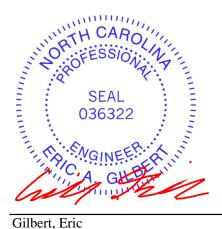


Trenco 818 Soundside Rd Edenton, NC 27932

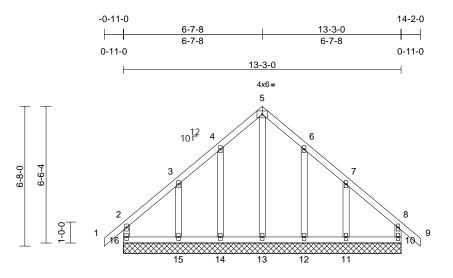

Re: P02595-25452 1034 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73486199 thru I73486236

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


May 15,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A01E	Common Supported Gable	1	1	Job Reference (optional)	173486199

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:01 ID:4Oy18DedUaJog2ANxa1Pcjzwly?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

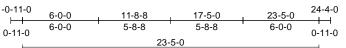
Page: 1

13-3-0

Scal	e = '	1:55
------	-------	------

		·												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.00	10	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MR									
BCDL	10.0											Weight: 81 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exi		2) d or	Vasd=91mpl II; Exp B; En and C-C Cor 6-7-8, Corne 14-2-0 zone; vertical left a forces & MW	7-10; Vult=115r h; TCDL=6.0psf; closed; MWFRS ner (3) -0-11-0 t r (3) 6-7-8 to 9-7 cantilever left a nd right exposed /FRS for reaction	BCDL=3.((envelope o 2-1-0, Ex 7-8, Exterio nd right ex d;C-C for n as shown;	Opsf; h=25ft; (e) exterior zor (terior (2) 2-1 or (2) 9-7-8 to posed ; end nembers and	ne -0 to	of th LOAD (1) De Inc Un	ne truss CASE(S) ad + Sn crease= iform Lo Vert: 1-2	are no) Stat now (ba 1.15 pads (li 2=-43,	ited as front (F) ndard alanced): Lumb	er Increase=1.1	
BOT CHORD	Rigid ceiling directly		3)		late grip DOL=1. ned for wind load		ane of the true	ee		Vert: 16	=-20-to	o-15=-23 (F=-3)), 15=-23 (F=-3)	
REACTIONS	bracing. (size) 10=13-3-0), 11=13-3-0, 12=13-	- /		ids exposed to w								·5)-to-13=-28 (F 10), 12=-30 (F=	
	16=13-3-0 Max Horiz 16=144 (L Max Uplift 10=-47 (L 12=-58 (L 12=-58 (L 15=-110 (D 10=195 (L Max Grav 10=195 (L 12=184 (L 12=184 (L	LC 13) C 14), 11=-113 (LC 1 C 15), 14=-56 (LC 14 LC 14), 16=-50 (LC 1 LC 26), 11=256 (LC 2 LC 31), 13=195 (LC 2 LC 30), 15=227 (LC 2 LC 27)	4) 15), 15) 5) 27), 5) 29),	TCLL: ASCE Plate DOL=1 psf (flat roof Category II; I This truss ha load of 12.0 overhangs n Building Des verifying Rai	alified building c 7-10; Pr=20.0 p 1.15); Pg=15.0 p snow: Lum DOL Exp B; Partially I is been designed psf or 2.00 times on-concurrent w igner/Project en n Load = 5.0 (ps	sf (roof LL sf (ground =1.15 Plat Exp.; Ct=1 d for greate flat roof le ith other liv gineer resp f) covers r	: Lum DOL= snow); Pf=11 e DOL=1.15) .10 er of min roof pad of 11.5 ps ve loads. ponsible for ain loading	1.15 I.5 ; live sf on						
UNCLO	Tension	pression/maximum	7)		s specific to the u e 2x4 () MT20 u							mm	IIIIII.	
TOP CHORD	2-16=-153/81, 1-2=0 3-4=-118/121, 4-5=- 6-7=-118/123, 7-8=- 8-10=-152/79	166/181, 5-6=-166/18	8) 31, 9)	Gable requir Truss to be f braced agair	es continuous bo fully sheathed from st lateral moven spaced at 2-0-0	ottom chor m one fac nent (i.e. d	d bearing. e or securely				AN AN	ORTH C	ARO	
BOT CHORD	15-16=-61/74, 14-15 12-13=-61/74, 11-12		^{74,} 11) This truss ha	is been designed	d for a 10.0				2		Ø.		1
WEBS	5-13=-184/108, 4-14 3-15=-157/109, 6-12	=-127/70,	12	2) * This truss h	ad nonconcurren nas been designe	ed for a liv	e load of 20.0					SE	•	111
NOTES					n chord in all are			m		Ξ		0363	322 :	- E
	ed roof live loads have n.	been considered for	13	chord and ar B) Provide mec bearing plate	by 2-00-00 whe by other member hanical connecti capable of with iff at joint 10, 56	s. on (by oth standing 5	ers) of truss t 0 lb uplift at j	o oint		1111111	A A A A A A A A A A A A A A A A A A A	A SNGII	VEER BERY	The man and the second

- this design.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 16, 47 lb uplift at joint 10, 56 lb uplift at joint 14, 110 lb uplift at joint 15, 58 lb uplift at joint 12 and 113 lb uplift at joint 11.


G

mmm May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A02SE	Common Structural Gable	1	1	Job Reference (optional)	173486200

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:02 ID:NIJuNDYIlajLn0Q4juGX6VzH_kO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

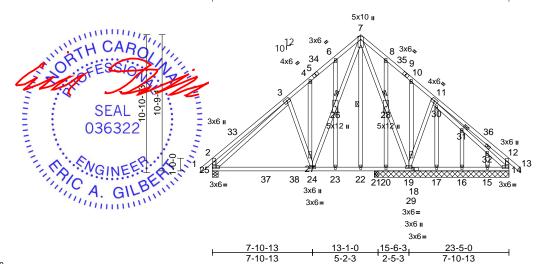


Plate Offsets (X, Y): [18:0-1-14,0-1-8]

		-1			-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	TPI2014	CSI TC BC WB Matrix-MS	0.34 0.49 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.01	. ,	l/defl >999 >844 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				plate grip DOL=1.6	11-29=-2 7-26=-20 1-27=-27 30=-144 31-32=-1 7-22=-36 7=-49/37 9-29=-19 32=-7/7 ve been bh (3-see 8CDL=3. envelope 0 2-1-0, I 4-6-2, Ird 4-6-2, Ird 4-6-2, Ird 1 gift ep C-C for r s shown; 0	47/208, 0/612, 7/203, 7/5, 14/101, 146, 6-26=-13 7, 8-28=-159/ 147, 17-30=-8 considered for cond gust) 0psf; h=25ft; a) exterior zon therior (1) 2-1 terior (1) 14- posed ; end nembers and Lumber	60, 39/4, or Cat. ne 1-0 to 6-2 to	bra 9) Gal 10) Thi cho 11) * Th 3-0 cho 12) Pro bea 19, upli 13) In ti of ti LOAD (1) De In: Ur	ced aga ble studs s truss h irrd live la his truss s the botto 6-00 tall ord and a vide me tring pla 74 lb up ft at join he LOAI he truss CASE(S ead + Sr creases hiform Li Vert: 1- 24-25=	inst lat s space bad noi- has be bom cho by 2-0 any oth chanic te capa blift at ju t 20 ar D CAS are no D Sta now (ba 1.15 oads (I 2=-43, -20	eral movement (i ed at 2-0-0 oc. an designed for a nconcurrent with een designed for ird in all areas wh 00-00 wide will fit er members, with al connection (by able of withstandi oint 25, 77 lb upli d 24 lb uplift at jc E(S) section, load ted as front (F) o ndard alanced): Lumber b/ft) 2-7=-43, 7-12=-4	any other live loads. a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf. others) of truss to ng 94 lb uplift at joint ft at joint 14, 94 lb oint 15. ds applied to the face r back (B).
FORCES TOP CHORD BOT CHORD					forces & MWFRS for reactions shown; Lumber 24-25=-20 DOL=1.60 plate grip DOL=1.60 Trapezoidal Loads (lb/ft) 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads. 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.								

May 15,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

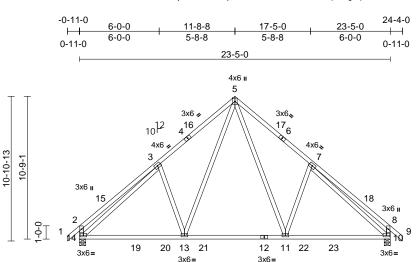
Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A02SE	Common Structural Gable	1	1	Job Reference (optional)	173486200
84 Lumber-2383 (Dunn, NC), Du	nn, NC - 28334,	Run: 8.83 S Apr 24 2	025 Print: 8.	830 S Apr 24	2025 MiTek Industries, Inc. Wed May 14 11:19:02	Page: 2

ID:NIJuNDYIIajLn0Q4juGX6VzH_kO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Vert: 24=-20-to-23=-22 (F=-2), 23=-22 (F=-2)-to-22=-24 (F=-4), 22=-24 (F=-4)-to-21=-25 (F=-5), 21=-25 (F=-5)-to-20=-26 (F=-6), 20=-26 (F=-6)to-19=-27 (F=-7), 19=-27 (F=-7)-to-18=-28 (F=-8), 18=-28 (F=-8)-to-17=-30 (F=-10), 17=-30 (F=-10)to-16=-32 (F=-12), 16=-32 (F=-12)-to-15=-33 (F=-13), 15=-33 (F=-13)-to-14=-35 (F=-15)

hin The


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A03	Common	3	1	Job Reference (optional)	173486201

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:02 ID:Etyd26XYvdriG3jt6zu3QXzwlzQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

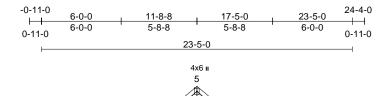
3x6=

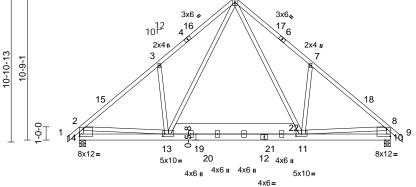
Page: 1

Scale = 1:86.8			F	<u>7-10-13</u> 7-10-13		<u>15-6-3</u> 7-7-5			- <u>5-0</u> 0-13	———————————————————————————————————————			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.62 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	5-4-9 oc purlins, exe Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 14=226 (L Max Uplift 10=-89 (L Max Grav 10=1021 of (lb) - Maximum Com Tension 1-2=0/45, 2-3=-447/ 5-7=-1056/227, 7-8= 2-14=-447/167, 8-10 13-14=-106/918, 11- 5-11=-161/566, 7-11	applied or 10-0-0 oc 14=0-5-8 C 13) C 15), 14=-89 (LC 14 (LC 27), 14=1022 (LC pression/Maximum 189, 3-5=-1057/227, -447/189, 8-9=0/45, I=-447/167 13=0/629, 10-11=-17	5) d or 6) 7) 4) 8) 26) 8) L(7/815	load of 12.0 p overhangs no Building Des verifying Raii requirements This truss ha chord live loa * This truss h on the botton 3-06-00 tall chord and an Provide mecl bearing plate	s been designer osf or 2.00 times on-concurrent w igner/Project en n Load = 5.0 (ps s specific to the i s been designer d nonconcurrer nas been design n chord in all are y 2-00-00 wide y other member hanical connecti capable of with uplift at joint 10. Standard	s flat roof le ith other li gineer res f) covers r use of this d for a 10.4 th with any ed for a liv ed for a liv eas where will fit betv rs, with BC on (by oth standing 8	bad of 11.5 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20.0 a rectangle ween the bottt DL = 10.0psi ers) of truss f	sf on nent. ads. 0psf om f. to					
 this design Wind: ASC Vasd=91m II; Exp B; I and C-C E 11-8-8, Ex 24-4-0 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL psf (flat root 	ed roof live loads have CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en ixterior (2) -0-11-0 to 2 tterior (2) 11-8-8 to 14- ne; cantilever left and r e; cantilever left and r t and right exposed;C- WFRS for reactions s plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (_=1.15); Pg=15.0 psf (_=1.5); Pg=15.0 psf (_=1.5); Pg=1tially Exp.	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone -1-0, Interior (1) 2-1-0 8-8, Interior (1) 14-8- ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. roond snow); Pf=11. 15 Plate DOL=1.15);	e 0 to -8 to -15							M. Commercia		SEA O363	22 ERIX

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


GI A. GILIN


May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A04	Common	4	1	Job Reference (optional)	173486202

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:03 ID:WxRs1BxokyFqTFhu4URzJozwlv1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

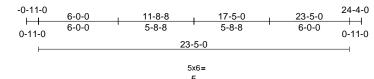
	6-6-12	13-11-0	16-10-4	23-5-0	
Scale = 1:86.8	6-6-12	7-4-4	2-11-4	6-6-12	

