

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P02594-25451 1036 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73531052 thru I73531086

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 19,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A01G	Half Hip Girder	1	2	Job Reference (optional)	173531052

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:55 ID:EkB6OtkM6Ltl0DHwJBRPV6zx4hb-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

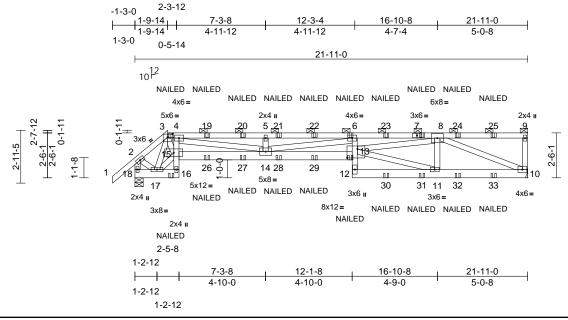


Plate Offsets (X, Y): [3:0-3-0,0-2-1], [13:0-7-0,0-6-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.27	13-14	>966	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.55	13-14	>475	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.50	Horz(CT)	0.18	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 284 lb	FT = 20%

LUMBER

Scale = 1:64.3

TOP CHORD 2x4 SP No 2

BOT CHORD 2x6 SP No.2 *Except* 16-4,6-12:2x4 SP No.1

WEBS 2x4 SP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (4-5-11 max.): 3-9. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 17-18.

REACTIONS 10= Mechanical, 18=0-5-8 (size)

Max Horiz 18=76 (LC 7)

Max Uplift 10=-285 (LC 7), 18=-292 (LC 7) 10=1184 (LC 28), 18=1269 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/54. 2-3=-941/265. 3-4=-2098/608.

4-5=-4986/1268, 5-6=-4986/1268,

6-8=-6166/1554, 8-9=-53/29, 9-10=-131/48,

2-18=-1264/300

BOT CHORD 17-18=-81/58, 16-17=-65/188, 15-16=-25/67,

4-15=-837/237, 14-15=-749/2536, 13-14=-1775/6982, 12-13=-5/126,

6-13=-8/248. 11-12=-221/878.

10-11=-554/2193

WEBS 4-14=-592/2519, 5-14=-332/114,

6-14=-2036/494, 11-13=-333/1341, 8-13=-1055/4059, 8-11=-235/123, 8-10=-2357/579, 2-17=-217/855,

3-17=-1523/447, 15-17=-422/1338, 3-15=-625/2232

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 OC.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 285 lb uplift at joint 10 and 292 lb uplift at joint 18.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 43 lb down and 22 lb up at 2-3-12, and 47 lb down and 19 lb up at 12-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-51, 2-3=-51, 3-9=-61, 16-18=-20,

13-15=-20, 10-12=-20

Concentrated Loads (lb)

May 19,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A01G	Half Hip Girder	1	2	Job Reference (optional)	173531052

Vert: 3=-38 (F), 7=-26 (F), 16=-28 (F), 6=-13 (F), 13=-41 (F), 19=-13 (F), 20=-13 (F), 21=-13 (F), 22=-13 (F), 23=-26 (F), 24=-26 (F), 25=-26 (F), 26=-41 (F), 27=-41 (F), 28=-41 (F), 29=-41 (F), 30=-25 (F), 31=-25 (F), 32=-25 (F), 33=-25 (F)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:55 ID: EkB6OtkM6Ltl0DHwJBRPV6zx4hb-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? figure for the property of the p

Page: 2

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A02	Hip	1	1	Job Reference (optional)	173531053

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:56 ID:mG6JdjW3LqblsSvTGP6BnJzx4ht-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

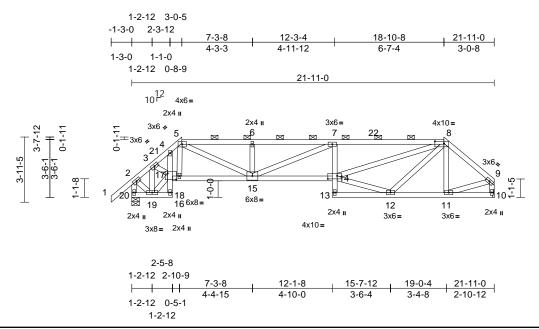


Plate Offsets (X, Y): [8:0-6-8,0-1-8], [14:0-6-12,0-2-4], [17:0-6-4,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.11	14-15	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.23	14-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.10	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 138 lb	FT = 20%

LUMBER

Scale = 1:69.7

2x4 SP No 2 TOP CHORD BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD 4-11-11 oc purlins, except end verticals, and

2-0-0 oc purlins (2-8-3 max.): 5-8.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 19-20. REACTIONS

10= Mechanical, 20=0-5-8 (size) Max Horiz 20=86 (LC 13)

Max Uplift 10=-86 (LC 10), 20=-87 (LC 11)

10=862 (LC 2), 20=951 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/54. 2-3=-638/100. 3-4=-1349/221.

4-5=-1148/178, 5-6=-1907/288,

6-7=-1903/286, 7-8=-2164/325

8-9=-922/134, 2-20=-911/153, 9-10=-828/116 **BOT CHORD** 19-20=-77/67, 18-19=-23/102, 17-18=-4/48,

4-17=-66/246, 16-17=-175/944,

15-16=-186/990, 14-15=-337/2188, 13-14=0/57, 7-14=-273/105, 12-13=-17/114,

11-12=-85/695, 10-11=-20/44

8-11=-170/52, 2-19=-39/552, 9-11=-95/688,

3-19=-787/139, 17-19=-128/512,

3-17=-100/652, 8-12=-101/44,

12-14=-39/534, 8-14=-303/1626, 5-16=-56/78, 5-15=-180/1046, 7-15=-322/74,

6-15=-281/86

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 3-0-5, Exterior (2) 3-0-5 to 7-3-8, Interior (1) 7-3-8 to 18-10-8, Exterior (2) 18-10-8 to 21-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 20 and 86 lb uplift at joint 10.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

May 19,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A03	Hip	1	1	Job Reference (optional)	173531054

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:57 ID:ESghq3Xh67j9UcUfp6dQJXzx4hs-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

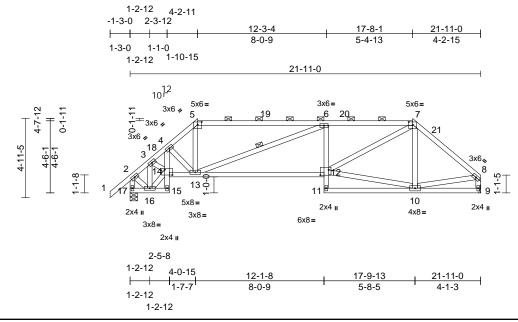


Plate Offsets (X, Y): [5:0-3-0,0-2-1], [7:0-3-0,0-2-1], [12:0-6-4,0-4-0], [14:0-5-12,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.13	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.28	12-13	>923	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 139 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-11-1 oc purlins, except end verticals, and

2-0-0 oc purlins (4-0-8 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 16-17. **WEBS** 1 Row at midpt 6-13

REACTIONS 9= Mechanical, 17=0-5-8 (size)

Max Horiz 17=105 (LC 11)

Max Uplift 9=-64 (LC 10), 17=-64 (LC 11)

Max Grav 9=862 (LC 2), 17=951 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/54, 2-3=-639/101, 3-4=-1382/214,

4-5=-1193/167, 5-6=-938/155, 6-7=-1569/242, 7-8=-975/139,

2-17=-913/151, 8-9=-830/117 16-17=-96/90, 15-16=-8/69, 14-15=-1/46,

4-14=-114/215, 13-14=-220/1042,

12-13=-240/1634, 11-12=0/102,

6-12=-222/116, 10-11=-19/73, 9-10=-41/82

4-13=-170/91, 5-13=-22/470, 6-13=-781/167,

10-12=-48/642, 7-12=-188/1009, 7-10=-168/61, 2-16=-33/550, 8-10=-78/633,

3-16=-817/147, 14-16=-159/561,

3-14=-112/687

NOTES

WEBS

BOT CHORD

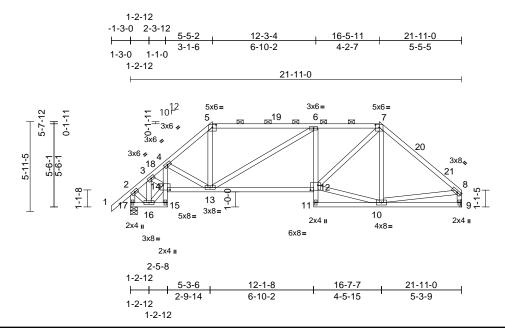
Unbalanced roof live loads have been considered for this design

