

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 16 Eagle Creek -Kathryn - A

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

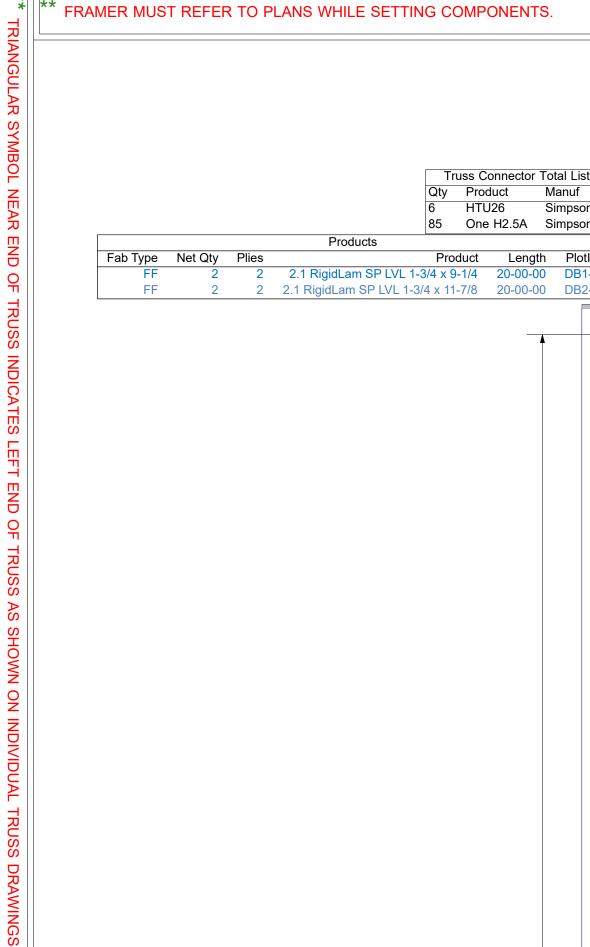
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

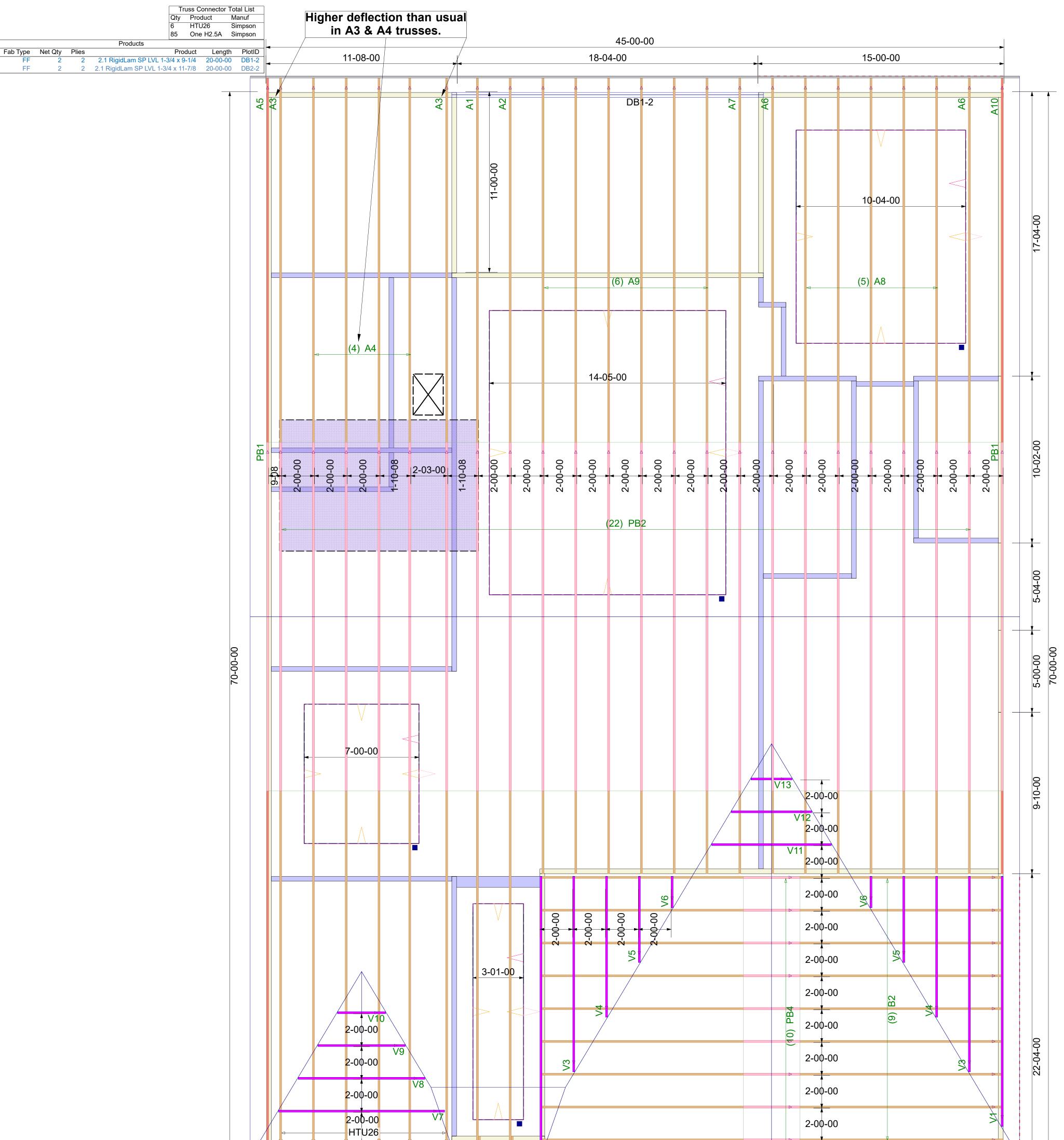
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

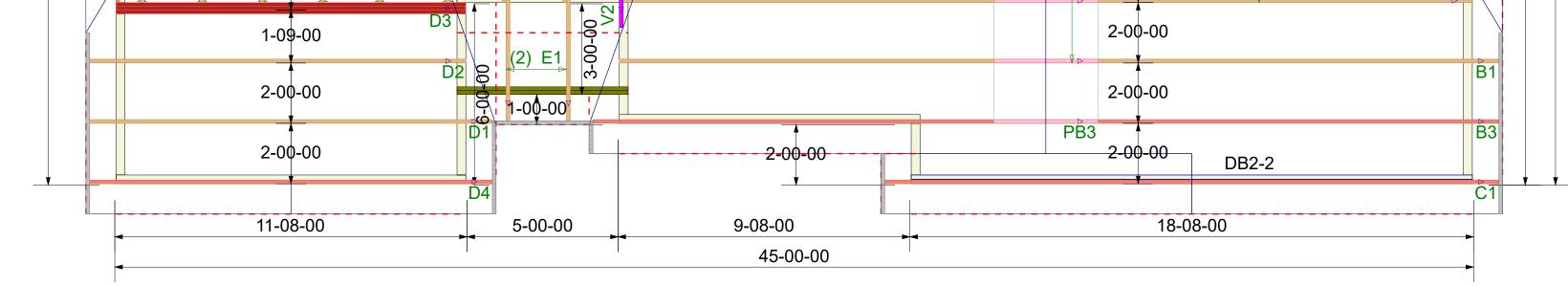
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____


Date: _____

MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

Truss Drawing Left End Indicator

** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI ** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. 1, all uplift connectors are the responsibility of the bldg designer and or contractor. Date: DR Horton Inc THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed Nate Donaldson Project Number: 25050141-A as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, 6/3/2025 Designe 16 Eagle Creek - Kathryn - A NTS

ROOF PLACEMENT PLAN

beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179

Name	00/00/00
Name	00/00/00
sions	Revisions

RE: 16 Eagle Creek 16 Eagle Creek - Kathryn A - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton IncProject Name:16 Eagle Creek
Model:Lot/Block: 16Model:Kathryn AAddress:Subdivision:Eagle Creek
State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 36 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	173603967	A1	5/21/2025	21	173603987	PB2	5/21/2025
2		A1 A2	5/21/2025	22		PB3	5/21/2025
_	173603968				173603988		
3	173603969	A3	5/21/2025	23	173603989	PB4	5/21/2025
4	173603970	A4	5/21/2025	24	173603990	V1	5/21/2025
5	173603971	A5	5/21/2025	25	173603991	V2	5/21/2025
6	173603972	A6	5/21/2025	26	173603992	V3	5/21/2025
7	173603973	A7	5/21/2025	27	173603993	V4	5/21/2025
8	173603974	A8	5/21/2025	28	173603994	V5	5/21/2025
9	173603975	A9	5/21/2025	29	173603995	V6	5/21/2025
10	173603976	A10	5/21/2025	30	173603996	V7	5/21/2025
11	173603977	B1	5/21/2025	31	173603997	V8	5/21/2025
12	173603978	B2	5/21/2025	32	173603998	V9	5/21/2025
13	173603979	B3	5/21/2025	33	173603999	V10	5/21/2025
14	173603980	C1	5/21/2025	34	173604000	V11	5/21/2025
15	173603981	D1	5/21/2025	35	173604001	V12	5/21/2025
16	173603982	D2	5/21/2025	36	173604002	V13	5/21/2025
17	173603983	D3	5/21/2025				
18	173603984	D4	5/21/2025				
19	173603985	E1	5/21/2025				

5/21/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

PB1

Truss Design Engineer's Name: Gilbert, Eric

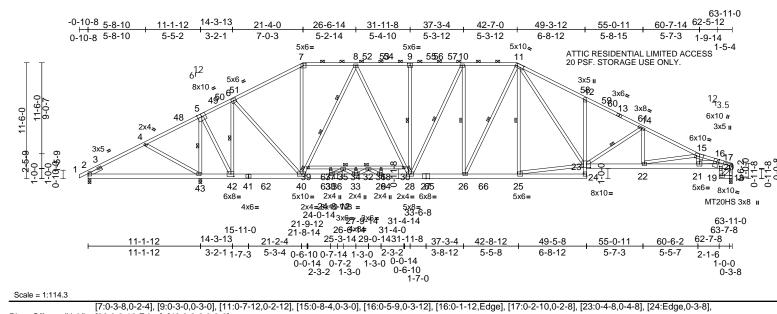
My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

173603986

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A1	Piggyback Base	1	1	Job Reference (optional)	173603967

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:51 ID:gzvdENKJOgX2Ss?L5D9RdAzEz27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Offender (V. M

Plate Olisets	(X, Y): [36:0-3-10,Ed	Jej, [42.0-3-6,0-3-0]										;
Loading	(psf)		0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		15	TC	0.73		-0.29	12-23	>999	240	MT20	244/190
Snow (Pf)	20.0		15	BC	0.93	· · ·	-0.54	29-33	>999	180	MT20HS	187/143
FCDL	10.0		ES	WB	0.96	Horz(CT)	0.25	18	n/a	n/a		
BCLL	0.0*	Code IF	C2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 536 II	b FT = 20%
LUMBER			BOT CHORD	2-43=-628/176, 4	2-43=-89	2/264,		2) Wir	nd: ASC	E 7-16	; Vult=130mph	(3-second gust)
TOP CHORD	2x4 SP 2400F 2.0E			40-42=0/562, 38-	40=0/286	9, 33-38=0/3	583,					DL=6.0psf; h=25ft; Ca
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 24-12,20-19:2x	4	29-33=0/3555, 28								velope) exterior zone
	SP No.3, 19-18,39-	30:2x4 SP No.2		26-28=-25/3372,								i-6-12, Interior (1)
				24-25=-16/425, 2								4-11-5 to 27-8-11,
WEBS	2x4 SP No.3 *Exce			12-23=-694/252,								erior(2R) 36-2-5 to
		3,25-11,25-23,23-11,10-2	б,	21-22=-612/6793	,	,						60-7-14, Exterior(2E)
	10-28,11-26,5-42:2	x4 SP No.2		17-20=-474/5132	,	,	10				0 zone; cantilev	er left and right ht exposed;C-C for
OTHERS	2x4 SP No.3	4.0.0		18-19=-29/441, 3 34-35=-1477/0, 3			/0,					or reactions shown;
SLIDER	Left 2x4 SP No.2	1-6-0		31-32=-16/20, 30							0 plate grip DOL	
BRACING			WEBS	4-43=-481/233, 6								oof LL: Lum DOL=1.1
TOP CHORD		WEBG	6-40=0/2299, 7-40=0/706, 39-40=-1916/164, Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15 Pl									
		cept end verticals, and		8-39=-1804/201,	,		,					Fully Exp.; Ce=0.9;
BOT CHORD	2-0-0 oc purlins (4-	4-5 max.): 7-11. (applied or 4-8-15 oc		28-30=-72/1250,		,			=1.00; Ć			· · , · · · · · · · · · · · · · · · · · · ·
BOT CHORD	bracing.	applied of 4-6-15 oc		11-25=-186/97, 2				4) Un	balanced	d snow	loads have bee	en considered for this
WEBS	1 Row at midpt	6-42, 9-28, 11-25, 14-23		11-23=-341/2043					sign.			
	i non at mapt	10-26, 10-28, 11-26, 5-4		14-22=0/712, 15-								greater of min roof live
WEBS	2 Rows at 1/3 pts	8-39		15-21=-516/118,		,	_					roof load of 20.0 psf o
JOINTS	1 Brace at Jt(s): 39	,		17-19=-584/41, 3			5,	OVE	erhangs	non-co	oncurrent with of	ther live loads.
	30, 35, 32			29-31=0/90, 16-2 10-26=-453/165,							ORTH C	11111.
REACTIONS	(size) 2=0-3-8,	18=0-3-8, 43=0-3-8		11-26=-170/605,							ORTH C	ARO
	Max Horiz 2=182 (L	C 18)		5-43=-3527/353,						1	a	
	Max Uplift 2=-200 (I	_C 63), 18=-65 (LC 15)		33-35=0/646, 32-			0/0			Nº.	O' EES	No.
	Max Grav 2=204 (L	C 46), 18=2420 (LC 6),	NOTES	00 00 0/0 0/0 00	00 0,000	, 20 02 110	0,0			25		1 ist
	43=3926	(LC 3)		d roof live loads ha	wo boon	considered fo	r			-		T: -
FORCES	(lb) - Maximum Cor	npression/Maximum	this design		ive been	considered to	1				OF.	AL : E
	Tension		tills design								SE	AL : E
TOP CHORD	,	/756, 4-6=-651/1079,								8	036	322 : =
	6-7=-2363/220, 7-8								-		: .	: :
	8-10=-3424/354, 10									5	S	1 2
	11-12=-4865/696, 1									2.1	A. ENG	-cRi'h S
	14-15=-5805/591, 1 16-17=-5254/544, 1									2	S, GIN	VEF. A.S
	$10^{-17} = 0204/044, 1$	1-10-2014/304								1	CA.	BEIN
												AL 322 VEER. AL
											11111	IIIII.
											Ma	av 21.2025

Continued on page 2

WARNING

May 21,2025

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A1	Piggyback Base	1	1	Job Reference (optional)	173603967

- 6) 200 0lb AC unit load placed on the bottom chord 26-6-14 from left end, supported at two points, 5-0-0 apart.
- WARNING: This long span truss requires extreme care 7) and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 9)
- 10) All plates are 4x5 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

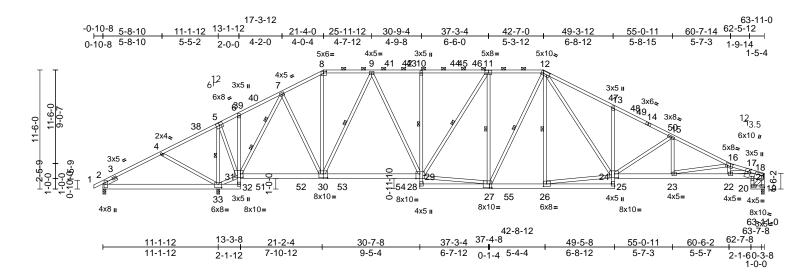
Run; 8.73 S Feb 19 2025 Print; 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:51 ID:gzvdENKJOgX2Ss?L5D9RdAzEz27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WILLING THE PARTY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GILB 1111111 May 21,2025


SEAL 036322

 \cap

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A2	Piggyback Base	1	1	Job Reference (optional)	173603968

Run; 8.73 S Feb 19 2025 Print; 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:54 ID:PTHEBNAUAgVuptm?qWt6ZjzEwiZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