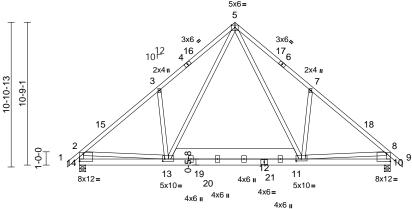
Plate Offsets (X, Y): [10:Edge,0-7-0], [11:0-4-12,0-2-0], [13:0-1-12,0-2-0], [14:Edge,0-7-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO RC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.48 0.23 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.2		3) 4) or 5)	Plate DOL= ² psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai	7-10; Pr=20.0 ps 1.15); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E: s been designed psf or 2.00 times i on-concurrent witt igner/Project engi n Load = 5.0 (psf)	(ground 1.15 Plat (p.; Ct=1 for great flat roof le n other li neer res covers r	snow); Pf=1 te DOL=1.15; .10 er of min root oad of 11.5 p ve loads. ponsible for rain loading	1.5); f live sf on				1	
	Max Horiz 14=224 (L Max Uplift 10=-119 (This truss ha chord live loa * This truss l	s specific to the us as been designed ad nonconcurrent has been designer n chord in all area	for a 10. with any d for a liv	0 psf bottom other live loa re load of 20.	ıds.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall I	oy 2-00-00 wide w	ill fit betw	veen the bott						
TOP CHORD	1-2=0/45, 2-3=-1340	-1373/163, 8-9=0/45,	8)	 chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 14 and 119 lb uplift at joint 10. 									
BOT CHORD	13-14=-210/424, 11- 10-11=-95/305		9)	Hanger(s) or	other connection	device(s		34					
WEBS	7-11=-362/230, 3-13	=-363/230, 2-13=0/745 225/743, 5-11=-240/84		b down and lb up at 9-8-	19 lb up at 13-8- 8 on bottom chore tion device(s) is the	8, and 13 d. The d	34 lb down ar esign/selectio	nd 19 on of				H CA	ROUL
NOTES) Unbalance this design	ed roof live loads have	been considered for	10) In the LOAD	CASE(S) section are noted as front	, loads a	pplied to the				NI.	OP 100	Disting
2) Wind: ASC Vasd=91m II; Exp B; E and C-C E 11-8-8, Ex 24-4-0 zon vertical left	CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en ixterior (2) -0-11-0 to 2 terior (2) 11-8-8 to 14- te; cantilever left and r t and right exposed;C- WEPS for reactions of	1) D	DAD CASE(S) Dead + Snu Increase=1 Uniform Lo Vert: 1-2 5-22=-20 Concentrat	Standard ow (balanced): Lu .15 ads (lb/ft) =-43, 2-5=-43, 5-8	mber Inc 3=-43, 8-	rease=1.15,			JA THILLING		SEA 0363	• –	

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Vert: 12=-100 (F), 20=-100 (F)



G mmm May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A05	Common	1	1	Job Reference (optional)	173486203

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:03 ID:WxRs1BxokyFqTFhu4URzJozwlv1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

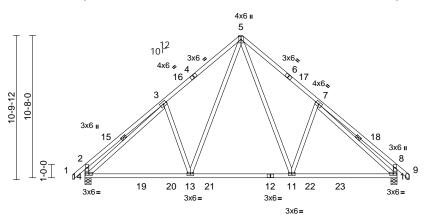
	6-6-12	13-11-0	16-10-4	23-5-0	
Scale = 1:86.8	6-6-12	7-4-4	2-11-4	6-6-12	

Plate Offsets (X, Y): [10:Edge,0-7-0], [11:0-4-12,0-1-12], [13:0-1-12,0-2-0], [14:Edge,0-7-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.25 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp B; and C-C E 11-8-8, E> 24-4-0 zo vertical lef forces & M	2x6 SP No.2 *Excep 2x4 SP No.2 Structural wood she 4-5-3 oc purlins, exx Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 14=256 (L Max Grav 10=1261 / (lb) - Maximum Com Tension 1-2=0/52, 2-3=-1434 5-7=-1458/315, 7-8= 2-14=-1183/171, 8-1 13-14=-241/484, 11- 10-11=-104/361 7-11=-392/249, 3-13 8-11=0/840, 5-13=-2 ed roof live loads have	applied or 10-0-0 oc 14=0-5-8 C 13) LC 15), 14=-121 (LC (LC 2), 14=1259 (LC 2) pression/Maximum //169, 3-5=-1422/342, 1522/172, 8-9=0/52, 0=-1198/177 -13=0/780, =-417/264, 2-13=0/77 /58/785, 5-11=-227/85 been considered for (3-second gust) DL=3.0psf; h=25ft; Ca velope) exterior zone -1-0, Interior (1) 2-1-0 8-8, Interior (1) 14-8-6 ight exposed ; end C for members and	s or 5) (4) (5) (6) (4) (7) (8) (7) (8) (9) (9) (9) (9) (9) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	Plate DOL=1 psf (flat roof Category II; 1 This truss ha load of 12.0 overhangs n Building Dess verifying Rai requirements This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 14 and 121 I Hanger(s) or provided suff lb down and lb up at 9-8- such connec) In the LOAD of the truss a DAD CASE(S) Dead + Sno Increase=1 Uniform Lo. Vert: 1-2	w (balanced): Lu 15	f (ground 1.15 Plaix xp.; Ct=1 for great flat roof li h other li ineer res ocvers r se of this for a 10.1 with any d for a 10.1 with any d for a liva as where rill fit bett , with BC n (by oth tanding 1 device(s concentra 8, and 13 d. The d he respon , loads a (F) or ba mber Inc 3=-49, 8-	snow); Pf=1 e DOL=1.15, 10 er of min roor aad of 11.5 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 21 lb uplift a) shall be tted load(s) 1 44 lb down ar asign/selectić ssibility of otf oplied to the ck (B). rease=1.15,	1.5); f live isf on nent. ads. Opsf om f. to t joint 134 nd 19 on of ners. face Plate				SEA 0363	22 EERER III

G mmm May 15,2025

Page: 1

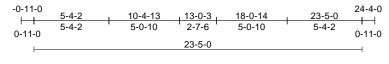

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

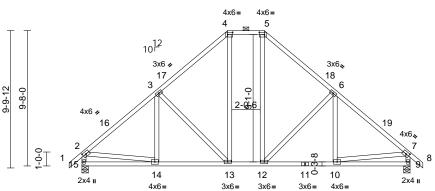
Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A06	Нір	1	1	Job Reference (optional)	173486204

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:03 ID:3Dkccj_JWoA5M8mEz0bW52zwm_7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.4			ŀ	<u>7-10-13</u> 7-10-13		<u>15-6-3</u> 7-7-5		<u>23-8</u> 7-10	———————————————————————————————————————			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.78 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.20 0.03	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	5-0-10 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 14=258 (I Max Uplift 10=-102 (Max Grav 10=1171 (lb) - Maximum Com	applied or 10-0-0 oc 3-14, 7-10 14=0-5-8 .C 13) LC 15), 14=-102 (LC (LC 27), 14=1172 (LC	; { (; 14)	Plate DOL=' psf (flat roof Category II; I) This truss he load of 12.0 overhangs n Building Des verifying Rai requirement: 5) This truss ha chord live loo 1 * This truss I on the botton 3-06-00 tall I	: 7-10; Pr=20.0 .15); Pg=15.0 snow: Lum DO Exp B; Partially is been design psf or 2.00 time on-concurrent v igner/Project e n Load = 5.0 (p s specific to the s been design ad nonconcurre nas been design ad nonconcurre nas been design ad nonconcurre as been design ad nonconcurre as been design ad nonconcurre as been design ad nonconcurre as been design ad nonconcurre	psf (ground L=1.15 Plat r Exp.; Ct=1 ed for great es flat roof le with other lin ngineer ress ssf) covers r use of this ed for a 10. ent with any ned for a lin reas where e will fit betw	snow); Pf=1 e DOL=1.15 .10 er of min roo bad of 11.5 p ve loads. bonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott	1.5); f live usef on onent. ads. Opsf				
TOP CHORD BOT CHORD WEBS	2-14=-515/192, 8-10 13-14=-121/1050, 1 10-11=-18/933 5-11=-183/643, 7-11	516/218, 8-9=0/52,)=-515/192 1-13=0/723, =-301/242,	I	bearing plate	hanical connec e capable of wit b uplift at joint Standard	thstanding 1						
NOTES	5-13=-183/646, 3-13 7-10=-943/9	3=-301/242, 3-14=-94	ŧ5/9,							1	HTH CA	ROLI
this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E 11-8-8, Ex to 24-4-0 vertical lef forces & M	ed roof live loads have CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 tterior (2) 11-8-8 to 15- zone; cantilever left an t and right exposed;C- WFRS for reactions s plate grip DOL=1.60	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone -1-0, Interior (1) 2-1- 11-7, Interior (1) 15- d right exposed ; end C for members and	Cat. e 0 to 11-7						Channen .		SEA 0363	ER. Kul


A Mi Tek Affiliate B18 Soundside Road Edenton, NC 27932


May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A07	Нір	1	1	Job Reference (optional)	173486205

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:04 ID:Hb8ufk4ePRctFTydX2Eh00zwm?J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

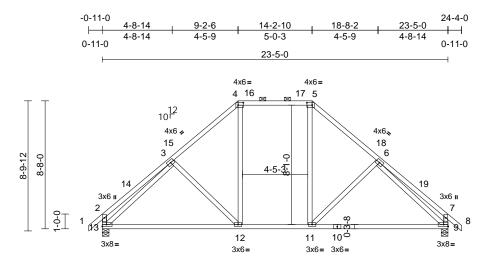
Page: 1

	5-4-2	10-6-9	12-10-7	18-0-14	23-5-0	
Scale = 1:82.2	5-4-2	5-2-6	2-3-14	5-2-6	5-4-2	1

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [4:0-4-4,0-2-0], [5:0-4-4,0-2-0], [7:0-2-14,0-2-0]

Plate Olisets ((X, Y): [2:0-2-14,0-2-0	j, [4:0-4-4,0-2-0], [5:0)-4-4,0-2-()], [7:0-2-14,0-	2-0]							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.34 0.38 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 162 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-5-11 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-5-8, 1 Max Horiz 15=206 (L Max Uplift 9=-85 (LC Max Grav 9=989 (LC	xcept end verticals, a -0 max.): 4-5. applied or 10-0-0 oc 15=0-5-8 .C 13) : 15), 15=-85 (LC 14) C 2), 15=989 (LC 2)	4) d or and 5) 6) 7)	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adeœ This truss ha chord live loa * This truss h	F-10; Pr=20.0 ps .15); Pg=15.0 psf snow: Lum DOL= Exp B; Partially Existent as been designed in psf or 2.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to the been designed in as been designed an chord in all area	(ground 1.15 Plat (ground) (gr	snow); Pf=1 e DOL=1.15, .10, Lu=50-0 er of min rooi oad of 11.5 p <i>ve</i> loads. consible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20.	6.5); I-0 f live sf on nent. g.					
FORCES	(lb) - Maximum Com Tension 1-2=0/45, 2-3=-1085 4-5=-569/180, 5-6=-	5/140, 3-4=-848/193, 848/193, 6-7=-1085/ [.]		boaring place capable of maintaining oc ib apart at joint									
BOT CHORD WEBS	7-8=0/45, 2-15=-939 14-15=-187/291, 13- 12-13=-15/591, 10-1 3-14=-7/157, 3-13=- 5-12=-63/292, 6-12= 2-14=0/614, 7-10=0/	-14=-93/815, 2=-9/759, 9-10=-52/ 320/171, 4-13=-63/2 320/171, 6-10=-8/1	190 92,) Graphical pu				size				TH CA	ROLIN
this design 2) Wind: ASC Vasd=91n II; Exp B; and C-C B; 10-4-13, E 17-3-2 to 2 end vertic forces & M	ed roof live loads have	been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone -1-0, Interior (1) 2-1-1 7-3-2, Interior (1) left and right expose d;C-C for members a	at. e 0 to ed ;									SEA 0363	22 EERER IIII

818 Soundside Road Edenton, NC 27932


G mmm May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

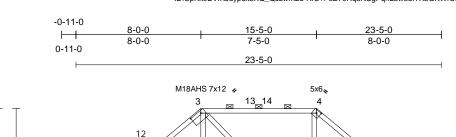
Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A08	Нір	1	1	Job Reference (optional)	173486206

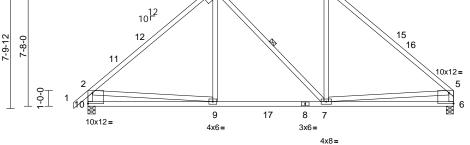
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:04 ID:zd3gnSIG4ytLgj7gefm751zwm10-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-4-2	14-0-14	23-5-0	
Scale = 1:78	9-4-2	4-8-11	9-4-2	
Diata Offecto (X, X); [4:0 4 4 0 2 0] [5:0 4 4 0 2 0]				

Plate Offsets ((X, Y): [4:0-4-4,0-2-0],	[5:0-4-4,0-2-0]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.38 0.74 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.41 0.03	(loc) 12-13 12-13 9	l/defl >999 >682 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-11-7 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-5-8, 1	applied or 10-0-0 oc 13=0-5-8	4) or nd 5) 6)	Plate DOL=1 psf (flat roof Category II; 1 This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adec This truss ha	7-10; $Pr=20.0 \text{ psl}$.15); $Pg=15.0 \text{ psf}$ snow: Lum DOL= Exp B; Partially Ex s been designed f psf or 2.00 times fl on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to p s been designed f	(ground 1.15 Plat p; Ct=1 for greate lat roof lo other liv neer resp covers r e of this prevent v for a 10.0	snow); Pf=10 e DOL=1.15/ .10, Lu=50-0 er of min rool bad of 11.5 p ve loads. boonsible for ain loading truss compo water pondin 0 psf bottom	6.5); I-O f live Isf on nent. g.					
KLACK HORE Subset of Subse				* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 13 and 81 lb) Graphical put	ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide wi by other members, hanical connectior capable of withst uplift at joint 9. rlin representation ation of the purlin a d.	I for a liv s where ill fit betw with BC n (by oth anding 8	e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 1 lb uplift at j ot depict the s	Opsf com f. to joint				and CA	
this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E 9-2-6, Ext 14-2-10, E 18-5-8 to 2 end vertic forces & M	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 erior (2) 9-2-6 to 13-5-5 Exterior (2) 14-2-10 to 1 24-4-0 zone; cantilever al left and right expose 0 plate grip DOL=1.60	(3-second gust) DL=3.0psf; h=25ft; Ca ivelope) exterior zone -1-0, Interior (1) 2-1-0 5, Interior (1) 13-5-5 to 18-5-8, Interior (1) 1eft and right exposed d;C-C for members ar	it. to o	AD CASE(S)	Standard					Mannun.		SEA 0363	


