

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh

Model: Edison CA FL GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST.

*	19-08-00	18-04-00							
ER TO									
FIN									
SS									
ENG									
RING									
SHEE									
ETS F									
OR P									
PLY									
CO CO									
Truss Drawing Left									
End Indicator									
** GIRDERS MUST BE FULLY CONN	ECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	** All uplift connectors shown within these documents are recommendations	only. I	Per	ANS	I/TPI			
Date	f HH Hunt Homes Raleigh Durham	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed	00/	00/	00/00/	00/			
		specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible	00/0	00/0					
Desi Desi Sheet	Meadow-Roof-Edison CA El	for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers,	0	ŏ i	ŏ ŏ)0 0			
202 gner: Ves Ves	GIH	beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available		-		sion			
		from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Varr	Vam	Van Van	Varr			
			le	le i	le le	le			

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25060039-01 Install 20 Oak Meadow-Roof-Edison CA FL GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I74113680 thru I74113693

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

June 12,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	A1	Common Supported Gable	2	1	I74113680 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:20 ID:xuF_YJgr_ttFYne75KXjBJz7fP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:60.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.05 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 213 lt	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	0.2 10.2 10.3 10.3 1 wood shea purlins, exc ing directly 23=34-5-0 26=34-5-0 37=34-5-0 40=34-5-0 40=34-5-0 43=34-5-0 43=34-5-0 43=34-5-0 43=34-5-0 43=34-5-0 43=34-5-0 43=34-5-0 (125-2) 25-2) 10.2	athing directly applie cept end verticals. applied or 6-0-0 oc), 24=34-5-0, 25=34), 30=34-5-0, 28=34), 34=34-5-0, 32=34), 34=34-5-0, 39=34), 34=34-5-0, 39=34), 41=34-5-0, 42=34) C 18), 24=-95 (LC 1 C 15), 28=-37 (LC 1 C 15), 28=-37 (LC 1	d or 5-0, -5-0	DP CHORD	2-43=-105/61, 1-2 3-4=-79/63, 4-5=- 6-8=-40/127, 8-9= 10-11=-83/234, 1 12-13=-97/267, 1 14-15=-68/197, 1 16-18=-40/127, 1 20-21=-55/42, 21 42-43=-15/77, 38 36-37=-15/77, 38 36-37=-15/77, 73 32-33=-15/77, 73 32-33=-15/77, 72 25-26=-15/77, 22 25-26=-15/77, 22 25-26=-15/77, 22 12-33=-141/17, 1 10-36=-180/72, 9 6-39=-121/69, 5-4 3-42=-93/91, 13-5 15-29=-148/68, 1 18-27=-121/69, 1 20-25=-124/97, 2	2=0/23, 2- 58/80, 5-1 -54/162, 1-12=-97/ 3-14=-83/ 5-16=-54/ 8-19=-30/ -22=-87/3 42=-15/7 -39=-15/7 -32=-15/7 -32=-15/7 -28=-12/9 -29=-28=-12/9 -28=-12	3=-115/59, 6=-39/98, 9-10=-68/197 (267, (234, (91, 19-20=-3) 3, 22-23=-50 7, 40-41=-15 7, 37-38=-15 7, 32-34=-15 7, 29-30=-15 7, 29-30=-15 7, 26-27=-15 7, 26-27=-15 7, 26-27=-15 (68, 8-38=-12 (64, 41=-126) (68, 8-38=-12 (64, 41=-126) (767, 7/121)	7, //13 //77, //77, //77, //77, //77, //77, //77 //1/69, //81, //1/72,	 4) TC Pli DC Cs 5) Ur dee 6) Th loz ov 7) All 8) Giz 9) Tri bra 63 9) Tri bra 10) Giz 11) Th ch 3-0 ch 	LL: ASC ate DOL= DL=1.15); =1.00; C balancec sign. is truss h do f 12.0 erhangs i plates ar ible requi uss to be aced agai ble studs is truss h ord live lc 'his truss the bottc D6-00 tall ord and a	E 7-16 1.15); Is=1.0 t=1.10 I snow as bee psf or non-co re 2x4 I res co fully sl inst late s space as bee pad nor has be por cho by 2-0 iny oth	; Pr=20.0 psf (rt Pf=20.0 psf (Lu); Rough Cat B; loads have bee en designed for 1.00 times flat ncurrent with of MT20 unless of thinuous bottom heathed from or eral movement ed at 2-0-0 oc. en designed for nconcurrent with een designed for rd in all areas w 0-00 wide will fi er members.	n considered f greater of min i oof Last and a second roof load of 20. her live loads. her live loads. her live loads and chord bearing face or secu (i.e. diagonal w a 10.0 psf botto n any other live r a live load of there a rectang t between the l	DL=1.15 'ate =0.9; or this roof live .0 psf on red. rely reb). om 20.0psf gle bottom
FORCES	Max Grav (Ib) - Max Tension	29=-36 (L 32=-34 (L 36=-39 (L 38=-37 (L 40=-39 (L 23=83 (LC 25=160 (L 27=156 (L 29=187 (L 32=230 (L 34=230 (L 37=187 (L 39=156 (L 41=163 (L 43=139 (L cimum Com	C 15), 30–39 (LC 1 C 15), 30–39 (LC 1 C 15), 33–35 (LC 1 C 14), 37–36 (LC 1 C 14), 37–36 (LC 1 C 14), 41–29 (LC 1 LC 14), 43–40 (LC C 15), 24–133 (LC 1) C 22), 26–154 (LC C 22), 28–155 (LC C 22), 30–219 (LC C 22), 33=165 (LC C 21), 38=155 (LC C 21), 38=155 (LC C 21), 40–153 (LC C 21), 42=103 (LC C 21), 42=103 (LC C 22), 97–103 (LC C 21), 42–103 (LC C 21), 42–103 (LC C 21), 42–103 (LC)	2), N (4), 1) 4), 2) 4), 2) 4), 15 15, 15 15, 15 15, 15 15, 22), 22), 22), 22), 23, 23 22), 23, 23, 36), 3) 36), 3) 33), 33, 30, 30, 30, 30, 30, 30, 30, 30, 30	OTES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Coo 2-6-13 to 13 (2N) 20-7-13 zone; cantile and right exp MWFRS for grip DOL=1. Truss design only. For stt see Standar or consult qu	roof live loads ha 7-16; Vult=130m ph; TCDL=6.0psf iclosed; MWFRS mer(3E) -0-10-8 t -9-3, Corner(3R) 3 to 30-9-15, Corr ever left and right posed;C-C for me reactions shown; 60 add or wind loads uds exposed to w d Industry Gable ualified building de	we been of ph (3-sec ; BCDL=6 (envelope o 2-6-13, 13-9-3 to er(3E) 30 exposed ; mbers an Lumber I s in the pla ind (norm End Detal esigner as	considered fo cond gust) .0psf; h=25ft; e) exterior zor Exterior(2N) 20-7-13, Exte -9-15 to 34-3 ; end vertical d forces & DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF	r ; Cat. ne erior }-4 left ate ss), ble,)le,] 1.		N. COLLINS.		SEA 0363	AL 322 EEERER e 12,2025	A Manunana Man

