

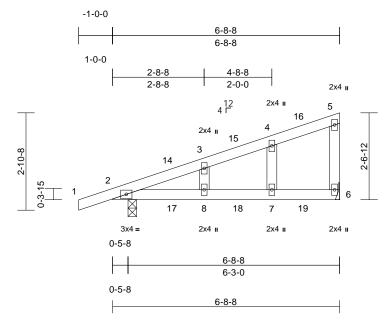
RE: 2412-1161-D - Stonefie Site Information: Project Customer: DRB Rale Lot/Block: Model: Stonefield Rev 3 Address: City: General Truss Engineering O Drawings Show Special Loa Design Code: IRC2021/TPI2 Wind Code: ASCE 7-16 Wind Speed: 120 mph Roof Load: 40.0 psf Mean Roof Height (feet): 25	igh Project Na S S Criteria & Desig ding Condition	me: DRB F Subdivision: State: NC gn Loads (I Is): D D Fi	DRB Raleig	h J ss Design : MiTek 20/2 MWFRS (E A psf	Trenco 818 Soundside Rd Edenton, NC 27932 20 25.2 nvelope)/C-C hybrid Wind ASCE 7-16
No.Seal#Truss Nam1174084129E1GE2174084130E13174084131P1GE4P1B5174084133P1A6174084135G18174084136G1A9174084138E1AGE10174084138E1AGE11174084139G1DGE12174084142M1I14174084142M1I15174084144M1F16174084145M1E17174084145M1E18174084146M1K19174084145M1E18174084145M1E18174084145M1E18174084151V8174084152P1D25174084153E1D26174084154E1C27174084155V1028174084157P1BGE30174084159H1GE31174084160C1GR34174084162C1GEThe truss drawing(s) referencedTruss Engineering Co. under myprovided by Structural, LLC.Truss Design Engineer's NamMy license renewal date for the state	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I74084163 I74084164 I74084166 I74084166 I74084167 I74084169 I74084171 I74084172 I74084172 I74084172 I74084173 I74084175 I74084175 I74084176 I74084176 I74084178 I74084180 I74084181 I74084182 I74084183 I74084184 I74084184 I74084184 I74084184 I74084184 I74084184 I74084189 I74084189 I74084193 I74084194 I74084195 I74084196I74084196 I74084196 I74084196I74084196 I74084196 I74084196I74084196 I74084196 I74084196I74084196 I74084196I74084196 I74084196 I74084196I74084196 I74084196 I74084196 I74084196 I74084196 I74084196 I74084196 I74084196 I74084196 I74084	A1GR B1GR B1J B1I B1H B1G B1F B1C B1E B1C B1C B1C B1C B1A B1C A1D A1C A1D A1C A1B A1A A1 V4 V5 V6 V1 V2 V3 M1G M1A M1A M1D M1C M1 M2B M2A he parameters	6/11/25 6/11/25	CAROLINA

THE DESIGNATION OF THE PARTY OF IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 2

June 11,2025

RE: 2412-1161-D - Stonefield Rev 3-Elev 4-Roof


Trenco 818 Soundside Rd Edenton, NC 27932

No.	Seal#	Truss Name	Date
69	174084197	M2D	6/11/25
70	174084198	M2C	6/11/25
71	174084199	M2	6/11/25
72	174084200	PB1	6/11/25
73	174084201	B1L	6/11/25
74	174084202	B1O	6/11/25
75	174084203	B1P	6/11/25
76	174084205	B1N	6/11/25
77	174084206	B1M	6/11/25
78	174084206	PB1B	6/11/25
79	174084207	PB1A	6/11/25
80 81 82 83 84 85	174084208 174084209 174084210 174084211 174084212	B1K B2GR C2GR B1S M1N B1Q	6/11/25 6/11/25 6/11/25 6/11/25 6/11/25 6/11/25
86	174084214	M1L	6/11/25
87	174084215	M1M	6/11/25
88	174084216	B1R	6/11/25
89	174084217	B3GR	6/11/25

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	P1GE	Monopitch Structural Gable	2	1	Job Reference (optional)	174084131

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:36 ID:CJsIYCLcePGbRxqadhJvlhzqv9d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.1

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

3)

4)

Tension

Max Uplift 2=-65 (LC 12), 6=-38 (LC 12)

Max Grav 2=436 (LC 40), 6=371 (LC 45)

(lb) - Maximum Compression/Maximum

1-2=0/26, 2-3=-105/250, 3-4=-83/54,

2-8=-209/132, 7-8=-33/35, 6-7=-33/35

4-5=-64/67, 5-6=-311/111

4-7=-128/123, 3-8=-126/125

Unbalanced roof live loads have been considered for

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-6-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for

members and forces & MWFRS for reactions shown:

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

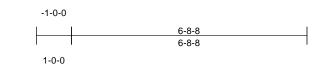
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

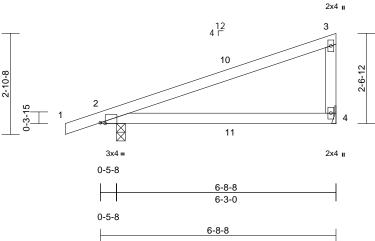
Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Wind: ASCE 7-16; Vult=120mph (3-second gust)

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.71	DEFL Vert(LL)	in -0.14	(loc) 7-8	l/defl >566	L/d 360	PLATES MT20	GRIP 244/190
()					-		· · /					101120	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.22	7-8	>360	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.12	7-8	>666	240		
BCDL	10.0											Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she: except end verticals. 10-0-0 oc bracing. (size) 2=0-3-0.6 Max Horiz 2=61 (LC)= Mechanical	ed, 8) 9)	design. This truss ha load of 12.0 overhangs n Plates check about its cen Gable studs This truss ha chord live loa	snow loads hav s been designe psf or 2.00 time on-concurrent v ed for a plus or ter. spaced at 2-0-0 is been designe ad nonconcurrei nas been design n chord in all ar	d for great s flat roof lo vith other liv minus 5 do oc. d for a 10.0 nt with any ned for a liv	er of min root bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20.	f live sf on n					


- (10) 1 Inis truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 (11) Beta to sinder(a) for trusp to trusp compactions.
- 11) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 6 and 65 lb uplift at joint 2.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	P1B	Monopitch	5	1	Job Reference (optional)	174084132

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:36 Page: 1 ID:rp?YMst8qRL7GxL4r_6mgTzqvAE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.8

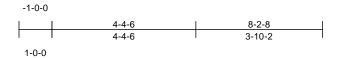
Plate Offsets (X, Y): [2:0-1-10,Edge]

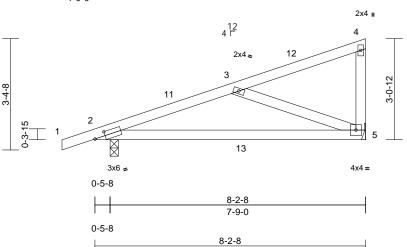
		-	-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI	CSI TC BC WB I2014 Matrix-A	0.83 0.74 0.00 S	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.21 0.00 0.08	(loc) 4-9 4-9 2 4-9	l/defl >530 >372 n/a >972	L/d 360 240 n/a 240	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance- this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E zone; canti and right e: members a Lumber DC 3) TCLL: ASC Plate DOL= 1.15 Plate Exp.; Ce= 4) Unbalance- design.	Max Horiz 2=61 (LC Max Uplift 2=-65 (LC Max Grav 2=436 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-141/: 2-4=-217/135 d roof live loads have	A= Mechanical 15) 12), 4=-38 (LC 12) 240), 4=371 (LC 43) pression/Maximum 243, 3-4=-311/137 been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) and C-C rior (1) 2-0-0 to 6-6-1 bosed; end vertical le right exposed;C-C fi for reactions shown; L=1.60 right exposed;C-C fi for reactions shown; L=1.60 Rough Cat B; Partially en considered for thi	abc 7) Thi chc 8) * T d, on 9) Re 10) Prc bea 4. 11) On rec UP doc 12) Thi loa par Bot 13) Thi chc 2 LOAD of 15 L = y s	ates checked for a p out its center. is truss has been de ord live load noncor his truss has been d the bottom chord in)6-00 tall by 2-00-00 ord and any other m fer to girder(s) for tr ovide mechanical co caring plate capable the H2.5A Simpson S commended to comr 'LIFT at jt(s) 2. This es not consider late is truss has been de do of 250.0Ib live an nels and at all pane tom Chord, noncor is truss design required uctural wood sheath ord. CASE(S) Standar	esigned for a 10. courrent with any designed for a liv all areas where wide will fit betw tembers. uss to truss conn- onnection (by oth of withstanding 3 Strong-Tie conne- tect truss to bear connection is for connection is for connection se for all forces. ssigned for a mod d 3.0lb dead local l points along the hcurrent with any ires that a miniming be applied of	0 psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss 88 lb uplift at ctors ing walls due r uplift only a ving concent ated at all min e Top Chord other live loa um of 7/16"	ads. Opsf tom to joint e to nd rated d and and			2	SEA 0363	22

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially
- Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 4) design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Marcine. Description, Component dependent description, Uww.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G


mmm June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	P1A	Monopitch	4	1	Job Reference (optional)	174084133

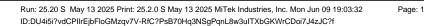
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:35 ID:C7RaFezbe4hM3nEN6ujsJRzqv8q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.9

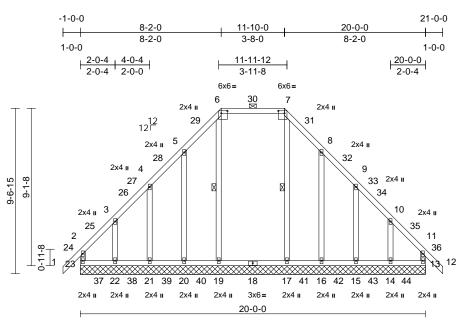
Plate Offsets (X, Y): [2:0-3-14,0-1-8]

	,, ,, ,, [<u>_</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.80 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.31 0.00 0.07	(loc) 5-10 5-10 5 5-10	l/defl >422 >311 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(22 zone; cant and right e members a Lumber D0 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=	2x4 SP SS 2x4 SP No.3 Structural wood she except end verticals 10-0-0 oc bracing. (size) 2=0-3-0, 5 Max Horiz 2=74 (LC Max Uplift 2=-73 (LC Max Grav 2=462 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-534/3 4-5=-279/79 2-5=-335/503 3-5=-534/326 ed roof live loads have	5= Mechanical 15) 12), 5=-49 (LC 12) C 40), 5=402 (LC 44) pression/Maximum 257, 3-4=-66/51, been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C rior (1) 2-0-0 to 8-0-12 posed ; end vertical left for reactions shown; L=1.60 roof LL: Lum DCL=1.1 Pf=15.4 psf (Lum DCL Rough Cat B; Partially	6) , 7) 8) 9) 10 11 12 12 11 12 11 12 15 15 =	load of 12.0 j overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird bearing plate 5.) One H2.5A S recommende UPLIFT at jt(does not con) This truss ha load of 250.0 panels and a Bottom Chor) This truss de	s been designed id nonconcurrent ias been designed in chord in all area y 2-00-00 wide w y other members ar(s) for truss to tr hanical connection i capable of withs Simpson Strong-T id to connect truss s) 2. This connect sider lateral force is been designed lb live and 3.0b of t all panel points i d, nonconcurrent sign requires that od sheathing be a	flat roof ld h other lininus 5 dd for a 10.0 with any d for a liva as where iill fit betw i. russ conr n (by oth tanding 4 ie conne s to bear tion is for is. for a movi dead loca along the with any t a minim	bad of 15.4 p re loads. egree rotation of psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 9 lb uplift at tors ng walls due ving concent ted at all mic Top Chord other live loa um of 7/16"	esf on n ads. Opsf to joint to point e to nd rated d and ads.				SEA 0363	EER.X


- 1.15 Plate DOL = 1.15); Pg=20.0 psi; Pl=15.4 psi (Lum DOL 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

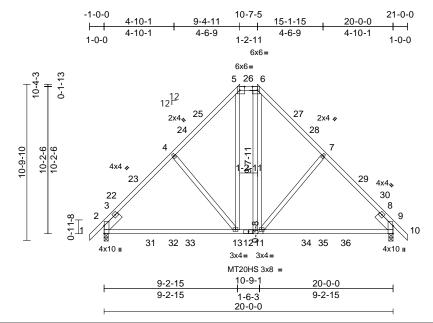
818 Soundside Road Edenton, NC 27932


G munn June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1GE	Hip Supported Gable	1	1	Job Reference (optional)	174084134

June 11,2025

818 Soundside Road Edenton, NC 27932


Scale = 1:66.8	
Plate Offsets (X, Y):	[6:0-4-4,0-1-12], [7:0-4-4,0-1-12]

Fiale Oliseis (/	, 1). [0.0-4-4,0-1-12], [7.0-4-4,0-1-12]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MR	0.50 0.41 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=20-0-0 20=20-0-0 23=20-0-0 Max Horiz 23=165 (L Max Uplift 13=-53 (L 20=-55 (L 22=-78 (L Max Grav 13=320 (L 15=338 (L 17=378 (L 20=320 (L 22=326 (L (lb) - Maximum Com Tension 2-23=-300/70, 1-2=0 3-4=-127/104, 4-5=- 6-7=-170/203, 7-8=- 9-10=-109/104, 10-1 11-13=-300/51 22-23=-75/91, 21-22 19-20=-75/91, 17-19	applied or 6-0-0 oc 6-19, 7-17), 14=20-0-0, 15=20-(), 17=20-0-0, 19=20-(), 21=20-0-0, 22=20-() LC 15) C 13), 14=-74 (LC 17 C 17), 16=-55 (LC 17 C 16), 21=-28 (LC 16 C 16), 23=-76 (LC 12 LC 97), 14=326 (LC 9 LC 95), 16=320 (LC 9 LC 95), 16=320 (LC 9 LC 93), 19=378 (LC 9 LC 93), 19=378 (LC 9 LC 93), 21=338 (LC 9 LC 93), 23=320 (LC 8 ppression/Maximum	d or this de d 2) Wind: Vasd= II; Exc (3E) - (3R) 8 0-0, 21-0-0 0-0, 21-0-0 vertica forces DOL=), 3) Truss 0-0, 3) Truss 0-0, 3) Truss 0-0, 21-0-0 vertica forces DOL=), 3) Truss 0-0, 21-0-0 vertica forces DOL= 1, 0 0, 21-0-0 vertica forces DOL= 0, 1-0 forces DOL= 0, 0 1, 0 0, 21-0-0 vertica forces DOL= 0, 0 1, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0	AŠCE 7-16; Vult=120 95mph; TCDL=6.0ps B; Enclosed; MWFR 1-0-0 to 2-0-4, Exterio -2-0 to 11-2-0, Exterio r(3R) 11-10-0 to 14-1) zone; cantilever left al left and right expose & MWFRS for reaction 1.60 plate grip DOL= designed for wind loa For studs exposed to sult qualified building ASCE 7-16; Pr=20.0 DOL=1.15); Pg=20.0 DOL=1.15); Is= Cc=1.0; Cs=1.00; Ct= anced snow loads have	3-22=-281/ 9-15=-284 have been 0mph (3-se f; BCDL=6. S (envelop r(2N) 2-0-4 or(2N) 11-2 0-0, Exterio and right e: ed;C-C for i ons shown; 1.60 ds in the pl wind (norm e End Deta designer a psf (roof L psf; Pf=20. 1.0; Rough 1.10, Lu=5 ve been co ed for great es flat roof I to prevent r minus 5 d pottom cho rom one faument (i.e. o	109, /94, considered fo Opsf; h=25ft; (e) and C-C Cc e) and C-C Cc to 8-2-0, Cor -0 to 11-10-0, rr(2N) 14-10-0 yn(2N) 14-10-0	r Cat. orner ner) to) to ble, Pl 1. 1.15 DL = Illy his live sf on g.	cho 13) * Tr on t 3-06 cho 14) Pro bea 23, uplii 16, 15) This loac pan Bott 16) Gra or tt bott	rd live lo his truss he botto 5-00 tall rd and a 53 lb up ft at join 29 lb up s truss h d of 250. els and bom Cho chical p he orien con cho CASE(S	bad noo has be m choo by 2-C any oth chanic te cape alifit at ji t 21, 7. difft at ji tas bee Olb livv at all p tas bee Olb livv at all ali tat of , o Sta	nconcurrent with een designed four ord in all areas w 00-00 wide will fii er members, wit al connection (b able of withstanc oint 13, 55 lb up 8 lb uplift at joint oint 15 and 74 lb en designed for a e and 3.0lb deac banel points alor nconcurrent with apresentation do of the purlin alor	a 10.0 psf bottom a any other live loads. r a live load of 20.0psf here a rectangle t between the bottom th BCDL = 10.0psf. y others) of truss to ting 76 lb uplift at joint lift at joint 20, 28 lb to 22, 55 lb uplift at joint to uplift at joint 14. a moving concentrated d located at all mid up other live loads. heres not depict the size ang the top and/or
												- 11 0005

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1	Нір	1	1	Job Reference (optional)	174084135

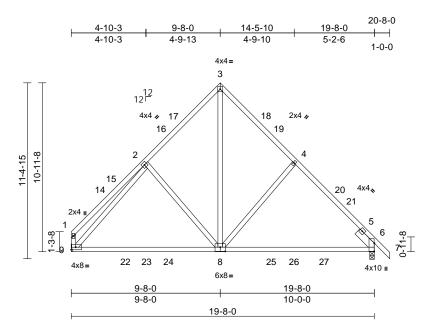
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:31 Page: 1 ID:h7aEAQbDO3E_ImCN9pf3QPzqv80-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.7

Plate Offsets (X, Y): [2:0-6-5,0-0-2], [5:0-4-1,0-3-0], [6:0-4-1,0-3-0], [9:0-6-5,0-0-2]

Flate Olisets (A, T). [2.0-0-3,0-0-2],	[5.0-4-1,0-5-0], [0.0-4	-1,0-3-0]	, [9.0-0-3,0-0-2	-]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.66 0.60 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.43 0.04 0.05	2	l/defl >723 >555 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 132 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.3 Left 2x6 SP No.2 1 1-6-0	-0 max.): 5-6.	5) 5,2	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded All plates are Plates check	7-16; Pr=20.0 ps .15); Pg=20.0 psf OL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 snow loads have s been designed opsf or 2.00 times f on-concurrent with quate drainage to the MT20 plates unle ed for a plus or m	; Pf=20.2); Rough 10, Lu=5 been cor for great flat roof lu h other li prevent ess other	4 psf (Lum DC Cat B; Partia D-0-0 hsidered for the er of min roof bad of 15.4 particles ve loads. water ponding wise indicate	DL = ally his f live sf on g. ed.					
REACTIONS	(size) 2=0-3-8, 9 Max Horiz 2=165 (LC Max Grav 2=1190 (L	C 15)	9)	chord live loa	s been designed ad nonconcurrent	with any	other live loa						
FORCES	(lb) - Maximum Com	1.	/ IU	on the bottor	nas been designed n chord in all area	as where	a rectangle	•					
TOP CHORD		//95, 4-5=-1013/146, 1013/146, 7-9=-1259/9	95, 11	chord and ar) This truss ha	by 2-00-00 wide w by other members is been designed ilb live and 3.0lb c	, with BC for a mo	DL = 10.0psf ving concentr	f. rated					
BOT CHORD WEBS	,	3=0/657, 9-11=-46/81 =-50/423, 6-11=-50/42	23,	panels and a Bottom Chor	t all panel points a d, nonconcurrent rlin representatior	along the with any	e Top Chord a other live loa	and ads.				TH CA	Route
NOTES					ation of the purlin						1	ORIEESE	DAN'S
,	ed roof live loads have	been considered for		bottom chore						6	33		Ni. Sil
this desigr 2) Wind: ASC	n. CE 7-16; Vult=120mph	(3-second gust)	LC	DAD CASE(S)	Standard							2	and the
Vasd=95rr II; Exp B; I Exterior(2I Exterior(2I 13-7-5, Int and right e C for mem	ph; TCDL=6.0ps; BC Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter E) 9-4-11 to 10-7-5, Ex erior (1) 13-7-5 to 21-0 exposed ; end vertical I bibers and forces & MW mber DOL=1.60 plate	DL=6.0psf; h=25ft; Ca velope) and C-C rior (1) 2-0-0 to 9-4-11 tterior(2R) 10-7-5 to)-0 zone; cantilever lef eft and right exposed; /FRS for reactions	, t							11111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

G mm June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1A	Common	1	1	Job Reference (optional)	174084136

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:31 Page: 1 ID:h7aEAQbDO3E_ImCN9pf3QPzqv80-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

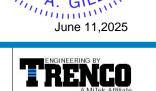

Scale = 1:74.7

Plate Offsets (X, Y): [6:0-6-5,0-0-2], [8:0-4-0,0-3-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.82 0.70 0.61	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.45 -0.59 -0.04 0.03	(loc) 8-9 8-9 6 8-12	l/defl >521 >398 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 9=-186 (L Max Grav 6=943 (LC (lb) - Maximum Com Tension 1-2=-371/85, 2-3=-7 4-6=-1046/89, 6-7=0 6-9=-48/637 3-8=-96/681, 4-8=-2	athing directly applie cept end verticals. applied or 9-9-4 oc 9= Mechanical C 14) C 31), 9=892 (LC 31 pression/Maximum 53/139, 3-4=-753/14 /58, 1-9=-374/68	7) 8)) 9) 10 11, LC	design. This truss ha load of 12.0 overhangs n Plates checl about its cer This truss ha chord live lo * This truss ha on the botto 3-06-00 tall chord and a Refer to gird load of 250.0 panels and a	as been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v hy other members er(s) for truss to i has been designed blo live and 3.0lb ti all panel points 'd, nonconcurrent	I for great flat roof It th other Inninus 5 de I for a 10.0 t with any ed for a liv as where will fit betw s, with BC truss conr I for a mov dead locc along the	er of min roo pad of 15.4 p ve loads. egree rotation D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ving concent ted at all min Top Chord	If live osf on n ads. .0psf tom of. rated d and					
NOTES 1) Unbalance	2-9=-612/38 NOTES 1) Unbalanced roof live loads have been considered for												

- this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior (1) 3-5-12 to 10-0-0, Exterior(2R) 10-0-0 to 13-0-0, Interior (1) 13-0-0 to 21-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

SEAL

036322

WWWWWWWW

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1DGE	Hip Girder	1	2	Job Reference (optional)	174084139

4-11-8 5-4-3

0-7-8

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:32

Page: 1

ID:MB7DAOxg?ndmKTjdMLqMfczqp?4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 23-0-0 <u>22-0</u>-0 3-6-6 6-6-0 11-0-0 15-6-0 18-5-10 ł 3-6-6 2-11-10 4-6-0 4-6-0 2-11-10 3-6-6 1-0-0 1-0-0 12 81 2x4 🛛 6x6= 6x6 = 27 ⊠ 5 26 6 28 29 7 2x4、 ネ 25 30 2x4 🖌 4 8 3x4 🖌 3x4 👟 24 31 9 3 10 11 (F) Π ₿ 33 34 15 35 36 14 38 39 40 41 42 32 37 13 12 4x6 II 4x6 II 3x4= MT20HS 3x8 = 3x4 = NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 3x4 = NAILED 11-0-0 6-4-4 15-7-12 22-0-0

22-0-0

4-7-12

6-4-4

Plate Offsets (X, Y): [2:Edge,0-0-5], [5:0-4-4,0-2-4], [7:0-4-4,0-2-4], [10:Edge,0-0-5]

6-4-4

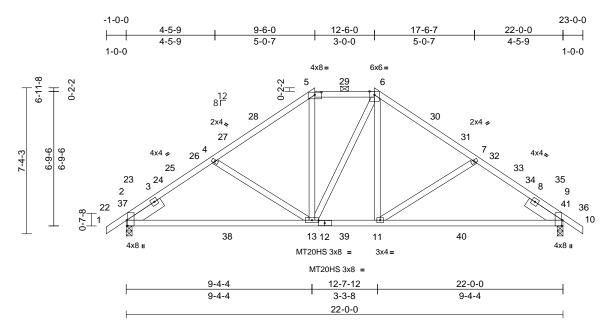
	, , , , , <u>[</u> ge,e e e],		,. = .	J, L J - ,	-1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.34 0.61 0.14	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 14-15 14-15 10 14-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 253 lb	GRIP 244/190 187/143 FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 7 1-6-0	I-6-0, Right 2x4 SP	2) No.3 3)	except if note CASE(S) see provided to c unless other Unbalanced	considered equal ed as front (F) or t ction. Ply to ply co distribute only loac wise indicated. roof live loads hav	back (B) onnectior ds noted	face in the LC is have been as (F) or (B),		load pan Bot 15) Gra or ti	d of 250. els and tom Cho phical p he orient	Olb live at all p ord, nor urlin re tation c	e and 3.0lb dead anel points along nconcurrent with	moving concentrated located at all mid the Top Chord and any other live loads. s not depict the size the top and/or			
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	ept	ed or ⁴⁾	Vasd=95mpl	7-16; Vult=120mµ h; TCDL=6.0psf; E closed; MWFRS (SCDL=6.	0psf; h=25ft; 0		bottom chord. 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. LOAD CASE(S) Standard							
BOT CHORD	Rigid ceiling directly bracing.)	Lumber DOL	osed ; end vertica =1.60 plate grip D	DOL=1.6	D			ead + Sn		alanced): Lumber	Increase=1.15, Plate			
	•	: 10) C 12), 10=-179 (LC	(n ,)	 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Uniform Loads (lb/ft) Vert: 1-5=-51, 5-7=-61, 7-11=-51, 16-20 Concentrated Loads (lb) Vert: 13=-175 (B) 15=-175 												
FORCES	(lb) - Maximum Com Tension		· 37) 6) 7)	design.	snow loads have							4=-151 (B), 35=- 0=-151 (B), 42=-	175 (B), 37=-175 (B), 186 (B)			
TOP CHORD	1-2=0/59, 2-4=-2345 5-6=-2332/300, 6-7= 7-8=-2270/296, 8-10	-2332/300,	1,	load of 12.0 overhangs n	psf or 2.00 times f on-concurrent with quate drainage to	flat roof I h other li	oad of 15.4 ps ve loads.	on sf								
BOT CHORD	2-15=-248/1865, 14- 12-14=-199/1867, 10	15=-243/1863,	9)	All plates are	MT20 plates unle	ess othe	wise indicate	d.				"TH CA	Ro			
WEBS	4-15=-193/96, 5-15= 6-14=-471/58, 7-14= 8-12=-193/97	,	676,	 10) Plates checked for a plus or minus 5 degree rotation about its center. 11) This truss has been designed for a 10.0 psf bottom chord live load so appropriate with any other live loads. 									and the second			
8-12=-193/97 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.				 chord live load nonconcurrent with any other live loads. 2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and other members. 3) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only 							22					

4-7-12

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

111111111 June 11,2025

G


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1C	Нір	1	1	Job Reference (optional)	174084140

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:31 ID:ASoVTIZnc3OoG6avE6Isanzqp0r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

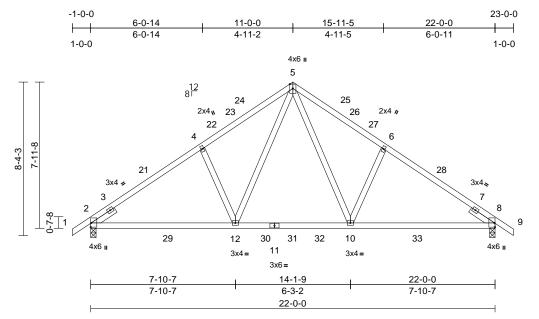
Page: 1

Scale = 1:58

Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-4-0,0-1-9], [9:0-3-8,Edge], [12:0-3-12,0-1-8]

