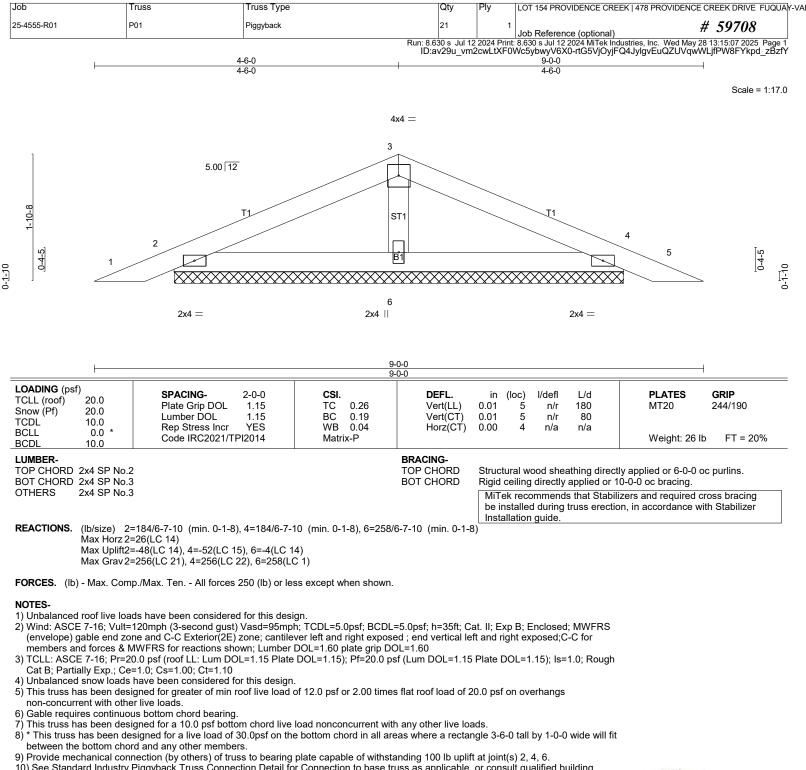
Mark Morris, P.E.

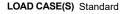
#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

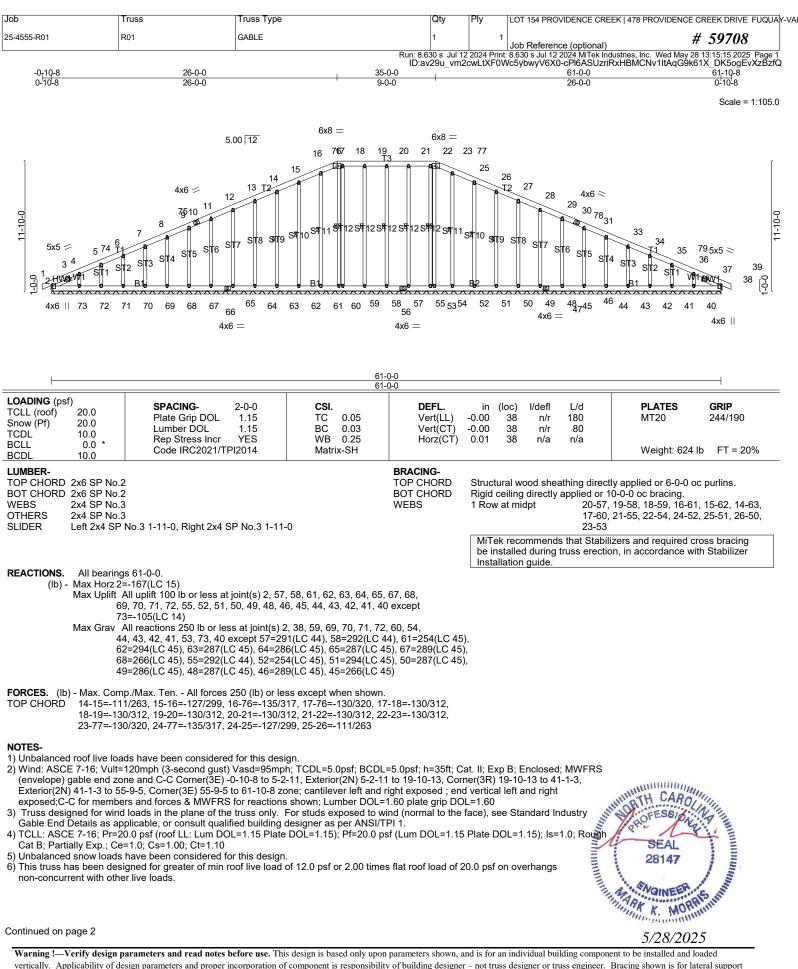
AST #: 59708 JOB: 25-4555-R01 JOB NAME: LOT 154 PROVIDENCE CREEK Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 19 Truss Design(s)


Trusses:

P01, R01, R02, R02A, R03, R04, R05, R06, R07, R09, R10, R11, R12, R13, V01, V02, V03,



My license renewal date for the state of North Carolina is 12/31/2025


Warning !--- Verify design parameters and read notes before use.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Continued on page 2

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

5/28/2025

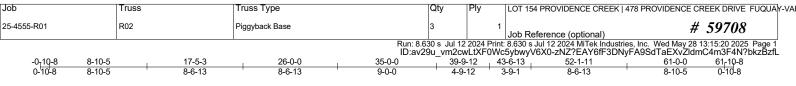
Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478	PROVIDENCE CREEK DRIVE FUQUAY-VA
25-4555-R01	R01	GABLE	1		Job Reference (optional)	# 59708
	·					Inc. Wed May 28 13:15:17 2025 Page 2 bUK3mzbvbeYoV?uicY69L_PzBzfO

7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 8) Provide adequate drainage to prevent water ponding.

9) All plates are 2x4 MT20 unless otherwise indicated.

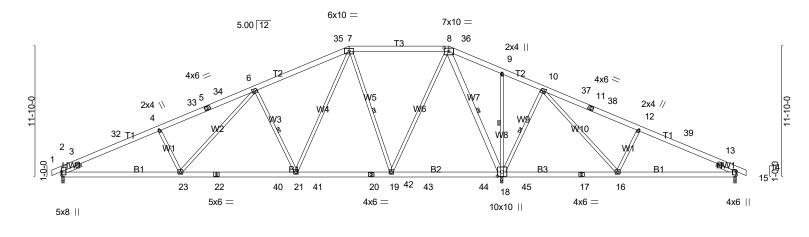
10) Gable requires continuous bottom chord bearing.

11) Gable studs spaced at 2-0-0 oc.


12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 57, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 55, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41, 40 except (jt=lb) 73=105.


