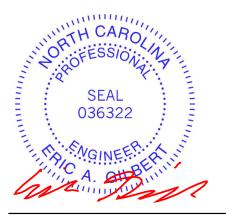


Trenco 818 Soundside Rd Edenton, NC 27932


Re: P03167-26413 1061 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I74074769 thru I74074798

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

June 10,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A01G	Half Hip Girder	1	2	Job Reference (optional)	174074769

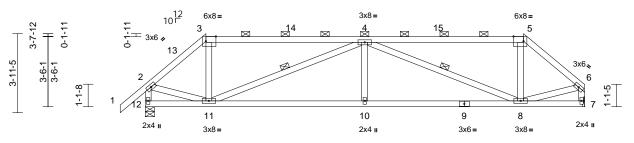
-1-3-0

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:41 ID:EkB6OtkM6LtI0DHwJBRPV6zx4hb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-9-14 6-8-7 11-8-11 16-9-0 21-11-0 1-9-14 4-10-8 5-0-4 5-0-4 5-2-0 1-3-0 21-11-0 NAILED 2x4 u 3x8 = 3x6= 3x6 = 2x4 6x8= 10 10 _____20 3 4 16 19 5 8 3x6 2-7-12 2-7-12 2-11-5 2 1-1-8 15 1 9 пп пп пп пп "n n пп пп пп \boxtimes 14 24 25 13 26 27 12 11 28 10 29 30 2x4 23 2x4 II 2x4 I 4x6= 3x10= 3x8= 3x6= NAILED 1-8-2 6-8-7 11-8-11 16-9-0 21-11-0 1-8-2 5-0-4 5-0-4 5-0-4 5-2-0 Scale = 1:53.9 Plate Offsets (X, Y): [3:0-6-4,0-2-0] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.22 Vert(LL) -0.06 12-13 >999 240 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.33 Vert(CT) -0.12 12-13 >999 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 NO 0.28 0.02 9 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS BCDL 10.0 Weight: 269 lb FT = 20% LUMBER 2) All loads are considered equally applied to all plies, LOAD CASE(S) Standard except if noted as front (F) or back (B) face in the LOAD Dead + Snow (balanced): Lumber Increase=1.15, Plate TOP CHORD 2x4 SP No 2 1) CASE(S) section. Ply to ply connections have been BOT CHORD 2x6 SP No 2 Increase=1.15 provided to distribute only loads noted as (F) or (B), WEBS 2x4 SP No.2 Uniform Loads (lb/ft) unless otherwise indicated. Vert: 1-2=-51, 2-3=-51, 3-8=-61, 9-15=-20 BRACING Unbalanced roof live loads have been considered for 3) Concentrated Loads (lb) TOP CHORD Structural wood sheathing directly applied or this design. Vert: 6=-26 (B), 11=-25 (B), 3=-38 (B), 12=-25 (B), 6-0-0 oc purlins, except end verticals, and Wind: ASCE 7-10; Vult=115mph (3-second gust) 4) 5=-26 (B), 16=-26 (B), 17=-26 (B), 18=-26 (B), 2-0-0 oc purlins (6-0-0 max.): 3-8. Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. BOT CHORD 19=-26 (B), 20=-26 (B), 21=-26 (B), 22=-26 (B), Rigid ceiling directly applied or 10-0-0 oc II; Exp B; Enclosed; MWFRS (envelope) exterior zone; 23=-28 (B), 24=-25 (B), 25=-25 (B), 26=-25 (B), bracing, Except: cantilever left and right exposed ; end vertical left and 27=-25 (B), 28=-25 (B), 29=-25 (B), 30=-25 (B) 6-0-0 oc bracing: 14-15 right exposed; Lumber DOL=1.60 plate grip DOL=1.60 REACTIONS 9= Mechanical, 15=0-5-8 (size) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Max Horiz 15=81 (LC 7) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 Max Uplift 9=-284 (LC 7), 15=-292 (LC 7) psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Max Grav 9=1182 (LC 28), 15=1271 (LC 2) Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0 FORCES (Ib) - Maximum Compression/Maximum This truss has been designed for greater of min roof live Tension load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on TOP CHORD 1-2=0/54, 2-3=-1140/304, 3-4=-2470/622, overhangs non-concurrent with other live loads. 4-5=-2470/622, 5-7=-2105/521, 7) Building Designer/Project engineer responsible for 7-8=-2105/521, 8-9=-1090/283, verifying Rain Load = 5.0 (psf) covers rain loading TH CAL 2-15=-1312/301 requirements specific to the use of this truss component. ORTH BOT CHORD 14-15=-71/48, 13-14=-277/872, Provide adequate drainage to prevent water ponding. 8) 12-13=-746/2930, 10-12=-746/2930, 9) This truss has been designed for a 10.0 psf bottom 9-10=-32/62 chord live load nonconcurrent with any other live loads. WEBS 3-14=-274/101, 3-13=-425/1765, 10) * This truss has been designed for a live load of 20.0psf Warmannen 4-13=-407/155, 5-13=-505/122, 5-12=0/285, on the bottom chord in all areas where a rectangle 5-10=-906/236, 7-10=-410/156, 3-06-00 tall by 2-00-00 wide will fit between the bottom WILLING THE 8-10=-548/2242, 2-14=-251/985 chord and any other members. SEAL NOTES 11) Refer to girder(s) for truss to truss connections. 036322 1) 2-ply truss to be connected together with 10d 12) Provide mechanical connection (by others) of truss to (0.131"x3") nails as follows: bearing plate capable of withstanding 284 lb uplift at joint 9 and 292 lb uplift at joint 15. Top chords connected as follows: 2x4 - 1 row at 0-9-0 13) Graphical purlin representation does not depict the size oc or the orientation of the purlin along the top and/or Bottom chords connected as follows: 2x6 - 2 rows bottom chord. staggered at 0-9-0 oc. G Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

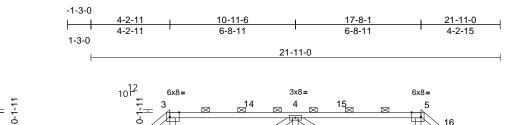
June 10,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A02	Нір	1	1	Job Reference (optional)	174074770

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:43 ID:mG6JdjW3LqbIsSvTGP6BnJzx4ht-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		F	3-2-1		10-11-6			18-8				21-11-0	
Scale = 1:57.5		, i	3-2-1	ļ	7-9-5		1	7-9	-5		•	3-2-4	
Plate Offsets (X, Y): [3:	0-6-0,Edge],	[5:0-6-0,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.90 0.67 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.18 0.04	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%
5-8-3 od 2-0-0 od BOT CHORD Rigid co bracing. WEBS 1 Row a REACTIONS (size) Max Hori: Max Uplif Max Grav FORCES (b) - Ma Tension TOP CHORD 1-2e0/5 4-5=-74 6-7=-85 BOT CHORD 11-12=- 8-10=-2 WEBS 3-11=-2	No.2 No.2 No.2 al wood she c purlins, ex; purlins (4-1 siling directly at midpt 7 = Mecha z 12=86 (LC 7 7=862 (LC 4, 2-3=-959/ 4, 2-3=-959/ 7, 2-3=-959/ 4, 2-5=-6/ 12, 2-5=-6/ 12, 2-5=-6/ 12, 2-5=-7/ 5,	C 10), 12=-87 (LC 1 C 2), 12=951 (LC 2) pression/Maximum 127, 3-4=-731/122, 976/133, 2-12=-94: 1=-248/1603, 3=-24/27 956/177, 4-10=0/32 3/348, 2-11=-96/78	ied or and 3 () 3 () 3 () 4 () 5 () 7 () 5 () 7 () 5 () 7 () 5 () 7 () 7	 Vasd=91mpl II; Exp B; En and C-C Exteri 3-0-5, Exteri 18-10-8, Ext left and right exposed;C-C reactions she DOL=1.60 TCLL: ASCE Plate DOL=1 Tot is truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adee This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate 12 and 86 lb Graphical put 		CDL=3. envelope I-9-0, Ini 3, Interin 221-9-4 tical left forces a =1.60 pl f (roof LI (ground I.15 Plat p; Ct=1 for great tat roof lu to great tat roof lu or the lim ever res covers r e of this prevent for a 10. with any l for a liv s where ll fit betw uss conr h (by oth anding 8	Opsf; h=25ft; a) exterior zo: erior (1) 1-9- zone; cantile and right & MWFRS for ate grip .: Lum DOL= snow); Pf=2: the DOL=1.15 ¹ ; the DOL=0.15 ¹ ;	ne 0 to 0 ver r 1.15 0.4); -0 f live sf on nent. g. ads. 0psf om to joint				SEA 0363	22 EERER IIII




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A03	Нір	1	1	Job Reference (optional)	174074771

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:43 ID:ESghq3Xh67j9UcUfp6dQJXzx4hs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			4-4-7		10-11-6		1	17-6-5		1	21-11	-0	
Scale = 1:61.7			4-4-7	I	6-6-15		1	6-6-15		1	4-4-1	1	
-	X, Y): [3:0-6-0,Edge],	[5:0-6-0 Edge]											
	, 1). [0.0 0 0,⊏uge],	[0.0 0 0,Euge]											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.64	DEFL Vert(LL)	in -0.04	(loc) 10-11	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	-0.10	8-10	>999	180	101120	244/150
TCDL	10.0	Rep Stress Incr	YES		WB	0.61	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TF	PI2014	Matrix-MS		. ,						
BCDL	10.0											Weight: 126 lb	FT = 20%
	Max Horiz 12=105 (L Max Uplift 7=-64 (LC Max Grav 7=862 (LC (lb) - Maximum Com Tension 1-2=0/54, 2-3=-984/ 4-5=-733/143, 5-6=-	xcept end verticals, -0 max.): 3-5. applied or 10-0-0 or anical, 12=0-5-8 -C 11) 2 10), 12=-64 (LC 11 C 2), 12=951 (LC 2) appression/Maximum 138, 3-4=-721/140,	PI ps Ca 4) Tr ed or loa and 5) Bu re 6) Pr 7) Tr ch 8) * - or 3- ch 9) Re (159, 10) Pr	ate DOL=1 of (flat roof : tategory II; I ategory II; I ategory II; I ategory II; I ategory II; I ategory II; I ategory II; I provide ategory ategory II; I provide ategory ategory II; I ategory II; I ate	7-10; Pr=20.0 ps .15); Pg=20.0 ps snow: Lum DOL= Exp B; Partially E; s been designed osf or 1.00 times f on-concurrent with gner/Project engin 1 Load = 5.0 (psf) specific to the us uate drainage to s been designed id nonconcurrent as been designed on chord in all area y 2-00-00 wide w y other members pr(s) for truss to tr nanical connection	(ground 1.15 Pla (ground) for great lat roof I n other li neer res covers i se of this prevent for a 10. with any d for a liv s where ill fit betv uss conin n (by oth	snow); Pf=2 te DOL=1.15 .10, Lu=50-(er of min roo oad of 15.4 p ve loads. ponsible for ain loading truss compco- water pondim o psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss	10.4);)-0 f live psf on onent. ig. ads. 0psf tom					
BOT CHORD	6-7=-826/119 11-12=-103/137, 10- 8-10=-175/1187, 7-8		12	and 64 lb	capable of withst uplift at joint 7.	0	•						
WEBS	3-11=-15/343, 4-11= 4-8=-576/126, 5-8=- 6-8=-88/654	-585/125, 4-10=0/20	68, or 65, bo	the orienta				SIZE				WITH CA	ROLIN
NOTES			LUAD	CASE(S)	Sidiluaru					/	55	C FESS	DN. Sin
	ed roof live loads have	been considered for	r							4	12		No la
this design		(a									2 - X		
	CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC		Cot									SEA	L : =
	Enclosed; MWFRS (er									Ξ		0363	22 : E
	Exterior (2) -1-3-0 to 1-											. 0000	
	terior (2) 4-2-11 to 8-5									10	-	•	1 - E

