

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P02611-25472 917 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73629556 thru I73629603

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 21,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A01	Common	4	1	Job Reference (optional)	173629556

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:16 ID:2x_YrWDEWiQX9bgvEF_A6szxFnL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-11-0 19-0-0 4-8-0 9-0-8 13-5-0 18-1-0 \vdash + + 4-8-0 4-4-8 4-4-8 4-8-0 0-11-0 0-11-0 18-1-0 4x6= 4 12 10 2x4、 13 14 2x4 🕢 3 5 8-6-9 8-8-2 12 15 17-6-0 4x6 II 4x6 2 6 0-7-4 -0-3 စ မာကို 10⁰ B 7 8 圉 × 9 3x6= 3x6= 3x6= 3x8=

9-0-8	18-1-0
9-0-8	9-0-8

Plate Offsets (X, Y): [2:0-3-0.0-1-12], [6:0-3-0.0-1-12], [8:Edge.0-1-8]

Scale = 1:65

 \vdash

	(,,,,), [2:0 0 0,0 1 12]], [0:0 0 0,0 : .=], [0.2490,0	. 0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.70 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.01	(loc) 9-11 9-11 8	l/defl >999 >861 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-11-14 oc purlins, or Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 11=-183 (I Max Uplift 8=-107 (LI Max Grav 8=716 (LC (Ib) - Maximum Com Tension 1-2=0/37, 2-3=-724/ 4-5=-559/155, 5-6=- 2-11=-624/162, 6-8= 9-11=-103/516, 8-9= 4-9=-106/423, 5-9=- ed roof live loads have n. CE 7-10: Yult=115mph	athing directly applie except end verticals applied or 10-0-0 o 11=0-5-8 LC 12) C 15), 11=-107 (LC C 2), 11=716 (LC 2) pression/Maximum 141, 3-4=-559/155, 724/141, 6-7=0/37, -624/162 -35/471 170/163, 3-9=-170/ been considered fo (3-second gust)	ed or 5. c . 14) ; 163	 4) This truss ha load of 12.0 overhangs n 5) Building Des verifying Rai requirement 6) This truss ha chord live lo 7) * This truss lo 60 totall 1 chord and ai 3) Provide mec bearing plate 11 and 107 1 LOAD CASE(S) 	as been designed psf or 1.00 times on-concurrent wit signer/Project eng in Load = 5.0 (psf, s specific to the u: as been designed ad nonconcurrent has been designed m chord in all aree by 2-00-00 wide w ny other members chanical connectio e capable of withs b uplift at joint 8. Standard	for great flat roof li h other lis ocvers r se of this for a 10. with any d for a liv as where vill fit betv 5.	er of min roo bad of 11.5 p / e loads. bonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 07 lb uplift a	f live osf on onent. ads. Opsf to to t joint			ألار	WHITH CA	ROUTIN	
 Vinit. AG Vasde91n II; Exp B; and C-C E 9-0-8, Ext 19-0-0 zor vertical lef forces & M DOL=1.60 TCLL: AS Plate DOL psf (flat ro Category 	ph; TCDL=4.2ps; BCI Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2 erior (2) 9-0-8 to 12-0-5 ne; cantilever left and ri ft and right exposed;C-1 MWFRS for reactions sl 0 plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (g =1.25); Pg=15.0 psf (g of snow: Lum DOL=1.1 I. Evp R: Partially Exp	(J-second gust) DL=3.0psf; h=25ft; velope) exterior zor -1-0, Interior (1) 2-1 3, Interior (1) 12-0-8 ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=: pround snow); Pf=11 15 Plate DOL=:1.5) - Ct=1 10	Cat. ne -0 to 3 to 1.25 1.5 ;							L'anna anna anna anna anna anna anna ann		SEA 0363	L 22 LBERTIN	

DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

mmm May 21,2025

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A01E	Common Supported Gable	1	1	Job Reference (optional)	173629557

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

18-1-0

Scale = 1:63.4

Continued on page 2

Plate Offsets (X, Y): [22:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 1.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MR	0.09 0.07 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceil bracing. 1 Row at	o.2 o.2 o.2 I wood shea purlins, exc ing directly midpt	athing directly appl æpt end verticals. applied or 6-0-0 oc 7-19	N 1 ied or 2	VEBS 7 IOTES) Unbalanced this design.) Wind: ASCE Vasd=91mph II; Exp B; Enu and C-C Cor	7-19=-200/122, 6-2 I-22=-118/85, 3-23 9-17=-114/89, 10-1 11-15=-113/104 roof live loads hav 7-10; Vult=115mp r; TCDL=4.2psf; Bi closed; MWFRS (ener (3) -0-11-0 to 2	20=-124/ 3=-107/1 16=-120/ h (3-sec CDL=3.(envelope 2-1-0, E)	(83, 5-21=-11 09, 8-18=-12 (85, considered fo cond gust) Dpsf; h=25ft; (exterior zor kterior (2) 2-1	3/88, 23/82, or Cat. ne -0 to	12) * Th on th 3-06 choi 13) Prov bear 24, 9 uplif joint ib up 14) In th	is truss ne botto 3-00 tall rd and a vide mer ring plat 94 lb up 134 lb up 23, 75 blift at jon re LOAE	has be by 2-0 by 2-0 iny oth chanic ce capa lift at je t 21, 69 lb uplif bint 16 D CASI	een designed fo rd in all areas w 0-00 wide will fi er members. al connection (b able of withstanc oint 14, 74 lb up 9 lb uplift at joint 14 at joint 18, 84 and 149 lb uplift E(S) section, loa	a live load of 20.0psf here a rectangle between the bottom y others) of truss to ling 130 lb uplift at joir lift at joint 20, 80 lb 22, 152 lb uplift at b uplift at joint 17, 76 at joint 15.	nt
REACTIONS	(size) Max Horiz Max Uplift Max Grav	14=18-1-0 17=18-1-0 20=18-1-0 23=18-1-0 24=-183 (l 14=-94 (Ll 18=-75 (Ll 23=-152 (l) 23=-152 (l) 14=160 (L 16=191 (L 18=186 (L 20=180 (L 22=163 (L 22=163 (L 22=163 (L)	0, 15=18-1-0, 16=13 1, 18=18-1-0, 19=13 1, 21=18-1-0, 22=13 1, 24=18-1-0 LC 12) C 11), 15=-149 (LC C 15), 17=-84 (LC C 15), 20=-74 (LC C 14), 22=-69 (LC LC 14), 24=-130 (LC C 26), 15=185 (LC C 27), 17=181 (LC C 27), 19=215 (LC C 26), 21=164 (LC C 26), 23=177 (LC C 26), 23=177 (LC C 27), 27)	8-1-0, 8-1-0, 8-1-0, 8-1-0, 15), 15), 14), 14), 14), 227), 229), 226), 526), 520, 512),	9-0-8, Corne 19-0-0 zone; vertical left a forces & MW DOL=1.60 pl) Truss design only. For stu see Standarc or consult qu) TCLL: ASCE Plate DOL=1 psf (flat roof 1 Category II; f) This truss ha load of 12.0 p overhangs no	r (3) 9-0-8 to 12-0- cantilever left and nd right exposed;C FRS for reactions ate grip DOL=1.60 ed for wind loads i ds exposed to wind l Industry Gable E alified building des 7-10; Pr=20.0 psf snow: Lum DOL=1 Exp B; Partially Ex s been designed fi pon-concurrent with	8, Exter right ex C-C for n shown; in the plating d (norm nd Deta signer as (roof LL (ground .15 Plat p.; Ct=1 or greated at roof lo other liv	ior (2) 12-0-8 posed ; end nembers and Lumber ane of the tru al to the face ils as applical s per ANSI/Tf s per ANSI/Tf E DOL=1 10 er of min roof pad of 11.5 p: /e loads.	ss), ble, Pl 1. 1.25 1.5 ; ¹ live sf on	of th LOAD C 1) De Inc Un Tra	ie truss ASE(S) ad + Sri rease=' iform Lo Vert: 1-2 apezoida	are no Stai low (ba 1.15 bads (ll 2=-37, al Load	b/ft) 2-7=-37, 7-12=- ds (Ib/ft)	or back (B). r Increase=1.15, Plate 37, 12-13=-37	e
FORCES	(lb) - Max Tension 2-24=-14 3-4=-96/9 6-7=-164/ 9-10=-61/ 12-13=0/3	imum Com 5/95, 1-2=0 95, 4-5=-80/ /197, 7-8=-` /87, 10-11= 37, 12-14=-	pression/Maximum /37, 2-3=-148/135, /100, 5-6=-114/140 164/197, 8-9=-114/ -69/76, 11-12=-118 123/68	n, 7 , 7 (139, 8 8/101, 9	 Building Des verifying Rain requirements All plates are Gable require Truss to be fin braced again Gable stude 	Igner/Project engir n Load = 5.0 (psf) s specific to the use 2x4 () MT20 units as continuous both ully sheathed from st lateral moveme spaced at 2.0.0 oc	neer resp covers r e of this less othe om chor one fac nt (i.e. d	consible for ain loading truss compor erwise indicat d bearing. e or securely iagonal web)	nent. ted. ,		1111111111		SEA 0363	L 22	
BOT CHORD	23-24=-8 19-20=-8 16-17=-8	5/96, 21-23 5/96, 18-19 5/96, 15-16	=-85/96, 20-21=-85 =-85/96, 17-18=-85 =-85/96, 14-15=-85	5/96, 1 5/96, 1 5/96	 Cable studs This truss ha chord live loa 	spaced at 2-0-0 00 s been designed fo ad nonconcurrent v	or a 10.0 vith any) psf bottom other live loa	ıds.			111	. А. (Ма	y 21,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) 818 Ede

B) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A01E	Common Supported Gable	1	1	Job Reference (optional)	1/3629557

 $\begin{array}{l} \mbox{Vert: } 24{=}-20{\text{-to}-}23{=}-21 \ (F{=}{-}1), \ 23{=}{-}21 \ (F{=}{-}1){\text{-}} \\ \mbox{to}-}22{=}-22 \ (F{=}{-}2), \ 22{=}{-}22 \ (F{=}{-}2){\text{-to}-}21{=}{-}24 \ (F{=}{-}4), \\ \mbox{21}{=}{-}24 \ (F{=}{-}4){\text{-to}-}20{=}{-}26 \ (F{=}{-}6), \ 20{=}{-}26 \ (F{=}{-}6){\text{-}} \\ \mbox{to}-}10{=}{-}28 \ (F{=}{-}8){\text{-to}-}18{=}{-}29 \ (F{=}{-}9), \\ \mbox{18}{=}{-}29 \ (F{=}{-}9){\text{-to}-}17{=}{-}31 \ (F{=}{-}11){\text{-to}-}15{=}{-}34 \\ \mbox{(F{=}{-}14), \ 15{=}{-}34 \ (F{=}{-}14){\text{-to}-}14{=}{-}35 \ (F{=}{-}15) \end{array}$