LOAD CASE(S) Standard

Scale = 1:104.1

5/28/2025

L	10-8-14	21-2-4	29-9-12	39-9-12	50-3-2	61-0-0
Plate Offecte (10-8-14 X X) [8:0.5		8-7-8	10-0-0	10-5-6	10-8-14
	. , .	0,0-3-7], [18.0-4-8,0-3-0]				
LOADING (psf) TCLL (roof) Snow (Pf) TCDL	20.0 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.84 BC 0.83	DEFL. Vert(LL) Vert(CT)	in (loc) I/defl L/d -0.31 21-23 >999 240 -0.47 21-23 >999 180	MT20 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2021/TPI2014	WB 0.93 Matrix-MSH	Horz(CT)	0.05 18 n/a n/a	Weight: 466 lb FT = 20%
	2x6 SP No.2 2x4 SP No.3 W7: 2x6 SP I	*Except* DSS		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applie 1 Row at midpt	directly applied or 2-10-2 oc purlins. ed or 6-0-0 oc bracing. 6-21, 7-19, 8-18, 10-18, 9-18 Stabilizers and required cross bracing
SLIDER	Left 2x4 SP N	No.3 1-11-0, Right 2x4 SP No.3 1-11	-0			erection, in accordance with Stabilizer
	Max Horz 2= Max Uplift2=	:1412/0-3-8 (min. 0-1-14), 14=461/0 :-167(LC 15) :-222(LC 14), 14=-145(LC 15), 18=-2 :1577(LC 39), 14=583(LC 55), 18=4	232(LC 11)	112/0-3-8 (min. 0-	2-13)	
FORCES. (Ib) TOP CHORD	2-3=-975/1, 5-34=-2613 8-36=0/150	o./Max. Ten All forces 250 (lb) or le , 3-32=-2865/374, 4-32=-2774/390, -)/395, 6-34=-2510/412, 6-35=-1782/)0, 9-36=0/1429, 9-10=-26/1462, 10- 5/363, 12-38=-388/332, 12-39=-432/	4-33=-2709/391, 5-33=- 341, 7-35=-1533/343, 7- 37=-256/493, 11-37=-28	2628/394, ·8=-646/242, 80/374,		
BOT CHORD	20-41=-26/	2561, 22-23=-250/1951, 22-40=-250 1001, 20-42=-26/1001, 19-42=-26/10 3/220, 18-45=-905/158, 17-45=-905/	001, 19-43=-256/220, 43	3-44=-256/220,	,	
WEBS	4-23=-421/2	229, 6-23=-131/727, 6-21=-1190/32 1835, 8-18=-2747/243, 10-18=-1061	4, 7-21=-217/1520, 7-19	=-1292/235,		
2) Wind: ASCE (envelope) g	7-16; Vult=1 able end zon	ds have been considered for this des 120mph (3-second gust) Vasd=95m; the and C-C Exterior(2E) -0-10-8 to 5 (2E) 55-9-5 to 61-10-8 zone; cantile IWFRS for reactions shown; Lumber 0.0 psf (roof LL: Lum DOL=1.15 Plate =1.0; Cs=1.00; Ct=1.10 have been considered for this design gned for greater of min roof live load r live loads. an truss requires extreme care and the Guide to Good Practice for Hand A and TPI. The building owner or the gn and inspection of the temporary in assumes no responsibility for truss r ge to prevent water ponding.	oh; TCDL=5.0psf; BCDL -2-11, Interior(1) 5-2-11	to 17-4-8, Exterior	(2R) 17-4-8 to 43-6-6, Interio	sought SEAL

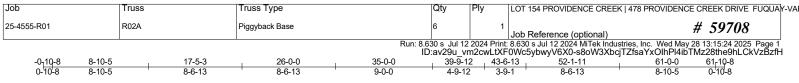
7) Provide adequate drainage to prevent water ponding. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDEN	NCE CREEK DRIVE FUQUAY			
25-4555-R01	R02	Piggyback Base	3	1	Job Reference (optional)	# 59708			
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:20 2025 Page 2 ID:av29u vm2cwLtXF0Wc5ybwyV6X0-zNZ?EAY6fF3DNyFA9SdTaEXvZldmC4m3F4N?bkzBzfL									

8) All plates are 5x5 MT20 unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

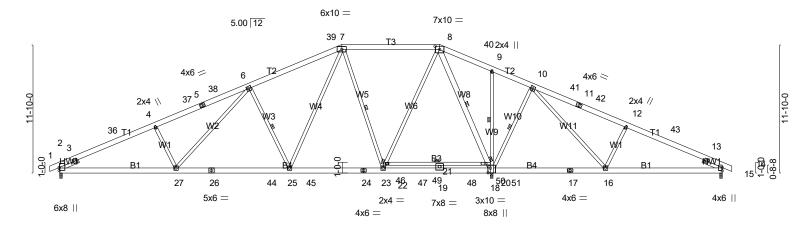
10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

12) Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=222, 14=145, 18=232.

LOAD CASE(S) Standard



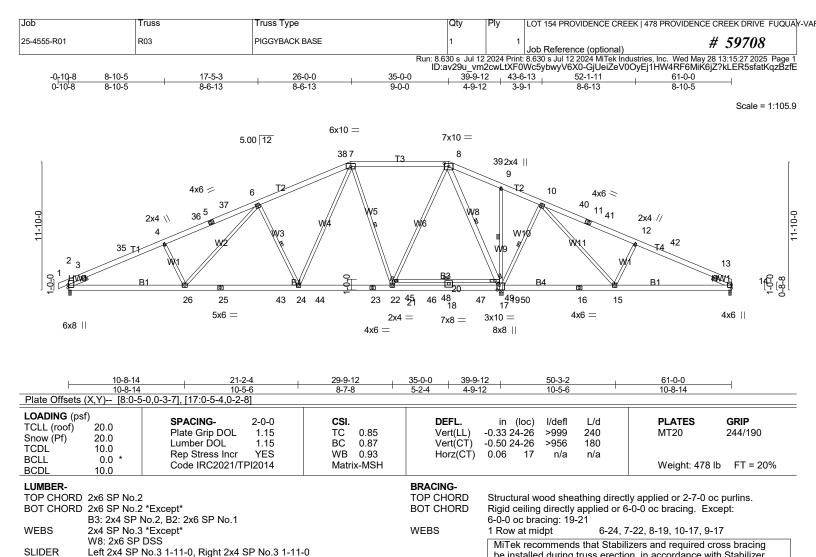
Scale = 1:106.0

MORAIS

K.

5/28/2025

⊢–	<u> </u>	21-2-4	29-9-12 8-7-8	<u> </u>		50-3-2	61-0-0
Plate Offsets		-0,0-3-7], [18:0-5-4,0-2-8]	0-7-0	5-2-4 4-9-	12	10-5-6	10-0-14
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.85 BC 0.87 WB 0.93 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.33 25-27 -0.50 25-27 0.06 18	l/defi L/d >999 240 >957 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 480 lb FT = 20%
	2x4 SP No.3	lo.2, B2: 2x6 SP No.1 *Except*		BRACING- TOP CHORD BOT CHORD WEBS		directly applied or icing: 20-22	xtly applied or 2-7-0 oc purlins. 6-0-0 oc bracing. Except: 7-23, 8-20, 10-18, 9-18
SLIDER	W8: 2x6 SP I Left 2x4 SP N	DSS No.3 1-11-0, Right 2x4 SP No.3 1-11-	0			d during truss erecti	ilizers and required cross bracing ion, in accordance with Stabilizer
REACTIONS.	Max Horz 2= Max Uplift2=	1429/0-3-8 (min. 0-1-14), 14=448/0- -167(LC 15) -212(LC 14), 14=-148(LC 15), 18=-1- 1593(LC 39), 14=572(LC 55), 18=45	14(LC 11)	3298/0-3-8 (min. 0		rguide.	
FORCES. (IL TOP CHORD	2-3=-984/0, 5-38=-2707 8-40=0/154	o./Max. Ten All forces 250 (lb) or le: ,3-36=-2959/350, 4-36=-2867/366, 4 ,372, 6-38=-2604/388, 6-39=-1877/3 5, 9-40=0/1475, 9-10=-21/1508, 10 /426, 12-42=-360/394, 12-43=-404/3	-37=-2803/367, 5-37= 16, 7-39=-1631/318, 7 1=-228/556, 11-41=-2	-2723/371, -8=-774/211, 52/438,			
BOT CHORD	2-27=-412/2 24-45=-1/1 19-48=-24/4 18-51=-953	2646, 26-27=-227/2039, 26-44=-227/ 105, 24-46=-1/1105, 23-46=-1/1105, 423, 18-48=-24/423, 22-49=-326/9, 2 /153, 17-51=-953/153, 16-17=-953/1	2039, 25-44=-227/203 23-47=-24/423, 19-47= 1-49=-326/9, 21-50=-3 53, 14-16=-304/457	9, 25-45=-1/1105, =-24/423, 326/9, 20-50=-326/			
WEBS	22-23=-117	230, 6-27=-131/726, 6-25=-1190/323 /1831, 8-22=-96/2043, 8-20=-2957/2 /1061, 12-16=-602/250, 19-21=-323/	00, 18-20=-3174/181,				
2) Wind: ASC (envelope) 43-6-6 to 5 members a 3) TCLL: ASC Cat B; Part 4) Unbalance 5) This truss I	E 7-16; Vult=1 gable end zon 5-9-5, Exterior and forces & M CE 7-16; Pr=20 tially Exp.; Ce= d snow loads h	Is have been considered for this desi 20mph (3-second gust) Vasd=95mp e and C-C Exterior(2E) -0-10-8 to 5- (2E) 55-9-5 to 61-10-8 zone; cantilev WFRS for reactions shown; Lumber 0.0 psf (roof LL: Lum DOL=1.15 Plate :1.0; Cs=1.00; Ct=1.10 nave been considered for this design gned for greater of min roof live load r live loads.	r; TCDL=5.0psf; BCDI 2-11, Interior(1) 5-2-11 er left and right expose DOL=1.60 plate grip D DOL=1.15); Pf=20.0 p	to 17-4-8, Exterio ed ; end vertical le OL=1.60 osf (Lum DOL=1.1	r(2R) 17-4-8 to ft and right exp 5 Plate DOL=1	. 15), IS- 1.0, ROOGI	P AL


Continued on page 2

[Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDENC	CE CREEK DRIVE FUQUAY	-VAF		
	25-4555-R01	R02A	Piggyback Base	6	1	Job Reference (optional)	# 59708			
	Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:24 2025 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-s8oW3XbcjTZfsaYxOIhPl4ibTMz28the9hLCkVzBzfH									

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=212, 14=148, 18=144.