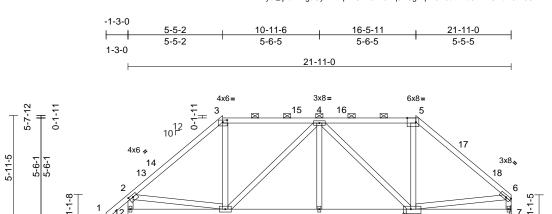
4-2-11, Exterior (2) 4-2-11 to 8-5-10, Interior (1) 8-5-10 to 17-8-1, Exterior (2) 17-8-1 to 21-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component development properties and properties and the properties of the properti and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minim June 10,2025

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A04	Нір	1	1	Job Reference (optional)	174074772

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:44 ID:BrnRFIZyel_tjve2xXguOyzx4hq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


98

5x12=

2x4 II

Page: 1

11

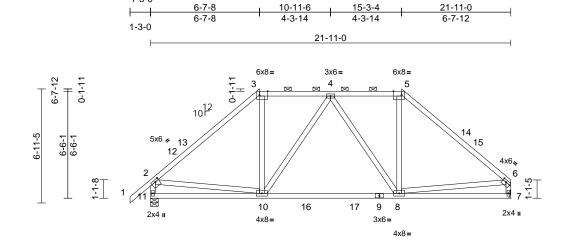
4x8=

2x4 🛛

10

2x4 II

Scale = 1:65.9		 	5-6-14 5-6-14		<u>10-11-6</u> 5-4-9		- <u>3-15</u> -4-9		<u>21-1</u> 5-7		—	
Plate Offsets (X, Y): [2:0-3-0	,0-1-8], [3:0-3-0,0-1-7], [5:0-	6-0,Edge], [9:0-5-0,0-3-0)]								
TCLL (roof) Snow (Pf/Pg) 20.4/ TCDL BCLL	(psf) Spacing 20.0 Plate Grip DOL 20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-M	0.4 0.3 0.3	6 Vert(CT)	in -0.03 -0.06 0.02	(loc) 7-8 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wo 5-4-14 oc pur 2-0-0 oc purl BOT CHORD Rigid ceiling bracing. REACTIONS (size) 7= Max Horiz 12 Max Uplift 7= Max Grav 7= FORCES (lb) - Maximu Tension TOP CHORD 1-2=0/54, 2-3 4-5=-699/151 6-7=-810/122 BOT CHORD 11-12=-139/2 8-10=-126/93 WEBS 3-11=-22/325	and sheathing directly applied rlins, except end verticals, a ins (6-0-0 max.): 3-5. directly applied or 10-0-0 oc Mechanical, 12=0-5-8 =124 (LC 13) -44 (LC 15), 12=-64 (LC 14) 862 (LC 2), 12=951 (LC 2) m Compression/Maximum 3=-984/144, 3-4=-690/153, 1, 5-6=-987/146, 2-12=-899/ 2 234, 10-11=-126/933, 13, 7-8=-61/142 9, 4-11=-386/102, 4-10=0/19 8, 5-8=-24/326, 2-11=-91/536	d or ind 3) 4) 5) 161, 6) 7) 9, 8) 9, 8) 1(12 11	II; Exp B; En and C-C Ext 5-5-2, Exterin 16-5-11, Ext to 21-9-4 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and ar Refer to gird Provide mec bearing plate 12 and 44 lb	n; TCDL=6 closed; M erior (2) -1 or (2) 5-5- erior (2) 16 rerior (2) 16	8.0psf; BCDL= WFRS (enveld -3-0 to 1-9-0, 2 to 9-8-0, Inte 5-5-11 to 20-8 ver left and ric posed;C-C fo actions show OL=1.60 -20.0 psf (grou n DOL=1.15 P ritially Exp.; Ct signed for gre 0 times flat roc rent with othe ect engineer r 0 the use of th nage to prever signed for a 1 sol (psf) cover o the use of th nage to prever signed for a 1 all areas whe wide will fit bi embers. uss to truss cc nnection (by co of withstandin int 7. sentation does a purlin along	3.0psf; h=25f pe) exterior z Interior (1) 1-2; interior (1) 9-8-0 9, Interior (1) ht exposed ; e r members ar n; Lumber LL: Lum DOL d snow); Pf= late DOL=1.1 1.10, Lu=50- ater of min ro f load of 15.4 live loads. seponsible for s rain loading is truss comp it water pondi live load of 20 re a rectangle etween the bo nnections. thers) of truss g 64 lb uplift a	one 9-0 to to 20-8-9 and =1.15 20.4 5); 0-0 of live psf on oonent				SEA 0363	


G 1000 min June 10,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A05	Нір	1	1	Job Reference (optional)	174074773

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:44 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-9-4	15-1-8	21-11-0
Scale = 1:70.1	6-9-4	8-4-4	6-9-8

Plate Offsets (X, Y):	[2:0-2-12,0-1-8], [3:0-6-0,Edge], [5:0-6-0,Edge], [6:0-2-12,0-1-8]

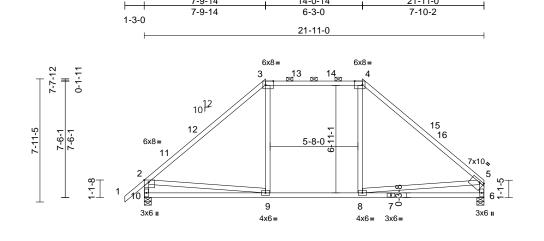
-1-3-0

Plate Offsets	Plate Offsets (X, Y): [2:0-2-12,0-1-8], [3:0-6-0,Edge], [5:0-6-0,Edge], [6:0-2-12,0-1-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.68 0.61 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.23 0.01	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-2-15 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=144 (L Max Uplift 7=-52 (LC	applied or 10-0-0 oc inical, 11=0-5-8 _C 13) ; 15), 11=-72 (LC 14)	4) I or	Plate DOL=' psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement: Provide ade This truss ha chord live loa * This truss I	E 7-10; Pr=20.0 ps I.15); Pg=20.0 psf snow: Lum DOL= Exp B; Partially Exp ss been designed psf or 1.00 times f on-concurrent with signer/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to as been designed ad nonconcurrent has been designed p chord in all area	(ground 1.15 Pla kp.; Ct=1 for great flat roof I n other li neer res covers se of this prevent for a 10. with any d for a liv	snow); Pf=2/ te DOL=1.15/ .10, Lu=50-0/ or of min rood oad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin. 0 psf bottom other live loa re load of 20.	0.4); i-0 f live sf on nent. g.					
	Max Grav 7=862 (LC 2), 11=951 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/54, 2-3=-983/145, 3-4=-662/161, 4-5=-670/160, 5-6=-982/146, 2-11=-894/162, 6-7=-804/122 BOT CHORD 10-11=-198/333, 8-10=-94/751, 7-8=-91/201				 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 11 and 52 lb uplift at joint 7. 								
NOTES	5-8=-31/312, 2-10=-	,	,	 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 							ROL		
 this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 19-0 to 6-7-8, Exterior (2) 6-7-8 to 10-11-6, Interior (1) 10-11-6 to 15-3-4, Exterior (2) 15-3-4 to 19-6-3, Interior (1) 19-6-3 to 21-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 										<u> </u>		SEA 0363	• -

G mmm June 10,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A06	Нір	1	1	Job Reference (optional)	174074774


14-0-14

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:44 ID:e1LU6aXIwHvontlZ5tu9yHzx3re-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-11-0

Page: 1

	7-11-10	13-11-2	21-11-0	
Scale = 1:74.3	7-11-10	5-11-8	7-11-14	

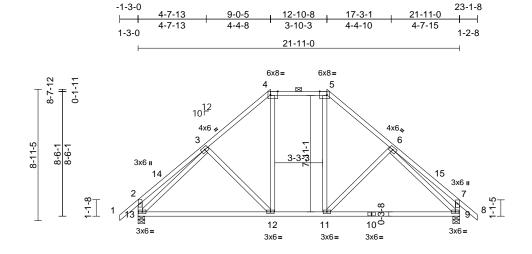
7-9-14

-1-3-0

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-6-0,Edge], [4:0-6-0,Edge], [5:0-3-4,0-1-8]

	, , ,	[::::::::::::::::::::::::::::::::::::::	, - 5-1		1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014 TCLL: ASCE	CSI TC BC WB Matrix-MS	0.79 0.68 0.23 f (roof Ll	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.37 0.01	(loc) 6-8 6-8 6	l/defl >911 >700 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Structural wood shee 3-10-5 oc purlins, ee 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	athing directly applie xcept end verticals, a -0 max.): 3-4.	4) d or ind 5)	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements	.15); Pg=20.0 psf snow: Lum DOL= Exp B; Partially Ex s been designed psf or 1.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us	(ground 1.15 Plat (p.; Ct=1 for great lat roof le neer res covers r se of this	snow); Pf=2 e DOL=1.15 .10, Lu=50-0 er of min root bad of 15.4 p ve loads. bonsible for ain loading truss compo	0.4); -0 f live sf on nent.					
	Max Horiz 10=163 (L Max Uplift 6=-59 (LC Max Grav 6=862 (LC	.C 11) 5 15), 10=-78 (LC 14) C 2), 10=951 (LC 2)	6) 7) 8)	This truss ha chord live loa * This truss h on the bottor	quate drainage to is been designed ad nonconcurrent has been designed n chord in all area	for a 10.0 with any d for a liv s where) psf bottom other live loa e load of 20. a rectangle	ads. Opsf					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/54, 2-3=-970/ 4-5=-961/150, 2-10= 9-10=-312/527, 8-9= 3-9=-8/258, 4-8=-1/2 5-8=-174/518	154, 3-4=-649/169, 879/169, 5-6=-784/ [.] 48/649, 6-8=-160/3:	38	chord and ar Provide mec bearing plate 10 and 59 lb) Graphical pu	by 2-00-00 wide w by other members, hanical connection capable of withst uplift at joint 6. Irlin representation ation of the purlin a	, with BC n (by oth anding 7 n does no	DL = 10.0ps ers) of truss 8 lb uplift at ot depict the	f. to joint					111.
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E 7-9-14, Ex 12-0-13 to Interior (1) right expos for membe	ed roof live loads have E 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en ixterior (2) -1-3-0 to 1-5 terior (2) 7-9-14 to 12- 14-0-14, Exterior (2) 1 18-3-13 to 21-9-4 zon sed ; end vertical left a ers and forces & MWFf OL=1.60 plate grip DO	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone 3-0, Interior (1) 1-9-0 0-13, Interior (1) 4-0-14 to 18-3-13, e; cantilever left and nd right exposed;C-C RS for reactions show	at. e to	bottom chord						(A. MILLING		SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mmm June 10,2025

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A07	Нір	1	1	Job Reference (optional)	174074775

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:44 ID:GE?nm5KqNHOolGi8Im_cl1zx4Jb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