[2:0-4-9,0-1-5], [8:0-3-0,0-2-0], [11:0-4-0,0-3-0], [12:0-7-4,0-2-8], [16:0-6-0,0-2-12], [17:0-5-9,0-3-12], [17:0-1-12, Edge], [18:0-2-10,0-2-8], [19:Edge,0-1-8],

Scale = 1:111.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	c) I/	defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)	-0.26	23-2	24 >9	999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.48	23-2	24 >9	999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.25	1	19	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MSH									
BCDL	10.0												Weight: 528 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS WEBS	2x6 SP 2400F 2.0E 32-6,25-13,21-20:2y 10-28,20-19:2x4 SP 2x4 SP No.3 *Excep 30-9,29-9,11-29,27- SP No.2 Left 2x4 SP No.3 Structural wood she 3-2-1 oc purlins, ex 2-0-0 oc purlins (4* Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2-	4 SP No.3, No.2 ot* 11,27-12,26-12,24-12 1-6-0 athing directly applied cept end verticals, an b-6 max.): 8-12. applied or 10-0-0 oc 33,32-33. 9-30, 11-29, 11-27, 12-27, 12-26, 5-33	:2x4 V l or d	BOT CHORD	2-33=-890/230, 32 6-31=-258/78, 29- 28-29=0/134, 10-2 26-28=-208/2678, 24-25=0/128, 13-2 23-24=-559/4606, 21-22=-648/4780, 20-21=-45/488, 14 31-33=-1250/449, 7-30=-108/1555, 8 9-30=-1650/306, 9 27-29=-165/2609, 11-27=-521/218, 2 12-26=-154/98, 24 12-24=-368/1935, 15-23=0/678, 16-2 16-22=-451/139, 2 17-22=-198/1466, 5-33=-2570/440, 5 18-20=-530/58	31=-103, 9=-394/ 25-26=- 24=-694/2 22-23=- 18-21=- 3-20=-42, 7-31=-2; 3-30=-59, 3-29=-14; 11-29=- 2-27=-2; 1-26=-17; 15-24=- 23=-1553, 33=-1553, 4-33=-4; 4-33=-4; 	/2264, 141, 34/411, 252, 820/6131, 628/4642, /401 893/466, /568, 8/1230, 332/118, 96/381, 4/2291, 1097/181, //265, 56/141, 97/233,	372/0,	4) U 5) T	Plate D DOL=1 Cs=1.0 Unbala design. This tru load of	DOL= 1.15); 00; Ct anced uss h f 12.0	1.15); Is=1.(=1.10 I snow as bee psf or	Pf=20.0 psf (Lum); Rough Cat B; F loads have been en designed for g	of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; in considered for this reater of min roof live of load of 20.0 psf on er live loads.
REACTIONS FORCES TOP CHORD	Max Horiz 2=182 (L Max Uplift 2=-326 (L 33=-194 Max Grav 2=89 (LC 33=3643 (lb) - Maximum Con Tension 1-2=0/23, 2-4=-360/	C 63), 19=-154 (LC 1 (LC 14) 10), 19=2179 (LC 6), (LC 3) pression/Maximum 1089, 4-6=-251/1448, 859/419, 8-9=-1648/4 -12=-2880/637, 3-15=-4223/731, 6-17=-6424/949,	1 5), 2	 this design. Wind: ASCI Vasd=103m II; Exp B; E and C-C Ex 5-6-12 to 14 Interior (1) : 48-11-11, II 60-7-14 to 6 exposed ; e members a 	E roof live loads have E 7-16; Vult=130m, ph; TCDL=6.0psf; nclosed; MWFRS (terior(2E) -0-10-8 t 4-11-5, Exterior(2R 27-8-11 to 36-2-5, nterior (1) 48-11-11 33-6-10 zone; canti nd vertical left and nd forces & MWFR L=1.60 plate grip D	oh (3-sec BCDL=6 envelope o 5-6-12) 14-11-5 Exterior(2 to 60-7- lever left right exp S for rea	cond gust) 6.0psf; h=25ft a) exterior zon 1. Interior (1) 5 to 27-8-11, 2R) 36-2-5 to 14, Exterior(2 and right bosed;C-C foil ctions showr	; Cat. ne 2E) r			Carrienter.		SEA 0363	L 22 LL 22 21,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A2	Piggyback Base	1	1	Job Reference (optional)	173603968

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 10) One H2.5A Simpson Strong-Tie connectors
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 19, and 33. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

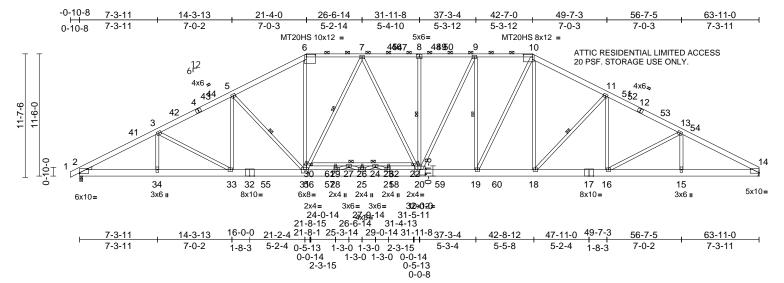
LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:54 ID:PTHEBNAUAgVuptm?qWt6ZjzEwiZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A Mi Tek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A3	Piggyback Base	2	1	Job Reference (optional)	173603969


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:55 ID:E7rVnEkJT57qN7il?w1GXqzEymp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 21,2025

818 Soundside Road

Edenton, NC 27932

Scale = 1:108.4

Continued on page 2

WARNING

00010 = 1.100.4	r													
Plate Offsets (X, Y): [2:Edge,0-1-1]	, [6:0-10-0,0-2-8], [8:0	-3-0,0-3	8-0], [10:0-10-0),0-2-8], [14:Edge,0	-0-9], [20	:0-6-0,0-6-0], [31:	:0-4-0	,0-3-12	2]		-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.40 0.60	Vert(CT) -0		(loc) 21-25 21-25 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 582 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER		·	E	BOT CHORD	2-34=-185/5879,	33-34=-1	85/5879,	5	5) This	s truss h	as bee	en designed for	greater of min r	oof live
TOP CHORD		*Except* 6-8,8-10:2x4	4 SP		31-33=-38/5534, 2		,	•				1.00 times flat i) psf on
BOT CHORD	2400F 2.0E	*Except* 30-22:2x4 S	D		25-28=0/5740, 21 18-19=0/4622, 16							ncurrent with ot ad placed on the		
BOT CHORD	No.2	LACEPT 30-22.2.4 C	,,		15-16=-185/5648							end, supported a		
WEBS	2x4 SP No.3 *Excep				29-30=-9/13, 27-2				apa		- 1 ·			
	31-6,7-31,20-7,18-1 x4 SP No.2	0,20-8,20-9,9-19,19-1		NEBS	24-26=-1170/0, 23 3-34=-29/127, 6-3		,	ı <i>1</i>				long span truss		
WEDGE	Left: 2x4 SP No.3			TLD0	30-31=-1026/162		,					eral handling and		
BRACING					7-22=-87/564, 20		,					d Practice for Ha		
TOP CHORD	Structural wood she 3-10-15 oc purlins,	eathing directly applied	d or		10-18=-92/1093, 11-16=0/488, 13-			0.				Plate Connected oduced by SBC		
	2-0-0 oc purlins (3-5				25-26=-77/28, 24	-25=0/58	4, 21-24=-812/0,	-,	buil	ding ow	ner or	the owner's auth	norized agent sl	hall
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			21-23=-58/9, 8-20 27-28=-793/0, 25-			0				alified registered I inspection of th		sional
	bracing, Except: 6-0-0 oc bracing: 29	2-30 27-20			5-33=-40/416, 3-3		,	0,				nt/bracing and th		
	5-4-10 oc bracing: 2	,			13-15=-37/142, 9	19=-110	5/38,					ember restraint/t		
	5-4-11 oc bracing: 2				10-19=-43/1346							onsibility for trus: , or bracing.	s manufacture,	
WEBS	1 Row at midpt	7-30, 11-18, 8-20, 5- 9-19	,	NOTES	d roof live loads ha	ve heen	considered for	ε				drainage to pre-	vent water pond	ding.
JOINTS	1 Brace at Jt(s): 24,			this design) All	plates ar	e MT2	0 plates unless	otherwise indic	ated.
	27, 30, 22		2		E 7-16; Vult=130m			1	0) All j	plates ar	e 4x5	MI20 unlessioti	ierwise indicate	ed.
REACTIONS	(size) 2=0-3-8, Max Horiz 2=185 (L	14= Mechanical			mph; TCDL=6.0psf; Enclosed; MWFRS			ι.				MT20 unlession	RO	· •
	Max Uplift 2=-94 (LC		i)	and C-C E	xterior(2E) -0-10-8	to 5-6-3,	Ínterior (1) 5-6-3				1	ORTH CA	in in	12-00
	Max Grav 2=3265 (LC 3), 14=3093 (LC 3)		Exterior(2R) 12-3-8 3-6-8, Exterior(2R)						22		12.2	
FORCES	(lb) - Maximum Con Tension	npression/Maximum		(1) 51-7-8	to 57-6-5, Exterior	2E) 57-6·	-5 to 63-11-0					SEA 0363		and
TOP CHORD		2/177, 3-5=-6300/195			ilever left and right xposed;C-C for me					=		SEA	AL 🕴	=
	5-6=-5718/171, 6-7	,			pr reactions shown;					1		0363	322 :	-
	7-9=-5563/213, 9-10 10-11=-5414/310, 1	,	-	grip DOL=	1.60									E.
	13-14=-6441/300		3		CE 7-16; Pr=20.0 ps =1.15); Pf=20.0 psf					5	5	· . E.	Rich	11
); Is=1.0; Rough Ca						115	S, GIN	EF	5
				Cs=1.00; (noidered for the				1	CA C	HBEIN	24
			4	 Unbalance design. 	d snow loads have	been co	nsidered for this					ма Ма	in in its	
				doorgin.								Ma	v 21 2025	

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A3	Piggyback Base	2	1	Job Reference (optional)	173603969

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Refer to girder(s) for truss to truss connections.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint 14.
- 15) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:55 ID:E7rVnEkJT57qN7il?w1GXqzEymp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Marcine. Description, Component dependent description, Uww.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A4	Piggyback Base	4	1	Job Reference (optional)	173603970

-0-10-8

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Mon May 19 14:45:55 ID:keoq3EyPU0CWuA6V1RWfuizEyO?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

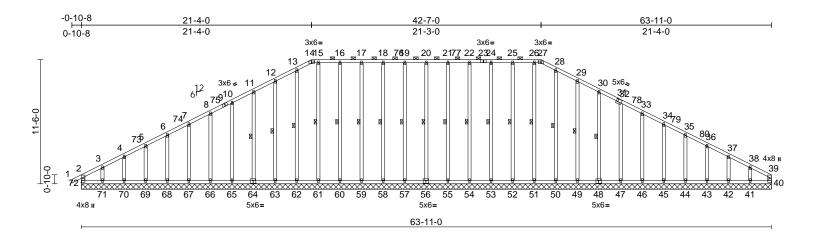
Job	Truss	Truss Type	Qty Ply		16 Eagle Creek - Kathryn A - Roof			
16 Eagle Creek	A4	Piggyback Base	4	1	Job Reference (optional)	173603970		

- 7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Refer to girder(s) for truss to truss connections.13) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 131 lb uplift at joint 15.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:55 ID:keog3EyPU0CWuA6V1RWfuizEyO?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

A. GILB

SEAL 036322 WILLIAM INTERNA


ORT

ALL DAVING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A5	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603971

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:56 ID:Bi1XYEK8GMweADNDFv4mFzEwfn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:106.7

Plate Offsets (X, Y): [14:0-3-0,0-2-	0], [27:0-3-0,0-2-0], [3	31:0-1-12,0-3-0], [48:0	0-3-0,0-3-0],	[56:0-3-0,0-3-0], [64:0-3-0,0-3-	-0]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-	0.19 0.11 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.01	(loc) - - 40	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 551 I	GRIP 244/190 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	55-21,54-22,53-24, No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins (6-	59-17,60-16,61-15,62 52-25,51-26,50-28:2x eathing directly applie xcept end verticals, ar	4 SP d or nd ; ,		$\begin{array}{l} 41 = -117 \ (LC\ 15) \\ 43 = -48 \ (LC\ 15), \\ 45 = -44 \ (LC\ 15), \\ 47 = -43 \ (LC\ 15), \\ 49 = -55 \ (LC\ 15), \\ 52 = -34 \ (LC\ 10), \\ 54 = -25 \ (LC\ 10), \\ 56 = -25 \ (LC\ 10), \\ 56 = -25 \ (LC\ 10), \\ 60 = -36 \ (LC\ 10), \\ 63 = -52 \ (LC\ 14), \\ 65 = -45 \ (LC\ 14), \\ 65 = -45 \ (LC\ 14), \\ 67 = -44 \ (LC\ 14), \\ 69 = -49 \ (LC\ 14), \\ 69 = -49 \ (LC\ 14), \\ 40 = 116 \ (LC\ 57), \\ 42 = 159 \ (LC\ 45), \\ 44 = 162 \ (LC\ 45), \\ 46 = 243 \ (LC\ 45), \\ 48 = 240 \ (LC\ 45), \\ 48 = 240 \ (LC\ 45), \\ 48 = 240 \ (LC\ 45), \\ \end{array}$	44=-43 (LC 46=-44 (LC 48=-42 (LC 50=-1 (LC 1: 53=-25 (LC 57=-26 (LC 57=-26 (LC 62=-9 (LC 1 64=-42 (LC 66=-43 (LC 66=-43 (LC 68=-42 (LC 43=160 (LC 43=160 (LC 45=227 (LC 47=241 (LC 49=241 (LC	15), 15), 15), 15), 111), 112, 111), 111), 111), 111), 111), 112, 114), 114), 114), 114), 114), 124), 125), 125), 125, 12	TOP CH		3-4=-1 6-7=-7 10-11= 12-13= 14-15= 16-17= 20-21= 22-24= 25-26= 27-28= 29-30= 32-33= 34-35= 37-38=	60/80, 4-5=-12 '4/135, 7-8=-62 =-88/255, 11-1 =-126/351, 13- =-126/354, 15- =-126/354, 17- =-126/354, 21- =-126/354, 24- =-126/354, 26- =-135/367, 28- =-106/300, 30- =-71/211, 33-3 =-45/120, 35-3 =-106/35, 38-3	14=-135/367, 16=-126/354, 18=-126/354, 22=-126/354, 22=-126/354, 22=-126/354, 22=-126/354, 22=-126/354, 29=-127/351, 32=-90/256, 4=-57/166, 6=-53/75, 36-37=-76 9=-162/55, 39-40=-8
REACTIONS	$\begin{array}{c} 42 = 63 \cdot 1 \\ 44 = 63 \cdot 1 \\ 46 = 63 \cdot 1 \\ 48 = 63 \cdot 1 \\ 50 = 63 \cdot 1 \\ 52 = 63 \cdot 1 \\ 54 = 63 \cdot 1 \\ 55 = 63 \cdot 1 \\ 60 = 63 \cdot 1 \\ 62 = 63 \cdot 1 \\ 64 = 63 \cdot 1 \\ 66 = 63 \cdot 1 \\ 68 = 63 \cdot 1 \end{array}$		FORCES	(Ib) - Ma Tension	50=237 (LC 45), 52=222 (LC 40), 54=219 (LC 40), 56=160 (LC 59), 58=219 (LC 40), 60=222 (LC 40), 60=222 (LC 43), 64=240 (LC 43), 66=243 (LC 43), 66=243 (LC 41), 70=165 (LC 41), 72=188 (LC 55) kimum Compressi	53=216 (LC 55=189 (LC 57=188 (LC 59=216 (LC 63=241 (LC 65=238 (LC 65=238 (LC 67=221 (LC 69=159 (LC 71=152 (LC	40), 40), 40), 56), 43), 43), 58), 25),				SE 036	AL 322 VEER GILBENNIN ay 21,2025

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof		
16 Eagle Creek	A5	Piggyback Base Supported Gable	ack Base Supported Gable 1 1		Job Reference (optional)	173603971	
Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14: ID:Bi1XYEK8GMweADNDFv4mFzEwfn-RtC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4z						Page: 2	
BOT CHORD 71-72=-38/160, 70-71=-38/160, 13) This truss has been designed for a 10.0 psf bottom							

chord live load nonconcurrent with any other live loads.

14) * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle

69-70=-38/160, 68-69=-38/160. 67-68=-38/160. 66-67=-38/160. 65-66=-38/160. 63-65=-38/160. 62-63=-37/160, 61-62=-37/160, 60-61=-37/160, 59-60=-37/160, 58-59=-37/160, 57-58=-37/160, 55-57=-37/160, 54-55=-37/160, 53-54=-37/160, 52-53=-37/160, 51-52=-37/160. 50-51=-37/160. 49-50=-37/160, 47-49=-37/160, 46-47=-37/160, 45-46=-37/160, 44-45=-37/160, 43-44=-37/160, 42-43=-37/160, 41-42=-37/160, 40-41=-37/160 WEBS 20-56=-121/57, 19-57=-148/57, 18-58=-179/57, 17-59=-176/56, 16-60=-182/75, 15-61=-155/2, 13-62=-196/33, 12-63=-201/93, 11-64=-200/75, 10-65=-199/78, 8-66=-203/77, 7-67=-181/78, 6-68=-127/75, 5-69=-126/91, 4-70=-126/118, 3-71=-128/144, 21-55=-148/57, 22-54=-179/57, 24-53=-176/56, 25-52=-182/75. 26-51=-147/0. 28-50=-196/25, 29-49=-202/92, 30-48=-200/75, 32-47=-200/77, 33-46=-203/77, 34-45=-187/77,

NOTES

1) Unbalanced roof live loads have been considered for this design.

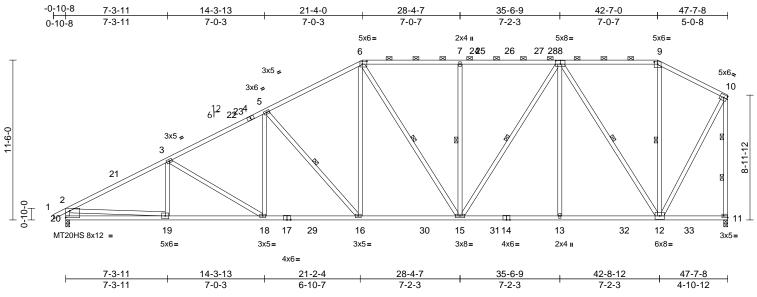
35-44=-127/76, 36-43=-127/113, 37-42=-124/115, 38-41=-137/160

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 5-6-3, Exterior(2N) 5-6-3 to 14-11-5, Corner(3R) 14-11-5 to 27-11-8, Exterior(2N) 27-11-8 to 35-11-8, Corner(3R) 35-11-8 to 48-11-11, Exterior(2N) 48-11-11 to 57-4-9, Corner(3E) 57-4-9 to 63-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 2x4 MT20 unless otherwise indicated.
- 10) Gable requires continuous bottom chord bearing.
- 11) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 12) Gable studs spaced at 2-0-0 oc.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 72, 25 lb uplift at joint 56, 26 lb uplift at joint 57, 25 lb uplift at joint 58, 25 lb uplift at joint 59, 36 lb uplift at joint 60, 9 lb uplift at joint 62, 52 lb uplift at joint 63, 42 lb uplift at joint 66, 44 lb uplift at joint 67, 42 lb uplift at joint 68, 49 lb uplift at joint 69, 22 lb uplift at joint 70, 138 lb uplift at joint 71, 25 lb uplift at joint 55, 25 lb uplift at joint 74, 25 lb uplift at joint 75, 25 lb uplift at joint 74, 25 lb uplift at joint 75, 25 lb uplift at joint 55, 25 lb uplift at joint 54, 25 lb uplift at joint 75, 25 lb uplift at joint 55, 25 lb uplift at joint 55,

- joint 53, 34 lb uplift at joint 52, 1 lb uplift at joint 50, 55 lb uplift at joint 49, 42 lb uplift at joint 48, 43 lb uplift at joint 47, 44 lb uplift at joint 46, 44 lb uplift at joint 45, 43 lb uplift at joint 44, 48 lb uplift at joint 43, 27 lb uplift at joint 42 and 117 lb uplift at joint 41.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



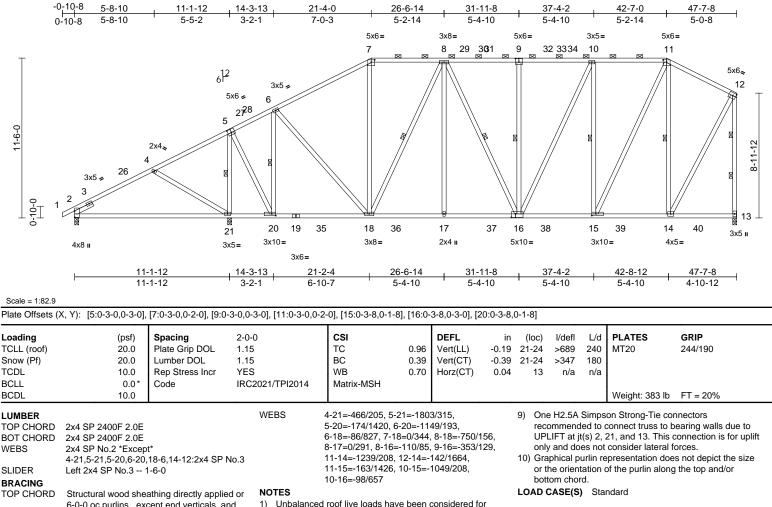
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A6	Piggyback Base	2	1	Job Reference (optional)	173603972

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:56 ID:KZya6lWcATHkwHs2?UqqlwzEweF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:82.9


			-									-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		TC	0.99	Vert(LL)	-0.20	15-16	>999	240	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.00	Vert(CT)	-0.35	16-18	>999	180	MT20HS	187/143
TCDL	10.0		YES		WB	0.82	Horz(CT)	0.10	10 10	n/a	n/a		10//110
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH	0.02	11012(01)	0.10		Π/a	Π/a		
BCDL	10.0	Code	INCZUZ	1/1712014	IVIAUIX-IVIOI I							Weight: 352 lb	FT = 20%
DODL	10.0											Weight: 352 lb	11 - 2070
LUMBER			1)	Unbalanced	roof live loads hav	e been (considered fo	or					
TOP CHORD	2x4 SP 2400F 2.0E			this design.									
BOT CHORD	2x4 SP 2400F 2.0E		2)		7-16; Vult=130mp								
WEBS	2x4 SP No.2 *Excep	ot*		Vasd=103mp	oh; TCDL=6.0psf;	BCDL=6	0.0psf; h=25ft	t; Cat.					
	3-19,18-3,5-18,16-5	,12-10:2x4 SP No.3,		II; Exp B; En	closed; MWFRS (envelope	e) exterior zo	ne					
	15-6,15-8,12-8:2x4	SP 2400F 2.0E,			erior(2E) -0-10-8 te		, ())					
	11-10:2x4 SP No.1				4-3-13, Exterior(2F								
BRACING				()	3-4-7 to 35-7-0, Ex		,						
TOP CHORD	Structural wood she	athing directly applied	or		rior(2E) 42-7-0 to 4			ver					
	3-11-6 oc purlins, e	xcept end verticals, ar	d		exposed ; end ve								
	2-0-0 oc purlins (4-8	3-9 max.): 6-9.			for members and			or					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			own; Lumber DOL	=1.60 pl	ate grip						
	bracing.		0)	DOL=1.60	740 0.000			4.45					
WEBS	1 Row at midpt	5-16, 6-15, 7-15, 8-15	, 3)		7-16; Pr=20.0 ps								
		8-12, 9-12			.15); Pf=20.0 psf s=1.0; Rough Cat								
WEBS	2 Rows at 1/3 pts			Cs=1.00: Ct=		D, Fully	Exp., Ce=0.	9,					
REACTIONS	(size) 11=0-3-8,	, 20=0-3-8	4)		snow loads have l	heen cor	sidered for t	his					
	Max Horiz 20=363 (I		,	design.									
	Max Uplift 11=-150 ((LC 15), 20=-257 (LC 1	4) 5)	0	s been designed f	for great	er of min root	f live					
	Max Grav 11=2252	(LC 46), 20=2190 (LC	5) 7		osf or 1.00 times f								
FORCES	(lb) - Maximum Corr	pression/Maximum			on-concurrent with								11
	Tension		6)	Provide adeo	quate drainage to	prevent	water pondin	g.				"" CA	DUL
TOP CHORD	1-2=0/27, 2-3=-4009	9/414, 3-5=-3596/420,	7)	All plates are	MT20 plates unle	ess other	wise indicate	ed.				TH UA	ROM
	5-6=-2966/401, 6-7=	,	8)	This truss ha	s been designed f	for a 10.0	0 psf bottom				1	A	in All
	7-9=-2594/393, 9-10	,			ad nonconcurrent						K 2	OFE00	Made
	2-20=-2258/294, 10		9)	* This truss h	as been designed	d for a liv	e load of 20.	0psf			1		
BOT CHORD	19-20=-374/1032, 1				n chord in all area					2		ive /	1 : 2
	16-18=-346/3344, 1	,			y 2-00-00 wide wi					=		SEA	1 : =
	13-15=-267/2212, 1	2-13=-268/2211,			y other members,			f.		=		02/1	• –
	11-12=-110/154				Simpson Strong-Ti							0363	22 :
WEBS		=-458/145, 5-18=0/516	,		ed to connect truss					-	0	1	1 5
	5-16=-1037/229, 6-1	,			s) 20 and 11. This			lift			2	1. A.	- 1 - S
	6-15=-352/174, 7-15	,	1/ -		s not consider late						20	A.SNOW	Ethick
	9-12=-88/226, 10-12	3=0/427, 8-12=-2053/2 2181/21/0	14, 1		rlin representation			size		1111111111	1	A. GIN	1 45.
	2-19=-137/2718	,			ation of the purlin a	aiong the	s top and/or				1	1.CA C	II BEIN
NOTES	2 13-13/2/10		-	bottom chord								11, A. G	
NOTES			L	OAD CASE(S)	Standard								lirre
												Мау	21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply 16 Eagle Creek - Kathryn A - Roof		
16 Eagle Creek	A7	Piggyback Base	1	1	Job Reference (optional)	173603973

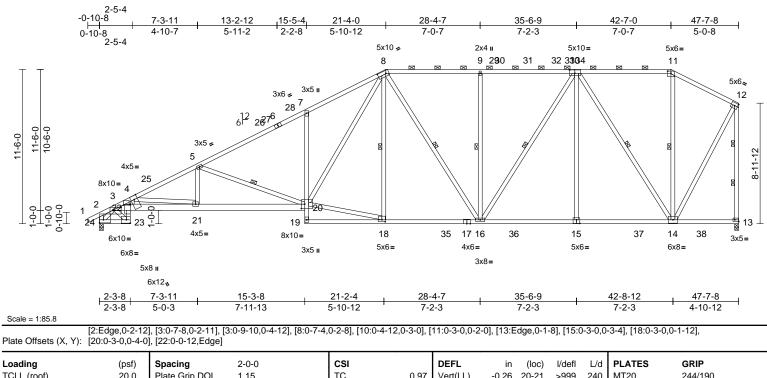
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:57 ID:Dejw6dNGfgiHSQi1j3VoEUzEwVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and									
	2-0-0 oc purlins, except end ventcals, and 2-0-0 oc purlins (6-0-0 max.): 7-11.									
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc									
BOT CHORD	bracing.									
WEBS	1 Row at midpt 5-21, 6-20, 8-18, 8-16,									
WEbb	9-16, 11-14, 10-15									
WEBS	2 Rows at 1/3 pts 12-13									
REACTIONS	(size) 2=0-3-8, 13=0-3-8, 21=0-3-8									
	Max Horiz 2=357 (LC 13)									
	Max Uplift 2=-11 (LC 14), 13=-134 (LC 15),									
	21=-319 (LC 14)									
	Max Grav 2=584 (LC 37), 13=1804 (LC 46),									
	21=2121 (LC 5)									
FORCES	(lb) - Maximum Compression/Maximum									
	Tension									
TOP CHORD	1-2=0/23, 2-4=-961/47, 4-6=-870/135,									
	6-7=-1524/255, 7-8=-1334/269,									
	8-10=-1649/296, 10-11=-1365/287,									
	11-12=-833/258, 12-13=-1902/204									
BOT CHORD	2-21=-381/707, 20-21=-81/324,									
	18-20=-152/957, 17-18=-239/1796,									
	15-17=-239/1796, 14-15=-136/898,									
	13-14=-110/154									

) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-10, Interior (1) 3-10-10 to 14-3-13, Exterior(2R) 14-3-13 to 28-0-13, Interior (1) 28-0-13 to 35-10-3, Exterior(2R) 35-10-3 to 42-7-0, Exterior(2E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

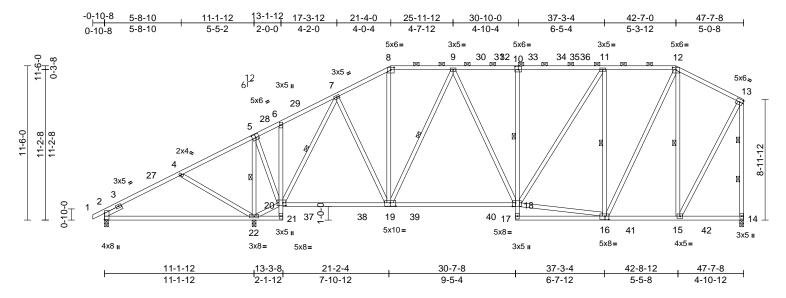
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A8	Piggyback Base	5	1	Job Reference (optional)	173603974

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Tue May 20 17:36:02 ID:3ffugpgWeyhjI5JwXCqCAfzEwLz-4nwl8bY8uuBmG5144LpGHRm70PXg?bzmSITtiVzEiFj

TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.26	20	-21	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.47	20	-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.26		13	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MSH									
BCDL	10.0		_										Weight: 377 lb	FT = 20%
LUMBER			E	BOT CHORD	23-24=-370/2234	, 22-23=-	437/2697,		6)	Prov	/ide ade	equate	drainage to preve	ent water ponding.
TOP CHORD	2x4 SP 2400F 2.0E				3-22=-911/6288,		,		7)				en designed for a	
BOT CHORD	2x4 SP 2400F 2.0E				20-21=-644/5054									any other live loads.
	SP No.2, 3-20:2x6 S	P 2400F 2.0E, 7-19:	2x4		18-35=-305/2672				8)					a live load of 20.0psf
	SP No.3				16-17=-305/2672								rd in all areas wh	
WEBS	2x4 SP No.3 *Excep				15-36=-270/2210 14-37=-269/2214		269/2214,							between the bottom n BCDL = 10.0psf.
	20-8,18-8,9-16,10-1	, ,		VEBS	4-21=-1470/308,		32		9)					others) of truss to
	No.2, 16-8,16-10,14 13-12:2x4 SP No.1	-10:2x4 SP 2400F 2.	0E, '	VLDO	5-20=-1503/287,				9)					ng 150 lb uplift at joint
BRACING	13-12.244 01 10.1				8-20=-359/2032,								ft at joint 24.	
TOP CHORD	Structural wood she	athing directly applie	dor		9-16=-589/185, 1				10)					es not depict the size
	2-10-9 oc purlins, e				10-15=0/426, 10-	14=-2037	//213,		,	or th	ie orien	tation of	of the purlin along	the top and/or
	2-0-0 oc purlins (4-8				12-14=-181/2126					botto	om cho	rd.		
BOT CHORD	Rigid ceiling directly				3-24=-2314/220,	4-22=-16	3/973							
	bracing.		1	OTES										
WEBS		5-20, 8-18, 8-16, 9-1	6, 1		d roof live loads ha	ve been	considered fo	or						
		10-16, 10-14, 11-14		this design.										
WEBS		12-13	2		E 7-16; Vult=130m			• ·						
REACTIONS	· · · · · · · · · · · · · · · · · · ·				nph; TCDL=6.0psf									
	Max Horiz 24=363 (L				nclosed; MWFRS (terior(2E) -0-10-8									Contract of the second s
	Max Uplift 13=-150 (<i>,,</i>	,		14-7-3, Exterior(2F									
	Max Grav 13=2235		'		o 35-10-3, Exterior								OR TH CA	ROUL
FORCES	(lb) - Max. Comp./Ma		250) 42-7-0 to 47-5-12							1	A	The Andrew
TODOUODD	(lb) or less except w			right expos	, ed ; end vertical le	ft and righ	nt exposed;C	-C			/	53	FEE	Nil sin
TOP CHORD	2-3=-597/79, 3-4=-72 4-25=-5401/594, 5-2				rs and forces & MV			own;			4	D		Bille
	4-25=-5401/594, 5-2 5-26=-3958/446, 26-	,		Lumber DC	L=1.60 plate grip	DOL=1.6	D					()	.4 -	1.04
	6-27=-3835/454, 6-2										=		SEA	Lit
	7-28=-3778/468, 7-8		3		E 7-16; Pr=20.0 ps						=	:		• –
	8-9=-2564/391, 9-29				=1.15); Pf=20.0 psf ; Is=1.0; Rough Ca						1		0303	~~ ; :
	29-30=-2564/391, 30	0-31=-2564/391,		Cs=1.00; C		at D, Fully	Exp., Ce=0.	9,					N	1 - E - E
	31-32=-2564/391, 32		4		d snow loads have	been cor	nsidered for t	his				1	·	Airs
	10-33=-2564/391, 10			design.								15	S GIN	EFICAN
	11-34=-964/276, 11-		5		nas been designed	for great	er of min root	f live				11	SEA 0363	BEIN
	2-24=-705/120, 12-1	3=-2400/203) psf or 1.00 times			sf on					11, A. G	ILLIN
				overhangs	non-concurrent wit	h other li	ve loads.						in the second se	