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	A1	Common Supported Gable	2	1	I74113680 Job Reference (optional)

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 43, 15 lb uplift at joint 23, 35 lb uplift at joint 34, 39 lb uplift at joint 36, 36 lb uplift at joint 37, 37 lb uplift at joint 38, 36 lb uplift at joint 39, 39 lb uplift at joint 40, 29 lb uplift at joint 41, 113 lb uplift at joint 42, 34 lb uplift at joint 32, 39 lb uplift at joint 30, 36 lb uplift at joint 29, 37 lb uplift at joint 28, 36 lb uplift at joint 27, 38 lb uplift at joint 24, 31 lb uplift at joint 24, 31 lb uplift at joint 25 and 95 lb uplift at joint 24.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:20 ID:xuF_YJgr_ttFYne75KXjBJz7fP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	A2	Common	10	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:21 ID:P4pMmfhUkB?6AxDJf12yjWz7fP_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:60.6

Plate Offsets (X, Y): [2:0-2-8,0-1-12]

-														_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.75 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.11	(loc) 12-14 12-14 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Structural wood she 3-3-8 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 17=103 (I Max Uplift 11=-135 (Max Grav 11=1485	athing directly applie cept end verticals. applied or 10-0-0 oc 3-17, 9-11 17=0-3-8 .C 14) LC 15), 17=-155 (LC (LC 3), 17=1538 (LC	2) d or 3) (14) 3) 4)	Wind: ASCE Vasd=103mp II; Exp B; End and C-C Extt 2-6-13 to 13- (1) 20-7-13 to zone; cantile and right exp MWFRS for n grip DOL=1.0 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e rior(2E) -0-10-8 to 9-3, Exterior(2R) 1 0 30-9-15, Exterior ver left and right ex osed;C-C for mem reactions shown; L 50 7-16; Pr=20.0 psf .15); Pf=20.0 psf (l s=1.0; Rough Cat e1.10 snow loads have b	h (3-sec 3CDL=6 nvelope 2-6-13 3-9-3 to (2E) 30- cposed bers an umber I (roof LL Lum DC B; Fully een cor	ond gust) .0psf; h=25ft .) exterior zoi Interior (1) 20-7-13, Int 9-15 to 34-3 end vertical d forces & DOL=1.60 pla .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 sidered for th	; Cat. ne erior -4 left ate 1.15 9; bis						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	design.	s been designed fo	or areat	ar of min roof	livo						
TOP CHORD	1-2=0/24, 2-3=-522/ 5-6=-2115/285, 6-7= 7-9=-2816/278, 9-10 2-17=-403/129, 10-1	97, 3-5=-2811/270, 2115/285,)=-415/78, 1=-302/80	6)	load of 12.0 p overhangs no This truss ha chord live loa	on-concurrent with s been designed for ad nonconcurrent with	other liv other liv or a 10.0	ad of 20.0 p ve loads.) psf bottom other live load	sfon						
BOT CHORD	16-17=-282/2545, 14 12-14=-127/2335	4-16=-178/2335, 1-12=-195/2554	7)	* This truss h	as been designed	for a liv	e load of 20.0	0psf				, mining	11111	
WEBS	6-14=-63/1262, 7-14 9-12=-120/155, 5-14 3-16=-109/152, 3-17 9-11=-2534/211	l=-668/198, 7-12=-2/4 l=-669/199, 5-16=0/3 '=-2419/202,	404, 97, 8)	3-06-00 tall b chord and an One H2.5A S recommende	by 2-00-00 wide will by other members, Simpson Strong-Tie ed to connect truss	I fit betv with BC connector	veen the bott DL = 10.0ps ctors ng walls due	om f.		4	in the	OP. FESS	ROUNT	,
NOTES				UPLIFT at jt(s) 17 and 11. This	connec	tion is for upl	ift				.2	- K	
 Unbalanc this desig 	ed roof live loads have n.	been considered for	9)	only and doe This truss is International	s not consider late designed in accord Residential Code s	ral force lance w sections	s. th the 2018 R502.11.1 a	and				SEA 0363		

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	A3	Common	4	1	I74113682 Job Reference (optional)