LOAD CASE(S) Standard

Installation guide REACTIONS. (lb/size) 2=1430/0-3-8 (min. 0-1-14), 14=397/0-3-8 (min. 0-1-8), 17=3295/0-3-8 (min. 0-3-2) Max Horz 2=172(LC 14) Max Uplift2=-211(LC 14), 14=-129(LC 15), 17=-147(LC 11) Max Grav 2=1594(LC 39), 14=520(LC 55), 17=4539(LC 45)

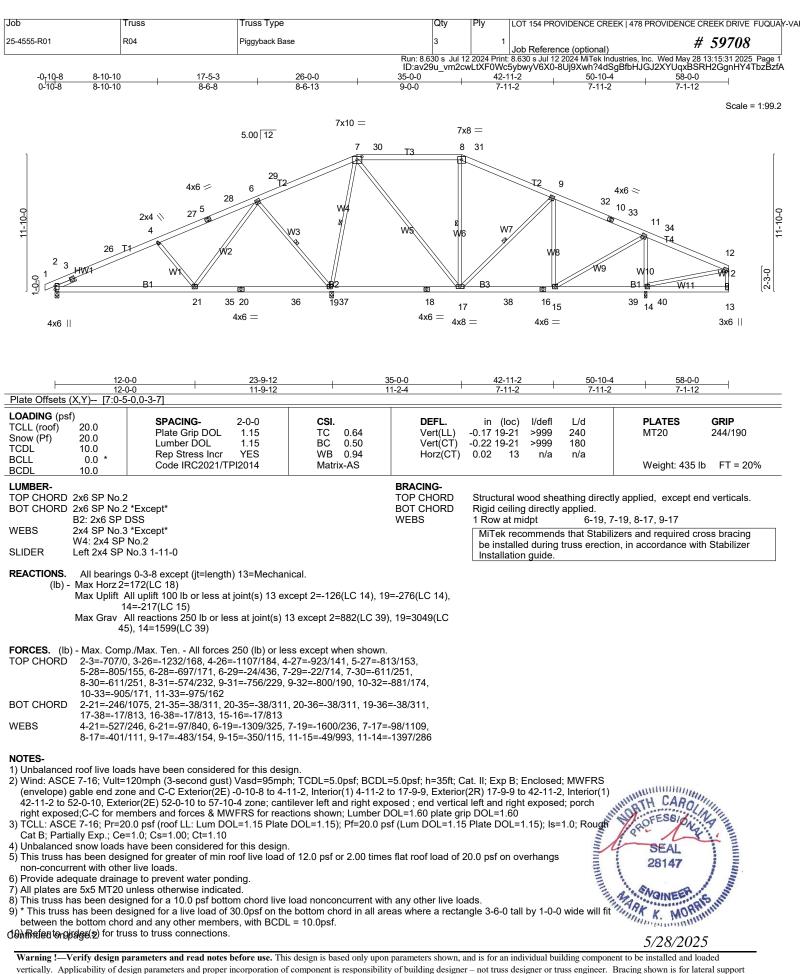
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-985/0, 3-35=-2961/349, 4-35=-2869/365, 4-36=-2806/366, 5-36=-2725/369, 5-37=-2709/370, 6-37=-2606/387, 6-38=-1879/314, 7-38=-1629/316, 7-8=-773/208, 8-39=0/1540, 9-39=0/1470, 9-10=-24/1504, 10-40=-237/547, 11-40=-261/430, 11-41=-267/418, 12-41=-369/391, 12-42=-413/374, 13-42=-563/326, 13-14=-411/0 BOT CHORD 2-26=-416/2648, 25-26=-231/2042, 25-43=-231/2042, 24-43=-231/2042, 24-44=-5/1102, 23-44=-5/1102, 23-45=-5/1102, 22-45=-5/1102, 22-46=-28/418, 18-46=-28/418 18-47=-28/418, 17-47=-28/418, 21-48=-326/9, 20-48=-326/9, 20-49=-326/9, 19-49=-326/9, 17-50=-948/143, 16-50=-948/143, 15-16=-948/143, 14-15=-301/466 WEBS 4-26=-418/230. 6-26=-132/726. 6-24=-1190/323. 7-24=-224/1483. 7-22=-1262/252.

21-22=-118/1830, 8-21=-97/2041, 8-19=-2954/203, 17-19=-3171/184, 10-17=-1057/270, 10-15=-163/1064, 12-15=-604/251, 18-20=-323/0, 9-17=-348/97

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-2-11, Interior(1) 5-2-11 to 17-4-8, Exterior(2R) 17-4-8 to 43-6-6, Interior(1) 43-6-6 to 54-10-13, Exterior(2E) 54-10-13 to 61-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

be installed during truss erection, in accordance with Stabilizer


Continued on page 2

[Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDENCE CREEK DRIVE FUQUAY-V
	25-4555-R01	R03	PIGGYBACK BASE	1	1	Job Reference (optional) # 59708
						8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:28 2025 Page 2 Wc5ybwyV6X0-kv21vve7ni45KBsid8mLvwsHTzLz4hhE4JJQtGzBzfD

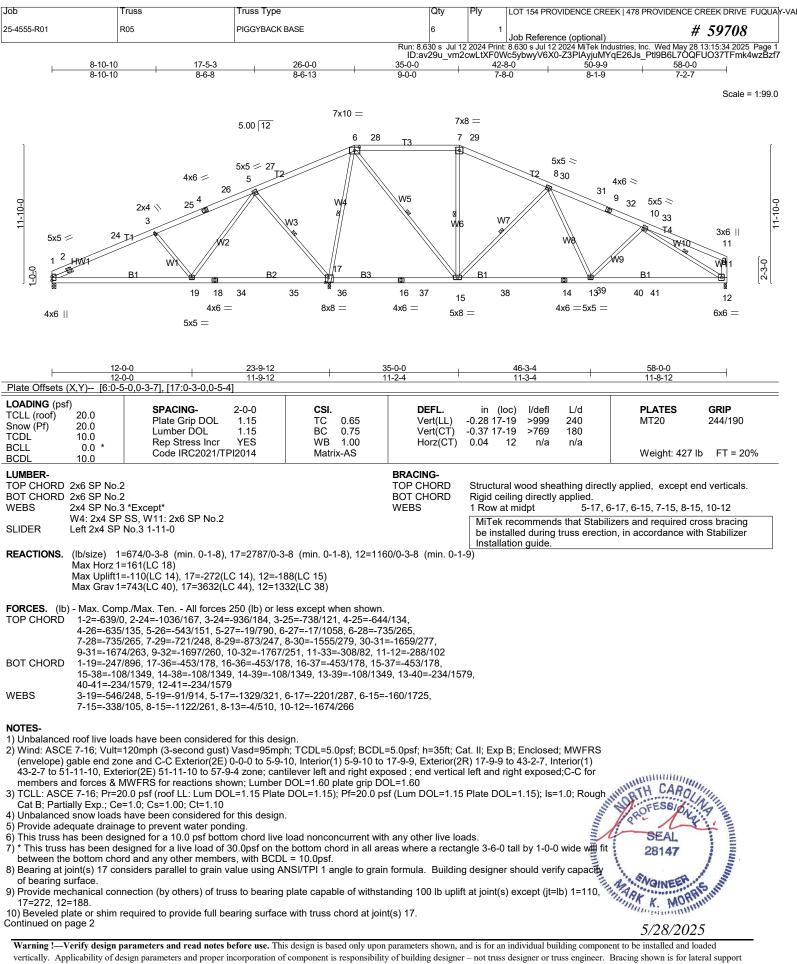
- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide metal plate or equivalent at bearing(s) 17 to support reaction shown.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=211, 14=129, 17=147.