May 21,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

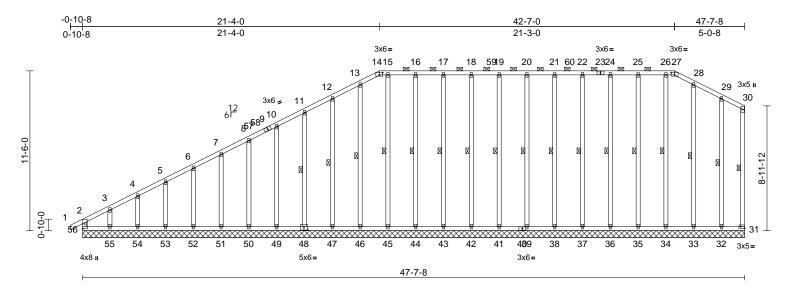
Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A9	Piggyback Base	6	1	Job Reference (optional)	73603975

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:57 ID:7cI9A2HFFq7EvTt3v4RXXCzEwag-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.8

Plate Offsets (X, Y): [5:0-3-0,0-3-0], [8:0-3-0,0-2-0], [10:0-3-0,0-3-0], [12:0-3-0,0-2-0], [16:0-3-8,0-3-0], [18:0-2-12,0-3-4], [19:0-5-0,0-3-0], [20:0-2-12,0-2-8]														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	-0-0 .15 .15 ES RC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.90 0.54 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.46 0.07	18-19	l/defl >999 >952 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 383 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E No.3, 10-17:2x4 SP 2x4 SP No.3 *Excep 19-9,18-9,11-18,16- SP No.2 Left 2x4 SP No.2	:4 NC	EBS DTES	5-22=-1902/302, 2 5-20=-191/1489, 7 7-19=-64/697, 8-1 9-18=-54/259, 16- 11-18=-102/818, 1 12-16=-157/1340, 13-15=-138/1582,	36/156, 28, 9-19=-691/ /1471, 195/245, 1171/200, 87/204		 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22 and 14. This connection is for uplift only and does not consider lateral forces. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 							
BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	applied or 10-0-0 oc	•	this design. Wind: ASCI Vasd=103m II; Exp B; E and C-C Ex	I roof live loads have 7-16; Vult=130m ph; TCDL=6.0psf; nclosed; MWFRS (terior(2E) -0-10-8 t 14-7-3, Exterior(2R	ph (3-seo BCDL=6 envelope to 3-10-1	cond gust) 6.0psf; h=25ft; e) exterior zone 0, Interior (1)	Cat.						
	t 10-18 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, Max Horiz 2=357 (Li Max Uplift 14=-132)	5-22, 7-20, 9-19, 11-16, 12-15 13-14 14=0-3-8, 22=0-3-8 C 13) (LC 15), 22=-340 (LC 14) C 53), 14=1722 (LC 46),) 3)	Interior (1) 2 42-7-0, External left and righ exposed;C- reactions sh DOL=1.60 TCLL: ASC Plate DOL= DOL=1.15);	28-0-13 to 35-10-3, prior(2E) 42-7-0 to t exposed ; end ve C for members and nown; Lumber DOL E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Ca	, Exterior 47-5-12 diforces =1.60 pl f (roof Ll (Lum DC	(2R) 35-10-3 t zone; cantileve and right & MWFRS for ate grip L: Lum DOL=1 DL=1.15 Plate	er .15				NITH CA	ROUT	<i>.</i> .
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/23, 2-4=-920/26, 4-6=-474/286, 6-7=-514/109, 7-8=-1537/244, 8-9=-1359/240, 9-11=-1738/283, 11-12=-1293/283, 12-13=-790/257, 13-14=-1811/202 BOT CHORD 2-22=-416/444, 21-22=-135/0, 20-21=-198/0, 6-20=-226/69, 18-20=-257/1776, 17-18=0/121, 10-18=-396/141, 15-17=-134/858, 14-15=-110/154) Unbalanced snow loads have been considered for this design							and an			

May 21,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	A10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603976

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:58 ID:ITEzaUUfmX1fludiheVr6nzEwIK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:82.9

Plate Offsets (X, Y): [14:0-3-0,0-2-0], [27:0-3-0,0-2-0], [31:Edge,0-1-8], [48:0-3-0,0-3-0]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matri	0.62 0.29 0.20 x-MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 455 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 30-31:2x4 SP No.2 OTHERS 2x4 SP No.2 *Except* 47-12,48-11,49-10,50-8,51-7,52-6,53-5,54-4, 55-3,32-29:2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-27. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 30-31, 20-39, 19-41, 18-42, 17-43, 16-44,					$\begin{array}{llllllllllllllllllllllllllllllllllll$								
10 42, 11 46, 12-47, 11-48, 12-47, 11-48, 21-38, 22-37, 24-36, 25-35, 26-34, 28-33, 29-32 REACTIONS (size) 31=47-7-8, 32=47-7-8, 33=47-7-8, 34=47-7-8, 33=47-7-8, 33=47-7-8, 33=47-7-8, 33=47-7-8, 41=47-7-8, 42=47-7-8, 43=47-7-8, 43=47-7-8, 44=47-7-8, 45=47-7-8, 43=47-7-8, 44=47-7-8, 45=47-7-8, 45=47-7-8, 50=47-7-8, 50=47-7-8, 51=47-7-8, 52=47-7-8, 53=47-7-8, 55=47-7-8, 56=47-7-8 Max Horiz 56=363 (LC 11)				(lb) - Ma Tensior	37=219 (LC 40) 39=160 (LC 1), 42=219 (LC 40) 46=217 (LC 43) 50=180 (LC 43) 50=180 (LC 43) 52=161 (LC 43) 54=164 (LC 1), 56=256 (LC 31) aximum Compress	, 38=188 (LC 41=188 (LC , 43=216 (LC , 45=191 (LC , 47=221 (LC , 49=221 (LC , 51=160 (LC , 53=159 (LC	2 40), 40), 2 40), 2 40), 2 43), 2 43), 2 43), 2 58), 2 58), 551),			I. I.	ORTH CA		

Page: 1

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type Qty Ply 16 Eagle Creek - Kathryn A -		16 Eagle Creek - Kathryn A - Roof		
16 Eagle Creek	A10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603976
Carter Components (Sanford, NC)), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Mon May 19 14:45:58	Page: 2

ID:ITEzaUUfmX1fludiheVr6nzEwIK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

BOT CHORD	55-56=-113/185, 54-55=-113/185, 53-54=-113/185, 52-53=-113/185, 51-52=-113/185, 50-51=-113/185, 49-50=-113/185, 47-49=-113/185, 46-47=-113/185, 45-46=-113/185, 44-45=-113/185, 43-44=-113/185, 42-43=-113/185, 34-34=-113/185, 39-41=-113/185, 36-37=-113/185, 33-34=-113/185, 34-35=-113/185, 33-34=-113/185, 32-33=-113/185, 31-32=-113/185, 32-33=-113/185, 31-32=-129/76, 4-54=-123/93, 3-55=-173/151, 21-38=-148/57, 22-37=-179/57,
	8-50=-140/77, 7-51=-127/77, 6-52=-126/77,
	21-38=-148/57, 22-37=-179/57,
	24-36=-176/56, 25-35=-181/71,
	26-34=-178/55, 28-33=-202/77,
	29-32=-223/102

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 3-11-8, Exterior(2N) 3-11-8 to 16-6-14, Corner(3R) 16-6-14 to 25-11-8, Exterior(2N) 25-11-8 to 37-9-14, Corner(3R) 37-9-14 to 42-7-0, Corner(3E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) N/A
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof				
16 Eagle Creek	B1	Piggyback Base	1	1	Job Reference (optional)	173603977			

15-10-3

3-5-6

6x8= 19 ⊠

4

6x8=

5

12-4-13

6-0-10

18

Carter Components (Sanford, NC), Sanford, NC - 27332,

11-6-0

-2-0

-0-10-8

0-10-8

6-4-2

6-4-2

12 10

16³

5x6 🍫 17 Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:58 ID:aFloEPoPLjeLiUtS0JRAUZzEwGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28-3-0

6-4-2

23

-

3x8、 7

8

3x5 "

-

21-10-14

6-0-10

20

21

5x6💊 ⁶22 Page: 1

15 13 24 12 9 1125 10 26 4x5= 3x5= 3x5= 3x8= 4x5= 6-4-2 12-3-1 15-11-15 21-10-14 28-3-0 6-4-2 5-10-14 3-8-14 5-10-14 6-4-2 ין, ני **Л**, Г

Scale = 1:71.3	0-4-2	5-10-14	0-
Plate Offsets (X, Y): [2:0	1-12,0-1-8], [3:0-3-0,0-3-4], [4:0-6-4,0-2-0], [5:0-6-4,0-2-0], [6:0-3-0,0-3-4]

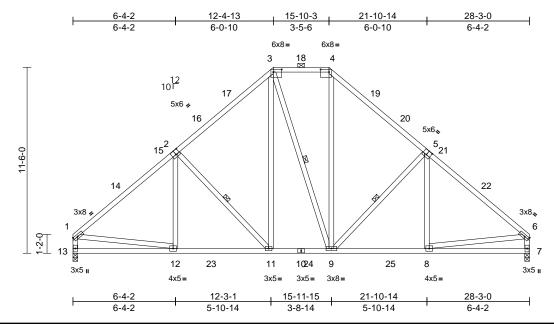
4x5 🍫

×

3x5 u

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.54 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.03	(loc) 12-13 12-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 208 lb	GRIP 244/190 FT = 20%
No.2 BRACING TOP CHORD Structura 2-2-0 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/39, 5-7=-180 7-8=-143 BOT CHORD 13-14=-2 10-12=-3 WEBS 3-13=-23 4-10=-16	lo.2 lo.3 *Excep l wood she purlins, ex purlins (5-6 ing directly midpt 8=0-3-8, 7 14=287 (L 8=-87 (LC 8=1383 (L 8=-87 (LC 8=1383 (L 3/225, 2-14 1/119 95/412, 12: 5/966, 9-10 /205, 3-12= 9/174, 5-10 2/217, 6-9= 57	LC 11) C 15), 14=-107 (LC 1- LC 53), 14=1444 (LC hpression/Maximum D/223, 4-5=-1040/232 4=-1478/142, -13=-138/1343, -7/1321, 8-9=-59/1 526/215, 4-12=-98/ D=-86/554, 29/201, 2-13=0/105	rd or nd 3) 4) 4) 51) 5) 2, 6) 7) 88 88 563, 9)	Vasd=103m II; Exp B; En and C-C Exp 20-1-2 to 25 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa' * This truss ha chord and an One H2.5A S recommendd UPLIFT at jt and does no	7-16; Vult=130m ph; TCDL=6.0psf; iclosed; MWFRS (erior(2E) -0-10-8 f kterior(2E) -0-10-8 f tterior(2E) 8-1-14 -1-4, Exterior(2E) ft and right expose d;C-C for member shown; Lumber D E 7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10; Rough Ca =1.10; Rough Ca =1.10; snow loads have as been designed psf or 1.00 times i on-concurrent witi quate drainage to as been designed an onconcurrent witi quate drainage to as been designed an onconcurrent has been designed has be	BCDL=6 envelope to 2-1-8, to 20-1-2 25-1-4 to 20-1-2 25-1-4 to 20-1-2 25-1-4 to 20-1-2 25-1-4 to 20-1-2 25-1-4 to 20-1-2 25-1-4 to 20-1-2 to 20-1-	i.Opsf, h=25ft a) exterior zo Interior (1) 2- k, Interior (2) 28-1-4 zone vertical left ar rcces & MWFf b) plate grip L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for t er of min rooi aad of 20.0 p ve loads. water pondin D psf bottom other live load e load of 20. a rectangle vecen the bott CDL = 10.0ps ctors ing walls due on is for uplif bt depict the si	ne 1-8 2; 1.15 2; 1.15 2; 9; his f live sf on g. ads. Opsf om f. t only				SEA 0363	• -
			L	bottom chore DAD CASE(S)								· · · · · ·	ERIX

GILB Unumin' May 21,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	uss Truss Type		Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	B2	Piggyback Base	9	1	Job Reference (optional)	173603978

Scale = 1:71.3

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:58 ID:iI5Z5UMuG9ZgrjzUGhnBuTzEwFv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

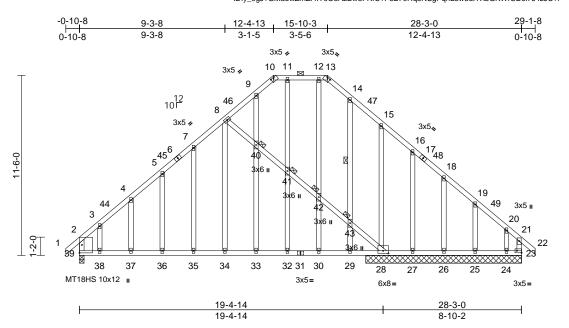
Plate Offsets (X, Y): [2:0-3-0,0-3-4], [3:0-6-4,0-2-0], [4:0-6-4,0-2-0], [5:0-3-0,0-3-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.54 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%
LUMBERTOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3 *Except* 11-3,9-3,9-4:2x4 SP No.2BRACINGStructural wood sheathing directly applied or 3-2-10 oc purlins, except end verticals, and 2-0-0 oc purlins (5-6-12 max.): 3-4.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.WEBS1 Row at midpt2-11, 3-9, 5-9REACTIONS(size)7=0-3-8, 13=0-3-8 Max HorizMax Uplift7=-87 (LC 15), 13=-87 (LC 14) Max Grav7=1384 (LC 52), 13=1386 (LC 50)				Vasd=103m II; Exp B; En and C-C Ext to 8-1-14, Ex 20-1-2 to 25 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=* DOL=1.15); Cs=1.00; Ct: Unbalanced design.	snow loads have b	BCDL=6 envelope 3-1-12, o 20-1-2 25-1-4 to d; end v s and fo OL=1.60 f (roof LL Lum DC B; Fully peen cor	.0psf; h=25ft e) exterior zor Interior (1) 3; ., Interior (1) . 28-1-4 zone vertical left an ces & MWFF 0 plate grip .: Lum DOL= 0L=1.15 Plate Exp.; Ce=0.9	ne -1-12 ;; nd RS 1.15 9; 9; his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	 Forvide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chard live load percent with any other live load content of the load content. 									
TOP CHORD	1-3=-1810/226, 3-4= 4-6=-1804/226, 1-13 6-7=-1432/119		7)	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
BOT CHORD WEBS	,	6/1322, 7-8=-59/188 534/217, 3-11=-100/ 85/553, 5-9=-532/217	 chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 7. This connection is for uplift only and does not consider lateral forces. Graphical purlin representation does not depict the size 										
NOTES 1) Unbalance	ed roof live loads have		or the orienta bottom chore	ation of the purlin a d.	along the	top and/or					SEA		

1) Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard

036322


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	B3	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603979

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:58 ID:y_0gJ?GMaowZmZi4IT008AzEw8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