	(x, i): [2:0 0 0,20g0],	E		, [1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.61 0.56 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.34 0.03	(loc) 11-20 11-20 9 11-13	l/defl >999 >757 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 130 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		2-0-0, Right 2x6 SP	No.2 4)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	7-16; Pr=20.0 ps .15); Pg=20.0 psf OL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 snow loads have	; Pf=20.4); Rough 10, Lu=5 been coi	4 psf (Lum D Cat B; Partia 0-0-0 nsidered for t	OL = ally his					
BRACING TOP CHORD	RACING 5) This truss has been designed for greater of min roof live load of 12.0 ps for 2.00 times flat roof load of 15.4 ps fon overhangs non-concurrent with other live loads. PC CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (5-10-10 max.): 5-6. 5) This truss has been designed for greater of min roof live loads of 15.4 ps fon overhangs non-concurrent with other live loads. PT CHORD Biging directly applied, except 2-0-0 oc purlins (5-10-10 max.): 5-6. 6) Provide adequate drainage to prevent water ponding. PT CHORD Biging directly applied, except 2-0-0 oc purlins (5-10-10 max.): 5-6. 6) Provide adequate drainage to prevent water ponding. PT CHORD Right ceiling directly applied, except 2-0-0 oc purling to prevent water ponding. 7) All plates are MT20 plates unless otherwise indicated.												
BOT CHORD REACTIONS	2-0-0 oc purlins (5-10-10 max.): 5-6. 6) Provide adequate drainage to prevent water ponding. OT CHORD Rigid ceiling directly applied. 7) All plates are MT20 plates unless otherwise indicated. EACTIONS (size) 2=0-3-8, 9=0-3-8 8) Plates checked for a plus or minus 5 degree rotation about its center. Max Horiz 2=-111 (LC 14) 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.												
FORCES TOP CHORD	(lb) - Maximum Com Tension	pression/Maximum 6/53, 4-5=-1193/55,	10	 * This truss h on the bottor 3-06-00 tall b 	nas been designed n chord in all area by 2-00-00 wide w ny other members	d for a liv as where rill fit betv	e load of 20. a rectangle	0psf					
BOT CHORD WEBS	9-10=0/52	=0/878, 9-11=0/1187 =0/299, 6-13=-143/14	, 7) This truss ha load of 250.0 panels and a	is been designed blb live and 3.0lb c at all panel points a d, nonconcurrent	for a mo lead loca along the	ated at all mic Top Chord a	l and					11111
this design 2) Wind: ASC Vasd=95n II; Exp B; Exterior(2 Exterior(2 16-8-15, II left and rig exposed;C	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) 1-0-0 to 2-0-0, Inter E) 9-6-0 to 12-6-0, Ext nterior (1) 16-8-15 to 2 ght exposed ; end vertii C-C for members and fr shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C rior (1) 2-0-0 to 9-6-1 erior(2R) 12-6-0 to 3-0-0 zone; cantileve cal left and right orces & MWFRS for	r Cat. 13 0, er	structural wo chord and 1/ the bottom c) Graphical pu	rlin representation ation of the purlin a d.	applied d ock be a n does n	irectly to the pplied directly ot depict the s	y to		M. CONTRACT		SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G mm June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	G1B	Common	3	1	Job Reference (optional)	174084141

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:31 ID:Iw?_W?bwguajPUaXz3WdA0zqpDj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

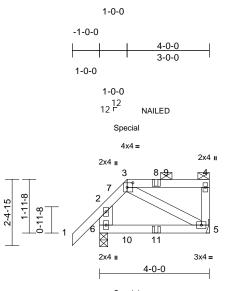
Page: 1

Scale = 1:62.7

Plate Offsets (X, Y): [2:Edge,0-0-5], [8:Edge,0-0-5]

Flate Olisets (, T). [2.Euge,0-0-5],	[0.Euge,0-0-5]									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.60 0.49 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.24 0.02	(loc) 12-15 12-15 8 12-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
BCDL 10.0 Weight: 117 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) BRACINE TOP CHORD SUDER Left 2x4 SP No.3 1.6-0 5) This truss has been designed for a luo or minus 5 degree rotation about its center. 7) BRACINE TOP CHORD SUDER Structural wood sheathing directly applied. 8) * This truss has been designed for a 10.0 psf bottom chord live load of 02.00psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) FORCES (lb) - Maximum Compression/Maximum TOP CHORD 1:2=0/52, 2-4=-1238/65, 4-5=-1150/117, 5-6=-1150/117, 6-8=-11329/65, 8-9=0/52 A12=2-286/115 6) This truss has been designed for a moving concentrated load of 12:0052, 2-4=-1238/65, 8-9=0/52 A12=2-286/115 10) This truss design requires that a minimum panels and tall panel points along the Top Chord and Bottom Chord, 10-12=0/52, 2-4=-1238/65, 8-9=0/52 A12=2-286/115 10) This truss design requires that a minimum or thord and 1/2' gypsum sheetrock be applied directly to the top chord and 1/2' gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 0) Winet. XSCE 7-16; Vult=120mph (3-second gust) 2) Winet. XSCE 7-16; Vult=120mph (3-second gust) 2) Winet. XSCE 7-16; Vult=120mph (3-second												
 Unbalance this design Wind: ASC Vasd=95m II; Exp B; I Exterior(2I 23-00 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 	n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte R) 11-0-0 to 14-0-0, In ne; cantilever left and r it and right exposed;C- IWFRS for reactions s 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf ((3-second gust) DL=6.0psf; h=25ft; Cat welope) and C-C rior (1) 2-0-0 to 11-0-0, terior (1) 14-0-0 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.1: Pf=15.4 psf (Lum DOL = Rough Cat B; Partially	5						U		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1I	Half Hip Girder	2	1	Job Reference (optional)	174084142

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:TcIQebGAyuiaE002eILTw0zqp?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

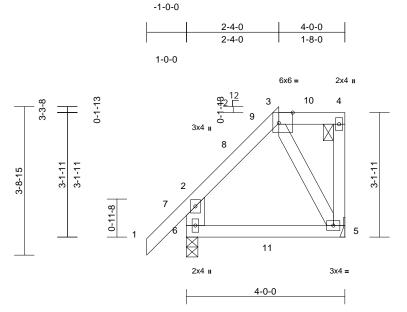
Special

NAILED

Scale = 1:42

Plate Offsets (X	(, Y):	[3:0-2-8,0-2-0]
------------------	--------	-----------------

Plate Offsets (A, T). [3.0-2-6,0-2-0]	-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2021/T	TPI2014	CSI TC BC WB Matrix-MS	0.39 0.50 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.04 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
	4-0-0 oc purlins, exit 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=53 (LC Max Uplift 5=-11 (LC Max Grav 5=316 (LC (lb) - Maximum Com	athing directly applied cept end verticals, and applied or 6-0-0 oc inical, 6=0-3-8 11) : 9), 6=-11 (LC 12) C 54), 6=333 (LC 51)	7) 8) - or 9) - 10) 11) 12) (Plates check about its ceni This truss ha " This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate 5. One H2.5A S recommende UPLIFT at jt(s been designed f id nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members. er(s) for truss to tru- nanical connection capable of withsta- timpson Strong-Tid d to connect truss s) 6. This connecti	nus 5 d or a 10. with any for a liv s where Il fit betw uss conr (by oth anding 1 e conne to bear ion is fol	egree rotation of the live load e load of 20.0 a rectangle veen the botto nections. ers) of truss t 1 lb uplift at ju- ctors ng walls due	ds.)psf om o pint	Co	oncentra	ited Loa	2-3=-51, 3-4=-6′ ads (lb) , 10=3 (B), 11=-5		
 this design Wind: ASC Vasd=95m II; Exp B; I and right e Lumber DC 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 4) Unbalance design. 5) This truss load of 12. 	Tension 1-2=0/89, 2-3=-242/: 4-5=-281/16, 2-6=-2 5-6=-35/104 3-5=-108/46 ad roof live loads have b. CE 7-16; Vult=120mph rypsed; end vertical I OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf; F DOL = 1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; f 1.0; Cs=1.00; Ct=1.10, ad snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with c	96/34 been considered for (3-second gust) DL=6.0psf; h=25ft; Ca ivelope); cantilever left left and right exposed; vL=1.60 roof LL: Lum DOL=1.1 Pr=20.4 psf (Lum DOL Rough Cat B; Partially , Lu=50-0-0 iven considered for this r greater of min roof liv t roof load of 15.4 psf of	13) - 14) (14) (15) " t. 16) H 15 15 15 15 17) 17) 17) 170 LOA re 1)	This truss haiload of 250.0 panels and a Bottom Chord Graphical pui or the orienta bottom chord "NAILED" inc (0.148"x3.25" Hanger(s) or provided suff down and 91 and 19 lb up selection of s responsibility In the LOAD of the truss a ND CASE(S)	licates 3-10d (0.14 ") toe-nails per NE other connection icient to support or lb up at 1-0-0 on at 1-0-0 on bottor such connection de of others. CASE(S) section, re noted as front (Standard w (balanced): Lun 15	or a mo ead loca long the with any does n long the 48"x3") o S guidli device(s oncentra top cho n chord evice(s) loads a F) or ba	ted at all mid Top Chord a other live loa ot depict the s top and/or or 3-12d nes.) shall be ted load(s) 2 rd, and 7 lb d The design/ is the oplied to the f ck (B).	nd ds. jize 6 lb own ace		Contraction of the second seco		SEA 0363	L 22 L L BER L BER L I L BER L I L BER L I L BER L I I L I I I I I I I I I I I I I I I	Manning


June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1H	Half Hip	2	1	Job Reference (optional)	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:O6jB4asnWxyAh2ZZHDk1hLzqp1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [3:0-4-3,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.23	Vert(LL)	-0.04	5-6	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.04	5-6	>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MS		Wind(LL)	0.00	5-6	>999	240		
BCDL	10.0											Weight: 26 lb	FT = 20%
LUMBER			5) This truss ha	as been designed	for great	er of min roo	f live					
TOP CHORD	2x4 SP No.2			·	psf or 2.00 times	0							
BOT CHORD					on-concurrent wit								
WEBS	2x4 SP No.3 *Excep	t* 6-2:2x6 SP No.2	6) Provide ade	quate drainage to	prevent	water pondin	ıg.					
BRACING			7	·	ked for a plus or n	ninus 5 d	egree rotatio	n					
TOP CHORD	Structural wood shea	athing directly applie	ed or	about its cer									
	4-0-0 oc purlins, exe	cept end verticals, a	ind ⁸		as been designed								
	2-0-0 oc purlins: 3-4		0		ad nonconcurrent has been designe								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c 9		m chord in all area			opsi					
	bracing.				by 2-00-00 wide w			tom					
	()	nical, 6=0-3-8			ny other members								
	Max Horiz 6=82 (LC	,	1		er(s) for truss to t		nections.						
	Max Uplift 5=-21 (LC	,	<u> </u>	1) Provide med	hanical connection	on (by oth	ers) of truss	to					
	Max Grav 5=321 (LC		,		e capable of withs	standing 2	1 lb uplift at	joint					
FORCES	(lb) - Maximum Com	pression/Maximum		5.									
TOP CHORD	Tension 1-2=0/89, 2-3=-199/4	12 2 4 40/47	1		as been designed								
TOP CHORD	4-5=-266/28, 2-6=-3				Olb live and 3.0lb								
BOT CHORD	5-6=-111/93	10/100			at all panel points rd, nonconcurrent								
WEBS	3-5=-183/172		1		In representatio								
NOTES					ation of the purlin			0120				WITH CA	11
	ed roof live loads have	heen considered fo	r	bottom chor		g						11111 01	5111
this design		been considered to		OAD CASE(S)	Standard						1	TH UA	HOY
	 CE 7-16; Vult=120mph	(3-second gust)	_								5	Miszeco	in his
	nph: TCDL=6.0psf: BC		Cat.								~~	OFENS	

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-4-0, Exterior(2E) 2-4-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

G

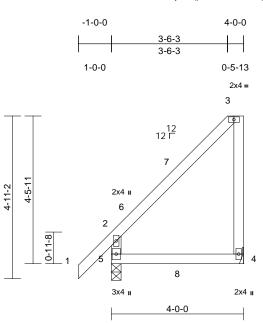
minin

June 11,2025

ANTITUTION IN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


SEAL 036322

CHILDRAW WAR

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1F	Half Hip	2	1	Job Reference (optional)	174084144

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:he3ZrXKBtQPQPHC6i_yiv3zqp2S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.04	4-5	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.05	4-5	>834	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR		Wind(LL)	0.01	4-5	>999	240		
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS	
BRACING	
TOP CHORD	·····
	4-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	
REACTIONS	(size) 4= Mechanical, 5=0-3-8
REACTIONS	(size) 4= Mechanical, 5=0-3-8 Max Horiz 5=122 (LC 13)
REACTIONS	(,
REACTIONS	Max Horiz 5=122 (LC 13)
FORCES	Max Horiz 5=122 (LC 13) Max Uplift 4=-51 (LC 13)
	Max Horiz 5=122 (LC 13) Max Uplift 4=-51 (LC 13) Max Grav 4=324 (LC 42), 5=354 (LC 40)
	Max Horiz 5=122 (LC 13) Max Uplift 4=-51 (LC 13) Max Grav 4=324 (LC 42), 5=354 (LC 40) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Horiz 5=122 (LC 13) Max Uplift 4=-51 (LC 13) Max Grav 4=324 (LC 42), 5=354 (LC 40) (lb) - Maximum Compression/Maximum Tension

NOTES

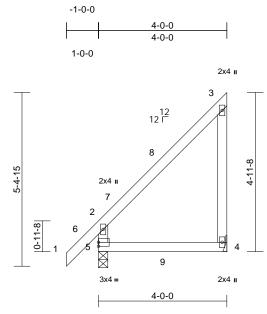
1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	M1E	Jack-Closed	4	1	I74084145 Job Reference (optional)

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:8Ot5xZUrgjG_Awauo3D3k0zqp4q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.9

BRACING

TOP CHORD

BOT CHORD

FORCES

NOTES 1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

design.

REACTIONS (size)

bracing.

Tension

3-4=-284/264

4-5=-74/69

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Max Horiz 5=122 (LC 15) Max Uplift 4=-51 (LC 13)

Unbalanced roof live loads have been considered for

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

overhangs non-concurrent with other live loads.

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on

Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

4-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

Max Grav 4=324 (LC 45), 5=354 (LC 40)

(Ib) - Maximum Compression/Maximum

2-5=-319/129, 1-2=0/66, 2-3=-227/140,

4= Mechanical, 5=0-3-8

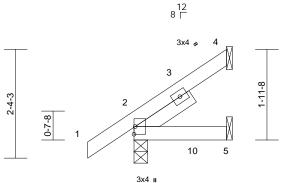
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.04	4-5	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.05	4-5	>834	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR		Wind(LL)	0.02	4-5	>999	240		
BCDL	10.0										Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		about its ce 7) This truss h	cked for a plus or enter. has been designe bad nonconcurrer	d for a 10.0	0 psf bottom						

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle Structural wood sheathing directly applied or
 - 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. 9)

 - 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint
 - 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1K	Jack-Open	2	1	Job Reference (optional)	084146


Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:34 ID:kAr59bTGMvbL0WrfbHil3lzqp3Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-0-0

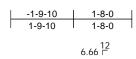
Scale = 1:24.9

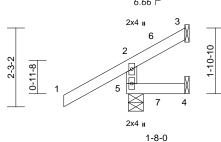
	L (roof) w (Pf/Pg) L L	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	rpi2014	CSI TC BC WB Matrix-MP	0.19 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 5-8 5-8 2 5-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
TOP BOT SLIE BRA TOP BOT REA	CHORD CHORD CHORD	2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= ial 16) 2 16) 2 46) 2 41), 4=270 (LC 40) 2 45)	dor 8) F 9) F 10) T 10) T 8 9 9 9 9 9 9 8 9 8 9 8 9 8 9 8 9 8 9	chord live loa ⁺ This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 4. This truss ha ocad of 250.0 beanels and a	s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tr nanical connection capable of withsta s been designed for b live and 3.0lb do t all panel points a d, nonconcurrent v Standard	vith any for a liv s where Il fit betw uss con (by oth anding 1 or a move ad locations the	other live loa e load of 20.0 a rectangle veen the botton nections. ers) of truss t 5 lb uplift at j ving concentr ted at all mid Top Chord a	Opsf om oint ated					
TOP	CHORD	Tension 1-2=0/47, 2-4=-163/												
NOT 1)	'ES Wind: ASC	CE 7-16; Vult=120mph												
2)	II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; f =1.15); Pg=20.0 psf; p DOL = 1.15); Is=1.0; l LOL = 1.0; CI=1.10	velope) and C-C and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partiall	end .15 L =							4		ORTH CA	
3)		ed snow loads have be		is									0363	
, I	oad of 12.	has been designed for 0 psf or 2.00 times flat non-concurrent with o	t roof load of 15.4 ps									in the	S. ENGIN	EEREALIN
5)		cked for a plus or min											A. G.	all 2025

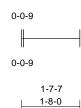
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


June 11,2025


Job	Truss	Truss Type Q		Ply	Stonefield Rev 3-Elev 4-Roof	
	M1J	Jack-Open	2	1	Job Reference (optional)	174084147


Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:RYO06OBD?XZI8q02BEGf5Ezqp3w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TOP CHORD

BOT CHORD

REACTIONS (size)

Scale = 1:33						1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	0.00	4-5	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	0.00	4-5	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR		Wind(LL)	0.00	4-5	>999	240		
BCDL	10.0	-									Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		about its ce 7) This truss f chord live l 8) * This truss	cked for a plus or enter. has been designe bad nonconcurrer has been design	d for a 10.0 nt with any ned for a liv) psf bottom other live loa e load of 20.1	ads.					

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
 - Refer to girder(s) for truss to truss connections. 9)
 - 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 4 and 56 lb uplift at joint 3.
 - 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

THILL DOWN SEAL 036322 G mm June 11,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

chord and any other members.

5=347 (LC 40) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-324/169, 1-2=0/77, 2-3=-84/52

5=0-5-3

5=35 (LC 13)

Max Uplift 3=-56 (LC 22), 4=-17 (LC 22)

Structural wood sheathing directly applied or

3= Mechanical, 4= Mechanical,

3=251 (LC 42), 4=260 (LC 45),

1-8-0 oc purlins, except end verticals.

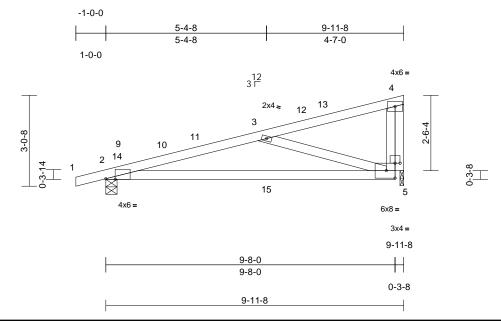
Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD 4-5=0/0

bracing.

Max Horiz

Max Grav


NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty Ply Stonefield Rev 3-Elev 4-Roof		Stonefield Rev 3-Elev 4-Roof	
	P1D	Monopitch	7	1	Job Reference (optional)	174084152

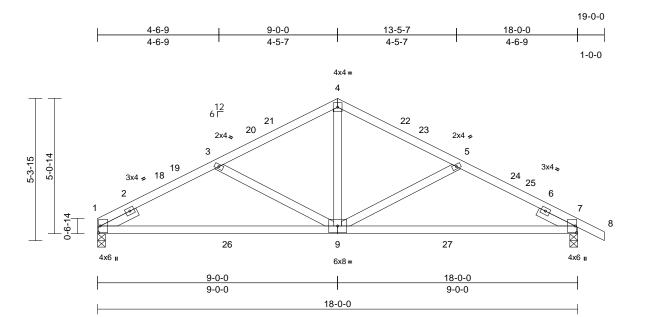
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:36 Page: 1 ID:Thk8SZjCVEOIGwFyxWod3NzIH13-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-12,Edge], [5:0-2-0,0-0-0]

	(A, T). [2.0-3-12,Euge],	[5.0-2-0,0-0-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.76 0.87 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.42 0.01 0.12	(loc) 5-8 5-8 5 5-8	l/defl >410 >274 n/a >945	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 44 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP SS 2x4 SP No.3 2x4 SP No.3 Structural wood sheat except end verticals. 10-0-0 oc bracing.	=0-1-8 5) 12), 5=-62 (LC 12)	5) 6) 7) , 8) 9)	load of 12.0 overhangs r Plates checc about its ce about its ce This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Bearing at ju using ANSI/	as been designed psf or 2.00 times ion-concurrent wik ked for a plus or n nter. as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide w ny other members pint(s) 5 considers TPI 1 angle to gra ould verify capaci	flat roof le th other lin ninus 5 de I for a 10.0 t with any ed for a liv as where will fit betw s. s parallel 1 ain formula	bad of 15.4 p ve loads. egree rotatio 0 psf bottom other live loa e load of 20. a rectangle veen the bot o grain value a. Building	osf on n ads. .0psf tom					
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	10)		chanical connection e at joint(s) 5.	on (by oth	ers) of truss	to					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	1-2=0/20, 2-3=-838/38 4-5=-272/66 2-5=-442/809 3-5=-758/387 ed roof live loads have b		,) One H2.5A recommend UPLIFT at ji and does no) This truss h load of 250.	Simpson Strong-T ed to connect trus (s) 2 and 5. This (to consider lateral as been designed Olb live and 3.0lb at all panel points	ss to bear connectio forces. I for a mov dead loca	ing walls due n is for uplift ving concent ited at all mid	only trated d				INTH CA	111111 1
2) Wind: AS	n. CE 7-16; Vult=120mph (; nph: TCDL=6.0psf: BCD	U ,	it. 13)	Bottom Cho	rd, nonconcurrent esign requires that	t with any	other live loa				- II	ORTHUA	HOLIN'L

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 9-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMITEK ATRIIlat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof				
	E1D	Common	6	1	Job Reference (optional)	174084153			

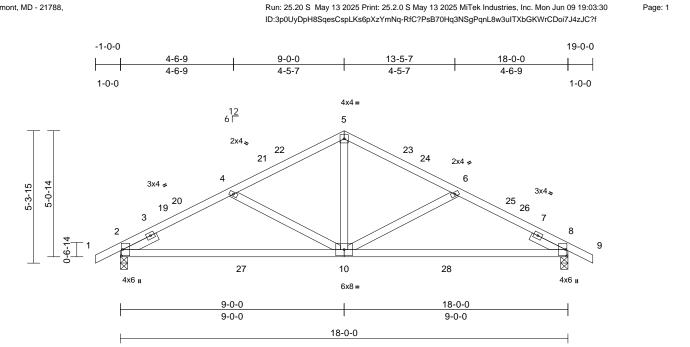
Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:30 ID:Xm2rBRDkKIcRSeNgOeMPIIzYmFY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.2

Plate Offsets (X, Y): [1:0-3-0,0-0-10], [7:0-3-0,0-0-10]

], []											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.55 0.56 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.33 0.02 0.02	(loc) 9-12 9-12 7 9-12	l/defl >828 >638 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 7 Max Horiz 1=-45 (LC Max Grav 1=706 (LC (lb) - Maximum Com Tension 1-3=-1135/175, 3-4= 5-7=-1138/170, 7-8=	athing directly applie applied. ?=0-3-8 : 21) C 2), 7=779 (LC 2) pression/Maximum 839/136, 4-5=-838/- 0/42	7) .d. 8) 9)	load of 12.0 overhangs n Plates check about its cer This truss ha chord live lo * This truss l on the bottoo 3-06-00 tall I chord and at This truss ha load of 250.0 panels and a Bottom Chor	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members as been designed Dib live and 3.01b of at all panel points rd, nonconcurrent beign requires that bod sheathing be a (2" gypsum sheetr	flat roof li h other li ninus 5 do for a 10.1 with any d for a li as where vill fit betw for a mor dead loca along the with any t a minim applied d	bad of 15.4 p ve loads. egree rotation opsf bottom other live loa e load of 20. a rectangle veen the bott ving concentri ted at all mic other live loa other live loa um of 7/16" irectly to the	n ads. Opsf om and and ads. top					
NOTES			LC	DAD CASE(S)	Standard								
1) Unbalance	ed roof live loads have	been considered for											
Vasd=95m II; Exp B; I Exterior(2I zone; cant and right e MWFRS fo grip DOL= 3) TCLL: AS(Plate DOL 1.15 Plate Exp.; Ce=	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) 0-1-12 to 3-1-12, Int R) 9-0-0 to 12-0-0, Inte tilever left and right exp sxposed;C-C for memb or reactions shown; Lu	DL=6.0psf; h=25ft; C ivelope) and C-C ierior (1) 3-1-12 to 9- irior (1) 12-0-0 to 19- posed ; end vertical li- iers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 2f=15.4 psf (Lum DO Rough Cat B; Partiall	0-0, -0-0 eft te .15 L = ly							U. HILLING		SEA 0363	• -


- grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

G

11111111 June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

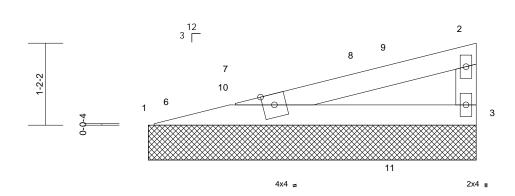
Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	E1C	Common	1	1	Job Reference (optional)	174084154

Scale = 1:46.3

Plate Offsets (X,	Y):	[2:0-3-0,0-0-10], [8:0-3-0,0-0-10]
-------------------	-----	------------------------------------

		, <u>, , , , , , , , , , , , , , , , , , </u>										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20 5) This	russ has been designe	0.55 0.56 0.19 d for great	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) er of min roof	in -0.26 -0.33 0.02 0.02	(loc) 10-13 10-13 8 10	l/defl >829 >643 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 7 1-6-0	I-6-0, Right 2x4 SP I	overl 6) Plate No.3 abou	of 12.0 psf or 2.00 time angs non-concurrent w s checked for a plus or t its center. russ has been designe	ith other li minus 5 d	ve loads. egree rotatior						
	Structural wood she Rigid ceiling directly	applied. 3=0-3-8 5 14)	ed. 8) * This ed. 8) * This on th 3-06- chord 9) This	l live load nonconcurrer truss has been design bottom chord in all ar 00 tall by 2-00-00 wide and any other membe russ has been designe	nt with any led for a liv eas where will fit betv rs. d for a mo	other live load e load of 20.0 a rectangle veen the botto	Opsf om rated					
FORCES	(lb) - Maximum Com Tension 1-2=0/42, 2-4=-1138	pression/Maximum 3/166, 4-5=-833/130,	pane Botto 10) This	of 250.0lb live and 3.0lb s and at all panel point m Chord, nonconcurrer russ design requires th	s along the nt with any at a minim	e Top Chord a other live loa um of 7/16"	and Ids.					
BOT CHORD WEBS NOTES	5-6=-833/130, 6-8=- 2-8=-82/916 5-10=0/490, 6-10=-3		chore 116 the b	ural wood sheathing be and 1/2" gypsum shee ottom chord. ASE(S) Standard								
 Unbalance this design Wind: ASC Vasd=95m I; Exp B; E Exterior(2E Exterior(2F zone; cant and right e MWFRS fc grip DOL= TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 	CE 7-16; Vult=120mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Intel R) 9-0-0 to 12-0-0, Inte ilever left and right exp ixposed;C-C for memb or reactions shown; Lu	(3-second gust) DL=6.0psf; h=25ft; C vivelope) and C-C rior (1) 2-0-0 to 9-0-C rior (1) 12-0-0 to 19- vosed ; end vertical I vers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partial	Cat. .0-0-0 eft te .15 ∪L = Iy						Contraction of the second seco		SEA 0363	EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	V10	Valley	1	1	Job Reference (optional)	174084155

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:38 ID:UueA1J2KshjZ9Lkn?_buB8zYmFn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

