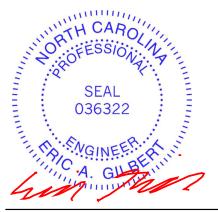


Trenco 818 Soundside Rd Edenton, NC 27932

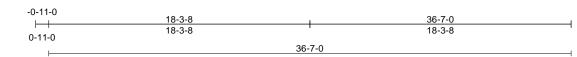

Re: P02678-25595 916 Serenity

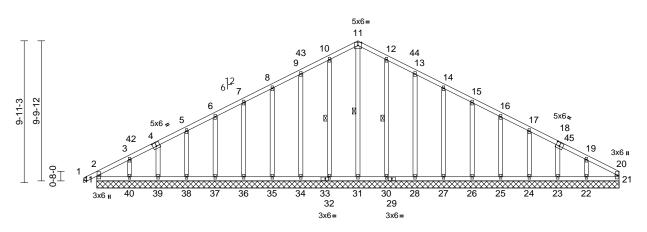
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73556585 thru I73556613

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


May 19,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	Job	Truss	Truss Type	Qty	Ply	916 Serenity	
F	P02678-25595	A01E	Common Supported Gable	1	1	Job Reference (optional)	173556585

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:25 ID:42o7L4wgzg0E82bFJvYJ3PzxaUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.7 Plate Offsets (X, Y): [4:0-3-0,0-3-0], [18:0-3-0,0-3-0], [33:0-2-8,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.07	Vert(LL)	n/a		- n/a	999	MT20	244/190
Snow (Pf/Pg)	11.	5/15.0	Lumber DOL	1.25		BC	0.05	Vert(CT)	n/a		- n/a	999		
TCDL		7.0	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.01	2	1 n/a	n/a		
BCLL		0.0*	Code	IRC2	2015/TPI2014	Matrix-MR								
BCDL		10.0											Weight: 245 lb	FT = 20%
LUMBER					FORCES	(lb) - Maximum C	compressi	on/Maximum		3) T	russ desig	gned fo	or wind loads in th	e plane of the truss
TOP CHORD	2x4 SP No.	.2				Tension								normal to the face),
BOT CHORD	2x4 SP No.	.2			TOP CHORD	2-41=-131/80, 1-2								Details as applicable,
WEBS	2x4 SP No.	.2				3-5=-95/79, 5-6=	,	,						er as per ANSI/TPI 1
OTHERS	2x4 SP No.	.2				7-8=-60/161, 8-9			8,					of LL: Lum DOL=1.25
BRACING						10-11=-99/271, 1		,						ound snow); Pf=11.5
TOP CHORD	Structural w	wood she	athing directly applie	ed or		12-13=-87/236, 1		,						Plate DOL=1.15);
			cept end verticals.			14-15=-60/160, 1			04				3; Partially Exp.; (ct=1.10 n considered for this
BOT CHORD	Rigid ceilin	g directly	applied or 10-0-0 or	2		16-17=-35/85, 17	-19=-07/2	1, 19-20=-93/	24,	'		a snow	loads have beer	i considered for this
	bracing.				BOT CHORD	20-21=-63/6 40-41=-22/88, 39	-4022/9	28 38-3026	/01		esign. bis truss k	ae hor	on designed for a	reater of min roof live
WEBS	1 Row at m		11-31, 10-32, 12-30		DOT CHORD	40-41=-22/88, 39 37-38=-26/91, 36								pof load of 11.5 psf o
REACTIONS), 22=36-7-0, 23=36			34-35=-26/91.32		,	,				oncurrent with oth	
			0, 25=36-7-0, 26=36			30-31=-26/91, 28		,	- ,				/Project engineer	
), 28=36-7-0, 30=36			26-27=-26/91, 25		,	'				ad = 5.0 (psf) cov	
), 32=36-7-0, 34=36			23-24=-26/91, 22		,	,					this truss componen
), 36=36-7-0, 37=36		WEBS	11-31=-159/31, 1	0-32=-13	1/111,						otherwise indicated.
			0, 39=36-7-0, 40=36	-7-0,		9-34=-107/88, 8-	35=-108/6	6, 7-36=-108	/67,	7, 9) Gable requires continuous bottom chord bearing				
		41=36-7-0				6-37=-106/66, 5-38=-115/71, 4-39=-106/61, 10) Truss to be fully sheathed from one face						e face or securely		
	Max Horiz 4			`		3-40=-99/110, 12-30=-133/111,					raced aga			.e. diagonal web).
			C 16), 22=-89 (LC 17 C 17), 24=-59 (LC 1			13-28=-107/88, 1				11) G	able stud	s space	ed at 2-0-0 oc.	
			C 17), 24=-59 (LC 1 C 17), 26=-53 (LC 1			15-26=-108/67, 1							IIIIII	11111
			C 17), 28=-55 (LC 1			17-24=-116/71, 1	8-23=-10	1/72,					IN'LY CA	Pall
			C 17), 32=-47 (LC 1			19-22=-117/139						1	alli	10/11/1
			C 16), 35=-49 (LC 1		NOTES							5.	0,758	12 16/10-
			C 16), 37=-47 (LC 1		,	ed roof live loads ha	ave been	considered for	r		L	U		Nov I
			C 16), 39=-36 (LC 1		this design							-	:01. 1	K: =
	4	40=-86 (L	C 16), 41=-32 (LC 1	2)		E 7-10; Vult=115m						S 8	:	
	Max Grav 2	21=104 (L	C 33), 22=207 (LC 3	35),		ph; TCDL=4.2psf;							: SEA	L : =
	2	23=171 (L	_C 2), 24=189 (LC 3	5),		Enclosed; MWFRS					E		0363	22 : =
			_C 2), 26=176 (LC 3			orner (3) -0-11-0 to Corner (3) 18-3-8 t			5-14				0505	
			_C 2), 28=171 (LC 3			36-5-4 zone; canti						-	1	1 5
			_C 24), 31=188 (LC 3			end vertical left and						2	A. E.	Air :
			_C 23), 34=162 (LC 2			and forces & MWFI						1.5	GIN	EFICAN
			-C 2), 36=159 (LC 3			DL=1.60 plate grip			,			1	10	BEN
			-C 2), 38=162 (LC 3		24	Inc. ASCE 7-10; Vult=115mp1 (3-second gust) sisd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. Exp B; Enclosed; MWFRS (envelope) exterior zone d C-C Corner (3) -0-11-0 to 2-8-14, Exterior (2) 2-8-14 18-3-8, Corner (3) 18-3-8 to 21-11-6, Exterior (2) -11-6 to 36-5-4 zone; cantilever left and right posed; end vertical left and right exposed; C-C for embers and forces & MWFRS for reactions shown; mber DOL=1.60 plate grip DOL=1.60 May 19.20					illein			
		39=149 (L 41=153 (L	_C 2), 40=144 (LC 3	4),									111111	mm
	2	+1=155 (L	-0 2)										May	19,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 19,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	916 Serenity	170550505
P02678-25595	A01E	Common Supported Gable	1	1	Job Reference (optional)	173556585

12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 41, 2 lb uplift at joint 21, 47 lb uplift at joint 32, 52 lb uplift at joint 34, 49 lb uplift at joint 35, 49 lb uplift at joint 36, 47 lb uplift at joint 37, 54 lb uplift at joint 30, 86 lb uplift at joint 40, 47 lb uplift at joint 30, 55 lb uplift at joint 28, 52 lb uplift at joint 27, 53 lb uplift at joint 26, 52 lb uplift at joint 23, and 89 lb uplift at joint 22.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

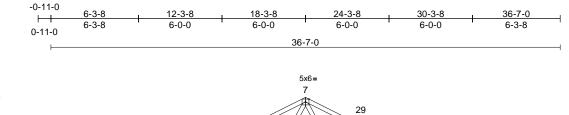
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

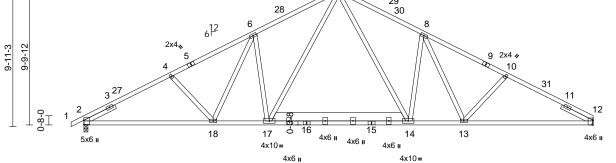
Uniform Loads (lb/ft)

Vert: 1-2=-37, 2-11=-37, 11-20=-37

 $\label{eq:spectral_states} \begin{array}{l} \mbox{Trapezoidal Loads (lb/ft)} \\ \mbox{Vert: } 41=-20+to-40=-21 (F=-1), \ 40=-21 (F=-1)- \\ to -39=-22 (F=-2), \ 39=-22 (F=-2)+to -38=-23 (F=-3), \\ 38=-23 (F=-3)-to -37=-23 (F=-3), \ 37=-23 (F=-3)- \\ to -36=-24 (F=-4), \ 36=-24 (F=-4)-to -35=-25 (F=-5), \\ 35=-25 (F=-5)-to -34=-26 (F=-6), \ 34=-26 (F=-6)- \\ to -33=-27 (F=-7), \ 33=-27 (F=-7)-to -32=-27 (F=-7)- \\ to -30=-28 (F=-8), \ 30=-28 (F=-8)-to -29=-28 (F=-8), \\ 29=-28 (F=-8)-to -28=-29 (F=-9), \ 28=-29 (F=-9)- \\ to -27=-30 (F=-10), \ 27=-30 (F=-10)-to -26=-31 \\ (F=-11), \ 26=-31 (F=-11), \ 26=-32 (F=-12)-to -23=-33 \\ (F=-13), \ 23=-33 (F=-13), \ 22=-34 (F=-14), \ 22=-34 \\ (F=-14)-to -21=-35 (F=-15) \end{array}$

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:25 ID:42o7L4wgzg0E82bFJvYJ3PzxaUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A02	Common	1	1	Job Reference (optional)	173556586

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:27 ID:2AJS7SDj1fSfQ0CSOe2ZftzxaZB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-3-8	13-2-1 16-0-0	20-8-0	23-5-4 27-3-8	36-7-0	
Scale = 1:82.7	9-3-8	3-10-9 2-9-15	4-8-0	2-9-4 3-10-4	9-3-8	

Plate Offsets (X, Y): [2:0-3-9,0-0-1], [12:0-4-1, Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.87 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-17 14-17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 2-6-0 Structural wood she 3-4-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, ~ Max Horiz 2=131 (LC Max Uplift 2=-230 (L Max Grav 2=1404 (I (lb) - Maximum Com Tension 1-2=0/22, 2-4=-2304 6-7=-1931/415, 7-8= 8-10=-2146/384, 10-	2-6-0, Right 2x4 SP I athing directly applie applied or 9-4-1 oc 12= Mechanical C 16) C 16), 12=-214 (LC C 2), 12=1353 (LC 2 pression/Maximum I/381, 4-6=-2143/371 1934/420, -12=-2308/392	No.2 Id or 3) 17) ⁴⁾ 2) 5)	Vasd=91mpl II; Exp B; En and C-C Ext to 18-3-8, Ex 21-11-6 to 3 exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1 psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements	7-10; Vult=115m, n; TCDL=4.2psf; E (closed; MWFRS (erior (2) -0-11-0 to tetrior (2) 18-3-8 t 5-7-0 zone; cantilk d vertical left and d forces & MWFR .=1.60 plate grip [7-10; Pr=20.0 ps .25); Pg=15.0 ps .25); Pg=15.0 ps .snow: Lum DOL= Exp B; Partially E: snow loads have us been designed psf or 1.00 times i on-concurrent witt igner/Project engin n Load = 5.0 (psf) s specific to the us 3x6 (=) MT20 ui	SCDL=3. (envelopp 2 2-8-14, o 21-11-(verver left a right exp S for ree DOL=1.6(f (roof Ll f (roof Ll f (ground 1.15 Plat xp.; Ct=1 been cor for great flat roof lc h other lr in other res se of this	Dpsf; h=25ft; s) exterior zoi Interior (1) 2: S, Interior (1) 2: S, Interior (1) 2: S, Interior (1) Dosed;C-C foi ctions showr :: Lum DOL= snow); Pf=1: e DOL=1.15) .10 asidered for the er of min roof bad of 11.5 p re loads. consible for ain loading truss compoi	ne -8-14 r, 1.25 1.5); his f live sf on nent.					
WEBS NOTES 1) Unbalance	BOT CHORD 2-18=-397/2011, 17-18=-268/1731, 14-17=-132/1289, 13-14=-189/1732, 12-13=-284/2016 WEBS 8-14=-570/234, 8-13=-75/344, 10-13=-249/149, 6-17=-567/233, 6-18=-73/343, 4-18=-246/148, 7-17=-221/790, 7-14=-222/793 NOTES I) Unbalanced roof live loads have been considered for this design.			This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Refer to gird) Provide mec bearing plate	is been designed ad nonconcurrent has been designe in chord in all area by 2-00-00 wide w by other members er(s) for truss to t hanical connectio capable of withs uplift at joint 12.	for a 10. with any d for a liv as where vill fit betw s, with BC russ conr n (by oth	D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psi nections. ers) of truss t	ads. Opsf om f. to		7	50	SEA 0363	L 22 EER H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A03	Roof Special	3	1	Job Reference (optional)	173556587