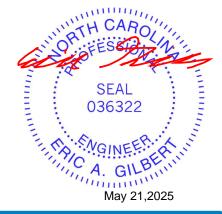
Scale = 1:73.6

Plate Offsets (X, Y): [10:0-2-8,0-0-3], [13:0-2-8,0-0-3], [23:Edge,0-1-8], [28:0-4-0,0-2-0]

	rate Offsets (A, 1). [10.0-2-0,0-0-3], [13.0-2-0,0-0-3], [23.EUge,0-1-0], [20.0-4-0,0-2-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2021/TPI2014	CSI TC 0.70 BC 0.36 WB 0.36 Matrix-MSH		36-37 36-37	/ >868 / >999	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 255 lb	GRIP 244/190 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 10-13. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 14-43 JOINTS 1 Brace at Jt(s): 40, 41, 42, 43 REACTIONS (size) 23=9-11-8, 24=9-11-8, 25=9-11-8,			 38-39=-116/693, 37-38=-1 36-37=-116/693, 35-36=-1 34-35=-116/693, 33-34=-1 32-33=-116/693, 30-32=-1 29-30=-116/693, 28-29=-1 27-28=-88/377, 26-27=-88 25-26=-88/377, 26-27=-88 23-24=-88/377 3-38=-16/65, 4-37=-73/67, 7-35=-72/56, 8-34=-133/37 11-41=-38/50, 12-42=0/61 15-28=-295/89, 16-27=-16 18-26=-164/98, 19-25=-15 20-24=-101/284, 8-40=-71 40-44 C31/270 	16/693, 16/693, 16/693, 16/993, 16/7, 1377, 5-36=-85/71, 4, 9-40=-15/74, 14-43=-110/71, 3/119, 3/96, 3/297,	 PI Di Di C: 5) Ui de 6) Ti lo ov 7) Pi 8) AI 9) AI 10) Tr br 	 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. Tuss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 					
	$\begin{array}{llllllllllllllllllllllllllllllllllll$			40-41=-671/270, 41-42=-6 42-43=-695/274, 28-43=-7 33-40=-70/72, 32-41=-1/62 29-43=-53/42 ced roof live loads have been of m. GCE 7-16; Vult=130mph (3-sed 3mph; TCDL=6.0psf; BCDL=6 Enclosed; MWFRS (envelope Corner(3E) -0-10-8 to 2-1-8, E Corner(3R) 9-3-8 to 18-10-3, o 26-1-8, Corner(3E) 26-1-8 tt r left and right exposed ; end v osed; C-C for members and fo ons shown; Lumber DOL=1.60 0 signed for wind loads in the pl r studs exposed to wind (norm dard Industry Gable End Deta t qualified building designer a:	43/303, , 30-42=0/69, considered for cond gust) .0psf; h=25ft; Cat. .) exterior zone xiterior(2N) 2-1-8 Exterior(2N) 2-9-1-8 zone; vertical left and cces & MWFRS 0 plate grip ane of the truss al to the face), ils as applicable,	12) Tł cł 13) * ⁻ or 3- cł	his truss h hord live lo This truss in the botto 06-00 tall hord and a	as bee pad noi has be om cho by 2-0 iny oth	nconcurrent with een designed for rrd in all areas wi 00-00 wide will fit her members. H CA OFFICE SEA 0363	between the bottom		

May 21,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

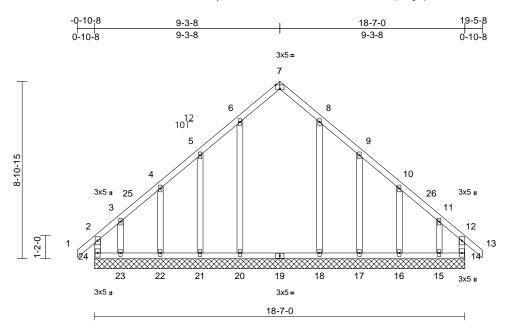

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	B3	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603979
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Mon May 19 14:45:58	Page: 2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:58 ID:y_0gJ?GMaowZmZi4IT0O8AzEw8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) N/A

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	C1	Common Supported Gable	1	1	Job Reference (optional)	173603980

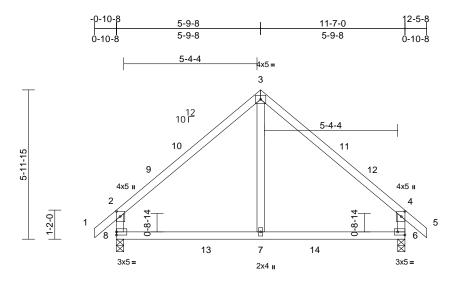
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:59 ID:jccPG?A1h8VnuEWhIQODDBzEw76-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

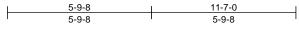
Scale = 1:57.8

Plate Offsets (X, Y): [7:0-2-8,Edge]

		1	-	- 1			· · · · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	-	тс	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	I I	BC	0.22	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.24	Horz(CT)	0.01	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI20	14	Matrix-MR								
BCDL	10.0											Weight: 120 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-7-(21=18-7-(24=18-7-(24=18-7-(Max Horiz 24=232 (I Max Uplift 14=-89 (L 16=-45 (L 24=-101 (Max Grav 14=317 (I 18=370 (I 21=176 (I	applied or 10-0-0 oc), 15=18-7-0, 16=18-7), 18=18-7-0, 20=18-7), 22=18-7-0, 23=18-7) C 13), 15=-272 (LC 1 C 13), 15=-272 (LC 1 C 15), 17=-118 (LC 14 C 14), 21=-116 (LC 14 C 14), 23=-275 (LC 15) LC 12)	or this c 2) Winc Vasc I; Ex -0, and (-0, to 6- -0, to 16 -0, to 16 left a expo 5), DOL: 5), 3) Trus: (1), see S (2), only. (2), 4) TCLI Plate (3), CS=1	3-2 9- 11 anced ro esign. ASCE 7- =103mph b B; Enclo -C Corne -8, Corre -8, Corre -1, Corne -8, Corre -8, Corre -8, Corre -1, Corre -8, Corre -8, Corre -1, Corre -8, Corre -8, Corre -1,		I 8=-260, -16=-150 e been of h (3-sec BCDL=6 envelope 2-1-8, E 19-5-8 tical left forces a =1.60 pl d (norm nd Deta signer as (roof LL Lum DC B; Fully	40, 5/97, considered for cond gust) .0psf; h=25ft exterior(2N) 2 xterior(2N) 12 zone; cantile and right & MWFRS for ate grip ane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5	or ; Cat. -1-8 2-3-8 ver r ss), ble, PI 1. 1.15 2;	on 3-0 chc 13) Pro bea 24, upli join 272	the botto 6-00 tall rd and a vide me uring plat 89 lb up ft at join	om cho by 2-0 any oth chanic te capa lift at jo t 21, 4 8 lb up at join	rd in all areas wh 0-00 wide will fit er members, with al connection (by able of withstandi oint 14, 1 lb uplift 5 lb uplift at joint 1 lift at joint 17, 45 t 15.	a live load of 20.0psf ere a rectangle between the bottom 1 BCDL = 10.0psf. others) of truss to ng 101 lb uplift at joint at joint 20, 116 lb 22, 275 lb uplift at lb uplift at joint 16 and
FORCES	(lb) - Maximum Com Tension	pression/Maximum	desig	n.	now loads have b					4	Ø	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
TOP CHORD	2-24=-234/77, 1-2=0 3-4=-167/89, 4-5=-1 6-7=-158/104, 7-8=- 9-10=-130/53, 10-11 11-12=-291/126, 12-	35/61, 5-6=-127/75, 158/104, 8-9=-127/75 =-163/81, -13=0/39, 12-14=-231, -23=-108/281, -21=-108/281, -18=-108/281,	load overi 7) All pi 8) Gabi 9) Trus: brace 10) Gabi 11) This	 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. 							22 EFR &		

May 21,2025


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	D1	Common	1	1	Job Reference (optional)	173603981

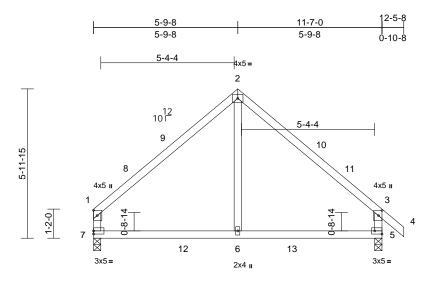
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:59 ID:khj6XF?hg1382himkic9zXzEw62-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.3 Plate Offsets (X, Y): [2:0-2-8,0-1-12], [4:0-2-8,0-1-12], [6:Edge,0-1-8]

Plate Olisets (X, Y): [2:0-2-8,0-1-12	j, [4:0-2-8,0-1-12], [6	Euge,0-	-8]								-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.64 0.36 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 2-9-8, E to 2-9-8, E 9-5-8, Exti and right e C for mem shown; Lu 3) TCLL: ASC Plate DOL	Max Horiz 8=163 (LC Max Uplift 6=-49 (LC Max Grav 6=632 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-572/ 4-5=0/39, 2-3=-572/ 4-5=0/39, 2-8=-551/ 7-8=-2/347, 6-7=-2/3 3-7=0/302 ed roof live loads have the comparison of the second mph; TCDL=6.0psf; Bd Enclosed; MWFRS (en Exterior(2E) -0-10-8 to 2 Exterior(2E) -0-10-8 to 2 Exteri	athing directly applie zept end verticals. applied or 10-0-0 oc 3=0-3-8 2 13) 15), 8=-49 (LC 14) 2 6), 8=632 (LC 5) pression/Maximum 141, 3-4=-573/140, 199, 4-6=-553/196 147 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zone 2-1-8, Interior (1) 2-1 3-8, I	Cat. e -8 tito fft t;C- .15	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A S recommende UPLIFT at jtt	snow loads have b as been designed f psf or 1.00 times fl on-concurrent with as been designed n chord in all area: y 2-00-00 wide wi by other members, Simpson Strong-Ti ed to connect truss (s) 8 and 6. This cc t consider lateral for Standard	or great lat roof le other lin or a 10. with any l for a liv s where ll fit betw with BC e conne s to bear onnectio	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ctors ing walls due	f live osf on ads. Opsf tom of.				SEA 0363	EER. KIIII

May 21,2025

Page: 1

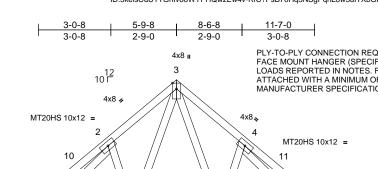

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	D2	Common	1	1	Job Reference (optional)	173603982

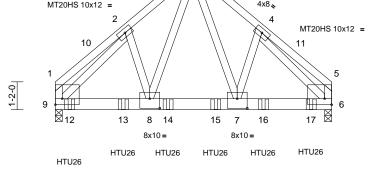
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:59 ID:rB01Gh9rc1il6hCG?xLC?HzEw5r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.3 Plate Offsets (X, Y): [3:0-2-8,0-1-12], [5:Edge,0-1-8]


Plate Offsets ((X, Y): [3:0-2-8,0-1-12], [5:Edge,0-1-8]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MR	0.76 0.42 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%	
this design 2) Wind: ASK Vasd=103 II; Exp B; and C-C E 3-1.12 to i 9-5-8 to 1: end vertice forces & M DOL=1.6C 3) TCLL: ASK Plate DOL DOL=1.15 Cs=1.00;	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood sheat 5-7-1 oc purlins, exa Rigid ceiling directly bracing. (size) 5=0-3-8.7 Max Horiz 7=-156 (L Max Uplift 5=-48 (LC Max Grav 5=633 (LC (lb) - Maximum Com Tension 1-2=-565/136, 2-3=-1 1-7=-502/146, 3-5=-1 6-7=-2/348, 5-6=-2/3 2-6=0/295 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; BK Enclosed; MWFRS (en Exterior(2E) 0-1-12 to 3 8-9-8, Interior (1) 8-9-8 2-5-8 zone; cantilever 1 al left and right expose MWFRS for reactions sl 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-3-8 C 10) (15), 7=-29 (LC 14) C 6), 7=579 (LC 5) pression/Maximum 573/136, 3-4=0/39, 552/194 348 been considered for (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zon L-1-12, Exterior(2R) to 9-5-8, E	Cat. e =) (15 ;	bad of 12.0 p verhangs no his truss ha hord live loa This truss h n the bottom -06-00 tall b hord and an One H2.5A S ecommende JPLIFT at jt(s been designed for basf or 1.00 times fli on-concurrent with s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, impson Strong-Tie d to connect truss s) 7 and 5. This co consider lateral for Standard	at roof le other liv or a 10.1 for a liv for a liv s where ll fit betw with BC e conne to bear onnectio	bad of 20.0 p ve loads. D psf bottom other live load of 20.1 a rectangle veen the bott DDL = 10.0ps ctors ing walls due	osf on ads. .0psf tom sf. e to				SEA 0363	EER.	Providence -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	D3	Common Girder	1	3	Job Reference (optional)	173603983

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:45:59 ID:5keisCuUTTGnIvooWYPHQwzEw4v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

PLY-TO-PLY CONNECTION REQUIRES THAT AN APPROVED FACE MOUNT HANGER (SPECIFIED BY OTHERS) IS REQUIRED FOR LOADS REPORTED IN NOTES. FACE MOUNT HANGER SHALL BE ATTACHED WITH A MINIMUM OF 0.148"x 3" NAILS PER HANGER MANUFACTURER SPECIFICATIONS.

Page: 1

3-11-8	7-7-8	11-7-0
3-11-8	3-8-0	3-11-8

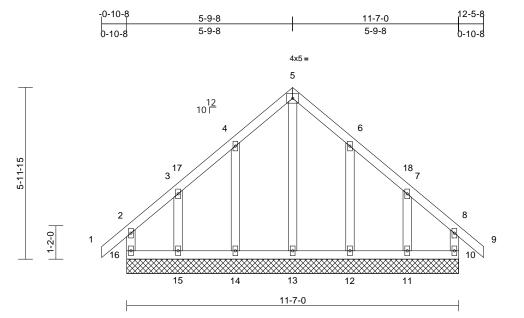
Scale = 1:48.3

Plate Offsets (X, Y): [1:Edge,0-3-0], [5:Edge,0-3-0], [7:0-5-0,0-4-12], [8:0-5-0,0-4-12]

5-11-15

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2027	1/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.39 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0											Weight: 266 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc	athing directly applie	0	except if note CASE(S) see provided to c unless other	considered equal ed as front (F) or b ction. Ply to ply co listribute only load wise indicated. roof live loads hav	back (B) nnection Is noted	face in the L0 s have been as (F) or (B),		Co	oncentra Vert: 12	3=-60, ited Lo !=-2708	3-5=-60, 6-9=-20 ads (lb)	B), 14=-2701 (B),
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	5)	Vasd=103mp	7-16; Vult=130mp oh; TCDL=6.0psf; closed; MWFRS (BCDL=6	.0psf; h=25ft						
	Max Horiz 9=-140 (L0 Max Uplift 6=-452 (L0 Max Grav 6=9519 (L	C 35) C 13), 9=-460 (LC 1	, ´	right expose	t and right expose d; Lumber DOL=1 7-16; Pr=20.0 ps	.60 plate	grip DOL=1.	.60					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	Plate DOL=1 DOL=1.15);	.15); Pf=20.0 psf s=1.0; Rough Cat	(Lum DC	L=1.15 Plate	Э					
TOP CHORD	1-2=-1830/136, 2-3= 3-4=-7907/467, 4-5= 1-9=-1318/112, 5-6=	-1953/142,	7)	Cs=1.00; Ct= Unbalanced design.	=1.10 snow loads have	been coi	nsidered for t	his					
BOT CHORD	8-9=-301/5640, 7-8= 6-7=-255/5689	-208/4447,	8) 9)		MT20 plates unle s been designed			ed.					
WEBS	3-7=-317/5209, 4-7= 3-8=-310/5063, 2-8= 2-9=-6647/309, 4-6=	-101/1318,	,	chord live loa) * This truss h	ad nonconcurrent has been designed n chord in all area	with any d for a liv	other live loa e load of 20.0					TH CA	Route
NOTES 1) N/A			11	3-06-00 tall t chord and ar	by 2-00-00 wide w by other members Simpson Strong-Ti	ill fit betv	veen the bott	om		6	، مبر	ORIEESE	N. Star
(0.131"x3" Top chords oc. Bottom chords staggered	to be connected toget) nails as follows: s connected as follows ords connected as follow at 0-4-0 oc. ected as follows: 2x4 -	:: 2x4 - 1 row at 0-9- ows: 2x6 - 3 rows	0 12 13	recommende UPLIFT at jt(and does no) Use Simpsoi 20-10dx1 1/2 max. starting connect trus:) Fill all nail ho DAD CASE(S)	ed to connect truss s) 9 and 6. This cont to consider lateral for Strong-Tie HTU2 e Truss) or equival at 0-7-4 from the s(es) to back face bles where hanger	s to bear onnectio orces. 26 (20-1) lent spac left end of botto is in cor	ing walls due n is for uplift od Girder, ced at 2-3-0 c to 10-8-12 to n chord. ntact with lum	only oc ober.		A THEFT AND A		SEA 0363	22 EERCALIUM