Carter Components (Sanford NC) Sanford NC - 27332

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Jun 10 15:18:21

Page: 1

		,,			ID:tHNkz_h6\	/U7zo5oWDIZ	BGkz7fOz-Rf	C?PsB70F	lq3NSgPo	qnL8w3ul	TXbGK	WrCDoi7J4zJC?f		-9-1
	-0-10-8	3 5-8-0	11-	5-0	15-3-0 1	17-2-8,19-2	2-0, 23-0)-0	28	3-9-0		34-5-0	1	
	0-10-8	5-8-0	5-9)-0	3-10-0	1-11-8 1-11	-8 3-10)-0	5	-9-0	1	5-8-0		
		5 u 29 5 u 29 5 u 29 5 u 29 5 u 29 5 u 29	5 4x8 = 4 3 27	1 ² 5	30 30 30 4 5 5 12 26 24 23 2x4= 4x6= 2x4 = 2x4 =	7 2-2-8 2-2 0 ⊠ 0 ⊠ 21 2x4 II 2x4 II	8 31 2-8 19 16 2x4 II 2x4 II 2x4 II	9 9 0 0 15		10 14	4×	3-3-0 1 32	4x5 u 12 13 3x8=	
					14-8 [×] 8" 13-11-0		22; 21- 21-2-	74≝4 3-6 12						
	F	8-5-0)	12-9-12	13-1-10 17	7-2-8 19-	20-6-0 · <u>8-8</u>	26	6-0-0			34-5-0		
		8-5-0)	4-4-12	0-3-14 2 0-0-10	2-6-0 2-0	6-0 0-9-8 0-8-1	4- 2	4-12	I.		8-5-0	I	
Scale = 1:70.4					0-8-12 0-9-8		0-0 0-3	-10 3-14						
Plate Offsets ((X, Y): [2:0-2-8,0-1-	12], [7:0-2-8,Edge]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Inc Code	2-0-0 L 1.15 1.15 cr YES IRC2018,	/TPI2014	CSI TC BC WB Matrix-MSH	0.77 1.00 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.77 0.11	(loc) 19-21 21 13	l/defl >999 >535 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP 2400F 2.0 No.1, 25-17:2x4 S 2x4 SP No.3	E *Except* 24-16:2 P No.2	2) 2x4 SP	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Exte 2-6-13 to 13- (1) 20-7-13 to zone; cantile	7-16; Vult=130 bh; TCDL=6.0ps closed; MWFR erior(2E) -0-10- -9-3, Exterior(2F o 30-9-15, Exterior ver left and righ	omph (3-sect sf; BCDL=6. S (envelope 8 to 2-6-13, R) 13-9-3 to prior(2E) 30-1 nt exposed ;	ond gust) 0psf; h=25ft) exterior zo Interior (1) 20-7-13, Int 9-15 to 34-3 end vertical	t; Cat. ne terior -4 I left						
BOT CHORD	2-3-11 oc purlins, Rigid ceiling direct	except end verticative applied or 2-2-0	als. I oc	and right exp MWFRS for grip DOI =1.0	posed;C-C for m reactions shown	nembers and n; Lumber D	d forces & OL=1.60 pla	ate						
WEBS	bracing. 1 Row at midpt	11-13, 3-28	3)	TCLL: ASCE	7-16; Pr=20.0	psf (roof LL	Lum DOL=	1.15						
REACTIONS	(size) 13=0-3- Max Horiz 28=103 Max Uplift 28=-5 (I Max Grav 13=177	∙8, 28=0-3-8 (LC 14) LC 14) 1 (LC 3), 28=1823	(LC 3) 4)	DOL=1.15); Cs=1.00; Ct= Unbalanced design	-15); P1=20.0 p ls=1.0; Rough (=1.10 snow loads hav	Cat B; Fully ve been con	E=1.15 Plate Exp.; Ce=0. sidered for t	9; his						
FORCES	(lb) - Maximum Co Tension	ompression/Maxim	um 5)	This truss ha	is been designe	ed for greate	r of min roo	f live						
TOP CHORD	1-2=0/24, 2-3=-61 5-6=-3227/0, 6-7= 8-9=-3226/0, 9-11 2-28=-439/109, 12	6/55, 3-5=-3373/0, -223/55, 7-8=-223, =-3378/0, 11-12=- 2-13=-335/64	, /56, 6) 504/43, 7)	overhangs n 200.0lb AC u from left end All plates are	on-concurrent v init load placed , supported at to 3x5 MT20 unle	with other liv on the botto wo points, 5 ess otherwis	e loads. om chord, 17 -0-0 apart. se indicated.	7-2-8					11.	
BOT CHORD	27-28=-26/3029, 2 23-26=0/2581, 21- 15-19=0/2581, 14- 22-25=-51/0, 20-2	26-27=0/2986, -23=0/2581, 19-21 -15=0/2985, 13-14 2=-51/0, 18-20=-5	8) =0/2581, =0/3039, 9) 1/0,	This truss ha chord live loa * This truss h on the bottor	is been designe ad nonconcurre has been desigr n chord in all ar	ed for a 10.0 nt with any o ned for a live reas where a	psf bottom other live loa load of 20. a rectangle	ads. Opsf			ALL A	OR OFES	ROLIN	
WEBS NOTES 1) Unbalance	9-14=-132/184, 11 5-27=-130/174, 3- 11-13=-2995/0, 3- 9-15=-545/272, 8- 5-26=-544/272, 25 22-23=-110/16, 20 6-8=-2412/0 ed roof live loads have	I-14=-81/189, 27=-70/187, 28=-2874/0, 17=0/1079, 15-17- 5-26=-11/964, 6-25 J-21=0/8, 18-19=-1 ve been considered	10) =-10/963, ==0/1080, 10/17, 11) d for LO ,	chord and ar One H2.5A S recommende UPLIFT at jt(does not con This truss is International R802.10.2 ar AD CASE(S)	yy 2-00-00 wide ny other membe Simpson Strong ed to connect tri s) 28. This com sider lateral for designed in acc Residential Co nd referenced s Standard	with the betw ers, with BCI I-Tie connec uss to bearin nection is fo ces. cordance with de sections standard AN	tors ng walls due r uplift only th the 2018 R502.11.1 a SI/TPI 1.	e to and		A THURSDAY		SEA 0363	ER BER	

