

RE: 2502-1871-D - Norris Rev 1-Elev 5-Roof

Site Information:

Address:

Project Customer: DRB Raleigh Project Name: DRB Raleigh Model Track Lot/Block: Subdivision: DRB Raleigh Model: Norris Rev 1

Trenco 818 Soundside Rd Edenton, NC 27932

State: NC

City: General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2021/TPI2014

Wind Code: ASCE 7-16 Wind Speed: 120 mph Roof Load: 40.0 psf Mean Roof Height (feet): 25

Design Program: MiTek 20/20 25.2 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Exposure Category: B

No.	Seal#	Truss Name	Date
1 2 3	173874522 173874523 173874524	B1GE B1 C1G	6/2/25 6/2/25 6/2/25
4 5 6	173874525 173874526	C1 M1GE	6/2/25 6/2/25 6/2/25
7 8 9	173874528 173874529 173874529	B2 B2GE	6/2/25 6/2/25 6/2/25
10 11 12	173874531 173874532	A4 A2A A2B	6/2/25 6/2/25
13 14	173874535 173874535 173874535	A2 A1 A1CE	6/2/25 6/2/25
16 17	173874530 173874537 173874538	A2T PB1	6/2/25 6/2/25 6/2/25
19 20	173874539 173874540 173874541	V1 V2 V3	6/2/25 6/2/25 6/2/25
21 22 23	173874542 173874543 173874544	V4 V5 V6	6/2/25 6/2/25 6/2/25
25 26	173874545 173874546 173874547	V7 V8 A2GE	6/2/25 6/2/25 6/2/25
27 28 29	173874548 173874549 173874550	A2AGE A3 A2BGE	6/2/25 6/2/25 6/2/25
3ŏ	173874551	A3GE	6/2/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification of the state of the state of the seal on the set of the seal of t shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

June 2,2025

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	C1G	Monopitch Supported Gable	2	1	Job Reference (optional)	173874524

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:46 ID:?i4o_sna8qbUiqhtkL7nH0zIvAp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.56 0.74 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.16 0.02 0.06	(loc) 11-17 11-17 18 11-17	l/defl >999 >908 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-0, ' Max Horiz 2=66 (LC Max Uplift 2=-88 (LC Max Grav 2=538 (LC	athing directly applied applied. 18=0-1-8 12) ; 12), 18=-77 (LC 12) C 2), 18=486 (LC 23)	 TCLL: ASCI Plate DOL= 1.15 Plate D Exp.; Ce=1. Unbalanced design. This truss h load of 12.0 overhangs r Plates chec about its cer Gable studs This truss h chord live lo 	E 7-16; Pr=20.0 psf 1.15); Pg=20.0 psf; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have b as been designed f psf or 2.00 times fl ion-concurrent with ked for a plus or minter. spaced at 2-0-0 or as been designed f ad nonconcurrent f	f (roof LL Pf=15.4 ; Rough 0 peen cor or greate a troof lo a other liv inus 5 de c. or a 10.0 with any	L: Lum DOL= b psf (Lum DC Cat B; Partia asidered for th er of min roof pad of 15.4 p: ve loads. agree rotation 0 psf bottom other live loa	1.15 DL = Ily his live sf on ds.					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-3=-1148	pression/Maximum 3/401, 3-4=-1126/412	9) * This truss on the botto 3-06-00 tall	has been designed m chord in all areas by 2-00-00 wide wi	I for a liv s where II fit betv	e load of 20.0 a rectangle veen the botto)psf om					
BOT CHORD	4-5=-156/14, 5-6=-1 8-14=-164/452, 7-14 2-11=-466/1099, 10- 9-10=-466/1099, 8-9 4-10=-92/354, 4-13=	57/22, 6-7=-127/34, I=-164/452 -11=-466/1099, 0=-466/1099 1019/434.	chord and a 10) Bearing at jo using ANSI/ designer sh 11) Provide mer	ny other members. bint(s) 18 considers TPI 1 angle to grain buld verify capacity chanical connection	s parallel n formula of beari	to grain valu a. Building ng surface. ers) of truss t	e					

12-13=-1018/433, 8-12=-1038/441, 6-12=-112/30, 5-13=-146/104, 9-13=-90/167, 3-11=-121/131, 7-18=-493/195

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- bearing plate at joint(s) 18.
 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 18. This connection is for uplift only and does not consider lateral forces.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	C1	Monopitch	18	1	Job Reference (optional)	173874525

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:46 ID:pmKMz11hInnHGIxy6J0EmxzIvBn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.8

REACTIONS (size)

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

design.

BOT CHORD Rigid ceiling directly applied.

Tension

Max Horiz 2=66 (LC 12)

2=0-3-0, 11=0-1-8

Max Uplift 2=-88 (LC 12), 11=-77 (LC 12)

Max Grav 2=538 (LC 2), 11=486 (LC 23)

(lb) - Maximum Compression/Maximum

1-2=0/20, 2-3=-1156/411, 3-4=-172/31,

3-6=-68/369, 3-5=-1027/436, 4-11=-494/195

5-7=-142/437. 4-7=-142/437

Wind: ASCE 7-16; Vult=120mph (3-second gust)

II; Exp B; Enclosed; MWFRS (envelope) and C-C

Lumber DOL=1.60 plate grip DOL=1.60

Exp.: Ce=1.0: Cs=1.00: Ct=1.10

2-6=-468/1108, 5-6=-468/1108

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-6-4

zone; cantilever left and right exposed ; end vertical left

and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown;

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.15	IC	0.63	Vert(LL)	-0.12	5-6	>999	360	M120	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.18	6-10	>802	240			
CDL	10.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.02	11	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.06	6-10	>999	240			
BCDL	10.0										Weight: 55 lb	FT = 20%	
UMBER OP CHORD OT CHORD VEBS DTHERS BRACING OP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea except end verticals.	athing directly applie	 5) Plates ch about its 6) This truss chord live 7) * This tru on the bc 3-06-00 th chord and 	ecked for a plus or center. s has been designe load nonconcurrer ss has been design ttom chord in all ar all by 2-00-00 wide d any other membe	minus 5 de d for a 10.0 nt with any led for a liv eas where will fit betw rs.	egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the botto	n ads. Opsf om						

- Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 11.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	M1GE	Monopitch Structural Gable	2	1	Job Reference (optional)	173874526

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:VGg47t139JN4TDjv7mGfrAzYpaa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.8

2)

Plate Offsets (X, Y): [2:0-0-12,0-1-12], [2:Edge,0-1-10]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.59 0.62 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.14 0.02 0.07	(loc) 7-12 7-12 2 7-12	l/defl >761 >505 n/a >959	L/d 360 240 n/a 240	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood sheat except end verticals. Rigid ceiling directly (size) 2=0-3-0, 6 Max Horiz 2=57 (LC Max Grav 2=421 (LC	I-6-0 athing directly applied applied. 5= Mechanical 15) 12), 6=-34 (LC 12) 2 40), 6=357 (LC 57)	4) 5) 6) d, 7) 8) 9)	Unbalanced design. This truss ha load of 12.0 g overhangs no Plates check about its cen Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Refer to gird(snow loads have I s been designed f on-concurrent with ed for a plus or m ter. spaced at 2-0-0 or s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide with the members. er(s) for truss to fr	been cor for great lat roof lo n other lin inus 5 de c. for a 10.0 with any d for a 10.0 with any d for a liv s where ill fit betw uss conr	er of min roo aad of 15.4 p ve loads. egree rotation other live loa e load of 20. a rectangle veen the bott ections.	his f live psf on n ads. Opsf						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=95r II; Exp B; Exterior(2 zone; can and right o members	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-410/ 5-6=-304/100 2-7=-110/64, 6-7=-3: 4-7=-132/120 CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter tilever left and right exp exposed; porch left and and forces & MWFRS	pression/Maximum 165, 4-5=-59/64, 2/34 (3-second gust) DL=6.0psf; h=25ft; C vvelope) and C-C rior (1) 2-0-0 to 5-9-1 posed ; end vertical le d right exposed;C-C f for reactions shown:	11) 12) 13) at. 14) 2 sft or 15)	Provide mecl bearing plate Provide mecl bearing plate for the second provide mecl bearing plate for the second provide mech plate truss ha load of 250.0 panels and a Bottom Chor This truss de	hanical connection at joint(s) 2. hanical connection capable of withst simpson Strong-Ti d to connect truss s) 2. This connect sider lateral force s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent sign requires that	n (by oth anding 3 e connects to bear tion is for s. for a moviead loca along the with any a minim	ers) of truss 4 lb uplift at tors ng walls due uplift only al ring concentr ted at all mic Top Chord a other live loz um of 7/16"	to joint e to nd rated d and ads.				ORTEESS SEA	ROLIN	N

- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	M1	Monopitch	9	1	Job Reference (optional)	173874527

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:VGg47t139JN4TDjv7mGfrAzYpaa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-11-8

Scale = 1:34.8

Plate Offsets (X, Y): [2:0-1-4,0-1-12], [2:Edge,0-1-10]

2-7-8

Loading ICLL (roof) Snow (Pf/Pg) ICDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.72 0.78 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.16 0.01 0.06	(loc) 5-10 5-10 2 5-10	l/defl >623 >446 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER OP CHORD 30T CHORD VEBS SLIDER 3RACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals. Rigid ceiling directly (size) 2=0-3-0, 5 Max Horiz 2=57 (LC Max Uplift 2=-60 (LC Max Grav 2=421 (LC	I-6-0 athing directly applied applied. 5= Mechanical 15) 12), 5=-34 (LC 12) 2 40), 5=357 (LC 53)	6) 7) 8) 1, 9) 10) 11)	Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd) Provide mecl bearing plate 5.) One H2.5A S	ed for a plus or mi ter. is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi yo other members. er(s) for truss to tru- hanical connection capable of withst: Simpson Strong-Ti-	nus 5 de or a 10.0 with any I for a liv s where II fit betw uss conr to (by oth anding 3 e connee to bear	egree rotatio 2) psf bottom other live loa e load of 20. a rectangle veen the bot nections. ers) of truss 14 lb uplift at ctors	n .0psf tom to joint						
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-378/7 2-5=-32/34	pression/Maximum 74, 4-5=-306/124 been considered for	12)	UPLIFT at jt(does not con) This truss ha load of 250.0 panels and a Bottom Chor	s) 2. This connect truss sider lateral forces is been designed f blb live and 3.0lb d t all panel points a d, nonconcurrent v	ion is for s. or a move ead locations the with any	ving concent ted at all mice top Chord other live los	rated and and ads.						