LOAD CASE(S) Standard

(10) Refeatorginger(2) for truss to truss connections.

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

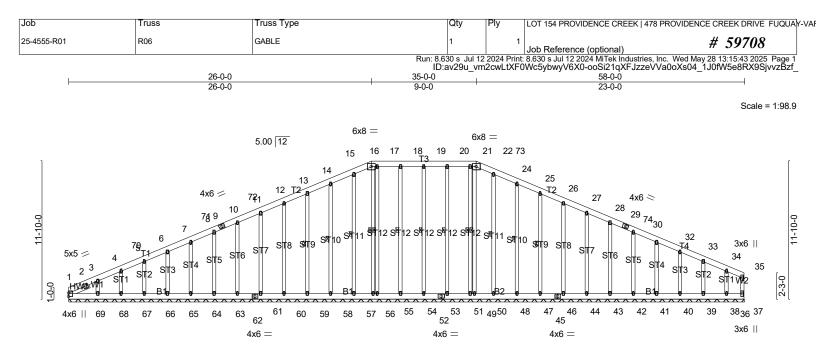
5/28/2025


[Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDENC	E CREEK DRIVE FUQUAY
	25-4555-R01	R04	Piggyback Base	3	1	Job Reference (optional)	# 59708
						8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 5ybwyV6X0-8Uj9Xwh?4dSqBfbHJGJ2XYUqxE	

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=126, 19=276, 14=217.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is to fait individual outding component to be instance and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

ſ	Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDENCE CREEK DRIVE FUQUAY-
	25-4555-R01	R05	PIGGYBACK BASE	6	1	Job Reference (optional) # 59708
						: 8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:35 2025 Page 2 c5ybwyV6X0-1GzgNIkW7sy5gGu2Y6O_hOfWtomUDrIGhvWlcMzBzf6

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

			3-0-0 3-0-0		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.10 BC 0.04 WB 0.25 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 36 n/a n/a	PLATES GRIP MT20 244/190 Weight: 603 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP	2 3 3		BRACING- TOP CHORD BOT CHORD WEBS	end verticals. Rigid ceiling directly applied or 1 Row at midpt 19-53 16-56 22-49 MiTek recommends that Stabi	, 18-54, 17-55, 15-57, 14-58, 13-59, , 20-51, 21-50, 23-48, 24-47, 25-46,
60 1 Max Grav 55 66 4 FORCES. (Ib) - Max. Com TOP CHORD 10-72=-68 14-15=-12 19-20=-13		2, 41, 40, 39, 38, 37 ex 1, 55, 65, 66, 67, 68, 56 C 43), 54=292(LC 43), 6(LC 44), 61=287(LC 4 5(LC 44), 47=294(LC 4 9(LC 44), 41=266(LC 4 ss except when shown 12-13=-97/335, 13-14= 11, 17-18=-131/410, 18 11, 22-73=-130/423, 23	ccept 69=-103(LC 5), 50, 40, 57=255(LC 44), 14), 63=289(LC 44) 14), 46=287(LC 44) 14) 		
 Wind: ASCE 7-16; Vult= (envelope) gable end zo 40-6-0 to 52-0-10, Corre members and forces & M Truss designed for winc Gable End Details as ap TCLL: ASCE 7-16; Pr=2 Cat B; Partially Exp.; Ce Unbalanced snow loads Provide adequate drainas 	have been considered for this design age to prevent water ponding. unless otherwise indicated. us bottom chord bearing.	h; TCDL=5.0psf; BCDL 0, Exterior(2N) 5-9-10 ever left and right expo- DOL=1.60 plate grip D For studs exposed to w designer as per ANSI/T DOL=1.15); Pf=20.0 p	PI 1.	at. II; Exp B; Enclosed; MWFRS R) 20-2-6 to 40-6-0, Exterior(2N) off and right exposed;C-C for face), see Standard Industry Plate DOL=1.15); Is=1.0; Rough	28147

Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDE	NCE CREEK DRIVE FUQUA	Y-VAF		
25-4555-R01	R06	GABLE	1	1	Job Reference (optional)	# 59708			
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:45 2025 Page 2 ID:av29u vm2cwLtXF0Wc5ybwyV6X0-kBZSTjsnnwDqtofz7DaK5V3NoqL ZYek?TxpvnzBzey									

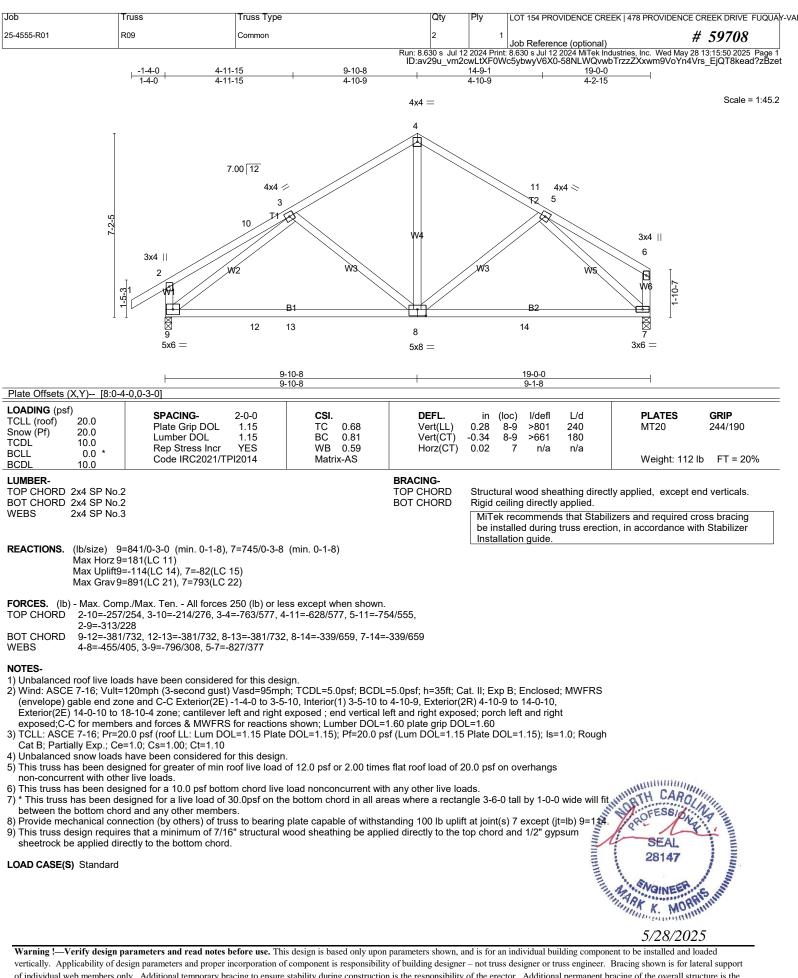
10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