<u>18-3-8</u> 5-1-12

4-8-12, 7-6-119-4-12 13-1-12 2-5-4 2-9-15 1-10-2 3-9-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

2-3-8 -0-11-0

 \vdash

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:27 ID:pezVOF4ojhGb21t13sCV0ezG?5Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

<u>30-3-8</u> 6-0-0

36-7-0

+

<u>24-3-8</u> 6-0-0

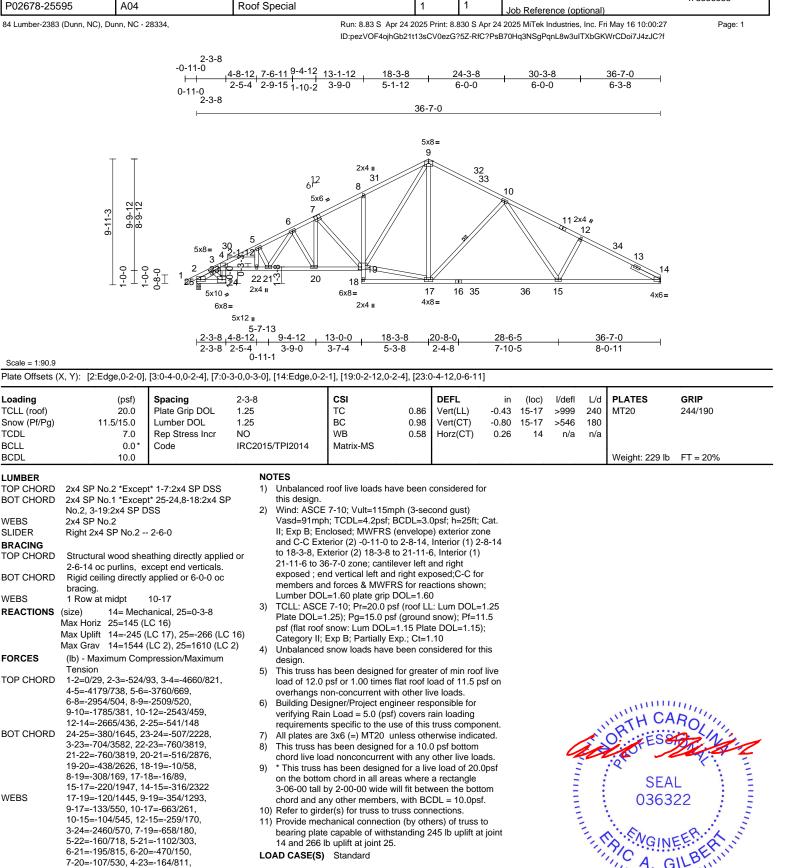
Page: 1

		⊢ 0-11-0	2-5-4 2-9-15 1-10-2	3-9-0 5-1-1	2	6-0-0		6-0-0	0		6-3-8	
		2-3-8 ⊢			36-7	-0						
					5x8 9	3=						
	9-1-1-3 9-9-12 8-9-12		6 ¹² 5x6 7	2x4 II 34		35	5		11 ^{2x}	4 11		
	6	3	3 5			\$				2	37	
		0	2-1-12 → 2221 24 2221 5x12 µ 20	19 18 6x8=	17	7 16 38		39	15		13 14 4x6 II	
		4x6 ∎ 5x12 ≠		2x4 II	4x8	3=					470 []	
		6x8 , 2-3-8	5-7-13	13-0-0 , 18-3-	• •	20-8-0,	28-6-5	=		36-	7.0	
		2-3-8	2-5-4 3-9-0 0-11-1	3-7-4 5-3-8	-	2-4-8	7-10-5		-	8-0		
Scale = 1:92.2 Plate Offsets ((X. Y): [2:0-3-8.Edge].	. [7:0-3-0.0-3-0]. [14:0	0-4-1,Edge], [19:0-2-12,0)-2-8]. [23:0-4-12.0-	6-111							
Loading	(psf)	Spacing	2-0-0	csi	• • • •	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 11.5/15.0	Plate Grip DOL Lumber DOL	1.25 1.25	TC BC	0.84 0.90	Vert(LL) Vert(CT)	-0.38	15-17 15-17	>999 >610	240 180	MT20	244/190
TCDL	7.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.25	13-17	_010 n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 230 lb	FT = 20%
LUMBER			NOTES									
TOP CHORD BOT CHORD	2x4 SP No.1 *Excep	ot* 2-24,8-18:2x4 SP	this design.	roof live loads have			r					
WEBS SLIDER												
BRACING TOP CHORD	BRACING to 18-3-8, Exterior (2) 18-3-8 to 21-11-6, Interior (1) TOP CHORD Structural wood sheathing directly applied or 21-11-6 to 36-7-0 zone; cantilever left and right											
BOT CHORD		applied or 7-11-14 c	nc members an	d forces & MWFRS =1.60 plate grip DC	for rea	ctions shown						
WEBS	bracing. 1 Row at midpt	10-17	TCLL: ASCE	E 7-10; Pr=20.0 psf (1.25); Pg=15.0 psf ((roof LL	: Lum DOL=						
REACTIONS	(size) 2=0-3-8, Max Horiz 2=131 (LC Max Uplift 2=-231 (L Max Grav 2=1402 (L	_C 16), 14=-214 (LC	psf (flat roof Category II; 4) Unbalanced	snow: Lum DOL=1. Exp B; Partially Exp snow loads have be	15 Plat .; Ct=1	e DOL=1.15) .10	;					
FORCES	(lb) - Maximum Com Tension	<i>.</i>	5) This truss ha	as been designed fo								
TOP CHORD		/147, 3-4=-4232/741, =-3368/598,	overhangs n	psf or 1.00 times fla on-concurrent with signer/Project engine	other liv	/e loads.	ST ON				TH CA	11
	6-8=-2621/447, 8-9= 9-10=-1570/334, 10		verifying Rai	in Load = 5.0 (psf) c s specific to the use	overs r	ain loading	nent				"TH CA	RO
BOT CHORD	12-14=-2337/382 2-24=-365/1636, 23	-24=-460/2093,	All plates are	e 3x6 (=) MT20 unle as been designed fo	ess oth	erwise indicat				- II	OFFESS	PR Nº
	3-23=-621/3188, 22 21-22=-686/3468, 2	-23=-686/3468,	chord live loa	ad nonconcurrent w	ith any	other live loa			4		:2	and the second s
	19-20=-388/2329, 18 8-19=-269/147, 17-1		on the bottor	m chord in all areas by 2-00-00 wide will	where	a rectangle					SEA	L
WEBS	15-17=-194/1710, 1- 17-19=-106/1271, 9-	4-15=-277/2037	chord and ar	ny other members, v ler(s) for truss to trus	with BC	DL = 10.0psf					0363	22
	9-17=-116/479, 10-1 10-15=-91/475, 12-1	,	11) Provide med	chanical connection e capable of withsta	(by oth	ers) of truss t					SEA 0363	a !!! !!
	3-24=-2299/512, 7-1 5-22=-165/759, 5-21		2 and 214 lb	uplift at joint 14.	nung z		Joint			11	A MGIN	EELER
	6-21=-178/762, 6-20 7-20=-98/488, 4-23=	0=-436/136,	LOAD CASE(S)	Standard							A. C	allBrunn
												y 19,2025
A											ng samatana ara	
Design v	valid for use only with MiTek	® connectors. This design	THIS AND INCLUDED MITEK R is based only upon parameters e applicability of design parame	shown, and is for an ind	ividual bu	ilding componen	t, not					
building is always	design. Bracing indicated is s required for stability and to	s to prevent buckling of indi prevent collapse with pos	vidual truss web and/or chord r sible personal injury and proper	members only. Additiona rty damage. For general	l tempora guidance	ary and permaner regarding the	nt bracing					A MiTek Affiliate
			nd truss systems, see ANSI/TI le from the Structural Building (institute (www.tpins	t.org)	818 Soundside F Edenton, NC 279	

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A04	Roof Special	1	1	Job Reference (optional)	173556588

TCDL

BCLL


BCDL

WEBS

WEBS

WEBS

3-25=-1667/255

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

mmm May 19,2025

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A05	Common	1	1	Job Reference (optional)	173556589

6-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0

 \vdash

0-11-0

6-3-8

6-3-8

12-3-8

6-0-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:28 ID:PAKHGJLdfhjOYpfXU_SB5vzFznI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-3-8

6-0-0

36-7-0

6-3-8

24-3-8

6-0-0

36-7-0

Page: 1

	9-11-3 9-9-12	3 ²⁷ 1 2 4x6 II	^{2x4} ⁶ ¹² ⁴ ¹⁸	4x6 = 28 6 17 $-324x10 = 164x6$ II	5x6= 7	29 33 15 x6 4x6	14	1		2x4 # 10	31	12 4x6 II	
				<u>1-12 16-0-0 </u>	<u>20-8-0</u> 4-8-0) <u>23-5-</u> 2-9-4		′-3-8 10-4			6-7-0 -3-8		
Scale = 1:82.7 Plate Offsets ((X, Y): [2:0-3-13,0-0-1	1], [12:0-4-1,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.47 0.87 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.09	(loc) 14-17 18-21 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 238	GRIP 244/190 3 lb FT = 209	 /o
this design	2x4 SP No.2 *Excep 2x4 SP No.2 Left 2x4 SP No.2 2-6-0 Structural wood she 3-4-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=131 (L Max Uplift 2=-117 (I Max Grav 2=1517 ((lb) - Maximum Con Tension 1-2=0/22, 2-4=-236i 6-7=-1954/394, 7-8: 8-10=-2160/370, 10 2-18=-329/2079, 17 14-17=-119/1301, 1 12-13=-272/2028 8-14=-569/235, 8-13 10-13=-248/150, 6- 6-18=-25/391, 4-18: 7-17=-206/807, 7-14 ed roof live loads haven n.	LC 16), 12=-207 (LC LC 2), 12=1360 (LC 2) npression/Maximum 6/319, 4-6=-2195/315 =-1948/406, I-12=-2322/378 I-18=-245/1754, 3-14=-177/1745, 3=-77/342, 17=-590/210, =-284/110, 4=-221/794 Bebeen considered for	 S II; Exp B; El and C-C Ex and C-C Ex 21-11-6 to 3 exposed; e members at Lumber DOL ps (flat root Category II; 4) Unbalancec (ategory II; 6) Building De verifying Ra requiremen 7) 120.0lb AC left end, suy 8) All plates at 9) This truss on the botto 3:06-00 tall chord and at 11) Refer to girt 12) Provide me bearing plat 2 and 207 II 	, 	nvelope 2-8-14, I 21-11-6 er left a ght exp for read L=1.60 (roof LL: ground 3 15 Plate .; Ct=1. een cons r greate t roof lo other liv eer resp overs ra of this t he top c er a 10.0 ith any c or a live where a fit betw whith BCI ss conne (by othe nding 1) exterior zoi interior (1) 2: , Interior (1) 2:	ne -8-14 r; 1.25 1.5 ; his flive sf on ted. ds. Dpsf om f. co t joint			12	SI 030 SI 030 SI 030 SI 030	EAL 5322 NEER GILBER May 19,202	5
Design a truss s building is alway fabricati	valid for use only with MiTek system. Before use, the build design. Bracing indicated is rs required for stability and to ion, storage, delivery, erection	® connectors. This design ding designer must verify the s to prevent buckling of ind prevent collapse with pos on and bracing of trusses a	THIS AND INCLUDED MITEK I is based only upon parameter e applicability of design paran ividual truss web and/or chord sible personal injury and prope nd truss systems, see ANS/7 le from the Structural Building	rs shown, and is for an indi neters and properly incorpo members only. Additional erty damage. For general TPI1 Quality Criteria and	vidual bui orate this I temporar guidance DSB-22	ilding componer design into the ry and permane regarding the available from T	nt, not overall nt bracing Truss Plate		www.tpins	t.org)	818 Sounds Edenton, NO		late

