Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 59839 JOB: 25-4771-R01 JOB NAME: LOT 0.0019 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *48 Truss Design(s)*

Trusses:

GR01, GR02, J01, J02, P01, P02, R01, R02, R04, R04A, R05, R06, R07, R08, R09, R10, R11, R12, R15, R16, R17, R18, R19, R20, R21, R22, R23, SP01, SP02, V01, V02, V03, V04, V05, V06, V07, V08, V09, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23

My license renewal date for the state of North Carolina is 12/31/2025

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHE	LBY MEADOW LANE ANGIER, NC
25-4771-R01	GR01	Common Supported Gable	1	1	Job Reference (optional)	# 59839
		Run: 8 ID:9prv	.630 s Jul 1 6yHa7_cC	2 2024 Prir LvqCc?U	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. 1 ZpDyZ9ax-ZGwPgVhjnuqaor?PEKyUH0	Mon Jun 2 23:14:30 2025 Page 2 QcQoETBgPECBsdspezABPd

13) Trusses designed with 2018 IRC also comply with 2015 IRC.

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHELBY	MEADOW LANE ANGIER, NO
25-4771-R01	GR02	Common	6	1	Job Reference (optional)	# 59839
		Ru	in: 8.630 s Jul D:9prv6yHa7	2 2024 Prin CCLvqCc	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mor c?UZpDyZ9ax-Vf295BizJW5I298oMk_yNrhf	1 Jun 2 23:14:32 2025 Page 2 fN2?Q8HGVeA6zuXzABPb

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOAD CASE(S) Standard

All bearings 6-0-0. (lb) - Max Horz 1=93(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 6 except 1=-112(LC 21)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=338(LC 21), 6=339(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

3-6=-273/121 WFBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

- between the bottom chord and any other members.
- u bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6 except (jt=lb) 1=112. 11) See Standard Industry Piggyback Truss Connection Detail for Connection to here the
- designer.

LOAD CASE(S) Standard

BCLL BCDL	0.0 * 10.0	Code IRC2021/TPI2014	Matrix-P	1012(01)	0.00 - 11/4 11/4	Weight: 22 lb	FT = 20%
LUMBER- TOP CHORI BOT CHORI	D 2x4 SP No.2 D 2x4 SP No.3			BRACING- TOP CHORD	Structural wood sheathing direct end verticals.	ly applied or 6-0-0 oc p	ourlins, except
WEBS	2x4 SP No.3			BOT CHORD	Rigid ceiling directly applied or 1	0-0-0 oc bracing.	
					MiTek recommends that Stabil be installed during truss erection	izers and required cros	s bracing Stabilizer

Installation guide.

REACTIONS. All bearings 6-0-0.

(lb) - Max Horz 1=93(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 4 except 1=-465(LC 21), 2=-217(LC 14) Max Grav All reactions 250 lb or less at joint(s) 1, 4, 4 except 2=856(LC 21)

TOP CHORD 1-2=-134/259

NOTES- (

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 1, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 1=465, 2=217

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHE	LBY MEADOW LANE ANGIER, NC
25-4771-R01	R01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	# 59839
		Run: 8	.430 s Feb ID:ki1joo/	12 2021 Prin ABIVPuap	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. OcTCcJLLyp?N7-vEjIjDIrcRTsvctN1tYf_	Mon Jun 2 23:14:35 2025 Page 2 UJ7KF3MLe1xK8LdVszABPY

NOTES- (14)