Scale = 1:16.5

Scale = 1:16.5		•			·								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.42	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.77	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC202'	1/TPI2014	Matrix-AS								
BCDL	10.0											Weight: 13 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		7) 8)		es continuous bo spaced at 4-0-0 (d bearing.						
BOT CHORD	2x4 SP No.2 2x4 SP No.3		9)		is been designed) psf hottom						
WEBS	2x4 SP No.3		5)		ad nonconcurrent			ids.					
			10		nas been designe								
TOP CHORD	RACING			on the bottor 3-06-00 tall b	n chord in all are by 2-00-00 wide v	as where vill fit betv	a rectangle						
BOT CHORD	Rigid ceiling directly	applied.			ny other members								
REACTIONS	(size) 1=4-8-8, 3	3=4-8-8	11		e or shim require		de full bearin	g					
	Max Horiz 1=23 (LC	13)	12		truss chord at joi is been designed		ving concentr	bate					
	Max Grav 1=344 (LC	C 43), 3=344 (LC 42)	12	,	been designed () b live and () 01		0						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		panels and a	t all panel points	along the	Top Chord a	and					
TOP CHORD	1-2=-706/186, 2-3=-	300/81	12		d, nonconcurrent sign requires that			ias.					
BOT CHORD	1-3=-248/684		13		od sheathing be			ton					
NOTES					2" gypsum sheet								
	ed roof live loads have	been considered for		the bottom c				,					

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-6-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

 Plates checked for a plus or minus 5 degree rotation about its center. SEAL 036322

June 11,2025

VIIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

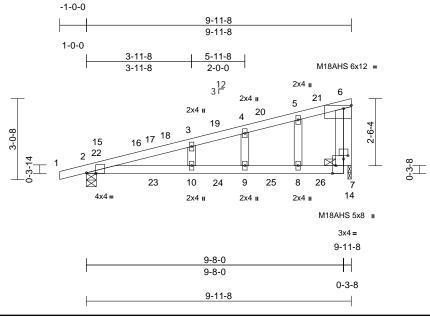
LOAD CASE(S) Standard

Job	Truss		Truss Type		Qty	PI	y S	tonefield	Rev 3-E	Elev 4-F	Roof	
	V9		Valley		1	1						174084156
ructural, LLC, 1	hurmont, MD - 21788,		1 2	Run: 25.20 S May	13 2025 1	Print: 25.2		2025 MiT			. Mon Jun 09 19:0	3:38 Page: 1
				ID:?h4oqz1h5ObiX								ů
			4	-7-8				8-7	-8			
			4	-7-8				4-0	-0			
											2x4 u	
						04					3	
						2x4 🛛		13				
	2-2-2		¹² 3 ┌ 8 9	10 11	12 2	2						
			14									
	4-	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>6</u> ,	~~~~~~	~~~~~	~~~~~		4	
	-0											
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15	~~~~~	5 5	~~~~~~	16	~~~~~	~~~~~		
			3x4 =			2x4 II					2x4 u	
					8-7-8							
cale = 1:22.5					-							
bading CLL (roof)		Spacing Plate Grip DOL	2-0-0 1.15	CSI TC		DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	<b>GRIP</b> 244/190
iow (Pf/Pg)	15.4/20.0 L	umber DOL	1.15	BC	0.83	Vert(TL)	n/a	-	n/a	999		
CDL CLL		Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-AS	0.07	Horiz(TL	) 0.00	4	n/a	n/a		
DL	10.0								_		Weight: 28 lb	FT = 20%
IMBER OP CHORD	2x4 SP No.2		5) Unbalance design.	ed snow loads have be	en consi	idered fo	or this					
OT CHORD	2x4 SP No.3			cked for a plus or min	us 5 deg	ree rotat	ion					
EBS THERS	2x4 SP No.3 2x4 SP No.3		7) Gable req	uires continuous botto	m chord	bearing.						
			0) This trues	ls spaced at 4-0-0 oc. has been designed for	ra 10 0 v	osf hotto	m					
P CHORD	Structural wood sheath except end verticals.	ing airectly app	chord live	load nonconcurrent wi	ith any of	ther live	loads.					
DT CHORD	Rigid ceiling directly ap	oplied. 8-7-8, 5=8-7-8		s has been designed f tom chord in all areas								
	Max Horiz 1=48 (LC 13	3)	chord and	Il by 2-00-00 wide will any other members.	fit betwe	en the b	ottom					
	Max Grav 1=327 (LC 4 5=469 (LC 2		52), 11) This truss	has been designed for								
RCES	(lb) - Maximum Compre	,	m panels and	0.0lb live and 3.0lb dea d at all panel points alc	ong the T	op Chor	d and					
OP CHORD	Tension 1-2=-558/67, 2-3=-49/3	33, 3-4=-280/80		ord, nonconcurrent wi design requires that a								
OT CHORD EBS	1-5=-79/538, 4-5=-27/3 2-5=-359/180	30	structural	wood sheathing be ap	plied dire	ectly to th	ne top					
DTES	2-0007/100		chord and the bottom	1/2" gypsum sheetroc i chord.	л ие арр	mea aire						
Unbalance	d roof live loads have be	en considered	for LOAD CASE(	S) Standard								
	E 7-16; Vult=120mph (3		_									0.00
	ph; TCDL=6.0psf; BCDL inclosed; MWFRS (enve		t; Cat.							13	"TH C	ARO
Exterior(2E	) 0-1-0 to 3-1-0, Interior	(1) 3-1-0 to 8-6								N.	OPINE	De latin
and right e	lever left and right expos xposed;C-C for members	s and forces &							4		14 1	When you
MWFRS for grip DOL=	r reactions shown; Lumb	ber DOL=1.60 p	blate								<b>₹</b> `	
	aned for wind loads in the	e plane of the t	russ						-		SE	AL : =

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
   TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GINEERING

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	P1BGE	Monopitch Supported Gable	1	1	Job Reference (optional)	174084157

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:36 ID:CiMdlk8bfoZzDBS0zHTgxTzIH4O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



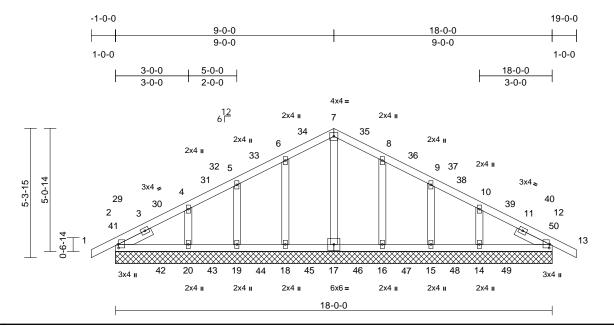
Scale = 1:43.3

# Plate Offsets (X, Y): [2:0-4-4,Edge], [6:Edge,0-1-8], [7:0-3-8,Edge], [7:0-2-0,0-1-8]

Fiale Olisels	(A, T). [2.0-4-4,Euge],	[6.Euge,0-1-6], [7.0-	S-o,⊑ugej	, [7.0-2-0,0-1-6								-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.92 0.64 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.46 0.00 0.26	(loc) 9-10 9-10 14 9-10	l/defl >488 >260 n/a >462	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 43 lb	<b>GRIP</b> 186/179 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP SS 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals 10-0-0 oc bracing.	14=0-1-8 12) : 12), 14=-65 (LC 12)	5) d, 6) 7) 8) (, 9)	Plate DOL=1 1.15 Plate DOL=1 Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check about its cen Gable studs	7-16; Pr=20.0 ps .15); Pg=20.0 ps OL = 1.15); Is=1.0 ); Cs=1.00; Ct=1.1 snow loads have us been designed psf or 2.00 times 1 on-concurrent wittle MT20 plates unloged for a plus or m ter. spaced at 2-0-0 o is been designed	; Pf=15.4 ); Rough 10 been cor for great flat roof le n other li ess other inus 5 de c.	4 psf (Lum DC Cat B; Partia nsidered for th er of min roof pad of 15.4 p: ve loads. wise indicate egree rotation	DL = Illy his i live sf on ed.					
FORCES	(lb) - Maximum Corr Tension			chord live loa	ad nonconcurrent	with any	other live loa						
TOP CHORD	1-2=0/20, 2-3=-414/ 4-5=-357/147, 5-6=-	320/152, 6-7=-100/3		on the bottor 3-06-00 tall b	nas been designed n chord in all area by 2-00-00 wide w	is where ill fit betv	a rectangle	•					
WEBS	8-9=-185/358, 7-8=-	,		<ul> <li>chord and any other members.</li> <li>12) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.</li> </ul>								10.	
NOTES			13		hanical connectio			to				N''LL CA	DIL
<ol> <li>Unbalance this design</li> <li>Wind: ASE Vasd=95r</li> </ol>	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed: MWFRS (er	(3-second gust) DL=6.0psf; h=25ft; C	14	bearing plate One H2.5A S recommende UPLIFT at jt(	e at joint(s) 14. Simpson Strong-T ed to connect truss s) 2 and 14. This t consider lateral f	ie conne s to bear connecti	ctors ing walls due	to		4	LT	ORTH CA	and the second s
Exterior(2 zone; can and right of members Lumber D 3) Truss des only. For	Elicitosed, WWFRS (elicitosed, WWFRS) (elicitosed, WWFRS) exposed; porch left and and forces & MWFRS (OL=1.60 plate grip DC ligned for wind loads in studs exposed to wind lard Industry Gable En	rior (1) 2-0-0 to 9-8-0 cosed ; end vertical ld d right exposed;C-C f for reactions shown; vL=1.60 the plane of the trus (normal to the face).	eft or 16 s	<ul> <li>5) This truss had load of 250.0 panels and a Bottom Chor</li> <li>6) This truss de</li> </ul>	as been designed olb live and 3.0lb of at all panel points a d, nonconcurrent usign requires that od sheathing be a	for a more lead locate along the with any a minim	ated at all mid Top Chord a other live loa um of 7/16"	l and Ids.			A A A A A A A A A A A A A A A A A A A	SEA 0363	• -

- load of 250.0lb live and 3.0lb dead located at all mid and right exposed; porch left and right exposed;C-C for panels and at all panel points along the Top Chord and members and forces & MWFRS for reactions shown; Bottom Chord, nonconcurrent with any other live loads. 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top
- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- LOAD CASE(S) Standard




G umm June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof		
	E1BGE	Common Supported Gable	1	1	Job Reference (optional)	174084158	

#### Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:30 ID:HkUc7sIx1YYbqkektW6G6gzYmOU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



#### Scale = 1:47.5

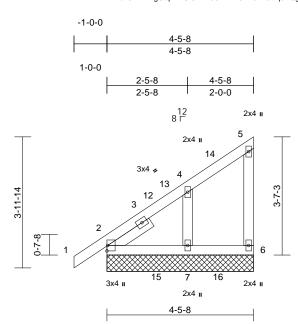
Plate Olisets (.	A, T). [2.0-1-12,0-0-0	j, [12.0-1-12,0-0-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.23 0.25 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 94 lb	<b>GRIP</b> 244/190 FT = 20%
	Rigid ceiling directly (size) 2=18-0-0, 15=18-0-0 18=18-0-0 Max Horiz 2=43 (LC Max Uplift 14=-13 (L 16=-6 (LC 19=-4 (LC Max Grav 2=335 (LC 14=367 (L 16=337 (L	athing directly applied applied. 12=18-0-0, 14=18-0. 0, 16=18-0-0, 17=18-1. 0, 19=18-0-0, 20=18-1. 15) C 17), 15=-4 (LC 17) 17), 18=-7 (LC 16) C 17), 12=325 (LC 81 C 79), 15=321 (LC 7 C 77), 17=315 (LC 7 C 77), 17=315 (LC 7	1. 0, 3) 0-0, 0-0 4) , 4) (, 5) 8), 5)	Vasd=95mpH II; Exp B; Enn (3E) -1-0-0 to (3R) 9-0-0 to cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 g	7-16; Vult=120mph ;; TCDL=6.0psf; BC closed; MWFRS (e b 2-0-0, Exterior(2N 12-0-0, Exterior(2N t and right exposed t; C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 show loads have b s been designed for past of 2.00 times fla on-concurrent with	CDL=6.1 nvelope )) 2-0-0 v) 12-0-1 i ; end v and foo DL=1.60 d (norm d Deta igner at (roof LL Pf=15.4 Rough ) een cor or greate at roof lo	Dipsf; h=25ft; C e) and C-C Co to 9-0-0, Corr of to 19-0-0 zc vertical left and cess & MWFR: ) plate grip ane of the trus al to the face) ils as applicab s per ANSI/TP .: Lum DOL=1 psf (Lum DO Cat B; Partial histidered for th er of min roof 1 bad of 15.4 ps	orner one; d S S S S S S S S S S S S S S S S S S	sur 14) Thi loa par Bot 15) Thi stru cho the	face with s truss h d of 250 nels and toom Charles and too truss d uctural w ord and 1 bottom CASE(S	n truss las bee .0lb live at all p ord, no lesign ood sh /2" gyl chord. ) Sta	chord at joint(s) an designed for a e and 3.0lb designed for a anale points along noconcurrent with requires that a m leathing be applit obsum sheetrock to ndard	moving concentrated located at all mid g the Top Chord and any other live loads.
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	Plates check about its cen	ed for a plus or mir ter.	nus 5 de	egree rotation					"TH CA	RO
TOP CHORD		41, 4-5=-78/61, 01/145, 7-8=-101/145 78/62, 10-12=-248/41	, ,	Gable require Gable studs ) This truss ha	es continuous botto spaced at 2-0-0 oc. s been designed fo ad nonconcurrent w	or a 10.0	) psf bottom	he				ORTH CA	AN A
BOT CHORD	2-20=-10/68, 19-20= 16-18=-10/68, 15-16 12-14=-10/68	=-10/68, 14-15=-10/6	58,	) * This truss h on the botton	as been designed n chord in all areas y 2-00-00 wide will	for a liv where	e load of 20.0 a rectangle	psf				SEA 0363	• –
WEBS		285/72, 5-19=-279/68 285/71, 9-15=-279/6	Ś	<ol> <li>Provide mecl bearing plate</li> </ol>	y other members. hanical connection capable of withsta	nding 7	lb uplift at joir	nt				SEA 0363	ER A
NOTES 1) Unbalance	ed roof live loads have	been considered for			at joint 19, 16 lb up lb uplift at joint 15 a						11	PIO GIN	FERN
				4.4			ap at join	•			1	1 UN O	BEIN

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 18, 4 lb uplift at joint 19, 16 lb uplift at joint 20, 6 lb uplift at joint 16, 4 lb uplift at joint 15 and 13 lb uplift at joint 14.

A. GILBERT June 11,2025

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	russ Truss Type		Ply	Stonefield Rev 3-Elev 4-Roof		
	H1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	174084159	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:32 ID:Ku75FTk?xgObpx4rUf5tVvz982h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

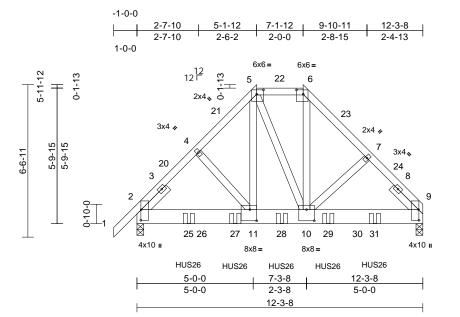


#### Scale = 1:35

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	1/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.21 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	<b>GRIP</b> 244/190 FT = 20%
	except end verticals Rigid ceiling directly	athing directly applied applied. 6=4-5-8, 7=4-5-8 15) 41), 7=-26 (LC 16) C 47), 6=279 (LC 53).	7) 8) 9) 10	Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 j overhangs n Plates check about its cen Gable requir Gable studs ) This truss ha chord live loa	es continuous both spaced at 2-0-0 of s been designed f ad nonconcurrent	; Pf=15.4 ; Rough 0 peen cor ior greate lat roof lo o ther liv inus 5 de com chor c. ior a 10.0 with any	I psf (Lum DC Cat B; Partia nsidered for the er of min roof pad of 15.4 prove loads. egree rotation d bearing. D psf bottom other live loa	DL = Ily live sf on ds.					
this design	(lb) - Maximum Corr Tension 1-2=0/45, 2-4=-213/ 5-6=-265/79 2-7=-47/63, 6-7=-47 4-7=-300/217 ed roof live loads have	hpression/Maximum 149, 4-5=-96/76, /63 been considered for	12	on the bottor 3-06-00 tall b chord and ar ) Provide mec bearing plate 6 and 26 lb u ) This truss ha load of 250.0 panels and a	has been designed in chord in all area by 2-00-00 wide wi by other members. hanical connection e capable of withst iplift at joint 7. is been designed f bl live and 3.0lb d t all panel points a d, nonconcurrent	s where ill fit betw h (by oth anding 1 for a mov ead loca along the	a rectangle veen the botto ers) of truss t 0 lb uplift at j ving concentr tted at all mid e Top Chord a	om o oint ated				WITH CA	NRO/ 11

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 4-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

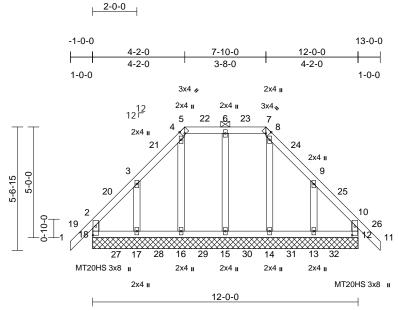
Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	D1GR	Hip Girder	1	2	Job Reference (optional)	174084161

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:29 ID:vPb1jwWiYmY21nOlVawdeHzqs7I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:49.5


3cale = 1.49.3													
Plate Offsets (2	X, Y): [2:0-5-8,0-0-3]	, [5:0-3-8,0-2-4], [6:0-	3-8,0-2-4]	, [9:0-5-8,0-0-3	3], [10:0-4-0,0-5-1	2], [11:0-	3-8,0-5-12]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.30 0.38 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.01 0.00	11-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 205 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	1-6-0 Structural wood she 5-3-3 oc purlins, exo 2-0-0 oc purlins (6-0		, lo.3 5) d or 6)	Vasd=95mpl II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.( Unbalanced design. This truss ha	7-16; Vult=120m n; TCDL=6.0psf; I closed; MWFRS bosed; end vertic .=1.60 plate grip I :7-16; Pr=20.0 ps (.15); Pg=20.0 ps OL = 1.15); Is=1.0 ); Cs=1.00; Ct=1. snow loads have as been designed	3CDL=6. (envelope al left and DOL=1.60 sf (roof Ll f; Pf=20.2 D; Rough 10, Lu=50 been cor for great	0psf; h=25ft; i e); cantilever d right expose 2 : Lum DOL= 4 psf (Lum DC Cat B; Partia 0-0-0 nsidered for th er of min roof	left ed; 1.15 DL = Illy his	LOAD ( 1) De Inc Ur Co	CASE(S) ead + Sn crease= niform Lo Vert: 1- voncentra Vert: 25	) Star low (ba 1.15 bads (li 5=-51, ted Lo =-1998	ndard alanced): Lumber b/ft) 5-6=-61, 6-9=-57 ads (Ib)	n contact with lumber. r Increase=1.15, Plate 1, 12-16=-20 F), 28=-2014 (F),
	(size) 2=0-3-8, 1 Max Horiz 2=91 (LC Max Grav 2=5571 (I (lb) - Maximum Com Tension 1-2=0/83, 2-4=-513( 5-6=-3479/0, 6-7=-5 2-11=0/3543, 10-11	9) LC 38), 9=5214 (LC 3 npression/Maximum 0/0, 4-5=-5002/0, 5025/0, 7-9=-5135/0 =0/3459, 9-10=0/3510 -820/281, 6-10=0/322	. ⁽⁸⁾ 9) 10 0 ¹¹	<ul> <li>load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.</li> <li>Provide adequate drainage to prevent water ponding.</li> <li>Plates checked for a plus or minus 5 degree rotation about its center.</li> <li>This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> </ul>									
<ul> <li>A-TI=-144/165, 7-10=-47/226</li> <li>NOTES</li> <li>1) 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.</li> <li>3) Unbalanced roof live loads have been considered for this design.</li> </ul>				<ul> <li>This truss ha load of 250.0 panels and a Bottom Chor</li> <li>Graphical pu or the orienta bottom choror</li> <li>Use Simpson Truss) or eq 2-2-12 from front face of</li> <li>Use Simpson Truss) or eq 8-2-12 from</li> </ul>	as been designed blb live and 3.01b of at all panel points rd, nonconcurrent urlin representatio ation of the purlin	for a modead local along the with any n does no along the 226 (14-11 t 2-0-0 oc -12 to co 226 (14-12 t 2-0-0 oc	ated at all mid a Top Chord a other live loa ot depict the s a top and/or Od Girder, 6-1 c max. startin nnect truss(e Od Girder, 4-1 c max. startin c max. startin	I and ids. size IOd g at s) to IOd g at		Marine		SEA 0363	EER AU

# June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3-Elev 4-Roof		
	C1GE	Hip Supported Gable	1	1	Job Reference (optional)	174084162	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:28 Page: 1 ID:jiMONWMO0I8A0RfniNVMyjzqten-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



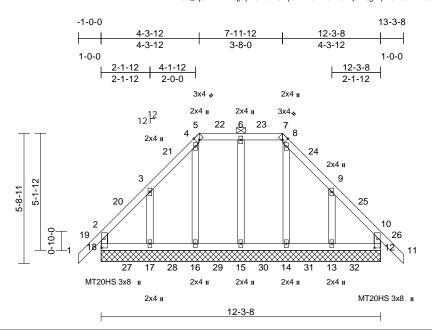
#### Scale = 1:52.1 Plata Offecte (X V) [5:0.1.8 Edge] [7:0.1.8 Edge] [12:0.4.12 0.1.8] [18:0.4.12 0.1.8

Plate Offsets (	(X, Y): [5:0-1-8,Edge],	[7:0-1-8,Edge], [12:0-4	1-12,0-1-8	3], [18:0-4-12,	.0-1-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.21 0.19 0.13	. ,	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 73 lb	<b>GRIP</b> 244/190 187/143 FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she	athing directly applied, , and 2-0-0 oc purlins	·	Vasd=95mpl II; Exp B; En (3E) -1-0-0 to (3R) 4-2-0 to (3R) 7-10-0 t zone; cantile and right exp MWFRS for	7-16; Vult=120m n; TCDL=6.0psf; E closed; MWFRS ( 0 2-0-0, Exterior(2 7-2-0, Exterior(2 to 10-10-0, Exterior ver left and right e posed;C-C for mer reactions shown;	3CDL=6.0 envelope N) 2-0-0 N) 7-2-0 or(2N) 10 exposed mbers an	Dpsf; h=25ft; ( e) and C-C Co to 4-2-0, Con to 7-10-0, Con -10-0 to 13-0- ; end vertical d forces &	orner ner ner 0 left	bea 18, uplif 16) This loac pan Bott 17) This	ring plat 14 lb up t at joint truss h l of 250. els and com Cho truss d	e capa lift at jo t 13. as bee Olb live at all p ord, nor esign r	al connection (b ble of withstand bint 12, 61 lb up en designed for a and 3.0lb dead anel points alor concurrent with requires that a n	ling 27 lb uplift lift at joint 17 a a moving conc d located at all lig the Top Cho a any other live hinimum of 7/1	t at joint and 59 lb centrated mid ord and e loads. 6"			
BOT CHORD REACTIONS					<ul> <li>grip DOL=1.60</li> <li>3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Ig=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0</li> <li>5) Unbalanced snow loads have been considered for this design.</li> </ul>						<ul> <li>structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.</li> <li>18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> <li>LOAD CASE(S) Standard</li> </ul>						
FORCES	(lb) - Maximum Com Tension 2-18=-295/104, 1-2= 3-4=-87/150, 4-5=-1 6-7=-72/146, 7-8=-2	pression/Maximum :0/83, 2-3=-137/105, 14/124, 5-6=-72/146, 15/123, 8-9=-89/157,	7) 8) 9)	load of 12.0 overhangs n Provide adeo All plates are	is been designed psf or 2.00 times to on-concurrent with quate drainage to MT20 plates unle red for a plus or m	lat roof lo n other liv prevent v ess other	bad of 15.4 ps ve loads. water ponding wise indicated	sf on J. d.			- All	ORTH CA	AD JUN				
BOT CHORD	17-18=-48/95, 16-17	=0/83, 10-12=-295/11( '=-48/95, 15-16=-48/95 -=-48/95, 12-13=-48/95	, 10)		es continuous bot					2			2				
WEBS		-273/7, 3-17=-283/161	, ''')	braced agair	ully sheathed fron ist lateral moveme spaced at 2-0-0 o	ent (i.e. d						SE/ 0363		Ξ			
NOTES 1) Unbalance this design	ed roof live loads have		13)	This truss ha chord live loa * This truss h on the bottor	is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	for a 10.0 with any d for a liv is where	other live load e load of 20.0 a rectangle	psf		1111	A A A A A A A A A A A A A A A A A A A	SEA 0363	EERER	The manner			

# NOTES

- 13) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 14) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.




G mmm June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	D1GE	Hip Supported Gable	1	1	Job Reference (optional)	174084163

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:29 ID:CR_djUnLmVZCjpqWGDdZt5zqteE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



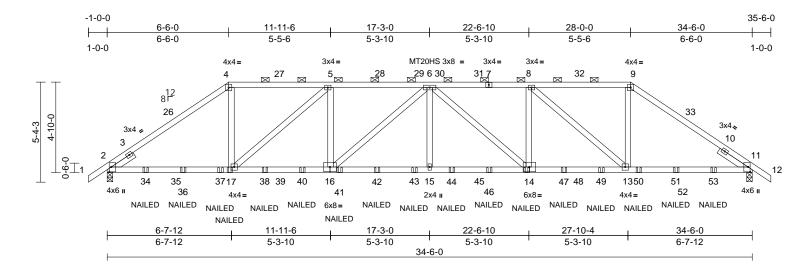
#### Scale = 1:50.7

## Plate Offsets (X, Y): [5:0-1-8,Edge], [7:0-1-8,Edge], [12:0-4-12,0-1-8], [18:0-4-12,0-1-8]

	∧, 1). [5.0-1-6,Euge],	[7.0-1-0,Euge], [12.0	-4-12,0-1-0], [1	0.0-4-12,0	- 1-0]							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2		CSI TC BC WB Matrix-MR	0.22 0.21 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 75 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 12=12-3-6 18=12-3-6 Max Horiz 18=-101 ( Max Uplift 12=-15 (L	applied or 6-0-0 oc 3, 13=12-3-8, 14=12-3 3, 16=12-3-8, 17=12-3 4 LC 14) C 13), 13=-61 (LC 17 C 16), 18=-26 (LC 12	Vas II; E (3E; Cor 7-1' I or 10-' I or 20-' mer Lum 3) Trus 6-8, see 6-8, or c 4) TCL Plat ), 1.1f a, Exp	d=95mph; xp B; Encl -1-0-0 to ner(3R) 4-1 -1-2, Corm. 11-12, Corm. 11-12, corm. 11-12 to 13 osed ; end nber DOL= ss designe <i>I</i> . For stud Standard onsult qua L: ASCE 7 e DOL=1.0; 5 Plate DO .; Ce=1.0;	7-16; Vult=120mp TCDL=6.0psf; B losed; MWFRS (e 2-1-12, Exterior(2 3-12 to 7-3-12, E: er(3R) 7-11-12 to 3-3-8 zone; cantil vertical left and r forces & MWFRS (1.60 plate grip D) d for wind loads i is exposed to win Industry Gable Ei lified building des 7-16; Pr=20.0 psf; L = 1.15; Is=1.0; Cs=1.00; Ct=1.10	CDL=6.0 envelope 2N) 2-1- xterior(2 o 10-11- ever left right exp 5 for rea OL=1.60 n the pla d (norm nd Deta signer as (roof LL Pf=20.4 Rough 0, Lu=50	Dipsf; h=25ff; ( ) and C-C Cc 12 to 4-3-12, (N) 7-3-12 to 12, Exterior(21 and right bosed;C-C for ctions shown; ) ane of the trus ane of the trus ane of the trus s per ANSI/TF b psf (Lum DOL=1 Cat B; Partial )-0-0	orner N) ; ss ), oble, 1 1. 1.15 DL = Ily	bea 18, upli 16) This load pan Bott 17) Gra or tl	ring plat 15 lb up ft at join s truss h d of 250. els and tom Cho phical p he orien tom cho	te capa lift at ji t 13. as bee .0lb live at all p ord, noi urlin re tation o rd.	able of withstandi oint 12, 63 lb upli en designed for a e and 3.0lb dead vanel points along neoncurrent with opresentation doo of the purlin along	v others) of truss to ing 26 lb uplift at joint ft at joint 17 and 61 lb moving concentrated located at all mid g the Top Chord and any other live loads. as not depict the size g the top and/or
	14=331 (L	_C 87), 15=335 (LC 8 _C 85), 17=334 (LC 8	6), des ^{(4),} 6) This	ign. s truss has	now loads have b been designed fo sf or 2.00 times fla	or greate	er of min roof	live					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	ove	rhangs nor	n-concurrent with	other liv	/e loads.					WHY CA	Palli
TOP CHORD	2-18=-297/115, 1-2= 3-4=-95/168, 4-5=-1 6-7=-76/157, 7-8=-2	=0/83, 2-3=-140/107, 12/129, 5-6=-76/157, 15/129, 8-9=-97/175, 1=0/83, 10-12=-297/12	8) All p 9) Plat abo	blates are I es checke ut its cente		ss other nus 5 de	wise indicated	d.		4	Ì	ORTEERS	Rell
BOT CHORD	17-18=-48/89, 16-17	7=-48/89, 15-16=-48/8 1=-48/89, 12-13=-48/8	9, 11) Trus	ss to be ful	s continuous botto	one fac	e or securely					SEA	L
	6-15=-281/17, 4-16= 8-14=-270/14, 9-13= ed roof live loads have	274/14, 3-17=-286/1 286/168	70, 12) Gat 13) This cho 14) * Th	ole studs sp s truss has rd live load is truss ha	t lateral movement paced at 2-0-0 oc been designed for a nonconcurrent v as been designed	c. or a 10.0 vith any for a liv	) psf bottom other live load e load of 20.0	ds.		1111		0363	
this desigr	1.				chord in all areas 2-00-00 wide wil			m			14	10	BERNIN

# NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- chord live load nonconcurrent with any other live loads. 14) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.