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A06	Common	3	1	Job Reference (optional)	173556590

6-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0

 \vdash

0-11-0

6-3-8

6-3-8

12-3-8

6-0-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:28 ID:PAKHGJLdfhjOYpfXU_SB5vzFznI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-3-8

6-0-0

36-7-0

6-3-8

24-3-8

6-0-0

36-7-0

Page: 1

	36-7-0
	5x6 = 7 7 29 30 9 $2x4$ 4 $4x6 = 28$ 7 29 30 9 $2x4$ 4 $4x6 = 7$ 9 $2x4$ 4 10 10 11 12 12 $4x6 = 4x6$ $4x6 = 4x6$ $4x6 = 4x6$ $4x10 = 4x6$ $4x10 = 4x6$ $4x10 = 4x6$
Scale = 1:82.7	9-3-8 3-10-4 2-10-4 4-8-0 2-9-4 3-10-4 9-3-8
Plate Offsets (X, Y): [2:0-3-13,0-0-1], [12:0-4-1,Edge]
Loading (psf) Spacing TCLL (roof) 20.0 Plate Grip DOI Snow (Pf/Pg) 11.5/15.0 Lumber DOL TCDL 7.0 Rep Stress Inc BCLL 0.0* Code	1.25 BC 0.87 Vert(CT) -0.33 18-21 >999 180
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 17-14:2x8 SP WEBS 2x4 SP No.2 SLIDER Left 2x4 SP No.2 2-6-0, Right 2x4	 and C-C Exterior (2) -0-11-0 to 2-8-14, Interior (1) 2-8-14 SP No.2 to 18-3-8, Exterior (2) 18-3-8 to 21-11-6, Interior (1) 2-8-14 21-11-6 to 36-7-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 D oc 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. C 12) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads. (319, 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. 7) 120.0lb AC unit load placed on the top chord, 2-0-0 from left end, supported at two points, 0-0-0 apart. 8) All plates are 3x6 (=) MT20 unless otherwise indicated. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
Design valid for use only with MiTek® connectors. This d a truss system. Before use, the building designer must ve building design. Bracing indicated is to prevent buckling is always required for stability and to prevent collapse with fabrication, storage, delivery, erection and bracing of trus	ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. sign is based only upon parameters shown, and is for an individual building component, not ify the applicability of design parameters and properly incorporate this design into the overall individual truss web and/or chord members only. Additional temporary and permanent bracing possible personal injury and property damage. For general guidance regarding the es and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) allable from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A07	Common	1	1	Job Reference (optional)	173556591

6-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0

 \vdash

0-11-0

6-3-8

6-3-8

12-3-8

6-0-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:29 ID:HX?y?KSyDY7HR03Ia4Lr8bzxI4D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-3-8

6-0-0

24-3-8

6-0-0

36-7-0

Page: 1

37-6-0

+-+

0-11-0

36-7-0

6-3-8

Coole 4400 Z	0-8-0 1	283 ²⁹ 2 5x6 II 9-3 9-3	6 ² 30 5 4 19	4x10= 1/ 4x6 u 12 <u>16-0-0</u>	5x6= 7 7 x6 II 4x <u>20-8-0</u> 4-8-0	(6 II 4x6 II	8 5 10= 27- 3-1		9 2	2x4 ¢ 10 36- 9-3	7-0	12 13 5x6 =	
Scale = 1:82.7 Plate Offsets ((X, Y): [2:0-3-9,0-0-5]	, [12:0-3-9,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.88 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.31 0.09	(loc) 15-18 19-22 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 239	GRIP 244/190 lb FT = 20%	
WEBS NOTES	2x4 SP No.2 *Excep 2x4 SP No.2 Left 2x4 SP No.2 	C 16) _C 16), 12=-217 (LC 2) _LC 2), 12=1416 (LC 2) npression/Maximum 7/257, 4-6=-2249/290 =-1960/384, h-12=-2329/355, -19=-213/1779, 4-15=-155/1755, 4=-77/340, 18=-605/196, =-309/85, 7-18=-182/4	 II; Exp B; En and C-C Ext to 18-3-8; E: 21-11-6 to 3 exposed; er members an Lumber DOL TCLL: ASCE Plate DOL=' psf (flat roof Category II; 4) Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement Building Des verifying Rai requirement This truss ha chord live lo This truss la chord live lo This truss la chord and ai Provide mec bearing plate 	h; TCDL=4.2psf; Bd closed; MWFRS (e terior (2) -0-11-0 to xterior (2) 18-3-8 to 7-6-0 zone; cantilev nd vertical left and r d forces & MWFRS L=1.60 plate grip Dd 7-10; Pr=20.0 psf snow: Lum DOL=1 Exp B; Partially Exp snow loads have b as been designed fd psf or 1.00 times fla on-concurrent with signer/Project engin in Load = 5.0 (psf) of s specific to the use unit load placed on ported at two points e 3x6 (=) MT20 unl as been designed m chord in all areas by 2-00-00 wide will ny other members, chanical connectione e capable of withsts o uplift at joint 12.	envelope 2-8-14, 21-11-6 ver left a right exp 5 for rea OL=1.6C (roof LL (ground (ground 1.5 Plat p.; Ct=1 een cor or greate at roof lc other lin eeer resp covers r. s 5-0-0 less other or a 10.0 vith any for a liv s where I fit betw with BC (by other	exterior zon Interior (1) 2- 5, Interior (1) 2- 5, Interior (1) 2- 5, Interior (1) 2- 5, Interior (1) posted;C-C for (ctions shown) :: Lum DOL=1 sonwi); Pf=11 e DOL=1.15); .10 sidered for th er of min roof poad of 11.5 ps ve loads. ponsible for ain loading truss compor chord, 4-0-0 f apart. erwise indicat 0 psf bottom other live loav e load of 20.0 a rectangle veen the bottoc DL = 10.0psf ers) of truss to	e 8-14 .25 .5 live of on ed. ds. psf om		4	2	036	AL 322 NEER	
Design v a truss s building is always fabricatio	valid for use only with MiTek system. Before use, the build design. Bracing indicated is rs required for stability and to on, storage, delivery, erectio	® connectors. This design ding designer must verify th s to prevent buckling of indi prevent collapse with pose on and bracing of trusses ar	THIS AND INCLUDED MITEK R is based only upon parameters e applicability of design param vidual truss web and/or chord ible personal injury and prope id truss systems, see ANSIT e from the Structural Building (s shown, and is for an inc eters and properly incorp members only. Additiona rty damage. For general PI1 Quality Criteria and	dividual bu porate this al tempora I guidance I DSB-22	ilding component design into the c ary and permaner regarding the available from T	t, not verall it bracing russ Plate	Institute (www.tpinst	t.org)	TRENGINE 818 Soundsic Edenton, NC		ite

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A08	Common	4	1	Job Reference (optional)	173556592

<u>12-3-8</u>

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

1)

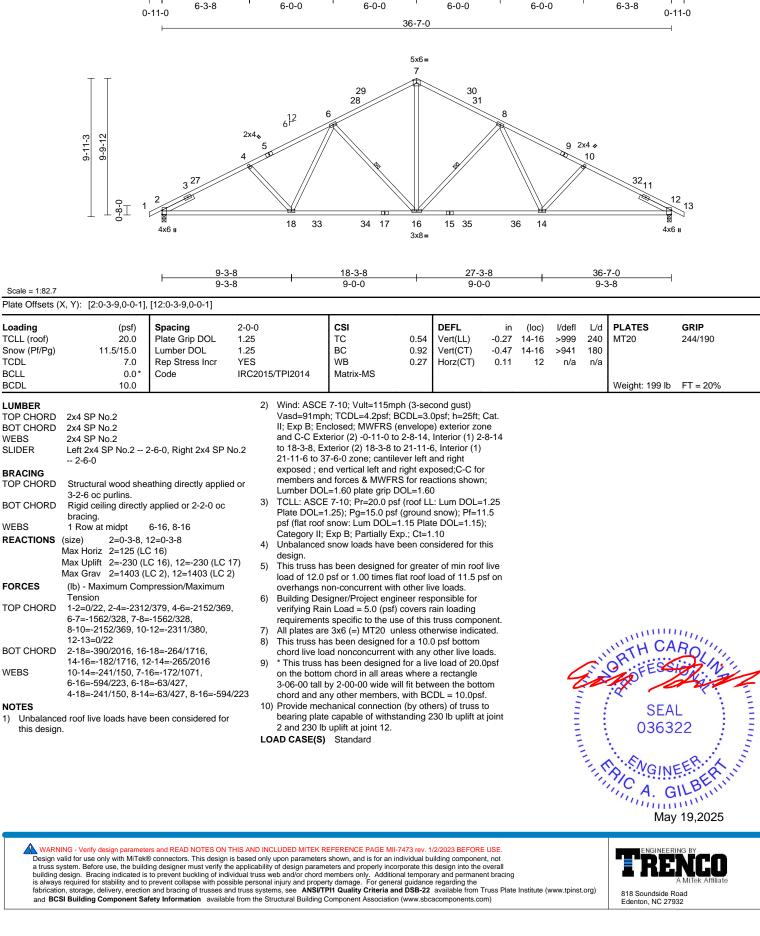
-0-11-0

 \vdash

6-3-8

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:29 ID:HX?y?KSyDY7HR03la4Lr8bzxl4D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

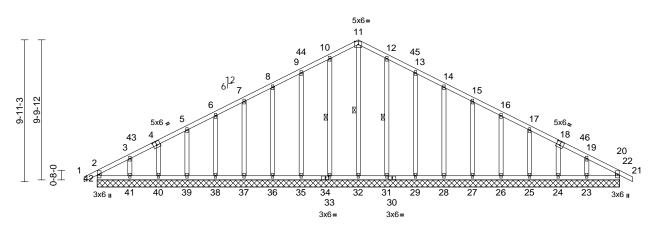
30-3-8


<u>24-3-8</u>

Page: 1

37-6-0

_


36-7-0

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A09E	Common Supported Gable	1	1	Job Reference (optional)	173556593