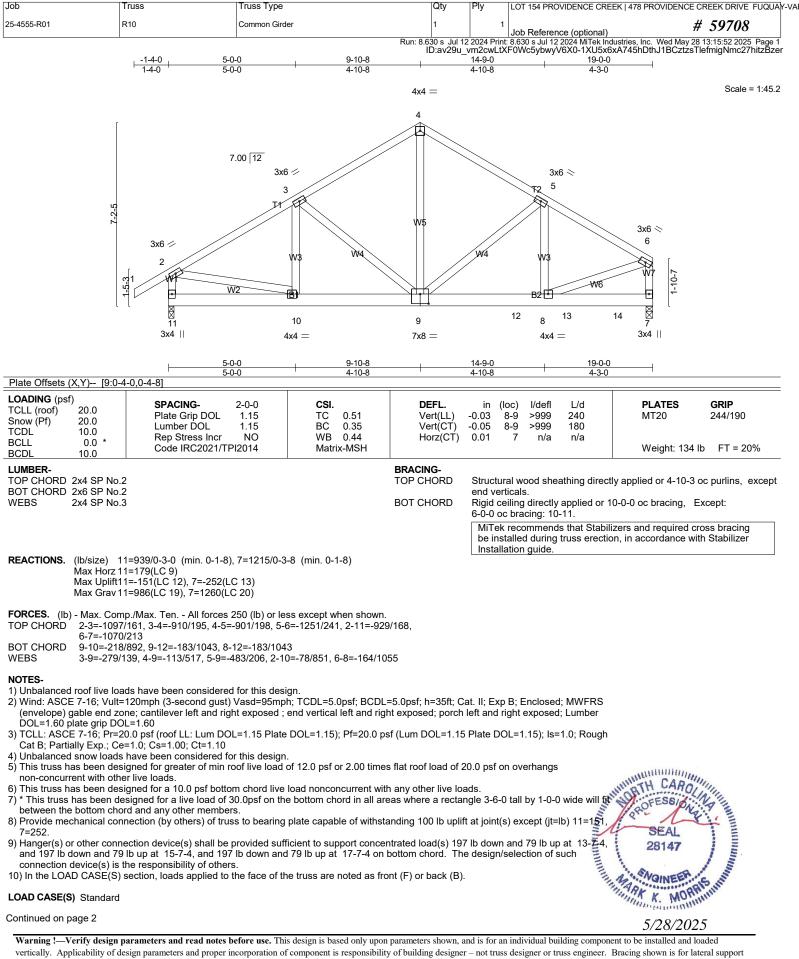
11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 53, 54, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 51, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37 except (jt=lb) 69=103.