12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 20, 21, 22, 23, 18, 17, 16, 15 except (jt=lb) 25=146, 24=236.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT 0.0019 HONEYCUTT H	ILLS 400 SHELBY MEADOW LANE ANGIER, NC
25-4771-R01	R04	Monopitch	3		# 59839
			Run: 8.430 s Feb	JOB Reference (optional) 12 2021 Print: 8.630 s Jul 12 2024 MiTek	Industries, Inc. Mon Jun 2 23:14:36 2025 Page 1
		-0-11-0 7-11-8	15-		
		0-11-0 7-11-0	0-		Scale - 1:71 1
			7.00 12	4x6 🖉	Scale - 1.71.1
		Ī		Æ	
			3x6 🖉	12	
		2	10		
			3		
	c T		e v	4 W5	
	7 7 7	9 <u>1</u>			
		5x5 🖘		8	
		1 ²	wз		
		9 W1			
		× 8	7 11	6	
		3x4	4x8 =	3x4 =	
		7-11-8	15-	11-8	
Plate Offsets (X,Y) [2:0	-2-0,0-1-12], [5:0-2-14,0-2-	0], [6:Edge,0-1-8]	1		
LOADING (psf) TCLL (roof) 20.0	SPACING-	2-0-0 CSI .	DEFL.	in (loc) l/defl L/d	PLATES GRIP
Snow (Pf) 20.0 TCDI 10.0	Lumber DOL	1.15 IC 0.86 1.15 BC 0.85	Vert(LL) Vert(CT)	-0.29 6-7 >641 240 -0.38 6-7 >493 180	M120 244/190
BCLL 0.0 *	Rep Stress Incr Code IRC2021/TF	YES WB 0.55 PI2014 Matrix-AS	Horz(CT)	-0.01 6 n/a n/a	Weight: 115 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	o.2 o.2		TOP CHORD BOT CHORD	Structural wood sheathing direc Rigid ceiling directly applied.	tly applied, except end verticals.
WEBS 2x4 SP No W5 ⁻ 2x4 S	0.3 *Except* P No 2		WEBS	1 Row at midpt 5-6, 5	-7
				be installed during truss erection	on, in accordance with Stabilizer
REACTIONS. (lb/size)	6=625/Mechanical, 8=693/	′0-3-0 (min. 0-1-8)		Installation guide.	
Max Horz Max Uplifi	8=348(LC 11) :6=-143(LC 14), 8=-39(LC ⁻	14)			
Max Grav	6=865(LC 24), 8=718(LC 2	21)			
FORCES. (lb) - Max. Co	mp./Max. Ten All forces :)/84_3-9=-566/104_3-4=-69	250 (lb) or less except when shown. 03/198 4-10=-599/210 5-10=-528/2	34 5-6=-698/188		
2-8=-644 BOT CHORD 7-8=-320	//137 //192		,,		
WEBS 3-7=-595	5/256, 5-7=-246/862, 2-7=-4	13/469			
NOTES- (10)					
(envelope) gable end z	t=120mph (3-second gust) zone and C-C Exterior(2E)	Vasd=95mph; 1CDL=5.0psf; BCDL -0-11-0 to 3-10-10, Interior(1) 3-10-1	=5.0psf; h=23ft; Ca 10 to 11-0-2, Exteri	at. II; Exp B; Enclosed; MWFRS or(2E) 11-0-2 to 15-9-12 zone;	
cantilever left and right	exposed ; end vertical left	and right exposed;C-C for members	s and forces & MW	FRS for reactions shown;	
Lumber DOL=1.60 pla	te grip DOL=1.60			Dista DOI -4 45), la-4 0, Daviela	
2) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp.: 0	te grip DOL=1.60 20.0 psf (roof LL: Lum DO 2e=1.0: Cs=1.00: Ct=1.10	L=1.15 Plate DOL=1.15); Pf=20.0 p	sf (Lum DOL=1.15	Plate DOL=1.15); IS=1.0; Rough	
2) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C 3) Unbalanced snow load	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO ce=1.0; Cs=1.00; Ct=1.10 Is have been considered fo signed for greater of min r	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. Dof live load of 12.0 psf or 2.00 time	st (Lum DOL=1.15	Plate DOL= 1.15 ; is= 1.0 ; Rougn	
 Cat B; Partially Exp.; C Unbalanced snow load This truss has been de non-concurrent with ot This trues has been de non-concurrent with ot 	te grip DOL=1.60 ;20.0 psf (roof LL: Lum DO ;20.0 cs=1.00; Ct=1.10 Is have been considered for asigned for greater of min m her live loads.	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. pof live load of 12.0 psf or 2.00 time	sf (Lum DOL=1.15 s flat roof load of 2	0.0 psf on overhangs	AND THE OFFICE
 Clumber DOL=1.60 pia TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C Unbalanced snow load This truss has been de non-concurrent with ot This truss has been de * This truss has been de * This truss has been de 	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :2e=1.0; Cs=1.00; Ct=1.10 Is have been considered for signed for greater of min m her live loads. signed for a 10.0 psf botto designed for a live load of 3	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. pof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 80.0psf on the bottom chord in all ar	sf (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar	0.0 psf on overhangs ds. lgle 3-6-0 tall by 1-0-0 wide will fit	ANNUMERTH CAROL
 Call Digital Content of the product of	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO is have been considered for asigned for greater of min m her live loads. esigned for a 10.0 psf botto designed for a live load of 3 lord and any other member uss to truss connections.	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 80.0psf on the bottom chord in all ar s, with BCDL = 10.0psf.	sf (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fi	AND RTH CAROLINA
