2qZd2m_ZPTnuch4CD3fWibz84Pf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-11

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.14 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-10-11 oc purlins. Rigid ceiling directly bracing. (size) 1=5-11-5, Max Horiz 1=43 (LC Max Uplift 4=-3 (LC Max Grav 1=65 (LC	athing directly applie applied or 6-0-0 oc 3=5-11-5, 4=5-11-5 10) 13) 34), 3=65 (LC 35), 4	6) 7) ed or 8) 9) 10 11	Gable studs a * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 0) Beveled plate surface with h 1) This truss is o International R802.10.2 ar	spaced at 4-0-0 oc as been designed a chord in all areas y 2-00-00 wide wil y other members. are assumed to be nanical connection capable of withsta e or shim required russ chord at joint designed in accord Residential Code id referenced stan	2. I for a liv s where Il fit betw a SP No. to by other anding 3 to provid t(s) 1, 3. dance wi sections idance AN	e load of 20.0 a rectangle veen the botto 2. lb uplift at jo de full bearing tht the 2018 R502.11.1 a ISI/TPI 1.	Opsf om int 4. g und					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103n II; Exp B; E (3E) zone; left and rig MWFRS fc grip DOL= 3) Truss desig only. For see Stands or consult 4) TCLL: ASC Plate DOL- DOL=1.15 Exp.: Ce=	(b) - Maximum Com Tension 1-2=-87/148, 2-3=-8; 1-4=-128/173, 3-4=- 2-4=-306/224 ed roof live loads have b. CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en cantilever left and righ the exposed; C-C for me or reactions shown; Lu 1.33 gned for wind loads in studs exposed to wind ulastry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= ⁻ Plate DOL=1.15); Is= ⁻	pression/Maximum 7/148 128/173 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co the exposed; end verl embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 YE=13.9 psf (Lum 1.0; Rough Cat B; Fu	Cat. rmer tical te ss ble, P11. 1.15 ully	DAD CASE(S)	Standard							SEA 0363	L 22 EER. Kulu

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.

June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	54 Magnolia Acers-Roof-Taylor BB RH FL	
25060054-01	VL3	Valley	1	1	Job Reference (optional)	174128838

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Jun 11 09:26:07 ID:2qZd2m_ZPTnuch4CD3fWibz84Pf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2 2,4 1 2,4

4-0-13

Scale = 1:24.7

Scale - 1.24.7													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASG Vasd=103 II; Exp B; (3E) zone left and rig MWFRS f grip DOL= 3) Truss des only. For see Stand or consult 4) TCLL: AS Plate DOU DOL=1.15 Exp.; Ce=	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-13 oc purlins. Rigid ceiling directly bracing. (size) 1=4-1-6, 3 Max Horiz 1=-29 (LC Max Uplift 3=-1 (LC Max Uplift 3=-1 (LC Max Grav 1=56 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-50/66, 2-3=-50, 1-4=-62/97, 3-4=-62, 2-4=-155/104 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er is; cantilever left and rigt ght exposed; C-C for mo for reactions shown; Lu =1.33 signed for wind loads in studs exposed to wind dard Industry Gable End to qualified building desig (CE 7-16; Pr=20.0 psf; F5 Plate DOL=1.15); Is= 50.9; Cs=1.00; Ct=1.10	athing directly applie applied or 6-0-0 oc 3=4-1-6, 4=4-1-6 11) 14) 34), 3=56 (LC 35), 4 pression/Maximum /65 /97 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C con texposed ; end ver embers and forces & mber DOL=1.60 pla the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 ?f=13.9 psf (Lum 1.0; Rough Cat B; Fit	6) 7) ed or 8) 9) 10) 11) 1=234 LO. Cat. brner tical te ss ble, 21.1. 1.15 ully	Gable studs * This truss I on the botton 3-06-00 tall I chord and an All bearings Provide mec bearing plate Beveled plat surface with This truss is International R802.10.2 a AD CASE(S)	spaced at 4-0-0 c has been designer m chord in all area by 2-00-00 wide w hy other members are assumed to b thanical connectio e capable of withs e or shim requirec truss chord at joir designed in accor Residential Code nd referenced sta Standard	oc. d for a liv as where <i>i</i> /ill fit betv s. e SP No. n (by oth tanding 1 d to provi- nt(s) 1, 3. rdance w e sections ndard AN	e load of 20.0 a rectangle veen the botto 2 . ers) of truss to Ib uplift at joi de full bearing th the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om int 3. g nd				ORTH CA OFESS SEA 0363	EFER. AL
5) Gable req	uires continuous bottor	m chord bearing.										minu	111111

June 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.