LOAD CASE(S) Standard

I555-R01		russ 207	Truss Type Common Structural Gable	Qty 1	Ply LOT 154 PROVIDENCE	CREEK 478 PROVIDENCE CREEK DRIVE FUQU # 59708
				Run: 8.630 s Jul 1:	Job Reference (optio	nal) # 37700 ek Industries, Inc. Wed May 28 13:15:48 2025 Page ug3rbFkGOYoL71j7hrq1K?msVAhQ9UZ6zBz
		1-4-0 1-10-8	5-10-8 9-10-8	13-10-8	17-10-8	19-9-0 21-1-0
		1-4-0 ' 1-10-8 '	4-0-0 4-0-0	4-0-0	4-0-0	' 1-10-8 ' 1-4-0 ' Scale = 1:46
				4x4 =		Scale - 1.40
	l			5		
		7.00	12 3x6 -	II B	3x6 ≈	
			27		6 28	
	ц		T1 ST2	ST2	TI	
	7-2-	3x6 =		w7		3x6 ≫ 7
		3x6 = 3	ST1 W5 W6	PV6	W5 ST1	3x6 ≈
	1	2 4 W3		ST3		8 W3 9 [
	1-5-3		₩4		W4	
		16 15	BÈ È □		B1	
			²⁹ 14	13 5-0 —		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		3x6 3x6 =	3x4 =	5x8 =	3x4 =	$3x6 = 3x6 \parallel$
		<u> 1-10-8</u> 	5-10-8 9-10-8 4-0-0 4-0-0	13-10-8	<u> </u>	<u></u>
	(X,Y) [13:0-			4-0-0	+- ∪- ∪	
ADING (pst _L (roof)	f) 20.0	SPACING-	2-0-0 CSI .	DEFL.	in (loc) l/defl L/d	PLATES GRIP
w (Pf) ´ DL	20.0 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.25 1.15 BC 0.21	Vert(LL) Vert(CT)	0.03 12-13 >999 240 -0.04 13-14 >999 180	MT20 244/190
L DL	0.0 * 10.0	Rep Stress Incr Code IRC2021/T	YES WB 0.43 PI2014 Matrix-AS	Horz(CT)	0.02 10 n/a n/a	Weight: 157 lb FT = 20%
IBER-	10.0			BRACING-		
	2x4 SP No.2 2x4 SP No.2			TOP CHORD BOT CHORD	Structural wood sheathing d Rigid ceiling directly applied	irectly applied, except end verticals.
BS HERS	2x4 SP No.3 2x4 SP No.3				MiTek recommends that S	tabilizers and required cross bracing
					be installed during truss er Installation guide.	rection, in accordance with Stabilizer
ACTIONS.	Max Horz 16	6=-183(LC 12)), 10=867/0-3-0 (min. 0-1-8)			
		5=-117(LC 14), 10=-117 5=907(LC 21), 10=907(L				
RCES. (Ib) - Max. Com	p./Max. Ten All forces	250 (lb) or less except when show	n.		
CHORD	2-3=-697/4	86, 3-27=-928/632, 4-27	7=-813/643, 4-5=-743/571, 5-6=-74 6=-891/585, 8-10=-891/583		7,	
CHORD		7/576, 14-29=-317/576,	13-14=-410/758, 12-13=-414/758,	12-30=-333/576,		
			1=-351/148, 4-13=-313/208, 3-15	351/163,		
3S		112,0-11440/112				
TES- Inbalanced	2-15=-470/ d roof live load	ds have been considere				
TES- Inbalancec Vind: ASCI envelope)	2-15=-470/ d roof live load E 7-16; Vult= gable end zor	120mph (3-second gust ne and C-C Exterior(2E)) Vasd=95mph; TCDL=5.0psf; BCE -1-4-0 to 3-5-10, Interior(1) 3-5-10	to 5-0-14, Exterior(2	R) 5-0-14 to 14-8-2, Interior(1)
F ES- Inbalanced Vind: ASCI envelope) 4-8-2 to 16	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 6-3-6, Exterior	120mph (3-second gust ne and C-C Exterior(2E) r(2E) 16-3-6 to 21-1-0 zo) Vasd=95mph; TCDL=5.0psf; BCI	to 5-0-14, Exterior(2 ed ; end vertical left	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a)
TES- Inbalanced Vind: ASCI envelope) (4-8-2 to 16 ght expose Truss desig	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterior ed;C-C for me gned for wind	120mph (3-second gust ne and C-C Exterior(2E) r(2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to	to 5-0-14, Exterior(2 ed ; end vertical left a DOL=1.60 plate gri wind (normal to the	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a p DOL=1.60)) and
TES- Inbalanced Vind: ASCI envelope) 9 4-8-2 to 16 ght expose Truss desig gable End I CLL: ASC	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 3-3-6, Exterior ed;C-C for me gned for wind Details as app E 7-16; Pr=20	120mph (3-second gust the and C-C Exterior(2E) r(2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC) Vasd=95mph; TCDL=5.0psf; BCE -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber	to 5-0-14, Exterior(2 ed; end vertical left DOL=1.60 plate gri wind (normal to the /TPI 1.	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a p DOL=1.60)) and
rES- Inbalancec Vind: ASCI envelope) 4-8-2 to 16 ght expose Truss desig Gable End 1 CLL: ASC at B; Parti Inbalancec	2-15=-470/ d roof live load E 7-16; Vult=- gable end zor 6-3-6, Exterior ed;C-C for me gned for wind Details as app E 7-16; Pr=20 ally Exp.; Ce= d snow loads	120mph (3-second gust ne and C-C Exterior(2E) r(2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI 0L=1.15 Plate DOL=1.15); Pf=20.0 or this design.	to 5-0-14, Exterior(2 ed; end vertical left; DOL=1.60 plate gri wind (normal to the /TPI 1. psf (Lum DOL=1.15	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a p DOL=1.60	ugh
rES- linbalancec Vind: ASCI envelope) 4-8-2 to 16 ght expose Fruss desig Sable End I CLL: ASC CLL: ASC at B; Parti Inbalancec his truss h on-concurr	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterion ed;C-C for me gned for wind Details as app E 7-16; Pr=2(ally Exp.; Ces d snow loads as been desi, rent with othe	120mph (3-second gust ne and C-C Exterior(2E) (2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min r live loads.) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI DL=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tin	to 5-0-14, Exterior(2 ed; end vertical left; DOL=1.60 plate gri wind (normal to the /TPI 1. psf (Lum DOL=1.15	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a p DOL=1.60	ugh
rES- linbalancec Vind: ASCI envelope) 9 4-8-2 to 16 ght expose fable End I CLL: ASC at B; Parti Inbalancec his truss h his truss h	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterion ed;C-C for me gned for wind Details as app E 7-16; Pr=2(ally Exp.; Ces d snow loads as been desi, rent with othe	120mph (3-second gust ne and C-C Exterior(2E) (2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min r live loads. unless otherwise indicat) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI DL=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tin	to 5-0-14, Exterior(2 ed; end vertical left; DOL=1.60 plate gri wind (normal to the /TPI 1. psf (Lum DOL=1.15	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a p DOL=1.60	ugh
rES- Inbalancec Vind: ASCI envelope) (4-8-2 to 16 ght expose Truss desig Bable End 1 CLL: ASC CLL: ASC CLL: ASC his truss h on-concur ll plates ar able studs his truss h	2-15=-470/ d roof live load E 7-16; Vult=- gable end zor 6-3-6, Exterior ed;C-C for me gned for wind Details as app E 7-16; Pr=22 ally Exp.; Ce= d snow loads ias been desi rent with othe re 2x4 MT20 of s spaced at 2- as been desi	120mph (3-second gust ne and C-C Exterior(2E) r(2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min r live loads. unless otherwise indicat -0-0 oc. gned for a 10.0 psf botto) Vasd=95mph; TCDL=5.0psf; BCI -14-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI 0L=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tin ed.	to 5-0-14, Exterior(2 ed; end vertical left; DOL=1.60 plate gri wind (normal to the /TPI 1. psf (Lum DOL=1.15 nes flat roof load of 2 with any other live loa	R) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a o DOL=1.60 face), see Standard Industry Plate DOL=1.15); Is=1.0; Rou 0.0 psf on overhangs	ugh
TES- Jinbalancec Vind: ASCI envelope) 9 4-8-2 to 16 ght expose Gable End I CLL: ASC CLL: ASC CLL: ASC at B; Parti Jinbalancec his truss h on-concur All plates ar Gable studs his truss h	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterioo ed;C-C for me gned for wind Details as app E 7-16; Pr=20 ally Exp.; Ces d snow loads as been desi- rent with othe re 2x4 MT20 is s spaced at 2- ias been desi- s has been desi-	120mph (3-second gust ne and C-C Exterior(2E) (2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min r live loads. unless otherwise indicat -0-0 oc. gned for a 10.0 psf botto esigned for a live load o) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right exposs VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI 0L=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tim ed.	to 5-0-14, Exterior(2 ed; end vertical left : DOL=1.60 plate gri wind (normal to the /TPI 1. psf (Lum DOL=1.15 nes flat roof load of 2 vith any other live loa areas where a recta	IR) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a o DOL=1.60 face), see Standard Industry Plate DOL=1.15); Is=1.0; Rou 0.0 psf on overhangs ads. angle 3-6-0 tall by 1-0-0 wide	ugh
TES- Jinbalancec Vind: ASCI envelope) 9 4-8-2 to 16 ght expose Truss desig Sable End I CLL: ASC Cat B; Parti Jinbalancec This truss h is truss h is truss h sable stude This truss fit betweer Provide m , 10=117.	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterior ed;C-C for me gned for wind Details as app E 7-16; Pr=20 ally Exp.; Ce- d snow loads as been desi s has been desi s has been desi s has been desi s has been desi c echanical cor	120mph (3-second gust the and C-C Exterior(2E) (2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min live loads. unless otherwise indicat -0-0 oc. gned for a 10.0 psf bottk esigned for a live load o chord and any other men intection (by others) of th) Vasd=95mph; TCDL=5.0psf; BCI -1-4-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI DL=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tin ed. om chord live load nonconcurrent v f 30.0psf on the bottom chord in al nbers. uss to bearing plate capable of wit	to 5-0-14, Exterior(2 ed ; end vertical left : DOL=1.60 plate gri wind (normal to the (TPI 1. psf (Lum DOL=1.15 nes flat roof load of 2 with any other live loa areas where a recta	IR) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a o DOL=1.60 face), see Standard Industry Plate DOL=1.15); Is=1.0; Rou 0.0 psf on overhangs ads. angle 3-6-0 tall by 1-0-0 wide ift at joint(s) except (jt=Ib) 16=	ugh
Vind: ASCI envelope) (4-8-2 to 16 ight expose Truss desig Bable End I CLL: ASCC Cat B; Parti Jnbalancec This truss h non-concurr Bable studs This truss h * This trus fit between Provide m , 10=117. This truss	2-15=-470/ d roof live load E 7-16; Vult= gable end zor 5-3-6, Exterion ed;C-C for me gned for wind Details as app E 7-16; Pr=20 ally Exp.; Cee d snow loads as been desi rent with othe re 2x4 MT20 is s pasced at 2- is s bas been desi n the bottom of echanical cor design requir be applied di	120mph (3-second gust the and C-C Exterior(2E) (2E) 16-3-6 to 21-1-0 z embers and forces & MV loads in the plane of th plicable, or consult qual 0.0 psf (roof LL: Lum DC =1.0; Cs=1.00; Ct=1.10 have been considered f gned for greater of min live loads. unless otherwise indicat -0-0 oc. gned for a 10.0 psf bottk esigned for a live load o chord and any other men intection (by others) of th) Vasd=95mph; TCDL=5.0psf; BCI -14-0 to 3-5-10, Interior(1) 3-5-10 one; cantilever left and right expose VFRS for reactions shown; Lumber e truss only. For studs exposed to fied building designer as per ANSI 0L=1.15 Plate DOL=1.15); Pf=20.0 or this design. roof live load of 12.0 psf or 2.00 tin ed. or chord live load nonconcurrent v f 30.0psf on the bottom chord in al nbers. uss to bearing plate capable of wit 16" structural wood sheathing be a	to 5-0-14, Exterior(2 ed ; end vertical left : DOL=1.60 plate gri wind (normal to the (TPI 1. psf (Lum DOL=1.15 nes flat roof load of 2 with any other live loa areas where a recta	IR) 5-0-14 to 14-8-2, Interior(1 and right exposed; porch left a o DOL=1.60 face), see Standard Industry Plate DOL=1.15); Is=1.0; Rou 0.0 psf on overhangs ads. angle 3-6-0 tall by 1-0-0 wide ift at joint(s) except (jt=Ib) 16=	ugh Veresson SEAL 28147

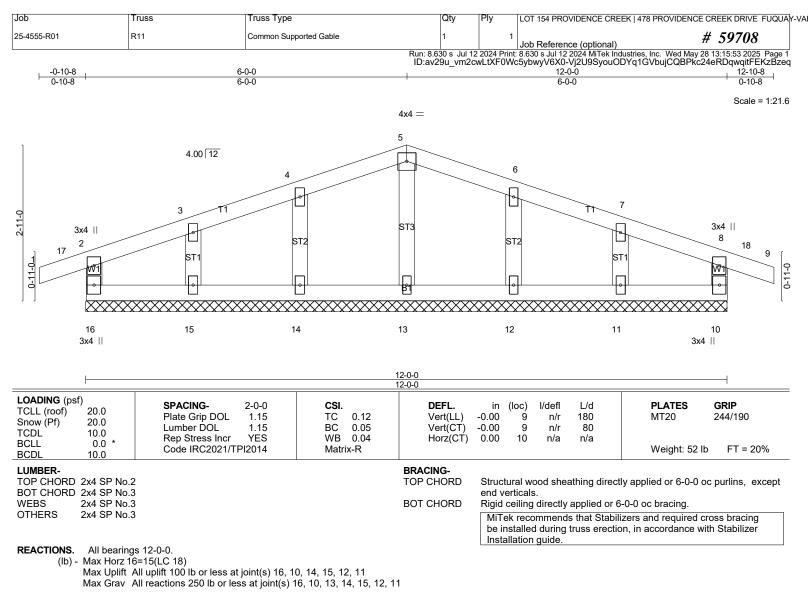

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDENC	CE CREEK DRIVE FUQUA	Y-VAF
25-4555-R01	R07	Common Structural Gable	1	1	Job Reference (optional)	# 59708	