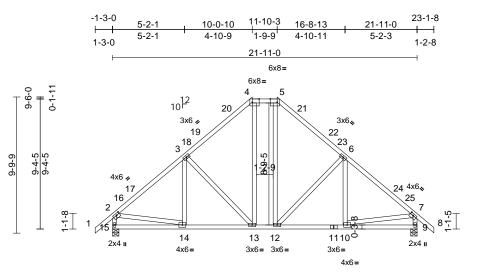
Page: 1

1	9-2-1	12-8-12	21-11-0	
Г	9-2-1	3-6-11	9-2-4	
Scale = 1:78.5				
Plate Officets (X, X): [4:0.6.0.Edge] [5:0.6.0.Edge]				

Plate Offsets ((X, Y): [4:0-6-0,Edge],	[5:0-6-0,Edge]			-							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES IRC2015/T	⁻ PI2014	CSI TC BC WB Matrix-MS	0.31 0.70 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 0.02	(loc) 9-11 9-11 9	l/defl >999 >697 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20%
this design 2) Wind: ASC Vasd=91n II; Exp B; and C-C E 9-0-5, Ext 23-1-8 zor vertical lef	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-5-8, 1 Max Horiz 13=190 (L Max Uplift 9=-83 (LC Max Grav 9=946 (LC (lb) - Maximum Com Tension 1-2=0/54, 2-3=-299/ 4-5=-563/166, 5-6=- 7-8=0/52, 2-13=-347 12-13=-87/706, 11-1 3-12=-170/160, 4-12 6-11=-172/161, 3-13 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) 9-0-5 to 17-4- ne; cantilever left and r	applied or 10-0-0 oc 13=0-5-8 LC 13) C 15), 13=-83 (LC 14) C 2), 13=949 (LC 2) spression/Maximum 114, 3-4=-814/176, 815/177, 6-7=-307/118 7/118, 7-9=-350/118 12=-21/591, 9-11=-15// 2=-37/274, 5-11=-37/21 3=-728/70, 6-9=-721/69 been considered for (3-second gust) DL=3.0psf; h=25ft; Ca twelope) exterior zone 9-0, Interior (1) 17-4-4 to ight exposed ; end C for members and	(1) (1) (1) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2	Plate DOL=1 sf (flat roof ; Category II; 1 This truss ha oad of 12.0 j overhangs m Building Des verifying Raii equirements Provide adec This truss ha chord live loa ' This truss ha chord live loa ' This truss ha chord live loa ' This truss ha chord and ar Provide mect bearing plate bearing plate B and 83 lb Graphical pu		(ground .15 Pla: p.; Ct=1 or great at roof I or er res covers I e of this prevent or a 10. vith any vith any is where Il fit bett with BC (by oth anding 8 does not	snow); Pf=2/ e DOL=1.15/ .10, Lu=50-0 pad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin. D psf bottom other live loa e load of 20.1 cDL = 10.0ps ers) of truss i 33 lb uplift at j bt depict the s	0.4); I-O f live ssf on onent. g. ads. Opsf to f. to joint		4		SEA 0363	• •
9-0-5, Ext 23-1-8 zor vertical lef forces & N	erior (2) 9-0-5 to 17-4-4 ne; cantilever left and r	4, Interior (1) 17-4-4 to ight exposed ; end C for members and								11112	A A A A A A A A A A A A A A A A A A A	S. ENGIN	EEP. K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


G١ 100000 June 10,2025

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A08	Нір	1	1	Job Reference (optional)	174074776

Scale = 1:82.9

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:45 ID:M12zTFTEYFkk8sjZfFHR6kzx3qQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	5-2-1	10-2-6	11-8-7	16-8-13	21-11-0	
	5-2-1	5-0-5	1-6-1	5-0-7	5-2-3	٦

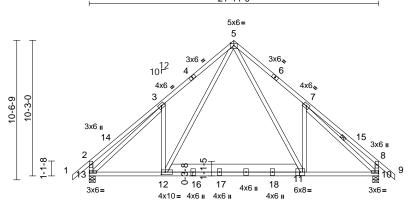
Plate Offsets (X, Y): [2:0-2-12,0-1-8], [4:0-6-0,Edge], [5:0-6-0,Edge], [7:0-2-12,0-1-8]

	,, , , , , , , , , , , , , , , , , , , ,	, [,=	,	-],[=,-	• •,	-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.38 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 10-12 10-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she: 4-5-7 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	cept end verticals, ar -0 max.): 4-5. applied or 10-0-0 oc 15=0-5-8 .C 15) : 17), 15=-99 (LC 16)	id 5) 6) 7) 8)	Plate DOL= ² psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide ader This truss ha	57-10; Pr=20.0 ps .15); Pg=20.0 ps snow: Lum DOL= Exp B; Partially E snow loads have is been designed psf or 1.00 times on-concurrent wit igner/Project eng n Load = 5.0 (psf) s specific to the us yuate drainage to is been designed ad nonconcurrent	f (ground 1.15 Pla xp.; Ct=1 been col for great flat roof I h other li ineer res covers I se of this prevent for a 10.	snow); Pf=2/ e DOL=1.15/ .10, Lu=50-0 hsidered for t er of min rool bad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin. D psf bottom	0.4); -0 his f live sf on nent. g.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	* This truss I	nas been designe	d for a liv	e load of 20.						
TOP CHORD		1213/205,		3-06-00 tall I chord and ar) Provide med	n chord in all area by 2-00-00 wide w hy other members hanical connectio e capable of withs	vill fit betv s. on (by oth	veen the bott ers) of truss	to					
BOT CHORD	14-15=-209/333, 13-			15 and 98 lb	uplift at joint 9.	0						mun	1111
WEBS	12-13=-10/792, 10-1 3-14=-45/160, 3-13= 5-12=-75/375, 6-12= 2-14=0/907, 7-10=0/	-441/180, 4-13=-75/3 -445/180, 6-10=-40/	375, 163,					size			and and	OR FESS	ROUNT
NOTES	, .		L)	JAD CASE(S)	Stanuaru					4	ès		A.
 Unbalance this design Wind: ASC Vasd=91n II; Exp B; I and C-C E 10-0-10, E 16-1-1 to 2 	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) -1-3-0 to 1-5 Exterior (2) 10-0-10 to 1 23-1-8 zone; cantilever al left and right expose	(3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone 9-0, Interior (1) 1-9-0 16-1-1, Interior (1) • left and right expose	e to ed ;							CONTRACT OF CONTRACT	A A A A A A A A A A A A A A A A A A A	SEA 0363	• •

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-0-10, Exterior (2) 10-0-10 to 16-1-1, Interior (1) 16-1-1 to 23-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

G

umm June 10,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A09H	Common	1	1	Job Reference (optional)	174074777

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:45 ID:WjTlgil9?dru51sGLRk8Mnzx3se-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

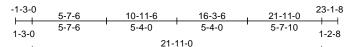
Page: 1

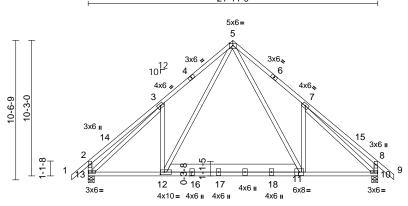
L	5-7-6	15-10-14	16-3-6
-	5-7-6	10-3-8	0-4-8 5-7-10

Scale = 1:87.1

Plate Offsets (X, Y): [12:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.58 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x WEBS 2x BRACING 2x TOP CHORD St BOT CHORD R BOT CHORD R WEBS 1 REACTIONS (siz Max Max Max Max FORCES (lb TOP CHORD 1 FORCES (lb TOP CHORD 12 WEBS 3- FONCES 1 1) Unbalancet ro 5- NOTES 1) 1) Unbalancet ro 15- 2) Wind: ASCE 7 Vasd=91mph; II; Exp B; Encl and C-C Exter 10-11-6, Exter 10-11-6, Exter 11-11-6 to 23- and T-C Exter 10-11-6, Exter 13-11-6 to 23- exposed ; end	44 SP No.2 tructural wood shea 8-14 oc purlins, ea igid ceiling directly racing. Row at midpt te) 10=0-5-8, x Horiz 13=255 (L x Uplift 10=-45 (Li x Grav 10=1139 (b) - Maximum Com ension 2=0/61, 2-3=-334/7 7=-1277/211, 7-8= 13=-411/177, 8-10 2-13=-52/983, 10-1 12=-307/281, 3-13 11=-284/265, 5-11 12=-211/680, 7-10 pof live loads have 7-10; Vult=115mph TCDL=6.0psf; BCI losed; MWFRS (en rior (2) -1-3-0 to 1-5 rior (2) 10-11-6 to 1 1-8 zone; cantileve I vertical left and rig	LC 13) C 13), 13=-55 (LC 1 (LC 2), 13=1132 (LC pression/Maximum 189, 3-5=-1242/258, -352/188, 8-9=0/60, =-422/176 2=0/938 =-1045/0, =-145/780, =-145/780, =-145/780, =-1102/0 been considered for (3-second gust) DL=3.0psf; h=25f; C vvelope) exterior zom >0, Interior (1) 1-9-C I3-11-6, Interior (1)	S 4) ed or 5) (c) 5) (d) 7) (c) 7) (c) 8) (c) 7) (c) 8) (c) 7) (c) 7) (c	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements 100.0lb AC u from left end This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate	7-10; Pr=20.0 ps .15); Pg=20.0 ps snow: Lum DOL= Exp B; Partially E: s been designed sof or 1.00 times i on-concurrent witi igner/Project engin n Load = 5.0 (psf) is specific to the s been designed ad nonconcurrent tas been designed ad nonconcurrent tas been designed in chord in all area by 2-00-00 wide w by other members hanical connection is capable of withs uplift at joint 13. Standard	(ground 1.15 Plat xp.; Ct=1 for great lat roof k n other lin neer res covers r se of this n the bott o points, for a 10.0 with any d for a liv s where ill fit betw, n (by oth	snow); Pf=1: e DOL=1.15; .10 er of min roof pad of 15.4 p ve loads. consible for ain loading truss compo om chord, 12 1-0-0 apart. 0 psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss	5.4); f live sf on nent. 2-0-0 ads. 0psf om f. to				SEA 0363	• -


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI 1000 minut June 10,2025

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A10H	Common	4	1	Job Reference (optional)	174074778

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:46 ID:WjTIgil9?dru51sGLRk8Mnzx3se-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-7-6	15-11-0	16-3-6 21-11-0
	5-7-0	10-11-0	21-11-0
I	5-7-6	10-3-10	5-7-10 0-4-6

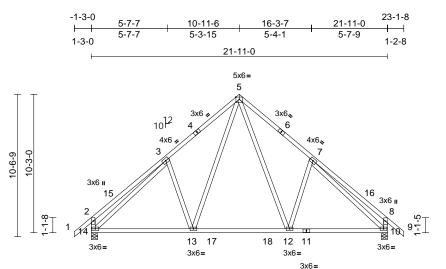
Scale = 1:87.1

Plate Offsets (X, Y): [12:0-3-8,0-2-0]