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and properting and properting and properting the properties of the properties o and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GILB

1000 minut June 12,2025

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	A4	Common	4	1	Job Reference (optional)

8-2-1

Scale = 1:70.4

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BRACING

TOP CHORD

BOT CHORD

REACTIONS

0-0-

-0-10-8

0-10-8

4x5 II

3x8:

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No 2

2x4 SP No.3

bracing.

Tension

(size)

1 Row at midpt

2

20

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Jun 10 15:18:21 ID:tHNkz_h6VU7zo5oWDIZBGkz7fOz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-2-8 19-2-0 35-3-8 5-8-0 11-5-0 15-3-0 23-0-0 28-9-0 34-5-0 1-11-8 1-11-8 5-8-0 5-9-0 3-10-0 3-10-0 5-9-0 5-8-0 0-10-8 6 8 31 32 5¹² 5 9 Δ 4x6 🚽 4x6 👟 10 3 11 30 33 4x5 II 2-2-8 2-2-8 12 13 Ħ 12 Ř 28 27 25 24 20 17 15 22 16 3x8= 2x4= 2x4 II 2x4 II 4x6 =2x4 I 2x4 u 2x4 🛛 4x6= 21.7-4 14-8²8 " 13-11-0 21-2-12 13-2-4 13-1-10 20-6-0 8-5-0 12-9-12 17-2-8 19-8-8 26-0-0 34-5-0 0-3-14 2-6-0 0-9-8 8-5-0 4-4-12 2-6-0 4-4-12 8-5-0 0-0-10 0-8-12 0-8-12 0-0-10 Plate Offsets (X, Y): [2:0-2-8,0-1-12], [7:0-2-8,Edge], [12:0-2-8,0-1-12] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) Plate Grip DOL 1.15 TC 0.77 Vert(LL) -0.38 22 >999 240 MT20 244/190 Lumber DOL 1.15 BC 1.00 Vert(CT) -0.76 22 >535 180 Rep Stress Incr WB Horz(CT) YES 0.85 0.11 14 n/a n/a IRC2018/TPI2014 Matrix-MSH Code Weight: 216 lb FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x4 SP 2400F 2.0E *Except* 25-17:2x4 SP and C-C Exterior(2E) -0-10-8 to 2-6-13, Interior (1) No.1, 26-18:2x4 SP No.2 2-6-13 to 13-9-3. Exterior(2R) 13-9-3 to 20-7-13. Interior (1) 20-7-13 to 31-10-3, Exterior(2E) 31-10-3 to 35-3-8 zone; cantilever left and right exposed ; end vertical left Structural wood sheathing directly applied or and right exposed;C-C for members and forces & 2-4-0 oc purlins, except end verticals. MWFRS for reactions shown; Lumber DOL=1.60 plate Rigid ceiling directly applied or 2-2-0 oc grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 11-14, 3-29 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 14=0-3-8.29=0-3-8 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Max Horiz 29=96 (LC 18) Cs=1.00; Ct=1.10 Max Uplift 14=-5 (LC 15), 29=-5 (LC 14) 4) Unbalanced snow loads have been considered for this Max Grav 14=1823 (LC 3), 29=1823 (LC 3) desian. (lb) - Maximum Compression/Maximum 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 1-2=0/24, 2-3=-616/55, 3-5=-3371/0, overhangs non-concurrent with other live loads. 5-6=-3225/0, 6-7=-224/56, 7-8=-224/56 200.0lb AC unit load placed on the bottom chord, 17-2-8 6) 8-9=-3224/0, 9-11=-3370/0, 11-12=-599/55,

- 12-13=0/24, 2-29=-439/109, 12-14=-433/117 BOT CHORD 28-29=-19/3031, 27-28=0/2987, 24-27=0/2582, 22-24=0/2582, 20-22=0/2582, 16-20=0/2582, 15-16=0/2986, 14-15=0/3028, 23-26=-51/0, 21-23=-51/0, 19-21=-51/0, 18-19=-51/0 WEBS 9-15=-130/174, 11-15=-70/187, 5-28=-130/174, 3-28=-70/187, 11-14=-2887/0, 3-29=-2872/0,
 - 9-16=-545/272. 8-18=0/1080. 16-18=-10/964. 5-27=-545/272, 26-27=-11/965, 6-26=0/1081, 23-24=-110/16. 21-22=0/8. 19-20=-110/16. 6-8=-2408/0

NOTES

1) Unbalanced roof live loads have been considered for this design.