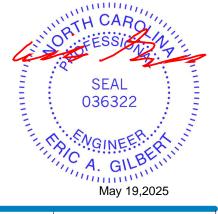
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:29 ID:u30PkqU8Tu5wSh88Etj6DVzxaJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	,0 0 0],		1.0 2 0,	0 1 0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	11.5/*	(psf) 20.0 15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2		CSI TC BC WB Matrix-MR	0.07 0.05 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc purli Rigid ceiling of bracing. 1 Row at mid (size) 22: 28: 38: 39: 42: Max Horiz 42: Max Uplift 22: 44: Max Uplift 22: 44: 24: 24: 24: 24: 24: 24:	ns, exc directly pt =36-7-0 =-38 (Lu =-46 (Lu =-48 ($ \begin{array}{c} \text{C 16} \\ \text{C 13}, 23 = -74 \ (\text{LC 1} \\ \text{C 17}, 25 = -52 \ (\text{LC 1} \\ \text{C 17}, 27 = -47 \ (\text{LC 1} \\ \text{C 17}, 29 = -50 \ (\text{LC 1} \\ \text{C 17}, 33 = -44 \ (\text{LC 1} \\ \text{C 16}, 36 = -46 \ (\text{LC 1} \\ \text{C 16}, 38 = -46 \ (\text{LC 1} \\ \text{C 16}, 40 = -35 \ (\text{LC 1} \\ \text{C 16}, 40 = -35 \ (\text{LC 1} \\ \text{C 2}, 23 = 142 \ (\text{LC 3} \\ \text{C 2}, 25 = 155 \ (\text{LC 3} \\ \text{C 2}, 25 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 147 \ (\text{LC 3} \\ \text{C 2}, 35 = 147 \ (\text{LC 3} \\ \text{C 2}, 35 = 147 \ (\text{LC 3} \\ \text{C 2}, 35 = 147 \ (\text{LC 3} \\ \text{C 23}, 35 = 147 \ (\text{LC 3} \\ \text{C 23}, 35 = 147 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 23 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 155 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 23 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 155 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 23 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 155 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 23 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 155 \ (\text{LC 3} \\ \text{C 2}, 35 = 155 \ (\text{LC 3} \\ \text{C 2}, 37 = 148 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2} \ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2} \ \text{C 2}, 39 = 155 \ (\text{LC 3} \\ \text{C 2} \ \text{C 2}, 39 = 155 \ (\text{LC 3} \ \text{C 2} \ \text{C 3} \ \text{C 2} \ \text{C 2} \ \text{C 3} \ \text{C 3} \ \text{C 2} \ \text{C 3} \ \text$	-7-0, -7-0, -7-0, -7-0, -7-0, -7-0, 7), 7), 7), 6), 6), 6), 6), 6), 5), 5), 5), 5), 5), 33), 34), 4),	FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Co Tension 2-42=-127/80, 1-2: 3-5=-91/79, 5-6=-5 7-8=-57/162, 8-9= 10-11=-96/271, 11 12-13=-84/235, 13 14-15=-57/158, 15 16-17=-32/84, 17- 20-21=0/26, 20-22 41-42=-28/102, 40 39-40=-32/106, 38 37-38=-32/106, 36 35-36=-32/106, 36 35-36=-32/106, 26 25-26=-32/106, 24 23-24=-28/102, 22 11-32=-159/29, 10 9-35=-107/88, 8-36 6-38=-106/66, 5-33 3-41=-99/10, 12-5 13-29=-107/88, 14 15-27=-108/67, 16 17-25=-115/71, 18 19-23=-99/111 ed roof live loads have.	=0/26, 2 =0/26, 2 -70/198, -70/198, -12=-96 -14=-70 -16=-44 19=-60/4 =-127/7 -41=-28 -39=-32 -32=-32 -32=-32 -23=-32 -23=-32 -23=-32 -23=-32 -23=-32 -23=-13 6=-108/6 9=-115/7 31=-133 -28=-10 -24=-10 -24=-10	3=-132/59, 7=-44/124, 9-10=-84/238 (195, (195, (121, 5, 19-20=-92/ 9- (106, (, 27, 67, 61,	Va II; I anni to 21- exp men Luu Juu onl sea or or All Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	sd=91mp Exp B; Ei d C-C Cc 18-3-8, Cc 11-6 to 3 bosed ; e mbers a mber DO uss desig y. For si e Standa consult q LL: ASC te DOL= (flat root tegory II; balancec sign. s truss h d of 12.0	h; TCI ncloses rrner (3 corner r 37-6-0 nd ver ad force L=1.6(0 ruds ex rd Indu ualifier E 7-10 1.25); f snow Exp B d snow as bee psf or non-co	Vult=115mph (3 DL=4.2psf; BCDL d; MWFRS (enve 3) -0-11-0 to 2-8-1 (3) 18-3-8 to 21-1 zone; cantilever I tical left and right res & MWFRS for 0 plate grip DOL= r wind loads in th cposed to wind (n istry Gable End E d building designe ; Pr=20.0 psf (gro : Lum DOL=1.15 s; Partially Exp.; C loads have been en designed for gr 1.00 times flat co ncurrent with oth Charles SEA 0363	=3.0psf; h=25ft; lope) exterior zc [4, Exterior (2) 2 1-6, Exterior (2) 2 1-6, Exterior (2) eft and right exposed;C-C fc reactions show 1.60 e plane of the tr ormal to the fac obtails as applicic er as per ANSI/T f LL: Lum DOL= und snow); Pf=1 Plate DOL=1.15 :t=1.10 considered for reater of min roc of load of 11.5 p er live loads.	one 2-8-14) or m; uss e), able, FPI 1. =1.25 11.5 5); this of live psf on

May 19,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

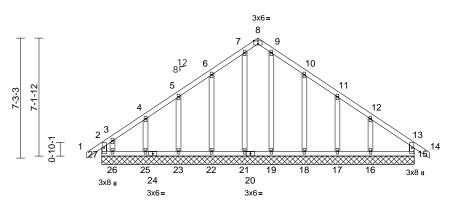

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	A09E	Common Supported Gable	1	1	Job Reference (optional)	173556593

- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 8) All plates are 2x4 (||) MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 11) Colla stude accord at 2.0.0 collaboration.
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 14) Provide mechanical connection (by others) of truss to
- (14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 42, 11 lb uplift at joint 22, 44 lb uplift at joint 33, 49 lb uplift at joint 35, 46 lb uplift at joint 36, 47 lb uplift at joint 37, 46 lb uplift at joint 38, 52 lb uplift at joint 39, 35 lb uplift at joint 40, 85 lb uplift at joint 41, 42 lb uplift at joint 31, 50 lb uplift at joint 29, 46 lb uplift at joint 28, 47 lb uplift at joint 27, 46 lb uplift at joint 26, 52 lb uplift at joint 25, 38 lb uplift at joint 24 and 74 lb uplift at joint 23.

LOAD CASE(S) Standard

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:29 ID:u30PkqU8Tu5wSh88Etj6DVzxaJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	B01E	Common Supported Gable	1	1	Job Reference (optional)	173556594

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:30 ID:lue5qOUGCgqD743e3RMm4WzxI2u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

H

18-11-0

Scale = 1:69.8

Plate Offsets (X, Y): [8:0-3-0,Edge]

	,, , ,, [olo o o,2ago]	1											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.09	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.25		BC	0.03	Vert(CT)	n/a	-	n/a	999	101120	244/130
TCDL	7.0	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 116 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2				26-27=-61/82, 25- 22-23=-61/82, 21- 18-19=-61/82, 17- 15-16=-61/82	22=-61/8 18=-61/8	2, 19-21=-61/ 2, 16-17=-61/	82, 82,	11) This cho 12) * Th	s truss h rd live lo nis truss	ias bee bad noi has be	een designed for	any other live loads. a live load of 20.0psf
OTHERS	2x4 SP No.2		N		7-21=-100/19, 9-1							rd in all areas wh	
BRACING					5-23=-110/67, 4-2 10-18=-120/91, 12			101,				er members.	between the bottom
TOP CHORD		athing directly applie	d or		12-16=-138/102	1 17 - 10	<i>b</i> /30,						others) of truss to
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		N	OTES									ng 142 lb uplift at joint
BOT ONORD	bracing.				roof live loads ha	ve been o	considered for						t joint 21, 76 lb uplift
	(size) 15=18-11 17=18-11 19=18-11 22=18-11 22=18-11 22=18-11 27=18-11 Max Horiz 27=-151 Max Uplift 15=-6 (LC 23=-58 (L 23=-58 (L 23=-58 (L 23=-58 (L 26=-162 Max Grav 15=175 (17=165 (19=144 (22=169 (25=160 (27=204 ((LC 12) C 11), 16=-113 (LC 1 C 15), 18=-85 (LC 1 C 11), 22=-76 (LC 14 C 14), 25=-59 (LC 1 (LC 14), 27=-142 (LC LC 2), 16=239 (LC 2 LC 2), 18=189 (LC 2 LC 2), 21=151 (LC 2 LC 26), 23=159 (LC LC 26), 26=179 (LC LC 27)	2) 5), 5), 10) 7), 3), 4), 26),	 this design. Wind: ASCE Vasd=91mp II; Exp B; Er and C-C Co 9-5-8, Cornor 19-10-0 zor vertical left : forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q TCLL: ASCC Plate DOL= psf (flat roof Category II; 	F-10; Vult=115m, b; TCDL=4.2psf; E nclosed; MWFRS (rner (3) -0-11-0 to er (3) 9-5-8 to 12-3 le; cantilever left an and right exposed; VFRS for reactions blate grip DOL=1.6 ned for wind loads uds exposed to wird industry Gable E ualified building de E 7-10; Pr=20.0 ps 1.25); Pg=15.0 psf snow: Lum DOL= Exp B; Partially E: as been designed	ph (3-sec 3CDL=3.1 envelope 2-1-0, E: -4, Exter nd right e C-C for n s shown; 0 in the pl: nd (norm End Deta ssigner a: if (roof LL i (ground 1.15 Plat xp.; Ct=1	cond gust) Dpsf; h=25ft; C) exterior zon (terior (2) 2-1- ior (2) 12-3-4 xposed; end hembers and Lumber ane of the trus al to the face) is as applicat as per ANSI/TP .: Lum DOL=1 snow); Pf=11 snow); Pf=11 (1) (1) (1) (1) (1) (1) (1) (Cat. e 0 to to ss , ole, .25 .5	162 at jo 14) In ti of ti LOAD (1) De In Ur Tr	t lb uplift bint 17 a ne LOAI ne truss CASE(S ead + Sr crease= niform Lo Vert: 1-: apezoid	at join and 113 D CASE are no) Stan now (ba 1.15 oads (ll 2=-37, al Load	t 26, 85 lb uplift a 3 lb uplift at joint 4 E(S) section, load ted as front (F) o ndard alanced): Lumber b/ft) 2-8=-37, 8-13=-3 is (lb/ft) CFESS	ds applied to the face r back (B). Increase=1.15, Plate
FORCES	Tension 2-27=-151/93, 1-2= 3-4=-100/90, 4-5=-8 6-7=-119/129, 7-8= 9-10=-119/129, 10-		9/39, ₇₎	load of 12.0 overhangs r Building Deverifying Ra requirement All plates ar Gable requi	psf or 1.00 times i non-concurrent witt signer/Project engi in Load = 5.0 (psf) is specific to the us e 2x4 () MT20 ur res continuous bot fully sheathed from nst lateral movement	flat roof lo h other liv ineer res covers r se of this hless oth tom chor n one fac	bad of 11.5 ps ve loads. bonsible for ain loading truss compon erwise indicate d bearing. e or securely	f on ent. ed.		111111	A A A A A A A A A A A A A A A A A A A		EER. KINN

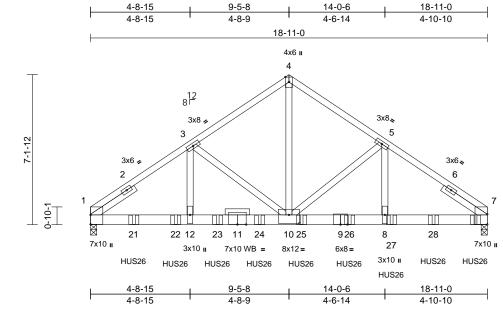
May 19,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	B01E	Common Supported Gable	1	1	Job Reference (optional)	173556594

Vert: 27=-20-to-26=-20 (F=0), 26=-20 (F=0)to-25=-22 (F=-2), 25=-22 (F=-2)-to-24=-22 (F=-2), 24=-22 (F=-2)-to-23=-24 (F=-4), 23=-24 (F=-4)to-22=-25 (F=-5), 22=-25 (F=-5)-to-21=-27 (F=-7), 21=-27 (F=-7)-to-20=-27 (F=-7), 20=-27 (F=-7)to-19=-28 (F=-8), 19=-28 (F=-8)-to-18=-30 (F=-10), 18=-30 (F=-10)-to-17=-31 (F=-11), 17=-31 (F=-11), to-16=-33 (F=-13), 16=-33 (F=-13)-to-15=-35 (F=-15) Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:30 ID:lue5qOUGCgqD743e3RMm4Wzxl2u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	B02G	Common Girder	1	2	Job Reference (optional)	173556595

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:30 ID:f7zPSvI31Qc6mTksL3mwz9zxI2Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