- max. starting at 0-7-4 from the left end to 10-8-12 to connect truss(es) to back face of bottom chord. 13) Fill all nail holes where hanger is in contact with lumber.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


May 21,2025

mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	D4	Common Supported Gable	1	1	Job Reference (optional)	173603984

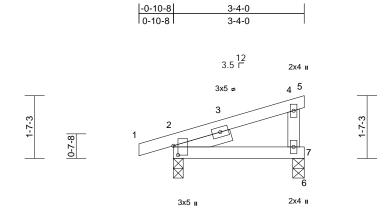
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:?IFBeypHUpIRK5IIhMI1EzzEw17-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:40.2
---------	--------

Ocale = 1.40.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP		CSI TC BC WB Matrix-MR	0.17 0.07 0.17	Vert(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		11(02021/11	12014								Weight: 71 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directh bracing. (size) 10=11-7- 13=11-7- 16=11-7 Max Horiz 16=163 (12=-71 (l 15=-112 Max Grav 10=153 (14=279 (16=163 (y applied or 6-0-0 oc 0, 11=11-7-0, 12=11- 0, 14=11-7-0, 15=11- 0 LC 13) LC 13) LC 15), 11=-110 (LC 1- (LC 14), 16=-74 (LC 2- LC 25), 11=191 (LC 2- LC 22), 13=191 (LC 2- LC 21), 15=197 (LC 2- LC 26)	Va II; an to 9-5 d or C t sh 7-0, 3) Trr 7-0, on 7-0, se or 15), 4), DC 15), Pla 4), DC 10) Cs 26), 5) Ur 28), de 25), 6) Th	sd=103mph Exp B; Encl d C-C Corne 5-8, Corner(; d right expo for members own; Lumbe uss designer ly. For stud e Standard I consult qual LL: ASCE 7 ate DOL=1.1 DL=1.15); Is: =1.00; Ct=1 ibalanced sr sign. is truss has	7-16; Vult=130mp n; TCDL=6.0psf; osed; MWFRS (er(3E) -0-10-8 to er(3R) 2-9-8 to 8 3E) 9-5-8 to 12-1 sed ; end vertica s and forces & M er DOL=1.60 plat d for wind loads is exposed to win Industry Gable E lified building de 7-16; Pr=20.0 psf =1.0; Rough Cat 1.0 now loads have 1 been designed 1 sf or 1.00 times f	BCDL=6 envelope o 2-1-8, E 3-9-8, Exi 5-8 zone al left and IWFRS f te grip D in the plind (norm End Deta signer as for forcot LL (Lum DC t B; Fully been cor for greate	.0psf; h=25ft; exterior zor ixterior(2N) 8-9 erior(2N) 8-9 cantilever le dright expose or reactions OL=1.60 ane of the true al to the face is a applicat s per ANSI/TF DL=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof	ne -1-8 -8 to off ad;C- ss), bble, PI 1. 1.15 9; his live	LOAD	CASE(S) Sta	, ,	
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	OV	erhangs nor	n-concurrent with	h other liv	/e loads.						u.,.
TOP CHORD	2-16=-130/151, 1-2	116/287, 5-6=-116/28	8) Ga 7, 9) Tru bra	ble requires uss to be ful aced agains	2x4 MT20 unless s continuous both lly sheathed from t lateral movement baced at 2-0-0 o	tom chor n one fac ent (i.e. d	d bearing. e or securely			4		ORTH CA	ROUT
BOT CHORD	15-16=-80/102, 14- 13-14=-80/102, 12- 11-12=-80/102, 10-	13=-80/102,	11) Th ch	is truss has ord live load	been designed nonconcurrent s been designed	for a 10.0 with any	other live loa				V	SEA	
WEBS	5-13=-282/47, 4-14 3-15=-156/145, 6-1 7-11=-146/159	=-238/142,	on 3-(the bottom 06-00 tall by	chord in all area 2-00-00 wide w	is where ill fit betv	a rectangle	•				0363	
NOTES 1) Unbalance this design	ed roof live loads have n.	e been considered for	13) Pro be 16 up	ovide mecha aring plate o , 61 lb uplift	anical connection capable of withst at joint 10, 70 lb 5, 71 lb uplift at j	n (by oth tanding 7 o uplift at	'4 lb uplift at j joint 14, 112	oint Ib				SEA 0363	EER. KINN

May 21,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	E1	Monopitch	2	1	Job Reference (optional)	73603985

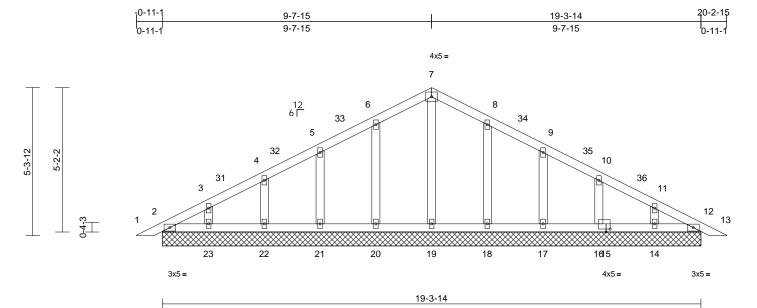
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:Cm3UonzVtJrqsrdIJXUY7CzEw?d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Page

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-2-14,0-1-6]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	out	1102021/1112014								Weight: 15 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1 BRACING TOP CHORD Structural wood shea 3-4-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-0, 7	athing directly applied ept end verticals. applied or 10-0-0 oc	on the bottor 3-06-00 tall b chord and ar 7) One H2.5A S recommende UPLIFT at jt(has been designed n chord in all areas yy 2-00-00 wide will yy other members. Simpson Strong-Tie d to connect truss s) 7 and 2. This co t consider lateral fo Standard	where I fit betw conne to bear nnectio	a rectangle veen the botto ctors ing walls due	om to					
Max Horiz 2=50 (LC Max Uplift 2=-51 (LC Max Grav 2=245 (LC	13) 10), 7=-25 (LC 14)										
FORCES (Ib) - Maximum Comp Tension TOP CHORD 1-2=0/21, 2-4=-93/36 BOT CHORD 2-7=-62/102, 6-7=0/0	6, 4-5=-6/0, 4-7=-127/	75									
NOTES	,										
 Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (enr and C-C Exterior(2E) zone; cantil exposed; end vertical left and rig members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI 	DL=6.0psf; h=25ft; C velope) exterior zone lever left and right ht exposed;C-C for for reactions shown; L=1.60							4		ORTH CA	ROLIN
 TCLL: ASCE 7-16; Pr=20.0 psf (r Plate DOL=1.15); Pf=20.0 psf (Lu DOL=1.15); Is=1.0; Rough Cat B; Cs=1.00; Ct=1.10 	um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;							11111		SEA 0363	• -
 Unbalanced snow loads have been design. This truss has been designed for load of 12.0 psf or 1.00 times flat 	greater of min roof liv roof load of 20.0 psf of	/e								SEA 0363	EEREAL
 overhangs non-concurrent with o This truss has been designed for chord live load nonconcurrent wit 	a 10.0 psf bottom									201111	11_BE 121,2025


t.org) B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	PB1	Piggyback	2	1	Job Reference (optional)	173603986

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:n7MOvDHFzRY3JmeeamW89dzEwfq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

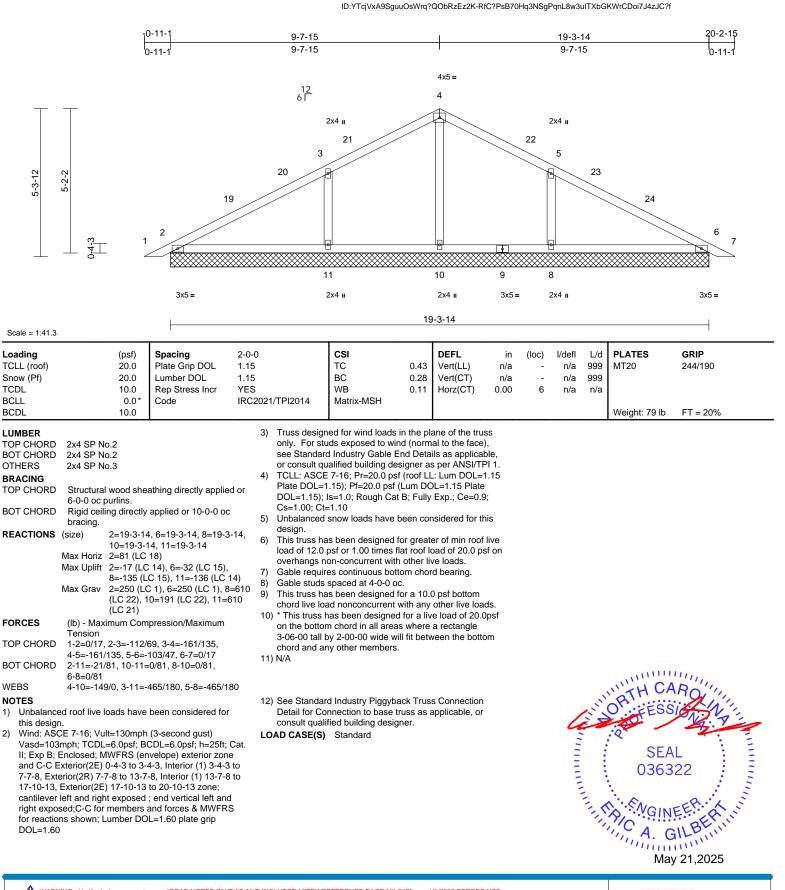
Page: 1

Scale = 1:41.3

Plate Offsets (X, Y): [15:0-1-12,0-1-4]

		-	-									i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MSH		l (
BCDL	10.0											Weight: 96 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		V		7-19=-106/0, 6-20: 4-22=-137/69, 3-2:		,	,	12) N/A				
BOT CHORD					9-17=-187/68, 10-								
OTHERS	2x4 SP No.3		N	IOTES									
BRACING					roof live loads hav	ve been	considered fo	r					
TOP CHORD	Structural wood she	eathing directly applie		this design.									Fruss Connection
	6-0-0 oc purlins.) Wind: ASCE	7-16; Vult=130mp	h (3-se	cond gust)						as applicable, or
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 oc		II; Exp B; En	oh; TCDL=6.0psf; closed; MWFRS (envelop	e) exterior zor	ne		Sult qua		uilding designer. ndard	
REACTIONS	(size) 2=19-3-1	4, 12=19-3-14,			erior(2E) 0-4-3 to 3								
	14=19-3-	14, 16=19-3-14,			or(2R) 7-7-8 to 13			8 to					
		14, 18=19-3-14,			terior(2E) 17-10-1			ا م					
		14, 20=19-3-14,			t and right expose d;C-C for member								
		14, 22=19-3-14,			shown; Lumber D								
	23=19-3-			DOL=1.60	Shown, Lumber D	OL-1.0	o plate grip						
	Max Horiz 2=81 (LC		3		ed for wind loads	in the n	ane of the true	22					
	Max Uplift 2=-9 (LC				ids exposed to wir								
		_C 15), 17=-44 (LC 1 _C 15), 20=-46 (LC 1			d Industry Gable E								
		LC 13), 20=-46 (LC 1 LC 14), 22=-44 (LC 1			alified building de								
	21=-44 (1		+), 4		7-16; Pr=20.0 ps								
	Max Grav 2=103 (L				.15); Pf=20.0 psf							minin	UIII.
		LC 37), 16=177 (LC 2		DOL=1.15);	Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9);				IN'LY CA	ROUL
		LC 22), 18=246 (LC 2		Cs=1.00; Ct=							1	alli	
		LC 28), 20=246 (LC 2) Unbalanced	snow loads have l	been co	nsidered for th	nis			5.	O' EESE	A. N.
		LC 21), 22=177 (LC 2		design.							77	201-	Na Sil
	23=152 (LC 36)	6		is been designed f					-		:Q	
FORCES	(lb) - Maximum Cor	npression/Maximum			psf or 1.00 times f			sf on		-			1 1 2
	Tension		-		on-concurrent with							SEA	L : =
TOP CHORD	1-2=0/17, 2-3=-93/4	10, 3-4=-70/51,	7		e 2x4 MT20 unless							0363	22 =
	4-5=-50/70, 5-6=-56	6/94, 6-7=-68/132,	8		es continuous bott		rd bearing.			1		0505	
	7-8=-68/132, 8-9=-	56/84, 9-10=-47/43,	9		spaced at 2-0-0 o					-		•	1 - E -
		2=-59/26, 12-13=0/17			s been designed f			de		5	1 .		Airs
BOT CHORD		=-20/77, 21-22=-20/7			ad nonconcurrent v nas been designed						25	S VGIN	EFICAN
		0=-20/77, 18-19=-20/	<i>''</i> ,		n chord in all area			psi			11	710	OF N
		7=-20/77, 14-16=-20/	77,		by 2-00-00 wide wi			om				11. A. C	ILPIN
	12-14=-20/77				ny other members.							minin	IIIII.
				5.10.0 0.10 01	.,								

May 21,2025

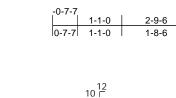

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

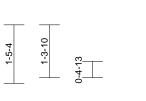
Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	PB2	Piggyback	22	1	Job Reference (optional)	173603987

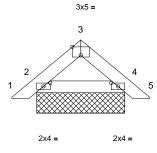
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Mon May 19 14:46:00

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	_
16 Eagle Creek	PB3	Piggyback	1	1	Job Reference (optional)	8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:3Dn9TeDsWZQ8HxOJ3dySzKzEw8M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-15

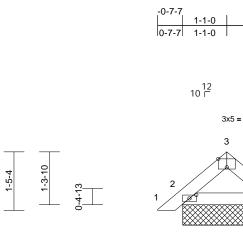
Scale = 1:28.3

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [4:0-2-1,0-1-0]

Plate Offsets (X	, Y): [2:0-2-1,0-1-0],	[3:0-2-8,Edge], [4:0-	2-1,0-1-0]	-							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (; N FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ex exposed ; e members ar Lumber DO 3) Truss desig only. For st see Standar or consult q 4) TCLL: ASCL Plate DOL= DOL=1.15); Cs=1.00; Ct	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-5-6 oc purlins. Rigid ceiling directly bracing. size) 2=2-1-15, Aax Horiz 2=29 (LC Aax Uplift 2=-7 (LC Aax Uplift 2=-7 (LC Aax Grav 2=148 (LC (Ib) - Maximum Com Tension 1-2=0/22, 2-3=-67/3 2-4=-46/46 I roof live loads have 57-16; Vult=130mph ph; TCDL=6.0psf; B4 nclosed; MWFRS (er terior(2E) zone; canti nd vertical left and rig do forces & MWFRS (er terior(2E) zone; canti nd vertical left and rig do forces & MWFRS (er terior(2E) zone; canti nd vertical left and rig do forces & MWFRS (er terior(2E) zone; canti nd vertical left and rig do forces & MWFRS (er terior(2E) zone; canti nd vertical left and rig do for wind loads in use exposed to wind do Industry Gable Em- ualified building desig E 7-16; Pr=20.0 psf (L 1.5); Pf=20.0 psf (L 1.5); Pf=20.0 psf (L 1.5); Pf=20.0 psf (L 1.5); Pf=20.0 psf (L	4=2-1-15 13) 14), 4=-14 (LC 15) C 21), 4=137 (LC 22) pression/Maximum 6, 3-4=-67/38, 4-5=0. been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon- ilever left and right ght exposed;C-C for for reactions shown; λ =1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9;	9) 1(1 /22 1; /22 1; L(Cat. e s, le, le, l1. .15	load of 12.0 overhangs n Gable requir Gable studs) This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall h chord and ar 1) N/A 2) See Standar Detail for Co	Is been designed to psf or 1.00 times f on-concurrent with es continuous bott spaced at 2-0-0 o is been designed to ad nonconcurrent to abs been designed in chord in all area by 2-00-00 wide w ny other members. d Industry Piggyba nnection to base to fied building desig Standard	lat roof I o other li com chorc. for a 10. with any f for a liv s where ill fit betw ack Trus russ as	oad of 20.0 p: ve loads. rd bearing. 0 psf bottom other live loa ve load of 20.0 a rectangle ween the botto s Connection	sf on ds.)psf om				ORTH CA ORTEESS SEA 0363	L 22
5) Unbalanced design.	I snow loads have be	een considered for th	IS										11_B