- from left end, supported at two points, 5-0-0 apart.
- All plates are 3x5 MT20 unless otherwise indicated. 7) This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 29. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	B1	Monopitch	2	1	I74113684 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:21 ID:tHNkz_h6VU7zo5oWDIZBGkz7fOz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.29 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.00	(loc) 6 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0,5 Max Horiz 2=71 (LC Max Uplift 2=-69 (LC Max Grav 2=393 (LC	athing directly applie applied or 10-0-0 oc i=0-1-8 13) 10), 5=-29 (LC 14) 2 21), 5=214 (LC 21)	5) 6) 7) d or 8) : 9)	This truss he load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss I on the botton 3-06-00 tall I chord and an Bearing at jo using ANSI/ designer sho Provide mec	is been designe psf or 1.00 time on-concurrent v spaced at 2-0-C is been designe ad nonconcurre has been design n chord in all ar by 2-00-00 wite y 0-ther membe int(s) 5 conside FPI 1 angle to g uld verify capaa	ed for great is flat roof lo vith other lin) oc. ed for a 10.0 nt with any ned for a 10.0 nt with any ned for a 10.0 reas where e will fit betw ers. Ins parallel 1 rain formula city of bear	er of min roo bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface.	f live sf on ads. 0psf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-155/1 4-5=-135/92 2-6=-178/186, 5-6=-2 3-6=-86/110 CE 7-16; Vult=130mph	(3-second gust)	11	bearing plate bearing plate) One H2.5A S recommende UPLIFT at jtr and does no) This truss is International R802.10.2 a	e at joint(s) 5. Simpson Strong ed to connect tri (s) 2 and 5. This t consider latera designed in acc Residential Co nd referenced s	-Tie conne- uss to bear s connectio al forces. cordance w de sections tandard AN	ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 a ISI/TPI 1.	e to only					
Vasd=103	Bmph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat. LC	AD CASE(S)	Standard								111.

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322 June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	B2	Monopitch	9	1	I74113685 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:tHNkz_h6VU7zo5oWDIZBGkz7fOz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.46 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 4-9 4-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No DTHERS 2x4 SP No BRACING TOP CHORD Structural 1 5-0-0 oc pr 3OT CHORD Rigid ceilir bracing. REACTIONS (size) Max Horiz Max Horiz Max Horiz Max Grav FORCES (lb) - Maxir Tension TOP CHORD 2-4=-173/1 NOTES 1) Wind: ASCE 7-16; Vult Vasd=103mph; TCDL= I; Exp B; Enclosed; Mult Vasd=103mph; TCDL= I; Exp B; Enclosed; Mult Vasd=10, CE X: Enclosed; Mult Vasd=10, CE X: Enclosed; Mult NOTES 1) Unidalanced snow loac design. 4) This truss has been de load of 12.0 psf or 1.00 Overbages non-concur	.2 .2 .3 wood she urlins. g directly 2=0-3-0, 4 2=78 (LC 2=-68 (LC 2=393 (LC num Com 2-3=-197/ 80 =130mph 6.0psf; Br WFRS (er one; canti left and rig MWFRS (er one; canti left	athing directly applied applied or 10-0-0 oc I=0-1-8 11) : 10), 4=-30 (LC 14) C 21), 4=214 (LC 21) pression/Maximum 192, 3-4=-152/131 (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this r greater of min roof lit r roof load of 20.0 psf then live loade	6) 7) d or 8) 9) 10 L (Cat. 3 15 s ive	* This truss h on the botton 3-06-00 tall b chord and an Bearing at jo using ANSI/T designer sho Provide med bearing plate One H2.5A S recommende UPLIFT at jt(and does not 0) This truss is International R802.10.2 ar DAD CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members. int(s) 4 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 4. Simpson Strong-Tie d to connect truss s) 2 and 4. This con- consider lateral for designed in accord Residential Code s id referenced stand Standard	for a liv where fit betw arallel t formula of bearing (by oth connectio bearing to bearing to beari	e load of 20.0 a rectangle veen the bottc o grain value a. Building ng surface. ers) of truss to ctors ng walls due n is for uplift c th the 2018 R502.11.1 ai SI/TPI 1.	ipsf om to nnly nd				SEAL 03632		•

5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

A. GILP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V1	Valley	1	1	I74113686 Job Reference (optional)

4-3-6

4-7-2

Scale - 1:37.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.21 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=18-3-8 8=18-3-8 8=18-3-8 Max Horiz 1=68 (LC Max Uplift 1=-2 (LC (LC 15), 9 Max Grav 1=106 (L 6=548 (L) 9=548 (L)	eathing directly applied / applied or 6-0-0 oc , 5=18-3-8, 6=18-3-8, , 9=18-3-8 : 14) 15), 5=-8 (LC 15), 6=- 9=-116 (LC 14) C 35), 5=106 (LC 36), C 21), 8=397 (LC 1), C 20)	3) 4) 1 or 5) 6) 7) 116 9)	Truss design only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lottor 3-06-00 tall H	ed for wind loads uds exposed to wi d Industry Gable I ialified building de ; 7-16; Pr=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c is been designed ad nonconcurred tas been designee n chord in all area by 2-00-00 wide w	in the pl nd (norm End Deta signer a of (roof LI (Lum DC t B; Fully been con tom chor c. for a 10. with any d for a li as where vill fit betw	ane of the tru al to the face ills as applica s per ANSI/TI .: cum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto	ss), ble, PI 1. 1.15 9; his ds. Opsf					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10) Provide mec	hanical connectio	n (by oth	ers) of truss t	:0 int 1					
TOP CHORD	1-2=-145/251, 2-3= 4-5=-145/251	0/225, 3-4=0/225,		8 lb uplift at j	oint 5, 116 lb upli	ft at joint	9 and 116 lb	uplift					
BOT CHORD	1-9=-184/125, 8-9=- 5-6=-184/125	-184/91, 6-8=-184/91,	11	11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and									
WEBS	3-8=-351/67, 2-9=-4	421/163, 4-6=-421/163		R802.10.2 a	nd referenced sta	ndard Al	NSI/TPI 1.					"TH CA	ROUL
NOTES			L	DAD CASE(S)	Standard						~ Y	OH	in the
 1) Unholono(ad roof live loade hove	boon considered for											