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 4-2-11. Exterior (2) 4-2-11 to 8-5-10. Interior (1) 8-5-10 to 17-8-1, Exterior (2) 17-8-1 to 21-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 17 and 64 lb uplift at joint 9.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A04	Hip	1	1	Job Reference (optional)	173531055

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:57 ID:BrnRFIZyel_tjve2xXguOyzx4hq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.3

Plate Offsets (X, Y): [5:0-3-0,0-2-1], [7:0-3-0,0-2-1], [12:0-6-0,0-4-0], [14:0-5-8,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.08	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.17	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.54	Horz(CT)	0.06	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

FORCES

TOP CHORD Structural wood sheathing directly applied or 4-11-1 oc purlins, except end verticals, and

2-0-0 oc purlins (5-0-5 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing

REACTIONS (size) 9= Mechanical, 17=0-5-8

Max Horiz 17=124 (LC 13)

Max Uplift 9=-44 (LC 15), 17=-64 (LC 14)

Max Grav 9=862 (LC 2), 17=951 (LC 2)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/54, 2-3=-639/99, 3-4=-1397/209

4-5=-1122/173, 5-6=-838/161, 6-7=-1174/203,

7-8=-983/146, 2-17=-913/149, 8-9=-809/122

BOT CHORD 16-17=-114/112, 15-16=-10/63, 14-15=-1/43,

4-14=-89/227, 13-14=-224/1099,

12-13=-156/1206, 11-12=0/61, 6-12=-206/115, 10-11=-15/33, 9-10=-61/144

WEBS 4-13=-326/127, 5-13=-31/429,

6-13=-474/117, 10-12=-34/669,

7-12=-144/712, 7-10=-172/56, 2-16=-30/542,

8-10=-78/544, 3-16=-811/136, 14-16=-162/564, 3-14=-112/723

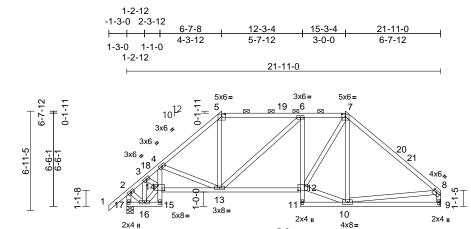
NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 5-5-2, Exterior (2) 5-5-2 to 9-8-0, Interior (1) 9-8-0 to 16-5-11, Exterior (2) 16-5-11 to 20-8-9, Interior (1) 20-8-9 to 21-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 17 and 44 lb uplift at joint 9.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A05	Hip	1	1	Job Reference (optional)	173531056

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:57 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

3x8= 2x4 II 2-5-8 1-2-12 6-5-12 15-5-0 21-11-0 12-1-8 4-0-4 1-2-12 1-2-12

5x8=

Scale = 1:80.5

Plate Offsets (X, Y): [5:0-3-0,0-2-1], [7:0-3-0,0-2-1], [8:0-2-12,0-1-8], [12:0-5-8,0-4-0], [14:0-5-8,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.05	9-10	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.11	9-10	>999	180	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.05	9	n/a	n/a	1	
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 152 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-3-4 oc purlins, except end verticals, and 2-0-0 oc purlins (5-10-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing

REACTIONS (size) 9= Mechanical, 17=0-5-8

Max Horiz 17=144 (LC 11)

Max Uplift 9=-52 (LC 15), 17=-72 (LC 14)

Max Grav 9=862 (LC 2), 17=951 (LC 2)

(lb) - Maximum Compression/Maximum FORCES Tension

TOP CHORD 1-2=0/54, 2-3=-640/97, 3-4=-1406/204,

4-5=-1077/173, 5-6=-763/167, 6-7=-930/184,

7-8=-974/148, 2-17=-913/147, 8-9=-799/124

BOT CHORD 16-17=-133/134, 15-16=-14/60, 14-15=-2/41,

4-14=-74/237, 13-14=-229/1158, 12-13=-102/948, 11-12=0/11, 6-12=-185/118,

10-11=-26/16, 9-10=-88/208

WEBS 4-13=-466/176, 5-13=-28/387, 6-13=-304/93, 10-12=-23/687, 7-12=-131/573,

7-10=-203/57, 2-16=-23/531, 8-10=-79/451,

3-16=-801/119, 14-16=-160/563,

3-14=-113/764

NOTES

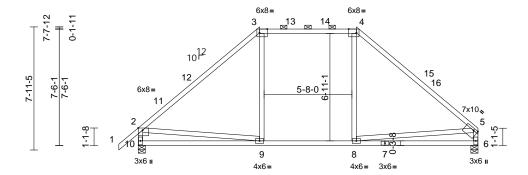
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-7-8, Exterior (2) 6-7-8 to 10-10-7, Interior (1) 10-10-7 to 15-3-4, Exterior (2) 15-3-4 to 19-6-3, Interior (1) 19-6-3 to 21-9-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 17 and 52 lb uplift at joint 9.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A06	Hip	1	1	Job Reference (optional)	173531057

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:58 ID:e1LU6aXIwHvontlZ5tu9yHzx3re-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-11-10 13-11-2 21-11-0 7-11-10 5-11-8 7-11-14

Scale = 1:74.3

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-6-0,Edge], [4:0-6-0,Edge], [5:0-3-4,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.28	6-8	>911	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.37	6-8	>700	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 120 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-5:2x4 SP No.1 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-10-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 6=0-5-8, 10=0-5-8

Max Horiz 10=163 (LC 13) Max Uplift 6=-59 (LC 15), 10=-78 (LC 14)

Max Grav 6=862 (LC 2), 10=951 (LC 2)

(lb) - Maximum Compression/Maximum FORCES

Tension

TOP CHORD 1-2=0/54, 2-3=-970/154, 3-4=-649/169,

4-5=-961/150, 2-10=-879/169, 5-6=-784/127

BOT CHORD 9-10=-312/527, 8-9=-48/649, 6-8=-160/338 WEBS 3-9=-8/258, 4-8=-1/250, 2-9=-210/525,

5-8=-174/518

NOTES

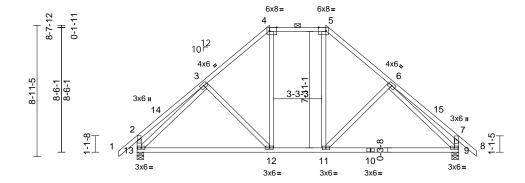
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 7-9-14, Exterior (2) 7-9-14 to 12-0-13, Interior (1) 12-0-13 to 14-0-14, Exterior (2) 14-0-14 to 18-3-13, Interior (1) 18-3-13 to 21-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 10 and 59 lb uplift at joint 6.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A07	Hip	1	1	Job Reference (optional)	173531058

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:58 ID:GE?nm5KqNHOolGi8Im_cl1zx4Jb-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

9-2-1 12-8-12 21-11-0 9-2-1 3-6-11 9-2-4

Scale = 1:78.5

Plate Offsets (X, Y): [4:0-6-0,Edge], [5:0-6-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.18	9-11	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.37	9-11	>697	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 141 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 9=0-5-8, 13=0-5-8 Max Horiz 13=190 (LC 13)

Max Uplift 9=-83 (LC 15), 13=-83 (LC 14)

Max Grav 9=946 (LC 2), 13=949 (LC 2)

(lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/54, 2-3=-299/114, 3-4=-814/176

4-5=-563/166, 5-6=-815/177, 6-7=-307/115,

7-8=0/52, 2-13=-347/118, 7-9=-350/118 **BOT CHORD** 12-13=-87/706, 11-12=-21/591, 9-11=-15/651

WEBS 3-12=-170/160, 4-12=-37/274, 5-11=-37/275,

6-11=-172/161, 3-13=-728/70, 6-9=-721/69

NOTES

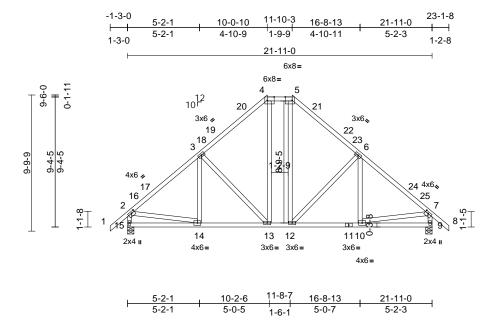
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 9-0-5, Exterior (2) 9-0-5 to 17-4-4, Interior (1) 17-4-4 to 23-1-8 zone: cantilever left and right exposed: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint 13 and 83 lb uplift at joint 9.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A08	Hip	1	1	Job Reference (optional)	173531059