G minin June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	Stonefield Rev 3-Elev 4-Roof		
	A1GR	Hip Girder	1	2	Job Reference (optional)	174084164	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:18 ID:5d0R4q9U3yt_HyZ0RM3zpmzqu2s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:61.6

# Plate Offsets (X, Y): [2:0-3-2,0-1-4], [11:0-3-2,0-1-4]

	, . ,. [=:= = =,=],	[			r	-							-		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)		15-16	>999	360	MT20	244/190		
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.36	15-16	>999	240	MT20HS	187/143		
TCDL	10.0	Rep Stress Incr	NO		WB	0.54	Horz(CT)	0.11	11	n/a	n/a				
BCLL	0.0*	Code		1/TPI2014	Matrix-MS		Wind(LL)		15-16	>999	240				
BCDL	10.0	0000	110202				Wind(EE)	0.12		2000	210	Weight: 372 lb	FT = 20%		
LUMBER			2)		considered equa								moving concentrated		
TOP CHORD					ed as front (F) or			DAD					located at all mid		
BOT CHORD					ction. Ply to ply co								the Top Chord and		
WEBS	2x4 SP No.3			provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Bottom Chord, nonconcurrent wit 15) Graphical purlin representation de											
SLIDER	Left 2x4 SP No.3 1	1-4-12, Right 2x4 SP					a a mai da sa d fa	-							
	No.3 1-9-10		3)	this design.	roof live loads ha	ave been	considered to	ſ		tom cho		of the purlin along	g the top and/or		
BRACING	o		d or 4)		7-16; Vult=120m	nnh (3-sei	cond aust)					s 3-10d (0.148"x	3") or 3-12d		
TOP CHORD	Structural wood she		ed or		h; TCDL=6.0psf;			Cat.				-nails per NDS g			
	4-11-5 oc purlins, ex 2-0-0 oc purlins (5-0				closed; MWFRS					CASE(S	,				
BOT CHORD	Rigid ceiling directly				osed ; end vertic								Increase=1.15 Plat		
BOTCHORD	bracing.	applied of 10-0-0 of	,	Lumber DOI	=1.60 plate grip	DOL=1.6	)		<ol> <li>Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15</li> </ol>						
REACTIONS	0	11_0.2.9	5)		7-16; Pr=20.0 p					niform L		b/ft)			
	Max Horiz 2=-80 (LC				I.15); Pg=20.0 ps		Vert: 1-4=-51, 4-9=-61, 9-12=-51, 18-22=-20								
	Max Uplift 2=-351 (L		)		OL = 1.15); ls=1.			lly	Co	oncentra	ated Lo	ads (lb)			
	Max Grav 2=3064 (L			Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Vert: 17=-175 (B), 14=-175 (B), 34 Unbalanced snow loads have been considered for this											
FORCES	(lb) - Maximum Com		6)		snow loads have	e been coi	nsidered for th	IIS					175 (B), 40=-175 (B)		
FORCES	Tension	ipression/maximum	7)	design.	as been designed	for great	or of min roof	live	41=-175 (B), 42=-175 (B), 43=-175 (B), 44=-175 (B),						
TOP CHORD		8/627 4-5=-3846/539			psf or 2.00 times				46=-175 (B), 47=-175 (B), 49=-175 (B), 50=-175 (B),						
	5-6=-5708/774, 6-8=		,		on-concurrent wit					51=-15	1 (B), 5	i3=-189 (B)			
	8-9=-3727/499, 9-11		0/59 8)		quate drainage to			1 I				A THE	117.5		
BOT CHORD			-)		e MT20 plates un							1111100	1111		
	13-15=-823/6255, 1	1-13=-416/3656			ed for a plus or n							IN TH UA	ROUL		
WEBS	4-17=-332/2277, 5-1	7=-2461/373,		about its cer			5				2	A	DIAL		
	5-16=-178/1051, 6-1		11	) This truss ha	as been designed	l for a 10.	0 psf bottom			/	52	·······································	PN. Si		
	6-15=-90/608, 6-14=				ad nonconcurrent					<u> </u>			Nov!		
	8-14=-195/1105, 8-1	3=-2538/400,	12		nas been designe			)psf			1	:4			
	9-13=-305/2201				m chord in all are					-	<u>)</u>	SEA	L : E		
NOTES					oy 2-00-00 wide v		veen the botto	om		=		0202	• -		
	to be connected toget	ther with 10d	40		ny other members					=		0363	22 : :		
	) nails as follows:			13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to									1		
	Is connected as follows	s: 2x4 - 1 row at 0-9-	U	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces. SEAL 036322 <i>VGINEEE</i>								all S			
0C. Bottom.ch	ords connected as follo	owe: $2x/ = 1$ row of		,	t consider lateral			Only			3.5	NGINI	FERIAS		
0-9-0 oc.		0w3. 2x4 - 1 10W al				101003.					11	710	SEN.N		
	ected as follows: 2x4 -	1 row at 0-9-0 oc	CA. GILBE												
												111111	un un		
													44.0005		

June 11,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1D	Attic	1	1	Job Reference (optional)	174084172

10-11-14

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:21 ID:evDsELfBtcxbCxRmOvBJJmzqtMK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-9-0 -1-0-0 17-3-019-6-821-9-0 6-8-11 14-11-8 28-9-5 35-6-0  $\mapsto$ 6-8-11 8-2-13 2-3-8²-3-8²-2-8¹ 1-0-0 6-0-5 6-8-11 1-0-0 2x4= 6x8 = 3x4 = 6x6 = 6x6= 6 58 7 59 8 6x12 ∎ 8 41 61 60 10 11 MT20HS 3x8 🖌 40 39 42 8¹²_38 5 3x6 3x6 🍫 12 44 1 8-9-14 8-9-14 4 3 <u>4-0-a</u> 37 3x4 36 45 ċ 46 47 13 14 55 0.0 9.∐ 2 56 20 57 25 49 2 ¥ 23 50 21 51 18 52 17 16 48 53 15 54 4x8= 4x6= 2x4 🛛 MT20HS 3x8 = 2x4= 2x4 u 2x4= 2x4 🛛 3x4= 2x4 u 3x4= MT20HS 3x8 = 3x6= 17-3-0 15-3-0 23-7-0 28-9-5 6-8-11 11-11-0 15-1-4 35-6-0 ²²⁻¹⁰ 3-6-0 0-8-4 -4 0-1-12 2-0-0 <u>35-6-0</u> 6-8-11 5-2-5 5-2-5 3-2-4 6-8-11 0-1-12

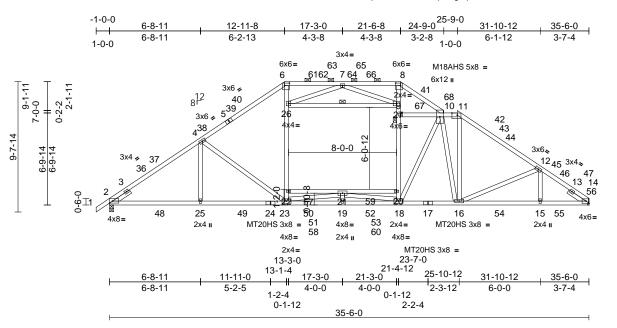
Scale = 1:95.7

Plate Offsets (2	X, Y): [2:Edge,0-1-12	], [8:0-4-4,0-2-4]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.95 0.63 0.66	Vert(CT)	in -0.31 -0.46 0.09 0.05	(loc) 23-25 23-25 14 17-18	l/defl >999 >917 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 252 lb	<b>GRIP</b> 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Except 2x4 SP SS *Except 2x4 SP SS *Except SP No.2 Left 2x4 SP No.3 No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (3-6 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 26, 27 (size) 2=0-3-8, Max Horiz 2=169 (Lf Max Grav 2=169 (Lf (lb) - Maximum Con Tension 1-2=0/52, 2-4=-2792 8-10=-1965/130, 11 12-14=-2828/48, 6-7 -7-8=-1639/121, 9-10 10-11=-1815/110 2-25=0/2375, 23-25 18-21=0/1695, 17-1 14-15=0/2271, 20-2 22-23=0/723, 22-26 18-19=-53/984, 19-2 9-27=-33/972, 8-9=- 11-17=0/767, 20-21 7-26=-169/252, 10-7	22-19:2x4 SP No.2 t* 6-23,8-18,26-27:2 1-4-13, Right 2x4 SP athing directly applie 5-5 max.): 6-8, 9-11. applied. 10-17, 10-18, 4-23 14= Mechanical C 15) _C 58), 14=1871 (LC pression/Maximum 2/38, 4-6=-2184/95, -12=-2321/98, 7=-1690/127, >=-316/118, =0/2375, 21-23=0/16 8=0/1875, 15-17=0/2 2=-6/33, 19-20=-6/33, 2=-6/33, 19-20=-6/38, 27=-41/1044, 37/1026, 26-27=-136 =-110/34, 7-27=-176 17=-389/94, 25=0/381, 4-23=-747	d, 3) 60) 4) 5) 5) 9) 95, 9) 271, 10 9/96, (108, 11 12	this design. Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E) 15-0-0, Exter 18-6-10 to 13 (1) 21-7-0 to Interior (1) 2t right exposer for members Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee All plates are Plates check about its cen This truss ha chord live loa 0) * This truss ha load of 250.0 panels and a	s been designed ad nonconcurrent has been designed by 2-00-00 wide w by other members er(s) for truss to tr s been designed bb live and 3.01b c t all panel points a	ch (3-sec 3CDL=6.9 envelope envelope envelope (18-6-10, ) 19-6-8 2R) 22-9- one; cant and rigit (FRS for yOL=1.6( f (roof LL ; Pf=20.4; ; Pf=20.4; ; Pf=20.4; ; Pf=20.4; ; Pf=20.4; ; Rough 10, Lu=50 been cor for great itat roof ld n other lin prevent i eass other inus 5 dd for a 10.0 with any d for a liv is where ill fit betw, , with BC uss conr for a move lead loca along the	cond gust) Dpsf; h=25ft; and C-C ) 2-6-10 to Interior (1) to 21-7-0, Into 0 to 26-3-10, tilever left and it exposed;C reactions shu ) : Lum DOL= 4 psf (Lum DC Cat B; Partia )-0-0 isidered for t er of min roof pad of 15.4 p ve loads of 15.4 p ve loads of 15.4 p ve loads of 15.4 p ve loads of 15.4 p de load of 15.4 p ve loads of 15.4 p ve load of 15.4 p ve loads of 15.4 p ve load of 20.1 To p Chord a	Cat. erior d-C own; (1.15) OL = ally his f live sf on g. ads. 0psf om f. rated d and	stru cho the 14) Gra or t bott 15) Atti LOAD (	ictural w rd and ' bottom iphical p he orien tom cho c room o CASE(S	vood sh 1/2" gyr uurlin ree tation n rd. checke ) Sta	requires that a mi leathing be applie osum sheetrock b apresentation doe of the purlin along d for L/360 deflect	nimum of 7/16" ed directly to the top e applied directly to s not depict the siz the top and/or etion.
NOTES	12-15=0/367, 12-17	=-623/86			t all panel points a d, nonconcurrent						11	CA. G	ILBERTITY AL 2025

June 11,2025

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1C	Attic	1	1	Job Reference (optional)	174084173

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:20 ID:bl7?QBZIaRbGUTI91w4JJGzqsoH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1

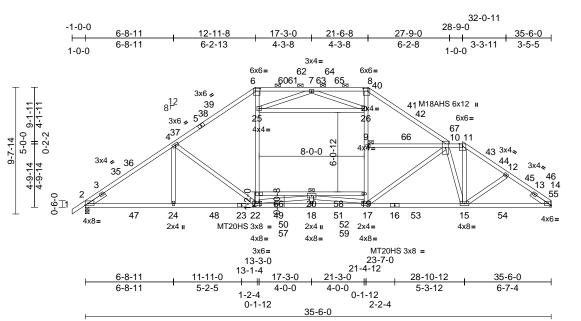


Scale = 1:85.3

# Plate Offsets (X, Y): [2:Edge,0-1-12], [6:0-4-4,0-2-4], [8:0-4-4,0-2-4], [11:0-4-12,0-2-0]

					-							-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	1.00	Vert(LL)	-0.17	. ,	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.41	20-21	>999	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.11	14	n/a	n/a	M18AHS	186/179
BCLL	0.0*	Code		21/TPI2014	Matrix-AS	0.1.0	Wind(LL)	0.07	16-18	>999	240		
BCDL	10.0	Couc	11(020	21/11/2014	Madrix 7.0		Wind(LL)	0.07	10 10	2000	240	Weight: 259 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS		22-20:2x4 SP No.2 t* 6-23,8-18,26-27:2>		Vasd=95mpl II; Exp B; En Exterior(2E)	7-16; Vult=120m h; TCDL=6.0psf; I closed; MWFRS -1-0-0 to 2-6-10,	BCDL=6.0 (envelope Interior (1	Dpsf; h=25ft; e) and C-C ) 2-6-10 to	Cat.	load pan Bot	d of 250. Iels and tom Cho	.0lb liv at all p ord, no	e and 3.0lb dead banel points along nconcurrent with	a moving concentrated located at all mid g the Top Chord and any other live loads.
	SP No.2				erior(2R) 12-11-8							requires that a m	
SLIDER	Left 2x4 SP No.3 7	1-6-0, Right 2x4 SP N	lo.3		-6-8, Exterior(2E) o 25-9-0, Exterio								ed directly to the top be applied directly to
	1-6-0				9-3-10 to 35-5-4 2					bottom			se applied directly to
BRACING	Other strengthere and all a	- 44			d ; end vertical le								es not depict the size
TOP CHORD		athing directly applied	<b>1</b> ,		and forces & MV							of the purlin along	
	except	-14 max.): 6-8, 9-11.			=1.60 plate grip			- ,		om cho			5
BOT CHORD	Rigid ceiling directly		3	) TCLL: ASCE	7-16; Pr=20.0 p	sf (roof LL	: Lum DOL=	1.15	17) Atti	c room o	checke	d for L/360 defle	ction.
WEBS		26-27			.15); Pg=20.0 ps				LOAD	CASE(S	) Sta	ndard	
JOINTS	1 Brace at Jt(s): 9	20 21			OL = 1.15); ls=1.			ally		•	,		
REACTIONS	( )	14= Mechanical			); Cs=1.00; Ct=1.								
	Max Horiz 2=147 (L0		4	,	snow loads have	been cor	isidered for the	his					
	Max Grav 2=2029 (L		46)	design.		6		( P					
FORCES	(lb) - Maximum Com	<i>,,</i>	.0) 5		is been designed psf or 2.00 times								
TOROLO	Tension	pression/maximum			on-concurrent wit			51 011					
TOP CHORD	1-2=0/52, 2-4=-3023	3/0. 4-6=-2561/0.	F		init load placed o			7-3-0					
	8-10=-2502/0, 11-12	, ,			, supported at two			50					11.
	12-14=-3142/0, 6-7=	-2016/0, 7-8=-2126/0	), 7		quate drainage to			a.				11111 01	1111
	9-10=-343/205, 10-1	1=-2201/0			MT20 plates un							TH CA	ROUL
BOT CHORD	2-25=0/2426, 23-25= 18-19=0/3104, 16-1	=0/2426, 19-23=0/31 8=0/2352, 15-16=0/2	,		ed for a plus or n						A.	ORIESS	N'IN
WEBS	14-15=0/2563, 21-22	2=0/317, 20-21=0/49 =0/1013, 6-26=0/101	1	0) This truss ha	s been designed					2	1		M.
WEBS		=0/1287, 9-27=0/131			ad nonconcurrent					-	( ) }		
	,	=-149/584, 11-16=0/1	,		n chord in all are			opsi			:	SEA	ιL : Ξ
		3=-779/57, 19-21=0/3			by 2-00-00 wide v			om		=		0363	22 : =
	21-23=-1577/0, 18-2		,		ny other members			om				0505	
	7-26=-653/197, 7-27	/=-556/197, 12-15=0/	301, ₁		d live load (20.0 p		dditional bott	om		9	-	N	1 8
	12-16=-358/110, 4-2	25=0/317, 4-23=-549/			oad (20.0 psf) ap						1	N. E.	Rich
NOTES				20-21	/ 1						115	S. GIN	EFICAN
1) Unbalance	d roof live loads have	been considered for	1	3) Refer to gird	er(s) for truss to t	russ conr	ections.				11	SEA 0363	BEN
this design	l.											A. C	illun
												in the second se	IIII.
												lung	- 11 2025

818 Soundside Road Edenton, NC 27932


June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1B	Attic	1	1	Job Reference (optional)	174084174

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:20 ID:1cFYYWIIPASjTq43fVjmq7zqssW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

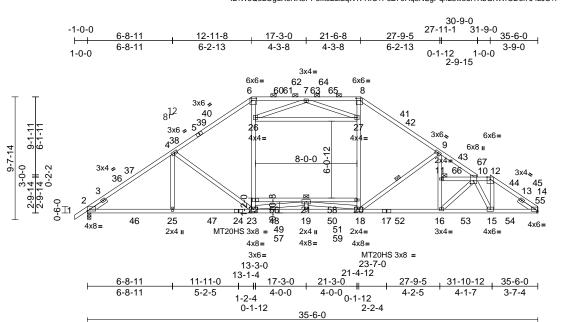


Scale = 1:87.8

# Plate Offsets (X, Y): [2:Edge,0-1-12], [6:0-4-4,0-2-4], [8:0-4-4,0-2-4]

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 20.4/20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15		TO									
TCDL BCLL	10.0		1 1 5		TC	0.93	Vert(LL)	-0.29	15-17	>999	360	MT20	244/190	
BCLL		Ren Stress Incr			BC	0.59	Vert(CT)		15-17	>867	240	MT20HS	187/143	
	0.0*		YES		WB	1.00	Horz(CT)	0.11	14	n/a	n/a	M18AHS	186/179	
BCDL		Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.10	15-17	>999	240			
	10.0											Weight: 251 lb	FT = 20%	
LUMBER			2)		7-16; Vult=120m							en designed for a		
	2x4 SP No.2 *Except				; TCDL=6.0psf; I			Cat.				e and 3.0lb dead		
	2x4 SP SS *Except*				closed; MWFRS							anel points along		
NEBS		t* 6-22,8-17,25-26:2x4	1		-1-0-0 to 2-6-10,							nconcurrent with		
	SP No.2				erior(2R) 12-11-8 6-8, Exterior(2R)			ior				requires that a m neathing be appli		
SLIDER		I-6-0, Right 2x4 SP No	5.3		28-9-0, Exterior(2R)			101				psum sheetrock l		
	1-6-0				2-2-8 to 35-5-4 zo			riaht		bottom of				cony to
BRACING TOP CHORD	Structural wood cho	athing directly applied			d vertical left and							epresentation doe	es not depict t	the size
	except	attilling ullecity applied	,	members an	d forces & MWFF	RS for rea	ctions shown	;				of the purlin along		
	2-0-0 oc purlins (3-5	-8 max ) [.] 6-8 9-11			=1.60 plate grip I					om chor				
BOT CHORD	Rigid ceiling directly		3)		7-16; Pr=20.0 ps				17) Attio	c room c	checke	d for L/360 defle	ction.	
JOINTS	1 Brace at Jt(s): 9				.15); Pg=20.0 ps				LOAD	CASE(S)	) Sta	ndard		
REACTIONS	size) 2=0-3-8. 1	4= Mechanical			DL = 1.15); ls=1.0			lly						
ľ	/lax Horiz 2=147 (LC	C 15)	4)		; Cs=1.00; Ct=1. snow loads have			io						
		.C 46), 14=2027 (LC 4	4) ⁴	design.	show loads have	Deen cor		115						
FORCES	(lb) - Maximum Com	pression/Maximum	5)		s been designed	for great	er of min roof	live						
	Tension	•	0)		osf or 2.00 times									
TOP CHORD	1-2=0/52, 2-4=-3031	/0, 4-6=-2571/0,			on-concurrent wit									
	8-10=-2646/0, 11-12	,	6)		nit load placed o			-3-0						
	,	-2027/0, 7-8=-2135/0	,		supported at two							, mmm	1111	
	9-10=-76/23, 10-11=		7)		uate drainage to							WHY CA	Palle	
BOT CHORD	,	=0/2431, 18-22=0/307 7=0/2771, 14-15=0/24	, O)		MT20 plates unl						1	ORTEESE	10/11	1
	20-21=-3/417, 19-20	,	84, 9)		ed for a plus or m	ninus 5 de	egree rotation				1	OVEESS	THE N	11
NEBS		=0/995, 6-25=0/1014,	10)	about its cen	ter. s been designed	for a 10	0 pof bottom				25		1.3	51
ILEO		0/1134, 9-26=0/1148,	10,		d nonconcurrent			de				.2	-4-	6.
	,	=-55/573, 18-20=0/327	7. 11)		as been designe					-		054	n 1.	
	20-22=-1545/0, 17-2	0=-1402/0, 4-24=0/32	1,		n chord in all area			,001		- E		SEA		
	4-22=-544/125, 7-25	=-640/135,			y 2-00-00 wide w			om				0363	22 :	
	7-26=-508/172, 11-1				y other members					-			:	
	12-15=-131/144, 10-	15=-1341/0,	12)		l live load (20.0 p						5	N		-
	10-17=-895/68				bad (20.0 psf) ap	plied only	to room. 20-2	21,			20	SEA 0363	-ER. A	The man we wanted
NOTES				19-20 Defende							1	SUGIN	EF. R	1
	I roof live loads have	been considered for	13)	Refer to girde	er(s) for truss to t	russ conr	nections.				1	ICA C	II BENI	
this design.												1111.0	in in it	
												section 1	11 2025	

# 1)


June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1A	Attic	1	1	Job Reference (optional)	174084175

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:19 ID:W5Q6LOguXeNK5PP3fxsEzIzqtVK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

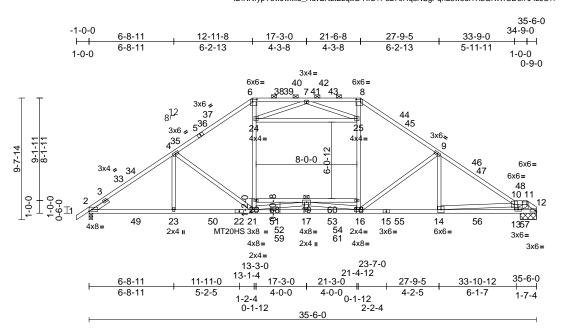
Page: 1



Scale = 1:90.8

Plate Offsets (X, Y):	[2:Edge,0-1-12], [6:0-4-4,0-2-4], [8:0-4-4,0-2-4], [10:0-2-12,0-2-12]	

												i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.92	Vert(LL)		23-25	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.43	20-21	>995	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.11	14	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.10	16-18	>999	240		
BCDL	10.0											Weight: 247 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	SP No.2 Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (3-5 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 11	22-20:2x4 SP No.2 t* 6-23,8-18,26-27:2x4 I-6-0, Right 2x4 SP No athing directly applied -1 max.): 6-8, 11-12.	o.3 ,	Vasd=95mpl II; Exp B; En Exterior(2E) 12-11-8, Ext 16-6-2 to 21- (1) 25-1-2 to cantilever lef right exposed for reactions DCL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D	7-16; Vult=120mpl ;; TCDL=6.0psf; BC closed; MWFRS (e -1-0-0 to 2-6-10, In erior(2R) 12-11-8 tr 6-8, Exterior(2R) 2 31-9-0, Exterior(2E) t and right exposed t;C-C for members shown; Lumber DC 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; OL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10;	CDL=6.0 nvelope terior (1 0 16-6-2 1-6-8 to E) 31-9- 1; end v and foi DL=1.60 (roof LL Pf=20.4 Rough	Dpsf; h=25ft; ( ) and C-C ) 2-6-10 to !, Interior (1) 0 to 35-5-4 zc rertical left and ces & MWFR ) plate grip .: Lum DOL=1 psf (Lum DC Cat B; Partial	ior one; d S 1.15 DL =	load pan Bot 15) This stru cho the 16) Gra or the bott	d of 250 tels and tom Cho s truss of ictural w ord and 1 bottom uphical p he orien tom cho c room of	Olb live at all p ord, nor lesign r rood sh l/2" gyp chord. uurlin re tation o rd. checke	e and 3.0lb dead anel points along reconcurrent with requires that a mi eathing be applie bosum sheetrock t appresentation doe of the purlin along d for L/360 deflect	ed directly to the top be applied directly to so not depict the size g the top and/or
	(size) 2=0-3-8, Max Horiz 2=147 (LC Max Grav 2=2042 (L		,	Unbalanced design.	snow loads have b s been designed fo	een cor	sidered for th						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	load of 12.0	psf or 2.00 times fla on-concurrent with	at roof le	ad of 15.4 ps						
TOP CHORD	1-2=0/52, 2-4=-3041 8-9=-2642/0, 9-10=- 6-7=-2035/0, 7-8=-2 10-12=-2455/0	3428/0, 12-14=-3109/	6) 0, 7) 8)	from left end Provide adeo	nit load placed on , supported at two quate drainage to p MT20 plates unles	points, s	5-0-0 apart. vater ponding	].				TH CA	Route
BOT CHORD	18-19=0/3061, 16-18	=0/2440, 19-23=0/306 3=0/2726, 15-16=0/33 2=-9/415, 20-21=-118/	1, 9) 21,	Plates check about its cen )) This truss ha	ed for a plus or mir	nus 5 de or a 10.0	egree rotation ) psf bottom			4	in	OR SS	North States
WEBS	22-26=0/990, 6-26= 20-27=0/1084, 8-27 7-26=-644/123, 7-27 21-23=-1542/0, 18-2 12-15=0/1560, 11-10	6=0/696, 9-11=0/710, =-1801/0, 10-16=-790	39, 31, 12	<ol> <li>This truss h on the bottor 3-06-00 tall b chord and ar</li> <li>Bottom chord chord dead b 20-21</li> </ol>	has been designed in chord in all areas by 2-00-00 wide wil by other members. d live load (20.0 psi oad (20.0 psf) appl er(s) for truss to tru	for a liv where I fit betv f) and a ied only	e load of 20.0 a rectangle veen the botto dditional botto to room. 21-2	)psf om om			A A A A A A A A A A A A A A A A A A A	SEA 0363	22 ERA
this design												"unn	11 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1	Attic	1	1	Job Reference (optional)	174084176