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Bottom Chord, honconcurrent with any other live loads.
13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

0-3-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Affiliate

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	B2	Monopitch	10	1	Job Reference (optional)	173874528

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:46 ID:D9Eh?OW?T3WGU2Q4y4pZw_zsp3W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.1

Plate Offsets (X, Y): [2:Edge,0-0-9]

Loading	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.52	DEFL Vert(LL)	in -0.05	(loc) 4-7	l/defl >978	L/d 360	PLATES MT20	GRIP 244/190	
Snow (Pt/Pg)	15.4/20.0	Lumber DOL	1.15 VES		BC	0.54	Vert(CT)	-0.06	4-7	>//0	240			
RCU	10.0	Code	TE0 IRC2021	/TPI2014	WD Matrix-MD	0.00	Mind(LL)	0.01	۲ م	-000	11/a 2/0			
BCDL	10.0	Code	11(02021	/11 12014	Matrix-IVII		WING(EE)	0.01	4-7	2999	240	Weight: 17 lb	FT = 20%	
JUMBER TOP CHORD 30T	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shear 3-11-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Max Horiz 2=57 (LC Max Uplift 4=-1 (LC - Max Grav 2=352 (LC (lb) - Maximum Com Tension 1-2=0/36, 2-3=-116/0 2-4=-124/105 ed roof live loads have be conclused for the second conclused of the second conclused for the second conclusion for the second conclusi	Athing directly applie (cept end verticals. applied or 10-0-0 oc (a) Mechanical (15) (16) (240), 4=327 (LC 42) pression/Maximum (37, 3-4=-289/99) (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-0-0 to 3-9-1 posed ; end vertical li ers and forces & mber DOL=1.60 plat reof LL: Lum DOL=1 (f=15.4 psf (Lum DO Rough Cat B; Partiall en considered for thi greater of min roof I	6) 7) 8) d or 9) 10) 11) 11) LO Cat. 2 eft 4 ce 15 L = y y is live	Plates check about its cen This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate 10 This truss ha load of 250.0 panels and a Bottom Chor PAD CASE(S)	ed for a plus or min ter. s been designed for donoconcurrent w has been designed in chord in all areas y 2-00-00 wide will yo other members. er(s) for truss to tru- hanical connection capable of withsta s been designed for lb live and 3.0lb do t all panel points a d, nonconcurrent w Standard	nus 5 de or a 10.0 vith any for a liv s where I fit betw uss conr (by oth anding 1 or a mov ead loca long the vith any	egree rotation opsf bottom other live loa e load of 20.0 a rectangle veen the botto ections. ers) of truss t lb uplift at jo ring concentr. ted at all mid Top Chord a other live loa	ds. Jpsf om int 4. ated ds.				SEA 0363		Mannung

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially
- Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

GI

minim

June 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	B2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	173874529

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:46 ID:LCZSsS4UOVRbcGW6CS9aKuzsp2n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.50 0.57 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat 3-11-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=3-8-0, 6 Max Horiz 2=57 (LC Max Uplift 2=-210 (LC Max Grav 2=282 (LC (Ib) - Maximum Com Tension 1-2=0/36, 2-3=-174/S 4-5=-135/117 2-6=-79/57, 5-6=-31/ 3-6=-347/257	athing directly applie ccept end verticals. applied or 10-0-0 oc =3-8-0 15) C 43), 6=-1 (LC 16) : 40), 6=636 (LC 43) pression/Maximum 06, 3-4=-106/37, 41	4) 5) d or 6) 7) 8) 9) 1(11	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 g overhangs ne Plates check about its cen Gable studs : This truss ha chord live loa 0) * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have t s been designed f por-concurrent with ed for a plus or mi ter. spaced at 2-0-0 or s been designed f ad nonconcurrent to as been designed n chord in all area: y 2-00-00 wide wi y other members.	f (roof LL Pf=15.4 ; Rough 0 peen cor or greate lat roof lo other livinus 5 de c. for a 10.0 with any 1 for a livis s where Il fit betw	:: Lum DOL=1 I psf (Lum DC Cat B; Partial asidered for th er of min roof bad of 15.4 ps /e loads. agree rotation O psf bottom other live load e load of 20.0 a rectangle veen the botto	L.15 DL = Iy live sf on ds. psf					
1) Unbalance	ed roof live loads have	been considered for	12 13	2) Non Standar 3) This truss ha	d bearing condition	n. Revie	w required.	ated				minin	1111

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 1-11-8, Exterior(2N) 1-11-8 to 3-9-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A4GE	Common Supported Gable	1	1	Job Reference (optional)	173874530

Run; 25.10 E Mar 10 2025 Print; 25.1.0 E Mar 10 2025 MiTek Industries, Inc. Mon Jun 02 17:22:34

ID:q?k5DM_oVt5KCAR9fd3nYAzCPiA-myL_12nVXU08_bDH8Jq9exRIF7mpSuLZev1oqzAQEJ

Page: 1

GRIP

244/190

FT = 20%

116 lb

Structural, LLC, Thurmont, MD - 21788.

-1-0-0 23-0-0 11-0-0 22-0-0 H +11-0-0 11-0-0 1-0-0 1-0-0 $\frac{5 - 0 - 0}{2 - 0 - 0} + \frac{7 - 0 - 0}{2 - 0 - 0} + \frac{9 - 0 - 0}{2 - 0 - 0} + \frac{11 - 0 - 0}{2 - 0 - 0} + \frac{13 - 0 - 0}{2 - 0 - 0} + \frac{17 - 0 - 0}{2 - 0 - 0} + \frac{19 - 0 - 0}{2 - 0 - 0} + \frac{13 - 0 - 0}{2 - 0} +$ 3-0-0 22-0-0 3-0-0 3-0-0 4x4 =12 6 2x4 II 2x4 🛛 7 37 36 2x4 II 2x4 II 8 6 2x4 II 35 38 9 39 2x4 II 34 5 33 40 2x4 II 2x4 II 0-0-9 10 Δ 6-3-15 32 41 3 11 42 31 30 43 12 0-9-0 13 ۵. 44 23 45 22 46 21 47 20 48 19 49 18 50 17 16 15 51 14 52 3x4= 3x4= 2x4 II 2x4 u 2x4 II 3x4=

22-0-0

Scale = 1:66.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.28 0.30 0.15	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.00 0.00	(loc) 23-26 23-26 2 23-26	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 1
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh Rigid ceiling directl All bearings 22-0-0. Max Horiz 2=-52 (L Max Uplift All uplift 14, 15, 1 Max Grav All reacti (LC 76), (LC 86), (LC 84), (LC 80), (LC 80),	eathing directly applied y applied. C 14) 100 (lb) or less at joint 7, 18, 20, 21, 22, 23 ons 250 (lb) or less at ot 2=335 (LC 65), 12=3 17=337 (LC 85), 18=3 19=319 (LC 81), 22=3 23=369 (LC 79) fax. Ten All forces 2	3) 4) 5) (s) 6) joint 314 7) 34 8) 34 9) 21 0) 50	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DL Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen Gable studs This truss ha chord live loa) * This truss ha	hed for wind loads dids exposed to wi d Industry Gable E alified building de 7-16; Pr=20.0 ps 0.15); Pg=20.0 psi 0.15); Pg=20.0 psi 0.15); Is=1.0 b; Cs=1.00; Ct=1. snow loads have s been designed bof or 2 plus or m ter. spaced at 2-0-0 c s been designed ad nonconcurrent has been designed in chord in all area	s in the p nd (norm End Deta signer as if (roof LL ; Pf=15.4 ; Pf=15.4); Rough 10 been cor for greati flat roof lo h other liv inus 5 de c. for a 10.4 with any d for a liv s where	lane of the trr lane of the trr al to the face ils as applica s per ANSI/T :: Lum DOL= 4 psf (Lum DC Cat B; Partia nsidered for t er of min rooi bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20.	uss)), ble, PI 1. 1.15 OL = ally his f live sf on ads. Opsf				
WEBS	(lb) or less except v 6-20=-281/58, 5-21 3-23=-307/93, 8-18 10-15=-280/56, 11-	vhen shown. =-284/66, 4-22=-280/5 =-281/58, 9-17=-284/6 14=-307/93	56, 56, 11)	3-06-00 tall to chord and ar Provide mec bearing plate	by 2-00-00 wide w ny other members hanical connectio capable of withs	ill fit betv n (by oth tanding 1	veen the bott ers) of truss 00 lb uplift a	om to t joint				

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 11-0-0, Corner (3R) 11-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 23-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- (s) 20, 21, 22, 23, 18, 17, 15, 14.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A4	Common	5	1	Job Reference (optional)	173874531