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:58 ID:M12zTFTEYFkk8sjZfFHR6kzx3qQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:82.9

Plate Offsets (X, Y): [2:0-2-12,0-1-8], [4:0-6-0,Edge], [5:0-6-0,Edge], [7:0-2-12,0-1-8]

Loading	(psf)	Spacing	2-3-8	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.05	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.08	10-12	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.39	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 157 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

FORCES

TOP CHORD Structural wood sheathing directly applied or 4-5-7 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 9=0-5-8, 15=0-5-8

Max Horiz 15=236 (LC 15)

Max Uplift 9=-98 (LC 17), 15=-99 (LC 16)

Max Grav 9=1428 (LC 39), 15=1431 (LC 39) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/61, 2-3=-1556/145, 3-4=-1213/205,

4-5=-792/193, 5-6=-1213/205,

6-7=-1560/146, 7-8=0/60, 2-15=-1374/167,

7-9=-1371/166

BOT CHORD 14-15=-209/333, 13-14=-91/1082,

12-13=-10/792, 10-12=0/1086, 9-10=-41/197 **WEBS** 3-14=-45/160, 3-13=-441/180, 4-13=-75/375,

5-12=-75/375, 6-12=-445/180, 6-10=-40/163,

2-14=0/907, 7-10=0/903

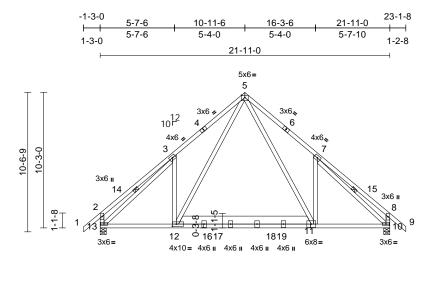
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-0-10, Exterior (2) 10-0-10 to 16-1-1, Interior (1) 16-1-1 to 23-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 15 and 98 lb uplift at joint 9.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A09H	Common	1	1	Job Reference (optional)	173531060

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:59 ID:WjTlgil9?dru51sGLRk8Mnzx3se-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

16-3-6 15-10-14 21-11-0 5-7-6 ++ 10-3-8 5-7-10 0-4-8

Scale = 1:87.1

Plate Offsets (X, Y): [12:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-3-8	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.09	11-12	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.17	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.65	Horz(CT)	0.03	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 183 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

2x4 SP No.2 *Except* 12-11:2x8 SP DSS BOT CHORD

WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-2-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 3-13, 7-10 10=0-5-8, 13=0-5-8 REACTIONS (size)

Max Horiz 13=255 (LC 13)

Max Uplift 10=-138 (LC 15), 13=-131 (LC 14)

Max Grav 10=1331 (LC 2), 13=1286 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/61, 2-3=-345/194, 3-5=-1433/359, 5-7=-1530/342, 7-8=-372/195, 8-9=0/60,

2-13=-421/181, 8-10=-437/181

BOT CHORD 12-13=-130/1130, 10-12=-48/1129

WEBS 3-12=-287/267, 3-13=-1240/35,

7-11=-260/249, 5-11=-258/1009,

5-12=-258/725, 7-10=-1353/50

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-11-6, Exterior (2) 10-11-6 to 13-11-6, Interior (1) 13-11-6 to 23-1-8 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 10 and 131 lb uplift at joint 13.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 119 lb down and 17 lb up at 12-11-4, and 119 lb down and 17 lb up at 8-11-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-58, 2-5=-58, 5-8=-58, 8-9=-58, 10-13=-23,

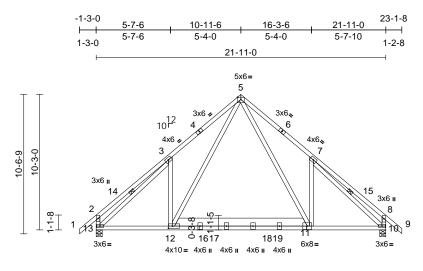
5-11=-40 (F)

Concentrated Loads (lb)

Vert: 17=-100 (F), 18=-100 (F)

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A10H	Common	4	1	Job Reference (optional)	173531061

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:59 ID:WjTlgil9?dru51sGLRk8Mnzx3se-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

16-3-6 21-11-0 5-7-6 15-11-0 ++ 10-3-10 5-7-10 0-4-6

Scale = 1:87.1

Plate Offsets (X, Y): [12:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.08	11-12	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.15	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.63	Horz(CT)	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 183 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

2x4 SP No.2 *Except* 12-11:2x8 SP DSS BOT CHORD

WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-6-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 3-13, 7-10

10=0-5-8, 13=0-5-8 REACTIONS (size) Max Horiz 13=222 (LC 13)

Max Uplift 10=-125 (LC 15), 13=-118 (LC 14)

Max Grav 10=1193 (LC 2), 13=1147 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/54, 2-3=-303/169, 3-5=-1283/319,

5-7=-1379/306, 7-8=-328/171, 8-9=0/52, 2-13=-369/158, 8-10=-383/158

12-13=-117/1011, 10-12=-47/1018

BOT CHORD WEBS 3-12=-247/232, 3-13=-1116/36,

7-11=-222/216, 5-11=-231/919,

5-12=-227/642, 7-10=-1224/51

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-11-6, Exterior (2) 10-11-6 to 13-11-6, Interior (1) 13-11-6 to 23-1-8 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 10 and 118 lb uplift at joint 13.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 119 lb down and 17 lb up at 12-11-6, and 119 lb down and 17 lb up at 8-11-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-51, 2-5=-51, 5-8=-51, 8-9=-51, 10-13=-20,

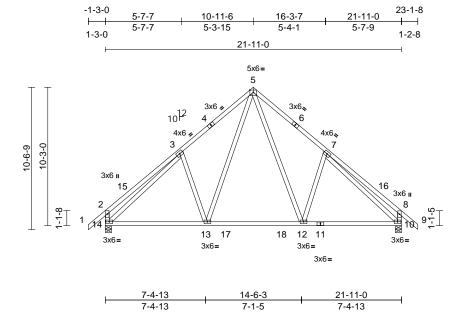
5-11=-40 (F)

Concentrated Loads (lb)

Vert: 17=-100 (F), 18=-100 (F)

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A11	Common	6	1	Job Reference (optional)	173531062

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:55:59 ID:lanaWx_m6NfMEJgTp2ykpwzx4HS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.13	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.18	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 151 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-4 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

10=0-5-8, 14=0-5-8 REACTIONS (size) Max Horiz 14=222 (LC 13)

Max Uplift 10=-87 (LC 15), 14=-88 (LC 14)

Max Grav 10=946 (LC 2), 14=949 (LC 2)

(lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/54, 2-3=-316/159, 3-5=-893/210,

5-7=-901/213, 7-8=-320/161, 8-9=0/52,

2-14=-363/151, 8-10=-365/152

13-14=-91/782, 12-13=0/546, 10-12=-9/692 **BOT CHORD WEBS** 3-13=-238/198, 5-13=-149/465,

5-12=-153/470, 7-12=-241/200,

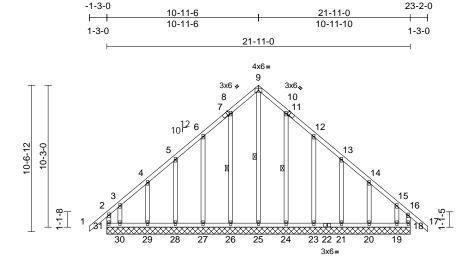
3-14=-799/12, 7-10=-797/10

NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 10-11-6, Exterior (2) 10-11-6 to 13-11-6, Interior (1) 13-11-6 to 23-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 14 and 87 lb uplift at joint 10.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A12E	Common Supported Gable	1	1	Job Reference (optional)	I73531063