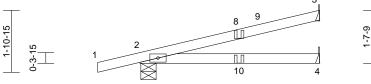
. u

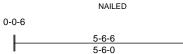
Scale = 1:54.9 Plate Offsets (X, Y): [10:0-6-0,0-4-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.80 0.53 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.21 0.05	(loc) 10-12 10-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
	2x6 SP DSS 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 2 2-6-0 Structural wood she 3-2-6 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=122 (LC Max Uplift 1=-1025 (Max Grav 1=6320 (L (lb) - Maximum Com Tension	athing directly applied applied or 10-0-0 oc 7=0-3-8, (req. 0-4-5) C 9) LC 10), 7=-1165 (LC LC 2), 7=7295 (LC 2) ppression/Maximum	lo.2 3) 4) d or 5) 11) 6)	except if note CASE(S) see provided to d unless other Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp B; Enc cantilever lef right exposed TCLL: ASCE Plate DOL=1 psf (flat roof s Category II; I Building Des verifying Rair requirements	considered equally ed as front (F) or ba tion. Ply to ply con istribute only loads wise indicated. roof live loads have 7-10; Vult=115mph ; TCDL=4.2psf; BC closed; MWFRS (en t and right exposed d; Lumber DOL=1.6 7-10; Pr=20.0 psf (25); Pg=15.0 psf (snow: Lum DOL=1. Exp B; Partially Exc igner/Project engine h Load = 5.0 (psf) c a specific to the use city is increased by	ack (B) nection noted been (3-sec CDL=3. nvelope ; end 50 plate (roof Ll ground 15 Plat 5.; Ct=1 eer res sovers r of this	face in the LC s have been as (F) or (B), considered fo opsf; h=25ft; () exterior zor vertical left an grip DOL=1.1. :: Lum DOL=: : Lum DOL=: : 10 poonsible for ain loading truss comport	r Cat. le; d 60 1.25 .5 ; ment.	, U	crease= niform Lo Vert: 1-4 oncentra Vert: 19 23=-102	1.15 bads (II 4=-37, ted Los =-1035 24 (B),	o/ft) 4-7=-37, 13-17≕ ads (lb) 5 (B), 21=-1024 (B), 22=-1024 (B), 5=-1168 (B), 26=-1031
TOP CHORD 1-3=-8520/1397, 3-4=-6200/1053, 4-5=-6200/1054, 5-7=-8467/1374 7) Bearing capacity is increased by the plate Plate must be within 1/4 in of bearing surf Plate) psf bottom other live load e load of 20.0 a rectangle)psf			and a	ORTH CA	ROJ
(0.131"x3") Top chords oc. Bottom cho staggered	4-10=-1070/6495 to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-7-0 oc. ected as follows: 2x4 -	chord and an) WARNING: F than input be) Provide mecl bearing plate joint 1 and 1') Use Simpsor Truss) or equ 2-0-12 from t back face of	hanical connection capable of withsta 165 lb uplift at joint to Strong-Tie HUS20 uivalent spaced at 2 he left end to 18-4- bottom chord. les where hanger is	ze at jo (by oth nding 1 7. 6 (14-1) 2-3-8 oc 4 to co	int(s) 7 greate ers) of truss to 025 lb uplift a 0d Girder, 4-1 c max. starting nnect truss(es	er o at Od g at s) to				SEA 0363	EER.K		

May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	CJ01	Jack-Open	2	1	Job Reference (optional)	173556596

ID:cdCiYp32HwkgQz8fOYuE1TzG?vD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-3-9 5-6-6 5-6-6 1-3-9 5-6-6 NAILED 2.83 F

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 16 10:00:30

Page: 1

0-0-6

Uniform Loads (lb/ft)

Vert: 10=-4 (F)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Vert: 1-3=-37, 4-5=-20

Concentrated Loads (lb)

3x6 =

Scale - 1:35.5

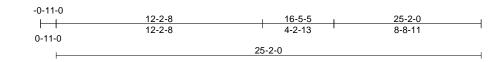
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201		CSI TC BC WB Matrix-MP igner/Project eng	0.34 0.30 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.00	(loc) 4-7 4-7 2	l/defl >999 >772 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
TOP CHORD			5)		igner/Project eng	ineer res	oonsible for		-			•	
	Max Horiz 2=51 (LC Max Uplift 2=-88 (LC (LC 16) Max Grav 2=284 (LC (LC 7)	applied or 10-0-0 oc 3= Mechanical, 4= al 12) 12), 3=-48 (LC 16), 2 2), 3=126 (LC 2), 4	7) 8) 9) 4=-1 -=95	requirements This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th chord and ar Refer to gird Provide mec bearing plate 3, 88 lb upliff () "NAILED" ind (0.148"x3.25)	n Load = 5.0 (psf s specific to the u is been designed ad nonconcurreni nas been designed n chord in all are by 2-00-00 wide u y other members er(s) for truss to i hanical connection e capable of withs at joint 2 and 1 dicates 3-104 (0. ") toe-nails per N CASE(S) section) covers r ise of this I for a 10.1 t with any d for a liv as where will fit betv s. truss conr on (by oth standing 4 b uplift at 148"x3") c IDS guidli	ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 8 lb uplift at joint 4. or 2-12d nes.	ads. Opsf tom joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Comp Tension 1-2=0/16, 2-3=-115/2 2-4=-44/101			of the truss a	are noted as front Standard ow (balanced): Lu	(F) or ba	ck (B).						

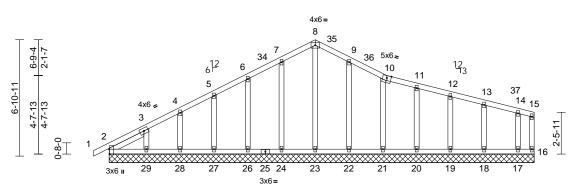
NOTES

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-3-9 to 2-11-6, Exterior (2) 2-11-6 to 5-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 2) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

G

SEAL


036322


111111111

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	916 Serenity	
P02678	-25595	G01E	Roof Special Supported Gable	1	1	Job Reference (optional)	173556597

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:30 ID:H9qPa_SuEgPNp5DASmc1VgzxaEE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-2-0

Scale = 1:68.2

Continued on page 2

Plate Offsets (X, Y): [2:0-3-8,Edge]

	⊼, 1). [2.0-5-0,∟uge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .25 .25 ES RC2015/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.03 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=25-2-0, 18=25-2-0 24=25-2-0	athing directly applied of cept end verticals.	BOT CHORD	$\begin{array}{l} 1-2=0/22, 2-3=-51\\ 4-5=-45/85, 5-6=+\\ 7-8=-79/197, 8-9=\\ 10-11=-51/93, 11-\\ 13-14=-33/43, 14-\\ 2-29=-30/39, 28-\\ 2-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-23=-30/39, 24-\\ 22-33=-30, 24-\\ 22-33=-30, 24-\\ 22-33=-30, 24-\\ 22-33=-30, 24-\\ 22-33=-30, 24-\\ 22-33=-30, 24-\\ 22-32=-30, $	52/123, 6 -79/188, 12=-46/7 15=-27/2 9=-30/39 26=-30/3 22=-30/3 22=-30/3 19=-27/3 4=-116/1 8=-108/6 -21=-96 -19=-10	-7=-65/161, 9-10=-64/127 8, 12-13=-40, 8, 15-16=-17/ 9, 27-28-30/ 9, 23-24=-30, 9, 23-24=-30, 9, 23-24=-30, 9, 23-24=-30, 9, 23-24=-30, 9, 20-21=-27/ 11, 6-26=-10; 6, 3-29=-114/ 82, 8/54,	, 60, 10 9, 39, 35, 35, 7/69,	loa ove 7) Bu ver rec 8) All 9) Ga 10) Ga 11) Thi cho 12) * T on 3-0	d of 12.0 erhangs ilding De rifying Ra quiremen plates an ble requi ble studs is truss h ord live lo his truss the botto)6-00 tall) psf or non-co signer/ ain Loa ts spec re 2x4 ires col s space as bee bad nor has be bad nor has be bom cho by 2-0	1.00 times flat rc ncurrent with other (Project engineer d = 5.0 (psf) cove ific to the use of (()) MT20 unless intinuous bottom of ed at 2-0-0 oc. an designed for a nconcurrent with een designed for rd in all areas wh	responsible for ers rain loading this truss component. otherwise indicated. schord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf
	Max Horiz 2=94 (LC Max Uplift 2=-34 (LC 17=-41 (L 21=-49 (L 24=-48 (L 27=-47 (L 24=-48 (L 27=-47 (L 2=29-70 (L 17=117 (L 19=147 (L 23=146 (L 26=146 (L	20) (12), 16=-1 (LC 16), (C 17), 18=-37 (LC 13), (C 17), 20=-36 (LC 13), (C 17), 22=-55 (LC 17), (C 16), 26=-47 (LC 16), (C 16), 28=-44 (LC 16), (C 16), 28=-44 (LC 16), (C 42), 16=20 (LC 33), (C 43), 18=154 (LC 2), (C 43), 20=145 (LC 2), (C 30), 24=156 (LC 42), (C 2), 27=149 (LC 42), (C 2), 27=149 (LC 42), (C 42), 29=160 (LC 2)	 Unbalanced this design. Wind: ASC Vasd=91mj II; Exp B; E and C-C Cd 12-2-8, Cor to 25-0-4 zd vertical left forces & Mi DOL=1.60 Truss desig only. For s see Standa or consult c TCLL: ASC Plate DOL= psf (flat roo Category II 	d roof live loads have E 7-10; Vult=115mp oh; TCDL=4.2psf; E nclosed; MWFRS (orner (3) -0-11-0 to oner (3) 12-2-8 to 15 one; cantilever left a and right exposed; WFRS for reactions olate grip DOL=1.66 uned for wind loads tuds exposed to win rd Industry Gable E jualified building de E 7-10; Pr=20.0 ps f snow: Lum DOL= ; Exp B; Partially Es d snow loads have	oh (3-sec CCDL=3. envelope 2-2-8, E: 5-2-8, Ex 5-2-8, Ex 5-2, Ex 5-2	cond gust) opps; h=25ft; (2) exterior zon tterior (2) 2-2- terior (2) 15-2 exposed; enu- nembers and Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 snow); Pf=11 snow); Pf=11 .10	Cat. e 8 to -8 d ss , ole, ,25 .5		M. CHINNES	The second se	SEA 0363	

May 19,2025

Page: 1

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	G01E	Roof Special Supported Gable	1	1	Job Reference (optional)	173556597

13) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 34 lb uplift at joint 2, 1 lb uplift at joint 16, 48 lb uplift at joint 24, 47 lb uplift at joint 26, 47 lb uplift at joint 27, 44 lb uplift at joint 28, 70 lb uplift at joint 29, 55 lb uplift at joint 22, 49 lb uplift at joint 27, 44 lb uplift at joint 28, 70 lb uplift at joint 29, 55 lb uplift at joint 22, 49 lb uplift at joint 27, 49 lb uplift at joint 28, 70 lb uplift at joint 29, 55 lb uplift at joint 22, 49 lb uplift at joint 27, 49 lb uplift at joint 28, 47 lb uplift at joint 28, 48 lb uplift at joint 28, 48 lb uplift at joint 28, 48 lb up

joint 21, 36 lb uplift at joint 20, 36 lb uplift at joint 19, 37 lb uplift at joint 18, 41 lb uplift at joint 17 and 34 lb uplift at joint 2.

LOAD CASE(S) Standard

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:30 ID:H9qPa_SuEgPNp5DASmc1VgzxaEE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	G02	Roof Special	5	1	Job Reference (optional)	173556598

12-2-8

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:69.9

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

2)

LUMBER

TOP CHORD

BOT CHORD

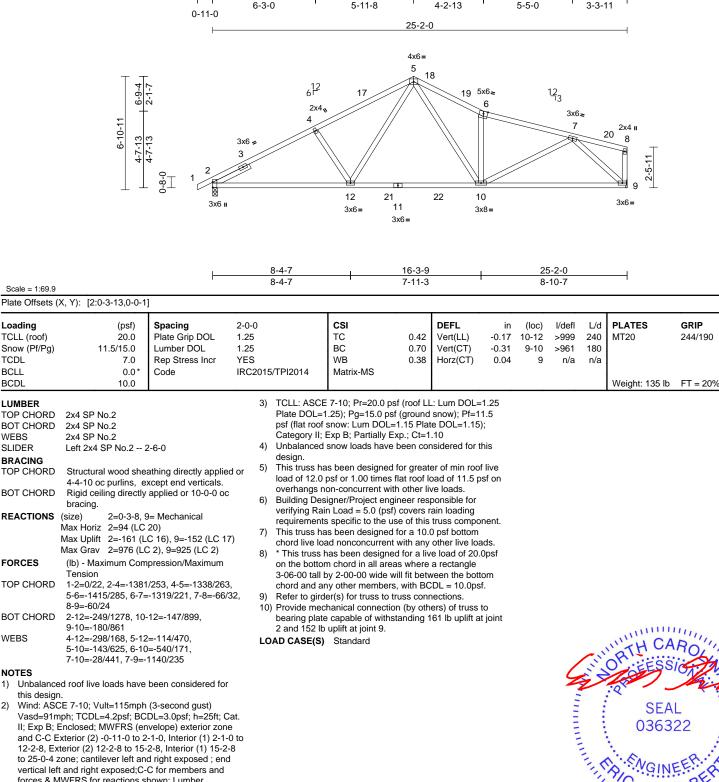
TCLL (roof)

Snow (Pf/Pg)

-0-11-0

 \vdash

6-3-0


Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:31 ID:6PJN6HLIoPkthTtOnJxOVHzxaD4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-10-5