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:45

Page: 1 ID:ec2WKneE5HZIrsIm0kZDQGzCPic-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 23-0-0 22-0-0 5-7-7 11-0-0 16-4-9 5-7-7 5-4-9 5-4-9 5-7-7 1-0-0 1-0-0 4x4 =4 12 6 Г 20 21 2x4 🔊 2x4 🛛 19 22 3 5 0-0-9 6-3-15 18 23 17 24 6 မှ 25 10 26 27 9 8 28 4x4= 4x4 = MT20HS 3x8 = 3x4= 3x4= 7-4-15 22-0-0 14-7-1 7-2-2 7-4-15 7-4-15 22-0-0 Scale = 1:54 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.22 8-10 >999 360 MT20 244/190 BC Vert(CT) MT20HS Snow (Pf/Pg) Lumber DOL 1 15 0.50 -0.29 >912 240 187/143 15 4/20 0 8-10 10.0 Rep Stress Incr YES WB 0.24 Horz(CT) 0.03 6 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.03 8-10 >999 240 Weight: 102 lb 10.0 FT = 20%6) All plates are MT20 plates unless otherwise indicated. Plates checked for a plus or minus 5 degree rotation TOP CHORD 2x4 SP No.2 7) BOT CHORD 2x4 SP SS about its center. 2x4 SP No.3 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. BRACING 9) * This truss has been designed for a live load of 20.0psf Structural wood sheathing directly applied. on the bottom chord in all areas where a rectangle

TOP CHORD BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-3-8, 6=0-3-8 Max Horiz 2=-52 (LC 14) Max Grav 2=1001 (LC 3), 6=1001 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/36, 2-3=-1579/138, 3-4=-1435/155, 4-5=-1435/155, 5-6=-1579/138, 6-7=0/36 BOT CHORD 2-10=-50/1383, 8-10=0/933, 6-8=-58/1360 WEBS 4-8=-20/582, 5-8=-316/124, 4-10=-20/583, 3-10=-316/124

NOTES

Loading

TCDL

BCLL

BCDL

WFBS

LUMBER

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior (1) 14-0-0 to 23-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A2A	Attic	5	1	Job Reference (optional)	173874532

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:38 ID:yRbMC1iUBbx5A0VXQaxBWBzsTcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:92.6

Plate Offsets (X, Y): [2:0-5-14,Edge], [2:0-0-0,0-0-0], [14:0-5-14,Edge]

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.48	Vert(LL)	-0.46	23-25	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.73	23-25	>738	240	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.22	14	n/a	n/a	MT20HS	187/143
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.09	23-25	>999	240		
BCDL	10.0											Weight: 338 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=120mp	h (3-sec	ond gust)		14) This	s truss d	esign	requires that a mi	nimum of 7/16"
TOP CHORD	2x6 SP No.2 *Excep	t* 15-11,5-1:2x6 SP	DSS	Vasd=95mph	n; TCDL=6.0psf; B	CDL=6.0	0psf; h=25ft; 0	Cat.	stru	ctural w	ood sh	eathing be applie	ed directly to the top
BOT CHORD	2x4 SP SS *Except*	20-22:2x4 SP No.2		II; Exp B; En	closed; MWFRS (e	envelope	e) and C-C		cho	rd and 1	/2" gyj	osum sheetrock b	e applied directly to
WEBS	2x4 SP No.3 *Excep	t* 9-18,7-23,26-27:2:	x4	Exterior(2E)	-1-0-0 to 3-6-0, Int	erior (1)	3-6-0 to 18-2	-8,	the	bottom of	chord.		
	SP No.2			Exterior(2R)	18-2-8 to 24-6-14,	Interior	(1) 24-6-14 to)	15) Gra	phical p	urlin re	presentation doe	s not depict the size
SLIDER	Left 2x6 SP No.2 2	2-6-0, Right 2x6 SP N	No.2	26-9-8, Exter	ior(2R) 26-9-8 to 3	32-11-0,	Interior (1)		or t	ne orient	ation	of the purlin along	the top and/or
	2-6-0			32-11-0 to 46	6-0-0 zone; cantile	ver left a	and right		bott	om chor	d.		
BRACING				exposed ; en	d vertical left and	right exp	osed;C-C for		16) Attio	c room c	hecke	d for L/360 deflec	ction.
TOP CHORD	Structural wood she	athing directly applie	d.	members an	d forces & MWFR	S for rea	ctions shown;		LOAD	CASE(S)	Sta	ndard	
	except	5	- /	Lumber DOL	=1.60 plate grip D	OL=1.60)						
	2-0-0 oc purlins (3-1	1-7 max.): 7-9.	3)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL=1	.15					
BOT CHORD	Rigid ceiling directly	applied.		Plate DOL=1	.15); Pg=20.0 psf;	Pf=20.4	psf (Lum DC)L =					
WEBS	1 Row at midpt	6-23, 10-18		1.15 Plate D	OL = 1.15); ls=1.0	Rough	Cat B; Partial	ly					
JOINTS	1 Brace at Jt(s): 26,	,		Exp.; Ce=1.0	; Cs=1.00; Ct=1.1	0, Lu=50	0-0-0						
	27		4)	Unbalanced	snow loads have b	peen cor	isidered for th	is					
REACTIONS	(size) 2=0-3-8, 1	14=0-3-8	_	design.									
	Max Horiz 2=84 (LC	15)	5)	This truss ha	s been designed f	or great	er of min roof	live					
	Max Grav 2=2601 (L	_C 48), 14=2613 (LC	48)	load of 12.0	ost or 2.00 times ti	at root ic	bad of 15.4 ps	at on					
FORCES	(lb) - Maximum Com	pression/Maximum	,	overnangs n	on-concurrent with	other IIV	/e loads.	<u> </u>					
TOROLO	(ib) - Maximum Com	pression/maximum	6)	250.010 AC U	nit load placed on	the boll		-0-0					
TOP CHORD	9-10=-3802/0 10-12	9=-4347/0	7)	Provide adec	, supported at two	points, t	o-o-o apart.						
	12-14=-4384/0 14-1	5=0/36 7-8=-3334/0) 0)		MT20 plates uplo	cc othor	wise indicator	- -				, uninnin	
	8-9=-3371/0. 1-2=0/3	36. 2-4=-4363/0.	, 0) 0)	Plates check	ed for a plus or mi	nue 5 de	aree rotation	<i>.</i>				"TH CA	Rollin
	4-6=-4324/0. 6-7=-3	779/0	3)	about its cen	tor	nus 5 ue	gree rotation				A	RU	11/2
BOT CHORD	2-25=0/3729, 23-25=	=0/3747, 19-23=0/41	15, 10)) This truss ha	s heen designed f	or a 10 () nsf hottom			/	5.	U. ESS	ON Via
	18-19=0/4115, 16-18	8=0/3770, 14-16=0/3	747,	chord live loa	ad nonconcurrent v	vith anv	other live load	ds					
	21-22=-72/389, 20-2	21=-72/363	. 1.	1) * This truss h	as been designed	for a liv	e load of 20.0	nsf				:2	1 K : 13
WEBS	18-20=0/1210, 20-26	6=0/1396, 9-26=0/14	.11, '	on the bottor	n chord in all areas	swhere	a rectangle	poi		-		054	n <u>1</u> E
	22-23=0/1195, 22-27	7=0/1344, 7-27=0/13	80,	3-06-00 tall h	v 2-00-00 wide wi	ll fit betv	een the botto	m				SEA	L <u>1</u> E .
	26-27=-41/363, 8-26	6=-381/78, 8-27=-381	/78,	chord and ar	v other members.	with BC	DL = 10.0 psf					0363	22 : =
	19-21=-34/294, 21-2	23=-1378/0,	1:	2) Bottom chore	live load (20.0 ps	f) and a	dditional botto	m		-			: :
	18-21=-1378/0, 6-25	5=-24/323,		chord dead le	pad (20.0 psf) app	lied only	to room. 21-2	22,		-		N	1 2
	6-23=-727/133, 10-1	8=-736/133,		20-21		,					1	N. E.	Rick
	10-16=-25/323, 12-1	6=-73/271, 4-25=-73	3/265 13	This truss ha	s been designed f	or a mov	ing concentra	ated			25	GIN	EFICAN
NOTES				load of 250.0	lb live and 3.0lb d	ead loca	ted at all mid				11	10	BEN
1) Unbalance	ed roof live loads have	been considered for		panels and a	t all panel points a	long the	Top Chord a	nd				11. A. G	ILLIN
this desig	n.			Bottom Chor	d, nonconcurrent v	vith any	other live load	ds.				in min	mm.