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 6-2-4, Exterior(2R) 6-2-4 to 12-2-4, Interior (1) 12-2-4 to 15-4-0, Exterior(2E) 15-4-0 to 18-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V2	Valley	1	1	Job Reference (optional)

 27332,
 Run: 8.73 S Feb 19 2025 Print: 8.73 O S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:?W7E8debSGdYJUUk_vVF6uz7fP1-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f
 Page: 1

 7-6-6
 14-5-13
 15-0-12 0-6-15

 4x5 =
 3

 2x4 II
 15

 15
 16

 2x4 II
 15

 4x5 =
 3

15-0-12

Scale = 1:33.7

-														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.11 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	lo.2 lo.2 lo.3 l wood she purlins. ing directly 1=15-0-1 1=-57 (LC 1=-7 (LC (LC 15), 1=93 (LC (LC 21), 20)	eathing directly applied of y applied or 6-0-0 oc 2, 5=15-0-12, 6=15-0-1 2, 8=15-0-12 C 19) 15), 5=-5 (LC 15), 6=-9 8=-97 (LC 14) 2 35), 5=93 (LC 36), 6=4 7=336 (LC 20), 8=480 (or 2, 6 7 97 480 (LC) Truss design only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct:) Unbalanced design.) Gable requir) Gable studs) This truss ha chord live load on the bottor 3-06-00 tall b 	ed for wind loads uds exposed to w d Industry Gable lailfied building dr :7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 d spaced at 4-0-0 d ad nonconcurrent nas been designed n chord in all arei by 2-00-00 wideb	s in the pl ind (norm End Deta ssigner a: sf (roof Ll (Lum DC at B; Fully been con ttom chor oc. for a 10.1 with any d for a liv as where	ane of the tru al to the face ils as applica s per ANS/TI L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottom	ss), ble, PI 1. 1.15 ;); his ds. Dpsf om					
FORCES TOP CHORD	(lb) - Max Tension 1-2=-126	kimum Cor /107, 2-3=	npression/Maximum -68/111, 3-4=-68/103,	1	0) Provide mec bearing plate 5 lb uplift at i	hanical connection capable of withs coint 5, 97 lb uplift	on (by oth standing 7 t at ioint 8	ers) of truss t Ib uplift at jo and 97 lb up	o int 1, lift at					
BOT CHORD WEBS NOTES	4-5=-126 1-8=-54/ 5-6=-54/ 3-7=-259	/107 104, 7-8=-{ 104 /76, 2-8=-3	54/53, 6-7=-54/53, 389/171, 4-6=-389/171	1 L	joint 6. 1) This truss is International R802.10.2 a OAD CASE(S)	designed in acco Residential Code nd referenced sta Standard	rdance w e sections indard AN	ith the 2018 8 R502.11.1 a ISI/TPI 1.	ind				WITH CA	ROLIN

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vinit: AGCE 7-10, VulterSomph (SeeCollagus) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-6-14, Exterior(2R) 4-6-14 to 10-6-14, Interior (1) 10-6-14 to 12-1-4, Exterior(2E) 12-1-4 to 15-1-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - ieters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

5

3x5 🔊

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V3	Valley	1	1	Job Reference (optional)

2-11-7

Scale = 1:30.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

1)

2)

NOTES

TOP CHORD

BOT CHORD

this design

(size)

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Jun 10 15:18:22 ID:?W7E8debSGdYJUUk_vVF6uz7fP1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-6 11-1-13 5-10-6 5-3-7 4x5 =2 2-7-11 10 11 12 6 Г 12 3 0-0-4 4 2x4 🛛 3x5 🤞 3x5 💊 11-8-12 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.61 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 1 15 Lumber DOL 0.56 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.01 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 38 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 10-0-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=11-8-12, 3=11-8-12, 4=11-8-12 9) Max Horiz 1=44 (LC 14) on the bottom chord in all areas where a rectangle Max Uplift 1=-62 (LC 21), 3=-62 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-79 (LC 14) chord and any other members. Max Grav 1=106 (LC 20), 3=106 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=919 (LC 20) bearing plate capable of withstanding 62 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 62 lb uplift at joint 3 and 79 lb uplift at joint 4. Tension 11) This truss is designed in accordance with the 2018 1-2=-182/538, 2-3=-182/538 International Residential Code sections R502.11.1 and 1-4=-413/233, 3-4=-413/233 R802.10.2 and referenced standard ANSI/TPI 1. 2-4=-722/362 LOAD CASE(S) Standard Unbalanced roof live loads have been considered for ORT Wind: ASCE 7-16; Vult=130mph (3-second gust)

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 8-9-4, Exterior(2E) 8-9-4 to 11-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V4	Valley	1	1	Job Reference (optional)