 Clumber DOL=1.60 pia TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C Unbalanced snow load This truss has been de non-concurrent with ot This truss has been de * This truss has been de * This truss has been de This tr	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :e=1.0; Cs=1.00; Ct=1.10 is have been considered for esigned for greater of min r her live loads. signed for a 10.0 psf botto designed for a 10.0 psf botto designed for a live load of 3 iord and any other member uss to truss connections. Innection (by others) of frus ires that a minimum of 7/16	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 30.0psf on the bottom chord in all an s, with BCDL = 10.0psf. ss to bearing plate capable of withst s" structural wood sheathing be appl	st (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar anding 100 lb uplif ied directly to the t	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fit at joint(s) 8 except (jt=lb) 6=143 op chord and 1/2" gypsum	SEAL
 Clumber DOL=1.60 pia TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C Unbalanced snow load This truss has been de non-concurrent with ot This truss has been de * This truss has been de<	te grip DOL=1.60 (20.0 psf) (roof LL: Lum DO (20.0 psf) (roof LL: Lum DO (20.0 psf) (roof LL: Lum DO (20.0 psf) (set 1.00); Ct=1.10 (20.0 psf) (set 1.00); Ct=1.10 (20.0 psf) (set 1.00); Ct=1.10 (20.0 psf) (set 1.00); Ct=1.00 (20.0 psf) (set 1.00);	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 80.0psf on the bottom chord in all ar is, with BCDL = 10.0psf. ss to bearing plate capable of withst s" structural wood sheathing be appl	st (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar anding 100 lb uplif ied directly to the t	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fit at joint(s) 8 except (jt=lb) 6=143 op chord and 1/2" gypsum	SEAL 28147
 Call Big Content of the second second	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO :20.0 cs=1.00; Ct=1.10 Is have been considered for signed for greater of min m her live loads. signed for a 10.0 psf botto designed for a live load of 3 iord and any other member uss to truss connections. onnection (by others) of trus ires that a minimum of 7/16 lirectly to the bottom chord d	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 00.0psf on the bottom chord in all an s, with BCDL = 10.0psf. ss to bearing plate capable of withst " structural wood sheathing be appl	st (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar anding 100 lb uplif ied directly to the t	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fit at joint(s) 8 except (jt=lb) 6=143. op chord and 1/2" gypsum	SEAL 28147
 Lumber DOL=1.60 pia 2) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C 3) Unbalanced snow load 4) This truss has been de non-concurrent with ot 5) This truss has been de 6) * This truss has been de 6) * This truss has been de 6) * This truss has been de 7) Refer to girder(s) for tr 8) Provide mechanical cc 9) This truss design requires the trust design requires the trust of the trust design requires the trust of the trust design requires the trust design result design requires the trust design requires the trust d	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO is have been considered for esigned for greater of min m her live loads. esigned for a 10.0 psf botto designed for a live load of 3 isord and any other member uss to truss connections. nnnection (by others) of trus ires that a minimum of 7/16 lirectly to the bottom chord d	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 80.0psf on the bottom chord in all ar 's, with BCDL = 10.0psf. ss to bearing plate capable of withst " structural wood sheathing be appl	st (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar anding 100 lb uplif ied directly to the t	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fit at joint(s) 8 except (jt=lb) 6=143 op chord and 1/2" gypsum	SEAL 28147
 Lumber DOL=1.60 pia 2) TCLL: ASCE 7-16; PreCat B; Partially Exp.; C 3) Unbalanced snow load 4) This truss has been denon-concurrent with ot 5) This truss has been de 6) * This truss has been de 6) * This truss has been de 7) Refer to girder(s) for tr 8) Provide mechanical cc 9) This truss design requires the trusk design requires the trusk of the trusk design requires the trusk of the trusk design requires the trusk of the trusk design requires the trusk design requires	te grip DOL=1.60 :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO :20.0 psf (roof LL: Lum DO issigned for greater of min m her live loads. :20.0 psf botto :20.0 psf :20.0 p	L=1.15 Plate DOL=1.15); Pf=20.0 p or this design. bof live load of 12.0 psf or 2.00 time m chord live load nonconcurrent wit 80.0psf on the bottom chord in all an s, with BCDL = 10.0psf. es to bearing plate capable of withst structural wood sheathing be appl	st (Lum DOL=1.15 s flat roof load of 2 h any other live loa eas where a rectar anding 100 lb uplif ied directly to the t	0.0 psf on overhangs ids. igle 3-6-0 tall by 1-0-0 wide will fit at joint(s) 8 except (jt=lb) 6=143. op chord and 1/2" gypsum	SEAL 28147