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:00 ID:GKmLOtiLGvSLemKvxltkbGzGZ0D-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:83.2 Plate Offcets (X. V): [7:0-2-0 Edge] [11:0-2-0 Edg

Flate Offsets (A, 1). [7.0-2-0,Euge], [11.0-2-0,Euge]												
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	NO	WB	0.12	Horz(CT)	0.00	18	n/a	n/a	1	
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR							1	
BCDL	10.0					1					Weight: 167 lb	FT = 20%

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

21-11-0

BCDL		10.0	Code	IRC2	015/	TPI2014	Matrix-MR	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc p Rigid ceil bracing. 1 Row at	0.2 0.2 0.2 0.2 I wood shere ourlins, exciping directly midpt 18=21-11. 20=21-11. 25=21-11. 27=21-11.	athing directly zept end verti applied or 6-1 9-25, 8-26, 11-0, 19=21-11-0, 24=21-11-0, 26=21-11-0, 30=21-11-0	cals. 0-0 oc 0-24 0, 0, 0, 0,	BO [*]	CHORD CHORD BS	2-31=-205/119, 1-2=0/54, 3-4=-116/125, 4-5=-102/1 6-8=-155/192, 8-9=-203/2 10-12=-155/192, 12-13=-13-14=-72/93, 14-15=-87/15-16=-149/127, 16-17=0 30-31=-106/117, 29-30=-28-29=-106/117, 27-28=-24-25=-106/117, 23-24=-21-23=-106/117, 20-21=-21-23=-106/117, 18-19=-25=-264/153, 8-26=-136-28=-127/77, 4-29=-132/10-24=-135/71, 12-23=-1213-21=-127/77, 14-20=-13/15-19=-130/107	12, 5-6=-101/144, 46, 9-10=-203/246, 101/129, 101, /54, 16-18=-178/86 106/117,
	Max Horiz Max Uplift Max Grav	18=-124 (20=-65 (L 23=-74 (L 26=-62 (L 28=-69 (L 30=-189 (L 30=-189 (L 20=201 (L 23=189 (L 25=254 (L	LC 12) LC 11), 19=-1 C 15), 21=-71 C 15), 24=-62 C 14), 29=-61 LC 14), 31=-1 C 26), 19=19 C 27), 24=19 C 29), 26=19 C 26), 28=17	I (LC 15), 2 (LC 15), 2 (LC 14), 3 (LC 14), 173 (LC 10), 17 (LC 13), 13 (LC 27), 15 (LC 27), 10 (LC 26),	2)	this design Wind: ASC Vasd=91m II; Exp B; E and C-C Ci 10-11-6, Ci 13-11-6 to exposed; e members a Lumber DC Truss design	d roof live loads have been. E 7-10; Vult=115mph (3-se ph; TCDL=6.0psf; BCDL=3 inclosed; MWFRS (enveloporner (3) -1-3-0 to 1-9-0, Exorner (3) 10-11-6 to 13-11-6 to 23-2-0 zone; cantilever left and right ex and forces & MWFRS for reDL=1.60 plate grip DOL=1.60 pned for wind loads in the p	cond gust) .0psf; h=25ft; Cat. e) exterior zone terior (2) 1-9-0 to 6, Exterior (2) and right posed;C-C for actions shown; i0 lane of the truss

27=176 (LC 26), 28=175 (LC 26),

29=174 (LC 30), 30=216 (LC 12),

31=266 (LC 27)

(lb) - Maximum Compression/Maximum

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Continued on page 2

Tension

FORCES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

WARNING - Ventry design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see _ANSI/TP1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	A12E	Common Supported Gable	1	1	Job Reference (optional)	173531063

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:00 ID: GKmLOtiLGvSLemKvxItkbGzGZ0D-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? figure for the property of the p

Page: 2

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 173 lb uplift at joint 31, 124 lb uplift at joint 18, 62 lb uplift at joint 26, 72 lb uplift at joint 27, 69 lb uplift at joint 28, 60 lb uplift at joint 29, 189 lb uplift at joint 30, 62 lb uplift at joint 24, 74 lb uplift at joint 23, 71 lb uplift at joint 21, 65 lb uplift at joint 20 and 173 lb uplift at joint 19.

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

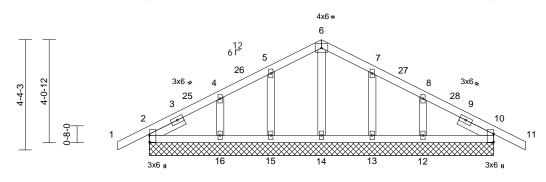
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-51, 2-9=-51, 9-16=-51, 16-17=-51

Trapezoidal Loads (lb/ft)

Vert: 31=-20-to-30=-21 (F=-1), 30=-21 (F=-1)to-29=-22 (F=-2), 29=-22 (F=-2)-to-28=-23 (F=-3), 28=-23 (F=-3)-to-27=-25 (F=-5), 27=-25 (F=-5)to-26=-26 (F=-6), 26=-26 (F=-6)-to-25=-27 (F=-7), 25=-27 (F=-7)-to-24=-29 (F=-9), 24=-29 (F=-9)to-23=-30 (F=-10), 23=-30 (F=-10)-to-22=-31 (F=-11), 22=-31 (F=-11)-to-21=-32 (F=-12), 21=-32 (F=-12)-to-20=-33 (F=-13), 20=-33 (F=-13)-to-19=-34 (F=-14), 19=-34 (F=-14)-to-18=-35 (F=-15)


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	B01E	Common Supported Gable	1	1	Job Reference (optional)	173531064

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:00 ID:thgdanK2HXJyknvHjx86QKzHFed-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

13-7-0

Scale = 1:45.4

Plate Offsets (X, Y): [2:0-3-4,0-0-1], [10:0-3-13,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 69 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=13-7-0. 10=13-7-0. 12=13-7-0. 13=13-7-0, 14=13-7-0, 15=13-7-0, 16=13-7-0

Max Horiz 2=-53 (LC 17)

Max Uplift 2=-18 (LC 17), 10=-31 (LC 17),

12=-63 (LC 17), 13=-39 (LC 17), 15=-37 (LC 16), 16=-61 (LC 16)

Max Grav 2=214 (LC 2), 10=231 (LC 2),

12=235 (LC 35), 13=174 (LC 35), 14=135 (LC 2), 15=168 (LC 34), 16=202 (LC 34)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/34, 2-4=-59/44, 4-5=-70/92, 5-6=-73/130, 6-7=-73/133, 7-8=-71/96,

8-10=-73/47, 10-11=0/34

BOT CHORD 2-16=0/58, 15-16=0/58, 14-15=0/58, 13-14=0/58, 12-13=0/58, 10-12=0/58

6-14=-75/0, 5-15=-123/113, 4-16=-137/83, 7-13=-121/112, 8-12=-143/86

WEBS NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-3-0 to 1-9-0, Exterior (2) 1-9-0 to 6-9-8, Corner (3) 6-9-8 to 9-9-8, Exterior (2) 9-9-8 to 14-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2, 31 lb uplift at joint 10, 37 lb uplift at joint 15, 61 lb uplift at joint 16, 39 lb uplift at joint 13, 63 lb uplift at joint 12, 18 lb uplift at joint 2 and 31 lb uplift at joint 10.