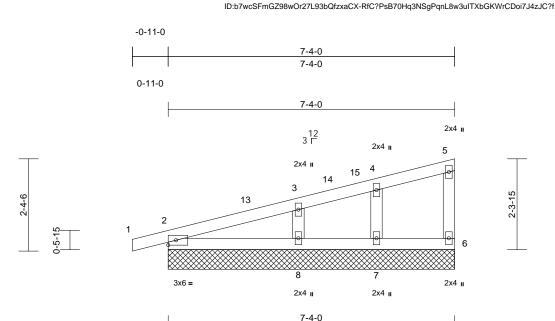
25-2-0

16-5-5

Page: 1

and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 12-2-8, Exterior (2) 12-2-8 to 15-2-8, Interior (1) 15-2-8 to 25-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

G mm May 19,2025 WWWWWWWW

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	G03E	Monopitch Supported Gable	1	1	Job Reference (optional)	173556599

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:29.5

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 11.5/15.0	Lumber DOL	2-0-0 1.25 1.25		CSI TC BC	0.09 0.07	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	7.0 0.0 10.0		YES IRC2015	5/TPI2014	WB Matrix-MP	0.02	Horz(CT)	0.00	2	n/a	n/a	Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, Rigid ceiling direct bracing. (size) 2=7-4-	heathing directly applie except end verticals. tly applied or 10-0-0 o 0, 6=7-4-0, 7=7-4-0, 8=	c 7)	Plate DOL=1 psf (flat roof Category II; I Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements	7-10; Pr=20.0 .25); Pg=15.0 p snow: Lum DOL Exp B; Partially snow loads hav as been designe psf or 1.00 time: on-concurrent w igner/Project en n Load = 5.0 (ps s specific to the	sf (ground =1.15 Plat Exp.; Ct=1 e been cor d for great s flat roof lo ith other lin gineer res f) covers r use of this	snow); Pf=1 e DOL=1.15 .10 isidered for t er of min root bad of 11.5 p ve loads. ponsible for ain loading truss compo	1.5); his f live sf on					
	7=-30 Max Grav 2=159	LC 12), 6=-11 (LC 16) LC 12), 8=-60 (LC 16) (LC 2), 6=60 (LC 2), 7 8=236 (LC 2)	=126	Gable studs) This truss ha chord live loa	es continuous b spaced at 2-0-0 is been designe ad nonconcurrer	oc. d for a 10.0 nt with any	0 psf bottom other live loa						
FORCES	(lb) - Maximum C Tension 1-2=0/12, 2-3=-98	ompression/Maximum 3/57, 3-4=-66/40,		on the bottor 3-06-00 tall t chord and ar	nas been design n chord in all ar by 2-00-00 wide ny other membe	eas where will fit betv rs.	a rectangle veen the bott	om					
BOT CHORD WEBS NOTES	4-5=-34/33, 5-6=- 2-8=-62/48, 7-8=- 4-7=-97/113, 3-8=	27/36, 6-7=-27/36	12	bearing plate 2, 11 lb uplift	hanical connect capable of with at joint 6, 30 lb buplift at joint	standing 4 uplift at joi	6 lb uplift at	joint				WITH CA	1111.
		ve been considered fo	r LC	DAD CASE(S)							5	"ATH CA	ROUT

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

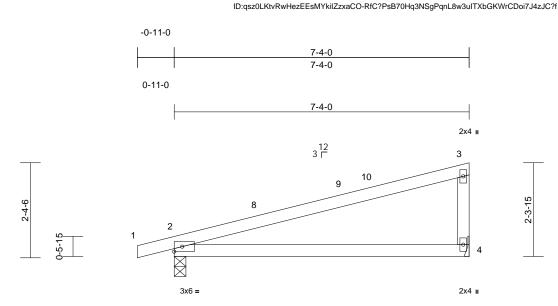
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 19,2025

SEAL


036322

Manunana,

THILL WARNING

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	G04	Monopitch	10	1	Job Reference (optional)	173556600

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Scale	- 1	1.20	6

bracing.

Tension

DOL=1.60 plate grip DOL=1.60

Max Horiz 2=65 (LC 15)

2=0-3-8, 4= Mechanical

Max Uplift 2=-84 (LC 12), 4=-60 (LC 16)

(lb) - Maximum Compression/Maximum

Max Grav 2=319 (LC 2), 4=263 (LC 2)

1-2=0/12, 2-3=-105/44, 3-4=-174/99

Unbalanced roof live loads have been considered for

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25

Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15);

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

Category II; Exp B; Partially Exp.; Ct=1.10

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

REACTIONS (size)

FORCES

NOTES

1)

2)

3)

4)

5)

desian.

TOP CHORD

this design.

BOT CHORD 2-4=-87/87

Scale = 1:28.6													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.71	Vert(LL)	-0.11	4-7	>806	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.25		BC	0.56	Vert(CT)	-0.25	4-7	>346	180		
CDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		6 7	verifying Ra requiremen This truss h chord live lo	signer/Project en ain Load = 5.0 (ps ts specific to the nas been designer oad nonconcurrer has been design	of) covers r use of this d for a 10.0 nt with any	ain loading truss compo) psf bottom other live loa	ads.					
TOP CHORD	6-0-0 oc purlins, ex	i-0-0 oc purlins, except end verticals. on isolo ciling directly applied of 3-0 isolo ciling			om chord in all are by 2-00-00 wide	eas where will fit betv	a rectangle	•					

7-4-0

chord and any other members.

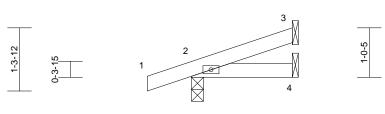
- Refer to girder(s) for truss to truss connections. 9)
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 4 and 84 lb uplift at joint 2.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	J01	Jack-Open	1	1	Job Reference (optional)	173556601

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:31 ID:kryBiS0YDhEExLqt9ipItdzG?vH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-11-0

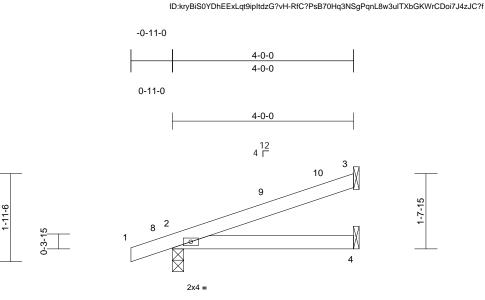
0-11-0

2x4 =

Scale =	1:24
---------	------

Scale = 1:24														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/T	FPI2014	CSI TC BC WB Matrix-MP	0.05 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber DO 2) TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design. 4) This truss load of 12. overhangs 5) Building D verifying R	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-1-3 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, (Max Horiz 2=33 (LC Max Uplift 2=-49 (LC Max Uplift 2=-49 (LC Max Uplift 2=-49 (LC Max Grav 2=136 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/16, 2-3=-23/1 2-4=-4/24 CE 7-10; Vult=115mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er xterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (of snow: Lum DOL=1. ; Exp B; Partially Exp ed snow loads have be has been designed for 0 0 psf or 1.00 times flat in non-concurrent with of esigner/Project engine tain Load = 5.0 (psf) co nts specific to the use	applied or 10-0-0 or 3= Mechanical, 4= al 12) 212), 3=-15 (LC 16) C 2), 3=40 (LC 2), 4= appression/Maximum 1 (3-second gust) DL=3.0psf; h=25ft; (velope) exterior zon ever left and right ght exposed; C-C for for reactions shown; VL=1.60 roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); ;; Ct=1.10 seen considered for the r greater of min roof t roof load of 11.5 ps other live loads. ser responsible for overs rain loading	200 or 300 or 30	chord live loa This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate	s been designed ad nonconcurrent ias been designe n chord in all area y 2-00-00 wide w ny other members gr(s) for truss to nanical connectio capable of withs plift at joint 2. Standard	with any d for a liv as where vill fit betv s. truss con on (by oth	other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t	Dpsf om o				SEA 0363	EER.	

May 19,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	J02	Jack-Open	3	1	Job Reference (optional)	173556602

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Scal	o – 1	:25.4

Scale = 1:25.4													
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.17	DEFL Vert(LL)	in -0.01	(loc) 4-7	l/defl >999	L/d 240		GRIP 244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.25		BC	0.15	Vert(CT)	-0.02	4-7	>999	180	11120	210,100
TCDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2015	5/TPI2014	Matrix-MP							Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing.	0 , 11	7)	verifying Ra requirement This truss h chord live la * This truss on the botto	signer/Project en ain Load = 5.0 (ps ts specific to the las been designer bas been design has been design om chord in all are by 2-00-00 wide	of) covers r use of this d for a 10.0 nt with any ed for a liv eas where	ain loading truss compo) psf bottom other live loa e load of 20. a rectangle	ads. .0psf					
REACTIONS	0	3= Mechanical, 4= al	8)	Refer to gir	any other member der(s) for truss to	o truss con		to					

4-0-0

Max Horiz 2=52 (LC 12) Max Uplift 2=-57 (LC 12), 3=-36 (LC 16) 2=201 (LC 2), 3=90 (LC 2), 4=68 Max Grav

(LC 7) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/16, 2-3=-63/23 BOT CHORD 2-4=-37/56

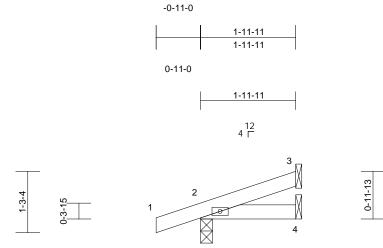
NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 2) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 3)
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 3 and 57 lb uplift at joint 2.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	J03	Jack-Open	1	1	Job Reference (optional)	173556603

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:32 ID:kryBiS0YDhEExLqt9ipItdzG?vH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

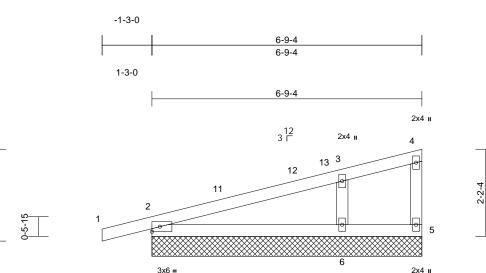
1-11-11

Scale = 1:23.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 11.5/15.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MP	0.05 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0					-						Weight: 8 lb	FT = 20%	_
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Structural wood she 1-11-11 oc purlins. Rigid ceiling directly bracing.	: 12) C 12), 3=-14 (LC 16)	d or 3 8) F 9) F 2 LOAI	hord live loa This truss h on the bottom -06-00 tall b hord and an Refer to girde Provide mech pearing plate	s been designed d nonconcurrent as been designe n chord in all area y 2-00-00 wide w y other members er(s) for truss to i nanical connectio capable of withs plift at joint 3. Standard	with any d for a liv as where vill fit betv s. truss con on (by oth	other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to)psf om o						
FORCES	(lb) - Maximum Con	npression/Maximum												
TOP CHORD BOT CHORD	Tension 1-2=0/16, 2-3=-22/1 2-4=-3/23	0												
Vasd=91m II; Exp B; I and C-C E exposed ; members ;	CE 7-10; Vult=115mph hph; TCDL=4.2psf; BC Enclosed; MWFRS (er ixterior (2) zone; cantii end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC	CDL=3.0psf; h=25ft; C nvelope) exterior zon lever left and right ght exposed;C-C for for reactions shown;									- Martin	ORTH CA	ROLIN	
Plate DOL psf (flat ro	CE 7-10; Pr=20.0 psf (.=1.25); Pg=15.0 psf (of snow: Lum DOL=1. II; Exp B; Partially Exp	ground snow); Pf=11. 15 Plate DOL=1.15);								Channel and the second se		SEA		
3) Unbalance	ed snow loads have be		S									0363	322	
load of 12.	has been designed fo .0 psf or 1.00 times fla s non-concurrent with (it roof load of 11.5 ps								111		SEA 0363	L S22	
5) Building D	esigner/Project engine Rain Load = 5.0 (psf) c	eer responsible for									11	PIC A	BERNIN	

- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading 5) requirements specific to the use of this truss component.