G mmm May 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A09	Нір	1	1	Job Reference (optional)	173486207

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:04 ID:UpKk9EVfKJuypult6XQ_QJzwm2d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-1-12	15-3-4	23-5-0
Scale = 1:73.8	8-1-12	7-1-8	8-1-12

Plate Offsets (X, Y):	[3:0-8-12,0-1-12], [4:0-3-0,0-2-1], [5:Edge,0-8-6], [10:Edge,0-8-6]

	,, ,, ,, [0:0 0 12,0 1 1	zj, [1.0 0 0,0 z 1], [0	.Eugo,o o o],	[10:2490,0	<u> </u>								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MS	0.89 0.52 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.02	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 140 lb	GRIP 186/179 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: 8-0-0, Exte to 15-5-0, I	2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-5-8, 1 Max Horiz 10=161 (L Max Uplift 6=-61 (LC Max Grav 6=924 (LC (Ib) - Maximum Com Tension 1-2=0/45, 2-3=-1056 4-5=-1049/157, 2-10 9-10=-333/594, 7-9= 3-9=0/287, 3-7=-88/2 2-9=-160/456, 5-7=- ed roof live loads have	athing directly applie cept end verticals, ar -4 max.): 3-4. applied or 10-0-0 oc 3-7 (0=0-5-8 C. 13) 2:15), 10=-76 (LC 14) 2:2), 10=990 (LC 2) pression/Maximum 5/159, 3-4=-692/179,)=-915/161, 5-6=-847 -84/686, 6-7=-150/3- 95, 4-7=0/282, 120/461 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone -1-0, Interior (1) 2-1-1 15, Interior (1) 2-2-1 19-7-15, Interior (1)	A P P C A) T d or d 5) B V V 6) P 7) A 8) T 6) P 7) A 8) T 0 2 2 10) P 10) P 10 2 11) G 0 b LOAI at. 3 0 0 0 0 0 0 0 0 0 0 0 0 0	Plate DOL=1 sf (flat roof , category II; F his truss ha ad of 12.0 p verhangs no Building Des erifying Rain equirements erovide adec all plates are his truss ha hord live loa This truss ha hord live loa This truss ha hord live loa This truss ha hord live loa O and 61 lb Graphical put		(ground 1.15 Plat p.; Ct=1 or great at roof l other limeer res covers r e of this prevent i ss othel or a 10. with any l for a liv s where a lift betw with BC o (by oth anding 7 does not	snow); Pf=16 e DOL=1.15) .10, Lu=50-0. er of min roof ad of 11.5 p: ve loads. ponsible for ain loading truss compou- water ponding water ponding water ponding water ponding water ponding water ponding truss compou- arectangle veen the both CDL = 10.0psl ers) of truss t 76 lb uplift at j	6.5 ; -0 sf on g. g. d. opsf om f. co oint		N. 611111.		ORTH CA ORTEESS SEA 0363	• –
members a	end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO	for reactions shown;										A GIN	EER. KININ

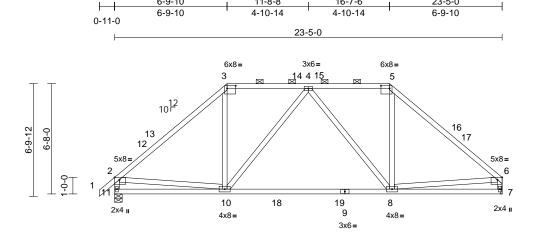
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI 11111111 May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A10	Нір	1	1	Job Reference (optional)	173486208

11-8-8


84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:04 ID:hl?A5xk0Gx2SqhlsBxpHe0zwm6C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

23-5-0

16-7-6

Page: 1

	6-7-14	16-9-2	23-5-0	
Scale = 1:69.6	6-7-14	10-1-5	6-7-14	

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-6-4,0-2-0], [5:0-6-4,0-2-0], [6:0-3-8,Edge]

-0-11-0

6-9-10

	(X, T): [2:000,Eugo],		0 1,0 2 0],	, [0.0 0 0,Eug	,j								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.75 0.90 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.51 0.02	(loc) 8-10 8-10 7	l/defl >902 >545 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-6-3 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=142 (L Max Uplift 7=-54 (LC Max Grav 7=924 (LC (Ib) - Maximum Com Tension 1-2=0/45, 2-3=-1085 4-5=-725/168, 5-6=- 2-11=-941/155, 6-7= 	cept end verticals, ai +0 max.): 3-5. applied or 10-0-0 oc anical, 11=0-5-8 _C 11) C 15), 11=-69 (LC 14 C 2), 11=990 (LC 2) apression/Maximum 5/153, 3-4=-719/168, 1080/152, 874/125	4) nd or 5) 5 6) 7) 8) 9)	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird) Provide mec bearing plate	57-10; Pr=20.0 ps .15); Pg=15.0 ps snow: Lum DOL= Exp B; Partially Ex s been designed i psf or 2.00 times fo on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to is been designed ad nonconcurrent ias been designed n chord in all area by 2-00-00 wide w y other members. er(s) for truss to tr hanical connection e capable of withst uplift at joint 7.	(ground 1.15 Pla; sp.; Ct=1 for great lat roof I n other II neer res covers I se of this prevent for a 10. with any d for a liv is where ill fit betv, with BC uss common (by oth	snow); Pf=1 te DOL=1.15. .10, Lu=50-00 coad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live load to f 20. a rectangle veen the bott CDL = 10.0ps ers) of truss	6.5); -0 f live sf on nent. g. ads. 0psf om f.					
WEBS	7-8=-115/224 3-10=-24/369, 4-10= 5-8=-29/362, 2-10=-	=-258/118, 4-8=-254/	120,) Graphical pu	rlin representation ation of the purlin a			size				TH CA	Route
this desig 2) Wind: AS Vasd=91I II; Exp B; and C-C1 6-9-10, E 16-7-6, E 20-10-5 tr exposed members	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) 60-10 to 11- xterior (2) 16-7-6 to 20- to 23-3-4 zone; cantileve ; end vertical left and rig and forces & MWFRS OL = 1.60 plate or in DO	(3-second gust) DL=3.0psf; h=25ft; (velope) exterior zon 2-1-0, Interior (1) 2-1- 0-8, Interior (1) 11-0 10-5, Interior (1) er left and right ght exposed; C-C for for reactions shown;	Cat. e 0 to -8 to	DAD CASE(S)								SEA 0363	• –

/asd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 6-9-10, Exterior (2) 6-9-10 to 11-0-8, Interior (1) 11-0-8 to 16-7-6, Exterior (2) 16-7-6 to 20-10-5, Interior (1) 20-10-5 to 23-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI mmm May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A11	Нір	1	1	Job Reference (optional)	173486209

10-7-4

5-0-1

1-2-12 -0-11-0 2-3-12

 \vdash

5-7-3

3-3-7

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Scale = 1:75.8

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

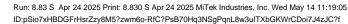
FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

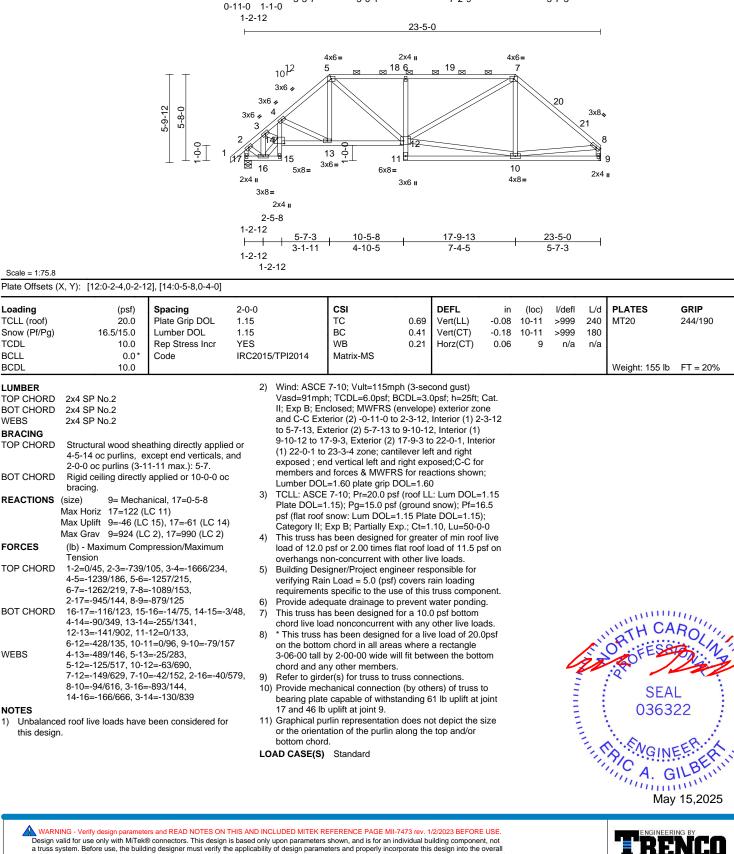

this design.

1)

BRACING

TCLL (roof)

Snow (Pf/Pg)

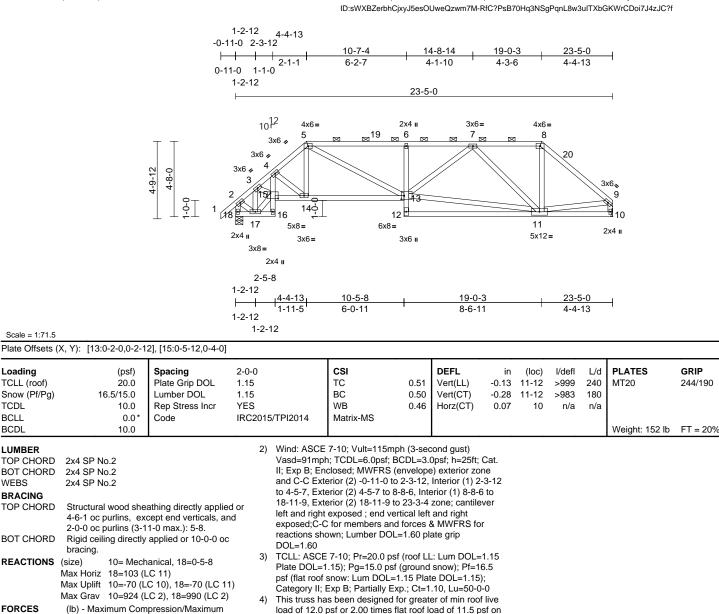

23-5-0

5-7-3

17-9-13

7-2-9

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A12	Нір	1	1	Job Reference (optional)	173486210

Run: 8 83 S. Apr 24 2025 Print: 8 830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:05

NOTES

WEBS

Scale = 1:71.5

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

Tension

9-10=-896/121

BRACING

TCLL (roof)

Snow (Pf/Pg)

Unbalanced roof live loads have been considered for 1) this design.