June 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A2B	Attic	2	1	Job Reference (optional)	173874533

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:41 ID:KXRqpJkFYKqbj8A_3HIGOCzXljc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets ()	X, Y): [2:0-5-14,Edge	ej, [13:0-7-15,Edge]			-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.49 0.84 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.45 -0.75 0.23 0.10	(loc) 14-16 14-16 13 14-16	l/defl >999 >740 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS MT20HS M18AHS Weight: 333 lb	GRIP 244/190 244/190 187/143 186/179 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS JOINTS	2x6 SP No.2 *Except 2x4 SP SS *Except 2x4 SP No.3 *Except 24-25:2x4 SP No.2 Left 2x6 SP No.2 - 2 Structural wood she except 2-0-0 oc purlins (3-1 Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 24, 25	ot* 13-11,5-1:2x6 SP 18-20:2x4 SP No.2 ot* 9-16,7-21:2x4 SP 2-6-0 athing directly applied 0-5 max.): 7-9. applied. 6-21, 10-16	2) DSS SS, d, 3)	Wind: ASCE Vasd=95mp1 II; Exp B; En Exterior(2E) Exterior(2E) 26-9-8, Exteri to 45-11-11 vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DI Exp.; Ce=1.0	7-16; Vult=120m n; TCDL=6.0psf; closed; MWFRS 1-0-0 to 3-7-3, Ii 18-2-8 to 24-8-9, iror(2R) 26-9-8 tc zone; cantilever I nd right exposed FRS for reaction ate grip DOL=1.6 7-16; Pr=20.0 ps 0L = 1.15); Is=1. 0; Cs=1.00; Ct=1.	nph (3-sec BCDL=6. (envelope nterior (1) , Interior () 33-3-9, I eft and rig ;C-C for r s shown; 60 56 (roof LI sf; Pf=20.4 0; Rough .10, Lu=50	cond gust) Dpsf; h=25ft; (and C-C 3-7-3 to 18-2 1) 24-8-9 to nterior (1) 33- nembers and Lumber .: Lum DOL= psf (Lum DC Cat B; Partial D-0-0	Cat. -8, 3-9 end I.15 DL = Ily	 14) This load pan Bot 15) This struction choose the load pan bot 16) Grador the bott 17) Attic LOAD (Contemport of the load pane) 	s truss h d of 250. eels and tom Chc s truss d ctural w rd and 1 bottom 0 phical p he orien tom choi c room c CASE(S	as bee Olb live at all p ord, nor lesign r ood sh /2" gy chord. urlin re tation o rd. checke) Sta	n designed for a e and 3.0lb dead anel points along neoncurrent with equires that a m eathing be applie bosum sheetrock to presentation doe of the purlin along d for L/360 deflect ndard	moving concentrated located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to es not depict the size g the top and/or ction.
REACTIONS	25 (size) 2=0-3-8, ² Max Horiz 2=86 (LC Max Grav 2=2657 (L	13=0-3-8 15) _C 48), 13=2590 (LC	4) 48) ⁵⁾	Unbalanced design. This truss ha	snow loads have s been designed	been cor for great	er of min roof	live					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	overhangs n 250 0lb AC u	on-concurrent wi	th other li	ve loads.	-6-0					
TOP CHORD	9-10=-3962/0, 10-12 12-13=-5084/0, 7-8= 1-2=0/36, 2-4=-4466 6-7=-3899/0	2=-4873/0, =-3420/0, 8-9=-3541/(6/0, 4-6=-4430/0,), 7) 8) 9)	from left end Provide adec All plates are	, supported at tw quate drainage to MT20 plates un ed for a plus or r	o points, so prevent less other ninus 5 de	5-0-0 apart. water ponding wise indicate	J. d.				TH CA	ROW
BOT CHORD	2-23=0/3817, 21-23 16-17=0/4228, 14-10	=0/3848, 17-21=0/42 6=0/4040, 13-14=0/4	28, 492, 10	about its cen) This truss ha	ter. Is been designed	for a 10.	0 psf bottom				AN CONT	OFESS	C. S.
WEBS NOTES 1) Unbalance this design	19-20=-14/50b, 18-1 16-18=0/1298, 18-2 20-21=0/1220, 20-2 24-25=-42/357, 17-1 8-24=-347/91, 8-25= 19-21=-1430/0, 6-21 6-23=-26/316, 4-23= 10-16=-910/118, 12- 10-14=0/628 ed roof live loads have h.	19=-130/347 4=0/1490, 9-24=0/14 5=0/1359, 7-25=0/14 19=-29/297, =-411/72, 16-19=-133 1=-715/136, =-68/274, -14=-339/128, been considered for	82, 11 18, 9/0, 12	chord live loa) * This truss H on the bottor 3-06-00 tall b chord and ar 2) Bottom chord chord dead le 18-19 8) Bearing at jo using ANSI/1 designer sho	ad nonconcurrent has been designe n chord in all are yy 2-00-00 wide v hy other members d live load (20.0 p bad (20.0 psf) ap int(s) 13 conside TPI 1 angle to gra uld verify capaci	t with any ed for a liv as where will fit betw s, with BC osf) and a oplied only rs paralle ain formul ty of bear	other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psf dditional botto to room. 19-3 l to grain value a. Building ing surface.	ds. Dpsf om om 20, e		4		SEA 0363	L 22 EEER.K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quility Criteria and DSB-22</u> available from Truss Plate Institute (www.tpinst.org) and <u>Before Building Component Scient Information</u> available from the Structural Building Component description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 2,2025

Structural, LLC, Thurmont, MD - 21788

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:38 ID:IF5qekbnaxnzYAFQiyMDPCzsTjQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.3

Plate Offsets (X, Y): [2:0-5-14,Edge], [8:0-5-4,0-3-0], [12:0-1-8,Edge]

	(., .). [=	, <u>[</u>], <u>[</u>]], <u>[</u>]], <u>[</u>]], <u>[</u>]]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.86 0.79 0.42	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.43 -0.68 0.17 0.07	(loc) 13-15 13-15 12 12 13-15	l/defl >999 >810 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS MT18HS Weight: 302 lb	GRIP 244/190 187/143 186/179 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP SS 2x4 SP No.3 *Except Left 2x6 SP No.2 - 2 Structural wood sheat except 2-0-0 oc purlins (3-11 Rigid ceiling directly 1 Row at midpt	t* 16-8:2x4 SP No.2 2-6-0 athing directly applie 0-5 max.): 7-8. applied. 9-15, 8-16, 6-16	2) ed, 3)	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) - Exterior(2R) 26-9-8, Exter 32-11-0 to 45 exposed ; en members and Lumber DOL TCLL: ASCE Plate DOL=1	7-16; Vult=120m ;; TCDL=6.0psf; E closed; MWFRS (1-0-0 to 3-6-0, Ir 18-2-8 to 24-6-14 100(2R) 26-9-8 to 5-11-11 zone; car d vertical left and d forces & MWFF =1.60 plate grip 7-16; Pr=20.0 ps 15); Pq=20.0 ps	ph (3-sec 3CDL=6.0 (envelope terior (1) 4, Interior 32-11-0, ntilever le right exp S for rea DOL=1.60 of (roof LL f; Pf=20.4	ond gust) Dpsf; h=25ft; i e) and C-C 3-6-0 to 18-2 (1) 24-6-14 ti Interior (1) ft and right osed;C-C for ctions shown) : Lum DOL= psf (Lum DC	Cat. 2-8, o , ; 1.15 DL =	13) Gra or th bott LOAD C	phical p ne orient om chor CASE(S)	urlin re ation c d.) Star	presentation doe of the purlin along ndard	s not depict the si the top and/or	ize
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=86 (LC Max Grav 2=2190 (L	2=0-3-8 15) .C 47), 12=2137 (LC	: 47) ₄₎	1.15 Plate DO Exp.; Ce=1.0 Unbalanced	DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1. snow loads have); Rough 10, Lu=5(been cor	Cat B; Partia)-0-0 hisidered for th	lly						
FORCES	(lb) - Maximum Com	pression/Maximum	.,	design.		20011001								
TOP CHORD	Tension 7-8=-2507/200, 8-9= 9-11=-3910/153, 11- 2-4=-3608/134, 4-6= 6-7=-2902/191	-2949/191, 12=-4107/153, 1-2= -3540/142,	5) 0/36, 6) 7)	This truss ha load of 12.0 p overhangs no Provide adeo	s been designed osf or 2.00 times on-concurrent wit juate drainage to	for greate flat roof lo h other liv prevent v	er of min roof bad of 15.4 p ve loads. vater ponding wise indicate	live sf on g.						
BOT CHORD	2-18=-95/3088, 16-1 15-16=0/2555, 13-15 12-13=-71/3636	8=-21/2998, 5=-18/3144,	8)	Plates check about its cen This truss ha	ed for a plus or m ter. s been designed	for a 10 (egree rotation	1				TH CA	Route	
WEBS	11-13=-370/115, 9-1 8-15=0/1038, 8-16=- 6-16=-765/98, 6-18=	3=0/669, 9-15=-905 247/168, 7-16=0/95 0/406, 4-18=-159/16	/99, 6, 10 51	chord live loa * This truss h on the botton	as been designed as been designe n chord in all area	with any d for a liv as where	other live loa e load of 20.0 a rectangle	ds. Opsf			A A	ORIEESS	A MARINE	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11 12	3-06-00 tall b chord and an) This truss ha load of 250.0 panels and a Bottom Chord) This truss de structural wo chord and 1/2	y 2-00-00 wide w y other members s been designed b live and 3.01b o t all panel points d, nonconcurrent sign requires that od sheathing be a ?" gypsum sheetr	rill fit betw s, with BC for a mov dead loca along the with any t a minim applied di ock be ap	veen the bott DL = 10.0pst ving concentr ted at all mid Top Chord a other live loa um of 7/16" rectly to the to oplied directly	om ated and ds. top / to		Sammer.		SEA 0363	L 22 BERIN	WILLING THE

- 11) I his t een c tor a load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
 - 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

June 2,2025

G minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A2T	Piggyback Base	5	1	Job Reference (optional)	173874537

8x8=

6

26-9-8

8-7-0

_32 _ 3<u>3</u>

Structural LLC Thurmont MD - 21788

Scale = 1:110.4

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

2-5-4 -1-0-0

1-0-0 2-5-4

0 M18AHS 5x8

+

4

0-1-4 5 9-9-0

7-3-12

4x6 🖌

36

Ň

3x6 🚽

35 3 34

6¹²

5

4x4

37

18-2-8

8-5-8

38

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:44 ID:IF5qekbnaxnzYAFQiyMDPCzsTjQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x4👟