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:17 ID:I0uIZxWMbzUX4lauLXKfK0zxFgW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A02	Common	1	1	Job Reference (optional)	173629558

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:18 ID:54?fey7rRx7iPEs_fbHwizzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-3-0,0-1-12], [6:0-3-0,0-1-12], [8:Edge,0-1-8], [9:0-3-8,0-2-0], [10:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.60 0.55 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.01	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r II; Exp B; and C SI	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood shea 5-5-3 oc purlins, exx Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 12=-183 (Max Uplift 8=-27 (LC Max Grav 8=796 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-3=-776/7 4-5=-827/180, 5-6=-i 2-12=-651/107, 6-8=i 2-12=-67/629, 9-10 3-10=-199/223, 5-9= 4-10=-179/432, 4-9= ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en	t* 10-9:2x8 SP DSS athing directly applie cept end verticals. applied or 10-0-0 oc l2=0-5-8 LC 12) 15), 12=-56 (LC 2) pression/Maximum 72, 3-4=-785/222, 821/26, 6-7=0/37, -683/75 =0/405, 8-9=0/573 -193/229, -116/495 been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon 4 0 lateior (1) 2 1	4) 5) 6d or 6) 7) 8) 9) 90 LC Cat. e 0 to	This truss ha load of 12.0 j overhangs ne Building Des verifying Raii requirements 120.0lb AC u from left end. This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Provide mecl bearing plate 12 and 27 lb	s been designed fo sof or 1.00 times fa on-concurrent with igner/Project engin in Load = 5.0 (psf) of s specific to the use init load placed on s upported at two is been designed fo d nonconcurrent w las been designed in chord in all areas by 2-00-00 wide will y other members, hanical connection capable of withsta uplift at joint 8. Standard	or greate at roof k other like covers r e of this the bott points, § or a 10.0 vith any for a liv s where I fit betw with BC (by oth anding 6	er of min roof pad of 11.5 p ve loads. bonsible for ain loading truss compoo om chord, 12 5-0-0 apart. 0 psf bottom other live load e load of 20.1 a rectangle veen the bottt DL = 10.0psi ers) of truss t 7 lb uplift at j	f live isf on nent. 2-0-0 ads. 0psf om f. to joint		4	2	TH CA	ROLIN	2
9-0-8, Ext 19-0-0 zo vertical lei forces & M DOL=1.6(3) TCLL: AS Plate DOI	erior (2) 90-8 to 12-0-8 erior (2) 90-8 to 12-0-8 erior (2) 90-8 to 12-0-8 ft and right exposed;C- MWFRS for reactions si 0 plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (g =1.25); Pg=15.0 psf (g	3, Interior (1) 22-1- 3, Interior (1) 12-0-8 ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 ground snow); Pf=11	.25 .5							HILLING.			EP. A	anning.

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mm

May 21,2025

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A02H	Common	2	1	Job Reference (optional)	173629559

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:18 ID:54?fey7rRx7iPEs_fbHwizzxFiI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1-65	<u>3-1-0</u> 3-1-0	4-8-0 1-7-0	<u>13-5-0</u> 8-9-0	18-1-0 4-8-0	ł
Plate Offsets (X, Y): [8:0-3-8,0-2-0], [9:0-3-8,0-2-0]					

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.25 1.25 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.27 0.40 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood shea 5-11-1 oc purlins, ex Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=203 (L Max Uplift 7=-34 (LC Max Uplift 7=-34 (LC	t* 9-8:2x8 SP DSS athing directly applie xcept end verticals. applied or 10-0-0 oc nical, 11=0-5-8 .C 11) 15), 11=-89 (LC 14)	4) 5) d or 6) ; 7) 8)	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements 100.0lb AC u from left end This truss ha chord live loa * This truss h on the bottoo 3-06-00 tall h	is been designed for psf or 1.00 times fla on-concurrent with igner/Project engine n Load = 5.0 (psf) c s specific to the use unit load placed on t , supported at two p is been designed for ad nonconcurrent w has been designed in n chord in all areas by 2-00-00 wide will	r great t roof k other liv eer res overs r of this he bott or a 10.0 ith any for a liv where fit betw	er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo om chord, 12 4-0-0 apart. D psf bottom other live loa e load of 20. a rectangle veen the bott	f live onent. 2-0-0 ads. 0psf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/42, 2-3=-264/' 4-5=-958/210, 5-6=-2 6-7=-231/106	pression/Maximum 149, 3-4=-910/247, 241/110, 2-11=-312/	9) 10 166,	chord and an Refer to gird) Provide mec bearing plate 11 and 34 lb	ny other members, is er(s) for truss to trus hanical connection capable of withsta uplift at joint 7. Standard	with BC ss conr (by oth nding 8	DL = 10.0ps nections. ers) of truss 9 lb uplift at	to joint					
BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS	9-11=-89/722, 8-9=-(5-8=-222/253, 3-9=-; 5-7=-806/0, 4-9=-200 ed roof live loads have n. CE 7-10; Vult=115mph	6/470, 7-8=-1/669 221/245, 3-11=-753/ 0/517, 4-8=-137/594 been considered for (3-second gust)	0,		Gandard						- AN	ORTH CA	ROLL

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-0-8, Exterior (2) 9-0-8 to 12-0-8, Interior (1) 12-0-8 to 17-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

GI

minim

May 21,2025

SEAL

036322

annunnin ann

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

- THE COMPANY

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A03	Common	2	1	Job Reference (optional)	173629560

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:18 ID:ezY_isxtgXZCyXUs59_dw6zxFhF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

			1	L	9-0-8			18-1-(0				
Scale = 1:65					9-0-8			9-0-8	3		I		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 5 20.0 f 11.5/15.0 f 7.0 f 0.0* (10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.24 0.75 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.01	(loc) 8-10 8-10 7	l/defl >999 >861 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheatt 6-0-0 oc purlins, exce Rigid ceiling directly ap bracing. (size) 7= Mechani Max Horiz 10=177 (LC Max Uplift 7=-88 (LC 1 Max Grav 7=657 (LC 2 (lb) - Maximum Compr Tension 1-2=0/37, 2-3=-283/11 4-5=-581/159, 5-6=-25 6-7=-231/86 8-10=-116/518 7-8=-6	hing directly applied ppt end verticals. pplied or 10-0-0 oc ical, 10=0-5-8 ; 11) 5), 10=-106 (LC 14) 2), 10=-177 (LC 2) ression/Maximum 6, 3-4=-579/156, 59/84, 2-10=-303/13 56/491	4) 5) 0 6) 7) 8) 9) 8) 9)	This truss ha load of 12.0 (overhangs n Building Des verifying Raii requirements This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 10 and 88 lb DAD CASE(S)	is been designed psf or 1.00 times on-concurrent w igner/Project en n Load = 5.0 (ps s specific to the is been designed ad nonconcurrer nas been designed ad nonconcurrer nas been designed ad nonconcurrer vas been designed on chord in all are yo 2-00-00 wide yo other membed er(s) for truss to hanical connect e capable of with uplift at joint 7. Standard	d for greate s flat roof le s flat roof le vith other liv gjineer res sf) covers r use of this d for a 10.0 nt with any led for a liv eas where will fit betw rs. truss conr ion (by oth istanding 1	er of min roo aad of 11.5 p ve loads. oonsible for ain loading truss compco) psf bottom other live loa e load of 20. a rectangle veen the bot nections. ers) of truss 06 lb uplift a	of live osef on onent. ads. .0psf tom to at joint					

WEBS 4-8=-112/446, 5-8=-185/165, 3-8=-178/163, 3-10=-478/60, 5-7=-497/81

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-0-8, Exterior (2) 9-0-8 to 12-0-8, Interior (1) 12-0-8 to 17-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A03H	Common	2	1	Job Reference (optional)	173629561

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:19 ID:54?fey7rRx7iPEs_fbHwizzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.9

Plate Offsets (X, Y): [6:Edge,0-3-8], [8:0-3-8,0-2-0], [9:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.25 1.25 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.84 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.01	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 134 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood she 5-1-14 oc purlins, e Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=203 (I Max Uplift 7=-34 (LC Max Grav 7=819 (LC (Ib) - Maximum Com Tension 1-2=0/42, 2-3=-875/ 4-5=-922/233, 5-6=- 6-7=-672/65 9-11=-102/702, 8-9= 3-9=-231/253, 5-8=- 4-8=-156/544	t* 9-8:2x8 SP DSS athing directly applie xcept end verticals. applied or 10-0-0 oc unical, 11=0-5-8 .C 11) 15), 11=-89 (LC 14, C 2), 11=855 (LC 2) upression/Maximum 99, 3-4=-887/270, 898/61, 2-11=-736/1 -14/445, 7-8=-8/625 247/260, 4-9=-212/4	4) 5) (d or 6) 5, 7) 8) 9) 9) 10 11 34, LC	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements 100.0lb AC u from left end All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Refer to gird) Provide mec bearing plate 11 and 34 lb DAD CASE(S)	is been designed for psf or 1.00 times fit fon-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use init load placed on , supported at two j MT20 plates unles is been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru hanical connection to capable of withsta uplift at joint 7. Standard	or great at roof lik eer res covers r e of this the bott coints, 4 ss other or a 10.0 vith any for a liv where lift betw with BC ss conr (by oth nding 8	er of min roof aad of 11.5 p ve loads. bonsible for ain loading truss compo om chord, 12 4-0-0 apart. wise indicate 0 psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss i 19 lb uplift at j	f live f live sf on 2-0-0 ed. ads. 0psf om f. to joint						
 Unbalance this design 	ed roof live loads have n.	been considered for									(r)	ORIESS	ANT.	