	, , , , , [: <u>_</u> :e e e,e <u>e</u> e	1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.42 0.51 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.02	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%
fhis desigr	2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood she 5-2-3 oc purlins, ex Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 13=222 (I Max Uplift 10=-32 (L Max Grav 10=1001 (lb) - Maximum Com Tension 1-2=0/54, 2-3=-292/ 5-7=-1125/174, 7-8= 2-13=-359/154, 8-10 12-13=-40/864, 10-1 3-12=-267/247, 3-13 5-11=-118/689, 5-12 ed roof live loads have 1.	athing directly applie cept end verticals. applied or 10-0-0 or 13=0-5-8 _C 13) C 15), 13=-43 (LC 1 (LC 2), 13=994 (LC apression/Maximum 165, 3-5=-1092/218 308/163, 8-9=0/52 D=-369/153 _2=0/826 B=-921/0, 7-11=-247 2=-180/598, 7-10=-9 been considered fo	ed or c . (14) 2) (7/233, (7/2/0)	 load of 12.0 overhangs r Building Deever verifying Ra requirement 100.0lb AC from left end chord live lo * This truss his chord live lo * This truss on the botto 3-06-00 tall chord and a Provide med bearing plat 	as been designed f psf or 1.00 times fl ion-concurrent with signer/Project engir in Load = 5.0 (psf) s specific to the us unit load placed on d, supported at two as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi ny other members, chanical connectior e capable of withsta o uplift at joint 13. Standard	at roof I other li neer res covers I e of this the bot points, or a 10. with any for a liv s where Il fit betw with BC o (by oth	bad of 15.4 p ve loads. ponsible for ain loading truss compo- tom chord, 12 4-0-0 apart. 0 psf bottom other live loa ve load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss	onent. 2-0-0 ads. 0psf f. to				WITH CA	ROLIN
Vasd=91m	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed: MWERS (er	DL=3.0psf; h=25ft; (4			Con the second

 Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-11-6, Exterior (2) 10-11-6 to 13-11-6, Interior (1) 13-11-6 to 23-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 SEAL 036322 June 10,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A11	Common	6	1	Job Reference (optional)	174074779

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:46 ID:lanaWx_m6NfMEJgTp2ykpwzx4HS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.3			F	7-4-13 7-4-13		14-6-3 7-1-5		21-11- 7-4-1					
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.37 0.49 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.18 0.02	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 151 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-9-4 oc purlins, ex Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 14=222 (L	applied or 10-0-0 or 14=0-5-8	6)	load of 12.0 p overhangs no Building Des verifying Raii requirements This truss ha chord live loa * This truss h on the bottor	s been designe on-concurrent v igner/Project ei n Load = 5.0 (p s specific to the s been designe ad nonconcurre nas been design n chord in all an y 2-00-00 wide	es flat roof lo vith other lin- ngineer res sf) covers r use of this ed for a 10. nt with any ned for a liv reas where	bad of 15.4 p ve loads. bonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle	onent. ads. .0psf					

bearing plate capable of withstanding 88 lb uplift at joint

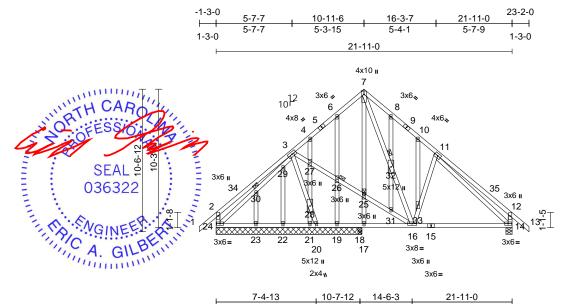
14 and 87 lb uplift at joint 10. LOAD CASE(S) Standard

	Max Uplift 10=-87 (LC 15), 14=-88 (LC 14)
	Max Grav 10=946 (LC 2), 14=949 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/54, 2-3=-316/159, 3-5=-893/210,
	5-7=-901/213, 7-8=-320/161, 8-9=0/52,
	2-14=-363/151, 8-10=-365/152
BOT CHORD	13-14=-91/782, 12-13=0/546, 10-12=-9/692
WEBS	3-13=-238/198, 5-13=-149/465,
	5-12=-153/470, 7-12=-241/200,
	3-14=-799/12, 7-10=-797/10

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-11-6, Exterior (2) 10-11-6 to 13-11-6, Interior (1) 13-11-6 to 23-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

SEAL 036322 June 10,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A12SE	Common Structural Gable	1	1	Job Reference (optional)	174074780

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:46 ID:raJiX8s3kxmeMNgWwyMjfxz8?U3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			H	7-4-13	3-2-1	5 3-1	0-7	7-4-1	3	-			
Scale = 1:85.3				713				1-4-1					
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.34 0.45 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.00	(loc) 14-16 14-16 14	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 214 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 25, 26, 30, 32	applied or 6-0-0 oc	l or		3-28=-385/122, 26-27=0/180, 22 16-31=0/166, 7- 16-32=-183/413 11-33=-230/160 29-30=-151/144 11-14=-208/11, 6-26=-151/89, 1 27-28=-15/4, 21 23-30=-3/10, 8- 10-33=-41/23	5-26=0/169 32=-200/4 , 16-33=-2 , 24-30=-1 , 3-29=-19 7-25=-214 9-26=-128 -28=-29/1,), 25-31=-2/2(42, 63/182, 49/139, 3/172, /0, 17-25=-27 /78, 4-27=-1(22-29=-56/3	00, 78/6, 0/15, 8,	9) Gal 10) Thi chc 11) * Th 3-0 chc 12) Pro bea	ced agai ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a wide me aring plat	inst late s space as bee bad non has be om cho by 2-0 any oth chanic te capa	eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi	any other live loads. a live load of 20.0psf
	(size) 14=0-5-8, 20=10-9-1 23=10-9-1 23=10-9-1 23=10-9-1 24=-223 (19=-73 (L 22=-21 (L Max Grav 14=580 (L 19=158 (L 21=87 (LC	, 18=0-3-8, 19=10-9-8 8, 21=10-9-8, 22=10-5 8, 24=10-9-8 (LC 12) .C 15), 18=-2 (LC 15), .C 14), 20=-109 (LC 1 .C 10), 24=-66 (LC 15 .LC 2), 18=366 (LC 2), .LC 30), 20=390 (LC 2) .C 5), 22=105 (LC 27), .LC 5), 24=351 (LC 30)	, 1))-8, 2) 4),) 6),	Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp B; Er and C-C Ex 10-11-6, Ex 13-11-6 to 2 exposed ; e members an	d roof live loads h E 7-10; Vult=115 bh; TCDL=6.0psf nclosed; MWFRS terior (2) -1-3-0 t terior (2) 10-11-6 23-2-0 zone; cani nd vertical left ar nd forces & MWF L=1.60 plate grip	mph (3-sea ; BCDL=3. § (envelope o 1-9-0, In § to 13-11- illever left ind right exp FRS for rea	cond gust) Opsf; h=25ft; e) exterior zo terior (1) 1-9- 6, Interior (1) and right posed;C-C fo actions showr	Cat. ne -0 to r	join 13) In t of t LOAD (1) De In Ui	t 18. he LOAE he truss CASE(S ead + Sr crease= niform Lo	D CASI are no) Stat now (ba 1.15 bads (ll 2=-51, 20	E(S) section, load ted as front (F) o ndard alanced): Lumber b/ft) 2-7=-51, 7-12=-5	r Increase=1.15, Plate
FORCES	(lb) - Maximum Com Tension		3)	only. For st	ned for wind load	wind (norm	al to the face	e),					
TOP CHORD	1-2=0/54, 2-3=-247/ 4-6=-193/138, 6-7=- 8-10=-381/184, 10-1	241/173, 7-8=-420/24	· 4)	or consult q TCLL: ASC Plate DOL= psf (flat roof	rd Industry Gable ualified building E 7-10; Pr=20.0 (1.15); Pg=20.0 p f snow: Lum DOL	designer a osf (roof Ll osf (ground .=1.15 Pla	s per ANSI/T _: Lum DOL= snow); Pf=1 te DOL=1.15	PI 1. 1.15 5.4					
BOT CHORD	23-24=-109/170, 22 21-22=-109/170, 20 19-20=-139/121, 18 17-18=-139/121, 16 14-16=0/288	-21=-109/170, -19=-139/121,	5) 6)	This truss h load of 12.0 overhangs r Building De verifying Ra	Exp B; Partially as been designed psf or 1.00 time non-concurrent w signer/Project en tin Load = 5.0 (pst ts specific to the	d for great s flat roof I vith other li gineer res sf) covers	er of min rool oad of 15.4 p ve loads. ponsible for ain loading	osf on					

All plates are 2x4 (||) MT20 unless otherwise indicated.

June 10,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A12SE	Common Structural Gable	1	1	Job Reference (optional)	174074780

Vert: 24=-20-to-23=-24 (F=-4), 23=-24 (F=-4)-to-22=-27 (F=-7), 22=-27 (F=-7)-to-21=-30 (F=-10), 21=-30 (F=-10)-to-20=-30 (F=-10), 20=-30 (F=-10)to-19=-32 (F=-12), 19=-32 (F=-12)-to-18=-35 (F=-15)

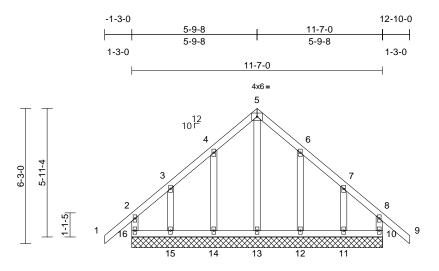
win This

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:46 ID:raJiX8s3kxmeMNgWwyMjfxz8?U3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

mining RTH CARO The American Americ 20 FESSION The opening the second second \cap SEAL 036322 RIC. A. GILB A. GILDIN June 10,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	A13E	Common Supported Gable	1	1	Job Reference (optional)	174074781

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:47 ID:rdgteahHN?KVggjgKu25JJzHEx_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 10,2025

818 Soundside Road Edenton, NC 27932

11-7-0

Scale =	1:53.2
---------	--------

Plate Offsets (X, Y): [8:0-0-0,Edge]