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHELBY	Y MEADOW LANE ANGIER, NO
25-4771-R01	R05	GABLE	1	1	Job Reference (optional)	# 59839
		Run: 8. ID:ki	430 s Feb 1 1jooABIVP	2 2021 Prir uapOcTC	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mor cJLLyp?N7-KpPRMEnkuMrRm4cyi?5Mc6x	n Jun_2 23:14:38 2025_Page 2 ccyT2qY0gN06ZH5BzABPV

NOTES- (13) 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17, 18 except (jt=lb) 20=230, 19=340.

LOAD CASE(S) Standard

6/2/2025

	1 🖛	T				
JOD	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHELE	BY MEADOW LANE ANGIER, NO
25-4771-R01	R07	COMMON	6	1	Job Reference (optional)	# 59839
		Run: 8. ID:	430 s Feb 1 ki1iooABI∖	2 2021 Prir /PuapOcT	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. M CcJLLvp?N7-o?zpZaoMffzIODB8Gidb9K	on Jun 2 23:14:39 2025 Page 2 (UI9sJDHK2XFmJgedzABPU

=1.15
15
1.15
4.45
=1.15
per Increase=1.60, Plate Increase=1.60
nber Increase=1.60, Plate Increase=1.60
l): Lumber Increase=1.60, Plate Increase=1.60
el): Lumber Increase=1.60, Plate Increase=1.60
umber Increase=1.60. Plate Increase=1.60
umber increase=1.60, Plate increase=1.60
Lumber Increase=1.60, Plate Increase=1.60
rallal); Lumber Increase=1.60. Dicts Increase=1.60
aller). Lumber increase=1.00, Plate increase=1.00
rallel): Lumber Increase=1.60.
,
ncrease=1 15
1010430-1.10
ncrease=1.15
-

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHELBY M	AEADOW LANE ANGIER, NO
25-4771-R01	R10	GABLE	1	1	Job Reference (optional)	# 59839

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Mon Jun 2 23:14:40 2025 Page 2 ID:ki1jooABIVPuapOcTCcJLLyp?N7-GBWBmwp_Qz59?NmKqQ8qhX01xGjz0nFgUQ2OA3zABPT

LOAD CASE(S) Standard

Max Grav All reactions 250 lb or less at joint(s) 21, 11, 13, 12 except 17=250(LC 29), 18=297(LC 5), 19=273(LC 5), 20=253(LC 23), 15=283(LC 6), 14=277(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(13)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 4-11-6, Corner(3R) 4-11-6 to 13-0-10, Corner(3E) 13-0-10 to 17-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11)
- * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 the true, 13 except (jt=lb) 11=142, 12=147. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 18, 19, 20, 15

Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583

LOAD CASE(S) Standard

2/2025 V and NOINEE 6/2/2025 Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0019 HONEYCUTT HILLS 400 SHELB	Y MEADOW LANE ANGIER, NC
25-4771-R01	R17	Common Girder	1	2	Job Reference (optional)	# 59839
		Dup	9 420 a Eab	10 0001 Dri	pt: 9 620 a Jul 12 2024 MiTak Industrian Inc. Ma	n lun 2 22:14:44 2025 Dogo 2