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-0-8, Exterior (2) 9-0-8 to 12-0-8, Interior (1) 12-0-8 to 17-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Charles and the state of the st SEAL 036322 G mmm

May 21,2025

VIIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A04	Нір	1	1	Job Reference (optional)	173629562

1-2-12 -0-11-0 2-3-12 10-2-11 12-1-4 14-11-12 18-1-0 2-4-6 1-10-9 2-10-8 3-1-4 7-10-5 \vdash 5-6-9 0-11-0 1-1-0 1-2-12 18-1-0 H 4x6= 4x6= 7-6-12 0-1-11 5 6 3x6 10¹² 3x8 🅢 3x6、 21₈ 1-9<u></u>6 20 7-5-7 3x6 🖌 ŝ 4 3x6 🍫 ^{3x8}、 9 3 ¥З 1-0-3 № 10 15 14 ė. 17 12 3x6= 3x6= 18 11 5x8= 2x4 II 2x4 II 2x4 II 3x8= 4x8= 3x8= 2x4 II 2-5-8 11-11-8 1-2-12 10-0-15 14-11-12 12-0-14 1-10-9 3-0-4 3-1-4 8-0-1 -+ H 5-6-9 1-2-12 1-2-12

Scale = 1:77.5

Plate Offsets (X, Y): [5:0-3-0,0-1-7], [6:0-3-0,0-1-7], [13:0-5-8,0-2-4], [16:0-5-12,0-4-0]

7-8-5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	J/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.40 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.04	(loc) 15-16 15-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except Structural wood shea 5-3-14 oc purlins, ex 2-0-0 oc purlins (6-0	t* 10-9:2x6 SP No.2 athing directly applied kcept end verticals, an -0 max.): 5-6.	2) or ad	Wind: ASCE Vasd=91mph II; Exp B; Enc and C-C Exte to 7-10-5, Ex 14-5-10 to 17 exposed ; en members and	7-10; Vult=115mph ; TCDL=4.2psf; BC closed; MWFRS (er erior (2) -0-11-0 to 2 terior (2) 7-10-5 to 7-10-4 zone; cantile d vertical left and ri d forces & MWFRS =1 60 plate grip DC	n (3-sec CDL=3. nvelope 2-3-12, 14-5-10 ver left ght exp for rea	cond gust) Opsf; h=25ft;) exterior zon Interior (1) 2- 0, Interior (1) and right vosed;C-C for ctions showr	Cat. ne -3-12 r					
BOT CHORD	Rigid ceiling directly bracing. (size) 10= Mech Max Horiz 19=158 (L Max Uplift 10=-85 (L Max Grav 10=653 (L	applied or 10-0-0 oc anical, 19=0-5-8 C 11) C 15), 19=-104 (LC 14 C 2), 19=714 (LC 2)	3) 4) 4)	TCLL: ASCE Plate DOL=1 psf (flat roof s Category II; E This truss ha	7-10; Pr=20.0 psf (25); Pg=15.0 psf(25); Pg=15.0 psf (25); Pg=15.0 psf(25); Pg=15.	(roof Ll ground 15 Plai b.; Ct=1 or great	, :: Lum DOL= snow); Pf=1(e DOL=1.15) .10, Lu=50-0 er of min roof	1.25 6.5); -0 f live					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	overhangs no Building Desi	on-concurrent with	other li eer res	ve loads. ponsible for	51 011					
TOP CHORD	1-2=0/37, 2-3=-514/5 4-5=-713/154, 5-6=-4 7-8=-768/179, 8-9=-6 9-10=-622/121	99, 3-4=-1154/227, 474/166, 6-7=-625/192 692/131, 2-19=-681/15	2, 50, 6) 7)	verifying Rair requirements Provide adec This truss ha	Load = 5.0 (psf) c specific to the use uate drainage to pl s been designed fo	overs r of this revent	ain loading truss compo- water ponding psf bottom	nent. g.					
BOT CHORD	18-19=-148/158, 17- 4-16=-70/300, 15-16 14-15=-53/474, 13-1 7-13=-65/204, 11-12	18=-22/44, 16-17=-4/3 =-295/1084, 4=-44/548, 12-13=0/5 =-10/43, 10-11=-23/4§	34, 8) 3, 9	* This truss h on the botton 3-06-00 tall b	ad nonconcurrent w as been designed to n chord in all areas y 2-00-00 wide will	ith any for a liv where fit betv	other live loa e load of 20.0 a rectangle	ads. Opsf om			A.M.	TH CA	PLAN
WEBS	4-15=-659/295, 5-15 7-14=-262/143, 2-18 3-18=-595/106, 16-1 3-16=-166/648, 8-11 8-13=-34/89	=-14/242, 6-14=-88/26 =-30/385, 9-11=-56/47 8=-149/519, =-251/63, 11-13=-73/4	65, 70, 9) 10) 486,	chord and an Refer to girde Provide mech bearing plate 19 and 85 lb	y other members. er(s) for truss to trus nanical connection capable of withsta uplift at joint 10.	ss conr (by oth nding 1	ections. ers) of truss t 04 lb uplift at	to t joint		Contraction of the second seco		SEA	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	11)	Graphical pu or the orienta bottom chord	rlin representation of the purlin al	does no ong the	ot depict the s top and/or	size		LITT.		0363	22

this design.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A05	Hip	1	1	Job Reference (optional)	173629563

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:20 ID:YjbBnAFhhDd5MubZnnvQ9NzxFeG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.8

Plate Offsets (X, Y): [5:0-3-0,0-1-7], [6:0-3-0,0-2-1], [13:0-2-12,0-2-0], [15:0-5-8,0-4-0]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 16.5/15.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25		CSI TC BC	0.26 0.35	DEFL Vert(LL) Vert(CT)	in -0.03 -0.06	(loc) 13-14 13-14	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
BCLL	7.0 0.0* 10.0	Code	IRC2015/TP	PI2014	Matrix-MS	0.19	HOIZ(CT)	0.04	10	n/a	n/a	Woight: 121 lb	ET - 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-5-11 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 11- (size) 10= Mech Max Horiz 18=138 (L Max Uplift 10=-81 (L) Max Grav 10=657 (L (lb) - Maximum Com	Athing directly applied except end verticals, an -0 max.): 5-6. applied or 10-0-0 oc -12. anical, 18=0-5-8 .C 11) C 15), 18=-100 (LC 14 .C 2), 18=-717 (LC 2) pression/Maximum	2) W Va II; an to or 10 d (1) ex Ga 3) TC Pla Ca Ca) 4) Th log ov	/ind: ASCE asd=91mph Exp B; End of C-C Exte of 6-7-14, Exi 0-10-13 to 1) 15-8-0 to (posed ; end embers and umber DOL: umber DOL: 1 ASCE late DOL=1 sf (flat roof s ategory II; E his truss has ad of 12.0 p (erhangs no	7-10; Vult=115mpf ; TCDL=4.2psf; BC closed; MWFRS (er rior (2) -0-11-0 to 2 terior (2) -0-11-0 to 2 terior (2) 6-7-14 to 1-5-2, Exterior (2) 17-11-4 zone; cant d vertical left and ri d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-10; Pr=20.0 psf (:25); Pg=15.0 psf (:50; Pg=15.0 ps	(3-sec DL=3.0 Nvelope 2-3-12, 10-10-1 11-5-2 ilever le ght exp for rea DL=1.60 (roof LL ground 15 Plat .; Ct=1 r greate t roof lo poter lo	cond gust) ppsf; h=25ft; (Interior (1) 2- I3, Interior (1) 2- Sosed; C-C for ctions shown) : Lum DOL= snow); Pf=16 e DOL=1.15) .10, Lu=50-0- ar of min roof pad of 11.5 pir e loads.	Cat. he 3-12) erior ; 1.25 3.5 ; -0 live sf on				weight: 131 lb	<u>F1 = 20%</u>	
TOP CHORD	Tension 1-2=0/37, 2-3=-517/ ² 4-5=-775/176, 5-6=-5 7-8=-777/190, 8-9=-7 9-10=-621/129	108, 3-4=-1145/240, 547/175, 6-7=-661/196 723/144, 2-18=-684/15	5) Bu ve , rea 6, 6) Pr 7) Th	uilding Desi erifying Rair equirements rovide adeq his truss ha	gner/Project engine Load = 5.0 (psf) c specific to the use uate drainage to pu s been designed fo	eer resp overs r of this event v r a 10.0	consible for ain loading truss compor vater ponding) psf bottom	nent. 3.					11.	
BOT CHORD	17-18=-128/135, 16- 4-15=-75/267, 14-15 13-14=-57/534, 12-1 11-12=-16/6, 10-11=	17=-17/49, 15-16=-3/3 =-232/955, 3=0/42, 7-13=-47/92, -25/54	6, ch 8) * 1 on 3-0	nord live loa This truss h n the bottom 06-00 tall b	d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will	ith any or a liv where fit betw	other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om			A	OR FESS	ROIN	
WEBS NOTES 1) Unbalance this design	4-14=-490/211, 5-14 6-13=-88/231, 2-17= 3-17=-608/117, 15-1 3-15=-126/597, 8-11 8-13=-50/100 ed roof live loads have h.	=-12/264, 6-14=-54/85 -40/399, 9-11=-60/477 7=-153/487, =-251/65, 11-13=-76/5 been considered for	, ch , 9) Re 10) Pr 31, be 18 11) Gr or bo LOAD	hord and an efer to girde rovide mech earing plate 3 and 81 lb raphical puir the orienta ottom chord OCASE(S)	y other members. r(s) for truss to tru- nanical connection capable of withsta uplift at joint 10. 'lin representation of tion of the purlin al Standard	ss conr (by oth nding 1 does no ong the	ections. ers) of truss t 00 lb uplift at ot depict the s top and/or	o joint size		Juni 1995			ER. A	Walling

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 21,2025

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A06	Нір	1	1	Job Reference (optional)	173629564