Page: 1

14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

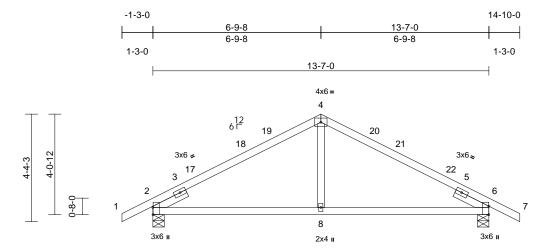
Vert: 1-6=-51, 6-11=-51

Trapezoidal Loads (lb/ft)

Vert: 17=-20-to-19=-21 (F=-1), 19=-21 (F=-1)to-16=-23 (F=-3), 16=-23 (F=-3)-to-15=-25 (F=-5), 15=-25 (F=-5)-to-14=-28 (F=-8), 14=-28 (F=-8)to-13=-30 (F=-10), 13=-30 (F=-10)-to-12=-32 (F=-12), 12=-32 (F=-12)-to-23=-34 (F=-14), 23=-34 (F=-14)-to-21=-35 (F=-15)

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	B02	Common	1	1	Job Reference (optional)	173531065

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:00 ID:typxek3El8phlc?91QRHEIzx4iT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-9-8 13-7-0 6-9-8 6-9-8

Scale = 1:46.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-4-1,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.06	8-11	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.10	8-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 57 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 6=0-5-8

Max Horiz 2=-53 (LC 17)

Max Uplift 2=-72 (LC 16), 6=-72 (LC 17) Max Grav 2=618 (LC 2), 6=618 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-4=-684/117, 4-6=-684/118,

6-7=0/34

BOT CHORD 2-8=-129/548, 6-8=-94/548

WEBS 4-8=0/291

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0. Interior (1) 1-9-0 to 6-9-8, Exterior (2) 6-9-8 to 9-9-8, Interior (1) 9-9-8 to 14-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

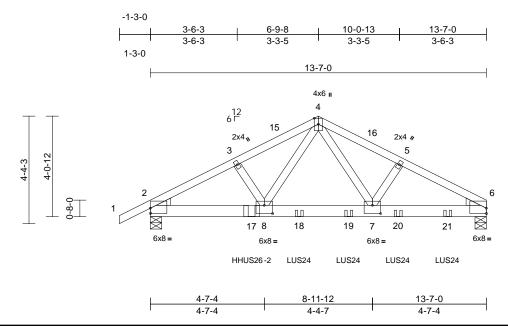
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 2 and 72 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply 1036 Serenity 173531066 P02594-25451 B03G Common Girder 2 Job Reference (optional)

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:01 ID:B6JspZmcez7SFWRJQcTtaXzx4hZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.6

Plate Offsets (X, Y): [2:Edge,0-2-9], [6:Edge,0-2-9], [7:0-4-0,0-4-0], [8:0-4-0,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.06	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.13	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.30	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 152 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD BOT CHORD 2x6 SP No 2 **WEBS** 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 6=0-5-8

Max Horiz 2=61 (LC 36)

Max Uplift 2=-376 (LC 12), 6=-313 (LC 13)

Max Grav 2=2567 (LC 2), 6=3128 (LC 2) FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-4493/640, 3-4=-4398/654,

4-5=-4656/532, 5-6=-4756/519

BOT CHORD 2-8=-576/3926, 7-8=-336/2922,

6-7=-426/4188

WEBS 4-7=-191/2407, 5-7=-90/117, 4-8=-408/1971,

3-8=-24/146

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

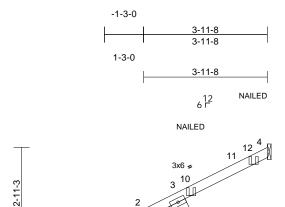
- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph: TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 313 lb uplift at joint 6 and 376 lb uplift at joint 2.
- 12) Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 4-10d Truss) or equivalent at 4-1-2 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-0-4 from the left end to 12-0-4 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-51, 4-6=-51, 9-12=-20 Concentrated Loads (lb)

Vert: 17=-1116 (B), 18=-822 (B), 19=-810 (B), 20=-798 (B), 21=-786 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	CJ01	Jack-Open Girder	1	1	Job Reference (optional)	173531067

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:01 ID:Qaqr8qgbWV6bIIqnzwK?Grzx4hh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 ı NAILED NAILED 3-11-8

13

ПΠХ

14 5

Scale = 1:36.9

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	0.01	5-8	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	5-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-11-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical, 5=

Mechanical Max Horiz 2=75 (LC 12)

Max Uplift 2=-30 (LC 12), 4=-61 (LC 12),

5=-16 (LC 12)

Max Grav 2=244 (LC 2), 4=97 (LC 26), 5=73

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-4=-117/36

BOT CHORD 2-5=-63/59

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 4, 30 lb uplift at joint 2 and 16 lb uplift at joint 5.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Increase=1.15 Uniform Loads (lb/ft)

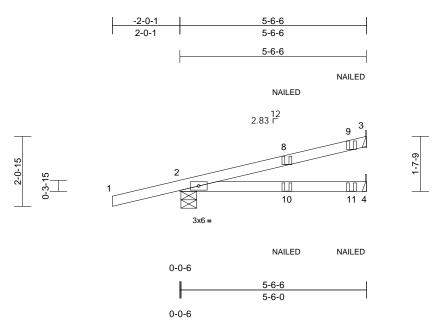
Vert: 1-4=-51, 5-6=-20

Concentrated Loads (lb)

Vert: 10=-30 (B), 13=-3 (B), 14=3 (B)

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	CJ02	Diagonal Hip Girder	2	1	Job Reference (optional)	173531068

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:01 ID:BCxC?zUAuR?nuBuDgpQ9xrzGYI0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.03	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.08	4-7	>819	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-6-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-10, 3= Mechanical, 4=

Mechanical Max Horiz 2=58 (LC 31)

Max Uplift 2=-97 (LC 8), 3=-46 (LC 12)

2=365 (LC 2), 3=156 (LC 2), 4=118 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/28, 2-3=-93/42

BOT CHORD 2-4=-48/79

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 3 and 97 lb uplift at joint 2.

Refer to girder(s) for truss to truss connections.

- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

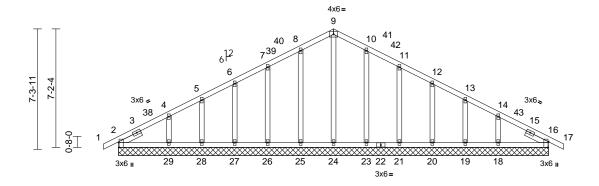
Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-51, 4-5=-20

Concentrated Loads (lb)

Vert: 9=-27 (F), 10=-1 (B), 11=-21 (F)



May 19,2025

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	G01E	Common Supported Gable	1	1	Job Reference (optional)	173531069

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:01 ID:9ydnDIFkHwprdEwQ2wUexPzHGll-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

26-1-0 Scale = 1:69.9

Plate Offsets (X, Y):	[2:0-3-8,Edge],	[16:0-4-1,Edge]
-----------------------	-----------------	-----------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 154 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=26-1-0. 16=26-1-0. 18=26-1-0. 19=26-1-0, 20=26-1-0, 21=26-1-0, 23=26-1-0, 24=26-1-0, 25=26-1-0, 26=26-1-0, 27=26-1-0, 28=26-1-0, 29=26-1-0

Max Horiz 2=91 (LC 16)

Max Uplift 2=-18 (LC 17), 16=-1 (LC 16),

18=-80 (LC 17), 19=-31 (LC 17), 20=-46 (LC 17), 21=-44 (LC 17), 23=-42 (LC 17), 25=-42 (LC 16),

26=-42 (LC 16), 27=-44 (LC 16), 28=-26 (LC 16), 29=-80 (LC 16)

Max Grav 2=191 (LC 2), 16=211 (LC 2), 18=276 (LC 35), 19=158 (LC 2), 20=193 (LC 35), 21=180 (LC 2), 23=213 (LC 24), 24=156 (LC 33),

25=208 (LC 23), 26=170 (LC 2), 27=175 (LC 34), 28=143 (LC 2), 29=233 (LC 34)

FORCES (lb) - Maximum Compression/Maximum

1-2=0/25, 2-4=-93/48, 4-5=-90/67, TOP CHORD

5-6=-76/88, 6-7=-71/127, 7-8=-78/165, 8-9=-92/200, 9-10=-92/202, 10-11=-78/167, 11-12=-71/129, 12-13=-69/90, 13-14=-76/59,

14-16=-91/18, 16-17=0/25

BOT CHORD 2-29=0/77, 28-29=0/77, 27-28=0/77,

26-27=0/77, 25-26=0/77, 24-25=0/77, 23-24=0/77, 21-23=0/77, 20-21=0/77, 19-20=0/77, 18-19=0/77, 16-18=0/77

9-24=-108/13, 8-25=-155/104, 7-26=-119/65, 6-27=-123/62 5-28=-107/52 4-29=-159/98 10-23=-155/104, 11-21=-118/65,

12-20=-124/62, 13-19=-105/51,

14-18=-165/101

NOTES

WEBS

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 13-0-8, Corner (3) 13-0-8 to 16-0-8, Exterior (2) 16-0-8 to 27-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15): Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.

- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2, 1 lb uplift at joint 16, 42 lb uplift at joint 25, 42 lb uplift at joint 26, 44 lb uplift at joint 27, 26 lb uplift at joint 28, 80 lb uplift at joint 29, 42 lb uplift at joint 23, 44 lb uplift at joint 21, 46 lb uplift at joint 20, 31 lb uplift at joint 19, 80 Ib uplift at joint 18, 18 lb uplift at joint 2 and 1 lb uplift at ioint 16.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) minim

May 19,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

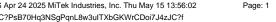
Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	G01E	Common Supported Gable	1	1	Job Reference (optional)	173531069

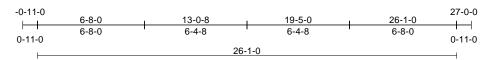
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:01 ID: 9ydnDIFkHwprdEwQ2wUexPzHGII-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

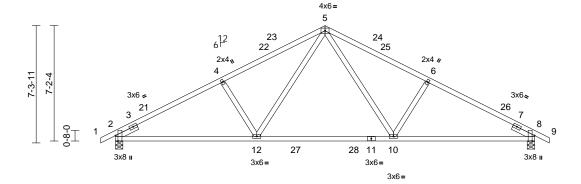
Page: 2

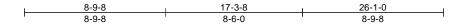
Vert: 1-9=-51, 9-17=-51 Trapezoidal Loads (lb/ft) Vert: 30=-20-to-32=-20 (F=0), 32=-20 (F=0)to-29=-22 (F=-2), 29=-22 (F=-2)-to-28=-23 (F=-3), 28=-23 (F=-3)-to-27=-24 (F=-4), 27=-24 (F=-4)to-26=-25 (F=-5), 26=-25 (F=-5)-to-25=-26 (F=-6), 25=-26 (F=-6)-to-24=-28 (F=-8), 24=-28 (F=-8)to-23=-29 (F=-9), 23=-29 (F=-9)-to-22=-29 (F=-9), 22=-29 (F=-9)-to-21=-30 (F=-10), 21=-30 (F=-10)to-20=-31 (F=-11), 20=-31 (F=-11)-to-19=-32 (F=-12), 19=-32 (F=-12)-to-18=-33 (F=-13), 18=-33 (F=-13)-

to-36=-35 (F=-15), 36=-35 (F=-15)-to-34=-35 (F=-15)






818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	G02	Common	3	1	Job Reference (optional)	l73531070

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:02 ID:18?BIn5wyAFQC5zTIS5Curzx4rT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:71.7 Plate Offsets (X, Y): [2:0-4-1,Edge], [8:0-4-1,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.25	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.38	10-12	>816	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.05	8	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 125 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0, Right 2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

3-7-11 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-5-8, 8=0-5-8 (size)

Max Horiz 2=91 (LC 16)

Max Uplift 2=-118 (LC 16), 8=-118 (LC 17) Max Grav 2=1098 (LC 2), 8=1098 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-4=-1685/192, 4-5=-1512/219,

5-6=-1512/219, 6-8=-1685/192, 8-9=0/25

BOT CHORD 2-12=-180/1445, 10-12=-41/992,

8-10=-101/1445

WEBS 5-10=-106/558, 6-10=-356/161,

5-12=-106/558, 4-12=-356/161

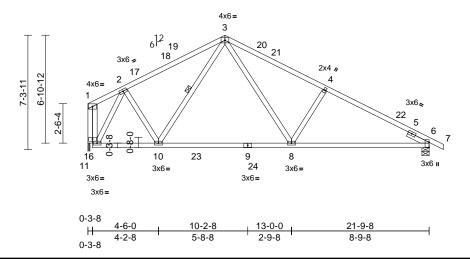
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 13-0-8, Exterior (2) 13-0-8 to 16-0-8, Interior (1) 16-0-8 to 27-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 2 and 118 lb uplift at joint 8.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	G03	Common	2	1	Job Reference (optional)	173531071

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:02 ID:nHDj5jaNhGdKvsxWmNzm6PzGgDI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.6

Plate Offsets (X, Y): [6:0-3-13,0-0-1]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	-0.20	8-10	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.31	8-10	>845	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.03	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 120 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD 2x4 SP No.2 BOT CHORD **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.2

Right 2x4 SP No.2 -- 1-6-0 **SLIDER**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-7-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

WEBS 1 Row at midpt

6=0-5-8, 16=0-1-8 REACTIONS (size) Max Horiz 16=-136 (LC 17)

Max Uplift 6=-106 (LC 17), 16=-70 (LC 16)

Max Grav 6=925 (LC 2), 16=850 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-64/19, 2-3=-806/155, 3-4=-1163/183,

4-6=-1337/161, 6-7=0/25, 1-11=-106/852

BOT CHORD 10-11=-67/538, 8-10=-3/664, 6-8=-91/1139 3-8=-105/576, 4-8=-367/162, 3-10=-91/87, WEBS

2-10=0/292, 2-11=-947/127, 1-16=-853/109

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 4-7-0 to 7-7-0, Interior (1) 7-7-0 to 13-0-8, Exterior (2) 13-0-8 to 16-0-8, Interior (1) 16-0-8 to 27-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

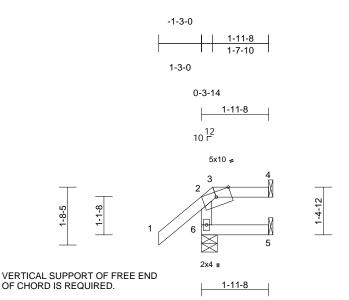
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 16.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 6 and 70 lb uplift at joint 16.

LOAD CASE(S) Standard

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J01	Jack-Open	1	1	Job Reference (optional)	173531072

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:02 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0-3-14

Scale = 1:33.7

Plate Offsets (X, Y): [2:0-5-3,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-11-8 oc purlins, except end verticals, and

2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 4= Mechanical, 5= Mechanical, 6=0-5-8

Max Horiz 6=32 (LC 13)

Max Uplift 4=-18 (LC 40), 5=-1 (LC 13), 6=-22

(LC 16)

Max Grav 4=72 (LC 35), 5=31 (LC 7), 6=249

(LC 36)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-6=-216/94. 1-2=0/88. 2-3=-57/25. 3-4=0/0

BOT CHORD 5-6=0/0

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-11-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 6, 18 lb uplift at joint 4 and 1 lb uplift at joint 5.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

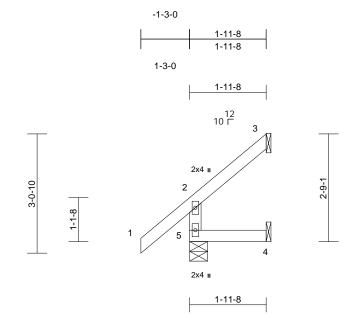
LOAD CASE(S) Standard

May 19,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J02	Jack-Open	1	1	Job Reference (optional)	173531073

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:02 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0			1							Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-11-8 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8

Max Horiz 5=66 (LC 14)

Max Uplift 3=-37 (LC 14), 4=-11 (LC 14) Max Grav 3=39 (LC 26), 4=31 (LC 5), 5=188

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

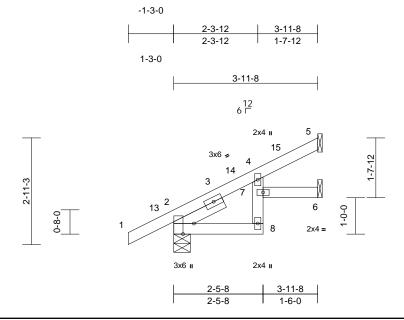
TOP CHORD 2-5=-162/55, 1-2=0/54, 2-3=-55/37

BOT CHORD 4-5=0/0

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 4 and 37 lb uplift at joint 3.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J03	Jack-Open	5	1	Job Reference (optional)	173531074

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:03 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.01	6-7	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.01	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 19 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-11-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 5= Mechanical, 6=

Mechanical

Max Horiz 2=75 (LC 16) Max Uplift 2=-24 (LC 16), 5=-28 (LC 16),

6=-13 (LC 16)

Max Grav 2=243 (LC 2), 5=77 (LC 2), 6=69

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-4=-106/22, 4-5=-31/30

2-8=-80/91, 7-8=-17/52, 4-7=-9/36, 6-7=0/0 BOT CHORD

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 3-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

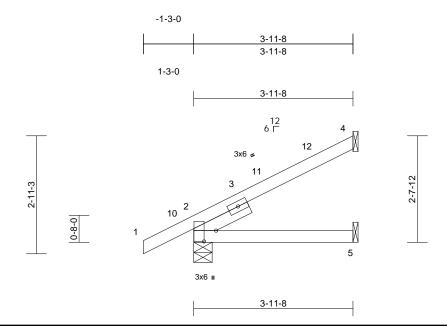
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 5, 24 lb uplift at joint 2 and 13 lb uplift at joint 6.