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 Millek Industries, Inc. Mon Jun 2 23:14:44 2025 Page 2 ID:ki1jooABIVPuapOcTCcJLLyp?N7-8zmiclsVUCbbU?363GCmsNBoCt8CydwGP10bJqzABPP

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 9-12=-20 Concentrated Loads (Ib)

Vert: 7=-915(B) 15=-915(B) 16=-915(B) 17=-915(B) 18=-915(B)

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.52 BC 0.12 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 1 0.00 1 0.00 7	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	.2 .3 .3		BRACING- TOP CHORD BOT CHORD	Structural we end verticals Rigid ceiling	ood shea s. directly	athing direct applied or 1	ly applied or 6-0-0 oc 0-0-0 oc bracing.	c purlins, except
OTHERS 2x4 SP No WEDGE Left: 2x4 SP No.3	.3			MiTek reco be installed Installation	mmends d during t auide.	s that Stabili truss erectio	zers and required croom, in accordance wit	oss bracing h Stabilizer

REACTIONS. All bearings 9-0-0.

(lb) - Max Horz 2=165(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 9, 10 except 8=268(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (12)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9, 10.

LOAD CASE(S) Standard

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 2, 14, 15, 16, $\overline{17}$, 18, 19, 20, 21.

LOAD CASE(S) Standard

A MARINA MARINA SEAL 28147 ANNIH ANA ANA NOINER K. MORR 6/2/2025

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 18, 19, 20, 21, 15, 14, 13, 12

Max Grav All reactions 250 lb or less at joint(s) 1, 11, 20, 21, 13, 12 except 16=270(LC 26), 18=269(LC 19), 19=269(LC 19), 15=267(LC 20), 14=270(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-257/166

NOTES- (9)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Interior(1) 5-1-13 to 5-6-8, Exterior(2R) 5-6-8 to 15-1-12, Interior(1) 15-1-12 to 15-6-7, Exterior(2E) 15-6-7 to 20-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 18, 19, 20, 21, 15, 14, 13, 12.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and read notes before use. This beside only upon parameters shown, and is for an individual building component to be instanted and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

6/2/2025

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 6-2-7, Exterior(2E) 6-2-7 to 11-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

BCDL	10.0	Code IRC2021/TPI2014	Matrix-P			Weight: 15 lb	FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS	D 2x4 SP No.2 D 2x4 SP No.3 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct end verticals. Rigid ceiling directly applied or 1	lly applied or 4-1-9 oc p	ourlins, except
					MiTek recommends that Stabil	izers and required cros	ss bracing

REACTIONS. (lb/size) 1=138/4-1-9 (min. 0-1-8), 3=138/4-1-9 (min. 0-1-8) Max Horz 1=60(LC 11) Max Uplift1=-9(LC 14), 3=-27(LC 14) Max Grav 1=190(LC 20), 3=190(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

be installed during truss erection, in accordance with Stabilizer

Installation guide.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.23 BC 0.16 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	0.2 0.3 0.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 3-7-5 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.				
				MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.				

REACTIONS. (lb/size) 1=117/3-7-5 (min. 0-1-8), 3=117/3-7-5 (min. 0-1-8) Max Horz 1=51(LC 11) Max Uplift1=-8(LC 14), 3=-23(LC 14) Max Grav 1=157(LC 20), 3=157(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

Max Grav All reactions 250 lb or less at joint(s) 1, 11, 20, 21, 13, 12 except 16=272(LC 22), 18=269(LC 19), 19=270(LC 19), 15=266(LC 20), 14=271(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-256/167

NOTES- (9)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Interior(1) 5-1-13 to 5-8-4, Exterior(2R) 5-8-4 to 15-3-8, Interior(1) 15-3-8 to 15-9-15, Exterior(2E) 15-9-15 to 20-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 7) between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 18, 19, 20, 21, 15, 14, 13, 12.

LOAD CASE(S) Standard

6/2/2025

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 6-5-15, Exterior(2E) 6-5-15 to 11-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

NOTES- (8)

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES- (9)

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 1-4-12, Exterior(2R) 1-4-12 to 3-3-0, Exterior(2E) 3-3-0 to 4-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 6, 5.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.