1-2=0/45, 2-3=-739/107, 3-4=-1649/243,

17-18=-97/101, 16-17=-12/79, 15-16=-3/49,

6-13=-339/105, 11-12=-11/162, 10-11=-52/94

7-13=-66/423, 7-11=-705/166, 8-11=-40/424,

2-17=-45/588, 9-11=-82/693, 3-17=-901/157,

4-5=-1304/186, 5-6=-1622/241,

8-9=-1094/147, 2-18=-945/146,

4-15=-109/370, 14-15=-248/1282,

5-13=-153/745, 11-13=-170/1104,

15-17=-165/668, 3-15=-129/802

13-14=-166/998, 12-13=0/153,

4-14=-348/104, 5-14=-15/296,

6-7=-1576/235, 7-8=-797/147,

load of 12.0 psf or 2.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

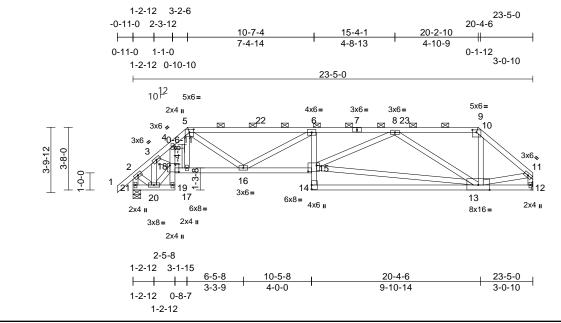
Building Designer/Project engineer responsible for 5) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

- Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 18 and 70 lb uplift at joint 10.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

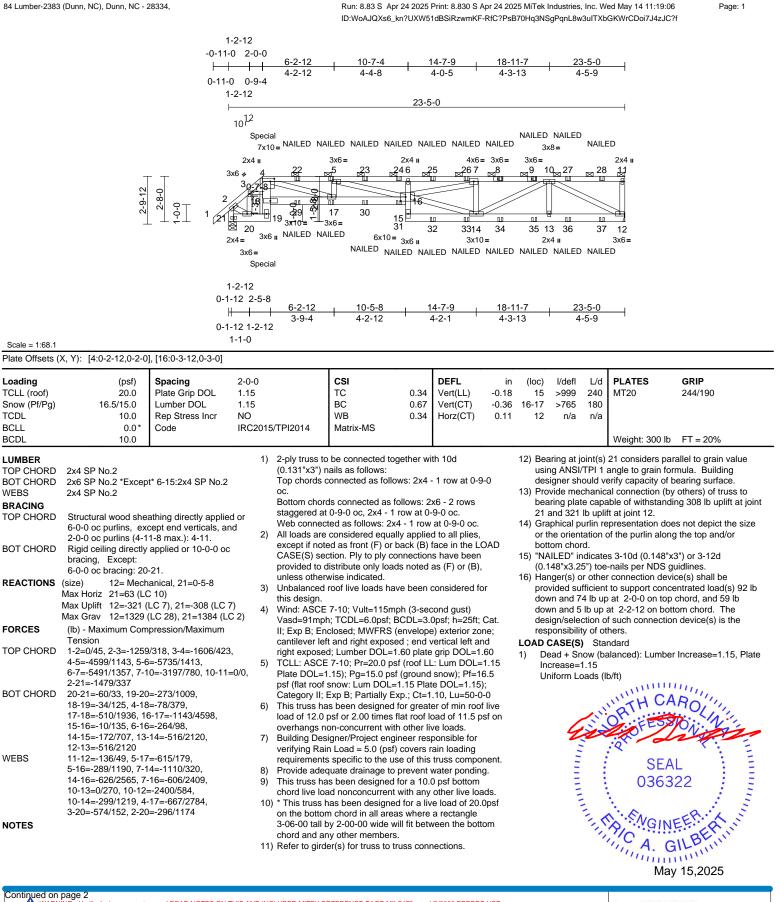
Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A13	Нір	1	1	Job Reference (optional)	173486211

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:06 ID:fzcB8ZskJp3DH6Y7FyYT?qzwm9w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [5:0-3-0,0-2-1], [9:0-2-14,0-1-12], [15:0-6-0,0-4-4], [18:0-6-4,0-4-12]

	, , , , , , , , , , , , , , , , , , , ,	L- ,- <u>j,</u>	,-	1/1									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.78 0.70 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.48 0.11	(loc) 13-14 13-14 12	l/defl >999 >579 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-5-7 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing, Except: 9-5-0 oc bracing: 15 6-0-0 oc bracing: 12	cept end verticals, ar -9 max.): 5-9. applied or 10-0-0 oc -16 -13. anical, 21=0-5-8 2 11)	1d 3) 4)	Vasd=91mpl II; Exp B; En and C-C Ext to 3-3-1, Ext to 20-1-15, E cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 psf (flat roof Category II; This truss ha	7-10; Vult=115m n; TCDL=6.0psf; E closed; MWFRS (erior (2) -0-11-0 tr erior (2) 3-3-1 to 7 xxterior (2) 20-1-1 t and right expose d;C-C for member shown; Lumber [7-10; Pr=20.0 ps 1.15); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E us been designed psf or 2.00 times	3CDL=3. (envelope 5 2-2-10, 7-5-15, Iri 5 to 23-3 ed; end rs and fo DOL=1.6 sf (roof LL f (ground 1.15 Pla xp.; Ct=1 for great	Opsf; h=25ft; a) exterior zo Interior (1) 2 terior (1) 7-5 -4 zone; vertical left au- rcres & MWFI D plate grip L: Lum DOL= snow); Pf=1 te DOL=1.15 -10, Lu=50-C er of min roo	ne 2-10 15 nd RS -1.15 6.5);)-0 f live					
FORCES	Max Grav 12=924 (L (Ib) - Maximum Com		5)	overhangs n	, on-concurrent wit igner/Project eng	h other li	ve loads.						
TOP CHORD	Tension 1-2=0/45, 2-3=-738/ 4-5=-1295/196, 5-6= 6-8=-2359/354, 8-9= 9-10=-740/133, 10-1	106, 3-4=-1591/252, 1700/242, 833/135, 1=-1082/135,	6) 7)	verifying Rai requirements Provide adeo This truss ha chord live los	n Load = 5.0 (psf) s specific to the us quate drainage to as been designed ad nonconcurrent	covers i se of this prevent for a 10. with any	ain loading truss compo water pondin 0 psf bottom other live loa	ıg. ads.				NILL CA	ROUL
BOT CHORD	2-21=-943/148, 11-1 20-21=-78/76, 19-20 4-18=-84/335, 17-18 16-17=-207/1118, 1 14-15=0/175, 6-15=(12-13=-34/45)=-22/118, 18-19=-5/5 =-202/1093,	7, 9)	on the bottor 3-06-00 tall t chord and ar Refer to gird	has been designe in chord in all area by 2-00-00 wide w hy other members er(s) for truss to the horized corner to	as where vill fit betv russ coni	a rectangle veen the both nections.	tom		4		OF ESS	
WEBS NOTES 1) Unbalance this design	13-15=-252/1413, 8- 8-13=-1035/232, 10- 2-20=-48/605, 11-13 3-20=-885/156, 18-2 3-18=-109/701, 5-17 6-16=-922/188 ed roof live loads have	13=-32/460, =-75/754, :0=-145/621, '=-41/93, 5-16=-107/	11 744,	bearing plate 21 and 92 lb) Graphical pu		tanding s	93 lb uplift at ot depict the	joint				SEA 0363	22 EER. KIIII


Scale = 1:67.5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A14G	Half Hip Girder	1	2	Job Reference (optional)	173486212

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	A14G	Half Hip Girder	1	2	Job Reference (optional)	173486212

Vert: 1-2=-43, 2-4=-43, 4-11=-53, 19-21=-20, 16-18=-20, 12-15=-20

Concentrated Loads (lb)

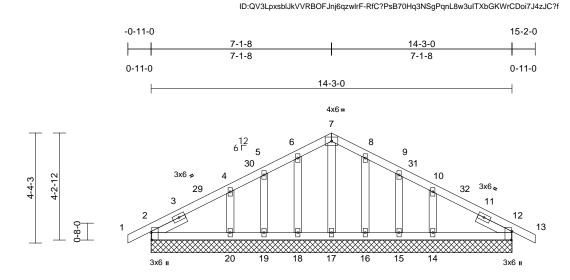
Vert: 4=-32 (F), 8=-22 (F), 19=-33 (F), 9=-22 (F), 5=-14 (F), 17=-39 (F), 22=-14 (F), 23=-14 (F),

24=-14 (F), 25=-22 (F), 26=-22 (F), 27=-22 (F),

28=-22 (F), 29=-39 (F), 30=-39 (F), 31=-39 (F),

32=-25 (F), 33=-25 (F), 34=-25 (F), 35=-25 (F), 36=-25 (F), 37=-25 (F)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:06 ID:WoAJQXs6_kn?UXW51dBSiRzwmKF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	B1E	Common Supported Gable	1	1	Job Reference (optional)	173486213

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Scale = 1:45.5												-	
Plate Offsets (2	X, Y): [2:0-3-8,Edge],	[12:0-4-1,Edge]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MS								
BCDL	10.0	-										Weight: 79 lb	FT = 20%
	15=14-3-0	athing directly appli applied or 10-0-0 o 12=14-3-0, 14=14-), 16=14-3-0, 17=14), 19=14-3-0, 20=14	ed or ic 3-0, 3) 1-3-0,	Vasd=91mj II; Exp B; E and C-C CC 7-1-8, Corr 15-2-0 zone vertical left forces & M DOL=1.60 Truss desig only. For s see Standa or consult c	E 7-10; Vult=115; h; TCDL=6.0ps; nclosed; MWFRS smer (3) -0-11-0 ti er (3) 7-1-8 to 10 e; cantilever left a and right expose WFRS for reaction plate grip DDL=1. gried for wind load tuds exposed to v rd Industry Gable ualified building of E 7-10; Pr=20.0 p	BCDL=3. (envelope o 2-1-0, E: -1-8, Exter nd right ex d;C-C for r ns shown; 60 ls in the pl vind (norm End Deta designer a:	Dpsf; h=25ft; s) exterior zo: (terior (2) 2-1 posed ; end nembers and Lumber ane of the tru al to the face ils as applica s per ANSI/T	ne -0 to 3 to 	at jo 10 l	bint 19, 7 b uplift a t 2 and 2	71 lb up at joint 24 lb up	olift at joint 20, 2 15, 66 lb uplift at olift at joint 12.	at joint 18, 8 lb uplift 7 lb uplift at joint 16, joint 14, 19 lb uplift a

Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5

psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Unbalanced snow loads have been considered for this

overhangs non-concurrent with other live loads. Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading

Gable requires continuous bottom chord bearing.

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 11.5 psf on

requirements specific to the use of this truss component.

All plates are 2x4 (||) MT20 unless otherwise indicated.

ī

5)

6)

7)

8) 9) desian.

14-3-0

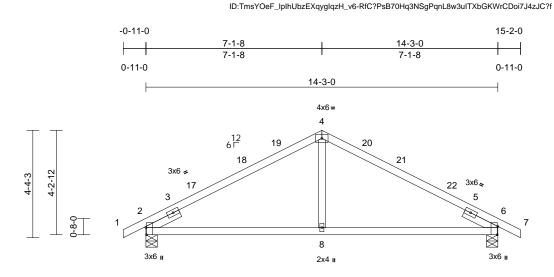
	Max Opint	2 = 13 (LO 17), 12 = 24 (LO 17),
		14=-66 (LC 17), 15=-10 (LC 17),
		16=-27 (LC 17), 18=-28 (LC 16),
		19=-8 (LC 16), 20=-71 (LC 16)
	Max Grav	2=205 (LC 2), 12=205 (LC 2),
		14=228 (LC 35), 15=56 (LC 2),
		16=121 (LC 35), 17=65 (LC 33),
		18=121 (LC 34), 19=56 (LC 2),
		20=228 (LC 34)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/27,	2-4=-81/55, 4-5=-92/107,
	5-6=-80/1	24, 6-7=-84/149, 7-8=-84/151,
	8-9=-80/1	27, 9-10=-92/109, 10-12=-81/58,
	12-13=0/2	27
BOT CHORD	2-20=0/69	9, 19-20=0/69, 18-19=0/69,
	17-18=0/6	69, 16-17=0/69, 15-16=0/69,
	14-15=0/6	69, 12-14=0/69
WEBS	7-17=-80/	25, 6-18=-88/75, 5-19=-53/55,
	4-20=-153	3/99, 8-16=-88/75, 9-15=-53/55,
	10-14=-1	53/98

NOTES

Max Uplift 2=-19 (LC 17), 12=-24 (LC 17),

10) Gable studs spaced at 1-4-0 oc.

chord and any other members.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	B02	Common	2	1	Job Reference (optional)	173486214

Page: 1

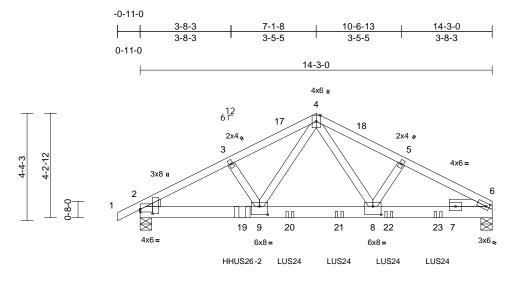
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	7-1-8	14-3-0	
	7-1-8	7-1-8	
Scale = 1:46.6			
Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-4-1,Edge]			

	λ, i). [2.0-5-0,∟uge],	[0.0 + 1,Euge]	-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	5/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.49 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.03	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1-6-0 Structural wood she 5-9-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=53 (LC Max Uplift 2=-70 (LC Max Grav 2=625 (LC (lb) - Maximum Com	athing directly applie applied or 10-0-0 or 5=0-5-8 16) : 16), 6=-70 (LC 17) C 2), 6=625 (LC 2)	6 ^{ed or} 7 c8	 design. This truss he load of 12.0 overhangs r Building Dee verifying Ra requirement This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plate 	snow loads have l as been designed i psf or 2.00 times f ion-concurrent with signer/Project engi n Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members shanical connection e capable of withst uplift at joint 6.	for great lat roof lo n other lin neer res covers r se of this for a 10. with any d for a liv s where s where n (by oth	er of min rooi oad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	f live osf on onent. ads. Opsf com to					
TOP CHORD	Tension 1-2=0/27, 2-4=-732/ 6-7=0/27	124, 4-6=-732/124,	L	OAD CASE(S)	Standard								
this design 2) Wind: ASC Vasd=91m II; Exp B; I and C-C E 7-1-8, Exte 15-2-0 zor vertical left	2-8=-150/588, 6-8=- 4-8=0/309 ed roof live loads have b. DE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) -0-11-0 to 2 erior (2) 7-1-8 to 10-1-1 he; cantilever left and r t and right exposed;C-	been considered fo (3-second gust) DL=3.0psf; h=25ft; (velope) exterior zor -1-0, Interior (1) 2-1 3, Interior (1) 10-1-8 ight exposed ; end C for members and	Cat. ne -0 to							4	A. C.	ORTH CA ORTHEESS SEA 0363	• -

DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

forces & MWFRS for reactions shown; Lumber


036322 MGINEER A. GILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	B03G	Common Girder	1	2	Job Reference (optional)	173486215