8

32-11-0

6-1-8

25

6x8=

7

39-1-14

6-2-14

4x6👟

26 9

2x4 🅢 2x 28 10 46-0-0

6-10-2

Page: 1

GRIP

244/190 186/179

244/190

FT = 20%

₽ 9 0 ÷ 46 18 47 **1**6₽ 48 4x6= 13 43 42 39 4041 14 44 12 45 6x6= 3x4 🥃 15 3x6= 3x6: 2x4 II M18AHS 6x12 = MT18HS 3x16 = _6 2x4 **॥** 12 2x4 **॥** 3x4 II 2x4 🛛 8x8= M18AHS 6x12 = 2-3-8 0-3-15 0-3-8 18-4-4 26-7-12 9-9-0 17-2-8 30-0-11 36-0-7 46-0-0 H 3-4-15 5-11-12 9-11-9 7-5-8 7-5-8 8-3-8 0-3-8 1-1-12 0-0-7 1-11-9 46-0-0 Plate Offsets (X, Y): [2:0-2-11,0-2-8], [4:0-3-0,Edge], [6:0-4-0,0-3-8], [7:0-5-4,0-3-0], [11:0-1-8,Edge], [17:0-5-8,0-3-0], [19:0-1-6,0-1-0], [20:0-0-12,0-1-8] Spacing 2-0-0 CSI DEFL L/d PLATES (psf) in (loc) l/defl 20.0 Plate Grip DOL 1.15 TC 0.90 Vert(LL) -0.43 12-14 >999 360 MT20 20.4/20.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.72 17-18 >759 240 M18AHS Rep Stress Incr WB 0.92 Horz(CT) -0.42 MT18HS 10.0 YES 20 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-AS Wind(LL) 0.12 17-18 >999 240 10.0 Weight: 314 lb 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) 13) This truss design requires that a minimum of 7/16" Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. structural wood sheathing be applied directly to the top 2x6 SP No.2 *Except* 4-1:2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP SS *Except* 16-17,21-20:2x4 SP chord and 1/2" gypsum sheetrock be applied directly to Exterior(2E) -1-0-0 to 3-6-0, Interior (1) 3-6-0 to 18-2-8, the bottom chord. No.3, 19-20:2x4 SP No.2 2x4 SP No.3 *Except* 19-2:2x4 SP SS, Exterior(2R) 18-2-8 to 24-6-14. Interior (1) 24-6-14 to 14) Graphical purlin representation does not depict the size 26-9-8. Exterior(2R) 26-9-8 to 32-11-0. Interior (1) 7-15,15-17,17-6:2x4 SP No.2 or the orientation of the purlin along the top and/or 32-11-0 to 45-11-11 zone; cantilever left and right bottom chord. exposed : end vertical left and right exposed:C-C for LOAD CASE(S) Standard Structural wood sheathing directly applied, members and forces & MWFRS for reactions shown; except end verticals, and 2-0-0 oc purlins Lumber DOL=1.60 plate grip DOL=1.60 (3-10-3 max.): 6-7. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Rigid ceiling directly applied. Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 5-17, 3-18, 6-15, 7-15, 1 Row at midpt 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 8-14 Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 **REACTIONS** (size) 11=0-3-8. 20=0-3-8 4) Unbalanced snow loads have been considered for this Max Horiz 11=-96 (LC 14) desian. Max Grav 11=2115 (LC 47), 20=2152 (LC 47) 5) This truss has been designed for greater of min roof live (Ib) - Maximum Compression/Maximum load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on Tension overhangs non-concurrent with other live loads. 7-8=-2899/191, 8-10=-3863/155, Provide adequate drainage to prevent water ponding. 6) 10-11=-4059/154. 6-7=-2453/206. 1-2=0/42. All plates are MT20 plates unless otherwise indicated. 7) 2-3=-5527/114, 3-5=-4276/145, Plates checked for a plus or minus 5 degree rotation 8) 5-6=-3233/182. 2-20=-2139/91 about its center. ORT 15-16=-175/118, 14-15=0/2511, 9) This truss has been designed for a 10.0 psf bottom 12-14=-29/3100, 11-12=-78/3594 chord live load nonconcurrent with any other live loads. 16-17=-462/101, 18-19=-84/4771, 10) * This truss has been designed for a live load of 20.0psf 17-18=-18/3816, 19-20=0/228 on the bottom chord in all areas where a rectangle 7-14=0/1033, 5-17=-1248/93, 5-18=0/511, 3-06-00 tall by 2-00-00 wide will fit between the bottom - Charles and the state of the 3-18=-1008/66, 3-19=0/672, 2-19=-90/4704, chord and any other members, with BCDL = 10.0psf. 6-15=-1850/24, 7-15=-249/182, 11) Bearing at joint(s) 20, 11 considers parallel to grain 15-17=0/3416, 6-17=0/2852, 10-12=-370/115, 036322 value using ANSI/TPI 1 angle to grain formula. Building 8-12=0/671, 8-14=-905/101 designer should verify capacity of bearing surface. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid Unbalanced roof live loads have been considered for panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

G minin June 2,2025

CAR

SEAL

UTITITITI I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	PB1	Piggyback	16	1	Job Reference (optional)	173874538

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:VGg47t139JN4TDjv7mGfrAzYpaa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 26 lb	FT = 20%
LUMBER		-	5) Unbalance	d snow loads hav	ve been cor	nsidered for th	his		-			

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	2=6-7-14, 4=6-7-14, 6=6-7-14
	Max Horiz	2=-17 (LC 14)
	Max Uplift	2=-2 (LC 16), 4=-5 (LC 17)
	Max Grav	2=332 (LC 49), 4=332 (LC 57),
		6=387 (LC 55)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/23,	2-3=-128/66, 3-4=-128/63,
	4-5=0/23	
BOT CHORD	2-6=-14/1	04, 4-6=-12/104
WEBS	3-6=-264/	/46

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 4-3-8, Exterior(2R) 4-3-8 to 7-0-15, Interior (1) 7-0-15 to 8-2-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 4-0-0 oc. 9)

12) N/A

- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord
- 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V1	Valley	1	1	Job Reference (optional)	173874539

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:O1vbzF4aCYtWyq0gMcKb?0zYpaW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.35 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.3 0.3 wood sheat ng directly 1=20-1-11 12=20-1-1 14=20-1-1 18=20-1-1 18=20-1-1 18=20-1-1 18=20-1-1 18=20-1-1 13=-30 (LI 13=-30 (LI 13=-30 (LI 12=376 (LI 12=336 (LI 14=336 (LI 18=333 (LI 18=333 (LI 18=333 (LI) 18=333 (LI) 18	athing directly appli applied. , 11=20-1-11, 1, 13=20-1-11, 1, 15=20-1-11, 1, 17=20-1-11, 1, 19=20-1-11, 1 C 12) (12), 12=-7 (LC 17) C 17), 12=-27 (LC 17) C 17), 12=-29 (LC 17) C 17), 17=-22 (LC 17) C 17), 17=-22 (LC 17) C 16), 19=-29 (LC 17) C 16), 19=-29 (LC 17) C 16), 19=-29 (LC 17) C 16), 13=-329 (LC 17) C 83), 15=-334 (LC C 83), 15=-334 (LC C 70), 19=-330 (LC C 77)	1) 2) ed. 3) 17), 4) 16), 16), 16), 5) 84), 6) 82), 6) 80), 7) 78), 8)	Unbalanced this design. Wind: ASCE Vasd=95mpt II; Exp B; Enn Exterior(2E) Exterior(2E) 20-1-11 zone vertical left at forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DOL=1 (Unbalanced design. Plates check about its cen Gable studs:	roof live loads hav 7-16; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (e 0-00 to 3-0-0, Inte 10-0-14 to 13-0-14 ; cantilever left an nd right exposed; C FRS for reactions ate grip DOL=1.60 ed for wind loads ds exposed to wirt I ndustry Gable E alified building de: 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have t ed for a plus or mi ter. as continuous bott spaced at 2-0-0 oc	 13) This truss has been designed for a moving load of 250.0lb live and 3.0lb dead located panels and at all panel points along the Top Bottom Chord, nonconcurrent with any othe Bottom Chord, Deaplied direct chord and 1/2" gypsum sheetrock be applied the bottom chord. LOAD CASE(S) Standard Load Standard Load Case Standard 								 ntrated nid d and oads. " ie top ctly to
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Max Tension 1-2=-249/ 4-5=-92/9 7-8=-96/9 10-11=-2t 1-20=-61/ 17-18=-61/ 13-14=-52 6-16=-214 3-19=-284 8-14=-287	inum Com 118, 2-3=- 5, 5-6=-129 2, 8-9=-98, 50/117 171, 19-20 1/96, 16-17 3/95, 12-13 4/42, 5-17= 4/61, 2-20= 1/63, 9-13=	pression/Maximum 105/96, 3-4=-97/91, 9/130, 6-7=-128/12('90, 9-10=-104/83, =-61/96, 18-19=-61 =-61/96, 14-16=-61 =-59/95, 11-12=-59 -280/69, 4-18=-281 -280/69, 4-18=-281 -291/45, 7-15=-276 -284/61, 10-12=-29	9) 10 6, 11 /96, 172 /63, 567, 11/46 12	This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.)) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 22 lb uplift at joint 17, 27 lb uplift at joint 18, 29 lb uplift at joint 19, 10 lb uplift at joint 20, 21 lb uplift at joint 15, 26 lb uplift at joint 14, 30 lb uplift at joint 13 and 7 lb uplift at joint 12. 2) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 11.							SEA 0363	L 22 LLBERT	Manunana .	