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Wed May 28 13:15:48 2025 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-9mFb6kug3rbFkGOYoL71j7hrq1K?msVAhQ9UZ6zBzev

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 154 PROVIDENCE CREEK 478 PROVIDE	NCE CREEK DRIVE FUQUA	Y-VA
25-4555-R01	R10	Common Girder	1	1	Job Reference (optional)	# 59708	
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Wed May 28 13:15:52 2025 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-1XU5x6xA745hDthJ1BCztzsTlefmigNmc27hitzBzer							


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 12=-190(F) 13=-190(F) 14=-190(F)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

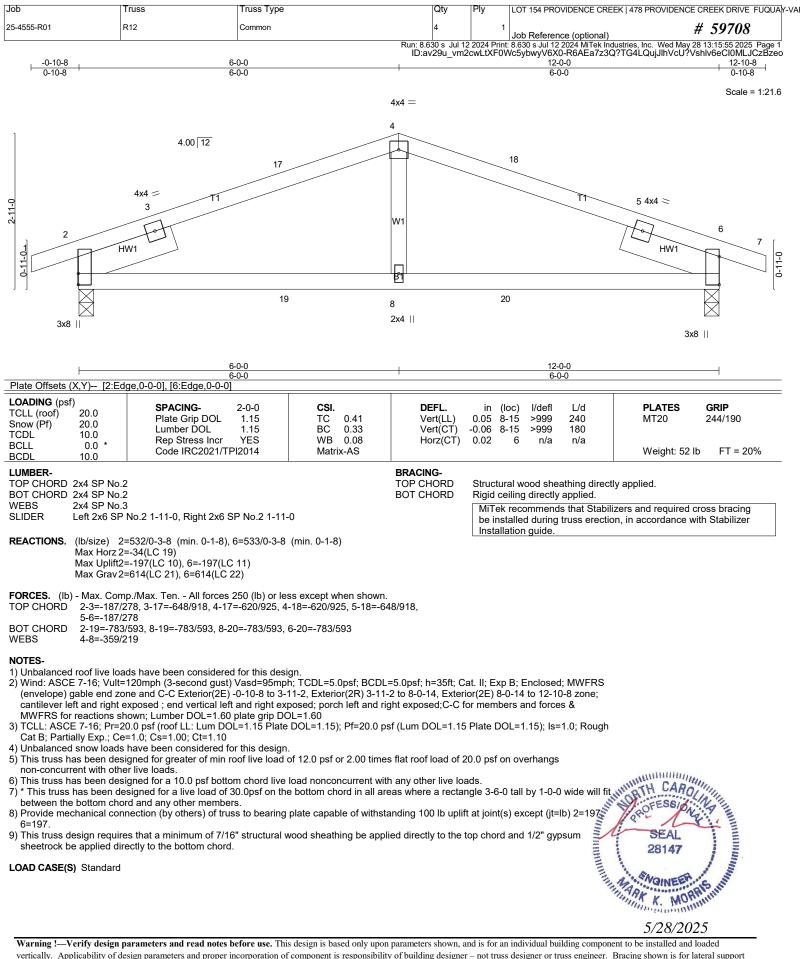
1) Unbalanced roof live loads have been considered for this design.

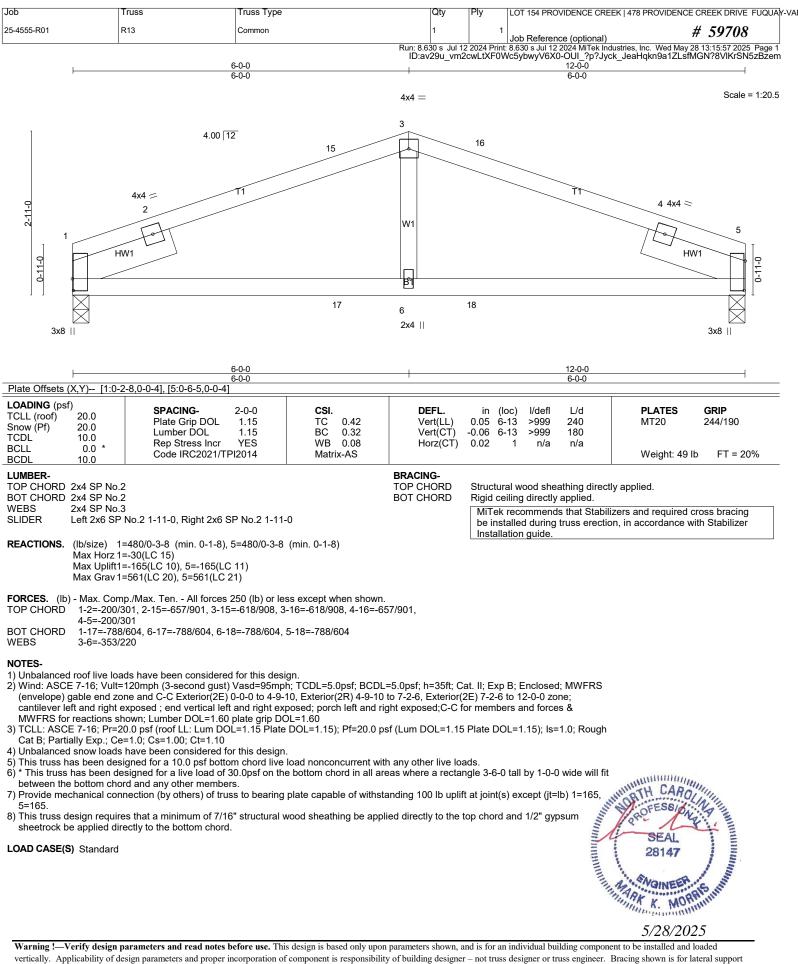
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Corner(3R) 4-0-0 to 8-0-0, Corner(3E) 8-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

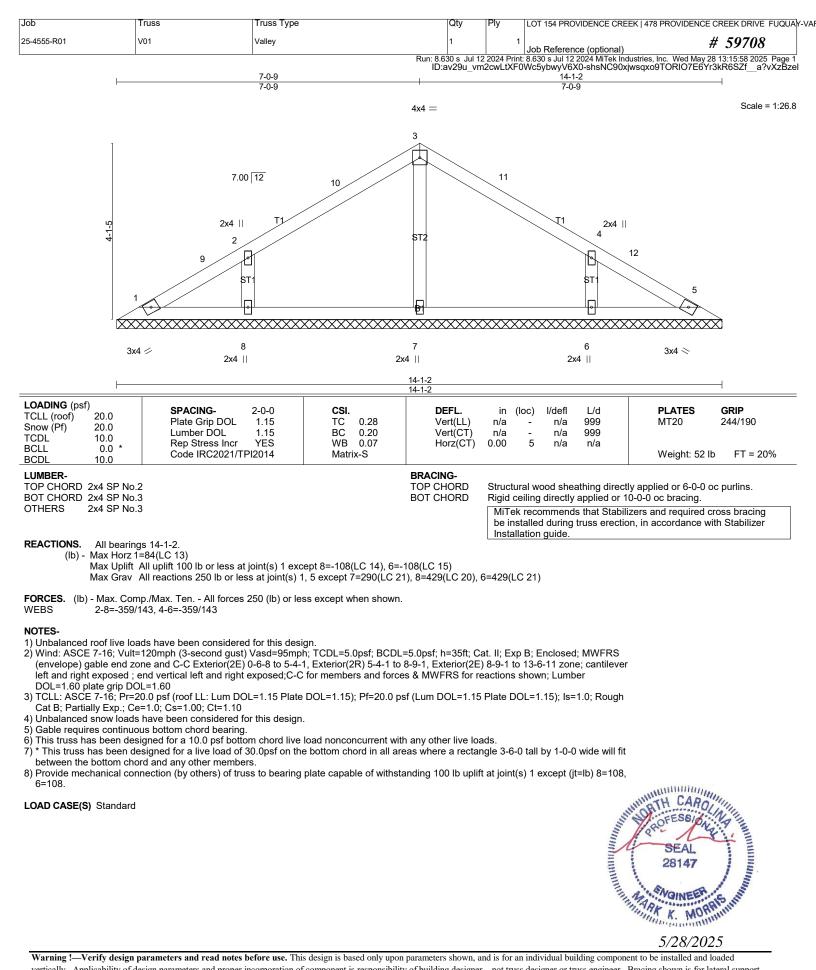
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