2-1-7

Page: 1

3x5 🧔

8-4-12

Scale - 1:25 5

00010 - 1.20.0														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.31 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
-UMBER TOP CHORD 30T CHORD THERS 3RACING TOP CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-4-12 oc purlins. Rigid ceiling directly bracing. (size) 1=8-4-12, Max Horiz 1=36 (LC Max Uplift 1=-8 (LC (LC 14) Max Grav 1=114 (LC 4=577 (LC (lb) - Maximum Com Tension 1-2=-126/304, 2-3=- 1-4=-257/159, 3-4=- 2-4=-433/234	athing directly applie applied or 6-0-0 oc 3=8-4-12, 4=8-4-12 14) 21), 3=-26 (LC 20), C 20), 3=70 (LC 21), C 21) apression/Maximum 119/303 257/159	4) ed or 6) 7) 8) 2 9) 4=-49 , 10 11	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha chord live loo * This truss ha chord and ar Provide mec bearing plate 26 lb uplift at http://www.sis International R802.10.2 a DAD CASE(S)	57-16; Pr=20.0 p 1.15); Pf=20.0 psi Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 as been designed ad nonconcurreni- has been designed in chord in all are by 2-00-00 wide withs a capable of withs t joint 3 and 49 lb designed in accor Residential Code nd referenced sta Standard	sf (roof LL f (Lum DC at B; Fully e been cor bttom chor oc. I for a 10.0 t with any ed for a liv as where will fit betw s. on (by oth standing 8 uplift at jo ordance w e sections andard AN	:: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing.) psf bottom other live loa e load of 20.0 lo uplif at join plot truss t lb uplift at join pint 4. ith the 2018 R502.11.1 a ISI/TPI 1.	1.15 						
 Unbalance this design Wind: ASC Vasd=103 II: Exp B¹ 	ed roof live loads have n. CE 7-16; Vult=130mph Smph; TCDL=6.0psf; B Enclosed: MWERS (er	been considered fo (3-second gust) CDL=6.0psf; h=25ft;	r ; Cat.								and the second	ORTH CA	ROLIN	

and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-10-5, Exterior(2E) 4-10-5 to 7-10-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. VIIIIIIIIIIIII (annununu) SEAL 036322 G unun, June 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V5	Valley	1	1	I74113690 Job Reference (optional)

2-6-6

2-6-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:TihcLzfDDZIOxe3xXc0Ue5z7fP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-13

1-11-7

5-0-12

0-6-15

89

2x4 👟

3

3x5 = 2 12 6 Г 0-11-11 1-3-7 0-0-4 2x4 🍃 5-0-12

Scale = 1:22.2

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(2 1 1	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: ASS Vasd=100 II; Exp B; and C-C E exposed ; members 2) Truss des only. For see Stanc or consult 4) TCLL: AS Plate DOI DOL=1.16 CS=1.00; 5) Unbalanc design. 6) Gable req	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wor 5-0-12 oc pur Rigid ceiling of bracing. (size) 1=# Max Horiz 1=ź Max Uplift 1=- Max Grav 1=ź (lb) - Maximur Tension 1-2=-403/177 1-3=-158/354 ed roof live load: n. CE 7-16; Vult=1: Bmph; TCDL=6.0 Enclosed; MWF Exterior(2E) zono end vertical left and forces & MW OL=1.60 plate g igned for wind lo studs exposed t lard Industry Ga qualified buildin CE 7-16; Pr=20. =1.15); Pf=20.0 5); Is=1.0; Rough Ct=1.10 ed snow loads h ures continuous	od shea lins. directly 5-0-12, 22 (LC - 22 (LC - 22 (LC - 22 (LC - 30 mph 0 psf; BC 30 mph 0 psf; BC s have s have s have big desig 0 opsf (Lt h Cat B have be s bottom	athing directly applied applied or 10-0-0 oc 3=5-0-12 14) 14), 3=-7 (LC 15) : 20), 3=187 (LC 21) pression/Maximum 380/163 been considered for (3-second gust) CDL=6.0psf; h=25ft; C velope) exterior zone lever left and right ht exposed;C-C for ior reactions shown; L=1.60 the plane of the truss (normal to the face), I Details as applicabli ner as per ANSI/TPI oof LL: Lum DOL=1. Im DOL=1.15 Plate ; Fully Exp.; C==0.9; en considered for this	7) 8) 9) 1 or 10) 11) LO Cat. 5 6 9, 1. 15 5	Gable studs s This truss has chord live loas * This truss h on the bottor 3-06-00 tall b chord and an Provide mect bearing plate 1 and 7 lb up This truss is of International R802.10.2 an AD CASE(S)	spaced at 4-0-0 oc. s been designed fo d nonconcurrent w as been designed in o chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta ift at joint 3. designed in accord: Residential Code s d referenced stand Standard	r a 10.0 ith any for a liv where fit betw (by oth nding 2 ance w ections dard AN	D psf bottom other live loa a rectangle veen the botto ers) of truss t 0 lb uplift at ju ith the 2018 c R502.11.1 a ISI/TPI 1.	ds.)psf om o oint nd				VVEIGNT: 14 ID VIENT H CA OR DEFENSION SEA 0363	
													June	, 12,2020

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V6	Valley	1	1	Job Reference (optional)

4-11-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-2-2

(psf)

20.0

20.0

10.0

10.0

0.0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

1.15

1 15

YES

2-5-14

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:TihcLzfDDZIOxe3xXc0Ue5z7fP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-3-9

Page: 1

-10-8

-6-15

3

GRIP

244/190

FT = 20%

4-11-4 4-4-5 4x5 = 2 9 10 12 6 Г 4 2x4 🛛 3x5 🚽 3x5 💊 9-10-8 1-11-4 CSI DEFL l/defl L/d PLATES in (loc) TC 0.39 Vert(LL) n/a n/a 999 MT20 BC 0.39 Vert(TL) n/a n/a 999 WB 0.11 Horiz(TL) 0.00 4 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 32 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Gable requires continuous bottom chord bearing. 6)

- 7)
- Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1, 26 lb uplift at joint 3 and 57 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

В	OT CHORD	2x4 SP N	0.2
0	THERS	2x4 SP N	0.3
в	RACING		
T	OP CHORD	Structura	l wood sheathing directly applied or
		9-10-8 oc	purlins.
В	OT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
		bracing.	
R	EACTIONS	(size)	1=9-10-8, 3=9-10-8, 4=9-10-8
		Max Horiz	1=36 (LC 14)
		Max Uplift	1=-26 (LC 21), 3=-26 (LC 20),
			4=-57 (LC 14)
		Max Grav	1=125 (LC 20), 3=125 (LC 21),
			4=702 (LC 20)
F	ORCES	(lb) - Max	imum Compression/Maximum
		Tension	-

2x4 SP No.2

TOP CHORD 1-2=-144/383, 2-3=-144/383 1-4=-289/175, 3-4=-289/175 BOT CHORD WFBS 2-4=-540/286

NOTES

Scale = 1:27 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 6-11-0, Exterior(2E) 6-11-0 to 9-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH
25060039-01	V7	Valley	1	1	I74113692 Job Reference (optional)

3-3-14

3-3-14

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-8-3

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-300/161

(size)

6-7-12 oc purlins.