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:07 ID:rtJI8PWT1vYq_kKnPelNIDzwlqP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-9-15	9-5-1	14-3-0	
Casha 4:40.0	4-9-15	4-7-2	4-9-15	
Scale = 1:46.6				
Plate Offsets (X, Y): [2:Edge.0-1-5], [2:0-2-1.0-6-0], [6:0-1-7.0-1-8]. [8:0-4-0.0-4-0]. [9:0-4-0.0-4-0	וכ		

Plate Offsets	(X, Y): [2:Edge,0-1-5],	[2:0-2-1,0-6-0], [6:0-1	1-7,0-1-8]	, [8:0-4-0,0-4-0	0], [9:0-4-0,0-4-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.45 0.70 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.02	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x6 SP No.2 2x4 SP No.2 Left: 2x4 SP No.2 Right 2x4 SP No.2 Structural wood she 5-1-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, (Max Horiz 2=60 (LC Max Uplift 2=-411 (L Max Grav 2=2819 (L (Ib) - Maximum Com Tension 	athing directly applied applied or 10-0-0 oc 6=0-5-8 36) C 12), 6=-327 (LC 13 .C 2), 6=3281 (LC 2) pression/Maximum	6) 7) 8)	this design. Wind: ASCE Vasd=91mph II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL= psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des	roof live loads hav 7-10; Vult=115mp h; TCDL=6.0psf; B closed; MWFRS (i t and right expose d; Lumber DOL=1. 7-10; Pr=20.0 psl 1.15); Pg=15.0 psf snow: Lum DOL=2 Exp B; Partially Ex snow loads have b as been designed f psf or 2.00 times fl on-concurrent with igner/Project engin n Load = 5.0 (psf)	oh (3-sec GCDL=3. envelop d; end 6.60 plate f (roof Ll (ground 1.15 Pla sp.; Ct=1 been col for great lat roof l n other li neer res	cond gust) Dpsf; h=25ft; (exterior zor vertical left an grip DOL=1. .: Lum DOL=: snow); Pf=17 e DOL=1.15) .10 asidered for th per of min roof pad of 11.5 ps ve loads. consible for	Cat. ne; nd 60 1.15 1.5); his	In Ur Co	crease= hiform Lo Vert: 1-4 oncentra Vert: 19	1.15 bads (II 4=-43, ited Los =-1102	b/ft) 4-6=-43, 10-14=	
(0.131"x3 Top chorr oc. Bottom cl staggere Web com 2) All loads except if CASE(S) provided	4-5=-4909/550, 5-6= 2-9=-643/4403, 8-9= 6-8=-441/4407	365/3168, 77/120, 4-9=-478/24 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA tections have been	9) 18, 11 12 13 ND 14	This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 6 and 411 lb) Use Simpsoi 4-10d Truss) connect truss) Use Simpsoi SD9212 Trus at 2-0-0 oc n 12-0-12 to co chord.	s specific to the us is been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide win hy other members. hanical connection e capable of withst uplift at joint 2. In Strong-Tie HHUS or equivalent at 4 s(es) to back face in Strong-Tie LUS2 ss, Single Ply Gird nax. starting at 6-0 ponnect truss(es) to bles where hanger Standard	for a 10. with any d for a live s where ill fit betw. h h (by oth anding 3 S26-2 (1 I-1-10 fro of bottoo 24 (4-SD ler) or ec I-12 from b back fa	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i27 lb uplift at 4-10d Girder, m the left end n chord. 9112 Girder, uivalent spac the left end to ce of bottom	nds. Opsf om to t joint , d to 2- ced to		C. C. LILLING		SEA 0363	L 22 L 15,2025

CASE(S) section. Ply to ply connections have been chord. provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and proposed to component development description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity		
P02595-25452	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional)	173486216	

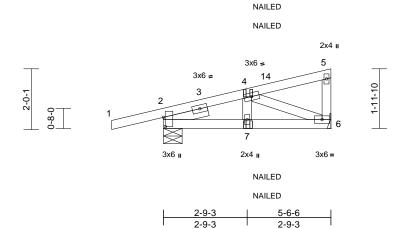
2-9-3

2-9-3

5-6-6 12 2.83 ⊏

-1-8-8

1-8-8


84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:08 ID:u6RaC5Fky1pMOpjwpGG3fgzwlkI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-6

2 - 9 - 3

Scale = 1:38.1

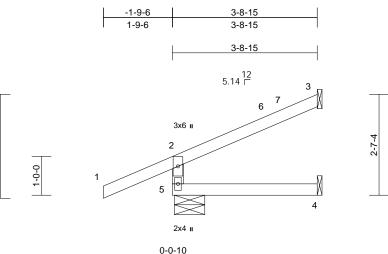
Plate Offsets (X, Y): [2:0-3-10,0-0-11]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TF	912014	CSI TC BC WB Matrix-MP	0.25 0.17 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
 this design Wind: ASC Vasd=91m II; Exp B; I cantilever right exposized TCLL: ASC Plate DOL psf (flat ro Category I 4) Unbalance design. 	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applied cept end verticals. applied or 10-0-0 oc 3= Mechanical 11) 2 8), 6=-30 (LC 12) 2 2), 6=181 (LC 2) pression/Maximum 124, 4-5=-28/14, 5/190 40 been considered for (3-second gust) DL=3.0psf; h=25ft; C- ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6f roof LL: Lum DOL=1. ground snow); Pf=11.3 15 Plate DOL=1.15); .; Ct=1.10 een considered for this	ve re 7) Tt ch 8) * 1 dor 9) Re 10) Pr be 2 ; 10) Pr be 2 ; 10) Pr be 2 ; 10) T be 2 ; 10) Pr be 2 ; 10) Pr be 10) Pr be 2 ; 10) Pr be 10) Pr 10) Pr	erifying Rain quirements his truss has nord live load This truss has nord live load This truss has nord and any offer to girde rovide mech earing plate and 30 lb up VAILED" indi the LOAD (the truss ar O CASE(S) Dead + Snoo ncrease=1.1 Juiform Loa Vert: 1-5= Concentrate	w (balanced): Lur 15	covers r e of this or a 10.1 with any I for a liv s where II fit betw uss conr h (by oth anding \$ 48"x3") (by SS guidli loads a (F) or ba	ain loading truss comport 0 ps bottom other live load e load of 20.0 a rectangle ween the bottom nections. ers) of truss i 00 lb uplift at j por 2-12d nes. opplied to the st ck (B).	ids. Opsf om to joint		6		SEA 0363	

- =1.15); Pg=15 (gi psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

G mmm

May 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity		
P02595-25452	CJ02	Jack-Open	1	1	Job Reference (optional)	173486217	

2-8-4

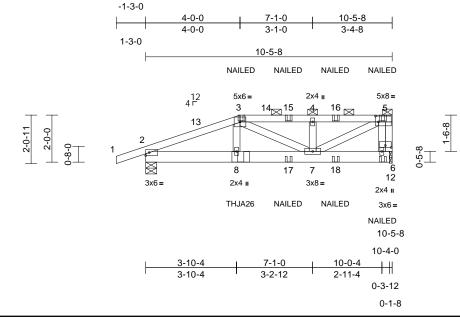
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:08 ID:jp1Si_QfMg9Z4WS4exWxzszwmID-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-0-10

Scale = 1:29.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	CSI TC BC WB 014 Matrix-MR	0.29 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=91m II; Exp B; E and C-C Cd 3-8-3 zonc vertical left forces & MI DOL=1.60 3) TCLL: ASC Plate DOL= psf (flat roo Category II	5=0-9-7 Max Horiz 5=59 (LC Max Uplift 3=-38 (LC Max Grav 3=80 (LC (LC 2) (lb) - Maximum Com Tension 2-5=-248/250, 1-2=0 4-5=0/0 d roof live loads have	xcept end verticals. applied or 10-0-0 oc inical, 4= Mechanica 16) 2 16), 5=-35 (LC 16) 2), 4=64 (LC 7), 5=2 apression/Maximum b/50, 2-3=-54/23 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -9, Exterior (2) 2-5-9 ght exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); .; Ct=1.10	load over 6) Buildo verifi requ 7) This chor 9) Refe 10) Prov 99 Refe 10) Prov bear 5 an LOAD C	truss has been designed of 12.0 psf or 2.00 times nangs non-concurrent wi ing Designer/Project eng ving Rain Load = 5.0 (psi rements specific to the u truss has been designed e bottom chord in all are -00 tall by 2-00-00 wide v d and any other member to girder(s) for truss to ide mechanical connectii ing plate capable of withs d 38 lb uplift at joint 3. ASE(S) Standard	flat roof I th other li gineer res f) covers I use of this d for a 10. t with any ed for a liv as where will fit betw s. truss con on (by oth	bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss	nent. ads. Opsf om to				ORTH CA ORTHESS SEA 0363	• -

- DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5
 - psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this
- 4) design.



GI 11111111 May 15,2025

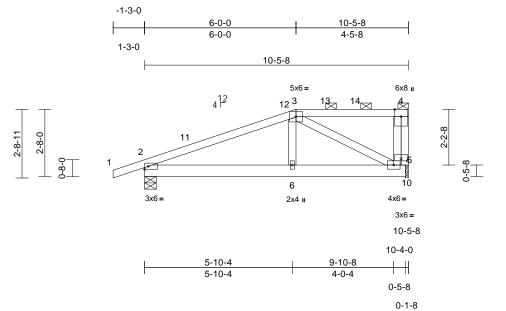
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G01G	Half Hip Girder	1	1	Job Reference (optional)	173486218

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:08 ID:R??vG?3mAdFrw6KoFqznsozwljF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.9

Plate Offsets (X, Y):	[5:0-1-8,0-3-0], [6:0-3-0,0-1-0]
-----------------------	----------------------------------


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 16.5/15.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.36 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 7-8 7-8 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0					_						Weight: 59 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m I; Exp B; f cantilever right expos 3) TCLL: ASC Plate DOL	10.0 2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-4-13 oc purlins, e 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. (size) 2=0-5-8, ' Max Horiz 2=57 (LC Max Uplift 2=-132 (L Max Grav 2=676 (LC (lb) - Maximum Com Tension 1-2=0/28, 2-3=-1112 4-5=-914/150, 5-6=(2-8=-179/1014, 7-8= 3-8=-5/201, 3-7=-13 5-7=-145/889, 5-12= ed roof live loads have	athing directly applie xcept end verticals, -0 max.): 3-5. applied or 10-0-0 or 12=0-1-8 8) C 8), 12=-105 (LC 8 C 2), 12=663 (LC 2) pression/Maximum 2/178, 3-4=-914/150, 0/117 179/999, 6-7=-22/1 5/49, 4-7=-265/87, -671/106 been considered for (3-second gust) DL=3.0psf; h=25ff; C vielope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 froot LL: Lum DOL=1 ground snow); Pf=16 15 Plate DOL=1.15);	5) ed or 7) and 8) and 9) () 10) () 11) () 12) () 12) () 12) () 12) () 11) () 12) () 12) (This truss ha load of 12.0 (overhangs no Building Des verifying Raii requirements Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho Provide mecl bearing plate 2 and 105 lb Graphical pu or the orienta bottom choro Use Simpsor Hand Hip) or connect truss Fill all nail ho 0, "NAILED" ind (0.148"x3.25 In the LOAD of the truss a	s been designed osf or 2.00 times on-concurrent wi igner/Project eng a Load = 5.0 (psi s specific to the u uuate drainage to s been designed d nonconcurrent ias been designed in chord in all are by 2-00-00 wide w y other member; pl 1 angle to gra uld verify capaci hanical connection at joint(s) 12. Pl 1 angle to gra uld verify capaci hanical connection ta contection capable of withs uplift at joint 12. rlin representation conservation of the purlin t. In Strong-Tie THJ equivalent at 4-1 (ses) to front face (ses where hange dicates 3-10d (0. ") toe-nails per N CASE(S) section re noted as front Standard w (balanced): Lu	flat roof lift th other li gineer res) covers r se of this prevent to for a 10.1 th with any d for a lift as where will fit betw s. rs paralle ain formul ty of bear on (by oth standing 1 on does not along the A26 (THJ D-6 from t e of bottor rs is in cor 148"x3") of IDS guidli n, loads a c (F) of ba	bad of 11.5 p ve loads. consible for ain loading truss compo water pondin 0 psf bottom other live load e load of 20. a rectangle veen the bott to grain valu a. Building ng surface. ers) of truss 32 lb uplift a bt depict the to pand/or A26 on 1 ply he left end toc n chord. ttact with lum or 3-12d nes. oplied to the ck (B).	onent. ng. ads. .0psf tom ue to to to to to size /, Left o nber. face		15=-21	(F), 16	ů	45 (F), 6=-33 (F), (F), 18=-24 (F)
 Unbalance 	ed snow loads have be	en considered for th	IIS	Uniform Loa Vert: 1-3:	ads (lb/ft) =-43, 3-5=-53, 6-	9=-20						11, A. C	ILBUIN

TRENCO A MITOR Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G02	Half Hip	1	1	Job Reference (optional)	173486219

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:08 ID:i2T7F5T0?yf_8IJoCLWgl2zwles-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.7