G


minin May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	173556604

2-3-11

6-9-4

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 16 10:00:32

ID:uCexA2u1uJSm2vwxsoSzn_zxI14-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Sca	ما	_	1	.2	Q	0	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.41 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb
	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	applied or 10-0-0 oc 5=6-9-4, 6=6-9-4 15) 12), 6=-74 (LC 16)	7) 8) 9)	Plate DOL= psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement Gable requir Gable studs D) This truss ha	E 7-10; Pr=20.0 ps 1.25); Pg=15.0 psf snow: Lum DOL= Exp B; Partially Ex snow loads have I as been designed i psf or 1.00 times f on-concurrent with signer/Project engi in Load = 5.0 (psf) s specific to the us res continuous bott spaced at 2-0-0 o as been designed i ad nonconcurrent	(ground 1.15 Plat (p.; Ct=1 been cor for great iat roof k n other lin neer res covers r covers r tom chor c. for a 10.0	snow); Pf=11 e DOL=1.15) .10 nsidered for the er of min roof pad of 11.5 py ve loads. ponsible for ain loading truss compored bearing.	I.5 ; live sf on nent.				
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/16, 2-3=-75/50 2-6=-47/30, 5-6=-26, 3-6=-253/118), 3-4=-37/28, 4-5=-4	/21	 This truss I on the bottor 3-06-00 tall I chord and and Provide med bearing plate 	has been designed m chord in all area by 2-00-00 wide w ny other members. shanical connection e capable of withst	d for a liv is where ill fit betv n (by oth anding 7	e load of 20.0 a rectangle veen the botto ers) of truss t '0 lb uplift at j)psf om o				

- 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) 2)
- Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 2, 74 lb uplift at joint 6 and 70 lb uplift at joint 2.

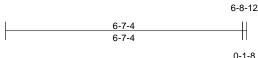
LOAD CASE(S) Standard

Page: 1

GRIP 244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	P02	Monopitch	9	1	Job Reference (optional)	173556605

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

2-3-9

ID:JWoeEGjFB?hlMmsE1sBhD1zxl1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-3-0 6-8-12 6-8-12 1-3-0 6-8-12 2x4 II 12 3 Г 3 0 10 9 1-10-10 8 2 0-5-15 4 \mathbb{X} 3x6 = 2x4 🛛

Scale = 1:32.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.57	Vert(LL)	-0.07	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.25		BC	0.46	Vert(CT)	-0.17	4-7	>456	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC20 ²	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 25 lb	FT = 20%
	6-0-0 oc purlins, ex	applied or 10-0-0 oc 4=0-1-8 15) 5 12), 4=-54 (LC 16)	9	 verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Bearing at jo using ANSI// designer shc Provide mec 	igner/Project eng n Load = 5.0 (ps s specific to the u is been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide y other member int(s) 4 consider (FPI 1 angle to gra- uld verify capacion hanical connectione	f) covers r use of this d for a 10.0 t with any ed for a liv eas where will fit betv s. s parallel t ain formula ity of bear	ain loading truss compo 0 psf bottom other live lo: e load of 20. a rectangle ween the bot to grain value a. Building ng surface.	ads. .0psf tom e					
FORCES	(lb) - Maximum Com	pression/Maximum	1	1) Provide mec	hanical connecti	on (by oth	ers) of truss	to					

bearing plate capable of withstanding 92 lb uplift at joint

- Tension TOP CHORD 1-2=0/16, 2-3=-92/59, 3-4=-158/95 BOT CHORD 2-4=-73/65
- NOTES

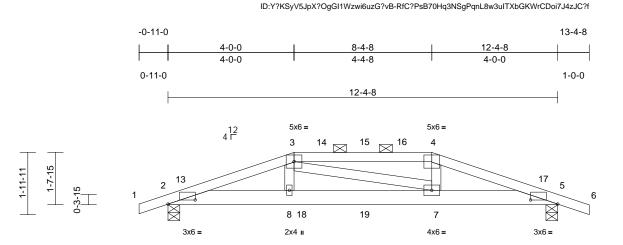
 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

1.25);

2 and 54 lb uplift at joint 4.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENGINEERING BY A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

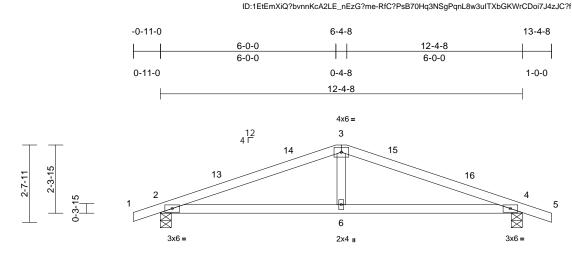
Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	P03G	Hip Girder	1	2	Job Reference (optional)	173556606

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

			L	3-10-4	1		8-6-4		1	12-4	1-8		
0				3-10-4			4-8-0		1	3-10)-4		
Scale = 1:36.6	<u> </u>	1 15 0 40 0 0 4 01											
Plate Offsets (X, Y): [2:0-10-6,0-1-9], [5:0-10-6,0-1-9]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.21 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 121 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord: oc. Bottom chi staggered Web conni	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-4-8, § Max Horiz 2=-22 (LC Max Uplift 2=-164 (L Max Grav 2=698 (LC (lb) - Maximum Com Tension	-0 max.): 3-4. applied or 10-0-0 oc 5=0-4-8 (17) C 8), 5=-166 (LC 9) C 2), 5=706 (LC 2) pression/Maximum 7/330, 3-4=-1530/320, 0/20 294/1545, 42, 4-7=0/273 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	l or 5) 6) 7) 8) 9) 10 11 12 13	II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL=1 psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded) This truss ha chord live loa chord live loa 3-06-00 tall h chord and ar Provide mect bearing plate 2 and 166 lb	h; TCDL=4.2 closed; MWF it and right ex (closed; MWF it and right ex (closed; NWF it and right ex (closed; NWF (closed; NW	osf; BCDL=3.(RS (envelope posed ; end v oDL=1.60 plate. 0 psf (ground OL=1.15 Plat Ily Exp.; Ct=1 iave been cor- ined for greate nes flat roof lc t with other liv engineer resg (psf) covers r nee use of this ie to prevent v ined for a 10.0 rent with any igned for a liv areas where de will fit betw bers. ection (by othi- vithstanding 1 5. tation does no urlin along the	Dpsf; h=25ft; e) exterior zo: ertical left ar grip DOL=1.: :: Lum DOL= snow); Pf=11 e DOL=1.15; .10, Lu=50-0 isidered for t er of min roof pad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin. o p sf bottom other live load e load of 20. a rectangle veen the bott ers) of truss i 64 lb uplift ar to depict the si e top and/or	ne; nd .60 .1.25 .6.5); -0 his f live sf on sf on g. ads. 0psf om to t joint	Cc	ead + Sr rrease=' iform Lc Vert: 1-: oncentra Vert: 4= 15=-18	ow (ba 1.15 3ads (il) 3=-37, ted Lo. -67 (F), 18	ndard alanced): Lumber b/ft) 3-4=-47, 4-6=-37 ads (lb)), 8=-38 (F), 7=-6 =-25 (F), 19=-25	Increase=1.15, Plate , 2-5=-20 3 (F), 3=-66 (F), (F)
except if n CASE(S) s provided to unless oth	oted as front (F) or basection. Ply to ply conro distribute only loads erwise indicated. ad roof live loads have	ck (B) face in the LOA nections have been noted as (F) or (B),		provided suff lb down and up at 6-3-0, top chord, ar lb down at 6 on bottom ch	ficient to supp 63 lb up at 4 and 131 lb do nd 74 lb down 5-3-0, and 74 nord. The des	oort concentra I-0-0, and 44 I own and 63 lb a and 3 lb up a Ib down and 3 sign/selection e responsibilit	ted load(s) 1 b down and up at 8-4-8 at 4-0-0, and b up at 8-3 of such	28 lb on 1 30		111.		A. G	EER & LUN

May 19,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	P04	Нір	1	1	Job Reference (optional)	173556607

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

			1		6-2-4		1		12-4-8			1	
Scale = 1:39.4					6-2-4				6-2-4				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.39 0.45 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (5-8-7 oc purlins. Rigid ceiling directly bracing.	C 17) C 12), 4=-115 (LC 13	6) d or 7) 8)	load of 12.0 overhangs Building De verifying Ra requiremen This truss h chord live la * This truss on the botto 3-06-00 tall chord and a Provide me	as been designed psf or 1.00 time non-concurrent v signer/Project el in Load = 5.0 (p ts specific to the as been designed ad nonconcurre has been designed m chord in all al by 2-00-00 wide chanical connect te capable of wit	es flat roof lo with other liv ngineer resp ssf) covers r use of this ed for a 10.0 ent with any ned for a liv reas where ex will fit betw ers. tion (by oth	bad of 11.5 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	onent. ads. Opsf tom					
	(lb) - Maximum Com Tension 1-2=0/16, 2-3=-861/ 4-5=0/17	196, 3-4=-861/193,	LC	2 and 115 I DAD CASE(S	b uplift at joint 4.) Standard								
BOT CHORD WEBS	2-6=-129/788, 4-6=- 3-6=0/278	129/788											
NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=91mg II; Exp B; Ei and C-C Ex 6-2-4, Exter 13-4-8 zone vertical left forces & MM DOL=1.60 g 3) TCLL: ASC Plate DOL psf (flat rooi Category II;	d roof live loads have	(3-second gust) DL=3.0psf; h=25ft; C welope) exterior zone -1-0, Interior (1) 2-1-1 3, Interior (1) 10-5-3 t ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. ground snow); Pf=11. 15 Plate DOL=1.15); ; Ct=1.10	e 0 to 10 25 5									SEA 0363	• -

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim May 19,2025

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	P05	Common	1	1	Job Reference (optional)	173556608

ID:Hzwefcp3tM2VNjou4ku5e8zG?mV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

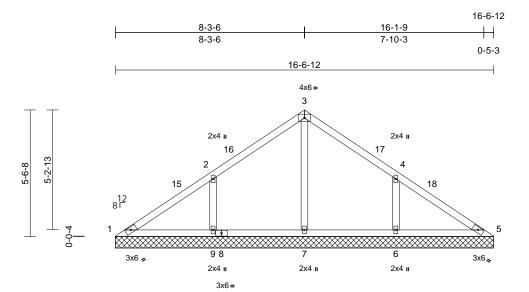
Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 13-4-8 6-2-4 12-4-8 6-2-4 6-2-4 0-11-0 1-0-0 12-4-8 4x6 = 4 Г 3 Ŧ 15 16 14 17 2-4-11 2-8-7 13 18 4 0-3-15 5 0 X 6 3x6 = 3x6 = 2x4 II

			F		6-2-4				12-4-8				
Scale = 1:39.6			I		6-2-4		I		6-2-4			I	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.45 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancee this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E; 6-2-4, Exte 13-4-8 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL= psf (flat roo Category II	Max Horiz 2=-32 (LC Max Uplift 2=-112 (L Max Grav 2=507 (LC (lb) - Maximum Com Tension 1-2=0/16, 2-3=-851/ 4-5=0/17 2-6=-117/777, 4-6=- 3-6=0/279 d roof live loads have	applied or 10-0-0 oc I=0-4-8 :17) C 12), 4=-114 (LC 1: C 2), 4=512 (LC 2) pression/Maximum 180, 3-4=-851/178, 117/777 been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon -1-0, Interior (1) 2-1- Interior (1) 9-2-4 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 IFS Plate DOL=1.15); ; Ct=1.10	7) 3) 9) 4 2at. e 0 to .25 .5	load of 12.0 overhangs n Building Dee verifying Ra requirement This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plate	as been designed f psf or 1.00 times f on-concurrent with signer/Project engin in Load = 5.0 (psf) s specific to the us as been designed m chord in all area by 2-00-00 wide wi ny other members. thanical connection e capable of withst uplift at joint 4. Standard	lat roof lo n other liv neer resp covers r se of this for a 10.0 with any d for a liv s where ill fit betw n (by oth	bad of 11.5 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle ween the bott ers) of truss	sf on nent. ads. 0psf om to				SEA 0363	EER KIN

- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); 3) Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.