NOTES

818 Soundside Road Edenton, NC 27932

June 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V2	Valley	1	1	Job Reference (optional)	173874540

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 Page: 1 ID:sETzAa4Czr?NZ_bswKsqYDzYpaV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-8-14

Scale = 1:61.3													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.49 0.86 0.34	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=17-8-1 8=17-8-1 Max Horiz 1=115 (LC Max Uplift 1=-10 (LC 6=-62 (LC Max Grav 1=293 (LC 9=534 (LC (lb) - Maximum Corr	athing directly applied applied. 4, 5=17-8-14, 6=17-8 4, 9=17-8-14 C 13) C 43), 5=-15 (LC 40), C 45), 5=238 (LC 51) C 30), 8=527 (LC 29) C 29) pression/Maximum	4) 5) 1. 6) 14, 7) 8) 9) 10	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa 0) * This truss f on the bottor 3-06-00 tall t chord and ar	E 7-16; Pr=20.0 µ 1.15); Pg=20.0 p OL = 1.15); Is=1 0; Cs=1.00; Ct=' snow loads hav ted for a plus or ter. es continuous b spaced at 4-0-0 is been designe ad nonconcurrer has been design n chord in all an by 2-00-00 wide hanical connect	ses (roof LL sf; Pf=15.4. .0; Rough .10 e been cor minus 5 de ottom chor oc. d for a 10.4 d for a 10.4 d for a 10.4 e d for a liv eas where will fit betv rs, with BC ion (by oth	L: Lum DOL= \$ psf (Lum DC Cat B; Partia hsidered for the egree rotation a bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto CDL = 10.0psf	1.15 DL = Illy ds. Dpsf Dm					
TOP CHORD	Tension 1-2=-276/276, 2-3=- 4-5=-270/275	93/202, 3-4=-93/189,		bearing plate 1, 15 lb uplifi uplift at joint	e capable of with at joint 5, 64 lb 6.	istanding 1 uplift at joi	0 lb uplift at j 10 lb and 62 ll	oint o					
BOT CHORD WEBS NOTES	1-9=-133/203, 8-9=- 5-6=-133/200 3-8=-350/0, 2-9=-35	133/85, 6-8=-133/85, 7/140, 4-6=-356/140	12 13	 Beveled plat surface with This truss hat load of 250.0 	e or shim requir truss chord at jo is been designe Nb live and 3.0lb	ed to provi bint(s) 1, 5. d for a mov dead loca	de full bearing ving concentr ated at all mid	g ated					11111

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 8-10-7, Exterior(2R) 8-10-7 to 11-10-7, Interior (1) 11-10-7 to 17-4-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V3	Valley	1	1	Job Reference (optional)	173874541

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:sETzAa4Czr?NZ_bswKsqYDzYpaV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.42 0.44 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=15-4-2, 7=15-4-2, Max Horiz 1=-99 (LC Max Uplift 1=-7 (LC (LC 16) Max Grav 1=298 (LC 6=434 (LC 8=436 (LC	athing directly applied , applied. , 5=15-4-2, 6=15-4-2, , 8=15-4-2 2 12) 12), 6=-52 (LC 17), 8 C 45), 5=298 (LC 51), C 30), 7=436 (LC 29), C 29)	4) 5) 1. 6) 7) 8) 9) =-53 10	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cer Gable requir Gable studs This truss ha chord live lo:) * This truss I on the botton 3-06-00 tall I chord and an	7-16; Pr=20.0 p 1.15); Pg=20.0 ps OL = 1.15); Is=1. 2; Cs=1.00; Ct=1. snow loads have ked for a plus or n ter. es continuous bo spaced at 4-0-0 of as been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide w	sf (roof LL f; Pf=15.4 0; Rough 10 been cor ninus 5 de ttom chor oc. for a 10.4 with any d for a liv as where vill fit betv s with 2	L: Lum DOL= 4 psf (Lum DC Cat B; Partia egree rotation rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott	1.15 DL = Illy ds. Dpsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11) Provide med	hanical connection	on (by oth	ers) of truss t	0 int 1					
TOP CHORD BOT CHORD	1-2=-280/193, 2-3=- 4-5=-280/193 1-8=-69/203, 7-8=-6	139/117, 3-4=-139/10 9/74, 6-7=-69/74,	06, 12	 bearing plate capable of withstanding 7 lb uplift at joint 1, 53 lb uplift at joint 8 and 52 lb uplift at joint 6. 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5. 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and 									
WEBS NOTES	5-6=-69/203 3-7=-290/0, 2-8=-33	9/142, 4-6=-339/141	13									1111.	

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 7-8-1, Exterior(2R) 7-8-1 to 10-8-1, Interior (1) 10-8-1 to 15-4-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V4	Valley	1	1	Job Reference (optional)	173874542

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:47 ID:KQ1LOw5qk97EB8A3U1N35RzYpaU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.41 0.43 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=12-11-5 7=12-11-5 Max Horiz 1=-83 (LC Max Uplift 1=-12 (LC 8=-45 (LC Max Grav 1=290 (LC 6=401 (LC 8=-401 (LC	athing directly applied applied. 5, 5=12-11-5, 6=12-11 5, 8=12-11-5 : 14) : 12), 6=-44 (LC 17), : 16) : 45), 5=290 (LC 51), : 61), 7=401 (LC 60), : 59)	4) -5, 7) -5, 7) 9) 10	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa 0, * This truss f on the bottor 3-06-00 tall t	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps OL = 1.15); Is=1.0); Cs=1.00; Ct=1. snow loads have ked for a plus or m ter. es continuous boi spaced at 4-0-0 as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide	sf (roof LL f; Pf=15.4 0; Rough 10 been cor ninus 5 de ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv.	: Lum DOL= psf (Lum DC Cat B; Partia asidered for the egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom	1.15 DL = Ily ds. Dpsf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-259/130, 2-3=- [.]	pression/Maximum 172/99, 3-4=-172/95,	 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 4.15 lb uplift at joint 										
BOT CHORD WEBS	4-5=-259/130 1-8=-26/180, 7-8=-20 5-6=-26/180 3-7=-252/0, 2-8=-320	6/57, 6-7=-26/57, 6/157, 4-6=-326/157	 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5. 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid 										Un

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-5-10, Exterior(2R) 6-5-10 to 9-5-10, Interior (1) 9-5-10 to 12-11-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof
	V5	Valley	1	1	I73874543 Job Reference (optional)

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:48 ID:ocbkbG6SVTF5pIIF1luIdezYpaT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-3-4

Scale = 1:49.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.58 0.97 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 40 lb	FT = 20%
LUMBER	LIMBER 5) Linbalanced snow loads have been considered for this											

LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.3 0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	1=10-6-8, 3=10-6-8, 4=10-6-8
	Max Horiz	1=-67 (LC 12)
	Max Uplift	1=-67 (LC 50), 3=-67 (LC 49)
	Max Grav	1=265 (LC 43), 3=265 (LC 47),
		4=785 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-219/	/349, 2-3=-219/349
BOT CHORD	1-4=-209/	(153, 3-4=-209/153
WEBS	2-4=-617/	219

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-3-4, Exterior(2R) 5-3-4 to 8-3-4, Interior (1) 8-3-4 to 10-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 1 and 67 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Type Qty Ply Norris Rev 1-Elev 5		Norris Rev 1-Elev 5-Roof	
	V6	Valley	1	1	Job Reference (optional)	173874544

Structural LLC Thurmont MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:48 ID:ocbkbG6SVTF5pIIF1luIdezYpaT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.7

_ L

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.68	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 30 lb	FT = 20%
			5) Unbalance	snow loads hav	e heen cor	sidered for t	nis					

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	1=8-1-11, 3=8-1-11, 4=8-1-11
	Max Horiz	1=51 (LC 15)
	Max Uplift	1=-58 (LC 41), 3=-58 (LC 40)
	Max Grav	1=268 (LC 43), 3=268 (LC 47),
		4=594 (LC 41)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-207/	296, 2-3=-207/296
BOT CHORD	1-4=-181/	/155, 3-4=-181/155
WEBS	2-4438/	199

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-0-14, Exterior(2R) 4-0-14 to 7-4-1, Interior (1) 7-4-1 to 8-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- design.
- 6) Plates checked for a plus or minus 5 degree rotation
- about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 1 and 58 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V7	Valley	4	1	Job Reference (optional)	173874545

Structural, LLC, Thurmont, MD - 21788

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:48 ID:ocbkbG6SVTF5pIIF1luIdezYpaT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-7

Scale = 1:34.7

-L

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.40	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
BCDL	10.0										Weight: 21 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	1=5-8-14, 3=5-8-14, 4=5-8-14
	Max Horiz	1=-35 (LC 12)
	Max Uplift	1=-33 (LC 46), 3=-33 (LC 44)
	Max Grav	1=276 (LC 43), 3=276 (LC 47),
		4=443 (LC 50)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-213/	202, 2-3=-213/202
BOT CHORD	1-4=-103/	148, 3-4=-103/148
WEBS	2-4=-309/	120
NOTES		

- NOTES
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 7)
- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1 and 33 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	V8	Valley	1	1	Job Reference (optional)	173874546

1-7-12

1-7-12

Structural, LLC, Thurmont, MD - 21788.