TCLL (roof) 20.0 P Snow (Pf/Pg) 15.4/20.0 L TCDL 10.0 R	Spacing 2-0- Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC	5 5 S 2015/TPI2014 2) Wind: ASCE	BC (WB (Matrix-MR 7-10; Vult=115mph (;	0.14 V 0.05 V 0.08 H 3-secon						PLATES MT20 Weight: 72 lb al connection (b)		
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2 BRACING 2x4 SP No.2 TOP CHORD Structural wood sheath 10-0-0 oc purlins, exce BOT CHORD Rigid ceiling directly ap bracing. REACTIONS (size) 10=11-7-0, 1 13=11-7-0, 1 16=11-7-0 Max Horiz 16=-139 (LC 12=-67 (LC 1 15=-91 (LC 1 15=-91 (LC 1 12=201 (LC 2)	apt end verticals. plied or 6-0-0 oc 11=11-7-0, 12=11-7-0, 4=11-7-0, 15=11-7-0, 11), 11=-92 (LC 15), 15), 14=-65 (LC 14), 14), 16=-56 (LC 10) 31), 11=191 (LC 27), 31), 13=210 (LC 29), 30), 15=172 (LC 26), 27) assion/Maximum 4, 2-3=-78/83, 57, 5-6=-125/157, , 8-9=0/54, 70/69, 10-11=-70/69, 70/69, 10-11=-70/69, 40/81, 3-15=-123/84, 25/82	 Vasd=91mpi II; Exp B; En and C-C Cor 5-9-8, Corne 12-10-0 zon- vertical left at forces & MW DOL=1.60 p Truss design only. For stt see Standar or consult qu TCLL: ASCE Plate DOL=² psf (flat roof Category II; This truss hat load of 12.0 overhangs n Building Des verifying Rai requirements All plates are 8) Gable requir Truss to be 1 braced again Gable studs This truss hat chord live loo * This truss hat chord live loo 2 * This truss I 	7-10; Vulle 115mph (n; TCDL=6.0psf; BCD closed; MWFRS (env ner (3) -1-3-0 to 1-9-6 r (3) 5-9-8 to 8-9-8, E e; cantilever left and ri nd right exposed; C-C (FRS for reactions shu late grip DOL=1.60 ned for wind loads in ti uds exposed to wind (d Industry Gable End ualified building design ; 7-10; Pr=20.0 psf (gr : 7-10; Project engineed : 7-10; P	DL=3.0ps elope) es 3, Exterior xterior (2 ight expected for men- own; Lur he plane normal t Details a ner as pro- oof LL: L ound smo 5 Plate E Ct=1.10 greater C Ct=1.10 greater C ct=1.10 greater C (i.e. diag a 10.0 pm n any oth r a live I chere a t	f; h=25ft; C xterior zone or (2) 1-9-8 (2) 8-9-8 to osed; end nbers and mber e of the trus o the face), as applicab er ANSI/TP um DOL=1 ow); Pf=15. DOL=1.15); of min roof I l of 15.4 psl oads. isible for loading ss compone- rise indicate earing. or securely onal web). af bottom her live load oad of 20.0p	sat. e to s le, l 1. .15 4 ive f on ent. ed.	bea 16, upliti jointi 14) In tt of tt LOAD (1) De Inc Ur Tra	ring plat 45 lb up ft at join t 11. he LOAE he truss CASE(S and + Sr crease= iform Lc Vert: 1-2 apezoid Vert: 16 to-14=-2 13=-27 to-11=-5	te capa lift at jc 11 (15, 67 2) CASE are no 2) Star now (bz 22-51, 1.15 22-51, al Loacds (II 22-51, al Loacds 25 (F=- 2)- 4 25 (F=- 2)- 33 (F=-	able of withstand bint 10, 65 lb upil 7 lb upift at joint E(S) section, load ted as front (F) condard alanced): Lumbe b/ft) 2-5=-51, 5-8=-51 ts (lb/ft) 2-5=-22 (F=-2), 5), 14=-25 (F=-52) (5), 14=-25 (F=-52) (5), 14=-230 (F=-12) (5), 14=-230 (F=-12) (5), 14=-230 (F=-12) (ing 56 lb uplift ift at joint 14, 9 12 and 92 lb u ds applied to th or back (B). r Increase=1.1 1, 8-9=-51 15=-22 (F=-2) i)-to-13=-27 (F 0), 12=-30 (F= -13)-to-10=-35	at joint 11 lb uplift at the face 5, Plate

H

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	B01E	Common Supported Gable	1	1	Job Reference (optional)	174074782

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:47

3x6 "

ID:thgdanK2HXJyknvHjx86QKzHFed-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-1-3-0 14-10-0 6-9-8 13-7-0 6-9-8 6-9-8 1-3-0 1-3-0 13-7-0 4x6 = 6 12 6 Г 5 7 26 27 3x6 🚽 4 8 3x6 👟 4-4-3 4-0-1 25 28 3 9 10 0-8-0 13 16 15 14 12

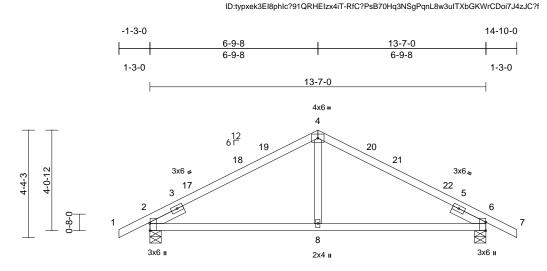
3x6 u

					13	-7-0				1		
Scale = 1:45.4												
Plate Offsets ((X, Y): [2:0-3-4,0-0-1], [10:0-3-13,0-0-1]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-MS	0.11 0.06 0.02	Vert(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1- 1-6-0 Structural wood sheat 6-0-0 oc purlins. Rigid ceiling directly a bracing. (size) 2=13-7-0, 1 13=13-7-0, 16=13-7-0 Max Horiz 2=-53 (LC Max Uplift 2=-18 (LC 15=-37 (LC Max Grav 2=214 (LC 12=235 (LC	10=13-7-0, 12=13-7-0, 14=13-7-0, 15=13-7-0, 17) 17), 10=-31 (LC 17), 17), 13=-39 (LC 17), 16), 16=-61 (LC 16) 2), 10=231 (LC 2), 235), 13=174 (LC 35), 2), 15=168 (LC 34),	 Vasd=91mp II; Exp B; Er and C-C Co 6-9-8, Cornor 14-10-0 zor vertical left a forces & MV DOL=1.60 p 3) Truss desig only. For st see Standal or consult q 4) TCLL: ASC Plate DOL= psf (flat rool Category II; 5) Unbalanceo design. 6) This truss h load of 12.0 overhangs r 	E 7-10; Vult=115m h; TCDL=6.0psf; l hclosed; MWFRS rner (3) -1-3-0 to ' er (3) 6-9-8 to 9-9- e; cantilever left a and right exposed VFRS for reaction: date grip DOL=1.6 hed for wind loads uds exposed to wi 'd Industry Gable ualified building de E 7-10; Pr=20.0 ps snow: Lum DOL= Exp B; Partially E snow loads have as been designed psf or 1.00 times ion-concurrent wits igner/Project eng	BCDL=3. (enveloped 1-9-0, Extend 8, Extend 8, Extend 8, Extend 5, C-C for r s shown; 30 s in the pl ind (norm End Deta esigner a sf (roof LL f (ground =1.15 Pla ixp.; Ct=1 been con for great flat roof I th other I	Opsf; h=25ft; e) exterior zor terior (2) 1-9-1 or (2) 9-9-8 to exposed; end nembers and Lumber ane of the tru all to the face ills as applica s per ANSI/TI L: Lum DOL= 1 snow); Pf=1 te DOL=1.15) .10 nsidered for tl er of min roof oad of 15.4 pr ve loads.	ne 0 to 5, ble, 71 1. 1.15 5.4 ; his	bea 2, 3 at j 18 14) In t of t LOAD (1) D(In Un	tring pla the uplication of the transform the LOAI the LOAI the truss CASE(S case(S) case(S) case(S) vert: 1- to-16=-: 15=-25 (F=-12)	te capa ift at joi 39 lb u at joint D CASI are no D Sta now (ba 1.15 oads (ll 6=-51, al Loac (F=-5)- 30 (F=- (F=-5)- 30 (F=-	able of withstand nt 10, 37 lb uplift plift at joint 13, 2 and 31 lb uplift E(S) section, load ted as front (F) cond ndard alanced): Lumbe b/ft) 6-11=-51 Is (lb/ft) 9-19=-21 (F=-1), 3), 16=-23 (F=-3 to-14=-28 (F=-8 -10), 13=-30 (F=-3)	ds applied to the face or back (B). r Increase=1.15, Plate 19=-21 (F=-1)- b)-to-15=-25 (F=-5), , 14=-28 (F=-8)-
FORCES	(lb) - Maximum Comp Tension		7) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.						ROUI			
TOP CHORD	1-2=0/34, 2-4=-59/44, 5-6=-73/130, 6-7=-73, 8-10=-73/47, 10-11=0	/133, 7-8=-71/96,	 8) All plates are 2x4 () MT20 unless otherwise indicated. 9) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 						The may			
BOT CHORD	13-14=0/58, 12-13=0/	/58, 10-12=0/58	11) This truss h	as been designed ad nonconcurrent	for a 10.		ds.				SEA	
WEBS	6-14=-75/0, 5-15=-12 7-13=-121/112, 8-12=		12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle							22		
NOTES 1) Unbalance this design	ed roof live loads have b n.	been considered for		by 2-00-00 wide w ny other members		veen the bott	om				S. ENGIN	EER

- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

June 10,2025

G minin


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	B02	Common	1	1	Job Reference (optional)	174074783

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:47

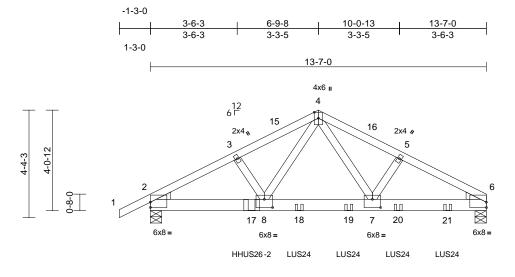
Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	6-9-8	13-7-0	
	6-9-8	6-9-8	
Scale = 1:46.6			
Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-4-1,Edge]			

Plate Offsets (X, Y): [2:0-3-8,Edge],	[6:0-4-1,Edge]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.44 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.02	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E 6-9-8, Exte 14-10-0 zc vertical left forces & M DOL=1.60 3) TCLI: ASC Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=-53 (LC Max Uplift 2=-72 (LC Max Uplift 2=-72 (LC Max Grav 2=618 (LC (Ib) - Maximum Com Tension 1-2=0/34, 2-4=-684/ 6-7=0/34 2-8=-129/548, 6-8=- 4-8=0/291 ad roof live loads have L E 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) -1-3-0 to 1-5 erior (2) 6-9-8 to 9-9-8, one; cantilever left and t and right exposed;C- WVFRS for reactions s plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (athing directly applie applied or 10-0-0 or 3=0-5-8 2 17) 2 16), 6=-72 (LC 17) C 2), 6=618 (LC 2) apression/Maximum 117, 4-6=-684/118, 94/548 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon 9-0, Interior (1) 1-9-0; Interior (1) 9-9-8 to right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 ground snow); Pf=15	5 No.2 6 d or 7 3 8 9 9 L Cat. e 0 to	 design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa chord live loa * This truss I on the botton 3-06-00 tall I chord and ai Provide mec bearing plate 	snow loads have as been designed psf or 1.00 times f on-concurrent with igner/Project engi n Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members hanical connection e capable of withst uplift at joint 6. Standard	for great flat roof I h other Ii neer res covers I se of this for a 10. with any d for a liv a where ill fit betv n (by oth	er of min roo oad of 15.4 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	f live osf on onent. ads. Opsf tom to			i	SEA 0363	• -

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	B03G	Common Girder	1	2	Job Reference (optional)	174074784

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:48 ID:B6JspZmcez7SFWRJQcTtaXzx4hZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

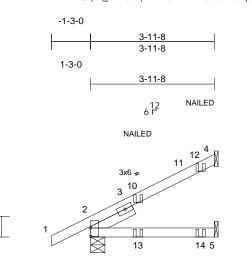
Page: 1

	4-7-4	8-11-12	13-7-0
	4-7-4	4-4-7	4-7-4
Scale = 1:46.6			

Plate Offsets (X, Y): [2:Edge,0-2-9], [6:Edge,0-2-9], [7:0-4-0,0-4-0], [8:0-4-0,0-4-0]