LOAD CASE(S) Standard

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J04	Jack-Open	4	1	Job Reference (optional)	173531075

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:03 ID:f1LpS5ZaP26kL3DEVFB7x9zx4hp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-3-4,0-3-9]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.01	5-8	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	5-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-11-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-5-8, 4= Mechanical, 5=

Mechanical Max Horiz 2=75 (LC 16)

Max Uplift 2=-24 (LC 16), 4=-41 (LC 16), 5=-1 (LC 16)

Max Grav 2=243 (LC 2), 4=96 (LC 2), 5=69

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-4=-116/34

BOT CHORD 2-5=-109/70

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 3-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.

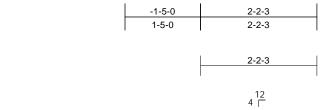
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

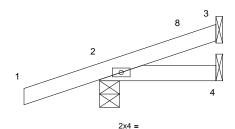
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 4, 24 lb uplift at joint 2 and 1 lb uplift at joint 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J05	Jack-Open	2	1	Job Reference (optional)	173531076

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:03 ID: i0NqodTX78twG1J066vwOdzGYI1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffCPsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4ZGPqA70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4ZGPqA70Hq3NSqPqA7

Page: 1

Scale = 1:21.6

2-2-3	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	7	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

2=0-4-8, 3= Mechanical, 4=

Mechanical Max Horiz 2=40 (LC 12)

Max Uplift 2=-64 (LC 12), 3=-12 (LC 16)

2=198 (LC 2), 3=39 (LC 2), 4=32 Max Grav

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-40/31

BOT CHORD 2-4=-34/30

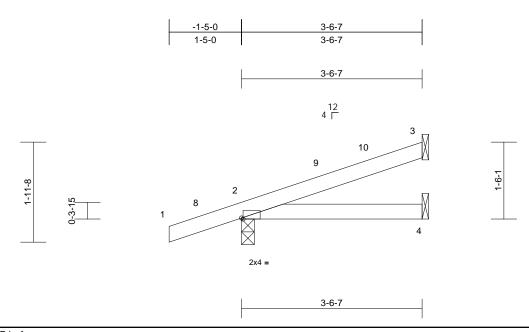
NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-5-0 to 1-7-0, Interior (1) 1-7-0 to 2-1-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 3 and 64 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J06	Jack-Open	2	1	Job Reference (optional)	173531077

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:03 ID: i0NqodTX78twG1J066vwOdzGYI1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffCPsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJCPsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4ZGPqA70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4ZGPqA70Hq3NSqPqA7

Page: 1

Scale = 1:22.6

Plate Offsets (X, Y): [2:0-0-6,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP							1	
BCDL	10.0										Weight: 13 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

3-6-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 3= Mechanical, 4=

Mechanical Max Horiz 2=54 (LC 12)

Max Uplift 2=-65 (LC 12), 3=-25 (LC 16)

Max Grav 2=241 (LC 2), 3=81 (LC 2), 4=60

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-45/20

BOT CHORD 2-4=-24/46

NOTES

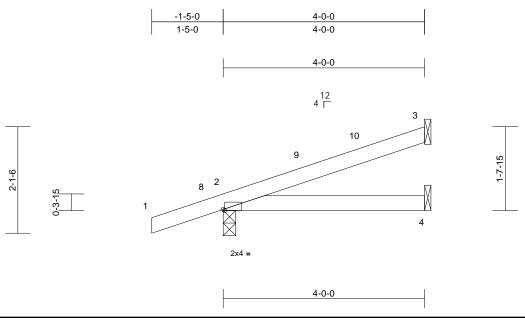
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-5-0 to 1-7-0, Interior (1) 1-7-0 to 3-5-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3 and 65 lb uplift at joint 2.

LOAD CASE(S) Standard

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	J07	Jack-Open	1	1	Job Reference (optional)	173531078

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:03 ID:i0NqodTX78twG1J066vwOdzGYI1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.9

Plate Offsets (X, Y): [2:0-0-6,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

4-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-0, 3= Mechanical, 4= Mechanical

Max Horiz 2=59 (LC 12)

Max Uplift 2=-65 (LC 12), 3=-30 (LC 16)

Max Grav 2=258 (LC 2), 3=94 (LC 2), 4=69

(LC 7)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-52/24

BOT CHORD 2-4=-27/55

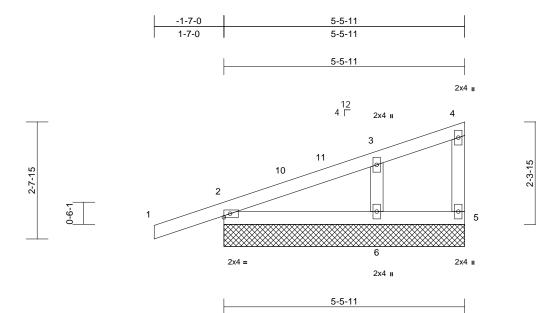
NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-5-0 to 1-7-0, Interior (1) 1-7-0 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3 and 65 lb uplift at joint 2.

LOAD CASE(S) Standard

May 19,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	173531079

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:04 ID:NUKTuKUvdm11EAFu68HyfQzHGgG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scal	le =	1:26	.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS OTHERS 2x4 SP No.2

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 5-5-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=5-5-11, 5=5-5-11, 6=5-5-11

Max Horiz 2=71 (LC 15)

Max Uplift 2=-65 (LC 12), 5=-5 (LC 13), 6=-50 (LC 16)

Max Grav 2=237 (LC 2), 5=41 (LC 23), 6=246

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/30, 2-3=-203/136, 3-4=-39/35,

4-5=-33/42

BOT CHORD 2-6=-70/83 5-6=-28/38 WFBS 3-6=-179/169

NOTES

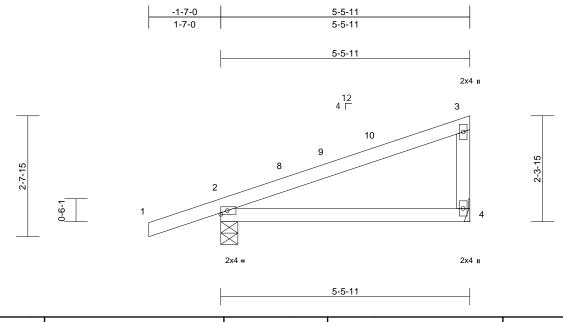
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-7-0 to 1-5-0, Exterior (2) 1-5-0 to 5-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 2, 5 lb uplift at joint 5, 50 lb uplift at joint 6 and 65 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P02	Monopitch	4	1	Job Reference (optional)	73531080

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:04 ID:7QguQz1b0y_p9lwXPUlSdGzw3ap-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	0.07	4-7	>932	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.08	4-7	>836	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

Scale = 1:25.3

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-5-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-4-8, 4= Mechanical

Max Horiz 2=71 (LC 15)

Max Uplift 2=-117 (LC 12), 4=-69 (LC 12)

Max Grav 2=322 (LC 2), 4=199 (LC 2) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/30, 2-3=-81/162, 3-4=-137/99

BOT CHORD 2-4=-67/54

NOTES

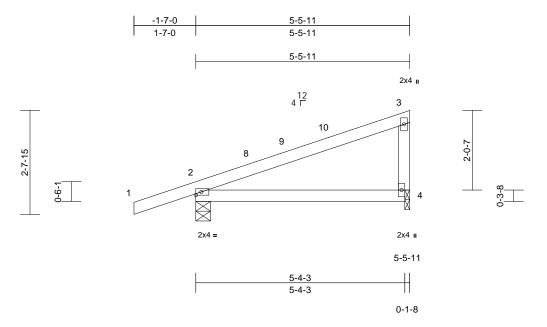
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 to 5-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 4 and 117 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P03	Monopitch	2	1	Job Reference (optional)	1

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:04 ID:7QguQz1b0y_p9lwXPUISdGzw3ap-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	0.07	4-7	>932	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.08	4-7	>836	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-5-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=0-4-8, 4=0-1-8 **REACTIONS** (size)

Max Horiz 2=71 (LC 15)

Max Uplift 2=-117 (LC 12), 4=-69 (LC 12)

Max Grav 2=322 (LC 2), 4=199 (LC 2) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/30, 2-3=-81/162, 3-4=-137/99

BOT CHORD 2-4=-67/54

NOTES

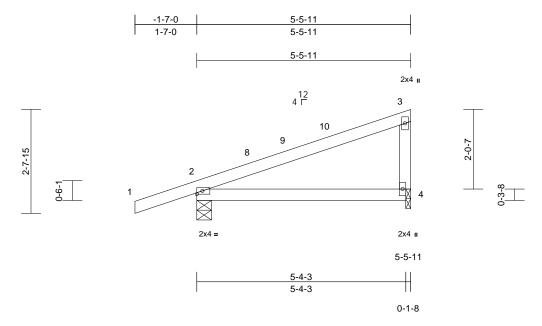
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 to 5-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 2 and 69 lb uplift at joint 4.