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:48 ID:ocbkbG6SVTF5pIIF1luIdezYpaT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11

14 3

3-3-8

1-7-12

Page: 1

3x4 = 2 12 10 _ 9 10 1-4-11 8 12 1 0-0-4

Scale = 1:21

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in r/r	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (1001)	20.0	Plate Grip DOL	1.15		0.20	Vert(LL)	n/a	-	n/a	999	WI120	244/190
	15.4/20.0	Ron Stross Incr	VES		0.41	Horiz(TL)	0.00	-	n/a	999		
PCU	10.0	Codo	I EO IBC2024/TDI2014	Motrix MD	0.00	TION2(TL)	0.00	3	n/a	11/a		
BCDL	10.0	Code	IRG2021/1912014								Weight: 10 lb	FT = 20%
		•	7) Coble r		ottom ohor	d booring					0	
LUMBER	Over CD No. 0		7) Gable R	ude spaced at 4.0.0		u bearing.						
POT CHORD	2X4 SP N0.2		0) Gable S	s has been designed	00. H for a 10 () nef hottom						
BOICHORD	2X4 SP NU.3		chord liv	e load nonconcurren	t with any	other live loa	ade					
BRACING		athing directly applie	10) * This tr	iss has been designed	ed for a liv	e load of 20.0	Opsf					
TOP CHORD	3-3-8 oc purling	athing directly applie	on the b	ottom chord in all are	eas where	a rectangle	-1					
	Rigid ceiling directly	applied or 10-0-0 or	. 3-06-00	tall by 2-00-00 wide	will fit betw	veen the bott	om					
BOT ONORD	bracing.		, chord ar	d any other member	rs.							
REACTIONS	(size) 1=3-4-2 3	3=3-4-2	11) Beveled	plate or shim require	ed to provi	de full bearin	g					
	Max Horiz 1=19 (LC	13)	surface	vith truss chord at joi	int(s) 1, 3.							
	Max Grav 1=320 (L0	C 43). 3=320 (LC 47)	12) This true	s has been designed	d for a mov	/ing concentr	rated					
FORCES	(lb) - Maximum Com	pression/Maximum		50.010 live and 3.010	dead loca	Top Chord of	1 Dod					
	Tension		Bottom	Shord nonconcurren	s along the	other live loa	anu ade					
TOP CHORD	1-2=-381/68, 2-3=-3	81/67		(S) Standard	it with any							
BOT CHORD	1-3=-46/291		LOAD CAS	() Standard								
NOTES												
1) Unbalanc	ed roof live loads have	been considered for										
this desig	n.											
2) Wind: AS	CE 7-16; Vult=120mph	(3-second gust)										
Vasd=95r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.									
II; Exp B;	Enclosed; MWFRS (er	velope) and C-C									minin	UUII.
Exterior(2	E) zone; cantilever left	and right exposed ;	end								W'TH CA	ROU
forcos 8	IL and right exposed;C-	bown: Lumbers and								S'	R	· · · · ·
	0 nlate arin DOI = 1.60	nown, Lumber								No.	U. FESS	Oil Pri
2) Trues des	b plate grip DOL=1.00	the state of the two	_							5 2		1420

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.

Theorem and the anna anna SEAL 036322 GI 100000 June 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A2GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173874547

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:43 ID:X78R??hkcZkkd2f2fgSSGpzYofd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:146.1

Plate Offsets (X, Y): [13:0-4-0,0-3-8], [19:0-4-0,0-3-8], [30:Edge,0-3-2]

Plate Offsets ((X, Y): [13:0	J-4-0,0-3-8], [19:0-4-0,0-3-8], [3	0:Edge,0-3	3-2]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 20.0 0.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-,	AS	0.11 0.22 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 30	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 382 lb	GRIP 244/190 FT = 20))%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD WEBS	2x6 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-6-0 Structural except 2-0-0 oc p Rigid ceill 1 Row at	o.2 o.2 o.3 SP No.3 ⁻ I wood she burlins (6-0 ing directly midpt	1-6-0, Right 2x4 SP f athing directly applie -0 max.): 13-19. applied. 16-43, 17-42, 18-41 20-40, 15-44, 14-45	No.3 rd,		Max Grav	2=325 (L 32=348 (158), 34= (LC 156) 37=333 (153), 40= (LC 151) 43=333 (148), 45= (LC 146) 49=333 (143), 51= (LC 141)	C 113), [LC 159 =334 (L) =334 (L) =332 (L) , 42=33 (LC 154 =332 (L) , 42=33 (LC 149 =330 (L) , 48=33 (LC 144 =333 (L) , 53=32 (L 0 12)	30=296 (LC), 33=329 (LC C 157), 35=3 3 (LC 155),), 38=333 (LC C 152), 41=3 3 (LC 150),), 44=333 (LC C 147), 46=3 3 (LC 145), , 50=333 (LC C 142), 52=3 9 (LC 140),	85), C 333 C 300 C 322 C 34	WEBS NOTES 1) Unt this	balancec design.	16-43 18-41 21-38 23-36 26-34 28-32 14-45 11-48 9-50= 5-53=	=-230/54, 17-42: =-224/0, 20-40= =-240/70, 22-37: =-248/62, 25-35: =-260/63, 27-33: =-289/133, 15-4 =-224/0, 12-46= =-240/70, 10-49: -248/62, 7-51=-2 -265/56, 4-54=-2 ve loads have b	=-231/35, 235/32, =-244/63, =-254/62, =-265/57, 1=-231/35, -235/32, =-244/63, 554/62, 6-5 89/138 een consid	, 52=-260/63, dered for
REACTIONS	(size) Max Horiz Max Uplift	2=45-0-0, 33=45-0-(36=45-0-(40=45-0-(50=45-0-(50=45-0-(50=45-0-(50=45-0-(2=-84 (LC 2=-16 (LC 34=-7 (LC 36=-6 (LC 34=-7 (LC 51=-6 (LC 51=-6 (LC 51=-6 (LC	12-46 30=45-0-0, 32=45-0, 3445-0-0, 33=45-0, 37=45-0-0, 38=45-0, 41=45-0-0, 42=45-0, 44=45-0-0, 45=45-0, 51=45-0-0, 52=45-0, 54=45-0-0, 51=45-0-0, 52=45-0, 54=45-0, 54=45-0, 54=5-0, 54=5-	h-0, FO -0-0, TO -0-0, -0,-0, -0,-0, -0,-0, -0,-0,-	RCES P CHORD	(lb) - Max Tension 19-20=-1: 21-22=-10 23-25=-7: 27-28=-7: 13-14=-1: 15-16=-1: 17-18=-1: 2-4=-186(6-7=-79/9) 10-11=-10 12-13=-1: 2-54=-32/ 52-53=-3: 50-51=-3: 48-49=-3: 45-46=-3: 43-44=-3: 34-36=-3: 36-37=-3: 32-33=-3:	54=348 (imum Cor 33/277, 2C 01/213, 22 9/135, 25- 3/58, 28-3 25/267, 14 25/267, 16 25/267, 16 27/20, 34 27/103, 35- 2/103, 35- 2/10	LC 139 mpressi)-21=-1: 2-23=-8: 26=-75: 0=-186; 1-15=-11 3-17=-11 3-17=-12 3-12 3-12 3-12 3-12 3-12 3-12 3-22 3-2) on/Maximum 21/253, 3/174, 97, 26-27=-7 55, 30-31=0/ 25/267, 25/267, 25/267, 25/267, 1-2=(-6=-77/66, -10=-83/174, 21/254, 03, 10	76/58, (36, 0/36,		A STITUTE STATE		SEA 0363		25

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSP2.2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	s Truss Type		Ply	Norris Rev 1-Elev 5-Roof	
	A2GE Piggyback Base Supported Gable		1	1	Job Reference (optional)	173874547

Structural LLC Thurmont MD - 21788

- Wind: ASCE 7-16: Vult=120mph (3-second aust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 3-6-0, Exterior(2N) 3-6-0 to 18-2-8, Corner (3R) 18-2-8 to 22-6-0, Exterior(2N) 22-6-0 to 26-9-8, Corner(3R) 26-9-8 to 31-3-8, Exterior(2N) 31-3-8 to 46-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 5 degree rotation 8)
- about its center. 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 12)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 2, 11 lb uplift at joint 38, 7 lb uplift at joint 37, 6 lb uplift at joint 36, 6 lb uplift at joint 35, 7 lb uplift at joint 34, 30 lb uplift at joint 32, 10 lb uplift at joint 48, 7 lb uplift at joint 49, 6 lb uplift at joint 50, 6 lb uplift at joint 51, 8 lb uplift at joint 52, 44 lb uplift at joint 54 and 16 lb uplift at joint 2.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:43 ID:X78R??hkcZkkd2f2fgSSGpzYofd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Structural, LLC, Thurmont, MD - 21788

TCDL

BCLL

BCDL

1)

2)

3)

forces & MWFRS for reactions shown; Lumber

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:45 ID:g3LejQrViZAFzJxxZLF2azzsp?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G minin June 2,2025

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A2BGE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	173874550

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:41 ID:gtlTYBJsVF3y9OklsIrKZazYocE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:124.7