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:20 ID:yZoI_0VDzM8Gmy6QyzG6zbzxFdy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.50 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.14 0.03	(loc) 14-15 14-15 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-11-15 oc purlins, of 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. (size) 11= Mech	athing directly applie except end verticals, 1-7 max.): 6-8. applied or 10-0-0 oc nanical, 19=0-5-8	2) ed or , and c 3)	Wind: ASCE Vasd=91mpł II; Exp B; En and C-C Extr to 5-5-8, Extr 12-7-8, Exte 16-10-7 to 1: exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL =1	7-10; Vult=115m n; TCDL=4.2psf; closed; MWFRS erior (2) -0-11-0 t erior (2) 12-7-8 to 7-11-4 zone; cant d vertical left and d forces & MWFF =1.60 plate grip i 7-10; Pr=20.0 p; (25): Pr=15.0 ps	iph (3-sec BCDL=3.((envelope o 2-3-12, 9-8-7, Inte 16-10-7, I tilever left I right exp RS for rea DOL=1.60 sf (roof LL f (ground	ond gust))psf; h=25ft;) exterior zo: Interior (1) 2- rrior (1) 9-8-7 nterior (1) and right osed;C-C fo ctions showr) : Lum DOL= snow): Pf=1	Cat. ne -3-12 7 to r n; 1.25 6 5						
FORCES TOP CHORD	Max Horiz 19=118 (L Max Uplift 11=-75 (L Max Grav 11=657 (L (lb) - Maximum Com Tension 1-2=0/37, 2-3=-494/ 4-5=-978/213, 5-6=- 7-8=-594/165, 8-9=-	LC 11) C 15), 19=-93 (LC 1- LC 2), 19=717 (LC 2) pression/Maximum 102, 3-4=-676/140, 823/182, 6-7=-628/1 752/180, 9-10=-685/	4)) 4) 5) 74, '136,	plate DOL= 1 psf (flat roof Category II; 1 This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements	Exp B; Partially Exp B; Partially Exp B; Partially Exp B; Partially Eas been designed psf or 1.00 times on-concurrent wiligner/Project eng n Load = 5.0 (psf s specific to the u	f (ground =1.15 Plat xp.; Ct=1 for greate flat roof lo th other liv ineer resp) covers r se of this	e DOL=1.15; 10, Lu=50-0 er of min rool oad of 11.5 p ve loads. oonsible for ain loading truss compo	o.5 -0 f live sf on nent.						
BOT CHORD	2-19=-685/158, 10-1 18-19=-111/116, 17- 5-16=-51/109, 15-16 14-15=-95/661, 13-1 12-13=-37/86, 11-12	1=-540/119 -18=-10/43, 16-17=-2 5=-192/757, 4=0/79, 7-14=-20/21 2=-72/442	6) 2/35, 7) 17, 8)	Provide adeo This truss ha chord live loa * This truss h on the bottor	quate drainage to as been designed ad nonconcurrent nas been designe n chord in all are	prevent v for a 10.0 with any d for a liv as where	vater pondin) psf bottom other live loa e load of 20. a rectangle	g. ads. Opsf			and the	NITH CA	ROLIN	0
NOTES	5-15=-209/122, 6-15 2-18=-28/285, 18-20 16-18=-114/289, 4-1 9-12=-189/49, 9-14= 16-20=-60/280, 12-1)=-14/294, 7-15=-10()=-380/78, 4-20=-38(6=-48/255, -77/232, 3-20=-52/2 4=-37/377	9/78, 0/78, 9) 51, 10	3-06-00 tall b chord and ar Refer to gird) Provide mec bearing plate 19 and 75 lb	by 2-00-00 wide v by other members er(s) for truss to t hanical connection capable of withs uplift at joint 11.	vill fit betw s. russ conr on (by oth standing 9	veen the bott lections. ers) of truss 3 lb uplift at j	om to joint		William	Ó	SEA 0363	L 22	Marine
 Unbalance this design 	ed roof live loads have n.	been considered for	• 11) Graphical pu or the orienta bottom chore	Irlin representatio ation of the purlin	n does no along the	t depict the s top and/or	size		111.			-a	uni,

LOAD CASE(S) Standard

A. GILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A07	Нір	1	1	Job Reference (optional)	173629565

Scale = 1:60.3

Loading

TCDL

BCLI

TCLL (roof)

Snow (Pf/Pg)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:20 ID:Q1uYmAiWkuPiwjUt?lbKiOzxFdg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

Weight: 116 lb

244/190

FT = 20%

BCDL	10.0	.020
LUMBER		2
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied o	r
	5-6-4 oc purlins, except end verticals, and	
	2-0-0 oc purlins (5-4-4 max.): 5-7.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing, Except:	2
	6-0-0 oc bracing: 10-11.	3
WEBS	1 Row at midpt 6-13	
REACTIONS	(size) 9= Mechanical, 17=0-5-8	
	Max Horiz 17=99 (LC 11)	4
	Max Uplift 9=-69 (LC 10), 17=-85 (LC 14)	
	Max Grav 9=657 (LC 2), 17=717 (LC 2)	
FORCES	(lb) - Maximum Compression/Maximum	5
	Tension	
TOP CHORD	1-2=0/37, 2-3=-517/113, 3-4=-1120/242,	
	4-5=-900/183, 5-6=-731/173, 6-7=-955/230,	6
	7-8=-739/152, 2-17=-683/160, 8-9=-614/137	′ 7
BOT CHORD	16-17=-92/91, 15-16=-9/56, 14-15=-2/40,	
	4-14=-113/237, 13-14=-226/844,	8
	12 - 13 = -190/1010, $11 - 12 = -10/0$, 6 12 - 221/164 10 11 - 25/20 0 10 - 45/07	
WEBS	$4_{-13} = -202/100$ $5_{-13} = -14/347$	
WLDS	6-13=-349/127 10-12=-56/608	٥
	7-12=-216/906, 7-10=-398/74, 2-16=-51/417	7. 1
	8-10=-80/425, 3-16=-624/152,	, ,
	14-16=-160/462, 3-14=-114/527	
NOTES		1
4) = = = = =	a diverse fillere han and a la sure han an an an airde an al fam	

Unbalanced roof live loads have been considered for 1) this design.

) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-3-12, Interior (1) 2-3-12 to 4-3-2, Exterior (2) 4-3-2 to 8-6-0, Interior (1) 8-6-0 to 13-9-14. Exterior (2) 13-9-14 to 17-11-4 zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 0) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 17 and 69 lb uplift at joint 9.

1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A08	Нір	1	1	Job Reference (optional)	173629566

Scale = 1:57.7

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

BRACING

TCLL (roof)

Snow (Pf/Pg)

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	A09G	Half Hip Girder	1	2	Job Reference (optional)	173629567

2-9-5

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

Run: 8.83 S. Apr 24 2025 Print: 8.830 S. Apr 24 2025 MiTek Industries. Inc. Tue May 20 12:09:21 ID:luflc7TX2x8MGmwhMegoxTzxFa6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-11-0 1-11-8 7-2-8 12-1-4 14-10-8 18-1-0 1-11-8 5-3-0 4-10-12 2-9-4 3-2-8 0-11-0 18-1-0 3x8 = 4x6 = 2x4 II 3x6 = 3x6 = 2x4 II 12 10 Г 5 4 21 22 24 R 8 26 Ł . 1-7-12 2-7-12 2x4 ı 2-7-12 3 2 - 143 1-0-3 -0-0-0-29 0-0-32 -28 30 14 31 ŀ 12 10 16 3x6 =4x8 = 27 33 34 35 11 5x8 = 3x6 = 3x6 = 2x4 II 2x4 II 3x6 = 3x6 =2-5-8 7-2-8 11-11-8 14-10-8 18-1-0 4-9-0 2-5-8 4-9-0 2-11-0 3-2-8 Scale = 1:41.2 Plate Offsets (X, Y): [4:0-4-4,0-2-0], [13:0-5-8,0-4-0] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing TCLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.37 Vert(LL) -0.09 13-14 >999 240 MT20 244/190 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.25 BC 0.48 Vert(CT) -0.18 13-14 >999 180 Rep Stress Incr WB 7.0 NO 0.24 Horz(CT) 0.09 10 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 207 lb FT = 20% 10.0 2) All loads are considered equally applied to all plies, 14) Hanger(s) or other connection device(s) shall be except if noted as front (F) or back (B) face in the LOAD TOP CHORD 2x4 SP No 2 CASE(S) section. Ply to ply connections have been BOT CHORD 2x4 SP No 2 provided to distribute only loads noted as (F) or (B), 2x4 SP No.2 unless otherwise indicated. Unbalanced roof live loads have been considered for 3) Structural wood sheathing directly applied or TOP CHORD at 14-1-0, and 35 lb down and 41 lb up at 16-1-0, and this design. 6-0-0 oc purlins, except end verticals, and Wind: ASCE 7-10; Vult=115mph (3-second gust) 4) 2-0-0 oc purlins (6-0-0 max.): 4-9. Ib down at 1-11-8, 31 lb down at 2-3-12, 43 lb down BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

- bracing, Except: 6-0-0 oc bracing: 16-17. REACTIONS 10= Mechanical, 17=0-5-8 (size) 5) Max Horiz 17=80 (LC 7) Max Uplift 10=-270 (LC 7), 17=-252 (LC 7) 10=960 (LC 28), 17=979 (LC 2) Max Grav FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/37, 2-3=-620/215, 3-4=-1402/464, 4-5=-3193/943, 5-6=-3112/910, 7) 6-8=-3026/873, 8-9=-35/25, 9-10=-109/58,
- 2-17=-978/298 BOT CHORD 16-17=-25/10, 15-16=0/82, 3-15=-339/1165, 14-15=-427/1214, 13-14=-970/3259, 12-13=0/57, 6-13=-181/98, 11-12=-53/178, 10-11=-312/1054 WEBS 4-14=-561/2042, 5-14=-345/140, 6-14=-152/52, 11-13=-283/956,
- 8-13=-638/2135, 8-11=-294/153, 8-10=-1303/368, 15-17=-96/77

NOTES

2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows:

- Top chords connected as follows: 2x4 1 row at 0-9-0 OC.
- Bottom chords connected as follows: 2x4 1 row at 0-9-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc.

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 270 lb uplift at joint 10 and 252 lb uplift at joint 17.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

provided sufficient to support concentrated load(s) 83 lb down and 77 lb up at 1-11-8, 32 lb down and 20 lb up at 4-1-0, 32 lb down and 20 lb up at 6-1-0, 32 lb down and 20 lb up at 8-1-0, 32 lb down and 20 lb up at 10-1-0, 35 Ib down and 41 lb up at 12-1-0, 35 lb down and 41 lb up 39 lb down and 41 lb up at 17-1-0 on top chord, and 25 and 23 lb up at 4-1-0, 43 lb down and 23 lb up at 6-1-0, 43 lb down and 23 lb up at 8-1-0, 43 lb down and 23 lb up at 10-1-0. 31 lb down at 12-1-4. 31 lb down at 14-1-0, and 31 lb down at 16-1-0, and 32 lb down at 17-1-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Page: 1

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-37, 2-4=-37, 4-9=-47, 16-17=-20, 13-15=-20, 10-12=-20 Concentrated Loads (Ib), 11111111

ORTH CAR 0 ALTER DAY DAY DAY SEAL 036322 G minin May 21,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	170000507
P02611-25472	A09G	Half Hip Girder	1	2	Job Reference (optional)	173629567

Vert: 7=-17 (B), 16=-19 (B), 6=-17 (B), 4=-25 (B), 13=-19 (B), 21=-16 (B), 22=-16 (B), 23=-16 (B), 24=-16 (B), 25=-17 (B), 26=-20 (B), 27=-7 (B), 29=-34 (B), 30=-34 (B), 31=-34 (B), 32=-34 (B), 33=-19 (B), 34=-19 (B), 35=-21 (B) Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:21 ID:luflc7TX2x8MGmwhMegoxTzxFa6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B01G	Hip Girder	1	2	Job Reference (optional)	173629568

Run: 8 83 S. Apr 24 2025 Print: 8 830 S. Apr 24 2025 MiTek Industries. Inc. Tue May 20 12:09:22

ID:itiVXQuW8e72?Og0bFmsXizGHtp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- Web connected as follows: 2x4 1 row at 0-9-0 oc.
 - bottom chord.