LOAD CASE(S) Standard

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P04	Monopitch	4	1	Job Reference (optional)	173531082

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:04 ID:bumhC7FumUFFK3I?SG3gM3zw3aX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale		4.00	_
ocale	=	1:29.	Э

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	0.07	4-7	>932	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.08	4-7	>836	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0	ļ									Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-5-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=0-4-8, 4=0-1-8 **REACTIONS** (size)

Max Horiz 2=71 (LC 15)

Max Uplift 2=-117 (LC 12), 4=-69 (LC 12)

Max Grav 2=322 (LC 2), 4=199 (LC 2) (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/30, 2-3=-81/162, 3-4=-137/99

BOT CHORD 2-4=-67/54

NOTES

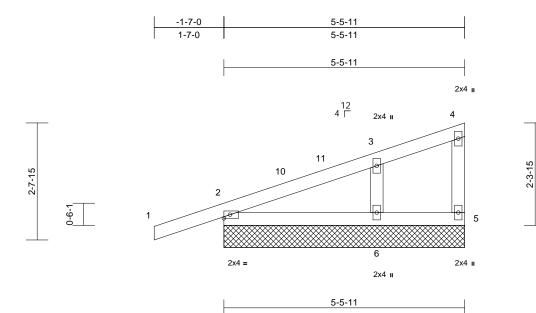
FORCES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 to 5-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 2 and 69 lb uplift at joint 4.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P05E	Monopitch Supported Gable	1	1	Job Reference (optional)	173531083

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:05 ID:vkgMX?_pB2IQou6u5zE7XMzHGMG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scal	le =	1:2	26.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS OTHERS 2x4 SP No.2

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

> 5-5-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=5-5-11, 5=5-5-11, 6=5-5-11

Max Horiz 2=71 (LC 15)

Max Uplift 2=-65 (LC 12), 5=-5 (LC 13), 6=-50 (LC 16)

Max Grav 2=237 (LC 2), 5=41 (LC 23), 6=246

(LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/30, 2-3=-203/136, 3-4=-39/35,

4-5=-33/42

BOT CHORD 2-6=-70/83 5-6=-28/38 3-6=-179/169

WFBS NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-7-0 to 1-5-0, Exterior (2) 1-5-0 to 5-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

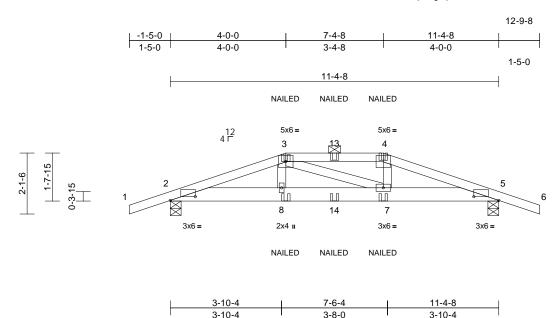
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 2, 5 lb uplift at joint 5, 50 lb uplift at joint 6 and 65 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply 1036 Serenity 173531084 P02594-25451 P06G Hip Girder 2 Job Reference (optional)

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:05 ID:fOVbDJVofl7eWLTPEXxOT2zGYI?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.9

Plate Offsets (X, Y): [2:0-10-6,0-1-9], [5:0-10-6,0-1-9]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.04	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.03	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 113 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 **WEBS** 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-4-8, 5=0-4-8

Max Horiz 2=-24 (LC 9) Max Uplift 2=-115 (LC 8), 5=-115 (LC 9)

Max Grav 2=770 (LC 35), 5=770 (LC 35)

(lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/36, 2-3=-1473/148, 3-4=-1348/151,

4-5=-1459/145, 5-6=0/36 **BOT CHORD** 2-8=-114/1381, 7-8=-118/1361,

5-7=-103/1368

WEBS 3-8=0/248, 3-7=-72/46, 4-7=0/242

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 OC.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),
- unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 2 and 115 lb uplift at joint 5.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

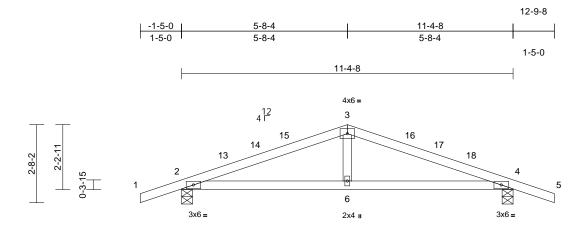
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-51, 3-4=-61, 4-6=-51, 2-5=-20

Concentrated Loads (lb)

Vert: 4=-70 (B), 8=-57 (B), 7=-57 (B), 3=-70 (B), 13=-25 (B), 14=-26 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	P07	Common	2	1	Job Reference (optional)	173531085

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:05 $ID:DXN15_nnq0GBW_hUcxJxyCzGYDm-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f$ Page: 1

5-8-4 11-4-8 5-8-4 5-8-4

Scale	=	1:39.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.04	6-12	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.07	6-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS								
BCDL	10.0	ļ		1							Weight: 42 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-11-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

2=0-4-8, 4=0-4-8 **REACTIONS** (size)

Max Horiz 2=-31 (LC 17)

Max Uplift 2=-97 (LC 12), 4=-97 (LC 13)

Max Grav 2=540 (LC 2), 4=540 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/27, 2-3=-825/125, 3-4=-825/125,

4-5=0/27

BOT CHORD 2-6=-61/743, 4-6=-61/743

WEBS 3-6=0/258

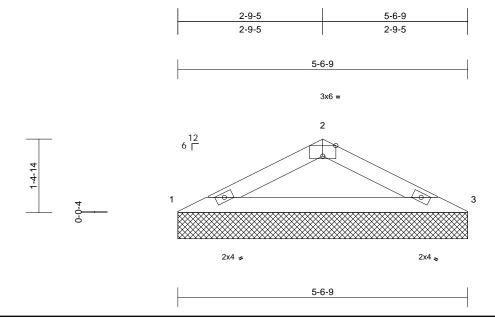
NOTES

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-5-0 to 1-7-0, Interior (1) 1-7-0 to 5-8-4, Exterior (2) 5-8-4 to 8-8-4, Interior (1) 8-8-4 to 12-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 2 and 97 lb uplift at joint 4.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1036 Serenity	
P02594-25451	V01	Valley	1	1	Job Reference (optional)	173531086

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 13:56:05 ID:TSQxrSRsozhD3kFdPAgK?TzGg8K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.1

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

5-6-9 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=5-6-9, 3=5-6-9

Max Horiz 1=16 (LC 20)

Max Uplift 1=-23 (LC 16), 3=-23 (LC 17)

Max Grav 1=222 (LC 2), 3=222 (LC 2)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-410/137, 2-3=-410/137

BOT CHORD 1-3=-111/358

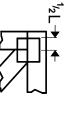
NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.

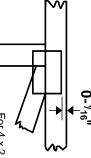
- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 23 lb uplift at joint 3.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

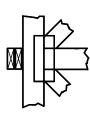
edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

₹

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

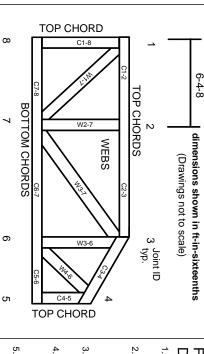
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

ANSI/TPI1: Industry Standards: National Design Specification for Metal

DSB-22:

Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.