Plate Offsets (X, Y): [2:0-5-14,Edge], [11:0-5-4,0-3-0], [31:0-1-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	2	(psf) 20.0 0.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	4	CSI TC BC WB Matrix-AS	0.32 0.52 0.37	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.29 -0.01 0.01	(loc) 39-54 39-54 2 39-54	l/defl >809 >584 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 401 lb	GRIP 244/190 187/143 FT = 20%	
ECOPCES	2x6 SP N 2x4 SP S 2x4 SP N 2x4 SP N Left 2x6 S Structura except 2-0-0 oc Rigid ceil 1 Row at 1 Brace a 41, 42, 44 (size) Max Horiz Max Uplift Max Grav	o.2 S *Except* o.3 *Except o.3 *Except o.3 SP No.2 2 I wood she burlins (10- ing directly midpt tt Jt(s): 40, 4, 47, 48 2=0-3-8, 2 25=32-2-8 35=32-2-8 35=32-2-8 36=86 (LC 24=-17 (L 24=-17 (L 24=-17 (L 24=-17 (L 24=-17 (L 24=-17 (L 24=-408 (L 24=-17 (L 24=-408 (L 24=-17 (L)	31-37:2x4 SP No.2 t* 36-11:2x4 SP No.2 2-6-0 athing directly applied 0-0 max.): 7-11. applied. 11-32, 7-36, 6-36 23=32-2-8, 24=32-2-8 3, 26=32-2-8, 30=32-2 3, 33=32-2-8, 34=32-2 3, 33=32-2-8, 34=32-2 3, 36=32-2-8, 38=0-3- 2 15) C 17), 25=-69 (LC 11 C 17), 25=-69 (LC 11 C 17), 23=-1 (LC 109), C 104), 36=-21 (LC 1 30), 23=315 (LC 133) C 116), 25=284 (LC C 131), 27=342 (LC 319 (LC 129), 29=303 30=389 (LC 127), C 126), 33=318 (LC 336 (LC 124), 35=322 36=1346 (LC 41), C 121)	TOP CHOR , BOT CHOR , WEBS 2-8, 2-8, 2-8, 2-8, 8 6), 9), 6), 5), 132), 3 2 NOTES 1) Unbalar this des	D RD	11-12=-20/251, 12 13-14=-10/231, 14 15-16=-33/124, 16 18-19=-44/119, 19 20-21=-104/41, 21 22-23=-136/73, 7-6 9-10=0/334, 10-11 2-4=-887/80, 4-6=- 2-39=-113/673, 38 35-36=-166/115, 3 30-32=-82/84, 29-3 27-28=-82/84, 29-3 28-28-23/24, 19-28 28-28-23/24, 19-28 29-28=-33/80, 33 34-47=-224/39, 35 roof live loads hav	-13=-54, -15=-61, -18=-33, -22=-78, 3=0/334, =0/324, =0/344, =0/3	2005, 81, 121, 22, 53, 8-9=0/334, 1-2=0/36, 6-7=0/470 32, 36-38=0/2(56/115, 56/115, 4, 28-29=-82/ 9, 25-26=-30/ 0 3/39, 46, 2/46, 3/55, 6-36=-839/12 2, 27-45=-231 2/42, 9, 10-40=-233 8, 30-42=-278 3/20, 2/18, 3/70, 3/22, 3/27 considered for	62, 84, 49, 1/75, 3/24, 3/71,	2) Wi Va II; Ex 266 to ver for OC 3) Trr on sec or 4) TC Pla 1.1 Ex 5) Un de	nd: ASCE sd=95mp Exp B; Enterior(2E) terior(2E) eerior(2E) 9-8, Extt 45-11-11 tical left : ces & MW 0L=1.60 p y. For st e Standa consult q LL: ASCE the DOL= 5 Plate E 0.; Ce=1. balancec sign.	F 7-16; h; TCI nclose -1-0-(-) 18-2- zone; and rig VFRS blate gu ned fo uds ey d Indu ualifier E 7-16 1.15); DOL = 0; CS= 1 snow	Vult=120mph (3 DL=6.0psf; BCDI d; MWFRS (enve) 10 3-7-3, Interio 8 to 24-7-12, Inter R) 26-9-8 to 33-3 cantilever left an iht exposed;C-C for reactions sho rip DOL=1.60 r wind loads in th sposed to wind (n istry Gable End I d building design ;Pr=20.0 psf; Pf= 1.15); Is=1.0; Ro e1.00; Ct=1.10, L loads have beer SEA 0363	second gust) =6.0psf; h=25 lope) and C-C (1) 3-7-3 to 1 rior (1) 24-7-1 8, Interior (1) d right expose or members a wn; Lumber e plane of the ormal to the fi betails as app er as per ANS f LL: Lum DC 20.4 psf (Lum ugh Cat B; Pa =50-0-0 considered fi	5ft; Cat. 28-2-8, 12 to 33-3-8 4d; end and truss ace), licable, b)/TPI 1. DCL=1.15 b DOL = artially for this
FORCES	(Ib) - Max Tension	imum Com	pression/Maximum									and and a second second	A GIN	ILBER'	25

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulcapes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

June 2,2025

	Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	173874550	
		A2BGE	Piggyback Base Structural Gable	1	1	Job Reference (optional)		
Structural, LLC, Thurmont, MD - 21788,			Run: 25.20 S May 13	3 2025 Print:	25.2.0 S May	/ 13 2025 MiTek Industries, Inc. Fri May 30 16:10:41	Page: 2	

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- 8) All plates are MT20 plates unless otherwise indicated. 9) Plates checked for a plus or minus 5 degree rotation
- about its center. 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) N/A
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run; 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:41 ID:gtlTYBJsVF3y9OklsIrKZazYocE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

G minin June 2,2025 VIIIIIIIIIIIII

111111 CAR

SEAL 036322

Contraction of the second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof	
	A3GE	Common Structural Gable	1	1	Job Reference (optional)	173874551

Run: 25.20 S May 13 2025 Print: 25.2.0 S May 13 2025 MiTek Industries, Inc. Fri May 30 16:10:45 ID:1Id6CJi_XtfyXT0dsp1E5Rzsp?P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69 Plate Offsets (X, Y): [8:0-1-12,0-2-4], [14:0-1-12,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.21 0.19 0.29	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 30-31 25-26 22 37-38	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 203 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt (size) 22=31-0- 25=31-0- 25=31-0- 31=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 34=31-0- 35=38-80 (LC 35=-8 (LC 35=-32 (LC 35=-33 (LC 35=-33) (LC 35=-35	Pathing directly applied in applied. 11-30 0, 23=31-0-0, 24=31-0 0, 26=31-0-0, 30=31-0 0, 32=31-0-0, 33=31-0 0, 32=31-0-0, 36=31-0 0, 33=31-0-0 C 15) C 13), 23=-43 (LC 17), C 13), 23=-43 (LC 17), C 17), 25=-8 (LC 17), C 16), 32=-9 (LC 16), C 16), 37=-51 (LC 16), C 16), 32=-315 (LC 26=333 (LC 103), 25=332 26=333 (LC 92), 36=333 (LC 92) LC 94), 34=-333 (LC 92) LC 90), 38=305 (LC 85) C 90), 38=305 (LC 85)	TOF)-0,)-0,)-0,)-0,)-0,), NO1 1) 2) 2 39), 7), 5), 3), 3), 3)	CHORD CHORD CHORD CHORD S S TCHORD S S S S S S S S S S S S S S S S S S S	11-12=-108/240, 12 13-15=-113/166, 15 16-17=-64/89, 17-11 19-20=-72/53, 20-2 ⁻ 2-3=-72/54, 3-4=-61 5-6=-64/89, 6-7=-65 9-10=-92/206, 10-11 20-22=-291/52, 2-33 37-38=-33/82, 33-33 31-32=-33/82, 29-3 27-28=-33/82, 29-3 27-28=-33/82, 29-3 24-25=-33/82, 29-3 24-25=-33/82, 29-3 24-25=-33/82, 29-3 24-25=-33/82, 29-3 24-25=-33/82, 29-3 25-34=-280/63, 15-3 16-26=-280/63, 15-3 16-26=-280/63, 5-35 3-37=-274/80 roof live loads have 7-16; Vult=120mph 1; TCDL=6.0psf; BC closed; MWFRS (ep 2-0-0, Exterior(2) ver left and right ex voosed; C-C for memi reactions shown; LL 50 end for wind loads in ids exposed to wind d Industry Gable En	-13=-92 -16=-66/6 ==-66/6 ==-0/42, 2 -70, 4-5 -291/7 33/8 ==-33/8 25/2 282/6 2	2/206, 5/127, 5, 18-19=-61/7, 1-2=0/42, 5=-66/65, -9=-73/166, 240, 55, 2, 35-36=-33/8 2, 28-29=-33/8 2, 28-29=-32/8 2, 28-29=-32/8	2 (0, 5 (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 (61, 1, 4, 1 (61, 4, 1 (61, 1, 1) (61, 1, 1) (61, 1)(61, 1) (61, 1)) (61, 1) (61, 1)) (61, 1)((61, 1)) (61, 1)) (61, 1)((61, 1)) (61, 1)((61, 1))((61,1))((61,1))((61,1))((61,1))((61,1))((61,1))((61,1))((61,1))((61,1))((6	 FTCI Pla 1.1: Exp 50 Exp Exp 50 Thii load ove 7) Pla ove 7) Pla ove 7)	LL: ASCI te DOL= 5 Plate DOL= 5 Plate DOL= 5 Plate DOL= 5 Plate DOL= 6 Plate DOL= 6 Plate DOL= 7	E 7-16 1.15); DOL = I snow as beee psf or on-co ked for netr. fully st nst latt space as beee ad nor has be m cho by 2-0 ny oth	; Pr=20.0 psf (ro Pg=20.0 psf; Pf 1.15); Is=1.0; Rc 1.00; Ct=1.10 loads have been n designed for g 2.00 times flat r nourrent with oth a plus or minus neathed from on eral movement (ad at 2-0-0 oc. n designed for a nconcurrent with en designed for d 0.00 wide will fit er members.	of LL: Lum DOL=1.1 15.4 psf (Lum DOL ugh Cat B; Partially considered for this reater of min roof live of load of 15.4 psf o er live loads. 5 degree rotation any other live loads. 10.0 psf bottom any other live loads. a live load of 20.0ps iere a rectangle between the bottom IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5 = re on . sf
FURGES	Tension	ipression/iviaximum		or consult qu	alified building desi	gner as	s per ANSI/TPI	1.			11	A. C	ILBE	

June 2,2025

Page: 1

TRENCO AMITEK Affiliate

Continued on page 2
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	Job	Truss	Truss Type	Qty	Ply	Norris Rev 1-Elev 5-Roof		
		A3GE	Common Structural Gable	1	1	Job Reference (optional)	173874551	
Structural, LLC, Thurmont, MD - 21788,			Run: 25.20 S May 13	3 2025 Print:	25.2.0 S May	y 13 2025 MiTek Industries, Inc. Fri May 30 16:10:45	Page: 2	

ID:1ld6CJi_XtfyXT0dsp1E5Rzsp?P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788,

12) N/A

- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