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPTI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	PB4	Piggyback	10	1	I73603 Job Reference (optional)	989

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:ete2pkm9p6OdTBj4uuPiP8zEwGg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-6

1-8-6

4

2x4 = 2x4 =

2-1-15

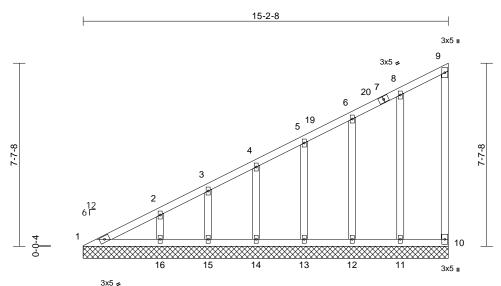
Scale = 1:28.3

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [4:0-2-1,0-1-0]

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:	.0-2-0,Luge], [4.0-2-1,0-	1-0]									
TCLL (roof) 20.0 P Snow (Pf) 20.0 L TCDL 10.0 R	Spacing 2-0- Plate Grip DOL 1.15 .umber DOL 1.15 Rep Stress Incr YES Code IRC;	i	CSI TC BC WB Matrix-MP	0.02 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheath 3-5-6 oc purlins. BOT CHORD Rigid ceiling directly ap bracing. REACTIONS (size) 2=2-1-15, 4= Max Horiz 2=29 (LC 13 Max Uplift 2=-14 (LC 12 Max Grav 2=136 (LC 2 FORCES (lb) - Maximum Compre	opplied or 10-0-0 oc =2-1-15 3) 4), 4=-11 (LC 15) 21), 4=142 (LC 22)	 load of 12.0 poverhangs no overhangs no overhang	s been designed for oper or 1.00 times flat on-concurrent with es continuous bott spaced at 4-0-0 oc s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members.	at roof lo other liv om chor or a 10.0 vith any for a liv s where	bad of 20.0 ps ve loads. d bearing.) psf bottom other live loa e load of 20.0 a rectangle	sf on ds.)psf					
 Top CHORD 1-2=0/22, 2-3=-66/38, 3 BOT CHORD 2-4=-3/46 NOTES 1) Unbalanced roof live loads have be this design. 2) Wind: ASCE 7-16; Vult=130mph (3: Vasd=103mph; TCDL=6.0psf; BCD II; Exp B; Enclosed; MWFRS (enve and C-C Exterior(2E) zone; cantilev exposed; end vertical left and right members and forces & MWFRS for Lumber DOL=1.60 plate grip DOL= 3) Truss designed for wind loads in the only. For studs exposed to wind (nu see Standard Industry Gable End D or consult qualified building designed 4) TCLL: ASCE 7-16; Pr=20.0 psf (roor Plate DOL=1.15); Pf=20.0 psf (roor Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat B; F Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been design. 	3-4=-67/36, 4-5=0/22 een considered for I-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone wer left and right t exposed;C-C for r reactions shown; :1.60 e plane of the truss is normal to the face), Details as applicable, er as per ANSI/TPI 1. of LL: Lum DOL=1.15 n DOL=1.15 Plate -ully Exp.; Ce=0.9;	Detail for Co	d Industry Piggyba nnection to base tr ied building desigr Standard	uss as a				M. CONTRACT.		SEA 0363	22 EER A LUN

May 21,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V1	Valley	1	1	Job Reference (optional)	173603990

Run; 8,73 E Nov 16 2023 Print; 8,730 E Nov 16 2023 MiTek Industries, Inc. Tue May 20 17:37:10 ID:kr1X9FAX6EsYmJsqFumInazEw?N-1F9DqXP2PO0rfrOXB24h6Cg9edalPRu3YBQa9RzEiEd

Page: 1

15-2-8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.70	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 89 lb	FT = 20%

TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
WEBS	2x4 SP No	0.3
OTHERS	2x4 SP No	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	All bearings	s 15-2-8.
(lb) -	Max Horiz	1=274 (LC 11)
	Max Uplift	All uplift 100 (lb) or less at joint(s)
		10, 11, 12, 13, 14, 15, 16
	Max Grav	All reactions 250 (lb) or less at join

- at joint (s) 1, 10, 11, 12, 13, 14, 15 except 16=260 (LC 1) (lb) - Max. Comp./Max. Ten. - All forces 250
- FORCES (lb) or less except when shown. TOP CHORD 1-2=-246/263

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-3-0, Exterior(2N) 3-3-0 to 12-1-4, Corner(3E) 12-1-4 to 15-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 10, 11, 12, 13, 14, 15, 16.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V2	Valley	1	1	Job Reference (optional)	173603991

4-0-3

4-0-3

12 3.5

3x5 -

1

Carter Components (Sanford, NC), Sanford, NC - 27332,

7-7-8

0-0-4

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:00 ID:E6XBu8MGVsRpDZOIi_GyMGzEwFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-10-9

12-10-6

12 6 Г

2x4 🛛

4

10 16

16-10-9

2x4 II

2x4 ∎ 3x5 **₌** 3

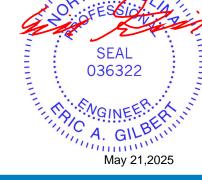
11

2x4 II

14 2

15

Page: 1


2x4 II 5 5 7 9 8 2x4 II 3x5 =

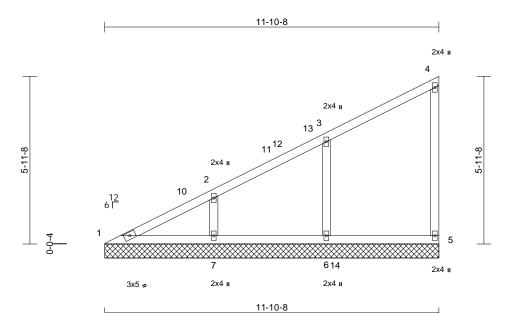
3х5 **н** 6

Scale = 1:52

Scale = 1:52		,												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.33 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; B	6-0-0 oc purlins, e Rigid ceiling directl bracing. (size) 1=16-10 10=16-1 Max Horiz 1=276 (I Max Uplift 1=-25 (L 9=-93 (L 11=-49 (I 9=445 (I 11=479 (Ib) - Maximum Con Tension 1-2=-471/208, 2-3= 4-5=-161/169, 5-6= 1-11=-92/442, 10-1 7-9=-92/130 5-9=-292/146, 4-10 CE 7-16; Vult=130mp mph; TCDL=6.0psf; I Enclosed; MWFRS (e	C 10), 7=-35 (LC 11), C 14), 10=-92 (LC 14), LC 14), C 20), 7=168 (LC 24), C 5), 10=334 (LC 24), (LC 20) mpression/Maximum 210/224, 3-4=-194/197, 133/117, 6-7=-121/52 1=-92/130, 9-10=-92/130)=-237/144, 3-11=-317/10 h (3-second gust) 3CDL=6.0psf; h=25ft; Ca envelope) exterior zone	3) pr 4) 9, 5) 6) 7) 8) 9) , 0, 0, 08 at.	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mecc bearing plate 1, 35 lb upliff	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designe been d	nd (norm End Deta esigner as for (roof LL (Lum DC t B; Fully been con ttom chor bc. for a 10. with any d for a liv as where vill fit betw, s, with BC n (by oth tanding 2 plift at job	al to the face ils as applical s per ANSI/TF L = 1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bott CDL = 10.0psf DL = 10.0psf L = 10.0psf but russ t 25 lb uplift at j), ble, Pl 1. 1.15 9; ds. Opsf om 5. o o		y		OR FESS	Contraction of the second seco	· Norman
	xterior(2E) 0-0-14 to	3-0-14, Interior (1) 3-0-1	4							=	:	0363	22 :	-

II; EXP B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-14 to 3-0-14, Interior (1) 3-0-1 to 13-9-11, Exterior(2E) 13-9-11 to 16-9-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


ENGINEERING BY RENCO A MiTek Affiliate

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V3	Valley	2	1	Job Reference (optional)	173603992

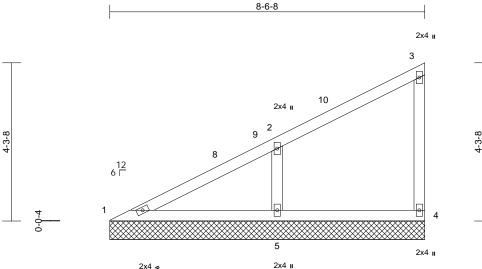
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:RmdJFgIpII77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.36 BC 0.16 WB 0.12 Matrix-MSH	Vert(TL) n/a	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-10- 7=11-10- Max Horiz 1=212 (Li Max Uplift 5=-28 (LC 7=-83 (LC Max Grav 1=153 (Li 6=486 (Li	y applied or 10-0-0 oc 8, 5=11-10-8, 6=11-1 8 C 11) C 11), 6=-39 (LC 14), C 14) C 25), 5=207 (LC 5), C 5), 7=362 (LC 3)	Plate DOL= DOL=1.15); Cs=1.00; Ct: 4) Unbalanced design. 5) Gable requir 6) Gable studs 7) This truss ha chord live loa 3-06-00 tall 1 chord and a 9) Provide mec bearing plate	snow loads have been co res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a lin m chord in all areas where by 2-00-00 wide will fit bett ny other members, with Bo chanical connection (by oth e capable of withstanding 2 t at joint 6 and 83 lb uplift a	DL=1.15 Plate v Exp.; Ce=0.9; Insidered for this rd bearing. 0 psf bottom o ther live loads. ve load of 20.0psf a rectangle ween the bottom CDL = 10.0psf. eers) of truss to 28 lb uplift at joint					
FORCES TOP CHORD BOT CHORD WEBS	Tension									900.
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E 7-6-5, Exte and right e C for mem	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) 0-0-8 to 3- erior(2R) 7-6-5 to 11-9 exposed ; end vertical abers and forces & MV mber DOL=1.60 plate	n (3-second gust) 3CDL=6.0psf; h=25ft; nvelope) exterior zon -0-8, Interior (1) 3-0-8 3-4 zone; cantilever le left and right expose VFRS for reactions	ie 3 to eft				Contraction of the second seco		ORTH CA ORTH CA ORTH CA ORTH CA SEA 0363	• –
only. For see Stand	igned for wind loads ir studs exposed to winc ard Industry Gable En qualified building desi	d (normal to the face) nd Details as applicab	, ble,					and the second s	NGIN C A	EEREK

- and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 7-6-5, Exterior(2R) 7-6-5 to 11-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


G mmm May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V4	Valley	2	1	Job Reference (optional)	173603993

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:RmdJFgIpII77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-6-8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.19 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 4=8-6-8, 5=8-6-8 C 11) C 11), 5=-94 (LC 14) C 1), 4=165 (LC 20),	9)	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate	snow loads have es continuous bi spaced at 4-0-0 is been designe ad nonconcurrer aas been design n chord in all are by 2-00-00 wide by 2-00-00 wide by other membe capable of with uplift at joint 5. Standard	ottom chor oc. d for a 10.0 it with any ed for a liv eas where will fit betw rs. on (by oth	d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	ads. Opsf om to					
FORCES TOP CHORD BOT CHORD WEBS	, .	104/85, 3-4=-142/50	I										
Vasd=103 II; Exp B; and C-C I 4-2-5, Ext and right C for mer	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-8 to 3- terior(2R) 4-2-5 to 8-5-4 exposed ; end vertical nbers and forces & MW umber DOL=1.60 plate	CDL=6.0psf; h=25ft; nvelope) exterior zon 0-8, Interior (1) 3-0-8 4 zone; cantilever lef left and right expose VFRS for reactions	e 8 to t							4		ORTH CA	C.

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

The second THIN AND THE SEAL 036322 GI munn May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V5	Valley	2	1	Job Reference (optional)	173603994

12 6 Г

5-2-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

1)

2)

3)

4)

5)

6)

2-7-8

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:RmdJFgIpII77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

2

Îe

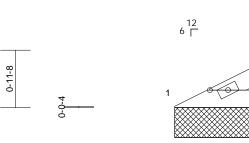
2-7-8

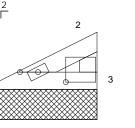
Page: 1

3 2x4 ı 3x5 🥫 5-2-8 Scale = 1:24.5 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.52 Vert(LL) n/a n/a 999 MT20 244/190 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.55 Vert(TL) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.01 3 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MP BCDL 10.0 Weight: 18 lb FT = 20%LUMBER 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 8) * This truss has been designed for a live load of 20.0psf 2x4 SP No.3 on the bottom chord in all areas where a rectangle WFBS 3-06-00 tall by 2-00-00 wide will fit between the bottom BRACING chord and any other members. TOP CHORD Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 9) 5-2-8 oc purlins, except end verticals. bearing plate capable of withstanding 43 lb uplift at joint BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 3 and 21 lb uplift at joint 1. bracing. LOAD CASE(S) Standard 1=5-2-8, 3=5-2-8 **REACTIONS** (size) Max Horiz 1=87 (LC 11) Max Uplift 1=-21 (LC 14), 3=-43 (LC 14) Max Grav 1=292 (LC 20), 3=292 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-504/134, 2-3=-199/104 BOT CHORD 1-3=-175/441 NOTES Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; \cap Lumber DOL=1.60 plate grip DOL=1.60 \cap Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1. SEAL TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 036322 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. G mmm

May 21,2025

VIIIIIIIIIIII


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V6	Valley	2	1	Job Reference (optional)	3603995

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:RmdJFgIpII77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-11-8

Page: 1

1-10-8

2x4 🍃

5x6 =

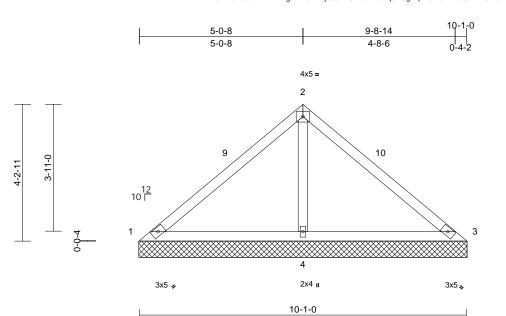
Scale = 1:19.2 Plate Offsets (X, Y): [3:0-9-3.0-2-0]

Plate Offsets (X	(, Y): [3:0-9-3,0-2-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (1-10-8 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc , 3=1-10-8 11) 14), 3=-14 (LC 14)	d or 9) Provide mer 9) Provide mer bearing plat	as been designed fo ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. chanical connection e capable of withsta plift at joint 1.	vith any for a liv s where I fit betw (by othe	other live load e load of 20.0 a rectangle veen the botto ers) of truss to)psf om o					
FORCES	(lb) - Maximum Com Tension 1-2=-98/28, 2-3=-44 1-3=-36/81	pression/Maximum										
NOTES 1) Wind: ASCI Vasd=103n II; Exp B; E and C-C Ex exposed ; e members a Lumber DC 2) Truss desig only. For s see Standa or consult of 3) TCLL: ASC Plate DOL= DOL=1.15). Cs=1.00; C 4) Unbalanceo design.	E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er terior(2E) zone; cant end vertical left and ri nd forces & MWFRS VL=1.60 plate grip DC gned for wind loads in tuds exposed to wind trd Industry Gable En qualified building desi (E 7-16; Pr=20.0 psf (L ; Is=1.0; Rough Cat E t=1.10)	CDL=6.0psf; h=25ft; typelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1. um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; seen considered for thi	s Ie, 1. 15						Contraction of the second seco	The second secon	SEA 0363	EER A LUI

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

A. GILB A. GILDIN


May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V7	Valley	1	1	Job Reference (optional)	173603996

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:vURZoBueuARNAFfLgAPFeRzEyO5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