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:18 Page: 1 ID:NNrypY8wJwMiJ_HdvBNztEzqttG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

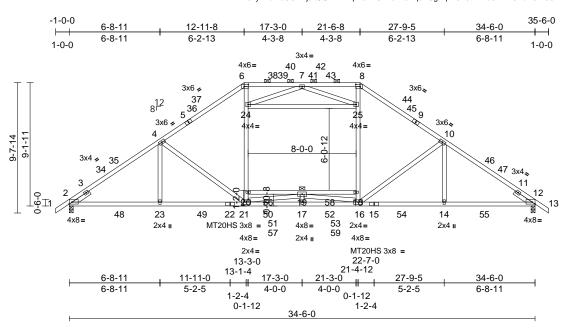


Scale = 1:91.4

## Plate Offsets (X, Y): [2:Edge,0-1-12], [6:0-4-4,0-2-4], [8:0-4-4,0-2-4], [11:0-4-4,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.92 0.57 0.76	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 21-23 21-23 13 21-23	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 239 II	<b>GRIP</b> 244/190 187/143 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	SP No.2 Left 2x4 SP No.3 Structural wood she except	20-18:2x4 SP No.2 t* 6-21,8-16,24-25:2x 1-6-0 athing directly applied	4	Vasd=95mph II; Exp B; Enc Exterior(2E) 12-11-8, Exter 16-6-2 to 21- (1) 25-1-2 to cantilever lef right exposed	7-16; Vult=120m ; TCDL=6.0psf; E closed; MWFRS ( 1-0-0 to 2-6-10, 1 erior(2R) 12-11-8 6-8, Exterior(2R) 34-9-0, Exterior(2 t and right expose t;C-C for member	BCDL=6.0 envelope nterior (1 to 16-6-2 21-6-8 to 2E) 34-9- ed ; end v s and for	Opsf; h=25ft; ( a) and C-C ) 2-6-10 to 2, Interior (1) 5 25-1-2, Inter 0 to 35-6-0 zc vertical left and rces & MWFR	ior one; d	recc UPL doe 14) This loac pan Bott 15) This	IFT at jt s not co truss h l of 250. els and om Cho s truss d	ed to o (s) 12 nsider as bee 0lb live at all p rd, noi esign i	. This connectic lateral forces. en designed for e and 3.0lb dea panel points alon nconcurrent wit requires that a r	bearing walls due to on is for uplift only and a moving concentrated d located at all mid ng the Top Chord and h any other live loads. minimum of 7/16"
BOT CHORD REACTIONS	Rigid ceiling directly	12=1-3-8, 13=1-3-8 C 15) (LC 98) LC 46), 12=160 (LC 1)		DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D0 Exp.; Ce=1.0	shown; Lumber E 7-16; Pr=20.0 ps .15); Pg=20.0 psf DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have	f (roof LL ; Pf=20.4 ); Rough  0, Lu=5(	L: Lum DOL=1 I psf (Lum DC Cat B; Partial D-0-0	DL = Ily nis	cho the 16) Gra or th bott	rd and 1 bottom o phical p ne orient om chor c room c	/2" gyj chord. urlin re ation o d. hecke	psum sheetrock presentation do of the purlin alo d for L/360 defl	lied directly to the top < be applied directly to oes not depict the size ng the top and/or ection.
FORCES	(lb) - Maximum Com Tension 1-2=0/52, 2-4=-2894 6-7=-1963/0, 7-8=-1	1/0, 4-6=-2416/0, 881/0, 8-9=-2392/0,	5) 6)	This truss ha load of 12.0 p overhangs no 250.0lb AC u	s been designed osf or 2.00 times f on-concurrent with nit load placed or	lat roof lo n other liv n the bott	oad of 15.4 ps ve loads. om chord, 17	live sf on	LUAD	,ASE(S)			
BOT CHORD	16-17=0/2926, 14-10 12-13=-229/72, 19-2	=0/2319, 17-21=0/292 6=0/2197, 13-14=-53/	525, 9)	Provide adec All plates are Plates check about its cen		prevent ess other inus 5 de	water ponding wise indicated egree rotation	d.		6	in the second se	ORTH C	AROLIN
WEBS	20-24=0/954, 6-24= 18-25=0/906, 8-25=	0/935, 10-13=-2171/0 25=-46/585, 17-19=0/3 5=-615/126, 5=-447/132,	, , 333,	chord live loa ) * This truss h on the botton 3-06-00 tall b chord and an 2) Bottom chord	s been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members d live load (20.0 psf) app	with any d for a liv is where ill fit betv sf) and a	other live load e load of 20.0 a rectangle veen the botto dditional botto	)psf om om		A THURSDAY		SE/ 0363	• –
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									11	11111	GILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	A1D	Attic	3	1	Job Reference (optional)	174084177

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:17 ID:67y?YuMeUGNKjdiQQtF1Zkzqtws-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

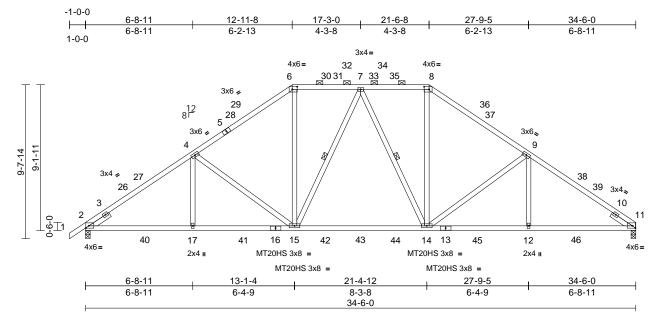


Scale = 1:85.3

# Plate Offsets (X, Y): [2:Edge,0-1-12], [6:0-3-12,0-2-0], [8:0-3-12,0-2-0], [12:Edge,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.75 0.56 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.35 0.11	(loc) 14-16 14-16 12 21-23	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 229 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 *Except* 5-6,8-9:2x4 SP SS BOT CHORD 2x4 SP SS *Except* 20-18:2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 6-21,8-16,24-25:2x4 SP No.2 SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-8-8 max.): 6-8. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-3-8, 12=0-3-8 Max Horiz 2=-149 (LC 14)			5.3 3)	Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-5-6, Interior (1) 2-5-6 to 12-11-8, Exterior(2R) 12-11-8 to 16-4-14, Interior (1) 16-4-14 to 21-6-8, Exterior(2R) 21-6-8 to 24-11-14, Interior (1) 24-11-14 to 35-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf; roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this					<ul> <li>14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.</li> <li>15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> <li>16) Attic room checked for L/360 deflection.</li> <li>LOAD CASE(S) Standard</li> </ul>				
FORCES	Max Grav 2=1982 (L (lb) - Maximum Com	1.	_, 5)		as been designed								
TOP CHORD	6-7=-1984/0, 7-8=-19 10-12=-2944/0, 12-1	985/0, 8-10=-2472/0, 3=0/52	,	overhangs n 250.0lb AC u from left end	psf or 2.00 times to on-concurrent with unit load placed or , supported at two	n other lin the bott points, s	/e loads. om chord, 17 5-0-0 apart.	7-3-0					
BOT CHORD	16-17=0/2967, 14-16 19-20=-57/325, 18-1 4-23=0/328, 4-21=-5 20-24=0/965, 6-24=0 18-25=0/965, 8-25=( 10-14=0/328, 24-25= 7-24=-572/143, 7-25	59/124, 20-21=0/809, )/972, 16-18=0/809, )/972, 10-16=-559/124 =-46/578, 17-19=0/330 =-572/143,	50, 8) 9) , 10	All plates are Plates check about its cen ) This truss ha chord live loa ) * This truss h on the bottor	as been designed ad nonconcurrent nas been designe n chord in all area	inus 5 de inus 5 de for a 10.1 with any d for a liv s where	wise indicate gree rotation ) psf bottom other live loa e load of 20.0 a rectangle	ads. Opsf		4	A. L.	OP FESS	ROLL
<ul> <li>19-21=-1480/0, 16-19=-1480/0</li> <li>NOTES</li> <li>1) Unbalanced roof live loads have been considered for this design.</li> </ul>				chord and ar b) Bottom chord chord dead I 18-19 b) This truss ha load of 250.0 panels and a	by 2-00-00 wide w by other members d live load (20.0 psf) oad (20.0 psf) app is been designed blb live and 3.0lb o at all panel points id, nonconcurrent	sf) and a blied only for a mo lead loca along the	dditional bott to room. 19- ving concentr ted at all mid Top Chord a	om 20, rated I and		111WA	A A A A A A A A A A A A A A A A A A A		22




June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	A1C	Piggyback Base	1	1	Job Reference (optional)	174084178

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:17 ID:GtR9?EN4EZkF5L4xd003MRzqtdT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



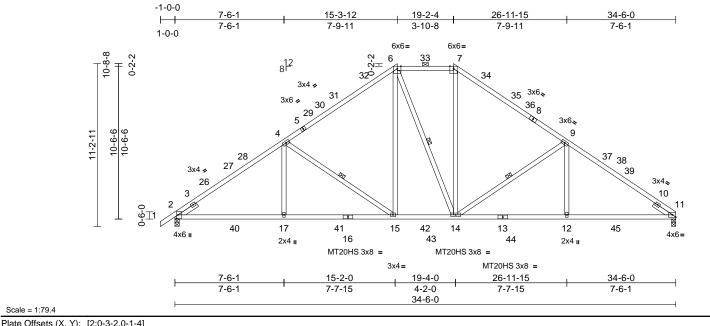
Scale = 1:72.2

# Plate Offsets (X, Y): [2:0-0-0,0-0-0], [2:0-2-5,0-1-12], [6:0-3-12,0-2-0], [8:0-3-12,0-2-0], [11:0-2-5,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.83 0.59 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.42 0.08	(loc) 14-15 14-15 11 14-15	l/defl >999 >987 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 206 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD		athing directly applied		Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) 21-6-8, Exte 24-11-14 to 3 exposed ; er members an	7-16; Vult=120m 7; TCDL=6.0psf; E closed; MWFRS ( -1-0-0 to 2-5-6, In 12-11-8 to 16-4-1 ior(2R) 21-6-8 to 34-4-4 zone; canti d vertical left and d forces & MWFR =1.60 plate grip [	CDL=6. (envelope terior (1) 4, Interio 24-11-14 ilever left right exp S for rea	Desf; h=25f; ( ) and C-C 2-5-6 to 12-1 r (1) 16-4-14 , Interior (1) and right bosed;C-C for ctions shown	1-8, to	or tl	he orien om choi	tation o rd.	of the purlin along	s not depict the size the top and/or
	Rigid ceiling directly 1 Row at midpt	applied. 7-15, 7-14 1=0-3-8 C 13)	3) 51) ⁴⁾	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0	7-16; Pr=20.0 ps .15); Pg=20.0 ps DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have	f; Pf=20.4 ); Rough 10, Lu=50	psf (Lum DC Cat B; Partia )-0-0	DL = Ily					
FORCES	6-7=-1481/144, 7-8=	/81, 4-6=-1908/130, -1481/143,	5) 6)	This truss ha load of 12.0 overhangs n Provide adeo	s been designed osf or 2.00 times on-concurrent wit quate drainage to	flat roof lo h other liv prevent v	oad of 15.4 p ve loads. water ponding	sf on J.					
BOT CHORD WEBS	8-9=-1909/132, 9-11 2-17=-8/2009, 15-17 12-14=0/1934, 11-12 4-17=0/353, 4-15=-6	=-8/2009, 14-15=0/1 2=0/1934	7) 492, 8)	Plates check about its cen	MT20 plates unle ed for a plus or m ter. s been designed	ninus 5 de	egree rotation					WITH CA	BO
NOTES	7-15=-252/95, 7-14= 9-14=-650/93, 9-12= ed roof live loads have	-251/94, 8-14=0/678 0/355		chord live loa ) * This truss h on the bottor 3-06-00 tall h	ad nonconcurrent las been designe n chord in all area by 2-00-00 wide w	with any d for a liv as where vill fit betw	other live loa e load of 20.0 a rectangle veen the botto	)psf om		4		2 Rol	A A
this desigr	n.			) This truss ha load of 250.0 panels and a Bottom Chor	y other members s been designed lb live and 3.0lb of t all panel points d, nonconcurrent	for a mov dead loca along the with any	ving concentr ted at all mid Top Chord a other live loa	ated		THUNK.		SEA 0363	• • –
			12	structural wo	sign requires that od sheathing be a 2" gypsum sheetr nord.	applied d	rectly to the t				in the	A. G	EP. KININ

## Bottom Chord, nonconcurrent with any other live loads. 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

G minin June 11,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

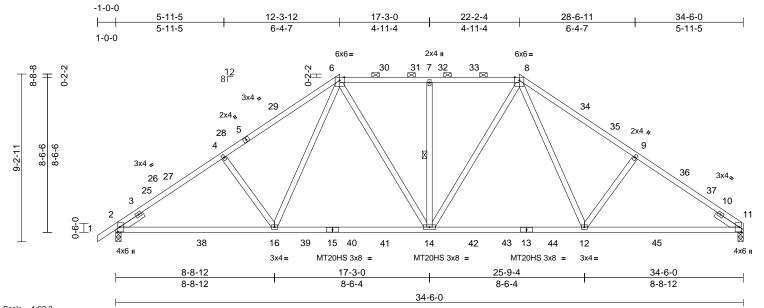
Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	A1B	Нір	1	1	Job Reference (optional)	174084179

Scale = 1:79.4

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:17 ID:01KVFZwRd6ZEbWwT5?Ebplzqu5I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1




oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)	-0.23	15-17	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.36	15-17	>999	240	MT20HS	187/143
CDL	10.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.08	11	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.03	12-24	>999	240		
BCDL	10.0					-						Weight: 206 lb	FT = 20%
UMBER OP CHORD OT CHORD /EBS LIDER RACING	2x4 SP No.2 *Excep 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1-6-0		6	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	7-16; Pr=20.0 p .15); Pg=20.0 p OL = 1.15); Is=1 ); Cs=1.00; Ct=1 snow loads have as been designed	sf; Pf=20.4 .0; Rough .10, Lu=5 e been cor	psf (Lum DC Cat B; Partia )-0-0 hsidered for th	DL = Ily nis					
OP CHORD	Structural wood she except 2-0-0 oc purlins (4-1	0 7 11	ed, 6)	overhangs n	psf or 2.00 times on-concurrent w quate drainage to	th other liv	/e loads.						
BOT CHORD	Rigid ceiling directly		7) 8)	Plates check	e MT20 plates ur ed for a plus or								
REACTIONS		11=0-3-8 C 13)	9) 51) 11	chord live loa	ter. Is been designed ad nonconcurrer has been design	t with any	other live loa						
ORCES	(lb) - Maximum Com Tension	pression/Maximum		on the bottor	n chord in all are by 2-00-00 wide	as where	a rectangle	•					
OP CHORD	1-2=0/52, 2-4=-2489 6-7=-1426/90, 7-9=-		1/0 1	chord and ar	y other member	s, with BC	DL = 10.0psf						
BOT CHORD	2-17=0/2117, 15-17 12-14=0/1999, 11-12	=0/2117, 14-15=0/14		/ load of 250.0	is been designed Ib live and 3.0lb It all panel points	dead loca	ted at all mid						
VEBS	4-17=0/396, 4-15=-7 6-14=-166/169, 7-14 9-12=0/396	67/72, 6-15=0/659,	74, 12	Bottom Chor 2) This truss de	d, nonconcurrer sign requires the od sheathing be	t with any at a minim	other live loa um of 7/16"	ds.			A.L.	NH CA	ROUNT
IOTES					2" gypsum shee	trock be a	oplied directly	' to			57		High
) Unbalance this design	ed roof live loads have	been considered for		the bottom c 3) Graphical pu	nora. Irlin representati	on does n	ot depict the s	ize		Z		21 -	ng of
0	CE 7-16; Vult=120mph	(3-second gust)		or the orienta	ation of the purlir			-		-		SEA	
Vasd=95m II; Exp B; E	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	DL=6.0psf; h=25ft; C velope) and C-C	L	bottom chord OAD CASE(S)	i.	5						0363	•
Exterior(2E 24-0-13, In left and rig exposed;C reactions s	E) -1-0-0 to 2-5-6, Inte E) 15-3-12 to 19-2-4, E hterior (1) 24-0-13 to 3 ht exposed ; end verti S-C for members and f shown; Lumber DOL=	Exterior(2R) 19-2-4 to 4-4-4 zone; cantileve cal left and right orces & MWFRS for	<b>)</b>									SEA 0363	E.P. KIN
DOL=1.60													
												June	11,2025

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	A1A	Нір	1	1	I74084 Job Reference (optional)	180

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:17 ID:06RDXpl5c?7alz7X4HTXZ5zqu4h-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



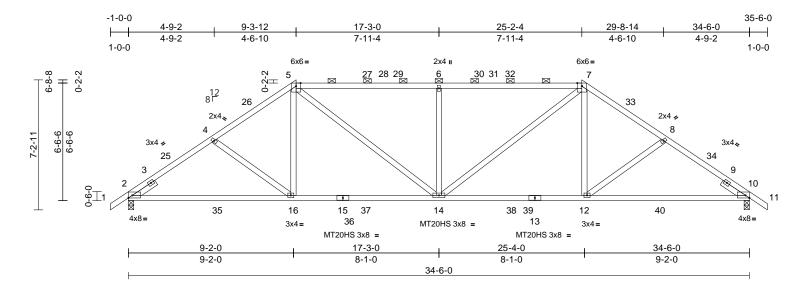
Scale = 1:63.3

Plate Offsets (	(X, Y): [2:0-3-2,0-1-4],	[11:0-3-2,0-1-4]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.89 0.62 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.46 0.07 0.03	(loc) 12-14 14-16 11 14-16	l/defl >999 >893 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 197 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (4-2 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, ' Max Horiz 2=137 (LC Max Grav 2=1704 (L (lb) - Maximum Com Tension	athing directly applie -12 max.): 6-8. applied. 7-14 11=0-3-8 C 13) LC 49), 11=1648 (LC pression/Maximum 2/12, 4-6=-2247/51, 1677/69, 8-9=-2252/ =0/1517, 12-14=0/15	ed, ; 51) 4) ; 5) (50, 6) 7) 510, 8)	Vasd=95mpl II; Exp B; Enn Exterior(2E) Exterior(2E) 22-2-4, Exter 27-0-13 to 3/ exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec All plates are Plates check about its cen		CDL=6. envelope erior (1) Interior 77-0-13, ver left a ight exp 5 for rea OL=1.60 (roof LL Pf=20.2 Rough 0, Lu=55 eeen cor or great at roof lo other lin revent v ss other nus 5 de	Dipsf; h=25ft; ( ) and C-C 2-5-6 to 12-3 (1) 17-3-0 to Interior (1) and right loosed;C-C for ctions shown ) : Lum DOL=: psf (Lum DC Cat B; Partia )-0-0 usidered for th er of min roof bad of 15.4 ps re loads. water ponding wise indicate agree rotation	i-12, ; 1.15 DL = Ily his live sf on J. d.	or t	he orien iom chor CASE(S	tation (	of the purlin along	
NOTES	7-14=-538/55, 8-14= 9-12=-446/108 ed roof live loads have	-35/489, 8-12=0/717	7, ⁷ 10	chord live loa )) * This truss h on the bottor 3-06-00 tall b chord and ar I) This truss ha load of 250.0 panels and a	is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members, is been designed fo lib live and 3.0lb det it all panel points a d, nonconcurrent v	vith any for a liv s where I fit betw with BC or a move ad loca long the	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ving concentra ted at all mid	Dpsf Dm ated		A THINK		SEA 0363	

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

ENGINEERING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


ERENCO A MITek Affiliate

818 Soundside Road Edenton, NC 27932

4. GIL

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	A1	Нір	1	1	Job Reference (optional)	174084181

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:15 ID:CmfDzCHK0qoBft3BDEm5uazqu4_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:64

### Plate Offsets (X, Y): [2:Edge,0-1-12], [10:Edge,0-1-12]

	, .), [sgs,s	], [g.,]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.69 0.60 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.41 0.08 0.04	(loc) 12-14 12-14 10 14	l/defl >999 >998 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 189 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; f Exterior(2f Exterior(2f 25-2-4, Ex 29-10-6 to exposed ; members a	1-6-0 Structural wood she except 2-0-0 oc purlins (3-5 Rigid ceiling directly (size) 2=0-3-8, ' Max Horiz 2=109 (LC Max Grav 2=1631 (L (lb) - Maximum Com Tension 1-2=0/59, 2-4=-2212 5-6=-2441/15, 6-7=- 8-10=-2212/2, 10-11 2-16=0/1810, 14-16: 10-12=0/1798 4-16=-312/86, 5-16= 6-14=-872/88, 7-14= 8-12=-312/86 ed roof live loads have	1-6-0, Right 2x4 SP N athing directly applied -3 max.): 5-7. applied. 10=0-3-8 C 15) C 47), 10=1631 (LC 4 pression/Maximum 2/2, 4-5=-2160/6, 2441/15, 7-8=-2160/6 e0/59 e0/1805, 12-14=0/180 e0/509, 5-14=-43/832, e-43/832, 7-12=0/509, been considered for (3-second gust) DL=6.0psf; h=25ft; Ca tivelope) and C-C rior (1) 2-5-6 to 9-3-12 terior (1) 14-2-5 to 9-10-6, Interior (1) er left and right ght exposed;C-C for for reactions shown;	o.3 4) 5) I, 6) 7) 8) 47) 9) 10 5, 11 15, 12 13 at. LL	Plate DOL= 1.15 Plate D Exp.; Ce=1. Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates check about its cer This truss ha chord live lo 0) * This truss ha load of 250.0 panels and a Bottom Choi 2) This truss de structural wo chord and 1/ the bottom choi 3) Graphical pu	as been designed ad nonconcurrent nas been designed n chord in all are: oy 2-00-00 wide v y other members as been designed Jbl live and 3.0lb at all panel points rd, nonconcurrent seign requires tha nod sheathing be 2" gypsum sheet hord. Irlin representatio ation of the purlin d.	f; Pf=20.4 0; Rough 10, Lu=50 been cor for great flat roof lt th other lin prevent v less other ninus 5 dd for a 10.0 t with any d for a liv as where will fit betv s, with BC l for a mon dead loca along the t with any t a minim applied d rock be a	<ul> <li>psf (Lum DC Cat B; Partia )-0-0</li> <li>isidered for the er of min roof pad of 15.4 p (e loads.</li> <li>vater pondin, wise indicate agree rotation</li> <li>psf bottom other live load e load of 20.4 a rectangle</li> <li>psf bottom other live load e load of 20.4 a rectangle</li> <li>Top Chord a Top Chord a um of 7/16"</li> <li>rectly to the is opplied directly</li> </ul>	OL = ally his f live sef on g. ads. opsf om f. rated d ads. top y to				SEA 0363	22 EERER IIII

June 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	V4	Valley	1	1	I74084182 Job Reference (optional)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37

ID:Bx8PhQ9?IMvUG2uiCgTjONzquXs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Structural, LLC, Thurmont, MD - 21788,

#### 1-2-8 10-5-0 5-2-8 4-0-0 1-2-8 1-2-8 10-5-0 5-2-8 5-2-8 5-2-8 4x4 = 3 16 15 5-2-12 2x4 II 2x4 II 12 12 □ 17 14 2 4 13 18 19 22 5 6 20 8 7 21 6 2x4 🎣 2x4 II 2x4 II 2x4 II 2x4、

10-5-0

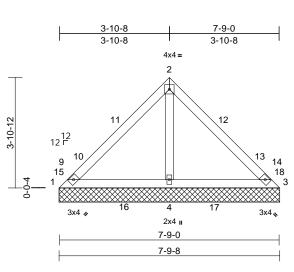
Scale = 1:48.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.45 0.69 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	<b>GRIP</b> 244/190 FT = 20%
	7=10-5-0 Max Horiz 1=80 (LC Max Uplift 1=-97 (LC 6=-67 (LC Max Grav 1=252 (LC	applied or 10-0-0 or 5=10-5-0, 6=10-5-0 8=10-5-0 15) 54), 5=-97 (LC 55), 17), 8=-70 (LC 16) 245), 5=252 (LC 51) 242), 7=376 (LC 60)	; 5) ' 6) 7) 8) 9)	only. For stu see Standaru or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa	the d for wind loads uds exposed to wind d Industry Gable E palified building des 7-16; Pr=20.0 psf; 0L = 1.15; Is=21.0 0; Cs=1.00; Ct=1.1 snow loads have the ked for a plus or minuter. tes continuous bott spaced at 4-0-0 of as been designed f ad nonconcurrent the has been designed m chord in all area	nd (norm nd Deta signer as f (roof LI Pf=15.4 ; Rough 0 been con nus 5 do om chor 2. or a 10. with any I for a liv	al to the face ils as applical s per ANSI/TF t psf (Lum DC Cat B; Partia asidered for th egree rotation d bearing. D psf bottom other live loa e load of 20.0	), ble, PI 1. 1.15 DL = Illy his n					
FORCES	(lb) - Maximum Com Tension 1-2=-193/139, 2-3=-		09	3-06-00 tall t chord and ar	by 2-00-00 wide winy other members.	ll fit betv	veen the botto						
BOT CHORD	4-5=-185/139 1-8=-88/104, 7-8=-1 5-6=-88/104	7/68, 6-7=-17/68,	, ii	bearing plate 1, 97 lb uplift uplift at joint		anding 9 blift at joi	97 lb uplift at j nt 8 and 67 lk	oint o				WITH CA	11111
WEBS NOTES	3-7=-203/0, 2-8=-48	,	12	í load of 250.0	as been designed f Olb live and 3.0lb d	ead loca	ted at all mid	l			H	NATH CA	ROMAN

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-2-12, Exterior(2R) 5-2-12 to 8-2-12, Interior (1) 8-2-12 to 10-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
  LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	V5	Valley	1	1	Job Reference (optional)	174084183

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:38 ID:MEjHIlgvj4t9Tvq0sHILnxzquYU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-10-12



### Scale = 1:40.7

BOT CHORD

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.50	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.67	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		4)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0	- 7-16; Pr=20.0 I.15); Pg=20.0 μ OL = 1.15); Is= D; Cs=1.00; Ct=	psf; Pf=15.4 1.0; Rough 1.10	l psf (Lum D0 Cat B; Partia	OL = ally					
BRACING			5)		snow loads hav	ve been cor	isidered for t	his					
TOP CHORD	Structural wood she	athing directly applied	dor	design.									