818 Soundside Road Edenton, NC 27932

GI un unin May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	V01	Valley	1	1	Job Reference (optional)	173556609

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:33 ID:2imQAoPdTjzznZBe17xV5rzxIIV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-6-12

Scale = 1:50.4

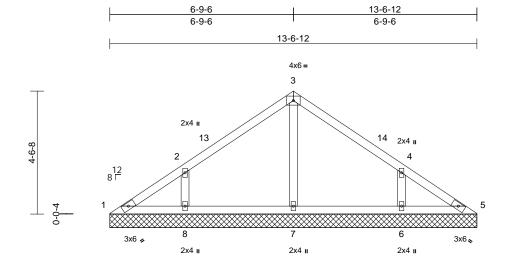
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1'	(psf) 20.0 1.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.26 0.13 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N Structural 10-0-0 oc Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.2 wood she purlins. ng directly 1=16-6-12 7=16-6-12 1=104 (LC 9=-141 (L 1=67 (LC	; 30), 6=-139 (LC 15)	d or -12, 60, 60, 60, 5	 only. For str see Standar or consult qu TCLL: ASCE Plate DOL=' psf (flat roof Category II; Building Des verifying Rai requirement Gable requir Gable requir Gable studs This truss ha chord live loo * This truss loo 	ned for wind loa uds exposed to d Industry Gabl Jalified building 7-10; Pr=20.0 1.25); Pg=15.0 snow: Lum DO Exp B; Partially Jigner/Project e n Load = 5.0 (f s specific to the es continuous I spaced at 4-0-1 as been design ad nonconcurre nas been design an chord in all a oy 2-00-00 wide	wind (norm e End Deta designer a psf (roof Ll psf (ground L=1.15 Pla Exp.; Ct=1 ngineer res ssf) covers i use of this bottom choi 0 oc. ed for a 10. ent with any need for a liv reas where	al to the face ils as applica s per ANSI/T .: Lum DOL= snow); Pf=1 te DOL=1.15, .10 ponsible for ain loading truss compo d bearing. 0 psf bottom other live loa te load of 20. a rectangle	e), hble, PI 1. (1.25 1.5); nent. ads. 0psf				
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	1		ny other membe	ers.						
TOP CHORD	4-5=-88/3	17	302, 3-4=0/301,		bearing plate	e capable of wit	hstanding 6	61 lb uplift at					
BOT CHORD	1-9=-212/ 5-6=-222/	,	12/80, 6-7=-212/80,	L	OAD CASE(S)	•		,					
WEBS			51/153, 4-6=-255/15	3									WITH CA
NOTES												S	R

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 8-3-12, Exterior (2) 8-3-12 to 11-3-12, Interior (1) 11-3-12 to 16-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

GRIP 244/190

FT = 20%


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	V02	Valley	1	1	Job Reference (optional)	173556610

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:33 ID:DpxaTZXXt6MPbFXIAxe41AzxIIK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	=	1:42.6

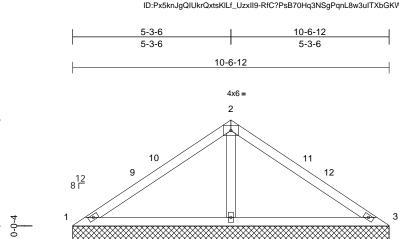
13-6-12

		r											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)		Lumber DOL	1.25		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015/1	FPI2014	Matrix-MS								FT 000/
BCDL	10.0											Weight: 53 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-6-12 7=13-6-12 Max Horiz 1=85 (LC Max Uplift 1=-15 (LC 6=-114 (L Max Grav 1=82 (LC 	2, 5=13-6-12, 6=13-6 2, 8=13-6-12 13) 2 15), 5=-1 (LC 14), C. 15), 8=-116 (LC 1- 26), 5=73 (LC 2), 6=	4)	only. For stu see Standaru or consult qu TCLL: ASCE Plate DOL=1 osf (flat roof Category II; I Building Des Building Des Building Des Verifying Rai requirements Gable requir Gable studs Cable studs Cable studs Cable vie loa	ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-10; Pr=20.0 psf (snow: Lum DOL=1 Exp B; Partially Exp igner/Project engin n Load = 5.0 (psf) of s specific to the use so continuous botto spaced at 4-0-0 oc s been designed for ad nonconcurrent w as been designed	d (norm nd Deta igner a (roof Ll (ground .15 Plat b.; Ct=1 eer res covers r of this bom chor bor a 10. vith any	al to the face ils as applical s per ANSI/TF snow); Pf=11 e DOL=1.15) .10 oonsible for ain loading truss compoi d bearing. 0 psf bottom other live loa), ble, Pl 1. 1.25 I.5 ; nent. ds.					
	(LC 20), 7 25)	7=271 (LC 2), 8=301	· (n chord in all areas y 2-00-00 wide wil			m					
FORCES	(lb) - Maximum Com	pression/Maximum			ly other members.								
	Tension				hanical connection	(by oth	ers) of truss t	0					
TOP CHORD		3/79, 3-4=-75/68,			capable of withsta								
BOT CHORD	4-5=-87/60 1-8=-34/88, 7-8=-34	151 6 7- 21/51			at joint 5, 116 lb up	lift at joi	nt 8 and 114	lb					
BUICHORD	5-6=-34/68	/51, 6-7=-34/51,		uplift at joint									Un.
WEBS		24/137, 4-6=-223/13	6 LOA	D CASE(S)	Standard							What CA	Dall
NOTES		.,									1	ATT	
 Unbalance this design Wind: AS Vasd=91 II; Exp B; and C-C to 6-9-12 9-9-12 to end verting forces & 	ced roof live loads have gn. GCE 7-10; Vult=115mph mph; TCDL=4.2psf; BC i Enclosed; MWFRS (er Exterior (2) 0-0-6 to 2-9 , Exterior (2) 6-9-12 to 5 13-7-2 zone; cantilever cal left and right expose MWFRS for reactions s 0 plate grip DOL=1.60	(3-second gust) DL=3.0psf; h=25ft; C vvelope) exterior zon 0-12, Interior (1) 2-9- 9-9-12, Interior (1) r left and right exposs ed;C-C for members a	cat. e 2 ed ;							W. HILLING		SEA 0363	22 EERIK

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI minin May 19,2025


Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	V03	Valley	1	1	Job Reference (optional)	173556611

3-6-8

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:33 ID:Px5knJgQIUkrQxtsKILf_UzxII9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4

Page: 1

2x4 🦼

818 Soundside Road Edenton, NC 27932

GI 11111111 May 19,2025

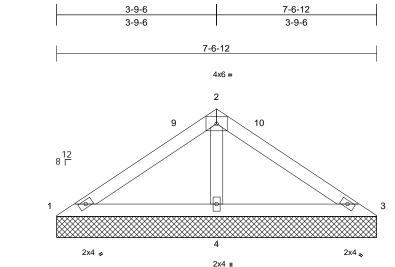
						10 0	12				-		
Scale = 1:38.5		i											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.28 0.24 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-6-12 Max Horiz 1=-65 (LC Max Uplift 1=-40 (LC 4=-133 (L	2, 3=10-6-12, 4=10-6- 2 10) 2 30), 3=-40 (LC 29),	5] d or 6 7] 12 9] =745	Plate DOL=1 psf (flat roof Category II; 1) Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	7-10; Pr=20.0 ps 1.25); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E igner/Project eng n Load = 5.0 (psf s specific to the u es continuous boi spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide hanical connectio	f (ground =1.15 Plai xp.; Ct=1 ineer res) covers r se of this ttom chor oc. for a 10. with any d for a liv as where vill fit betw s.	snow); Pf=11 te DOL=1.15) .10 ponsible for rain loading truss compor d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the bottom	l.5 ; nent. ds.)psf pm					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-90/355, 2-3=-8 1-4=-248/118, 3-4=- 2-4=-573/174	9/355		bearing plate	e capable of withs t at joint 3 and 13	standing 4	40 lb uplift at j						
NOTES	2 -= 575/17-												
 Unbalanced this design. Wind: ASC Vasd=91mj II; Exp B; E and C-C Ex 5-3-12, Ext to 10-7-2 zd vertical left forces & MV DOL=1.60 Truss desig only. For s see Standa 	E 7-10; Vult=115mph ph; TCDL=4.2psf; BC nclosed; MWFRS (er tterior (2) 0-0-6 to 3-0 erior (2) 5-3-12 to 8-3 one; cantilever left an and right exposed;C- WFRS for reactions s plate grip DOL=1.60 gned for wind loads in tuds exposed to wind rd Industry Gable En	(3-second gust) DL=3.0psf; h=25ft; C- ivelope) exterior zone 0-6, Interior (1) 3-0-6 t -12, Interior (1) 8-3-1. d right exposed ; end C for members and	e,								25	SEA 0363	L 22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

10-6-12

4

2x4 🛛


Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	V04	Valley	1	1	Job Reference (optional)	173556612

2-6-8

-0-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:34 ID:6siWtknixZ?RcTenvrW?ObzxII?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-6-12

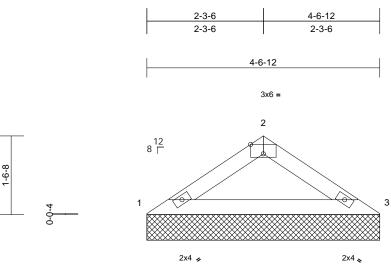
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr		CSI TC 0.15 BC 0.14 WB 0.04 Matrix-MP	Horiz(TL) (in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
l	7-6-12 oc purlins. Rigid ceiling directly bracing. (size) 1=7-6-12, Max Horiz 1=-46 (LC Max Uplift 1=-10 (LC 4=-83 (LC	3=7-6-12, 4=7-6-12 3 10) 3 30), 3=-11 (LC 10),	 psf (flat roof Category II; Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live los * This truss ha chord and ar 	I.25); Pg=15.0 psf (ground snow: Lum DOL=1.15 Pla Exp B; Partially Exp.; Ct= igner/Project engineer res n Load = 5.0 (psf) covers is specific to the use of this es continuous bottom cho spaced at 4-0-0 oc. Is been designed for a 10 ad nonconcurrent with any has been designed for a li m chord in all areas where by 2-00-00 wide will fi ber thy other members.	te DOL=1.15); 1.10 ponsible for rain loading truss componen rd bearing. 0 psf bottom other live loads. ve load of 20.0ps a rectangle ween the bottom					
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E 3-9-12, Ext to 7-7-2 zo	E 7-10; Vult=115mph ph; TCDL=4.2psf; BC inclosed; MWFRS (er kterior (2) 0-0-6 to 3-0	9/207 58/88 been considered for (3-second gust) DL=3.0psf; h=25ft; Cat ivelope) exterior zone I-6, Interior (1) 3-0-6 to -15, Interior (1) 6-7-15 right exposed ; end	bearing plate 1, 11 lb uplift LOAD CASE(S)	e capable of withstanding t at joint 3 and 83 lb uplift	10 lb uplift at joint	:	<i>U</i>		OR FESS	

DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

forces & MWFRS for reactions shown; Lumber

anna mult The manners SEAL 036322 G munn May 19,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	916 Serenity	
P02678-25595	V05	Valley	1	1	Job Reference (optional)	173556613

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 16 10:00:34 ID:SpVPxSrrm5djjFWliP6A5ezxIHw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

III ADGKVVICD0I/J4ZJC?t

4-6-12

Scale = 1:22.6

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.11 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
FORCES	Max Horiz 1=-26 (LC Max Uplift 1=-26 (LC Max Grav 1=169 (LC (Ib) - Maximum Com Tension	applied or 10-0-0 oc 3=4-6-12 10) 14), 3=-26 (LC 15) ; 2), 3=169 (LC 2) pression/Maximum	7) Gable stu 8) This truss chord live d or 9) * This trus on the bo 3-06-00 ti chord and 10) Provide n bearing p	uires continuous bo ds spaced at 4-0-0 has been designed load nonconcurrent s has been designed tom chord in all are ill by 2-00-00 wide v any other member; echanical connection ate capable of withs b uplift at joint 3. S) Standard	oc. I for a 10. t with any ed for a liv as where vill fit betv s. on (by oth	0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om o					
TOP CHORD BOT CHORD	1-2=-257/64, 2-3=-2 1-3=-46/207	57/64										
 this design Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed; emembers a Lumber DC Truss designonly. For sisee Standa or consult e TCLL: ASC Plate DOLa psf (flat root Category II Building Deverifying R 	ed roof live loads have a. EF 7-10; Vult=115mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (en xterior (2) zone; cantil- end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (g of snow: Lum DOL=1. ⁻ I; Exp B; Partially Exp. esigner/Project engine ain Load = 5.0 (psf) co nts specific to the use	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon ever left and right ht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP oof LL: Lum DOL=1 round snow); Pf=11 5 Plate DOL=1.15); ; Ct=1.10 er responsible for vvers rain loading	2at. e ss , le, 11. .25 .5						M. HILLING		SEA 0363	EER HUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