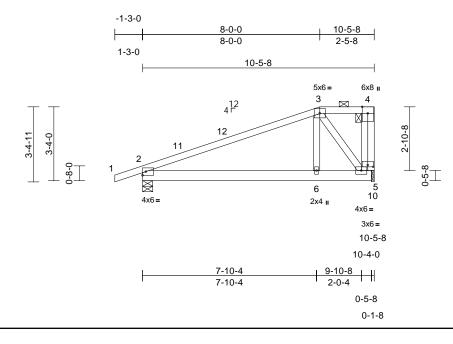
Plate Offsets (X, Y): [5:0-3-0,0-1-0]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	-0.01	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.20	Vert(CT)	-0.03	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.19	Horz(CT)	0.01	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 57 lb	FT = 20%
LUMBER			4)	Unhalanced	snow loads have I	heen co	nsidered for t	this					
TOP CHORD	2x4 SP No.2		•,	design.		00011 001							
BOT CHORD			5)		as been designed f	for areat	er of min roo	f live					
WEBS	2x4 SP No.2		- /		psf or 2.00 times f								
OTHERS	2x4 SP No.2			overhangs n	on-concurrent with	n other li	ve loads.						
BRACING			6)		igner/Project engi								
TOP CHORD	Structural wood she	athing directly appli	ed or		n Load = 5.0 (psf)								
	6-0-0 oc purlins, ex		ind .		s specific to the us								
	2-0-0 oc purlins (6-0		7)		quate drainage to			ıg.					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c 8)		as been designed f								
	bracing.		0)		ad nonconcurrent								
REACTIONS	(size) 2=0-5-8, 1	10=0-1-8	9)		nas been designeo m chord in all area			Opst					
	Max Horiz 2=78 (LC	12)			by 2-00-00 wide wi		0	tom					
	Max Uplift 2=-93 (LC	C 12), 10=-66 (LC 12	2)		ny other members.		veen me bou	lom					
	Max Grav 2=519 (L0	C 36), 10=393 (LC 2	2) 10		int(s) 10 considers		l to grain valu	IP					
FORCES	(lb) - Maximum Corr	pression/Maximum			TPI 1 angle to grai			40					
	Tension	'			ould verify capacity								
TOP CHORD	1-2=0/28, 2-3=-599/	117, 3-4=-69/18,	11		hanical connection			to					
	4-5=-52/275			bearing plate	e at joint(s) 10.		,						
BOT CHORD	,				hanical connection	n (by oth	ers) of truss	to					
WEBS	3-6=0/228, 3-5=-501	1/133, 4-10=-396/10	1		e capable of withst	anding 9	3 lb uplift at	joint				OR SESS	1111
NOTES					uplift at joint 10.							W'LL CA	Dalle
1) Unbalance	ed roof live loads have	been considered fo	r 13		Irlin representation			size				"aTH UN	10 11
this design	n.			or the orient	ation of the purlin a	along the	e top and/or				15	OVERSS	i Alle

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-0-0, Exterior (2) 6-0-0 to 10-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0 LOAD CASE(S) Standard

bottom chord.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G03	Half Hip	1	1	Job Reference (optional)	173486220

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:09 ID:fi7JEbhxWo2HwDGSprL703zwleZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

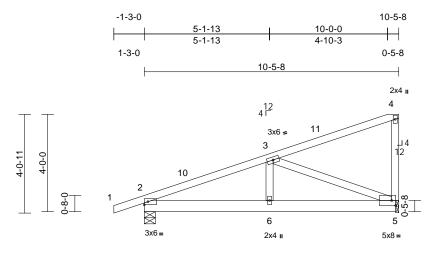
Scale = 1:52

Plate Offsets (X, Y): [5:0-3-0,0-1-0]

												-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.40 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing.	cept end verticals, an -0 max.): 3-4. applied or 10-0-0 oc 10=0-1-8 12) : 12), 10=-71 (LC 12)	nd 7) 5 8) 9)	design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar	snow loads have t ssow loads have t ssow and the standard of the standard standard standard ssow and the ssow and the standard standard ssow and the standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standar	or great at roof I other li neer res covers I e of this orevent or a 10. vith any for a liv s where Il fit betv	er of min rooi oad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott	f live osf on onent. Ig. ads. Opsf tom					
fhis desigr	4-5=-107/410 2-6=-127/390, 5-6=- 3-6=0/336, 3-5=-603 ed roof live loads have	332, 3-4=-27/7, 96/377 //152, 4-10=-394/107 been considered for	12	designer sho) Provide mec bearing plate) Provide mec bearing plate 2 and 71 lb u) Graphical pu	FPI 1 angle to grain ruld verify capacity hanical connection e at joint(s) 10. hanical connection capable of withsta uplift at joint 10. rlin representation ation of the purlin a d.	of bear (by oth (by oth anding 8 does no	ing surface. ers) of truss ers) of truss 38 lb uplift at ot depict the	to joint				ORTH CA	ROUT

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 8-0-0, Exterior (2) 8-0-0 to 10-2-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G04	Half Hip	1	1	Job Reference (optional)	173486221

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:09 ID: reslFnRqwrsUMI0NSsTgX8zwldb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:47.3

Scale = 1:47.3												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	4 CSI TC BC WB Matrix-MS	0.30 0.16 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, § Max Horiz 2=126 (LC Max Grav 2=492 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-666/ 4-5=-130/74 2-6=-141/591, 5-6=- 3-6=0/211, 3-5=-613	applied or 10-0-0 or 5=0-1-8 C 15) C 12), 5=-72 (LC 16) C 2), 5=408 (LC 2) pression/Maximum 87, 3-4=-96/49, 139/591	load of overhai 6) Building verifyin require 8) This tru- chord li 3-06-00 chord a 10) Bearing using A designe 11) Provide bearing 2 and 7	ss has been designed 12.0 psf or 2.00 times 13.0 psf or 2.00 times 13.0 psf or 2.00 times 13.0 psf or 2.00 times 19.0 psigner/Project eng 19.0 g Rain Load = 5.0 (psf ments specific to the u adequate drainage to ss has been designed ve load nonconcurrent uss has been designed ve load nonconcurrent uss has been designed to tall by 2-00-00 wide w nd any other members 1 at joint(s) 5 considers NSI/TPI 1 angle to gra er should verify capacit mechanical connectic plate at joint(s) 5. mechanical connectic plate capable of withs 2 lb uplift at joint 5.	flat roof I flat roof I th other li jineer res) covers s se of this prevent for a 10. : with any d for a li as where vill fit bety s. s parallel ain formul ty of bear on (by oth	oad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa ve load of 20. a rectangle ween the bott to grain value a. Building ing surface. ers) of truss	onent. Ig. ads. Opsf tom to to					
NOTES 1) Unbalanced	d roof live loads have	been considered for		E(S) Standard								11
Vasd=91mp II; Exp B; E and C-C Ex 10-3-12 zor vertical left forces & MV DOL=1.60 p 3) TCLL: ASC Plate DOL= psf (flat roo Category II;	E 7-10; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er tetrior (2) -1-3-0 to 1-1 ne; cantilever left and and right exposed;C- WFRS for reactions s plate grip DOL=1.60 E 7-10; Pr=20.0 psf (c f snow: Lum DOL=1. ; Exp B; Partially Exp d snow loads have be	DL=3.0psf; h=25ff; (velope) exterior zor 9-0, Interior (1) 1-9-0 right exposed; end C for members and hown; Lumber roof LL: Lum DOL= ² ground snow); Pf=11 15 Plate DOL=1.15) .; Ct=1.10	ne) to 1.15 .5 ;						4	The second secon	SEA 0363	• –

- 10-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minin May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G05	Monopitch	6	1	Job Reference (optional)	173486222

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

ID:txE9gbcQzFgf4wJnriqA8_zwImQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-3-0 5-2-13 10-5-8 \vdash 5-2-13 5-2-11 1-3-0 10-5-8 4x6= 4 F 4 10 2x4 🕿 3 3-8-5 4-2-8 0-8-0 0-5-8 \bigotimes 4x6= 3x6 = 3x6= 10-5-8 10-4-0 9-10-8 +9-10-8 0-5-8 0-1-8

Scale = 1:52.3

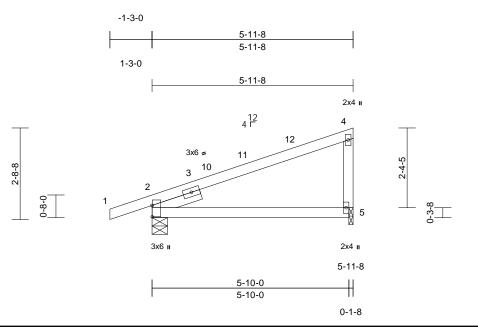
Plate Offsets (X, Y): [5:0-3-0,0-1-0]

	., ., [2:2 2 2,2 1 2]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.41 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.01	(loc) 5-8 5-8 2	l/defl >999 >685 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; f and C-C E 10-2-0 zor vertical lef forces & M DOL=1.60 3) TCLL: ASC Plate DOL psf (flat roo	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-5-8, § Max Horiz 2=125 (LC Max Uplift 2=-90 (LC Max Grav 2=486 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-581/ 4-5=-124/81 2-5=-166/516 3-5=-506/161 ed roof live loads have	cept end verticals. applied or 10-0-0 oc 5=0-1-8 C 15) C 12), 5=-71 (LC 16) C 2), 5=402 (LC 2) hpression/Maximum (116, 3-4=-121/39, been considered for a (3-second gust) CDL=3.0psf; h=25ff; C hvelope) exterior zon 9-0, Interior (1) 1-9-C right exposed ; end C for members and shown; Lumber (roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15);	9) 9) 10] 11] LO	load of 12.0 overhangs n Building Des verifying Rai requirement: This truss ha chord live loi: * This truss h on the botton 3-06-00 tall I chord and an Bearing at jo using ANSI/ designer sho) Provide meo bearing plate	as been designed f psf or 2.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed n chord in all area by 2-00-00 wide wi ny other members. int(s) 5 considers IPI 1 angle to grai yuld verify capacity hanical connection e at joint(s) 5. hanical connection e capable of withst plift at joint 5. Standard	lat roof lin nother lin neer res covers r se of this for a 10. with any d for a lin s where ill fit betw parallel n formul v of bear n (by oth n (by oth	bad of 11.5 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss	sf on nent. ads. Opsf om to to		N	1 A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

- d;C-C for mem xpu forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

G


mmm

May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G06	Monopitch	3	1	Job Reference (optional)	173486223

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:10 ID:gtLjn5LFUaA_E7gbnPn0XkzwIcR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.1

Plate Offsets (X, Y): [2:0-4-1,0-0-1]

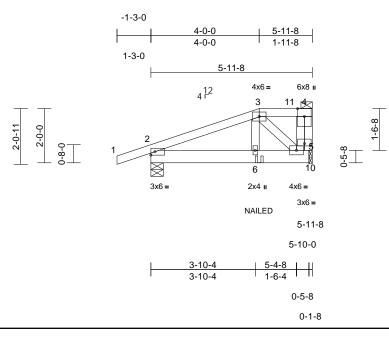
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.49 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.02	(loc) 5-8 5-8 2	l/defl >999 >624 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
,	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly appli xcept end verticals. applied or 10-0-0 o 5=0-1-8 15) (12), 5=-41 (LC 16) (2), 5=224 (LC 2) pression/Maximum 55, 4-5=-150/89	c 8) 9) 10 11	load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha chord live loo * This truss ha chord live loo * This truss ha on the botton 3-06-00 tall I chord and an Bearing at jo using ANSI/ designer sho)) Provide meo bearing plate	as been designed for psf or 2.00 times fits on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. int(s) 5 considers p TPI 1 angle to grain ould verify capacity thanical connection e at joint(s) 5. thanical connection e capable of withsta uplift at joint 5. Standard	at roof I other Ii eer res covers I e of this or a 10. vith any for a liv where I fit betw arallel formul of bear (by oth	bad of 11.5 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss	nent. ads. Opsf om to to					
Vasd=91m	n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	DL=3.0psf; h=25ft;									- in	WITH CA	RO

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 5-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322

May 15,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	G07G	Half Hip Girder	1	1	Job Reference (optional)	173486224

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:10 ID:16g2Occ2JLystVLq40BBQNzwlc5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.5

Plate Offsets (X, Y): [5:0-3-0,0-1-0]

	7, 1). [5.0-5-0,0-1-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 16.5/15.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.24 0.10 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6-9 6-9 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MP								
BCDL	10.0					-						Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she			 load of 12.0 overhangs r Building Des verifying Ra requirement Provide ade 	as been designed psf or 2.00 times ion-concurrent wit signer/Project eng in Load = 5.0 (psf, s specific to the u quate drainage to as been designed	flat roof le h other lin ineer res) covers r se of this prevent	bad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin	osf on onent.					
BOT CHORD	5-11-8 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 2=0-5-8.	applied or 10-0-0 o		chord live lo * This truss on the botto 3-06-00 tall	ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	with any d for a liv as where vill fit betw	other live loa e load of 20. a rectangle	0psf					
	Max Horiz 2=57 (LC Max Uplift 2=-82 (LC Max Grav 2=393 (LC	49) C 8), 10=-61 (LC 8) C 32), 10=310 (LC 2	2)	 Bearing at journal strain to the second secon	ny other members bint(s) 10 consider TPI 1 angle to gra buld verify capacit	rs paralle in formul	a. Building	e					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	1		chanical connectio e at joint(s) 10.	on (by oth	ers) of truss	to					
TOP CHORD	1-2=0/28, 2-3=-367/ 4-5=-46/260	64, 3-4=-44/9,	1	2) Provide med	chanical connections capable of withs								
BOT CHORD	,		2	2 and 61 lb	uplift at joint 10.			•					
WEBS NOTES	3-6=-29/210, 3-5=-3	43/09, 4-10=-313/02	<u>د</u> 1		urlin representatio ation of the purlin			size					in the second se
	ed roof live loads have	been considered fo	or	bottom chor		and any and						TH CA	ROUT
this design 2) Wind: ASC Vasd=91m		(3-second gust) DL=3.0psf; h=25ft; (1 Cat. 1	(0.148"x3.25) In the LOAD	dicates 3-10d (0.1 5") toe-nails per N 0 CASE(S) section are noted as front	DS guidli , loads a	nes. pplied to the	face		4	N. N	ORIEESS	Rel
cantilever l right expos 3) TCLL: ASC Plate DOL	left and right exposed sed; Lumber DOL=1.6 CE 7-10; Pr=20.0 psf (_=1.15); Pg=15.0 psf (; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL= ground snow); Pf=16	nd L 60 1 1.15 6.5	OAD CASE(S)) Dead + Sn Increase=1 Uniform Lo	Standard ow (balanced): Lu .15	imber Inc	. ,	Plate		THE AV		SEA 0363	• -

- psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- Vert: 1-3=-43, 3-4=-53, 5-7=-20
- Concentrated Loads (lb)
- Vert: 6=-130 (B)

G minin May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J01	Jack-Open	7	1	Job Reference (optional)	173486225

ID:T0wDY0aVB_n34b2Y5bYWZJzwmdz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 4-0-0 4-0-0 0-11-0 4-0-0 12 6 ∟ 4 12 3x6 🞜 11 2-8-0 2-9-7 3 P 10 ² 0-8-0 1 X 5 3x6 II

4-0-0

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-3-8,Edge]

Fiale Olisels	(A, T). [2.0-3-6,Euge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=911 II; Exp B; and C-C I	10.0 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, - Mechanic Max Horiz 2=71 (LC Max Uplift 2=-18 (LC (LC 16) Max Grav 2=219 (LC (LC 7) (lb) - Maximum Com Tension	1-6-0 athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 16) C 16), 4=-42 (LC 16), C 2), 4=101 (LC 2), 5 apression/Maximum 36 (3-second gust) DL=3.0psf; h=25ft; 0 velope) exterior zor 2-1-0, Interior (1) 2-1	4) 5) c 7) 5=71 8) 5=71 LC Cat.	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha chord live lo. * This truss l on the botton 3-06-00 tall I chord and an Refer to gird Provide med bearing plate	as been designed psf or 2.00 times f on-concurrent with signer/Project engi n Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to t shanical connection e capable of withst t at joint 2 and 1 lb	lat roof I n other li neer res covers I se of this for a 10. with any d for a liv is where ill fit betv. russ con n (by oth canding 4	bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 12 lb uplift at	nent. ads. Opsf com				ORTH CA	FT = 20%
forces & M DOL=1.60 2) TCLL: AS Plate DOI psf (flat ro Category	Ift and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60 SCE 7-10; Pr=20.0 psf (L=1.15); Pg=15.0 psf (pof snow: Lum DOL=1. II; Exp B; Partially Exp. red snow loads have be	hown; Lumber roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); .; Ct=1.10	l.5 ;								A A A A A A A A A A A A A A A A A A A		EER A U

May 15,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J02	Jack-Open	4	1	Job Reference (optional)	173486226

ID:T0wDY0aVB_n34b2Y5bYWZJzwmdz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 2-3-12 4-0-0 2-3-12 1-8-4 0-11-0 4-0-0 12 6 Г 5 2x4 🛛 14 1-8-0 3x6 ਫ਼ 4 ø 3 φ Μ 13 ² For 6 1-0-0 0-8-0 0 8 3x6 =

3x6 II

2x4 II

Scale = 1:31.1

Plate Offsets (X, Y): [2:0-3-8,Edge]

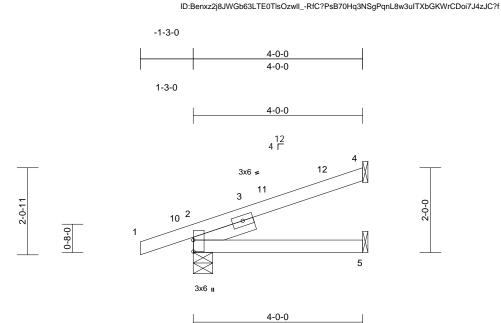
2-9-7

Plate Olisets (∧, r). [2.0-3-o,⊏uge]	-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91rr II; Exp B; f and C-C E to 3-11-4 z vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL psf (flat rou Category I	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applied applied or 10-0-0 oc i= Mechanical, 6= al 16), 5=-29 (LC 16), 16), 5=-29 (LC 16), 16) 2 2), 5=80 (LC 2), 6= pression/Maximum 19, 4-5=-32/31 9/55, 4-7=-8/37, 6-7= (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone -2-15, Interior (1) 2-2 d right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. round snow); Pf=11. 15 Plate DOL=1.15); ; Ct=1.10	6) 7) 8) 9) 71 LC -0/0 at. -15 1 1 .15 5	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loo * This truss h on the botton 3-06-00 tall h chord and an Refer to gird Provide mec bearing plate	is been designed f psf or 2.00 times f fon-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed n chord in all area by 2-00-00 wide wi y other members. er(s) for truss to th hanical connectior e capable of withst at joint 2 and 14 I Standard	lat roof I o other lin heer res covers i e of this for a 10. with any I for a liv s where II fit betw russ con h (by oth anding 2	bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 29 lb uplift at	onent. ads. .0psf tom		With the second s		SEA 0363	EER.

May 15,2025

Page: 1

ND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.	ENGINEERING B
d only upon parameters shown, and is for an individual building component, not	TREN
cability of design parameters and properly incorporate this design into the overall	
truss web and/or chord members only. Additional temporary and permanent bracing	
ersonal injury and property damage. For general guidance regarding the	A Mi
s systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)	818 Soundside Road
the Structural Building Component Association (www.sbcacomponents.com)	Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND Design valid for use only with MiTek® connectors. This design is based a truss system. Before use, the building designer must verify the applica building design. Bracing indicated is to prevent buckling of individual tru is always required for stability and to prevent tollapse with possible pers fabrication, storage, delivery, erection and bracing of trusses and truss s and BCSI Building Component Safety Information available from th

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J03	Jack-Open	4	1	Job Reference (optional)	173486227

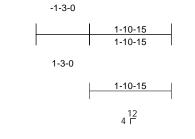
Page: 1

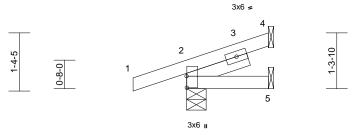
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:27.2

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

	(x, 1): [2:0 0 1,0 0 1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	14 CSI TC BC WB Matrix-MP	0.19 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.2 ^ Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or l= Mechanical, 5= al 12) : 12), 4=-33 (LC 16)	ed or 7) * This chorc chorc chorc chorc 3-06- chorc 8) Refer 9) Provi bearin 4 and	ng Designer/Project er ing Rain Load = 5.0 (pr rements specific to the russ has been designe live load nonconcurren truss has been designe to struss has been designe abottom chord in all ar 00 tall by 2-00-00 wide and any other membe to girder(s) for truss to de mechanical connect de mechanical connect 54 lb uplift at joint 2. LSE(S) Standard	sf) covers r use of this ed for a 10. Int with any ned for a liv reas where e will fit betw ers. o truss con tion (by oth	ain loading truss compo D psf bottom other live loa e load of 20.1 a rectangle ween the bott nections. ers) of truss	ads. Opsf om to					
 Vasd=91n II; Exp 8; and C-C; 3-11-4 zor vertical lef forces & M DOL=1.6C TCLL: AS Plate DOL psf (flat ro Category Unbalancc design. This truss load of 12 	,	(3-second gust) DL=3.0psf; h=25ft; (velope) exterior zor 3-0, Interior (1) 1-9-(ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 (round snow); Pf=11 15 Plate DOL=1.15) ; Ct=1.10 ren considered for th greater of min roof t roof load of 11.5 ps	ne) to 1.15 .5 ; nis						Contraction of the second seco		in A. C	EER RATIN


A MiTek Attiliate


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J04	Jack-Open	2	1	Job Reference (optional)	173486228

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:11 ID:LgXWGJdUHSJD?w4tXsweaYzHCbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Fa

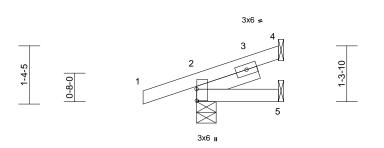
1-10-15

Scolo	· - ·	1:26.9	

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

	,, , ,): [<u>2</u> :0 0 1,0 0 1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	J/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp 8; E and C-C E: exposed ; c members a Lumber DC 2) TCLL: ASC Plate DOL: psf (flat roc Category II 3) Unbalance design. 4) This truss I	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 o 4= Mechanical, 5= al 12) 2 12), 4=-14 (LC 16) C 2), 4=35 (LC 2), 5: pression/Maximum 6 (3-second gust) DL=3.0psf; h=25ft; (velope) exterior zor ever left and right ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL=: ground snow); Pf=11 15 Plate DOL=1.15) .; Ct=1.10 een considered for th	6) ed or 7) c 8) 9) =27 LO Cat. ne ; 1.15 ; 1.5 ; his live	verifying Rai requirements This truss ha chord live loa * This truss l on the botton 3-06-00 tall l chord and an Refer to gird Provide mec bearing plate	igner/Project engin Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members er(s) for truss to the capable of withst uplift at joint 4. Standard	covers r se of this for a 10.1 with any d for a liv as where ill fit betw russ con n (by oth	ain loading truss compo D psf bottom other live loa e load of 20.0 a rectangle ween the botto nections. ers) of truss t	nds. Opsf om to		Charles and the second s		SEA 0363	ROUL L 22 EER. A. M
overnangs	non-concurrent with c	otner live loads.										(IIIIIII)	11.1.1.

May 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J05	Jack-Open	1	1	Job Reference (optional)	173486229

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:11 ID:NKhUGuTygZyGkVdQVyYbrBzHCRA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

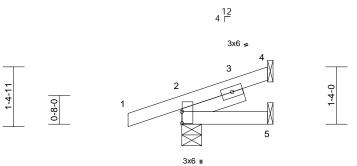
1-10-15	

12 4 Г

Scale = 1:26.9 Plate Offsets (X, Y): [2:0-3-4,0-0-1]

Plate Offsets (2	X, Y): [2:0-3-4,0-0-1]	-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.11 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%	
	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=36 (LC Max Uplift 2=-50 (LC Max Grav 2=176 (LC (LC 7) (lb) - Maximum Com	athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= 12) 12), 4=-14 (LC 16) 22), 4=35 (LC 2), 5=	6) ed or 7) e 8) 9)	verifying Rain requirements This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Refer to girdt Provide mecl bearing plate	igner/Project engin a Load = 5.0 (psf) is specific to the us s been designed f id nonconcurrent v as been designed n chord in all area: y 2-00-00 wide wi y 2-00-00 wide wi y other members. er(s) for truss to tr nanical connectior capable of withste plift at joint 4. Standard	covers r e of this or a 10.4 with any l for a liv s where ll fit betw cuss con n (by oth	ain loading truss comport of psf bottom other live loa e load of 20.0 a rectangle ween the botto nections. ers) of truss t	ds. Dpsf om o						
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber DC 2) TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design. 4) This truss load of 12.	Tension 1-2=0/26, 2-4=-37/30 2-5=-30/18 CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (err xterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (c of snow: Lum DOL=1. 1; Exp B; Partially Exp. ed snow loads have be has been designed for 0 psf or 2.00 times flat a non-concurrent with c	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 root LL: Lum DOL=1 tround snow); Pf=11 15 Plate DOL=1.15); ; Ct=1.10 een considered for th r greater of min roof roof load of 11.5 ps	e .15 .5 is							M. CONTRACT.		111111	22 EER A	N annung

May 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J06	Jack-Open	1	1	Job Reference (optional)	173486230

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:11 ID:V6VqZ8qmcnk0K6wBFF4d3WzHCQi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-11-15

Scale	- 1.2	8.99

Plate Offsets (X, Y): [2:0-3-4,0-0-1]

		i											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly appli applied or 10-0-0 o 4= Mechanical, 5= al 12) 2 12), 4=-15 (LC 16)	c 8) 9)	verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate	igner/Project eng igner/Project eng is specific to the u is been designed ad nonconcurrent nas been designed been designed n chord in all are: by 2-00-00 wide v y other members er(s) for truss to hanical connectic e capable of withs splift at joint 4. Standard) covers i se of this for a 10. with any d for a liv as where vill fit betv s. truss con on (by oth	ain loading truss compon 0 psf bottom other live load re load of 20.0 a rectangle ween the botto nections. ers) of truss to	ds. psf m					
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-39/3 2-5=-30/20 CE 7-10; Vult=115mph	5											11.5
 Vasd=91m II; Exp B; E and C-C E exposed; members a Lumber DQ 2) TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design. 4) This truss load of 12. 	be 7-10; Vulte115mpn hph; TCDL=6.0psf; BC Enclosed; MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (=1.15); Pg=15.0 psf (g of snow: Lum DOL=1. II; Exp B; Partially Exp ad snow loads have be has been designed fo .0 psf or 2.00 times fla a non-concurrent with o	EDL=3.0psf; h=25ft; twelope) exterior zon lever left and right ght exposed;C-C foot for reactions shown VL=1.60 roof LL: Lum DOL= ground snow); Pf=1: 15 Plate DOL=1.15) .; Ct=1.10 the considered for the r greater of min roof t roof load of 11.5 p	ne ;; 1.15 1.5 ;; his							(W. MITHING		SEA 0363	EER A