GI minin May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B02	Нір	1	1	Job Reference (optional)	173629569

		6-1-12			13-8-8			21-	-3-4			27-5-0		
Scale = 1:56.9)	6-1-12		1	7-6-12		I	7-6	5-12		•	6-1-12	•	
Plate Offsets	(X, Y): [2:0-4-1,Edge],	[4:0-4-10,Edge], [6:0-4	4-10,Edg	e], [8:0-4-1,E	dge]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.77 0.81 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.33 0.10	(loc) 10-11 10-11 8	l/defl >999 >986 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES	 2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	t* 4-6:2x4 SP No.1 2-6-0, Right 2x4 SP No athing directly applied of ept -9 max.): 4-6. applied or 9-5-3 oc 5-13, 5-10 3=0-5-8 16) C 13), 8=-144 (LC 12) .C 2), 8=1064 (LC 2) upression/Maximum	 2) .2 or 3) 4) 5) 6) 	Wind: ASCE Vasd=91mp II; Exp B; Err and C-C Ex 6-0-0, Exter to 21-5-0, E 25-7-15 to 2 exposed; e members an Lumber DO TCLL: ASCI Plate DOL= psf (flat roof Category II; Unbalanced design. This truss h load of 12.0 overhangs r	E 7-10; Vult=115rr h; TCDL=4.2psf; hclosed; MWFR2 terior (2) -0-11-0 ti ior (2) 6-0-0 to 10 xterior (2) 21-5-0 8-4-0 zone; canti nd vertical left ann d forces & MWFI L=1.60 plate grip E 7-10; Pr=20.0 p 1.25); Pg=15.0 ps snow: Lum DOL: Exp B; Partially E snow loads have as been designed psf or 1.00 timess ion-concurrent wi signer/Project end	high (3-sec BCDL=3.: (envelope to 2-1-0, li -2-15, lntt to 25-7-1! lever left a d right exp RS for rea DOL=1.6(sf (roof Ll sf (ground =1.15 Plai Exp.; Ct=1 b been cor d for great flat roof li th other li gineer res	cond gust) Dpsf; h=25ft; a) exterior zoo retroir (1) 2 retroir (1) 10-2 5, Interior (1) and right bosed;C-C for cictions shown b) L: Lum DOL= snow); Pf=1 te DOL=1.15 .10, Lu=50-C1 sidered for the er of min roo pad of 11.5 p ve loads. ponsible for	Cat. ne 1-0 to -15 r n; =1.25 6.5);)-0 this f live ssf on						
TOP CHORD BOT CHORD WEBS	1-2=0/29, 2-4=-1703 5-6=-1531/321, 6-8= 2-13=-227/1507, 11- 10-11=-390/2505, 8- 4-13=-37/507, 5-13=	3/323, 4-5=-1531/321, 1703/323, 8-9=0/29 -13=-390/2505, -10=-224/1507 1062/223, 5-11=0/323	7) 8) 3,	verifying Ra requirement Provide ade This truss ha chord live lo	in Load = 5.0 (psi s specific to the u quate drainage to as been designed ad nonconcurren	f) covers r use of this p prevent f for a 10.4 t with any	ain loading truss compo water pondin 0 psf bottom other live loa	onent. Ig. ads.			and the	WITH CA	ROIN	
NOTES 1) Unbalance this design	5-10≕-1062/223, 6-1 xed roof live loads have jn.	u=-37/507 been considered for	9) 10) 11) LO	* This truss on the botto 3-06-00 tall chord and a Provide mee bearing plat 2 and 144 lk) Graphical pl or the orient bottom chor AD CASE(S)	has been designe m chord in all are by 2-00-00 wide v ny other member chanical connectit e capable of withs puplift at joint 8. urlin representatic ration of the purlin d. Standard	ed for a liv as where will fit betv s. on (by oth standing 1 on does no a along the	e load of 20. a rectangle veen the bott ers) of truss 44 lb uplift a bt depict the e top and/or	Opsf tom to ti joint size		C. C. LINES		SEA 0363 WGINI May	ER. 11 11.0025	Annun in

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B03	Нір	1	1	Job Reference (optional)	173629570

Page: 1

			8-1-1	2	13-8-8		1	9-3-4				27-5-0	
Casla 4:01.4		Γ	8-1-1	2	5-6-12		5	5-6-12	1		1	8-1-12	
Scale = 1:61.1	(X X): [2:0 2 42 0 0 4	1 [4:0 4 40 Edge] [C.O. 4.40 F	daal [0:0 0 42	0.0.41								
	(X, Y): [2:0-3-13,0-0-1], [4:0-4-10,Edge], [6:0-4-10,E	:ugej, [8:0-3-13	,0-0-1]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.64 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.20 0.06	(loc) 10-20 13-16 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	1										Weight. 152 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 : 2-6-0	2-6-0, Right 2x4 SP	3 No.2 ⁴	 TCLL: ASCI Plate DOL= psf (flat roof Category II; Unbalanced design. 	E 7-10; Pr=20.0 psf (r 1.25); Pg=15.0 psf (g snow: Lum DOL=1.1 Exp B; Partially Exp.; snow loads have bee	roof Ll round 5 Plat ; Ct=1 en cor	L: Lum DOL= snow); Pf=1 te DOL=1.15 .10, Lu=50-0 nsidered for t	=1.25 6.5 i);)-0 this					
BRACING TOP CHORD BOT CHORD	Structural wood she except 2-0-0 oc purlins (4-6 Rigid ceiling directly broeing	as been designed for psf or 1.00 times flat ion-concurrent with o signer/Project engine in Load = 5.0 (psf) co s specific to the use of	great roof le ther liv er res overs r	er of min roo oad of 11.5 p ve loads. ponsible for ain loading truss compo	of live osf on onent.								
REACTIONS	(size) 2=0-5-8, 2 Max Horiz 2=57 (LC Max Uplift 2=-139 (L Max Grav 2=1064 (I	8=0-5-8 20) .C 16), 8=-139 (LC 2 .C 2), 8=1064 (LC 2	7 8 17) g 2)	 Provide ade This truss has chord live lo * This truss on the botto 	quate drainage to pre as been designed for ad nonconcurrent wit has been designed fo m chord in all areas y	event a 10.0 h any or a liv where	water pondin 0 psf bottom other live loa re load of 20. a rectangle	ng. ads. .0psf					
FORCES	(lb) - Maximum Com	pression/Maximum		3-06-00 tall	by 2-00-00 wide will f	it betv	veen the bott	tom					
TOP CHORD	Tension 1-2=0/29, 2-4=-1562 5-6=-1394/323, 6-8=	2/315, 4-5=-1394/32 1562/315, 8-9=0/2	23, 1 29	chord and a 0) Provide med bearing plat	ny other members. chanical connection (I e capable of withstan	by oth ding 1	ers) of truss 39 lb uplift a	to at joint					
BOT CHORD WEBS	2-13=-233/1379, 11 10-11=-240/1687, 8 4-13=-29/425, 5-13= 5_10=_406/120_6_1(-13=-240/1687, -10=-220/1379 =-496/129, 5-11=0/1	1 87,	2 and 139 lb 1) Graphical pr or the orient	uplift at joint 8. urlin representation de ation of the purlin alo	oes no ng the	ot depict the e top and/or	size				TH CA	Rojin
NOTES 1) Unbalance this desig 2) Wind: ASG Vasd=91r II; Exp B; and C-C E 8-0-0, Ext	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 terior (2) 8-0-0 to 12-2-	been considered for (3-second gust) DL=3.0psf; h=25ft; welope) exterior zoi 2-1-0, Interior (1) 2-1 15, Interior (1) 12-2-	L or Cat. ne I-0 to -15	bottom chor	a. Standard					M. Contraction	in the second se	O`SS SEA 0363	L 22

8-0-0, Exterior (2) 8-0-0 to 12-2-15, Interior (1) 12-2-15 to 19-5-0, Exterior (2) 19-5-0 to 23-7-15, Interior (1) 23-7-15 to 28-4-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILD

May 21,2025

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B04	Hip	1	1	Job Reference (optional)	173629571