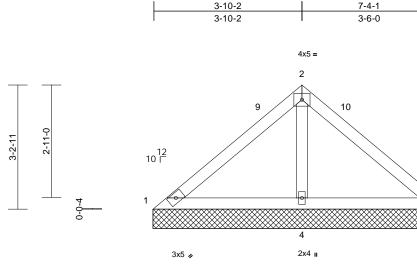
Scale	= 1:35.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20. 20. 10. 0. 10.	0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr 0* Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.50 BC 0.46 WB 0.22 Matrix-MSH	DEFL ir Vert(LL) n/a Vert(TL) n/a Horiz(TL) 0.07	a - a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 10-0-0 oc purlin Rigid ceiling dire bracing. (size) 1=10- Max Horiz 1=95 Max Uplift 1=-67 4=-12 Max Grav 1=86 (LC 2	sheathing directly applie s. actly applied or 6-0-0 oc (LC 13) (LC 21), 3=-67 (LC 20) (LC 20), 3=-67 (LC 20), (LC 20), 3=86 (LC 21),	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requii 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med bearing plat 1, 67 lb uplif	E 7-16; Pr=20.0 psf (roof L 1.15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been co res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a 11 m chord in all areas where by 2-00-00 wide will fit bett ny other members. chanical connection (by oth e capable of withstanding 1 t at joint 3 and 121 lb uplifit e or shim required to prov	DL=1.15 Plate / Exp.; Ce=0.9; Insidered for this rd bearing. 0 psf bottom o ther live loads. /e load of 20.0psf a rectangle ween the bottom theres) of truss to 57 lb uplift at joint a t joint 4.					
TOP CHORD BOT CHORD WEBS	1-2=-131/421, 2 1-4=-278/187, 3 2-4=-705/295			truss chord at joint(s) 1, 3						
NOTES										
this desig	n.	ave been considered fo	r						ORTH CA	Polit
Vasd=103 II; Exp B; and C-C E to 7-1-10, cantilever right expo for reactio DOL=1.60 3) Truss des only. For see Stand	Simph; TCDL=6.0ps Enclosed; MWFRS Exterior(2E) 0-0-0 f Exterior(2E) 7-1-1 left and right expo sed;C-C for memb ins shown; Lumber igned for wind load studs exposed to 0 lard Industry Gable	mph (3-second gust) if; BCDL=6.0psf; h=25ft S (envelope) exterior zor 0 to 10-1-10 zone; sed; end vertical left an ers and forces & MWFF · DOL=1.60 plate grip ds in the plane of the tru wind (normal to the face a End Details as applica designer as per ANSI/Ti	ne D-O RS SS), ble,				4		SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V8	Valley	1	1	Job Reference (optional)	173603997

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:vURZoBueuARNAFfLgAPFeRzEyO5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


7-8-3

7-4-1

3

3x5 💊

Scale = 1:29.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.30 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-8-3 oc purlins. Rigid ceiling directly a bracing. (size) 1=7-8-13, 3 Max Horiz 1=-71 (LC Max Uplift 1=-31 (LC Max Grav 1=102 (LC 4=597 (LC	applied or 6-0-0 oc 3=7-8-13, 4=7-8-13 10) 21), 3=-31 (LC 20), 14) 20), 3=102 (LC 21)	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl	7-16; Pr=20.0 ps .15); Pf=20.0 ps s=1.0; Rough Ca .1.10 snow loads have es continuous bol spaced at 4-0-0 c s been designed di nonconcurrent ias been designe n chord in all area y 2-00-00 wide w y other members hanical connectio capable of withs	(Lum DC t B; Fully been cor tom chor oc. for a 10.1 with any d for a liv as where rill fit betv t. n (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottwers) of truss the	e); ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS	(Ib) - Maximum Comp Tension 1-2=-106/268, 2-3=-1 1-4=-209/167, 3-4=-2 2-4=-480/225	06/268	,	1, 31 lb uplift Beveled plate	at joint 3 and 85 e or shim required truss chord at joir	lb uplift a d to provi	it joint 4. de full bearing						
NOTES	ed roof live loads have t	peen considered for											1.000

- of live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-8-13, Exterior(2E) 4-8-13 to 7-8-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm May 21,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone 818 Soundside Road Edenton, NC 27932

ORTH

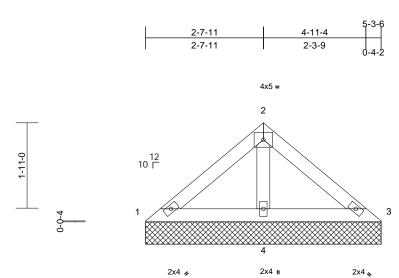
Wannanan

CAR

SEAL

036322

G


With Hilling

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V9	Valley	1	1	Job Reference (optional)	173603998

2-2-11

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:s?bJz7nrbi73jWb3U9IAZ1zEw52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-3-6

Scale = 1:25.8

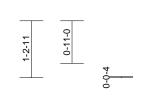
Loading TCLL (roof)(pst) 20.0 Plate Grip DOLSpacing 1.152-0-0 TCCSI TC0EFLin(loc)l/deftL/d LPLATESGRIP MT20Snow (Pf)20.0 Lumber DOL1.15TC0.11 BCVert(TL)n/a-n/a999 999MT20244/190Sow (Pf)20.0 TCDL10.0Rep Stress Incr VESYESWB0.04 Matrix-MPVert(TL)n/a-n/a999 999MT20244/190BCL0.0* BCDL0.0*CodeIRC2021/TPI2014WB0.04 Matrix-MPVert(TL)0.004n/an/aN/aLUMBER TOP CHORD2x4 SP No.2 Structural wood sheathing directly applied or 5-3-6 c purlins.5)Unbalanced snow loads have been considered for this design.6)Gable studies spaced at 4-0-0 oc.5)Weight: 19 lbFT = 20%BRACING TOP CHORDStructural wood sheathing directly applied or 5-3-6 c purlins.Structural wood sheathing directly applied or 6-0-0 oc bracing.6)Gable studies spaced at 4-0-0 oc.8)1)5)This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.9)* This truss to bearing plate capable of withstanding 6 lb uplif at joint 3 and 39 lb uplif at joint 4.100Max (Grav 1 =93 (LC 21), 4=333 (LC 21),	Scale = 1:25.8														
TOP CHORD 2x4 SP No.2 design. BOT CHORD 2x4 SP No.2 Gable requires continuous bottom chord bearing. OTHERS 2x4 SP No.3 7) Gable requires continuous bottom chord bearing. OTHERS 2x4 SP No.3 7) Gable studs spaced at 4-0-0 oc. BRACING 7) Gable studs spaced at 4-0-0 oc. 7) BRACING 7) This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. FOP CHORD Structural wood sheathing directly applied or 5-3-6 oc purlins. 8) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 1=5-3-6, 3=5-3-6, 4=5-3-6 Max Horiz 1=-48 (LC 10) Max Uplift 3=-6 (LC 15), 4=-39 (LC 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 3 and 39 lb uplift at joint 4.	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	PI2014	TC BC WB	0.13	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	244/190	
 IVAN Class (LC 20), Seps (LC 21), 4533 LOAD CASE(S) Standard FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-84/122, 2-3=-84/122 BOT CHORD 1-2=-84/122, 2-3=-84/122 BOT CHORD 1-4=-99/100, 3-4=-99/100 WEBS 2-4=-245/116 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; th=25f; Cct. II: Exp B; Enclosed: WWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (nord LL: Lum DOL=1.15 Plate DOL=1.15; Is=1.0, Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance: this design 2) Wind: ASC Vasd=1037 II; Exp B; E and C-C E: exposed ; e members a Lumber Data consult d 3) Truss desig only. For s see Standa or consult d 4) TCLL: ASC Plate DOL= DOL=1.15)	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-3-6 oc purlins. Rigid ceiling directly bracing. (size) 1=5-3-6, 3 Max Horiz 1=-48 (LC Max Uplift 3=-6 (LC Max Uplift 3=-6 (LC (LC 20) (lb) - Maximum Com 1-2=-84/122, 2-3=-8 1-4=-99/100, 3-4=-9 2-4=-245/116 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er Sold for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=20.0 psf (L 1-10; Rough Cat E	applied or 6-0-0 oc 3=5-3-6, 4=5-3-6 ; 10) 15), 4=-39 (LC 14) 20), 3=93 (LC 21), - upression/Maximum 4/122 9/100 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zor lever left and right ght exposed;C-C for for reactions shown uL=1.60 the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=:	de 6) Ga 7) Ga 8) Th ed or 9) * 1 on 3-1 10) Pr be an 4=333 LOAD r Cat. ne ; ss), ole, PI 1. 1.15	esign. able require iable studs s his truss has his truss has nord live load This truss ha n the bottom -06-00 tall by hord and any rovide mech earing plate and 39 lb uplit	es continuous both spaced at 4-0-0 oc s been designed for d nonconcurrent v as been designed o chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta ft at joint 4.	om chor c. or a 10. with any l for a liv s where Il fit betw n (by oth	d bearing. O psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to	ds.)psf om o				SEA 0363	EEF.	Mamming

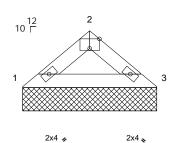
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org)

May 21,2025

818 Soundside Road Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V10	Valley	1	1	I73603999 Job Reference (optional)	


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:s?bJz7nrbi73jWb3U9IAZ1zEw52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

2x4 💊

2-10-10

Scale = 1:24.8

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
Max Horiz 1=24 (LC Max Uplift 1=-10 (LC Max Grav 1=132 (LC	applied or 10-0-0 oc 1, 3=2-10-10 13) 14), 3=-10 (LC 15) 2 20), 3=132 (LC 21)	8) This trus chord liv 9) * This tru ad or 3-06-00 chord an 10) Provide bearing j 1 and 10 LOAD CASE	ds spaced at 4-0-0 has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide y d any other member nechanical connection late capable of with bl uplift at joint 3. (S) Standard	for a 10.0 with any d for a liv as where vill fit betw s. on (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf com to					
FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-169/70, 2-3=-16 BOT CHORD 1-3=-39/121											
 NOTES Unbalanced roof live loads have I this design. Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (em and C-C Exterior(2E) zone; cantil exposed ; end vertical left and rig members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig TCLL: ASCE 7-16; Pr=20.0 psf (LL DOL=1.15); Is=1.0; Rough Cat B; Cs=1.00; Ct=1.10 Unbalanced snow loads have bee design. 	(3-second gust) DL=6.0psf; h=25ft; velope) exterior zon lever left and right (ht exposed;C-C for for reactions shown; L=1.60 the plane of the trus; (normal to the face) d Details as applicat gner as per ANSI/TF oof LL: Lum DOL=1 Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9	Cat. e ss , ole, 21 1. .15						N. CONTRACT		SEA 0363	EER AL

GINEERING 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V11	Valley	1	1	Job Reference (optional)	173604000

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:p31oUbLOMIKiby_S1xy5cszEwVR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-8 6-10-14 3-7-8 3-3-6 4x5 =2 9 10 3-0-8 2-8-12 10 Г 3 1 4 3x5 🧳 2x4 ı 3x5 💊 7-3-0 (psf) Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) 20.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.27 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP Weight: 27 lb FT = 20%ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 00; Ct=1.10 anced snow loads have been considered for this requires continuous bottom chord bearing. studs spaced at 4-0-0 oc. russ has been designed for a 10.0 psf bottom live load nonconcurrent with any other live loads. truss has been designed for a live load of 20.0psf bottom chord in all areas where a rectangle 00 tall by 2-00-00 wide will fit between the bottom and any other members. le mechanical connection (by others) of truss to ng plate capable of withstanding 17 lb uplift at joint Ib uplift at joint 3 and 74 lb uplift at joint 4. SE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-3-5, Exterior(2E) 4-3-5 to 7-3-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-SEAL C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 036322

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:29.2 Loading TCLL (roof)

Snow (Pf)

TCDL

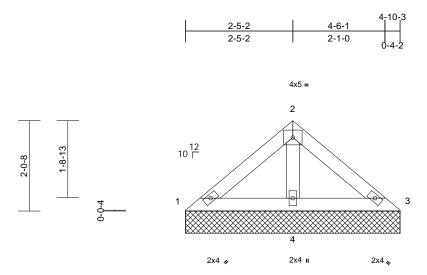
BCLL

NOTES

this design.

1)

2)


BCDL		10.0	0000		2021	/20 .
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structural 7-3-0 oc p Rigid ceili	o.2 o.3 I wood shea purlins.	athing directly applied or 6-0		4) 5) 6) 7) 8)	TCLL: Plate D DOL=1 Cs=1.0 Unbala design. Gable I Gable s This tru
REACTIONS	Max Horiz	1=-67 (LC 1=-17 (LC 4=-74 (LC	21), 3=-17 (L 14) 20), 3=105 (.C 20),	9)	chord li * This t on the 3-06-00 chord a Provide
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=-89/2	imum Com 30, 2-3=-89 (152, 3-4=-1	pression/Max 9/230	imum	LO	bearing 1, 17 lb AD CAS

G mmm May 21,2025

Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof	
16 Eagle Creek	V12	Valley	1	1	Job Reference (optional)	173604001

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:p31oUbLOMIKiby_S1xy5cszEwVR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

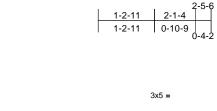
4-10-3

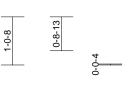
Scal	-		4	.00
Scal	e	=	н	:20

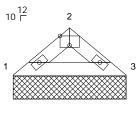
		· · · · · · · · · · · · · · · · · · ·			i								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MP								
BCDL	10.0					_						Weight: 17 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-10-3 oc purlins. Rigid ceiling directly bracing.	y applied or 6-0-0 oc , 3=4-10-3, 4=4-10-3 C 10) 15), 4=-33 (LC 14)	9 3 1 ¹ 1-295	 design. Gable requir Gable studs This truss hat chord live load * This truss has not the botton 3-06-00 tall lichord and and and and and and and and and an		ottom chor oc. I for a 10. t with any ed for a liv as where will fit betw s. on (by oth	d bearing. O psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	ds.)psf om o					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD		31/103											
BOT CHORD	1-4=-84/88, 3-4=-84	/88											
WEBS	2-4=-210/97												
NOTES													
1) Unbalanced roof live loads have been considered for													
this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.													
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.									ROUL				
	Enclosed; MWFRS (er									1	ATT		
	Exterior(2E) zone; cant							/	SI	O FESS	Oit Vill		
	; end vertical left and right								2	1		2 miles	

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; P=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 SEAL 036322 MGINEER May 21,2025


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) ENGINEERING BY ENGLACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	16 Eagle Creek - Kathryn A - Roof			
16 Eagle Creek	V13	Valley	1	1	Job Reference (optional)	73604002		

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:46:01 ID:kFsOL3Y2YfoY1Yo9F8kPmDzEvuR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

2x4 💊 2x4 🍫

2-5-6

Scale = 1:25

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR BRACING TOP CHOR BOT CHOR REACTION	 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-5-6 oc purlins. Rigid ceiling directly bracing. (size) 1=2-5-6, Max Horiz 1=-20 (LC Max Uplift 1=-8 (LC Max Grav 1=110 (L 	C 10) 14), 3=-8 (LC 15)	8) This truss chord live 9) * This trus ed or 3-06-00 ta chord and 10) Provide m bearing p and 8 lb u LOAD CASE	ds spaced at 4-0-0 d has been designed load nonconcurrent s has been designed tom chord in all are ill by 2-00-00 wide v any other members echanical connection ate capable of withs plift at joint 3. S) Standard	I for a 10. t with any ed for a liv as where will fit betv s. on (by oth	other live load re load of 20.1 a rectangle veen the bott ers) of truss	Opsf tom to					
TOP CHOR	TOP CHORD 1-2=-139/60, 2-3=-139/60											
BOT CHOR NOTES	BOT CHORD 1-3=-32/99											
	nced roof live loads have	e been considered fo	r									
this des	sign.											
	SCE 7-16; Vult=130mpt		Cat								Sector	11.
	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone											
	C Exterior(2E) zone; can										THU	NO
	exposed ; end vertical left and right exposed;C-C for											
	members and forces & MWFRS for reactions shown;											
	 Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 											
	or studs exposed to wind								=		SEA	AL : E
	see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.											
	or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15											
Plate D	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate											
	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;											
	Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this											
design.	 design. 6) Gable requires continuous bottom chord bearing. 											
6) Gable r	equires continuous botto	om chord bearing.										11111,
											Ma	y 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