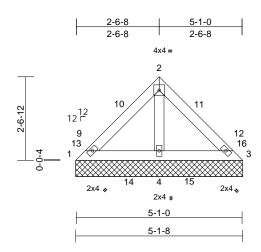
- Structural wood sheathing directly applied or 6) 7-9-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc 7) bracing.
- REACTIONS (size) 1=7-9-8, 3=7-9-8, 4=7-9-8 9) Max Horiz 1=59 (LC 13) Max Uplift 1=-59 (LC 41), 3=-59 (LC 40), 4=-6 (LC 16) 1=268 (LC 43), 3=268 (LC 47), Max Grav 4=579 (LC 40)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-203/275, 2-3=-203/275 1-4=-187/128, 3-4=-187/128 BOT CHORD WFBS 2-4=-420/121

## NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-10-12, Exterior(2R) 3-10-12 to 7-1-1, Interior (1) 7-1-1 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 1, 59 lb uplift at joint 3 and 6 lb uplift at joint 4.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	V6	Valley	1	1	Job Reference (optional)	174084184

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:38 ID:W?FJmRmU8LYfbXAoXkQ_nKzquZe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





### Scale = 1:35.4

20.0 Plate Gr 1/20.0 Lumber	•	TC	C 0.27	Vert(LL)	- 1-					
1/20.0 Lumber			0.21	Ven(LL)	n/a	-	n/a	999	MT20	244/190
	DOL 1.15	BC	C 0.36	Vert(TL)	n/a	-	n/a	999		
10.0 Rep Stre	ss Incr YES	W	/B 0.05	Horiz(TL)	0.00	4	n/a	n/a		
0.0* Code	IRC202	1/TPI2014 Ma	latrix-MP							
10.0									Weight: 20 lb	FT = 20%
	0.0* Code	0.0* Code IRC202 10.0	0.0* Code IRC2021/TPI2014 M 10.0	0.0* Code IRC2021/TPI2014 Matrix-MP 10.0	0.0* Code IRC2021/TPI2014 Matrix-MP Weight: 20 lb					

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-1-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=5-1-8, 3=5-1-8, 4=5-1-8
	Max Horiz	1=-38 (LC 12)
	Max Uplift	1=-28 (LC 46), 3=-28 (LC 44)
	Max Grav	1=277 (LC 43), 3=277 (LC 47),
		4=412 (LC 49)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-210/	(176, 2-3=-210/176
BOT CHORD	1-4=-82/1	34, 3-4=-82/134
WEBS	2-4=-272/	(126
NOTES		

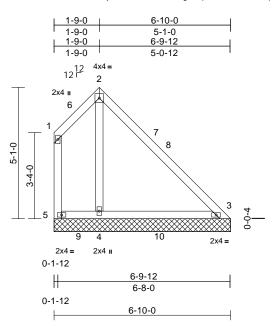
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint
- 1 and 28 lb uplift at joint 3. 12) Beveled plate or shim required to provide full bearing
- surface with truss chord at joint(s) 1, 3. 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	V1	Valley	1	1	I74084185 Job Reference (optional)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37 ID:BljhOsm_H1KFuuHWiutgz7zquX3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:44.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.89	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.61	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-P								
BCDL	10.0				1							Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2-2-0 oc purlins, ex Rigid ceiling directly	athing directly applied cept end verticals. applied or 10-0-0 oc	4) 5) 1 or 6) 7) 8)	Plate DOL= 1.15 Plate D Exp.; Ce=1. Unbalanced design. Plates chec about its cer Gable requi	$\Xi$ 7-16; Pr=20.0 1.15); Pg=20.0 OOL = 1.15); Is= 0; Cs=1.00; Ct= snow loads ha ked for a plus o hter. res continuous   spaced at 4-0-	psf; Pf=15.4 1.0; Rough :1.10 ve been cor r minus 5 de pottom chor	I psf (Lum DC Cat B; Partia nsidered for th egree rotatior	DL = Illy his					
REACTIONS	bracing. (size) 3=6-10-0, Max Horiz 5=-103 (L Max Uplift 4=-7 (LC	12), 5=-97 (LC 46)	9)	This truss ha chord live lo * This truss	as been design ad nonconcurre has been desig m chord in all a	ed for a 10.0 ent with any ned for a liv	other live loa e load of 20.0						

- Max Grav
   3=337 (LC 44), 4=426 (LC 46), 5=259 (LC 40)

   FORCES
   (lb) - Maximum Compression/Maximum Tension

   TOP CHORD
   1-5=-269/90 (1-2=-107/112 (2-3=-130/117)
- TOP CHORD
   1-5=-269/90, 1-2=-107/112, 2-3=-130/11

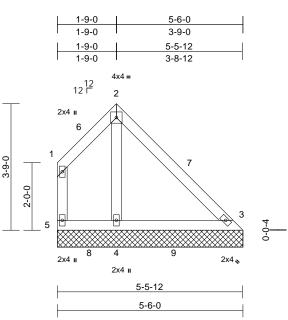
   BOT CHORD
   4-5=-126/130, 3-4=-126/130

   WEBS
   2-4=-316/124

### NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 1-9-0, Exterior(2R) 1-9-0 to 4-9-0, Interior (1) 4-9-0 to 6-5-1 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
  11) Bearing at joint(s) 5, 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface.12) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 97 lb uplift at joint 5 and 7 lb uplift at joint 4.13) This truss has been designed for a moving concentrated
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
  LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	V2	Valley	1	1	I74084186 Job Reference (optional)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37 ID: Up6vIReiez4ghLXb6niKZ0zquXD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1



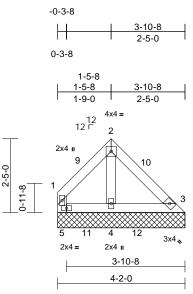
Scolo 1.2/ 1

Loading         (psf           TCLL (roof)         20.0           Snow (Pf/Pg)         15.4/20.0           TCDL         10.0           BCDL         0.0           BCDL         10.0           LUMBER         10.0	Plate Grip DOL       Lumber DOL       Rep Stress Incr       * Code	2-0-0 1.15 1.15 YES IRC2021/		CSI TC BC WB Matrix-P 7-16: Pr=20.0 p	0.59 0.70 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	<b>GRIP</b> 244/190 FT = 20%
REACTIONS (size) 3=5-6 Max Uplift 5=-50 Max Grav 3=315	· /	5) ed or 6) c 7) 8) 9) 10)	1.15 Plate D0 Exp.; Ce=1.0 Unbalanced : design. Plates check about its cen Gable require Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	es continuous bo spaced at 4-0-0 s been designed d nonconcurrent as been designed n chord in all are y 2-00-00 wide	0; Rough 10 been cor ttom chor oc. I for a 10.0 t with any ed for a liv as where will fit betv	Cat B; Partia egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle	lly nis ds. Opsf					
FORCES (lb) - Maximum ( Tension	Compression/Maximum 2=-99/99, 2-3=-117/101 -73/75 ave been considered for mph (3-second gust) BCDL=6.0psf; h=25ft; C (envelope) and C-C Exterior(2R) 1-9-0 to 4- ine; cantilever left and ri d right exposed; C-C for RS for reactions shown DOL=1.60	11) 12) r LOA Cat. 9-0, ight ;	Provide mech bearing plate 5. This truss ha load of 250.0 panels and a	y other member: nanical connection capable of withs s been designed lb live and 3.0lb t all panel points d, nonconcurrent Standard	on (by oth standing 5 I for a mov dead loca along the	50 lb uplift at j ving concentra ated at all mid e Top Chord a	oint ated and		4		SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI minin June 11,2025


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	V3	Valley	1	1	Job Reference (optional)	174084187

Structural LLC Thurmont MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37 ID:Jiyl_hWpEahEsfBTz_?lcizquXO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

### 1-5-8



#### Scale - 1:37 7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.97	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 18 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD		I wood sheathing directly applied or
	4-2-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	3=4-2-0, 4=4-2-0, 5=4-2-0
	Max Horiz	5=-33 (LC 12)
	Max Uplift	3=-68 (LC 46), 5=-272 (LC 46)
	Max Grav	3=3 (LC 16), 4=740 (LC 46), 5=240 (LC 43)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-99/9	9, 2-3=-123/108
BOT CHORD	4-5=-30/3	3, 3-4=-30/33
WEBS	2-4=-282/	/7, 1-5=-269/42
NOTES		
1) Unhalance	ed roof live l	oads have been considered for

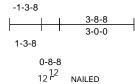
- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Bearing at joint(s) 5 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 12) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 68 lb uplift at joint 3, 272 lb uplift at joint 5 and 68 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

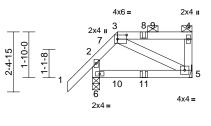
LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1G	Half Hip Girder	3	1	I7408418 Job Reference (optional)	8

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:GHMLc3JOd9XuKVDsaF?OdJzquI9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

# 0-8-8









Scale = 1:46.3

## Plate Offsets (X, Y): [3:0-4-8,0-2-0]

			_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.59 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.06 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >931 >778 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4		Plates check about its cer This truss ha chord live loa * This truss h on the botton 3-06-00 tall h	as been designed ad nonconcurrent nas been designed m chord in all area by 2-00-00 wide w	for a 10. with any d for a liv s where ill fit betv	egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle	nds. Opsf	Inc Ur Cc	crease= hiform Lo Vert: 1-3 oncentra	1.15 bads (ll 3=-51, ited Lo	b/ft) 3-4=-61, 5-6=-2		
	Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=47 (LC Max Grav 5=318 (LC (lb) - Maximum Corr	10 11 12	<ul> <li>Refer to gird</li> <li>Bearing at journament</li> <li>using ANSI/ designer shots</li> <li>Provide mediation</li> </ul>	ny other members er(s) for truss to tr init(s) 6 considers TPI 1 angle to grai build verify capacity shanical connectio e capable of withst	uss coni parallel in formul y of bear n (by oth	to grain value a. Building ing surface. ers) of truss t	to						
this design 2) Wind: ASC Vasd=95m II; Exp B; I and right e	Tension 1-2=0/83, 2-3=-179/ 4-5=-285/18 5-6=-47/22 3-5=-3/73, 2-6=-300 ed roof live loads have a. CE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; AWFRS (er exposed ; end vertical DL=1.60 plate grip DC	/31 been considered for (3-second gust) DL=6.0psf; h=25ft; ( vselope); cantilever I left and right expose	14 Cat. eft	recommende UPLIFT at jt does not cor This truss ha load of 250.0 panels and a Bottom Chor i) Graphical pu or the orients bottom chor i) "NAILED" in	Simpson Strong-T ed to connect trust (s) 6. This connect isider lateral force as been designed Jb live and 3.0lb c at all panel points d, nonconcurrent irlin representation ation of the purin d. dicates 3-10d (0.1 ") toe-nails per NI	s to bear tion is fo s. for a mo lead loca along the with any n does m along the 48"x3") o	ing walls due r uplift only ar ving concentr ted at all mid e Top Chord a other live loa other live loa e top and/or or 3-12d	nd rated I and ads.		<b>1</b>	2	ORTH CA	ROUT

Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

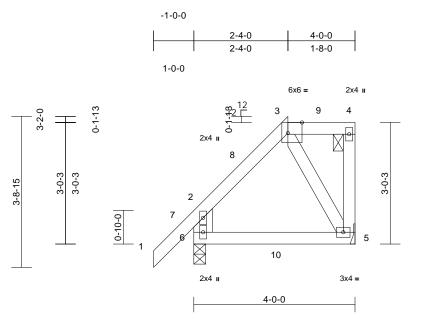
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 89 lb up at 1-0-0 on top chord, and 7 lb down and 20 lb up at 1-0-0 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

SEAL 036322 June 11,2025


> ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	M1B	Half Hip	2	1	I74084189 Job Reference (optional)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:32 ID:0TCESkN5IVqpbfq3aa6L?4zquJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:28.6

Plate Offsets (X, Y): [3:0-4-3,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.47 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.04 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 25 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	4-0-0 oc purlins, exe 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=80 (LC Max Uplift 5=-18 (LC	athing directly applied cept end verticals, an applied or 10-0-0 oc nical, 6=0-3-8 13) : 13)	1d 8) 9) 10 11	load of 12.0 overhangs n Provide ade Plates check about its cer This truss ha chord live loa * This truss to on the bottoo 3-06-00 tall l chord and ar	as been designed psf or 2.00 times f on-concurrent with quate drainage to ted for a plus or m iter. as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr thanical connection	flat roof I h other li prevent inus 5 d for a 10. with any d for a liv as where rill fit betv russ coni	bad of 15.4 p ve loads. water pondin egree rotation 0 psf bottom other live loa e load of 20. a rectangle ween the bott nections.	osfon g. n ads. 0psf com					
this desigr 2) Wind: ASC	Max Grav 5=321 (LC (lb) - Maximum Com Tension 1-2=0/89, 2-3=-201/: 4-5=-266/17, 2-6=-3 5-6=-71/103 3-5=-185/91 ed roof live loads have h. CE 7-16; Vult=120mph path: TCDL = 6 0pcf; PC	pression/Maximum 37, 3-4=-46/44, 16/72 been considered for (3-second gust)	12 13 LC	5. ) This truss ha load of 250.0 panels and a Bottom Chor ) Graphical pu		for a mo lead loca along the with any n does n	ving concent ated at all mic Top Chord other live loa ot depict the	rated 1 and ads.				ORTH CA	ROUT

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-4-0, Exterior(2E) 2-4-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

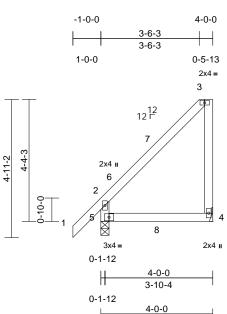
G

minim

June 11,2025

SEAL 036322

Journa 10


# 818 Soundside Road Edenton, NC 27932

ALTERNA DAVING

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1A	Half Hip	2	1	Job Reference (optional)	174084190

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:32 ID:0w9NJ6zmm2YeWREXaRVMdvzquJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



### Scale = 1:41.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	<b>CSI</b> TC BC WB Matrix-MR	0.50 0.52 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.05 0.00 0.01	(loc) 4-5 4-5 4 4-5	l/defl >999 >838 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=119 (LC Max Uplift 4=-47 (LC Max Grav 4=324 (LC (Ib) - Maximum Com Tension	cept end verticals. applied or 10-0-0 oc nical, 5=0-3-8 2 13) 13) 2 42), 5=354 (LC 40)	9) 10) 11)	about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Bearing at jo using ANSI/7 designer sho Provide mecc bearing plate 4.	ed for a plus or m ter. is been designed ad nonconcurrent nas been designe in chord in all aree by 2-00-00 wide w ny other members er(s) for truss to t int(s) 5 considers FPI 1 angle to gra build verify capacit; hanical connectio e capable of withs as been designed	for a 10. with any d for a liv s where ill fit betw - russ conr parallel in formul y of bear n (by oth tanding 4	c) psf bottom other live loa e load of 20.0 a rectangle ween the botto nections. o grain value a. Building ng surface. ers) of truss t 7 lb uplift at j	ads. Opsf om o to					

TOP CHORD 1-2=0/66, 2-3=-197/137, 3-4=-284/215, 2-5=-319/131 BOT CHORD 4-5=-65/67

### NOTES

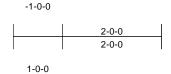
 Unbalanced roof live loads have been considered for this design.

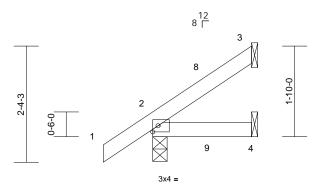
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


TREACO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1D	Jack-Open	3	1	Job Reference (optional)	74084191

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:n?hF7TT6tyqgZuRb2FGDKmzquJE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





2-0-0

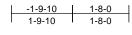
#### Scale = 1:23.3

Loading         (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         15.4/20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0	Plate Grip DOL       1         Lumber DOL       1         Rep Stress Incr       Y	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.23 BC 0.23 WB 0.00 Matrix-MP	Vert(CT) - Horz(CT)	in (loc) 0.01 4-7 0.01 4-7 0.00 3 0.00 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 9 lb	<b>GRIP</b> 244/190 FT = 20%
2-0-0 oc purlins. BOT CHORD Rigid ceiling direct bracing. REACTIONS (size) 2=0-3-8 Max Horiz 2=40 (L Max Uplift 3=-15 ( Max Grav 2=318 4=271	C 16) LC 16) LC 36), 3=270 (LC 40), LC 45) ompression/Maximum	<ul> <li>chord live loa</li> <li>7) * This truss h on the bottom</li> <li>3-06-00 tall b</li> <li>chord and an</li> <li>8) Refer to girde</li> <li>9) Provide mech</li> <li>bearing plate</li> <li>3.</li> <li>10) This truss ha</li> <li>load of 250.0</li> <li>panels and a</li> </ul>	Is been designed for a 10 as been designed for a 10 nas been designed for a 1 n chord in all areas when by 2-00-00 wide will fit be by other members. er(s) for truss to truss co hanical connection (by ot e capable of withstanding be been designed for a me blb live and 3.0lb dead loc t all panel points along th d, nonconcurrent with an Standard	y other live loads. ve load of 20.0ps a rectangle ween the bottom nections. hers) of truss to 15 lb uplift at join wing concentrate ated at all mid e Top Chord and	f t				

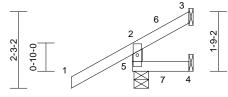
### NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

# O VIIIIIIIIIIIIIIII 1111111111 SEAL 036322 G minin June 11,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1C	Jack-Open	3	1	Job Reference (optional)	174084192

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:33 ID:FTn3vdhPdU67jfq351aR3ZzquIy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1







1-8-0





Scale = 1:34

											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	14 CSI TC BC WB Matrix-MR	0.37 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.01 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS Weight: 9 lb	<b>GRIP</b> 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E (3) zone; C (3) zone; C (4) zone;	5=0-5-3 Max Horiz 5=34 (LC Max Uplift 3=-53 (LC (LC 16) Max Grav 3=251 (LC 5=347 (LC (Ib) - Maximum Com Tension 2-5=-324/172, 1-2=0 4-5=0/0 ed roof live loads have CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exantilever left and right the exposed;C-C for me pr reactions shown; Lu	cept end verticals. applied or 10-0-0 or inical, 4= Mechanica 16) 222), 4=-19 (LC 22) 242), 4=-19 (LC 22) 242), 4=260 (LC 45 240) pression/Maximum //77, 2-3=-84/51 been considered fo (3-second gust) DL=6.0psf; h=25ft; ( ivelope) and C-C Cc exposed ; end verti embers and forces 8 mber DOL=1.60 pla roof LL: Lum DOL= ?f=15.4 psf (Lum DC Rough Cat B; Partia	r Cat. Cat. Cat. Cat. Cat. Cat. Cat. Cat.	russ has been designed f 12.0 psf or 2.00 times angs non-concurrent wi s checked for a plus or r its center. russ has been designed truss has been designed bottom chord in all are 00 tall by 2-00-00 wide v and any other member to girder(s) for truss to de mechanical connectii ng plate capable of withs blu uplif at joint 3 and 3 i russ has been designed of 250.01b live and 3.01b s and at all panel points m Chord, nonconcurren (SE(S) Standard	If at roof I the other I is in the other I is of	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 9 lb uplift at j joint 5. ving concentri ted at all mic p Top Chord a	n ads. Opsf iom to joint rated d and			A M	ORTH CA	

- grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI 111111 June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1	Jack-Closed	22	1	Job Reference (optional)	74084193

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:32 ID:XeUIqW8U0rrQkqSG2RmBKMzquKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 4-0-0 4-0-0 1-0-0 3x4 II 3 12 12 Г 8 4-10-0 2 0-10-0 6

5-4-15



4 4

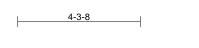
Scale = 1:35.4

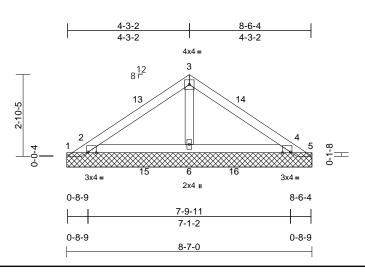
# Plate Offsets (X, Y): [5:0-4-12,0-1-8]

		1										-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.42	Vert(LL)	-0.04	4-5	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.49	Vert(CT)	-0.05	4-5	>945	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.01	4-5	>999	240		
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER			6)	All plates are	e MT20 plates unle	ess other	wise indicate	h					
TOP CHORD	2x4 SP No.2		7)		ked for a plus or m								
BOT CHORD	2x4 SP No.2		.,	about its cer			- <b>3</b>						
WEBS	2x4 SP No.3		8)	This truss ha	as been designed f	or a 10.	0 psf bottom						
BRACING				chord live lo	ad nonconcurrent	with any	other live loa	ads.					
TOP CHORD	Structural wood she	athing directly applie	е (9	* This truss I	has been designed	for a liv	e load of 20.	0psf					
	except end verticals		ч,		m chord in all area								
BOT CHORD	Rigid ceiling directly				oy 2-00-00 wide wi		veen the bott	om					
REACTIONS		anical, 5=0-3-8			ny other members.								
	Max Horiz 5=119 (L0	,			er(s) for truss to tr								
	Max Uplift 4=-47 (LC	,	11		hanical connection		,						
	Max Grav 4=324 (L0			bearing plate	e capable of withst	anding 2	in upilit at	joint					
FORCES	(lb) - Maximum Com			4. This trues br	as been designed f	or a mo	ving concept	rated					
. 0.1020	Tension	procoreri/maximum	12,		Ib live and 3.0lb d								
TOP CHORD	2-5=-319/131, 1-2=0	)/66. 2-3=-214/131.			at all panel points a								
	3-4=-284/250	,			d, nonconcurrent								
BOT CHORD	4-5=-77/72		13		sign requires that								
NOTES			,		od sheathing be a			top					
	d roof live loads have	been considered for			2" gypsum sheetro								
this design				the bottom of									
	E 7-16; Vult=120mph	(3-second gust)	LO	AD CASE(S)	Standard							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111
,		· · · · ·		(-)								1111 0 1	111

2 Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	PB1	Piggyback	12	1	Job Reference (optional)	174084200

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37 ID:czVbfbWvpKqNBq7hTQskfrzqtCA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:40.3

grip DOL=1.60

3)

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

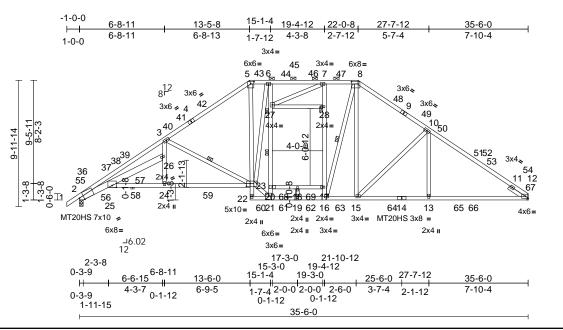
or consult qualified building designer as per ANSI/TPI 1.

## Plate Offsets (X, Y): [2:0-3-7,Edge], [4:0-3-7,Edge]

	, i). [2.0 0 7,Euge],												-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.54	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS								
BCDL	10.0											Weight: 29 lb	FT = 20%
LUMBER			4)	TCLL: ASCE	E 7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP No.2		,		1.15); Pg=20.0 psf;								
BOT CHORD	2x4 SP No.3				OL = 1.15); Is=1.0;		Cat B; Partia	lly					
OTHERS	2x4 SP No.3				0; Cs=1.00; Ct=1.10								
BRACING			5)		snow loads have b	een co	nsidered for th	his					
TOP CHORD	Structural wood she		ed. 6)	design.	ad for a plug or mi		area rotation						
BOT CHORD	Rigid ceiling directly	applied.	0)	about its cer	ked for a plus or min	ius 5 u	egree rotation	1					
REACTIONS		2=8-7-0, 4=8-7-0, 5=	=8-7-0, 7		res continuous botto	om choi	d bearing.						
	6=8-7-0		8)		spaced at 4-0-0 oc								
	Max Horiz 1=43 (LC	,	. 9)		as been designed fo								
	Max Uplift 1=-362 (L	C 42), 2=-35 (LC 16 C 17), 5=-359 (LC 43	2)		ad nonconcurrent w								
	Max Grav 1=170 (LC				has been designed			Opsf					
		C 43), 5=173 (LC 52			m chord in all areas								
	6=365 (L0	C 59)			by 2-00-00 wide wil ny other members.	i iii beiv	veen the bollo	om					
FORCES	(lb) - Maximum Corr	pression/Maximum	1.		chanical connection	(by oth	ers) of truss t	n					
	Tension	-			e capable of withsta								
TOP CHORD	1-2=-53/212, 2-3=-1	54/167, 3-4=-154/16	66,		t at joint 4, 362 lb u								
	4-5=-50/211	10/50		at joint 5, 35	lb uplift at joint 2 a	nd 34 lt	o uplift at joint	4.					
BOT CHORD	2-6=-149/52, 4-6=-1	49/52											
WEBS	3-6=-237/13		12		as been designed fo							munn	un,
NOTES	d an of live to a de la sur	h	-		Olb live and 3.0lb de							W'TH CA	Rolly
<ol> <li>Unbalance this design</li> </ol>	d roof live loads have	been considered to	1		at all panel points a rd, nonconcurrent w						1	ORIFESS	ALIN'S
	E 7-16; Vult=120mph	(3-second qust)	1:		esign requires that a						1.	UFESS	2 Starting
	iph; TCDL=6.0psf; BC				ood sheathing be a			top			Z		M. H.
	Enclosed; MWFRS (er				/2" gypsum sheetro					1		2	5
	E) 0-3-5 to 3-3-5, Inter		3,	the bottom of	hord.					-		SEA	1 : =
							<b>•</b> · · ·			-			L

14) See Standard Industry Piggyback Truss Connection Exterior(2R) 4-3-8 to 7-5-3, Interior (1) 7-5-3 to 8-3-11 zone; cantilever left and right exposed ; end vertical left Detail for Connection to base truss as applicable, or and right exposed;C-C for members and forces & consult qualified building designer. MWFRS for reactions shown; Lumber DOL=1.60 plate

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1L	Attic	1	1	Job Reference (optional)	174084201

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:24 ID:Z3hGCMOeQIPrl1zCsrlh6szqpvu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



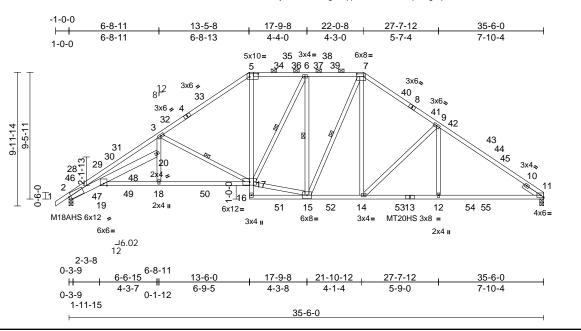
Scale = 1:91.2

## Plate Offsets (X, Y): [2:0-4-1,Edge], [5:0-3-0,0-2-3], [8:0-6-4,0-2-4], [23:0-3-8,0-2-8]

	0	CSI		DEFL	in	(loc)	I/dof!	1./d	PLATES	GRIP
Loading(psf)Spacing2-0-TCLL (roof)20.0Plate Grip DOL1.15		TC	0.99	Vert(LL)	in -0.29	(loc) 25-26	l/defl >999	L/d 360	MT20	244/190
Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15		BC	0.89	Vert(CT)	-0.48	25-26	>886	240	MT20HS	187/143
TCDL 10.0 Rep Stress Incr YES		WB	0.92	Horz(CT)	0.31	12	n/a	n/a		101/110
	2021/TPI2014	Matrix-AS		Wind(LL)	0.10	25-26	>999	240		
BCDL 10.0									Weight: 268 lb	FT = 20%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<ul> <li>this design.</li> <li>Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E)</li> <li>13-6-0, Exterior(2E)</li> <li>14-10-14</li> <li>15-15-14-15</li> <li>16-15-14-15</li> <li>16-15-14</li> <li>16-15-1</li></ul>	roof live loads have 7-16; Vult=120mpl ; TCDL=6.0psf; BC closed; MWFRS (e -1-0-0 to 2-6-10, In ior(2R) 13-6-0 to 1 terior(2R) 22-0-8 tc -5-4 zone; cantilev d vertical left and r d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10; snow loads have b s been designed fc cosf or 2.00 times fle con-concurrent with uate drainage to p MT20 plates unless ed for a plus or mir ter. s been designed fc d nonconcurrent with uate been designed fc d nonconcurrent with uate drainage to p MT20 plates unless ed for a plus or mir ter. s been designed fc d nonconcurrent with uate been designed fc d nonconcurrent with d verify capacity	n (3-sec CDL=6.0 nvelope terior (1) 8-6-4, li 9 27-0-1 for reating for reating terior (1) Pf=20.4 Rough 0, Lu=50 een cor or great tat roof k other liv revent revent is other is other is other of a liv where fit betw with BC ss conr arallel ta	ond gust) opsf; h=25ft; (i) ) and C-C ) 2-6-10 to hterior (1) 18- 2, Interior (1) nd right osed;C-C for ctions shown ) : Lum DOL=1 psf (Lum DOL Cat B; Partial )-0-0 isidered for th er of min roof pad of 15.4 ps re loads. vater ponding wise indicated gree rotation ) psf bottom other live load e load of 20.00 a rectangle reen the bottc DL = 10.0psf lections. o grain value a. Building	Cat. 6-4 ; 1.15 UL = Ilve sf on J. d. ds. Opsf om	load par Bot 14) This stru- cho the 15) Gra or t bott 16) Atti LOAD (	d of 250. hels and tom Chos s truss d uctural w ord and 1 bottom aphical p he orien tom choi c room c <b>CASE(S</b>	Olb live at all p ord, nooi esign 1 ood sh ood sh o/2" gyl chord. urlin ret attion o ord. hecke ) Sta	en designed for a e and 3.0lb dead anale points along nooncurrent with requires that a m leathing be applit obum sheetrock to apresentation doe of the purlin along d for L/360 deflect indard	moving concentrated located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to as not depict the size g the top and/or ction.
10-13=0/389, 10-15=-768/63, 24-26=0/342, 3-26=0/759								1	1.0 1 0	BEN

## NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1O	Piggyback Base	1	1	Job Reference (optional)	174084202

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:26 ID:3Yh3v?4PjQ?aV4bkM?vgXIzqq_9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



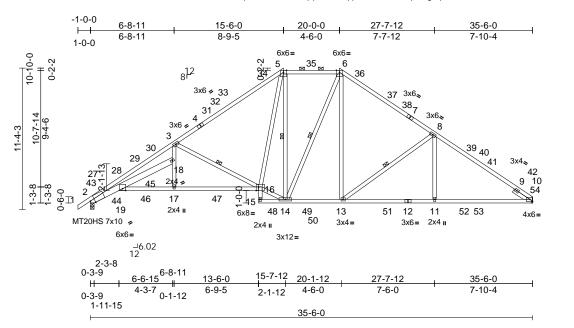
Scale = 1:86.2

### Plate Offsets (X, Y): [2:0-1-13,0-2-13], [5:0-7-12,0-2-11], [7:0-6-4,0-2-4]

TCLL (roof)       20.0       Piate Grip DOL       1.15       TC       0.08       Vert(CT)       -0.44       19-20       >993       MT20       24/4190         Snow (P/Pg)       20.4/20.0       Rep Stress Incr       YES       WB       0.88       Vert(CT)       -0.44       19-20       >997       240       M18AHS       186/179         BCL       0.0°       Code       IRC2021/TPI2014       WB       0.88       Vert(CT)       -0.44       19-20       >997       240       M1720HS       187/143         BCL       0.0°       Code       IRC2021/TPI2014       WB       0.88       Vert(CT)       -0.44       19-20       >997       240       WitzOHS       187/143         BCL       0.0°       Code       IRC2021/TPI2014       Wastra-AS       Wind(LL)       0.09       19-20       >999       240       Weight: 241 lb       FT = 20%         LUMBER       TOP CHORD       2x4 SP No.3       16-13:2x4 SP No.2       Vind: ASCE 7-16; Vult=120mph (3-second gust)       Vasd=95mph; TCDL=6.0pf; ReDL=6.0pf; ReDL=6.0				-											
<ul> <li>TOP CHORD 2x4 SP No.2</li> <li>TOP CHORD 2x4 SP No.2</li> <li>BOT CHORD 2x4 SP No.2</li> <li>BOT CHORD 2x4 SP No.3, 16-13:2x4 SP No.2, 5-16:2x4 SP No.3, 16-13:2x4 SP No.2, 15-16:2x4 SP No.3, 16-13:2x4 SP No.2, 11-2:4292</li> <li>StuDER REACING STUCtural wood sheathing directly applied, except 2-0-0 c purlins (4-3-14 max.): 5-7.</li> <li>BOT CHORD Rigid celling directly applied. 1 Row at midpt 3-17, 6-15, 7-15, 6-17</li> <li>FORCES (b) - 20-05 g, 11-0-3-8 Max Horiz 2=151 (LC 13) Max Grav 2=1776 (LC 49), 11=1708 (LC 51)</li> <li>FORCES (b) - 420-07316, 18-19=0/2778, 9-1192/75, 9-1192/75, 9-1192/75, 9-1192/75, 9-1192/75, 9-11-2:492/5</li> <li>BOT CHORD 1-2:0/45, 2-3=-3410/0, 3-5=-2201/48, 5-6=-1694/81, 6-7=-1571/85, 7-9=-1950/75, 9-11=-24492/5</li> <li>BOT CHORD 2:19=0/2771, 19-2-00-0316, 18-19=0/2778, 15-16=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-18=-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-124/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-140-142, 14-15=0/1518, 15-19-140-140, 14-15=0/1518, 15-19-140-142, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-1424/126, 14-15=0/1518, 15-19-140-140, 14-15=0/1518, 15-19-140-142, 14-15=</li></ul>	Snow (Pf/Pg) TCDL BCLL	20.0 20.4/20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	1/TPI2014	TC BC WB	0.90	Vert(LL) Vert(CT) Horz(CT)	-0.26 -0.44 0.27	19-20 19-20 11	>999 >971 n/a	360 240 n/a	MT20 M18AHS MT20HS	244/190 186/179 187/143	
6-15=-483/74, 7-15=-65/307, 15-17=0/1561, 6-17=-32/343 NOTES 1) Unbalanced roof live loads have been considered for this design. SEAL 1) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.	TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP SS *Except* 5-16:2x4 SP No.3, 1 2x4 SP No.3 Right 2x4 SP No.3 - Structural wood she except 2-0-0 oc purlins (4-3 Rigid ceiling directly 1 Row at midpt (size) 2=0-3.8, ' Max Horiz 2=151 (LC Max Grav 2=1776 (I (Ib) - Maximum Com Tension 1-2=0/45, 2-3=-341(0 5-6=-1694/81, 6-7=- 9-11=-2492/5 2-19=0/2771, 19-20. 17-18=0/2831, 16-11 15-16=-124/126, 14 12-14=0/1992, 11-12 3-17=-1242/42, 7-14 3-20=0/721, 9-12=0. 6-15=-483/74, 7-15= 6-17=-32/343 ed roof live loads have	6-13:2x4 SP No.2 - 1-6-0 athing directly applied 3-14 max.): 5-7. applied. 3-17, 6-15, 7-15, 6-11 11=0-3-8 C 13) LC 49), 11=1708 (LC 12) pression/Maximum 0/0, 3-5=-2201/48, 1571/85, 7-9=-1950/7 =0/316, 18-19=0/2778 7=0/173, 5-17=0/831, 15=0/1518, 2=0/1992 1=0/689, 18-20=0/333 /382, 9-14=-744/65, =-65/307, 15-17=0/156	i, 3) 7 51) 4) 5) 5) 5) 5) 5) 7) 3, 8) 9) , 10 61, 11	Vasd=95mpl II; Exp B; En Exterior(2E) 13-7-12, Ext 18-8-0 to 22: (1) 27-0-12 t exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader All plates are Plates check about its cen This truss ha chord live loa ) * This truss ha on the bottor 3-06-00 tall t chord and ar ) Bearing at jo using ANSI/ designer sho ) This truss ha	n; TCDL=6.0psf; E closed; MWFRS ( -1-0-0 to 2-6-10, 1 erior(2R) 13-7-12 -0-8, Exterior(2R) o 35-4-4 zone; ca d vertical left and d forces & MWFR =.1.60 plate grip L =.1.60 plate grip L =.1.61 plate grip L =	SCDL=6.6 envelope nterior (1 to 18-8-0 22-0-8 tc 18-8-0 22-0-8 tc 18-8-0 22-0-8 tc 18-8-0 22-0-8 tc 18-8-0 right exp S for rea OOL=1.60 f (roof LL ; Pf=20.4 ; Rough (0, Lu=50 been cor for great lat roof lo n other lin prevent v ess other inus 5 de for a 10.0 with any d for a liv s where ill fit betv, with BC parallel n formula y of bear for a mov lead loca along the	Dpsf; h=25ft; C a) and C-C b) 2-6-10 to b) Interior (1) c) 27-0-12, Inter and right posed; C-C for ctions shown; ctions shown; ction	erior 1.15 DL = ly live sf on J. ds. psf d. ds. psf m ated	stru cho the 14) Gra or ti bott LOAD (	ictural w rd and 1 bottom o phical p he orien tom choi CASE(S	ood sh //2" gyr chord. urlin ree tation o rd. ) Sta	neathing be applied provide the purlin along of the purlin along ndard	ed directly to the applied directly to the applied directly to the applied directly the top and/or the top and/	he top actly to he size or

- designer should verify capacity of bearing surface. 12) This truss has been designed for a moving concentrated
- load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G minin June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1P	Нір	1	1	Job Reference (optional)	174084203

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:26 ID:qMkO9vTEW3Uckqzpo4l9FFzqqIJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:92.5

# Plate Offsets (X, Y): [2:0-4-1,Edge], [16:0-2-4,Edge]

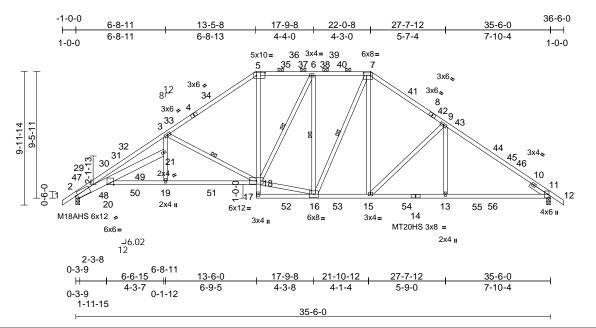
	., ., [,,,,,,,,,,,,,,,	[::::=:;=::;:::;::::;::::::::::::::::::											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.77 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.42 0.28	(loc) 18-19 18-19 10 18-19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 236 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS	except 2-0-0 oc purlins (3-1 Rigid ceiling directly 1 Row at midpt	2-18:2x6 SP DSS, - 1-6-0 athing directly applie 1-5 max.): 5-6. applied. 3-16, 5-14, 6-14, 8-1 10= Mechanical	3)	Vasd=95mpl II; Exp B; En Exterior(2E) 15-6-0, Exte 20-0-0 to 25 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0	7-16; Vult=120m h; TCDL=6.0psf; I closed; MWFRS -1-0-0 to 2-6-10, rior(2E) 15-6-0 to -0-4, Interior (1) 2 t and right exposed d;C-C for member shown; Lumber I E 7-16; Pr=20.0 ps OL = 1.15); Pg=20.0 ps OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.	BCDL=6. (envelope Interior (1 20-0-0, E 5-0-4 to 3 ed ; end v rs and fo DOL=1.60 sf (roof LL f; Pf=20.4 0; Rough 10, Lu=50	Opsf; h=25ft; ( a) and C-C ) 2-6-10 to Exterior(2R) 35-5-4 zone; vertical left an rcces & MWFR ) plate grip L: Lum DOL= 4 psf (Lum DC Cat B; Partia 0-0-0	d 2S 1.15 DL = Ily	stru cho the 15) Gra or t	ictural w ord and 1 bottom phical p he orien tom cho	rood sh I/2" gyp chord. ourlin re tation o rd.	presentation doe of the purlin along	ed directly to the top be applied directly to as not depict the size
	Max Grav 2=1844 (L (Ib) - Maximum Com Tension	_C 49), 10=1787 (LC	51) ⁴⁾ 5)	design. This truss ha	snow loads have	for great	er of min roof	live					
TOP CHORD	1-2=0/45, 2-3=-3636	6/0, 3-5=-2367/55, =-2002/86, 8-10=-267	79/2 EV	overhangs n	psf or 2.00 times on-concurrent wit	h other li	ve loads.						
BOT CHORD	2-19=0/2974, 18-19 16-17=0/3060, 15-10	=0/318, 17-19=0/300	4, 7) 8)	<ul> <li>7) All plates are MT20 plates unless otherwise indicated.</li> <li>8) Plates checked for a plus or minus 5 degree rotation</li> </ul>							RO		
WEBS	3-16=-1338/71, 14-1 5-14=-705/54, 6-14= 8-13=-860/75, 8-11= 3-18=0/714	19, 10	<ul> <li>10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle</li> <li>3-06-00 tall by 2-00-00 wide will fit between the bottom</li> </ul>							A			
NOTES 1) Unbalance this design	ed roof live loads have n.	12	chord and any other members, with BCDL = 10.0psf. 11) Refer to girder(s) for truss to truss connections. 12) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.										

13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK Affiliate

GILD


June 11,2025

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1N	Piggyback Base	2	1	Job Reference (optional)	174084204

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:25 ID:7YJk?xIdl2EdcNuqjYJ11?zqq4K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

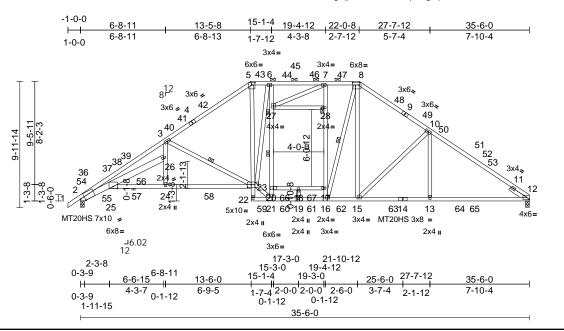


Scale = 1:86.2

# Plate Offsets (X, Y): [2:0-1-13,0-2-13], [5:0-7-12,0-2-11], [7:0-6-4,0-2-4], [11:0-3-2,0-1-4]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.86	<b>DEFL</b> Vert(LL)	in -0.26		l/defl >999	L/d 360	PLATES MT20	<b>GRIP</b> 244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.44		>972	240	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.27	11	n/a	n/a	MT20HS	187/143
BCLL BCDL	0.0* 10.0	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.09	20-21	>999	240	Weight: 242 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP SS *Except* 5-17:2x4 SP No.3, 1 2x4 SP No.3 Right 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (4-3 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-156 (L Max Grav 2=1776 (I (lb) - Maximum Com Tension 1-2=0/45, 2-3=-3411 5-6=-1692/75, 6-7=- 9-11=-2486/0, 11-12 2-20=0/2778, 20-21=	7-14:2x4 SP No.2 • 1-6-0 athing directly applied -14 max.): 5-7. applied. 3-18, 6-16, 7-16, 6-18 (1=0-3-8 C 14) .C 49), 11=1763 (LC 5 pression/Maximum /0, 3-5=-2199/46, 1569/83, 7-9=-1947/7	, 3 51) 4) 5) 0, 6) 7)	Vasd=95mpł II; Exp B; Enn Exterior(2E) 13-7-12, Exter 18-8-0 to 22- (1) 27-0-12 to exposed ; enn members ann Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 j overhangs no Provide adec All plates are	7-16; Vult=120mp 7; TCDL=6.0psf; B: Closed; MWFRS (e- 1-0-0 to 2-6-10, Ir erior(2R) 13-7-12 to 0-8, Exterior(2R) 2 0-36-6-0 zone; can d vertical left and id forces & MWFRS =1.60 plate grip D 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 0L = 1.15); Is=1.0; y; Cs=1.00; Ct=1.1: snow loads have to so for 2.00 times flor on-concurrent with quate drainage to p MT20 plates unle ed for a plus or mit ter	CDL=6.envelope therior (1 o 18-8-C 22-0-8 to tilever like S for rea OL=1.60 (roof LL Pf=20.4 Pf=20.4 Pf=20.4 Pf=20.4 or great at roof lo or great at roof lo or great at roof lo ss other	Dpsf; h=25ft; ( ) and C-C ) 2-6-10 to ) 1. Interior (1) . 27-0-12, Intt and right isosed; C-C for ctions shown ) : Lum DOL= + psf (Lum DC Cat B; Partia )-0-0 isidered for th er of min roof pad of 15.4 p; re loads. water ponding wise indicate	erior ; 1.15 DL = Illy his live sf on g. d.	stru cho the 14) Gra or t bot	uctural word and 1 bottom aphical p he orien tom cho <b>CASE(S</b>	ood sh //2" gyţ chord. urlin re tation c rd. <b>)</b> Sta	requires that a mi leathing be applie osum sheetrock b presentation doe of the purlin along Indard	inimum of 7/16" ad directly to the top be applied directly to as not depict the size g the top and/or
WEBS NOTES 1) Unbalance this design	16-17=-124/126, 15- 13-15=0/1986, 11-13 3-18=-1243/41, 7-15 9-15=-738/64, 6-16= 19-21=0/333, 3-21=0 6-18=-31/345 ed roof live loads have	16=0/1516, 3=0/1986 =0/686, 9-13=0/381, :-484/72, 7-16=-64/30 0/722, 16-18=0/1560,	7, 11	This truss ha chord live loa ) * This truss h on the bottor 3-06-00 tall b chord and ar ) Bearing at jo using ANSI/1 designer sho ) This truss ha load of 250.0 panels and a	s been designed fr ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil yy other members, int(s) 2 considers p TPI 1 angle to grain uld verify capacity is been designed fr b live and 3.0lb do t all panel points a d, nonconcurrent v	with any for a live where I fit betw with BC parallel to formula of bear or a move ad locator long the	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf o grain value a. Building ng surface. ving concentr ted at all mid Top Chord a	Dpsf om ated		W. CHILLEY	25	SEA 0363	L 22 EER ALU

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




G mm June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage.

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1M	Attic	1	1	Job Reference (optional)	174084205

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:25 ID:ov1h6k2eKVYRZ7Y3PkKuegzqpxc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

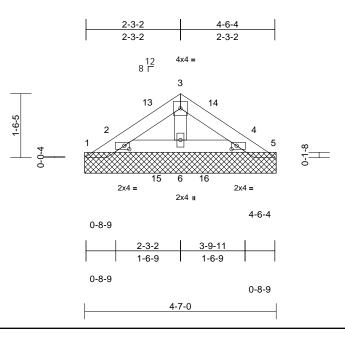


Scale = 1:91.2

## Plate Offsets (X, Y): [2:0-4-1,Edge], [5:0-3-0,0-2-3], [8:0-6-4,0-2-4], [23:0-3-8,0-2-8]

		1	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.98	Vert(LL)		25-26	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.48	25-26	>885	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.31	12	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.10	25-26	>999	240		
BCDL	10.0						. ,					Weight: 268 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS JOINTS REACTIONS	10.0 2x4 SP No.2 2x4 SP SS *Except* 23-22:2x4 SP No.3, 2x4 SP No.3 *Excep SP No.2 Right 2x4 SP No.3 Structural wood shee except 2-0-0 oc purlins (3-1 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 27, 28 (size) 2=0-3-8, 1 Max Horiz 2=151 (LC Max Grav 2=1903 (L (lb) - Maximum Com Tension 1-2=0/45, 2-3=-3696 5-6=-1918/41, 6-7=- 8-10=-2145/32, 10-1 2-25=0/2997, 25-26- 23-24=0/3064, 22-22 21-22=-165/44, 19-2 15-16=0/1679, 13-15 18-20=0/25, 17-18=0 6-23=-1285/37, 21-2 6-23=-38/1074, 20-2	2-26:2x6 SP DSS, 22-14,20-17:2x4 SP N t* 6-21,7-16,27-28:2x • 1-6-0 athing directly applied 0-7 max.): 5-8. applied. 3-23, 21-27, 8-16 12=0-3-8 2 13) .C 50), 12=1821 (LC 4 pression/Maximum 5/0, 3-5=-2442/0, 1705/45, 7-8=-1772/4 2=-2687/0 =0/334, 24-25=0/3005 3=-119/185, 1=0/1753, 16-19=0/1 5=0/2152, 12-13=0/21 53=0/2167, 1:=-1004/0, -921/5, 16-17=-337/8	1) 2) No.2 4 1, 3) 52) 5) 2, 7) 52, 5) 52, 10	Unbalanced this design. Wind: ASCE Vasd=95mpf II; Exp B; Enn Exterior(2E) 13-6-0, Exter to 22-0-8, Ex 27-0-12 to 35 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 y overhangs ne Provide adec All plates are Plates check about its cen This truss ha chord live loa )* This truss h on the bottom 3-06-00 tall b chord and ar ) Bearing at jo	roof live loads have 7-16; Vult=120mph a; TCDL=6.0psf; BC closed; MWFRS (e 1-0-0 to 2-6-10, In ior(2R) 13-6-0 to 1 terior(2R) 22-0-8 tt i-4-4 zone; cantilev d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; r; Cs=1.00; Ct=1.10 snow loads have b s been designed fc cosf or 2.00 times fla on-concurrent with juate drainage to p MT20 plates unlee ed for a plus or mir	In (3-sec CDL=6. nvelope terior (1 8-6-4, I 0 27-0-1 ver left a ght exp 3 for rea DL=1.6( (roof LL Pf=20.4) Rough 0, Lu=50 een cor or greate at roof k other lin revent v so other hus 5 do or a 10.0 vith any for a liv where I fit betw with BCC	considered for considered for Dpsf; h=25ft; ( ) and C-C ) 2-6-10 to nterior (1) 18- 12, Interior (1) and right 12, Interior (1) and right 10, Interior (1) a	r Cat. -6-4 ; 1.15 DL = live sf on g. d. - g. d. - - - - - - - - - - - - - - - - - -	13) This stru cho the 14) Gra or t bott 15) Atti LOAD (	s truss d loctural w rd and 1 bottom i phical p he orien tom choi c room c CASE(S	lesign i ood sh //2" gyj chord. urlin re tation o d. checke ) Stal	requires that a mi neathing be applie pourn sheetrock b apresentation doe of the purlin along d for L/360 deflect	nimum of 7/16" ed directly to the top be applied directly to ss not depict the size of the top and/or stion.
	24-26=0/342, 3-26=0	3/628, 27-28=-41/32 0/758, 18-19=-79/47, =-739/65, 7-27=-125/3	12	) This truss ha load of 250.0	uld verify capacity s been designed fo lb live and 3.0lb de	or a mov ad loca	ving concentra ted at all mid				in the	AC AGIN	EERALIU
NOTES	0 20-0/1001				t all panel points al d, nonconcurrent w							100000	14 2025

June 11,2025


Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	PB1B	Piggyback	1	1	Job Reference (optional)	174084206

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:37 Page: 1 ID:86Z0xpUKYNDXiX59_h3S4gzqsKh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

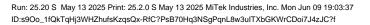


Scale = 1:27.6

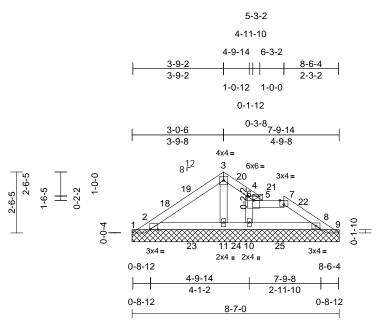
# Plate Offsets (X, Y): [2:0-1-7,Edge], [4:0-1-7,Edge]

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20:	21/TPI2014	CSI TC BC WB Matrix-AS	0.13 0.19 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	<b>GRIP</b> 244/190 FT = 20%
	6=4-7-0 Max Horiz 1=-21 (LC Max Uplift 1=-81 (LC (LC 17), 5 Max Grav 1=249 (LC	applied. 2=4-7-0, 4=4-7-0, 5= 2 14) 2 42), 2=-1 (LC 16), 4 3=-79 (LC 43) 2 40), 2=343 (LC 48) 2 44), 5=251 (LC 52)	6 4-7-0, 7 8 4=-3 9 ), 1	<ul> <li>Plate DOL='</li> <li>1.15 Plate D</li> <li>Exp.; Ce=1.</li> <li>Unbalanced design.</li> <li>Plates check about its cer</li> <li>Gable studs</li> <li>This truss ha chord live lo</li> <li>* This truss lo</li> <li>on the botton 3-06-00 tall</li> </ul>	res continuous boi spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	f; Pf=15.4 D; Rough 10 been cou ninus 5 d tom chou oc. for a 10. with any d for a liv as where vill fit betv	<ul> <li>\$\$ psf (Lum DC Cat B; Partia</li> <li>\$\$ partia</li> <li>\$\$ partia</li> <li>\$\$ psgree rotation</li> <li>\$\$ d bearing.</li> <li>\$\$ psf bottom</li> <li>\$\$ other live loa</li> <li>\$\$ e load of 20.0</li> <li>\$\$ a rectangle</li> </ul>	DL = ally his n ads. 0psf					
FORCES	(lb) - Maximum Com Tension 1-2=-25/56, 2-3=-11	pression/Maximum	1	<ol> <li>Provide med bearing plate</li> </ol>	ny other members chanical connection e capable of withs joint 4, 81 lb uplift	n (by oth tanding 1	lb uplift at jo	oint 2,					
<ul><li>this design</li><li>2) Wind: ASC</li><li>Vasd=95m</li></ul>	4-5=-9/55 2-6=-18/47, 4-6=-18 3-6=-210/7 ed roof live loads have 1. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed: MWERS (er	been considered for (3-second gust) DL=6.0psf; h=25ft; C	1	joint 5, 1 lb u 2) This truss ha load of 250.0 panels and a Bottom Cho 3) This truss de structural wo	plift at joint 2 and as been designed Db live and 3.0lb o at all panel points rd, nonconcurrent esign requires tha bod sheathing be a /2" gypsum sheeti	3 lb uplit for a mo dead loca along the with any t a minim applied d	t at joint 4. ving concentr ted at all mid Top Chord a other live loa um of 7/16" irectly to the	rated I and ads. top		4		TH CA	ROLIN

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- the bottom chord. 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	PB1A	Piggyback	1	1	I74084207 Job Reference (optional)	



Page: 1

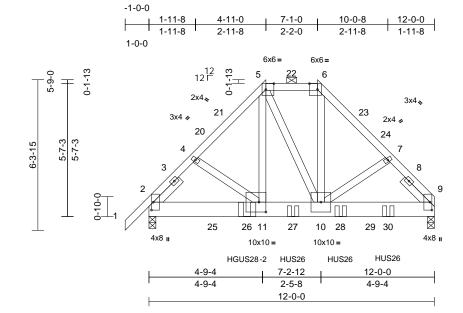


Scale = 1:47.7

### Plate Offsets (X, Y): [2:0-3-11.Edge], [5:0-2-14.0-2-2], [7:0-2-0.Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.29 0.43 0.40	<b>DEFL</b> Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly (size) 1=8-7-0, 2 10=8-7-0, Max Horiz 1=39 (LC Max Uplift 1=-272 (L 9=-171 (L 11=-176 ( Max Grav 1=195 (LC 8=478 (LC 10=339 (L (1b) - Maximum Com Tension	applied. 2=8-7-0, 8=8-7-0, 9=8 11=8-7-0 13) C 66), 2=-17 (LC 16) C 70), 10=-13 (LC 17 LC 79) C 64), 2=529 (LC 66), C 70), 9=222 (LC 82), C 91), 11=300 (LC 9	3) 3-7-0, (, 4) (), (), (), (), (), (), (), (), (), ()	Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2E) Exterior(2E) right exposer for members Lumber DOL Truss design only. For stt see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Provide aded Plates check about its cen		CDL=6. envelope erior (1) rior (1) re; cant and right FRS for OL=1.60 n the pla d (norm nd Deta signer as (roof LL Pf=20.4 Rough 0, Lu=56 been cor- prevent vision	Dipsf; h=25ft; C and C-C 3-3-5 to 3-9-8 3-3-5 to 3-9-8 5-3-8 to 6-3-8 lever left and tt exposed;C-1 reactions sho ane of the trus ane	, C wn; ss ble, 11. .15 L = ly is	load par Bot 14) This stru cho the 15) See Det con 16) Gra or t bot	d of 250. nels and tom Cho s truss d uctural w ord and 1 bottom e Standa cail for C usult qua aphical p	.0lb live at all p pord, nor lesign i rood sh l/2" gyp chord. ard Indu onnect lified b uurlin re tation o rd.	e and 3.0lb dead vanel points alon nconcurrent with requires that a m veathing be appli posum sheetrock ustry Piggyback ion to base truss uilding designer, spresentation do of the purlin alon	ed directly to the top be applied directly to Truss Connection as applicable, or es not depict the size
BOT CHORD WEBS <b>NOTES</b>	4-5=-20/249, 5-6=-3 7-8=-353/41, 8-9=-6 2-11=-101/159, 10-1 3-11=-224/209, 6-10 ed roof live loads have	57/52, 5-7=-277/41, /107 11=0/159, 8-10=-65/2 0=-297/89, 4-6=-310/8	9) 10 74 39 11	Gable studs ) This truss ha chord live loa ) * This truss h on the bottor 3-06-00 tall b chord and ar ) Provide mec bearing plate 2, 272 lb upli	es continuous botte spaced at 4-0-0 oc is been designed fr ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide will y other members. hanical connection e capable of withsta ft at joint 1, 171 lb 11, 13 lb uplift at jo	e. or a 10.0 vith any for a liv s where I fit betw (by oth anding 1 uplift at	) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 7 lb uplift at jo joint 9, 176 lb	psf om o pint		4.11111		SEA 0363	22