0.0

Scale = 1:23.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

1)

2)

NOTES

TOP CHORD

BOT CHORD

this design

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:TihcLzfDDZIOxe3xXc0Ue5z7fP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-13

2-8-15

Page: 1

GRIP

244/190

FT = 20%

6-7-12

0-6-15

4x5 = 2 9 10 12 6 Г 1-4-7 3 4 2x4 👟 2x4 II 2x4 🖌 6-7-12 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 TC 0.17 Vert(LL) n/a n/a 999 MT20 1 15 BC Lumber DOL 0.19 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.05 Horiz(TL) 0.00 4 n/a n/a Code IRC2018/TPI2014 Matrix-MP Weight: 21 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=6-7-12, 3=6-7-12, 4=6-7-12 9) Max Horiz 1=24 (LC 14) on the bottom chord in all areas where a rectangle 1=-10 (LC 14), 3=-15 (LC 15), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-32 (LC 14) chord and any other members. 1=106 (LC 20), 3=106 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=418 (LC 20) bearing plate capable of withstanding 10 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 15 lb uplift at joint 3 and 32 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 1-2=-119/196, 2-3=-119/196 International Residential Code sections R502.11.1 and 1-4=-171/119, 3-4=-171/119 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for MILLIN Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. \cap II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 3-8-4, Exterior(2E) 3-8-4 to 6-8-4 zone; cantilever left or and the second and right exposed ; end vertical left and right exposed;C-SEAL C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 036322

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G mm June 12,2025

Job	Truss	Truss Type	Qty	Ply	Install 20 Oak Meadow-Roof-Edison CA FL GLH			
25060039-01	V8	Valley	1	1	I74113693 Job Reference (optional)			

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 10 15:18:22 ID:TihcLzfDDZIOxe3xXc0Ue5z7fP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-13

1-0-15

3-3-12

Page: 1

1-7-14

1-7-14

2x4 🖌 2x4 👟

Scale = 1:23.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

				-											_
Loading	(ps	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20	0.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999			
	10	0.0	Rep Stress Incr	YES		WB	0.00	Horiz(IL)	0.00	3	n/a	n/a			
	0 10	0.0	Code	IRC2018	/TPI2014	Matrix-MP							Weight [,] 9 lb	FT - 20%	
DODL	10												Weight. 5 lb	11 = 2070	—
LUMBER	UMBER 7) Gable studs spaced at 4-0-0 oc.														
TOP CHORD	s been designed to	or a 10.0) pst bottom	de											
BOT CHORD 2X4 SP No.2 Chord live load honconcurrent w 9) * This truss has been designed (e load of 20.0	las. Ipsf						
TOP CHORD	Structural wood	d shea	thing directly applied	, lor	on the botton	n chord in all areas	where	a rectangle	•						
3-3-12 oc purlins. 3-06-00 tall by 2-00-00 wide will fit between								een the botto	om						
BOT CHORD	Rigid ceiling dir	rectly a	applied or 10-0-0 oc	10)	Provide med	hanical connection	(by oth	ers) of truss to	0						
	bracing.	0 4 0 <i>i</i>	2 2 2 4 2	10)	bearing plate	capable of withsta	inding 1	3 lb uplift at jo	oint						
REACTIONS ((Size) 1=3-	3-12, . 1 (I C 1	14)		1 and 13 lb u	plift at joint 3.									
I	Max Uplift 1=-1	3 (LC	14), 3=-13 (LC 15)	11)	This truss is	designed in accord	lance wi	th the 2018	nd						
I	Max Grav 1=14	46 (LC	20), 3=146 (LC 21)		R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.	nu						
FORCES	(lb) - Maximum	Comp	pression/Maximum	LO	AD CASE(S)	Standard									
	Tension	2-32	12/108												
BOT CHORD	1-3=-83/208	2-02	42/100												
NOTES															
1) Unbalanced	d roof live loads l	have b	been considered for												
this design.															
 Wind: ASC Vasd=103n 	E 7-16; Vult=130)mph ((3-second gust)	` at										10.	
II; Exp B; E	nclosed; MWFR	S (env	/elope) exterior zone										W'UL CA	Dalle	
and C-C Exterior(2E) zone; cantilever left and right												1	"aTH UT	TO 111	
exposed ; end vertical left and right exposed;C-C for									O' FESS	ON'S					
members and forces & MWERS for reactions shown;										Mar /					
3) Truss designed for wind loads in the plane of the truss															
only. For studs exposed to wind (normal to the face),											Ξ	1	SEA	LE	
see Standard Industry Gable End Details as applicable,											=		0363	22 : =	
4) TCLL: ASCE 7-16: Pr=20.0 psf (roof LL: Lum DOL=1.15													. 0000	44 j E	
Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate											-	-	1. A.	- 1 E	
DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;										FERMAN					
US=1.00; UT=1.10 5) _ Linbalanced snow loads have been considered for this												14	710	affin	
design.										ILDIN					
6) Gable requires continuous bottom chord bearing.										11111					
													June	9 12,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