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:24 ID:pTQhWuE6xB6pNwJAFcDQEszxFSg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		L	1(0-1-12		17	-3-4			27	7-5-0		
Scale = 1:65.3		I	10	0-1-12	I	7-	1-8	I		10	-1-12	1	
Plate Offsets (2	X, Y): [2:0-3-9,0-0-1],	[5:0-8-0,0-1-14], [6:0	-6-0,0-3-4], [9:0-3-9,0-0	D-1]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.94 0.84 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 0.05	(loc) 11-20 11-20 9	l/defl >999 >893 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 140 lb	GRIP 186/179 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2-6-0 Structural wood she 4-5-15 oc purlins, ex 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, § Max Horiz 2=70 (LC Max Uplift 2=-154 (L Max Grav 2=1112 (L (Ib) - Maximum Com Tension 1-2=0/29, 2-4=-1635 5-6=-1261/300, 6-7= 7-9=-1635/338, 9-10 2-13=-242/1441, 11- 9-11=-247/1441 4-13=-324/144, 5-13 6-11=-21/368, 7-11= ed roof live loads have b.	t* 5-6:2x4 SP No.1 2-6-0, Right 2x4 SP N athing directly applied coept -0 max.): 5-6. applied or 10-0-0 oc 6-13 9=0-5-8 20) C 16), 9=-154 (LC 17 C 39), 9=1112 (LC 3 pression/Maximum i/338, 4-5=-1447/297 -1447/297, 1=0/29 13=-155/1261, :=-5/368, 6-13=-128/1 325/145 been considered for	2) lo.2 d or 3) 4)) 5) 6) 7) 8) 9) 129, 10) 11) 12) LO	Wind: ASCE Vasd=91mp II; Exp B; Ei and C-C Ex 10-0-0, Ext 14-2-15 to 1 (1) 21-7-15 exposed; e members an Lumber DO TCLL: ASCI Plate DOL= psf (flat roof Category II; Unbalanced design. This truss h load of 12.0 overhangs r Building De verifying Ra requirement Provide adde All plates ar This truss h chord live Ic • This truss s on the botto 3-06-00 tall chord and a • Provide met beating plat 2 and 154 It 9 Graphical p or the orient bottom chor	T-10; Vult=115rr oh; TCDL=4.2psf; nclosed; MWFRS terior (2) -0-11-0 terior (2) -0-11-0 tor of (2) -0-11-0 terior (2) to 28-4-0 zone; cand vertical left and of orces & MWFR L=1.60 plate grip E 7-10; Pr=20.0 psf snow: Lum DOL= Exp B; Partially E a snow loads have as been designed opsf or 1.00 times non-concurrent wisigner/Project enging Las been designed to as been designed to a sheen designed to the upquate drainage to a sheen designed that a s	aph (3-see BCDL=3. (envelope o 2-1-0, li 14-2-15, l) 17-5-0 ti antilever li d right exp RS for ree DOL=1.6(sf (root Ll of (ground =1.15 Plat xp; Ct=1 been con l for great flat roof li th other li gineer res con control for a 10 as where with any d for a liv as where s. on (by oth standing 1 on does no along the	cond gust) cond gust) opsi; h=25ft; s) exterior zonterior (1) 2- nterior (1) 2- nterior (1) 2- nterior (1) 2- nterior (1) 2- ft and right cosed;C-C for citions shown c: Lum DOL= snow); Pf=1 the DOL=1.15 .10, Lu=50-C nsidered for 1 er of min roo- bad of 11.5 p ve loads. ponsible for ain loading truss compor- water pondin wise indicated o psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss 54 lb uplift a bt depict the a top and/or	Cat. ne 1-0 to terior r n; =1.25 6.5);)-0 this f live ssf on onent. g. ads. 0psf to to t oint size				SEAL ORTH CA SEAL O3632	

May 21,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B05	Нір	1	1	Job Reference (optional)	173629572

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:24 ID:IC2wssf3iyWs4IUvoSLd8EzxFS7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	6-1-12	12-1-12	15-3-4	21-3-4	27-5-0	
Г Scale = 1:69.5	6-1-12	6-0-0	3-1-8	6-0-0	6-1-12	
Plate Offsets (X, Y): [2:0-4-1.Edge]. [5:0-4-10.Edge	e]. [6:0-4-10.Edae]. [9:0-4	-1.Edgel				

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.62 0.58 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.27 0.07	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 - 2 2-6-0 Structural wood she 3-9-14 oc purlins, ex 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (size) 2=0-5-8, § Max Horiz 2=-83 (LC Max Uplift 2=-167 (L Max Grav 2=1144 (L	2-6-0, Right 2x4 SP athing directly applie ccept -7 max.): 5-6. applied or 10-0-0 or 9=0-5-8 : 17) C 16), 9=-167 (LC 1 .C 39), 9=1144 (LC	2) No.2 ed or 3) c 4) 7) 39)	Wind: ASCE Vasd=91mpi II; Exp B; En and C-C Ext 12-0-0, Exte 19-7-15 to 2: exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=' psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0	7-10; Vult=115m, h; TCDL=4.2psf; E closed; MWFRS (erior (2) -0-11-0 tr rior (2) 12-0-0 to 1 8-4-0 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip E 57-10; Pr=20.0 psf 1.25); Pg=15.0 psf snow: Lum DOL= Exp B; Partially E snow loads have as been designed psf or 1.00 times	ph (3-sec 3CDL=3.1 envelope) 2-1-0, li 19-7-15, l evver left a right exp S for rea 2OL=1.6 f (roof LL f (ground 1.15 Plat xp.; Ct=1 been cor for great flat roof k	cond gust) Dpsf; h=25ft; e) exterior zo nterior (1) 2- nterior (1) and right bosed;C-C fo ctions shown) :: Lum DOL= snow); Pf=1 e DOL=1.15 .10, Lu=50-0 isidered for t er of min roo bad of 11.5 p	Cat. ne 1-0 to r r; £1.25 6.5); I-0 his f live ssf on					
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/22, 2-4=-1739 5-6=-1175/279, 6-7=)/306, 4-5=-1395/28 1395/285,	6) 5,	overnangs n Building Des verifying Rai requirements	on-concurrent with signer/Project engi n Load = 5.0 (psf) s specific to the us	n other in ineer res covers r se of this	/e loads. ponsible for ain loading truss compo	nent.					
BOT CHORD	7-9=-1739/306, 9-10 2-15=-241/1606, 14- 12-14=-110/1175, 1 9-11=-217/1606)=0/22 -15=-241/1606, 1-12=-217/1606,	7) 8) 9)	Provide ade This truss ha chord live loa * This truss l	quate drainage to as been designed ad nonconcurrent nas been designe	prevent for a 10.0 with any d for a liv	water pondin) psf bottom other live loa e load of 20.	ig. ads. Opsf			J.M.	WITH CA	ROVIN
WEBS NOTES 1) Unbalance this design	4-15=0/227, 4-14=-5 6-12=-39/349, 7-12= ed roof live loads have n.	506/183, 5-14=-39/3 506/183, 7-11=0/2 been considered fo	49, 27 r 10 11	on the botton 3-06-00 tall I chord and an Provide mec bearing plate 2 and 167 lb) Graphical pu	n chord in all area by 2-00-00 wide w hy other members hanical connectio capable of withs uplift at joint 9.	as where rill fit betw , with BC n (by oth tanding 1	a rectangle veen the bott DL = 10.0ps ers) of truss 67 lb uplift a bt depict the	tom if. to t joint size		A HILL		SEA 0363	L 22
			LC	or the orienta bottom chore DAD CASE(S)	ation of the purlin d. Standard	along the	top and/or				in the second se	A GIN	EER. KINN

G 1111111 May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B06	Common	3	1	Job Reference (optional)	173629573

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:24 ID:gghMI8OqTO_nB1mL1wPdJuzxFOb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1.73.1 9-2-13 8-11-5 9-2-13 Loading TOLL (root) (ps) 0 200 Spacing Plate Gin DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Show (PIPg) Spacing 10.0 2-0-0 Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Lumber DOL Show (PIPg) DEFL No Vert(L1) 0.31 12-14 0.999 PLATES PS GRIP Mark MS PLATES PLATES PLATES PS Coll Weight: 134 lb PLATES P				9-2	2-13		18-2-3				27-5-0				
State = 1/2.1 Place Offsets (K, Y): [2:03-13.0-0-1]. Place Ghesis (K, Y): [2:03-13.0-0-1]. Place Ghesi	Casla 4:72.4			9-2	2-13	I	8-11-5	i	1		9-2-13		1		
Undersonal K, 17, PL2-3-13.04-1, IU0-3-13.04-1] Loading TOLL (roof) (ps) 200 Plate Grip DOL 1.25 CSI TC 0.33 Vert(L1) 0.01 Plate S oRIP Show (P/Pg) 11.5/15.0 Lumber DOL 1.00 1.25 BC 0.080 Vert(CT) -0.44 12.14 >399 24.04 MT20 24.4/190 BCL 0.01 Rep Stress Inor 2.66 IRC2015/TPI2014 BC 0.080 Vert(CT) -0.44 12.14 >374 Plate S 24.4/190 BCDL 10.0 Incomptotion Incomptotion Not and the transmitted in the transmitt		(X, X), 10,0 0 40 0 0 4	1 140.0 2 42 0 0 41												
Loading (ps) Spacing 2-0-0 CSI DEFL in (loc) Vide Ltd Plate Grip DOL 1.25 TC 0.53 Ver(IL) -0.31 1.2-14 >999 240 MT20 244/190 TOLL 0.0 7.0 Rep Stress Incr YES Stress Incr YES 0.60 Ver(IC1) -0.01 1/2-14 >999 240 MT20 244/190 TOLL 0.0 7.0 Rep Stress Incr YES 0.60 Ver(IC1) -0.01 1/2-14 >999 240 Weight: 134 lb FT = 20% LUMBER 10.0 2x4 SP No.2 Cede INCL1: ASCE 7-10; Pr=20.0 psf (round snow); Pi=11.5 psf (fat nod snow: Lm DOL=1.25; Piate DOL=1.26; Pig=15.0 psf (round snow); Pi=11.5 psf (fat nod snow: Lm DOL=1.26; Piate DOL=1.26; Pig=15.0 psf (round snow); Pi=11.5 psf (fat nod snow: Lm DOL=1.26; Piate DOL=1.26; Pig=15.0 psf (round snow); Pi=11.5 psf (fat nod snow: Lm DOL=1.26; Piate DOL=1.26; Pig=15.0 psf (round snow); Pi=1.5 psf (fat nod snow: Lm DOL=1.26; Piate DOL=1.26; Pig=10:0 psf (round snow); Pi=1.5 psf (fat nod snow: Lm DOL=1.26; Pig=10:0 psf (round snow); Pi=1.5 <th>Plate Offsets (</th> <th>(X, Y): [2:0-3-13,0-0-1]</th> <th>], [10:0-3-13,0-0-1]</th> <th></th> <th></th> <th>-</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Plate Offsets ((X, Y): [2:0-3-13,0-0-1]], [10:0-3-13,0-0-1]			-	_								
LUMBER 10.0 Yreigint 154 ib P1 = 20% LUMBER 10.0 244 SP No.2 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof L: Lum DOL=1.25) DOT CHORD 244 SP No.2 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof L: Lum DOL=1.15); Category II: Sp, B = P1 = 20% SUDER Left 244 SP No.2 4) Unbalanced snow: Lum DOL=1.15 pitat DOL=1.15); Category II: Sp, B = P1 = 20% SUDER Left 244 SP No.2 4) Unbalanced snow: Lum DOL=1.15 pitat DOL=1.15); Category II: Sp, B = Partially Exp.; Cl=1.10 SUDER Left 244 SP No.2 4) Unbalanced snow loads have been considered for this design. SOT CHORD Structural wood sheathing directly applied or 10-0-0 corbaration; This truss has been designed for a 10.0 pitat and 11.5 pate non-concurrent with other live loads. BOT CHORD Size 2 = 06 (LC 16). This truss has been designed for a 10.0 pb fotom chord in all areas where a rectangle REACTIONS (size) 2=-0754, 10=-1543/276, 10-11=0/22 8 BOT CHORD 1-12=-178/1412 10-12=-178/1412 11 the bottom chord in all areas where a rectangle OT CHORD 6-12=-132/650, 4-4==-341/190.0 6-12=-132/650, 4-4==-341/190.0 6-12=-132/657, 4-4==-341/190.0 10 Unbalanced noot live loads ha	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 11.5/15.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	;/TPI2014	CSI TC BC WB Matrix-MS	0.53 0.80 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.44 0.05	(loc) 12-14 12-14 10	I/defl >999 >746 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER 34' SP No.2 37' TCLL: ASCE 7-10; Pr=20.0 per (foor LL: Lum DOL=1.25 TOP CHORD 2x4 SP No.2 57' Foor SP Section SUDER Left 2x4 SP No.2 57' Foor SP Section LUMBER -2-6-0 50' CHORD SUDER Left 2x4 SP No.2 20' SP Section COP CHORD Structural wood sheathing directly applied or -2-6-0 40' Unbalanced snow Undash have been considered for this design. STOE CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 50' This truss has been designed for greater of min roof live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 60' Displanced snow Load of 12.0 psf or 1.00 times flat cool fload of 11.5 psf on overframgs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 50' Diss truss has been designed for a loo op foor torm overframgs non-concurrent with other live loads. Max Upitit 2-176 (LC 16) 10' This truss has been designed for a loo op foor torm free/area 2-1064 (LC 2). 7' This truss has been designed for a loo of 20 opsf or the bottom chord in all areas where a rectangle 3-0' GO total by 2-0'O-0' dive live load for 30' opsf. TOP CHORD 1-22-172/112 9' Provide mechanical connection (by others) of truss to bear designed for a live load for 30' opsf. TOP CHORD 6-12-132/563, 8-12-341/190, foor 12-2-13	BCDL	10.0											weight: 134 lb	FT = 20%	
vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalancr this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E 13-8-8, Ex to 28-4-0 ; vertical lef forces & N DOL=1.60	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	2-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 10=0-5-8 16) C 16), 10=-176 (LC _C 2), 10=1064 (LC : pression/Maximum 5/276, 4-6=-1480/29')=-1543/276, 10-11= -14=-92/968, 2=-341/190, I=-341/190, I=-341/190 been considered for (3-second gust) DL=3.0psf; h=25ft; C vyelope) exterior zon 2-1-0, Interior (1) 2-1- 8-8, Interior (1) 16-8 d right exposed ; enc C for members and hown; Lumber	3) No.2 4) 5) ed or 6) 7) 17) 8) 1, 9) 1, 9) 1, 9) LO Cat. le -0 to -8 d	TCLL: ASCE Plate DOL= psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Ra requirement This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mec bearing plata 2 and 176 lt AD CASE(S)	E 7-10; Pr=20.0 ; I.25); Pg=15.0 p snow: Lum DOL Exp B; Partially snow loads hav as been designe psf or 1.00 time: on-concurrent w signer/Project en in Load = 5.0 (ps s specific to the as been designe ad nonconcurrer has been designe dom chord in all are by 2-00-00 wide ny other membe chanical connect e capable of with uplift at joint 10 Standard	ess (roof LL sf (ground =1.15 Plat Exp.; Ct=1 e been cor d for greats s flat roof lk ith other lin gineer ress f) covers r sf) covers r use of this d for a 10. tt with any ed for a liv asa where will fit betw rs, with BC ion (by oth standing 1	L: Lum DOL= snow); Pf=1 e DOL=1.15 .10 isidered for t er of min roo bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 76 lb uplift a	al.25 1.5 1.5); this f live psf on ads. Opsf to t, to t joint				SEA 0363	RO 6 22 L 22 L 22 L 22 L 21 2025	