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint
- 2, 272 lb uplift at joint 1, 171 lb uplift at joint 9, 176 lb uplift at joint 11, 13 lb uplift at joint 10 and 17 lb uplift at joint 2.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	C2GR	Hip Girder	1	3	Job Reference (optional)	174084210

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:29 ID:g9PmcjTCC9TRzSs6xRwI5rzqsCz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

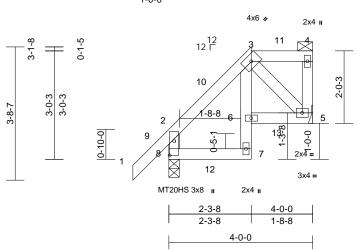
Page: 1



Scale = 1:48.4

3cale = 1.40.4														
Plate Offsets (2	X, Y): [2:0-4-0,0-0-15	5], [5:0-4-1,0-3-0], [6:0	)-4-1,0-3-(	0], [9:0-4-0,0-0	-15], [11:0-3-8,0-5	5-0]	-					-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.24 0.21 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.04 0.01	(loc) 11-18 11-18 9 11-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 299 lb	<b>GRIP</b> 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	1-6-0		5) d or	Vasd=95mpl II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced	7-16; Vult=120m r; TCDL=6.0psf; I closed; MWFRS bosed ; end vertic =1.60 plate grip [ 7-16; Pr=20.0 ps OL = 1.15); Is=1.0 b; Cs=1.00; Ct=1. snow loads have	SCDL=6.0 envelope al left and DOL=1.60 if (roof LL ; Pf=20.4 ); Rough 10, Lu=50	Opsf; h=25ft; ( e); cantilever l d right expose ) L: Lum DOL=1 4 psf (Lum DC Cat B; Partial 0-0-0	eft d; I.15 DL = Ily	1) De In Ur	crease=" hiform Lo Vert: 1-{ oncentra	now (ba 1.15 bads (l 5=-51, ted Lo =-3232	alanced): Lumbe b/ft) 5-6=-61, 6-9=-5 ads (lb)	er Increase=1.15, Pla 1, 12-16=-20 (B), 28=-1545 (B),	ate
	bracing. (size) 2=0-3-8, 9 Max Horiz 2=87 (LC Max Grav 2=4359 (I (lb) - Maximum Com Tension 1-2=0/83, 2-4=-463 5-6=-3222/0, 6-7=-4 2-11=0/3053, 10-11 5-11=-362/2884, 5-7	87) LC 37), 9=4920 (LC 4 npression/Maximum 1/0, 4-5=-4586/0, 1651/0, 7-9=-4685/0 =0/3169, 9-10=0/314	7) (7) (7) (7) (8) (9) (1) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	load of 12.0 overhangs n Provide adec Plates check about its cen ) This truss ha chord live loa ) * This truss f on the bottor 3-06-00 tall b	is been designed psf or 2.00 times on-concurrent wit quate drainage to ed for a plus or m ter. is been designed ad nonconcurrent has been designe n chord in all aree by 2-00-00 wide w y other members	flat roof lo h other lin prevent v innus 5 de for a 10.0 with any d for a liv as where rill fit betv	bad of 15.4 ps ve loads. water ponding egree rotation 0 psf bottom other live load ve load of 20.0 a rectangle	sf on j. ds. )psf					110m	
<ul> <li>(0.131"x3" Top chords oc.</li> <li>Bottom chu staggered Web connu</li> <li>2) All loads a except if m CASE(S) s provided tu unless oth</li> </ul>	to be connected toge ) nails as follows: s connected as follows: ords connected as follows: ords connected as foll at 0-5-0 oc. ected as follows: 2x4 re considered equally oted as front (F) or ba section. Ply to ply com o distribute only loads erwise indicated. ad roof live loads have h.	s: 2x4 - 1 row at 0-9-0 lows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, ick (B) face in the LO. nections have been noted as (F) or (B),	) 13 14 AD 15	<ul> <li>This truss ha load of 250.0 panels and a Bottom Chor</li> <li>Graphical pu or the orienta bottom chorc</li> <li>Use Simpsoi 6-10d Truss) connect truss</li> <li>Use Simpsoi Truss) or eqi 6-0-12 from 1 to back face</li> </ul>	is been designed blb live and 3.01b of the all panel points d, nonconcurrent rlin representatio ation of the purlin	for a movidead loca along the with any h does no along the S28-2 (3 4-1-8 foro of botton 26 (14-11 t 2-0-0 oc 0-12 to c	tted at all mid a Top Chord a other live load ot depict the s a top and/or 6-10d Girder, n the left end n chord. Od Girder, 4-1 c max. starting onnect truss(6)	nd ds. ize to 0d g at es)		1 million		SEA 0363	EER A	

June 11,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof
	M1N	Half Hip	1	1	Job Reference (optional)

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:35 ID:0TCESkN5IVqpbfq3aa6L?4zquJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





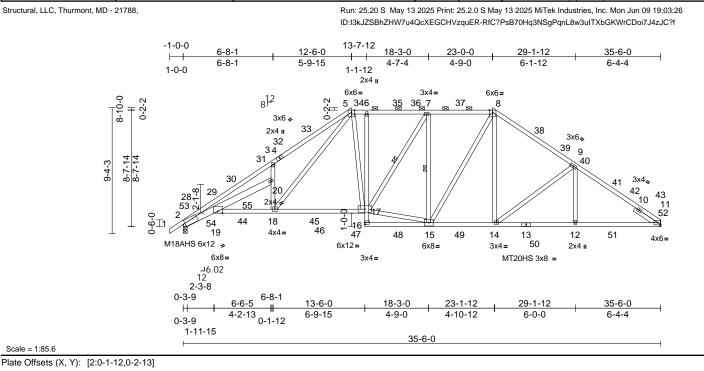
Scale = 1:32

Plate Offsets (X, Y): [8:0-4-12,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.22 0.41 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.01 0.00	(loc) 7 7 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 25 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar applied or 10-0-0 oc anical, 8=0-3-8 13) 2 13)	nd 9) ; 10	load of 12.0 overhangs in Provide ade All plates and Plates check about its cer This truss ha chord live lo 0) * This truss lo on the bottoo 3-06-00 tall chord and at	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members er(s) for truss to to	flat roof k h other liv prevent v ess other ninus 5 de for a 10.0 with any d for a liv as where vill fit betw s. russ conr	bad of 15.4 p ve loads. water pondin wise indicate eggree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott mections.	osf on ng. ed. n ads. 0psf tom				vveguit. 20 ID	1 1 = 2070
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/83, 2-3=-236/ 4-5=-267/28, 2-8=-3	npression/Maximum 39, 3-4=-30/30, 32/136	12	<ul> <li>12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 5.</li> <li>13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.</li> </ul>									
<ul> <li>this design</li> <li>Wind: ASC</li> <li>Vasd=95m</li> <li>II; Exp B; E</li> <li>Exterior(21</li> <li>vertical lef</li> <li>forces &amp; M</li> <li>DOL=1.60</li> <li>TCLL: ASC</li> <li>Plate DOL</li> <li>1.15 Plate</li> </ul>	3-5=-207/141 ad roof live loads have b. CE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left t and right exposed;C- WFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf ( .=1.15); Pg=20.0 psf; F DOL = 1.15); IS=1.0; 1 0.0 Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=1 Pf=20.4 psf (Lum DO Rough Cat B; Partial	Lo Cat. end .15 L =	<ol> <li>Graphical pι</li> </ol>	Irlin representation ation of the purlin d.	n does no	ot depict the				Ø	ORTH CA ORTH CA ORTH CA ORTH CA	• –

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 3) 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

G


mmm

June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

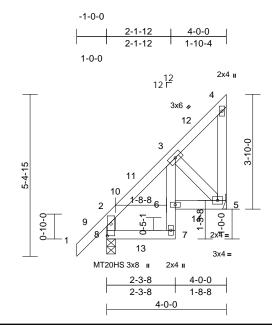
Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1Q	Нір	1	1	Job Reference (optional)	174084213

Scale = 1:85.6



,	X, Y): [2:0-1-12,0-2-1	5] I										1	
Loading	(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof) Snow (Pf/Pg)	20.0 20.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.97 0.97	Vert(LL) Vert(CT)	-0.28	19-20 19-20	>999 >908	360 240	MT20 MT20HS	244/190 187/143
TCDL	20.4/20.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.47	19-20	>908 n/a	240 n/a	M18AHS	186/179
BCLL	0.0*	Code		/TPI2014	Matrix-AS	0.72	Wind(LL)	0.10		>999	240		100/110
BCDL	10.0											Weight: 247 lb	FT = 20%
UMBER OP CHORD BOT CHORD VEBS SILIDER SRACING OP CHORD VEBS	except 2-0-0 oc purlins (4-0 Rigid ceiling directly	0-2:2x6 SP DSS 2-0-0 athing directly applied -4 max.): 5-8.	2) I, 3)	Vasd=95mpH II; Exp B; En Exterior(2E) 12-6-0, Exter to 23-0-0, Exter to 23-0-0, Exter 28-0-4 to 35- end vertical I forces & MW DOL=1.60 pl TCLL: ASCE	7-16; Vult=120m ;; TCDL=6.0psf; E closed; MWFRS ( 1-0-0 to 2-6-10, 1 ior(2R) 12-6-0 to terior(2R) 23-0-0 5-4 zone; cantilevent eft and right expo FRS for reactions ate grip DOL=1.6 7-16; Pr=20.0 psf 15); Pg=20.0 psf	SCDL=6. envelope nterior (1 17-6-4, I to 28-0-4 ver left ar sed;C-C s shown; 0 f (roof LI	Dysf; h=25f; h and C-C ) 2-6-10 to therior (1) 17 h Interior (1) d right expos for members Lumber	-6-4 sed ; and 1.15	stru cho the 15) Gra or tl	ictural w rd and 1 bottom phical p he orien com choi	rood sh /2" gy chord. urlin re tation o rd.	presentation doe presentation doe of the purlin along	d directly to the top e applied directly to s not depict the siz
EACTIONS		1= Mechanical C 13)	4) 51)	Exp.; Ce=1.0	DL = 1.15); ls=1.0 ); Cs=1.00; Ct=1.1 snow loads have	0, Lu=5	0-0-0						
FORCES	(lb) - Maximum Com	pression/Maximum	5)	This truss ha	s been designed								
TOP CHORD	Tension 1-2=0/45, 2-3=-3380 5-6=-1849/55, 6-7=- 8-9=-2026/55, 9-11=	1845/58, 7-8=-1720/6	9, 6) 7)	overhangs n Provide adeo	osf or 2.00 times for- con-concurrent with uate drainage to MT20 plates unle	n other lin prevent	ve loads. water ponding	g.					
BOT CHORD	6-17=-333/54, 15-16	4=0/2038, 11-12=0/20	, 0)	8) Plates checked for a plus or minus 5 degree rotation about its center.								Rout	
WEBS	5-17=-26/730, 8-14= 9-12=0/366, 18-20=-	0/601, 9-14=-637/64, 917/119, 3-20=-533/ =-599/75, 7-17=-25/3	127,	* This truss h on the bottor 3-06-00 tall b	a nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	d for a liv is where ill fit betv	e load of 20.0 a rectangle veen the botto	)psf om		Care and the second sec	a's	O FESS	hill
NOTES				11) Refer to girder(s) for truss to truss connections.								- : :	
<ol> <li>Unbalance this design</li> </ol>	ed roof live loads have n.	been considered for		using ANSI/1 designer sho ) This truss ha load of 250.0 panels and a	int(s) 2 considers PI 1 angle to grai uld verify capacity s been designed lb live and 3.0lb of t all panel points d, nonconcurrent	n formul of bear for a mo lead loca along the	a. Building ing surface. /ing concentr ited at all mid e Top Chord a	ated		LI LEST.	A A A A A A A A A A A A A A A A A A A	SEA 0363 NGINI A. G	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




June 11,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1L	Jack-Closed	3	1	Job Reference (optional)	174084214

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:34 ID:XeUIqW8U0rrQkqSG2RmBKMzquKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:38.5

# Plate Offsets (X, Y): [8:0-4-12,0-1-8]

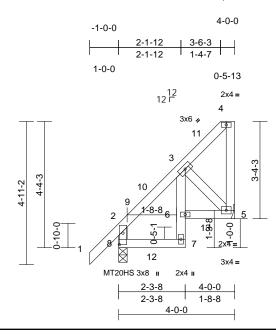
							-						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	-0.01	7	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.39	Vert(CT)	-0.01	7	>999	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	-0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MS		Wind(LL)	0.00	5-6	>999	240		
BCDL	10.0											Weight: 29 lb	FT = 20%
LUMBER			F	) This truss ha	as been designed	for great	er of min roo	f live					
TOP CHORD	2x4 SP No.2				psf or 2.00 times								
BOT CHORD	2x4 SP No.2 *Excep	t* 7-3:2x4 SP No.3			on-concurrent wit								
WEBS	2x4 SP No.3		6	) All plates ar	e MT20 plates unl	ess other	wise indicate	ed.					
BRACING			7		ked for a plus or m	ninus 5 de	egree rotatio	n					
TOP CHORD	Structural wood she	athing directly appli	ed or	about its cer									
	4-0-0 oc purlins, ex		6		as been designed								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	ic ,		ad nonconcurrent								
	bracing.		ç		has been designe			.0pst					
REACTIONS	(size) 5= Mecha	inical, 8=0-3-8			m chord in all area by 2-00-00 wide w			tom					
	Max Horiz 8=109 (LC	C 13)			ny other members		veen the bot	lom					
	Max Uplift 5=-46 (LC	; 13)	1		ler(s) for truss to t		nections						
	Max Grav 5=324 (LC	C 43), 8=354 (LC 40			chanical connectio			to					
FORCES	(lb) - Maximum Com	pression/Maximum		,	e capable of withs		,						
	Tension			5.		5							
TOP CHORD	2-8=-332/116, 1-2=0	, , ,	1	2) This truss ha	as been designed	for a mor	ving concent	rated					
	3-4=-122/81, 4-5=-2			load of 250.	Olb live and 3.0lb o	dead loca	ated at all mid	d					
BOT CHORD	7-8=-164/119, 6-7=-	47/268, 3-6=-1/264,	,		at all panel points								
	5-6=-208/157			Bottom Cho	rd, nonconcurrent	with any	other live loa	ads.					
WEBS	3-5=-213/235		L	OAD CASE(S)	Standard								
NOTES												mun	1111
,	ed roof live loads have	been considered fo	or									WITH CA	ROUN
this design		( <b>0</b> ) )									N	R	. Alle
	CE 7-16; Vult=120mph		<b>•</b> •								5.	O': ESS	101. Vila
vasd=95m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.							- 2	20	20	1 to ser

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ca II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-1-12, Interior (1) 2-1-12 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

SEAL 036322 June 11,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	M1M	Half Hip	1	1	I74084215 Job Reference (optional)	

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:34 ID:0w9NJ6zmm2YeWREXaRVMdvzquJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:39.7

# Plate Offsets (X, Y): [8:0-4-12,0-1-8]

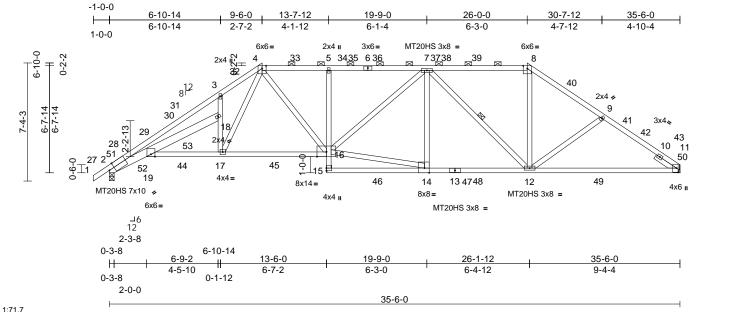
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.39 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 -0.01 0.00	(loc) 7 7 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 28 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=109 (LC Max Grav 5=324 (LC (lb) - Maximum Com Tension 1-2=0/66, 2-3=-242/ 4-5=-266/84, 2-8=-3 7-8=-136/119, 6-7=- 5-6=-172/157 3-5=-213/187	athing directly applie cept end verticals. applied or 10-0-0 o inical, 8=0-3-8 C 13) C 13) C 43), 8=354 (LC 40 pression/Maximum 47, 3-4=-122/81, 32/116	8) c 9) ) 10 ) 11	load of 12.0 overhangs n All plates arn Plates checl about its cer This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a !) Refer to girco bearing platt 5. Provide mec bearing platt 5. This truss ha load of 250.0 panels and a	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members ter(s) for truss to t chanical connectic e capable of withs as been designed Olb live and 3.0lb at all panel points rd, nonconcurrent	flat roof li h other li ess othen ininus 5 do for a 10.1 with any d for a liva as where vill fit betw s. russ conr n (by oth tanding 4 for a mo dead loca along the	oad of 15.4 g ve loads. rwise indicate agree rotatio 0 psf bottom other live loo e load of 20 a rectangle veen the bot nections. ers) of truss 16 lb uplift at ving concent ated at all mit a Top Chord	osf on ed. n ads. .0psf tom to joint trated d and					
this design 2) Wind: ASC Vasd=95m	ed roof live loads have CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed: MWEPS (or	(3-second gust) DL=6.0psf; h=25ft; (							L	A	ORTH CA	ROUT	

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ca II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-1-12, Interior (1) 2-1-12 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

SEAL 036322 June 11,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B1R	Нір	1	1	Job Reference (optional)	174084216

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:27 ID:8?uNhg_2swU5cWey6N4xA7znXOP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



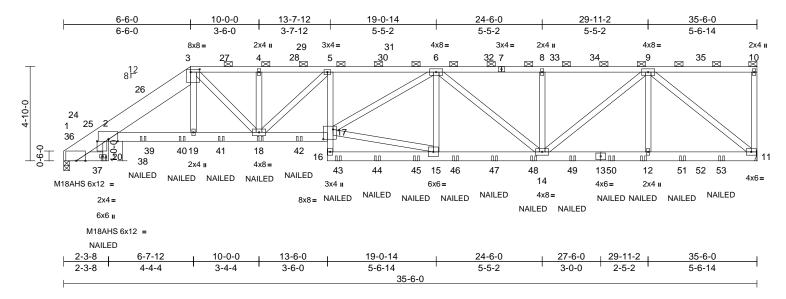
Scale = 1:71.7

### Plate Offsets (X, Y): [2:0-4-2,Edge], [11:0-3-2,0-1-4], [14:0-3-8,Edge]

Plate Olisets (.	A, T). [2.0-4-2,Euge],	[11.0-3-2,0-1-4], [14.0	J-3-6,Eugej										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014	<b>CSI</b> TC BC WB Matrix-AS	0.96 0.80 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.45 0.27 0.10	(loc) 12-22 12-22 11 18-19	l/defl >999 >946 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 222 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
	except 2-0-0 oc purlins (2-2 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=107 (LC Max Grav 2=1695 (L (lb) - Maximum Com Tension 1-2=0/45, 2-3=-3100 4-5=-2752/1, 5-7=-2 8-9=-2233/15, 9-11= 17-19=0/2470, 16-11 5-16=-531/70, 14-15	18-2:2x6 SP DSS - 1-6-0 athing directly applied -0 max.): 4-8. applied. 7-12 11= Mechanical C 13) C 47), 11=1581 (LC 4 pression/Maximum NO, 3-4=-3007/53, 737/2, 7-8=-1844/35, -2304/3 7=0/2162, 15-16=0/19 i=-42/248, 12-14=0/24	Vas II; E Extr 26- to 3 vert forc DOI 3) TCL Plat 1.15 Exp 4) Unt 60 Pro 7) All g 4, 8) Plat 64, abo	d=95mph xp B; Enc erior(2E) - erior(2E) - o-0, Exter 5-5-4 zon ical left ar es & MWI _=1.60 plat_ L: ASCE e DOL=1 5 Plate DC .; Ce=1.0 alanced s ign. t truss has d of 12.0 p thangs no vide adeq plates are es checkkut its cent		CDL=6. envelope tterior (1 30-9-4, I C-C for m shown; ) (roof LL Pf=20.2; Rough 0, Lu=50 eeen cor or great at roof ld other lip prevent v ss other nus 5 de	Opsf; h=25ft; a) and C-C b) 2-6-10 to 9 b) 14-6-4 to nterior (1) 30 exposed; er nembers and Lumber L: Lum DOL= 4 psf (Lum DC Cat B; Partia 3-0-0 hsidered for the er of min roof bad of 15.4 p ve loads. water ponding wise indicate eggree rotation	Cat. -6-0, -9-4 nd 1.15 DL = illy his f live sf on g. ed.	stru cho the 15) Gra or ti	ctural w rd and 1 bottom o phical p ne orient om chor CASE(S)	ood sh /2" gyş chord. urlin re tation o 'd. ) Sta	presentation doe of the purlin along ndard	ed directly to the top be applied directly to as not depict the size g the top and/or
WEBS NOTES 1) Unbalance this design	4-16=-8/972, 14-16= 7-14=-249/162, 7-12 9-12=-364/87, 17-18 3-18=-406/123, 4-17	/=-48/1191	, cho , 10) * Tr on t 3-00 cho 11) Ref 12) Bea usir des 13) This load	rd live loa his truss h he bottom 5-00 tall b rd and an er to girde ring at joi g ANSI/T igner sho s truss has I of 250.0	s been designed f d nonconcurrent as been designed n chord in all areas y 2-00-00 wide wi y other members, er(s) for truss to tru nt(s) 2 considers p PI 1 angle to grain uld verify capacity s been designed f lb live and 3.0lb du t all panel points a	with any for a liv s where Il fit betw with BC uss conr parallel to formula of bear or a move ead loca	other live load e load of 20.1 a rectangle veen the bott CDL = 10.0ps hections. to grain value a. Building ing surface. ving concentr tted at all mid	Opsf om f. ated		4	ì	SEA 0363	L

Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G mm June 11,2025

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B3GR	Half Hip Girder	1	2	Job Reference (ontional)	174084217

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:28 ID:wNVOkON4xA94VdrVIi5g_rzqtid-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale =	1:59
---------	------

Plate Offsets (X_Y)	[1:0-5-10,Edge], [2:0-5-11,Edge], [2:0-1-3,0-7-0], [3:0-5-8,0-1-12], [17:0-6-0,0-6-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.61	Vert(LL)	-0.28	16	>999	360	M18AHS	186/179
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.44	16	>947	240	MT20	244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.93	Horz(CT)	0.20	11	n/a	n/a	-	
BCLL	0.0*	Code		1/TPI2014	Matrix-MS		Wind(LL)	0.16	16	>999	240		
BCDL	10.0							0.110		- 000	2.10	Weight: 512 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 5-16:2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she: 6-0-0 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=109 (LC	t* 20-2:2x4 SP No.3, t* 15-17:2x4 SP No.: athing directly applie cept end verticals, ar 0-9 max.): 3-10. applied or 10-0-0 oc I1= Mechanical	2 d or nd 2)	(0.131"x3") n Top chords of staggered at Bottom chord staggered at Web connect All loads are except if note CASE(S) sec provided to of unless othern Unbalanced	be connected to iails as follows: connected as follo 0-9-0 oc, 2x4 - 1 ds connected as 0-9-0 oc, 2x4 - 1 ted as follows: 2x considered equa ad as front (F) or ction. Ply to ply oc listribute only loa wise indicated. roof live loads ha	ows: 2x10 row at 0- follows: 2: row at 0- t4 - 1 row Ily applied back (B) f onnection ds noted a	- 2 rows 9-0 oc. κ6 - 2 rows 9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	DAD	usir des 14) Pro bea 11. 15) One reco UPI doe 16) This load pan	ng ANSI, igner sh vide me ring pla e H2.5A commenc LIFT at j s not co s truss h d of 250. iels and	/TPI 1 a could ve chanic te capa Simps ded to o t(s) 1. ⁻ onsider nas bee .0lb live at all p	able of withstandin con Strong-Tie con connect truss to b This connection is lateral forces. en designed for a e and 3.0lb dead panel points along	mula. Building earing surface. others) of truss to ng 460 lb uplift at joint nectors pearing walls due to s for uplift only and moving concentrated located at all mid the Top Chord and
	Max Holiz 1=109 (LC Max Uplift 1=-356 (L Max Grav 1=2985 (L (Ib) - Maximum Com Tension	C 9), 11=-460 (LC 9) C 33), 11=3215 (LC	41	Vasd=95mpł II; Exp B; En	7-16; Vult=120m n; TCDL=6.0psf; l closed; MWFRS posed ; end vertic	BCDL=6.0 (envelope	Dpsf; h=25ft; e); cantilever	Cat. left	17) Gra or ti bott	phical p he orien tom cho	urlin re tation o rd.		
TOP CHORD	1-2=-1930/248, 2-3= 3-4=-6300/914, 4-5= 5-6=-7927/1157, 6-8 8-9=-5338/787, 9-10	-6300/914, =-5338/787,	5) /25	Lumber DOL TCLL: ASCE Plate DOL=1	=1.60 plate grip 7-16; Pr=20.0 ps .15); Pg=20.0 ps OL = 1.15); Is=1.	DOL=1.60 sf (roof LL f; Pf=20.4	) .: Lum DOL= I psf (Lum DO	1.15 DL =	diag 19) "NA	gonal or ILED" ir 48"x3.2	vertica ndicate 5") toe	al web shall not ex s 3-10d (0.148"x3 -nails per NDS gu	kceed 0.500in. 3") or 3-12d
BOT CHORD	1-20=-98/349, 2-20= 2-19= 700/4533, 18- 17-18=12-11/7997, 6-17=201/1201, 15- 14-15=950/6189.00	19=-703/4549, 16-17=-66/378,	6) 7) 8)	Unbalanced design. Provide adeo	); Cs=1.00; Ct=1. snow loads have quate drainage to MT20 plates unl	been cor	nsidered for the	nis g.			,		
WEBS	3-1063/485 3-18-	-392/2460	9) 10	Plates check about its cen ) This truss ha chord live loa ) * This truss h	ed for a plus or n	for a 10.0 with any d for a liv	egree rotation ) psf bottom other live loa e load of 20.0	ı ds.					
NOTES	4-18=-303/48,5-18= 15-17=-877/9690,6 6-15=-698/103,6-14 8-14=-353/54,9-14= 9-12=-118/716,9-11	=-4403/650	12	3-06-00 tall b chord and ar	by 2-00-00 wide v by other members er(s) for truss to t	vill fit betv 3.	veen the botto	om					
		inni										June	11,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Stonefield Rev 3-Elev 4-Roof	
	B3GR	Half Hip Girder	1	2	Job Reference (optional)	174084217

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Mon Jun 09 19:03:28 ID:wNVOkON4xA94VdrVli5g_rzqtid-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-51, 2-3=-51, 3-10=-61, 20-21=-20, 2-17=-20, 11-16=-20

Concentrated Loads (lb)

- Vert: 20=-217 (F), 18=-175 (F), 12=-175 (F), 38=-157
- (F), 40=-175 (F), 41=-175 (F), 42=-175 (F), 43=-175 (F), 44=-175 (F), 45=-175 (F), 46=-175 (F), 47=-175
- (F), 44=-175 (F), 45=-175 (F), 46=-175 (F), 47=-175 (F), 48=-175 (F), 48=-175 (F), 50=-175 (F), 51=-175

hin man

(F), 53=-175 (F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