Plate Offsets ((X, Y): [Z:Edge,0-2-9],	[0.Euge,0-2-9], [7.0-4	-0,0-4-0]	, [8.0-4-0,0-4-0	<u>ار</u>								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.53 0.77 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.02	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 5-3-8 oc purlins. Rigid ceiling directly bracing.	12) .C 12), 6=-313 (LC 13)	6) 7)	this design. Wind: ASCE Vasd=91mph II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 psf (flat roof Category II; I Unbalanced design. This truss ha load of 12.0	roof live loads have 7-10; Vult=115mpl 1; TCDL=6.0psf; BC closed; MWFRS (et and right exposed 4; Lumber DOL=1. 7-10; Pr=20.0 psf (5); Pg=20.0	n (3-sec CDL=3. nvelopo I ; end v 60 plate (roof Ll ground .15 Pla b.; Ct=1 een col or great at roof I	cond gust) Opsf; h=25ft; () exterior zor vertical left an grip DOL=1. :: Lum DOL=1: snow); Pf=15 e DOL=1.15) .10 isidered for th er of min roof bad of 15.4 ps	Cat. he; d 60 I.15 j.4 ; iis	, Inc Ur Cc	crease= iform Lo Vert: 1-4 oncentra Vert: 17	1.15 oads (II 4=-51, ated Lo '=-1109	, b/ft) 4-6=-51, 9-12=-2	
FORCES TOP CHORD BOT CHORD WEBS	4-5=-4654/532, 5-6= 2-8=-575/3924, 7-8= 6-7=-426/4187	1/639, 3-4=-4395/653, 4755/519	10	verifying Rain requirements This truss ha chord live loa) * This truss h on the bottor	igner/Project engin n Load = 5.0 (psf) of s specific to the uses s been designed for ad nonconcurrent w has been designed n chord in all areasily y 2-00-00 wide will	covers i e of this or a 10. vith any for a liv where	ain loading truss compor 0 psf bottom other live loa e load of 20.0 a rectangle	ds.)psf				OR FESS	Bott
(0.131"x3' Top chord oc. Bottom ch staggered Web conn 2) All loads a except if r CASE(S) provided t	s to be connected toget ") nails as follows: Is connected as follows ords connected as follows ords connected as follows at 0-9-0 oc. nected as follows: 2x4 - are considered equally noted as font (F) or bad section. Ply to ply conr o distribute only loads nerwise indicated.	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA rections have been	12 13 D 14	chord and ar) Provide meci bearing plate 6 and 375 lb) Use Simpsor 4-10d Truss) connect truss) Use Simpsor SD9212 Trus at 2-0-0 oc m 12-0-4 to cor	y other members. hanical connection capable of withsta uplift at joint 2. o Strong-Tie HHUS or equivalent at 4- s(es) to front face of Strong-Tie LUS22 ss, Single Ply Girde hax. starting at 6-0- nnect truss(es) to fr les where hanger i	(by oth inding 3 26-2 (1 1-2 fror f bottor f bottor f bottor 4 (4-SD er) or ec 4 from ont fac	ers) of truss t 13 lb uplift at 4-10d Girder, n the left end n chord. 9112 Girder, i uivalent spac the left end to e of bottom ch	o joint to 2- ied nord.				SEA 0363	L L L L E E R H H H H H H H H H H H H H H H H H

June 10,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	CJ01	Jack-Open Girder	1	1	Job Reference (optional)	174074785

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:48 ID:Qaqr8qgbWV6bIIqnzwK?Grzx4hh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-12

Page: 1

NAILED

3-11-8

NAILED

3x6 II

2-11-3

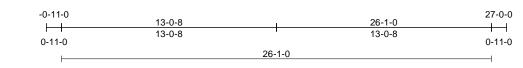
0-8-0

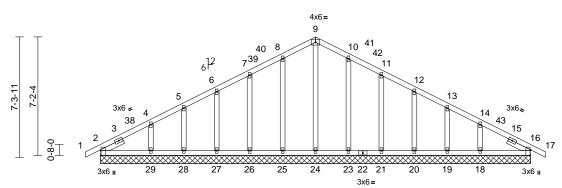
Scale =	1:36.9	

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

Flate Olisets (X, Y): [2:0-3-4,0-0-1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E cantilever 1 right expos 2) TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 12) 212), 4=-61 (LC 12) 212) C 2), 4=97 (LC 26), 4 apression/Maximum 36 (3-second gust) DL=3.0psf; h=25ft; 0 velope) exteriol zoft op late grip DOL=1.1 froof LL: Lum DOL= ground snow); Pf=15 15 Plate DOL=1.15) .; Ct=1.10 seen considered for th	8) c 9) 10 5=73 11 5=73 12 LC 10 10 5=73 12 10 10 10 5=73 12 10 10 10 5=73 12 10 10 10 10 10 10 10 10 10 10 10 10 10	verifying Rai requirement: Provide adeu This truss ha chord live loi * This truss lo on the bottor 3-06-00 tall i chord and an Refer to gird) Provide mec bearing plate 4, 30 lb uplif) "NAILED" in (0.148"x3.25) In the LOAD of the truss a DAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-4 Concentrat	ow (balanced): Lui .15	covers r se of this prevent ' for a 10. with any d for a liv as where ill fit betv rruss con n (by oth tanding 6 lb uplift a 48"x3") co DS guidli , loads a (F) or ba	ain loading truss compo water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 11 lb uplift at t joint 5. or 3-12d nes. oplied to the ck (B). rease=1.15,	g. ads. Opsf com to joint face				SEA 0363	• -

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


A. GILP


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

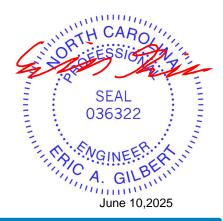
Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	G01E	Common Supported Gable	1	1	Job Reference (optional)	174074786

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:48 ID:9ydnDIFkHwprdEwQ2wUexPzHGII-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	26-1-0	
Scale = 1:69.9 Plate Offsets (X, Y): [2:0-3-8,Edge], [16:0-4-1,Edge]		
Loading (psf) Spacing 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCLL 0.0* Code IRC2	TC 0.08 Vert(LL) BC 0.07 Vert(CT)	in (loc) l/defl L/d PLATES GRIP n/a - n/a 999 n/a - n/a 999 0.00 16 n/a n/a Weight: 154 lb FT = 20%
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 BOT CHORD 2-29=0/77, 28-29=0/77, 27-28=0/77, 26-27=0/77, 25-26=0/77, 24-25=0/77, 23-24=0/77, 21-23=0/77, 20-21=0/77, 19-20=0/77, 18-19=0/77, 16-18=0/77 WEBS 9-24=-108/13, 8-25=-155/104, 7-26=-119/6 6-27=-123/62, 5-28=-107/52, 4-29=-159/8 10-23=-155/104, 11-21=-118/65, 12-20=-124/62, 13-19=-105/51, 14-18=-165/101 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Ca II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 13-0-8, Corner (3) 13-0-8 to 16-0-8, Exterior (2) 16-0-8 to 27-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TP1 4) TCLL: ASCE 7-10; Pr=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15) Fate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof liv load of 12.0 psf or 1.00 times flat roof load of 15.4 psf overhangs non-concurrent with other live loads. 7) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss componer 8) All plates are 2x4 ([[]) MT20 unless otherwise indicated 	 a, on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2, 1 lb uplift at joint 16, 42 lb uplift at joint 25, 42 lb uplift at joint 28, 80 lb uplift at joint 29, 42 lb uplift at joint 23, 44 lb uplift at joint 21, 46 lb uplift at joint 20, 31 lb uplift at joint 21, 46 lb uplift at joint 2, 31 lb uplift at joint 18, 18 lb uplift at joint 2, and 1 lb uplift at joint 16. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Uniform Loads (lb/ft) Uniform Loads (lb/ft) UNIFEED (IDE (IDE (IDE (IDE (IDE (IDE (IDE (

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

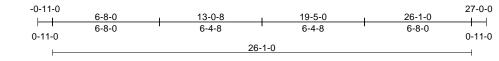

ENGINEERING BY RENCO A MiTek Affiliate

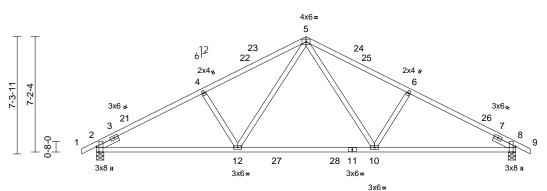
Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	G01E	Common Supported Gable	1	1	Job Reference (optional)	174074786

Vert: 1-9=-51, 9-17=-51

Trapezoidal Loads (lb/ft)

Vert: 30=-20-to-32=-20 (F=0), 32=-20 (F=0)to-29=-22 (F=-2), 29=-22 (F=-2)-to-28=-23 (F=-3), 28=-23 (F=-3)-to-27=-24 (F=-4), 27=-24 (F=-4)to-26=-25 (F=-5), 26=-25 (F=-5)-to-25=-26 (F=-6), 25=-26 (F=-6)-to-24=-28 (F=-7), 24=-28 (F=-7)to-23=-29 (F=-9), 23=-29 (F=-9)-to-22=-29 (F=-9), 22=-29 (F=-9)-to-21=-30 (F=-10), 21=-30 (F=-10)to-20=-31 (F=-11), 20=-31 (F=-11)-to-19=-32 (F=-12), 19=-32 (F=-12)-to-18=-33 (F=-13), 18=-33 (F=-13)to-36=-35 (F=-15), 36=-35 (F=-15)-to-34=-35 (F=-15) Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:48 ID:9ydnDIFkHwprdEwQ2wUexPzHGII-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	G02	Common	3	1	Job Reference (optional)	174074787

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:48 ID:18?BIn5wyAFQC5zTIS5Curzx4rT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

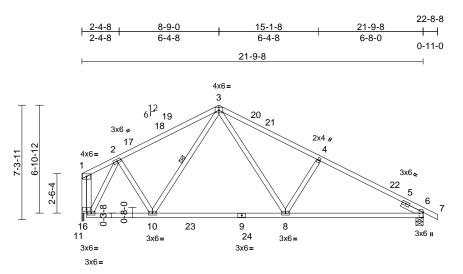
			8-9-8		17-3-8	3		2	26-1-0			
0		l –	8-9-8		8-6-0		1		8-9-8			
Scale = 1:71.7	Y): [2:0-4-1,Edge],	[8:0-4-1 Edge]										
	, i). [2.0 4 i,Eugo],											-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.25		>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.38	10-12	>816	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.05	8	n/a	n/a	-	
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 125 lb	FT = 20%
UMBER			3) TCLL: A	SCE 7-10; Pr=20.0	psf (roof Ll	.: Lum DOL=	1.15					
	2x4 SP No.2		Plate D	DL=1.15); Pg=20.0 p	osf (ground	snow); Pf=1	5.4					
BOT CHORD	2x4 SP No.2			roof snow: Lum DO);					
NEBS	2x4 SP No.2			y II; Exp B; Partially								
		1-6-0, Right 2x4 SP N	10.L /	ced snow loads hav	/e been cor	nsidered for t	his					
	1-6-0		design.									
BRACING			,	s has been designe								
		athing directly applie		2.0 psf or 1.00 time gs non-concurrent v			SION					
	3-7-11 oc purlins.		O) D	Designer/Project er								
		applied or 10-0-0 oc		Rain Load = 5.0 (p								
	bracing.			nents specific to the			nent.					
REACTIONS (S	, , ,		7) This true	s has been designe	ed for a 10.) psf bottom						
	Max Horiz 2=91 (LC	,		e load nonconcurre								
		C 16), 8=-118 (LC 17 _C 2), 8=1098 (LC 2)	[,] 0) 1115 u	uss has been desigr			0psf					
	(lb) - Maximum Com			ottom chord in all ar								
	Tension	pression/waximum		tall by 2-00-00 wide								
		5/192, 4-5=-1512/219		nd any other member mechanical connect								
	,	-1685/192. 8-9=0/25	, 0) 1101140	plate capable of with								
	2-12=-180/1445, 10-		boaring	8 lb uplift at joint 8.			John					
	8-10=-101/1445	,		E(S) Standard								111
NEBS	5-10=-106/558, 6-10)=-356/161,	20/10 0/10								1111 CA	
	5-12=-106/558, 4-12	2=-356/161									THUA	ROIT
NOTES										1	ONVESS	D. A.
) Unbalanced	roof live loads have	been considered for							/	SÀ	S PLOT	Nini
this design.									2			ne -
	7-10; Vult=115mph								2			
		DL=3.0psf; h=25ft; C							-		SEA SEA	L : =
		velope) exterior zone							=		0363	• –
		-1-0, Interior (1) 2-1- 0-8, Interior (1) 16-0-									0303	~~ : :
		d right exposed ; end								2	1	1 3
	and right exposed;C-									1	S.EN.	CRIX S

d:C-C for mem forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

GIL June 10,2025

GILB

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	G03	Common	2	1	Job Reference (optional)	174074788