May 15,2025

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	J07	Jack-Open	1	1	Job Reference (optional)	173486231

ID:In3Uk47ovJqwsI1vhnrKrJzGcFX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

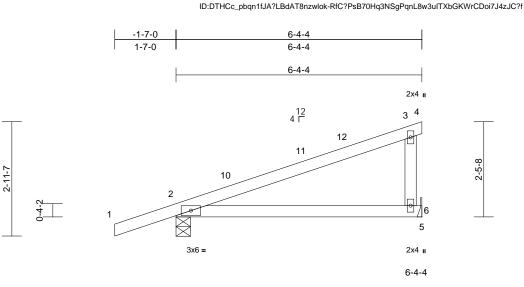
Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-1-3-0 4-0-0 4-0-0 1-3-0 4-0-0 12 4 Г 12 3x6 = 11 3 2-0-11 2-0-0 10 2 Fo 0-8-0 M 5 3x6 II

4-0-0

Scale = 1:27.2


Plate Offsets (X, Y): [2:0-3-4,0-0-1]

	(,, , ,): [2:0 0 1,0 0 1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.2 ⁻ Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly appli applied or 10-0-0 o 4= Mechanical, 5= al 12) 2 12), 4=-33 (LC 16)	verifyin require (6) This tru chord li ed or c c c c c c c c c c c c c c c c c c c	Designer/Project er J Rain Load = 5.0 (p nents specific to the ss has been designe re load nonconcurre uss has been design ottom chord in all ar tall by 2-00-00 wide and any other member girder(s) for truss t mechanical connec plate capable of witt 4 lb uplift at joint 2. E(S) Standard	st) covers i e use of this ed for a 10. ent with any ned for a liv reas where e will fit betv ers. to truss con tion (by oth	ain loading truss compo 0 psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss	ads. Opsf tom to					
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-127/2											
 Wind: ASC Vasd=91n II; Exp B; and C-C E 3-11-4 zor vertical lef forces & N DOL=1.6C TCLL: AS Plate DOL psf (flat ro Category Unbalancc design. This truss load of 12 	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -1-3-0 to 1-1- ne; cantilever left and r t and right exposed;C- /WFRS for reactions s) plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (_=1.15); Pg=15.0 psf (g of snow: Lum DOL=1. II; Exp B; Partially Exp ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with o	DL=3.0psf; h=25ft; (velope) exterior zor 9-0, Interior (1) 1-9-1 ight exposed; end C for members and hown; Lumber roof LL: Lum DOL== ground snow); Pf=11 15 Plate DOL=1.15) .; Ct=1.10 sen considered for th r greater of min roof t roof load of 11.5 ps	ne 0 to 1.15 1.5 ; nis						M. COLUMNY		SEA 0363	EER ER III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCERING BY A MITCH Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	P01	Monopitch	5	1	Job Reference (optional)	173486232

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:11

Page: 1

BRACING

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

desian.

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

bracing.

Tension

DOL=1.60 plate grip DOL=1.60

Max Horiz 2=78 (LC 15)

2-6=-45/70, 5-6=0/0

Unbalanced roof live loads have been considered for

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15);

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

Category II; Exp B; Partially Exp.; Ct=1.10

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-6-11 to 2-5-5, Interior (1) 2-5-5 to 7-4-9 zone; cantilever left and right exposed ; end

Structural wood sheathing directly applied or

2=0-4-8, 6= Mechanical

6-0-0 oc purlins, except end verticals.

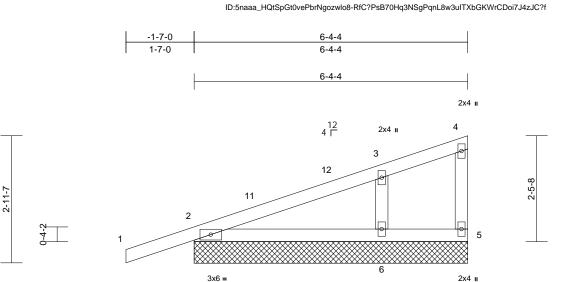
Max Uplift 2=-83 (LC 12), 6=-42 (LC 16)

(lb) - Maximum Compression/Maximum

1-2=0/33, 2-3=-92/53, 3-4=-5/0, 3-6=-160/93

Max Grav 2=350 (LC 2), 6=242 (LC 2)

Rigid ceiling directly applied or 10-0-0 oc


Scale = 1:29.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.05	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.13	6-9	>576	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS												

- chord live load nonconcurrent with any other live loads.
- 8) This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 9)
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 6 and 83 lb uplift at joint 2.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	173486233

6-4-4

2x4 🛚

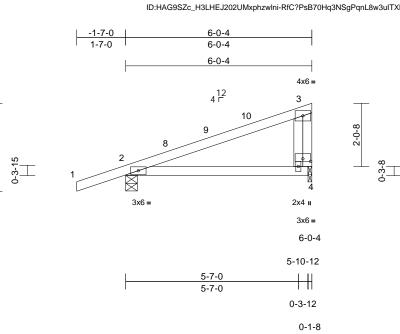
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:12

Page: 1

Scale = 1:26.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.39 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	bracing.	cept end verticals. applied or 10-0-0 oc 5=6-4-4, 6=6-4-4 15) 12), 6=-50 (LC 16)	8) 8) 9)	 Plate DOL=1 psf (flat roof Category II; I) Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Gable requir Gable studs This truss ha 	7-10; Pr=20.0 p 1.15); Pg=15.0 ps snow: Lum DOL: Exp B; Partially E snow loads have as been designed psf or 2.00 times on-concurrent wi igner/Project eng n Load = 5.0 (ps s specific to the u es continuous bc spaced at 2-0-0 ts been designed ad nonconcurren	If (ground =1.15 Plat :xp.; Ct=1 been cor flat roof la th other lin jneer res) covers r) covers r ; se of this ttom chor pc.	snow); Pf=1 te DOL=1.15) .10 ansidered for th er of min roof pad of 11.5 p ve loads. ponsible for ain loading truss compoind bearing. 0 psf bottom	I.5 ; live sf on nent.					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/33, 2-3=-108/ 2-6=-65/95, 5-6=-30, 3-6=-245/179 ed roof live loads have	73, 3-4=-47/35, 4-5= /39	-9/37 1:	 This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 	nas been designe m chord in all are by 2-00-00 wide my other member hanical connection capable of withe t at joint 6 and 68	ed for a liv as where will fit betv s. on (by oth standing 6	re load of 20.0 a rectangle veen the botto ers) of truss t S8 lb uplift at j)psf om o					11111

- 2) Wind: AŠCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-6-11 to 2-5-5, Exterior (2) 2-5-5 to 7-2-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	P02	Monopitch	5	1	Job Reference (optional)	173486234

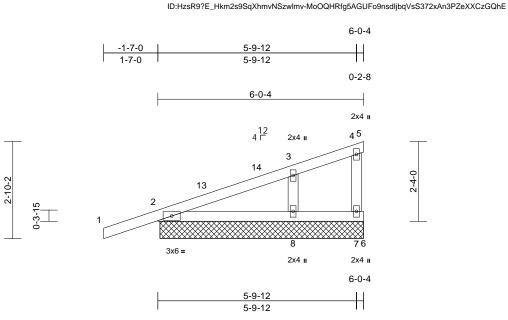
2-10-2

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Wed May 14 11:19:12 ID:HAG9SZc_H3LHEJ202UMxphzwlni-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.3

Plate Offsets (X, Y): [4:0-3-0,0-1-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.45 0.35 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.00	(loc) 4-7 4-7 2	l/defl >999 >687 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
,	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-4-8, 4 Max Horiz 2=72 (LC Max Uplift 2=-82 (LC Max Uplift 2=-82 (LC (Max Grav 2=337 (LC (lb) - Maximum Comp Tension 1-2=0/33, 2-3=-92/45 2-4=-39/70 ed roof live loads have	ept end verticals. applied or 10-0-0 oc =0-1-8 15) 12), 4=-37 (LC 16) 2), 4=216 (LC 2) pression/Maximum 0, 3-4=-145/82	8) 9) 10] 11]	load of 12.0 overhangs n Building Des verifying Rai requirement This truss h chord live lo on the botto 3-06-00 tall chord and ai Bearing at jo using ANSI/ designer sho) Provide meo bearing platt	as been designed f psf or 2.00 times fi on-concurrent with signer/Project engin in Load = 5.0 (psf) s specific to the us as been designed fad nonconcurrent has been designed m chord in all area by 2-00-00 wide win y other members. oint(s) 4 considers TPI 1 angle to grain buld verify capacity chanical connection e at joint(s) 4. chanical connection e capable of withst uplift at joint 4. Standard	at roof lo other lim neer resp covers r e of this or a 10.0 with any l for a liv s where Il fit betw parallel fit for multion of bear n (by oth	bad of 11.5 p ve loads. consible for ain loading truss compo D psf bottom other live loa e load of 20.1 a rectangle veen the bott o grain value a. Building ng surface. ers) of truss	nent. ads. Opsf om to to					
Vasd=91n	n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed: MWERS (en:	DL=3.0psf; h=25ft; C									A.I.	OPTH CA	ROUT


- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-7-0 to 1-5-0, Interior (1) 1-5-0 to 5-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	P02E	Monopitch Supported Gable	1	1	Job Reference (optional)	173486235

0-2-8

Run: 8.83 E Feb 18 2025 Print: 8.830 E Feb 18 2025 MiTek Industries, Inc. Thu May 15 11:57:21

Page: 1

Scale = 1:33.7

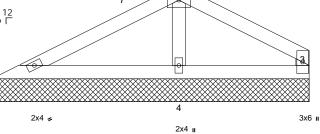
Scale = 1:33.7													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 11.5/15.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.41 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 25 lb	FT = 20%
(lb) -	2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 5-11-8. Max Horiz 2=82 (LC Max Uplift All uplift 1 2, 5, 8 ex Max Grav All reactic (s) 5, 6 ex	applied or 10-0-0 o 12) 00 (lb) or less at joir cept 6=-486 (LC 7)	C 9; nt(s) 1(load of 12.0 overhangs n Building Des verifying Rai requirement Gable studs This truss ha chord live lo * This truss l on the bottor 3-06-00 tall 1 chord and a D Provide mee bearing plate	as been designed psf or 2.00 times ion-concurrent wi signer/Project eng in Load = 5.0 (psf s specific to the u spaced at 2-0-0 as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide hanical connections e capable of withs (cept (jt=lb) 6=480	flat roof lo th other lin gineer res f) covers r use of this oc. d for a 10.0 t with any ed for a liv as where will fit betw s. on (by oth standing 1	bad of 11.5 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss	nent. ads. Opsf com to					
FORCES	 (lb) - Max. Comp./M (lb) or less except w 		250										
NOTES													
Vasd=91m II; Exp B; I and C-C C 6-0-4 zone vertical left forces & M DOL=1.60 2) Truss desi only. For s see Stand or consult 3) TCLL: ASC	CE 7-10; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er corner (3) -1-7-0 to 1-5 c; cantilever left and rig t and right exposed;C- WFRS for reactions s plate grip DOL=1.60 gined for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-10; Pr=20.0 psf (=1 15): Pg=15.0 psf (DL=3.0psf; h=25ft; (hvelope) exterior zor i-0, Exterior (2) 1-5-(ght exposed ; end C for members and hown; Lumber the plane of the tru I (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=:	ne 0 to), ble, PI 1. 1.15							A summer		SEA 0363	L

Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

TRENGINEERING BY RENCO A MITCH Affiliate

A. GILD


May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1034 Serenity	
P02595-25452	V01B	Valley	1	1	Job Reference (optional)	173486236

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Wed May 14 11:19:12 ID:d6nywVIgtnDHo1gvDgUUa6zwhux-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-0-11 6-10-15 4-0-11 2-10-4 6-10-15 4x6 = 2 7 12 6 ∟

6-10-15

Page: 1

Sca	e =	= 1:	25.	2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.20 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-10-15 oc purlins, Rigid ceiling directly bracing. (size) 1=6-10-15 Max Horiz 1=27 (LC Max Uplift 1=-6 (LC (LC 16) Max Grav 1=89 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-107/193, 2-3=-	5, 3=6-10-15, 4=6-10- 16) 16), 3=-58 (LC 33), 4= 2), 3=56 (LC 34), 4=4 pression/Maximum 63/200	5) or 6) 7) 15 9) 61 10 52 11	Plate DOL=1 psf (flat roof Category II; Unbalanced design. Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate	7-10; Pr=20.0 psf .15); Pg=15.0 psf snow: Lum DOL=1 Exp B; Partially Ex snow loads have b igner/Project engin n Load = 5.0 (psf) s specific to the us es continuous bott spaced at 4-0-0 ou s been designed f ad nonconcurrent w has been designed f ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wi by other members. hanical connection e capable of withsta joint 3 and 61 b u Standard	(ground .15 Plat p.; Ct=1 been cor heer res covers r e of this om chor c c or a 10.0 with any for a liv s where Il fit betv a (by oth anding 6	snow); Pf=1 ⁻ e DOL=1.15) .10 ssidered for th ponsible for ain loading truss compoid bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t i buplift at jo	I.5 ; nis nent. ds. Dpsf om o					
NOTES 1) Unbalanc	ed roof live loads have	been considered for										, minim	1111

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-1-3, Exterior (2) 4-1-3 to 6-9-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