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B07G	Common Girder	1	2	Job Reference (optional)	173629574

Scale = 1:75.5

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1-2=0/28, 2-4=-55555/966, 4-6=-4403/715,

8-9=-1233/219 9-11=-922/10 11-12=-1011/6

6-7=-2750/460, 7-8=-2748/469,

2-19=-888/4895, 18-19=-888/4895,

4-19=-305/1380, 4-18=-1353/384,

6-18=-350/2174, 6-17=-2280/442,

7-17=-341/2180, 8-17=-306/1998,

8-15=-2370/378, 9-15=-246/1115,

9-13=-1310/308

17-18=-613/3932, 15-17=-111/1074

14-15=0/350, 13-14=0/350, 12-13=0/350

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:25 ID:A0PkNnwkKJo6DSFo1vrTxHzxFZX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Vert: 1-7=-37, 7-12=-37, 20-24=-20 Concentrated Loads (lb)

May 21,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 6)

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 7) load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads. Building Designer/Project engineer responsible for 8)
- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 9) All plates are 3x6 (=) MT20 unless otherwise indicated. 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 11)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	B07G	Common Girder	1	2	Job Reference (optional)	173629574

Vert: 16=-487 (F), 19=-547 (F), 17=-496 (F), 30=-779 (F), 31=-535 (F), 32=-523 (F), 33=-511 (F), 34=-487 (F), 35=-624 (F), 36=-625 (F)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:25 ID:A0PkNnwkKJo6DSFo1vrTxHzxFZX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

ain Thin

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	173629575

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:25 ID:VegnE6YEvwQaC4mMqn0LT4zGJvN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-8-8 5-6-6 1-8-8 5-6-6 5-6-6

0-0-6

Scale - 1:38 3

00010 = 1.00.0													
L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.39 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.00	(loc) 4-7 4-7 2	l/defl >999 >828 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
JUMBER FOP CHORD 3OT CHORD 3RACING FOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES FOP CHORD 3OT CHORD 3OT CHORD 3OT CHORD 3OT CHORD 1) Wind: ASC Vasd=91m II; Exp B; E cantilever 11; Exp B; E cantilever 11; Exp B; E cantilever 11; Exp B; E cantilever 11; Exp B; E cantilever 12; Exp B; E cantilever 13; TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design. 4) This truss load of 12. overhangs 5) Building D verifying R requiremen 5) This truss chord live I	2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-6-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-10, Mechanic Max Horiz 2=83 (LC Max Upliff 2=-97 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/31, 2-3=-82/3: 2-4=-31/47 CE 7-10; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en left and right exposed Sed; Lumber DOL=1.6 (CE 7-10; Pr=20.0 psf (g of snow: Lum DOL=1.' I; Exp B; Partially Exp. ad snow loads have be has been designed for 0 psf or 1.00 times flat i non-concurrent with c esigner/Project engine tain Load = 5.0 (psf) cc nts specific to the use has been designed for load nonconcurrent with	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 8) (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); ;; Ct=1.10 re nonsidered for th r greater of min roof I t roof load of 11.5 ps ther live loads. ser responsible for overs rain loading of this truss compon r a 10.0 psf bottom th any other live loads	7) * This truss on the bott 3-06-00 tall chord and a 8) Refer to gir 9) Provide me bearing plat 3 and 97 lb 10) "NAILED" ir (0.148"x3.2 11) In the LOAI of the truss =97 LOAD CASE(S 1) Dead + Sr Increase= Uniform Ld Vert: 10 Concentra Vert: 10 Cat. e; 55 is live f on ent.	has been designed m chord in all area by 2-00-00 wide w ny other members der(s) for truss to tr chanical connection e capable of withst uplift at joint 2. dicates 3-10d (0.1 5") toe-nails per NI 0 CASE(S) section, are noted as front 0 Standard now (balanced): Lui 1.15 bads (lb/ft) 3=-37, 4-5=-20 ted Loads (lb) =-1 (F=0, B=0)	d for a liv s where " uss conr n (by oth anding 5 48"x3") c OS guidli loads a (F) or ba mber Inc	e load of 20. a rectangle veen the bott nections. ers) of truss 3 lb uplift at oplied to the ck (B). rease=1.15,	Opsf tom to joint face Plate				SEA 0363	L L L L L L L L L L L L L L L L L L L	
											iviaj	21,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	CJ02	Jack-Open	2	1	Job Reference (optional)	173629576

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:25 ID:?AgfDpQiz_idySVMRBwgvIzxEnp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-7

3x6 =

Scale = 1:21.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-8-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-7-0, 3 Mechanic Max Horiz 2=32 (LC Max Grav 2=195 (LC (LC 7)	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 12) 2 12), 3=-22 (LC 16) 2 2), 3=53 (LC 2), 4=	6) 7) d or 2; 8) 9) LO	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdt Provide mech bearing plate 3 and 74 lb u AD CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta plift at joint 2. Standard	or a 10.0 rith any for a liv where fit betw uss con (by oth nding 2	D psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss t 2 lb uplift at jo	ds.)psf om o pint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/18, 2-3=-150/ 2-4=-41/54	82											
 NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C C exposed; members a Lumber DC 2) TCLL: ASC Plate DOL psf (flat roo Category I 3) Unbalance design. 4) This truss load of 12. overhangs 5) Building Doverhangs 	CE 7-10; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er corner (3) zone; cantile end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (=1.25); Pg=15.0 ps (g of snow: Lum DOL=1. I; Exp B; Partially Exp ed snow loads have be has been designed for 0 psf or 1.00 times fla non-concurrent with of esigner/Project engine ain Load = 5.0 (psf) or nts specific to the use	(3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; iL=1.60 roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); ;; Ct=1.10 then considered for th r greater of min roof it t roof load of 11.5 ps ther live loads. ever responsible for overs rain loading of this truss compon	Cat. e .25 .5 is live f on ent.							A HILLING		SEA 0363	EER. K

May 21,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	CJ03	Jack-Open	1	1	Job Reference (optional)	173629577

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:25 ID:8m4cZ1SnNd52k5fb43BegGzxFcj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-0-10