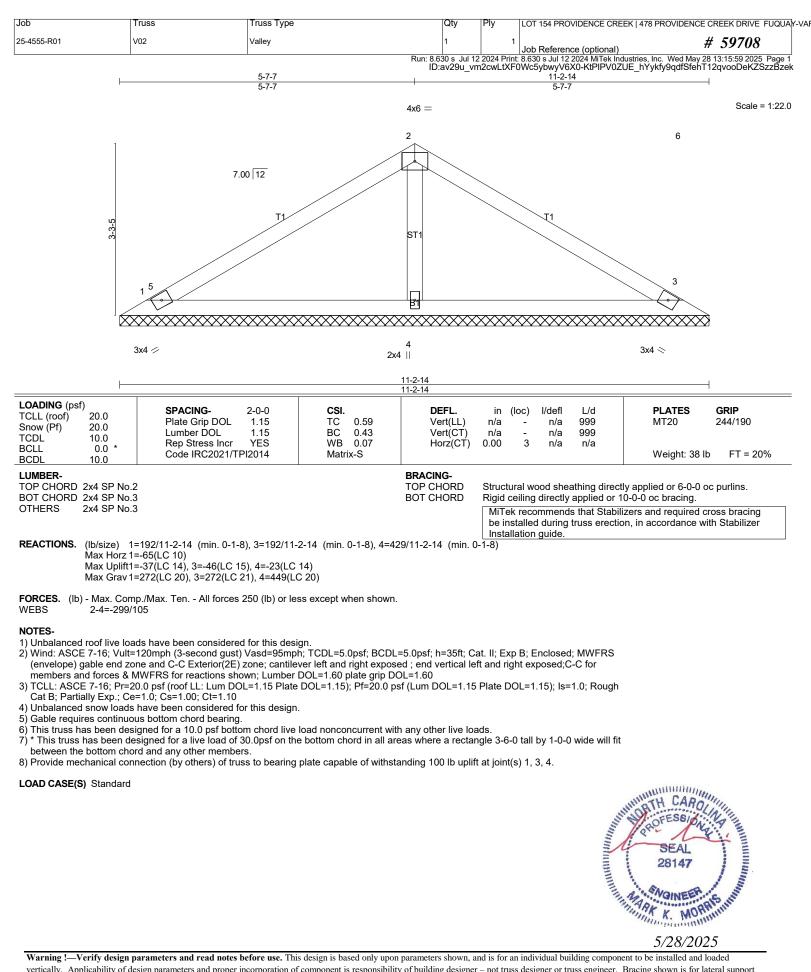
4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B: Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10

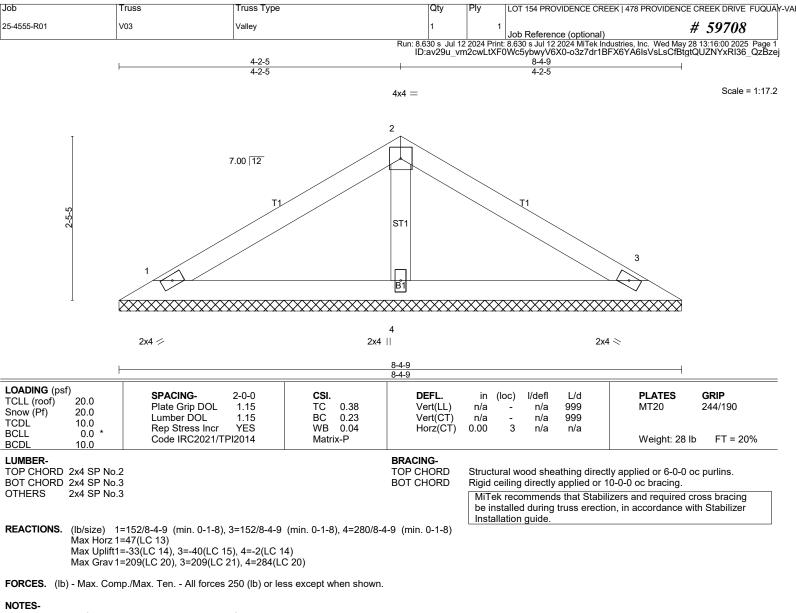
5) Unbalanced snow loads have been considered for this design.


6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


- All plates are 2x4 MT20 unless otherwise indicated.


- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the bottom chord and any other members.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 the start of the start of


LOAD CASE(S) Standard



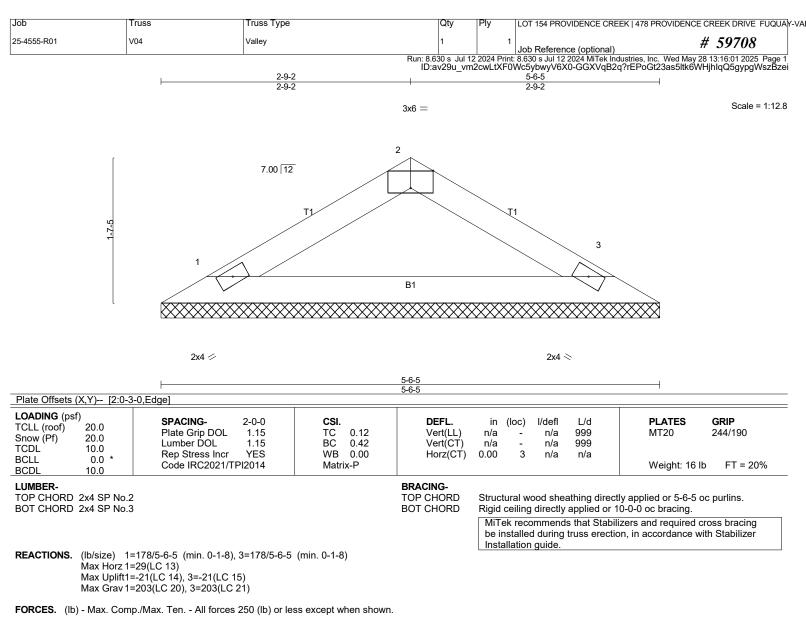
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

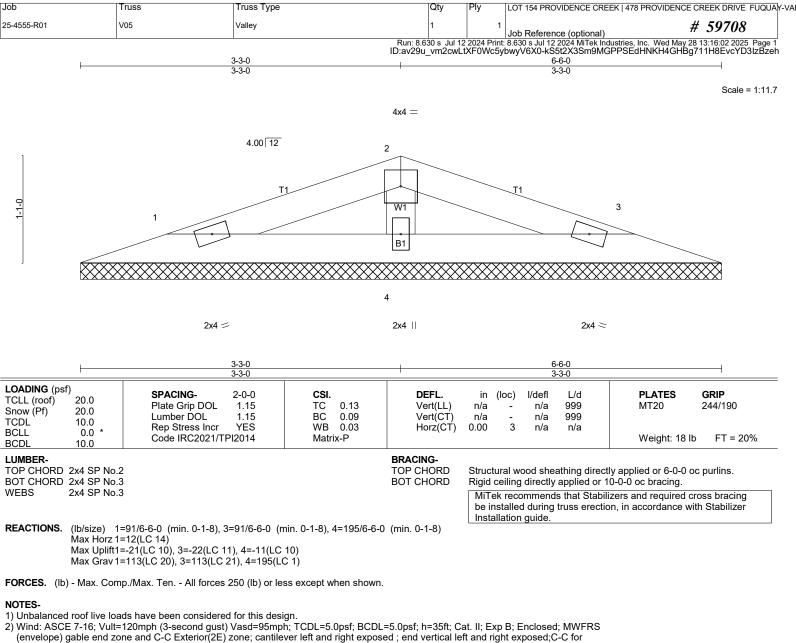
LOAD CASE(S) Standard

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 7) between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