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:49 ID:nHDj5jaNhGdKvsxWmNzm6PzGgDI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.6

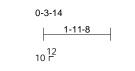
Plate Offsets (X, Y): [6:0-3-13,0-0-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	Plate DOL=1 psf (flat roof	CSI TC BC WB Matrix-MS 57-10; Pr=20.0 ps 1.15); Pg=20.0 ps snow: Lum DOL= Exp B; Partially E	f (ground 1.15 Pla	snow); Pf=1 te DOL=1.15	5.4	(loc) 8-10 8-10 6	l/defl >999 >845 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
WEBS OTHERS	2x4 SP No.2 2x4 SP No.2		4)		snow loads have			this					
SLIDER	Right 2x4 SP No.2	- 1-6-0	,	design.									
BRACING			5)		as been designed psf or 1.00 times t								
TOP CHORD	Structural wood she 4-7-7 oc purlins, ex	athing directly applie	d or		on-concurrent wit			51 011					
BOT CHORD		applied or 10-0-0 oc	6)	verifying Rai	igner/Project engi n Load = 5.0 (psf)	covers i	ain loading						
WEBS		3-10	7)		s specific to the us as been designed								
REACTIONS	()		()		ad nonconcurrent								
	Max Horiz 16=-136 (Max Uplift 6=-106 (L	· /	8)		nas been designe			.0psf					
	Max Grav 6=925 (LC		5)		m chord in all area by 2-00-00 wide w		0	tom					
FORCES	(lb) - Maximum Com				by 2-00-00 wide w								
	Tension		9)		oint(s) 16 consider			ue					
TOP CHORD	,	6/155, 3-4=-1163/18 =0/25, 1-11=-106/852			TPI 1 angle to gra ould verify capacit								
BOT CHORD		=0/25, 1-11=-106/852)=-3/664, 6-8=-91/11;			hanical connectio			to				200110	1775
WEBS	3-8=-105/576, 4-8=-	367/162, 3-10=-91/8	7,	bearing plate	e at joint(s) 16.							W''LL CA	Dille
	2-10=0/292, 2-11=-9	947/127, 1-16=-853/1	09 11		hanical connectio						1	"aTH UT	70/11
NOTES	ed roof live loads have	heen ennidered for			e capable of withs uplift at joint 16.	tanding	i upilit a	it joint			5.	O. FESS	De Vin
this design		been considered for		AD CASE(S)						4			and I
2) Wind: ASC	CE 7-10; Vult=115mph			()						-	2	:2`	1 1 E
II; Exp B; I and C-C E 13-0-8, Ex to 27-0-0 z vertical lef forces & M	hph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) 4-7-0 to 7-7 tterior (2) 13-0-8 to 16- zone; cantilever left an t and right exposed;C- MWFRS for reactions s plate grip DOL=1.60	velope) exterior zone 7-0, Interior (1) 7-7-0 -0-8, Interior (1) 16-0- d right exposed ; end C for members and	e to -8							11111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

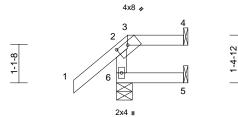
- 2) Wind: ASCE 7-10: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 4-7-0 to 7-7-0, Interior (1) 7-7-0 to 13-0-8, Exterior (2) 13-0-8 to 16-0-8, Interior (1) 16-0-8 to 27-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

G١


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	J02	Jack-Open	1	1	Job Reference (optional)	174074789

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:49 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

0-3-14

1-11-8

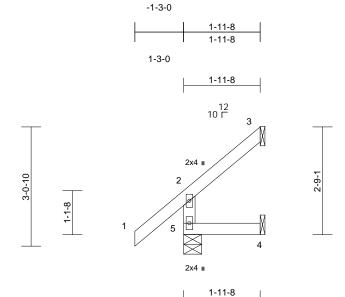
VERTICAL SUPPORT OF FREE END OF CHORD IS REQUIRED.

Scale = 1:33.7

Plate Offsets	(X, Y): [2:0-4-1,0-1-4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4) 5)	design. This truss ha load of 12.0 overhangs n	CSI TC BC WB Matrix-MR snow loads have as been designed psf or 1.00 times ion-concurrent witt igner/Project eng	for great flat roof le h other liv	er of min roo bad of 15.4 p ve loads.	of live	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD REACTIONS	1-11-8 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 5= Mechanica 13) C 40), 5=-1 (LC 13), 6 35), 5=31 (LC 7), 6=	and ; 7) 8) I, 9) 5=-22	verifying Ra requirement Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a 0) Refer to girc 1) Provide mee bearing plate	in Load = 5.0 (psf s specific to the u quate drainage to as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide v ny other members ler(s) for truss to chanical connectic e capable of withs) covers r se of this for a 10.0 with any d for a liv as where vill fit betw s. truss con on (by oth standing 2	ain loading truss compo water pondir 0 psf bottom other live loo e load of 20. a rectangle veen the bot nections. ers) of truss 12 lb uplift at	ng. ads. .0psf tom to					
TOP CHORD BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C E and right a C for men	Tension 2-6=-212/95, 1-2=0/ 5-6=0/0 ed roof live loads have	88, 2-3=-68/30, 3-4= been considered for (3-second gust) :DL=3.0psf; h=25ft; C ivelope) exterior zon 11-6 zone; cantilever left and right exposed /FRS for reactions	0/0 L⊄ Cat. e ∵left	2) Graphical pu		n does no	ot depict the	size		N		ORTH CA ORTHESS SEA 0363	
Plate DOL	CE 7-10; Pr=20.0 psf (_=1.15); Pg=20.0 psf (pof snow: Lum DOL=1.	ground snow); Pf=20	.4									SIC NGIN	EER

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GI munn June 10,2025

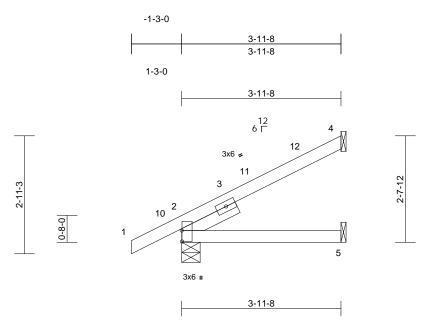
Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	J03	Jack-Open	1	1	Job Reference (optional)	174074790

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:49 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.5

		1	_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
	1-11-8 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc nical, 4= Mechanical 14) : 14), 4=-11 (LC 14)	, 8) , 9)	verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate	igner/Project engli n Load = 5.0 (psf) s specific to the us is been designed f ad nonconcurrent in has been designed in chord in all area by 2-00-00 wide win y other members. er(s) for truss to the hanical connection e capable of withst uplift at joint 3. Standard	covers r e of this for a 10.0 with any I for a liv s where ill fit betw russ con n (by oth	ain loading truss compor 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t	ds. Dpsf om					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-5=-162/55, 1-2=0/ 4-5=0/0												
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed ; e members a Lumber DC	d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er xterior (2) zone; cantil end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC CE 7-10; Pr=20.0 psf ((3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; iL=1.60	9							4	Z	ORTH CA	

- 3) Flate DOL=1.15; Pg=20.0 psf (fool LL: Luff DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	J04	Jack-Open	5	1	Job Reference (optional)	174074791

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

Plate Offsets (.	X, Y): [2:0-3-4,0-0-1]											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2019	5/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-CE 3-10-12 zc vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL psf (flat roo Category I	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applied applied or 10-0-0 oc 4 Mechanical, 5= al 16), 16), 4=-41 (LC 16), 2 2), 4=96 (LC 2), 5= pression/Maximum 34 (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone 3-0, Interior (1) 1-9-0 right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. round snow); Pf=15. 15 Plate DOL=1.15); ; Ct=1.10	6) 7) 5=-1 9) 69 LC at. e to .15 4	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate	s been designed f psf or 1.00 times fl on-concurrent with igner/Project engin h Load = 5.0 (psf) s specific to the use s been designed n chord in all areas y 2-00-00 wide wi y other members. er(s) for truss to tr hanical connectior o capable of withsta at joint 2 and 1 lb Standard	at roof lo other limeer res covers r e of this or a 10.0 with any l for a liv s where Il fit betw russ con n (by oth anding 4	bad of 15.4 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at	onent. ads. Opsf tom				SEA 0363	EER A

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

June 10,2025

Job	Truss	Truss Type		Qty	Ply	1061 Serenity	
P03167-26413	J05	Jack-Open		4	1	Job Reference (optional)	174074792
84 Lumber-2383 (Dunn, NC), Du	nn, NC - 28334,	R	un: 8.83 S May 29 2	2025 Print: 8	.830 S May 2	29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50	Page: 1

ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-3-0 3-11-8 3-11-8 1-3-0 3-11-8 12 6 Г 12 3x6 🞜 11 2-7-12 3 2-11-3 10 ² E 0-8-0 5 3x6 II

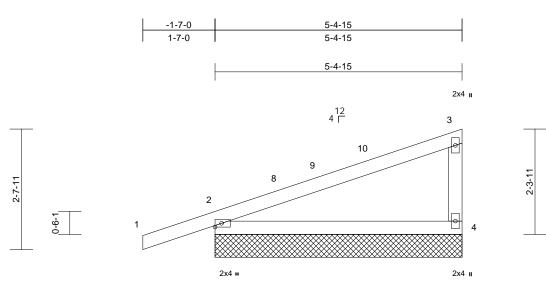
3-11-8

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-3-4,0-3-9]

Flate Offsets	(X, Y): [2:0-3-4,0-3-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
Vasd=91r II; Exp B; and C-C2 3-10-12 z vertical lei forces & M DOL=1.6(2) TCLL: AS Plate DOI psf (flat ro Category	2x4 SP No.2 Left 2x4 SP No.2	athing directly applied applied or 10-0-0 oc 4= Mechanical, 5= al 16) : 16), 4=-41 (LC 16), 5 C 2), 4=96 (LC 2), 5=6 pression/Maximum 34 (3-second gust) DL=3.0psf; h=25ft; Ca ivelope) exterior zone 3-0, Interior (1) 1-9-0 t right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.1 pround snow); Pf=15.4 15 Plate DOL=1.15); ; Ct=1.10	or 6) 7) 5=-1 9) 9 LC at. 0	load of 12.0 overhangs n Building Dess verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate	s been designed f psf or 1.00 times fl por-concurrent with igner/Project engir n Load = 5.0 (psf) s specific to the usi is been designed n chord in all areas by 2-00-00 wide wi y other members. er(s) for truss to tr hanical connection e capable of withsta at joint 2 and 1 lb Standard	at roof lo other limeer res covers r e of this or a 10.1 with any l for a liv s where Il fit betw russ con n (by oth anding 4	bad of 15.4 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 11 buplift at j	onent. ads. Opsf com to				SEA 0363	EER AU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



June 10,2025

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	174074793

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50 ID:NUKTuKUvdm11EAFu68HyfQzHGgG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-4-15

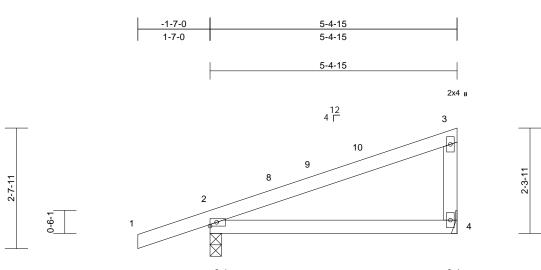
Scale = 1:25.2

00010 = 1.20.2												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.40 0.29 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-4-15 oc purlins, e Rigid ceiling directly bracing. (size) 2=5-4-15, Max Horiz 2=71 (LC Max Uplift 2=-79 (LC Max Grav 2=320 (LC (lb) - Maximum Com Tension	xcept end verticals. applied or 10-0-0 oc 4=5-4-15 15) c 12), 4=-34 (LC 16) c 2), 4=196 (LC 2) pression/Maximum	load of 12. overhangs 7) Building D verifying R requiremen 8) Gable requ 9) Gable stud 10) This truss chord live I 11) * This truss on the bott 3-06-00 tal chord and 12) Provide me bearing pla	has been designed 0 psf or 1.00 times non-concurrent wit ssigner/Project eng ain Load = 5.0 (psf, its specific to the ui- tires continuous bol s spaced at 2-0-0 c has been designed oad nonconcurrent b has been designed om chord in all area l by 2-00-00 wide w any other members schanical connectio tte capable of withs	flat roof lo th other linineer resp) covers r se of this ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. on (by oth standing 7	bad of 15.4 per re loads. consible for ain loading truss compord d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t '9 lb uplift at j	sf on nent. ds. Dpsf om o					
this design. 2) Wind: ASC Vasd=91mj II; Exp B; E and C-C Co	1-2=0/30, 2-3=-247/ 2-4=-112/48 d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er orner (3) -1-7-0 to 1-5 ; cantilever left and rig	been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -0, Exterior (2) 1-5-0	13) Beveled pl surface wit LOAD CASE(S Cat. e	ift at joint 4 and 79 ate or shim required h truss chord at joir 5) Standard	d to provi		g			and the second se	NITH CA	ROUT

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.
4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

5) Unbalanced snow loads have been considered for this design.


SEAL

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	P02	Monopitch	4	1	Job Reference (optional)	174074794

2x4 =

2x4 ı	L
-------	---

Page: 1

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50

ID:7QguQz1b0y_p9lwXPUISdGzw3ap-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-4-15

Scale = 1:25.2												
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	0.07	4-7	>964	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.07	4-7	>867	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%
LUMBER			6) Building De	esigner/Project en	gineer res	ponsible for						

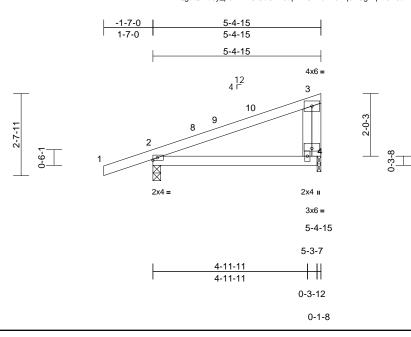
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-0, 4= Mechanical
	Max Horiz	2=71 (LC 15)
	Max Uplift	2=-117 (LC 12), 4=-68 (LC 12)
	Max Grav	2=320 (LC 2), 4=196 (LC 2)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/30,	2-3=-81/160, 3-4=-135/99
BOT CHORD	2-4=-66/5	54
NOTES		

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 to 5-3-3 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 4 and 117 lb uplift at joint 2.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	P03	Monopitch	2	1	Job Reference (optional)	174074795

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50 ID:7QguQz1b0y_p9lwXPUISdGzw3ap-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

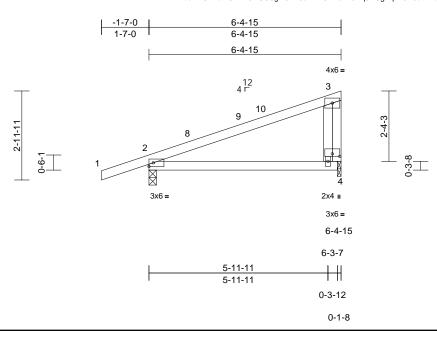
Scale = 1:37.1

Plate Offsets (X, Y): [4:0-3-0,0-1-0]

·										_			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.06 0.01	(loc) 4-7 4-7 2	l/defl >999 >948 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-4-15 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=69 (LC Max Uplift 2=-115 (L Max Grav 2=314 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-80/1 2-4=-65/53	xcept end verticals. applied or 10-0-0 o 4=0-1-8 15) C 12), 4=-66 (LC 12 C 2), 4=190 (LC 2) ipression/Maximum 58, 3-4=-131/96	c 8) 2) 9) 10 11	load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha chord live lo * This truss l on the botto 3-06-00 tall chord and an Bearing at jc using ANSI/ designer sho) Provide mec bearing platt	as been designed fi psf or 1.00 times fi ion-concurrent with signer/Project engir in Load = 5.0 (psf) s specific to the use as been designed fi ad nonconcurrent v has been designed fi m chord in all areas by 2-00-00 wide win ny other members. bint(s) 4 considers p TPI 1 angle to grair buld verify capacity chanical connection e at joint(s) 2, 4. chanical connection e capable of withsta uplift at joint 4.	at roof I other li neer res covers i e of this or a 10. with any for a li s where Il fit betwo parallel n formul of bear n (by oth	bad of 15.4 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa te load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss	onent. ads. Opsf to to to					
this design 2) Wind: ASC Vasd=91n II; Exp B;	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -1-7-0 to 1-	(3-second gust) DL=3.0psf; h=25ft; velope) exterior zor	/AD UAGE(3)	Standalu						- AL	ORTH CA	ROUL	

- and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 5-1-7 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	P04	Monopitch	4	1	Job Reference (optional)	174074796

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:50 ID:bumhC7FumUFFK3I?SG3gM3zw3aX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.5

Plate Offsets (X, Y): [4:0-3-0,0-1-0]

·`			-										-
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.57	DEFL Vert(LL)	in 0.12	(loc) 4-7	l/defl >628	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.14	4-7	>541	180	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=80 (LC Max Uplift 2=-127 (LC Max Grav 2=352 (LC (lb) - Maximum Com Tension	cept end verticals. applied or 10-0-0 or 15) C 12), 4=-81 (LC 12) 2), 4=232 (LC 2) pression/Maximum	c 8) () 9)	load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha chord live lo. * This truss lo on the botto 3-06-00 tall chord and a Bearing at jo using ANSI/ designer sho bearing plate	as been designed for psf or 1.00 times fla on-concurrent with signer/Project engin in Load = 5.0 (psf) or s specific to the use as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. bint(s) 4 considers p TPI 1 angle to grain buld verify capacity chanical connection e at joint(s) 4.	at roof I other Ii eer res covers I e of this or a 10. vith any for a liv s where I fit betw barallel formul of bear (by oth	oad of 15.4 p ve loads. ponsible for rain loading truss compo 0 psf bottom other live loa ve load of 20. a rectangle ween the bott to grain value a. Building ing surface. iers) of truss	onent. ads. Opsf to to to					
NOTES				2 and 81 lb uplift at joint 4.									
	ed roof live loads have	been considered fo	r Lo	DAD CASE(S)	Standard								
Vasd=91n II; Exp B;	n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) -1-7-0 to 1-5	ne								- ANN	OR OFESS	ROUT	

6-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

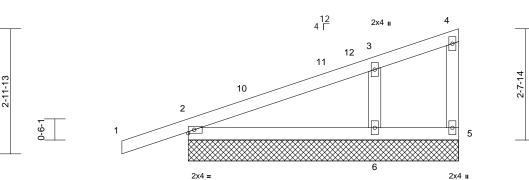
June 10,2025

G

minin

SEAL 036322

anninner,


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

anna ann

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	P05E	Monopitch Supported Gable	1	1	Job Reference (optional)	174074797

 Image: Control of the second secon

6-5-7

Scale = 1:27.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.13 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	r applied or 10-0-0 or 5=6-5-7, 6=6-5-7 15) C 12), 5=-8 (LC 15), 6 C 2), 5=14 (LC 23), 6 npression/Maximum 144, 3-4=-46/41,	5) (d or 6) (5 7) (567 8) (567 8) (567 9) (1) (5	Plate DOL=1 psf (flat roof Category II; 1) Unbalanced design. This truss ha load of 12.0) overhangs n Building Des verifying Rai requirements Gable requir Gable studs D) This truss ha chord live loa 1) * This truss ha chord live loa 1) * This truss ha chord live loa 2.0 -00 tall t chord and ar 2) Provide mec bearing plate 2, 8 lb uplift a at joint 2.	57-10; Pr=20.0 ps .15); Pg=20.0 psf snow: Lum DOL= Exp B; Partially Es snow loads have is been designed a psf or 1.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the use es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members hanical connection a capable of withsta at joint 5, 67 lb upl	(ground 1.15 Plat (gr.; Ct=1 been cor for great lat roof lin n other lin neer res covers r se of this tom chor c. for a 10.1 with any d for a liv s where ill fit betv n (by oth canding 6 lift at join	snow); Pf=1! e DOL=1.15) .10 nsidered for the er of min roof pad of 15.4 p ve loads. ponsible for ain loading truss compoind bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottom ers) of truss t 66 lb uplift at j t 6 and 66 lb	5.4 ; live sf on nent. ds. Dpsf om o oint uplift				WITH CA	
this desigr 2) Wind: ASC	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust)	L		e or shim requirec truss chord at join Standard			g		4	ALL IN	ORTH CA	DINI

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-7-0 to 1-5-0, Exterior (2) 1-5-0 to 6-3-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) June 10,2025

annunnin.

Page: 1

4. GILD

SEAL

036322

Variation

Job	Truss	Truss Type	Qty	Ply	1061 Serenity	
P03167-26413	V01	Valley	1	1	Job Reference (optional)	174074798

1-4-14

0-0-4

Run: 8.83 S May 29 2025 Print: 8.830 S May 29 2025 MiTek Industries, Inc. Mon Jun 09 14:02:51

ID:TSQxrSRsozhD3kFdPAgK?TzGg8K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2-9-5 5-6-9 2-9-5 2-9-5 5-7-9 3x6 = 2 12 6 Г 3x6 🍬 3x6 👟

5-6-9

Scale = 1:22.1

Plate Offsets (X, Y): [2:0-3-0,Edge]

(loc) - - 3	n/a n/a	a 999 a 999	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%
		A CONTRACT OF A CONTRACT.	SEAL 036322
	3	- n/a - n/a 3 n/a	- n/a 999 - n/a 999 3 n/a n/a

June 10,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