Scale = 1:29.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 3-8-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 5=0-9-7 Max Horiz 5=58 (LC Max Uplift 3=-41 (LC Max Grav 3=70 (LC (LC 2)	athing directly applic cept end verticals. applied or 10-0-0 or nical, 4= Mechanica 16) 16), 5=-50 (LC 16) 2), 4=62 (LC 7), 5=2	5) ed or 7) c 8) al, 261	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate	s been designed for psf or 1.00 times fit on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use is been designed fit ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tr hanical connection e capable of withste polifit at iont 3.	or great at roof lo other lim heer responses or a 10.0 with any for a liv s where Il fit betwork uss con to (by oth anding 5	er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 0 lb uplift at	f live isf on inent. ads. Opsf to to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD	2-5=-221/263, 1-2=0	/41, 2-3=-48/20											
NOTES	+ 0=0/0												
 Unbalanc this desig Wind: AS Vasd=911 II; Exp B; and C-C (3-7-4 zon vertical le 	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=4.2psf; BCI Enclosed; MWFRS (en Corner (3) -1-9-6 to 2-5- e; cantilever left and rig ft and right exposed;C-1	been considered fo (3-second gust) DL=3.0psf; h=25ft; (velope) exterior zor -9, Exterior (2) 2-5-5 ht exposed ; end C for members and	r Cat. ne 9 to							4	111	OP H CA	ROLIN

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	CJ04	Jack-Open	2	1	Job Reference (optional)	173629578

1-8-11

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:26 ID:nya88KZU_IGAMywiohlbmFzxFW7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-3-9 2-8-7 2-8-7 1-3-9 2-8-7

2-8-7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-MP	0.12 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91m II; Exp B; I and C-C C exposed ; members a: Lumber DU psf (flat ro Category I 3) Unbalance design. 4) This truss load of 12. overhangs 5) Building D verifying R requireme	2x4 SP No.2 2x6 SP No.2 Structural wood she 2-8-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-7-6, 3 Mechanic Max Horiz 2=47 (LC Max Uplift 2=-64 (LC Max Grav 2=185 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/23, 2-3=-144/ 2-4=-28/23 CE 7-10; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (er Corner (3) zone; cantile end vertical left and rig and forces & MWFRS (er corner (3) zone; cantile end vertical left and rig and forces & for the vertical it, Exp B; Partially Exp ed snow loads have be has been designed for .0 psf or 1.00 times fla s non-concurrent with c esigner/Project engine tain Load = 5.0 (psf) co nts specific to the use	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 12) 212), 3=-24 (LC 16) 22), 3=51 (LC 2), 4= 0 (3-second gust) DL=3.0psf; h=25ft; 0 welope) exterior zom ever left and right ght exposed;C-C for for reactions shown bL=1.60 roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); .; Ct=1.10 seen considered for the r greater of min roof t roof load of 11.5 ps other live loads. seer responsible for overs rain loading of this truss comport	6) This truchord I 7) * This 1 on the 3-060 chord a c 9) Provide bearing 3 and 6 LOAD CAS =51 Cat. ne ; 1.25 1.5 ; his live sf on hent.	iss has been designed ve load nonconcurren russ has been designed bottom chord in all are to tall by 2-00-00 wide v or girder(s) for truss to e mechanical connection plate capable of with 4 lb uplift at joint 2. SE(S) Standard	I for a 10.1 t with any ad for a liv as where will fit betv s. truss con on (by oth standing 2	D psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 24 lb uplift at j	ds. Dpsf om oint		Manufacture .		SEA 0363	EER. KIN

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G01E	Roof Special Supported Gable	1	1	Job Reference (optional)	173629579

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:26 ID:QfCYvlb23pNBUIWG34fmYnzxFKS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-3-0

Scale = 1:63.9

Plate Offsets (X, Y): [19:0-1-8,0-1-8]

1	(psf) 20.0 6.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.12 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%	
2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	o.2 o.2 o.2 o.2 I wood shea purlins, exc purlins (6-0- ing directly 2=20-3-0, 14=20-3-0 17=20-3-0 2=80 (LC 2=-25 (LC	athing directly applied cept end verticals, and -0 max.): 10-11. applied or 10-0-0 oc 12=20-3-0, 13=20-3- 1, 15=20-3-0, 16=20-3 1, 18=20-3-0, 20=20-3 20) 17), 12=-21 (LC 17), 0 47) 44 20 (LC 17),	1) 2) 0, 3) -0 4)	Unbalanced this design. Wind: ASCE Vasd=91mpt II; Exp B; End and C-C Corr to 20-1-4 zon vertical left ai forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1	7-10; Vult=115mp ; TCDL=4.2psf; Bt closed; MWFRS (ener (3) -0-11-0 to 2 er (3) 10-1-8 to 13- te; cantilever left and right exposed; C FRS for reactions ate grip DOL=1.60 ed for wind loads i ds exposed to wind l Industry Gable En alified building des 7-10; Pr=20.0 psf .25); Pg=15.0 psf	e been of h (3-sec CDL=3.0 nvelope -1-0, Ex 1-8, Ex nd right -C for n shown; n the pla d (norm nd Deta igner as (roof LL ground	considered for ond gust))psf; h=25ft; C e) exterior zon (2) 2-1- terior (2) 13-1 exposed; enc- terior (2) 13-1 exposed; enc- nembers and Lumber ane of the trus al to the face) Is as applicat s per ANSI/TP snow); Pf=16	Cat. e 0 to -8 d d ss , , , , , , , , , , , , , , , , , ,	 14) Provestimate the second second	vide mec ring plat 1 lb uplift int 18, 9 o uplift at t at joint obical pu e orient opm chor ger(s) o rided sui n and 8 gn/selec oonsibilit cASE(S) ad + Sn rease=1	chanic e capa t at joi 5 lb u b5 lb u t joint 2. urlin re ation o d. r other fficient lb up a ction o y of ot Star ow (ba	al connection (by able of withstandi nt 12, 54 lb uplift plift at joint 20, 55 14, 96 lb uplift at epresentation doe of the purlin along r connection devii to support conce at 19-8-12 on bo f such connection hers. ndard alanced): Lumber	others) of trus ng 25 lb uplift at joint 17, 26 3 lb uplift at join joint 13 and 2 as not depict th g the top and/c cce(s) shall be entrated load(s ttom chord. T in device(s) is t	is to at joint Ib uplift nt 15, 5 lb ie size r (i) 28 lb he he 5, Plate
$\begin{array}{llllllllllllllllllllllllllllllllllll$,,), 3), 5) 3), 6) 3), 7) 8) 9) 10, 11 12 , 13, 45,	psf (flat roof s Category II; B Unbalanced s design. This truss ha load of 12.0 p overhangs nd Building Desi verifying Rair requirements Provide adecc All plates are Gable require Gable studs s This truss ha chord live loa s - This truss ha on the botton 3-06-00 tall b chord and an	snow: Lum DOL=1 Exp B; Partially Exp snow loads have b s been designed for osf or 1.00 times fit on-concurrent with gner/Project engin a Load = 5.0 (psf) of specific to the use juate drainage to p 2x4 () MT20 unl as continuous botto spaced at 2-0-0 oct s been designed for d nonconcurrent w as been designed for d nonconcurrent w as been designed in a chord in all areas y 2-00-00 wide will y other members.	.15 Plat b.; Ct=1 een cor or greatu at roof k other liv eer resp covers r e of this revent v br a 10.0 vith any for a liv where I fit betw	e DOL=1.15); 10, Lu=50-0- isidered for th er of min roof pad of 11.5 ps re loads. bonsible for ain loading truss compon water ponding erwise indicate d bearing. 0 psf bottom other live loac e load of 20.0 a rectangle ween the botto	0 is fon ent. ed. ds. psf m	Un	iform Lc Vert: 1-6 ncentra Vert: 29	pads (III 5=-37, ted Los =-8	b/ft) 6-10=-37, 10-11: ads (lb)	-47, 12-21-2 RO IGN IGN IC IC IC IC IC IC IC IC IC IC IC IC IC	o Multimun 0
	1 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 3tructura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/22 4-5=-58/1 7-8=-56/5 10-11=-3 2-20=-11, 16-17=-4, 13-14=-4, 6-16=-88 3-20=-19 9-13=-25	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat 6-0-0 oc purlins, extors 2-0-0 oc purlins, extors 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=20-3-0, 14=20-3-0 17=20-3-0 (size) 2=20-3-0, 14=20-3-0 17=20-3-0 (size) 2=20-3-0, 14=20-3-0 15=-530 (LI 15=-53 (LI 18=-26 (LI 18=-26 (LI 13=-96 (LI 15=-53 (LI 15=-53 (LI 15=-53 (LI 15=-53 (LI 15=-53 (LI 15=-58) (1, 8=-60) (lb) - Maximum Com Tension 1-2=0/22, 2-3=-77/56 4-5=-58/123, 5-6=-7- 7-8=-56/91, 8-9=-600 10-11=-36/1, 11-12= 2-20=-11/41, 18-20= 16-17=-4/41, 15-16= 13-14=-4/41, 12-13= 6-16=-88/13, 5-17=- 3-20=-198/124, 7-15 9-13=-257/126	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0 16.5/15.0 10.5/15.0 10.0Spacing Plate Grip DOL 1.25 Rep Stress Incr VES CodeCSI TC BC WB Matrix-MS2x4 SP No.2 2x4 SP No.2 2x4 SP No.21)Unbalanced roof live loads have this design.2x4 SP No.2 2x4 SP No.22)Wind: ASCE 7-10; Vult=115mpl Vasd=91mph; TCDL=4.2ps; tags.n; TCDL=4.2ps; to 20-1.4 zone; cantilever left at vertical left and right exposed: C forces & MWFRS for reactions: $10-18, 01-8, 013$	(psf) 20.0 16.5/15.0 10.0Spacing Plate Grip DOL 1.25Col TC TC C.02 BC 0.01 UWB 0.05 7.0 0.0^+ 10.0Rep Stress Incr CodeIRC2015/TPI2014BC BC 0.05 WB Matrix-MS2x4 SP No.2 2x4 SP No.21)Unbalanced roof live loads have been of this design.2x4 SP No.2 2x4 SP No.21)Unbalanced roof live loads have been of this design.11Unbalanced roof live loads have been of this design.1)2x4 SP No.2 2x4 SP No.21)Unbalanced roof live loads have been of this design.11Unbalanced roof live loads have been of this design.1)12-00 co purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 10-11. Rigid ceiling directly applied or 14=20-3-0, 18=20-3-0, 16=20-3-0, 17=20-3-0, 18=20-3-0, 16=20-3-0	(psf) 20.0Spacing Plate Grip DOL 1.2520.0DEFL Vert(LL) Vert(CT)16.5/15.0 16.5/15.0 17.0 0.0* 10.0Imber DOL 1.251.25TC 0.00.0016.5/15.0 16.5/15.0 10.0*Rep Stress Incr CodeVESTC WB 0.050.052x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.2x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.2x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.11Unit ASCE 7-10; Vult=115mph (3-second gust) Vasd=01mph; TCDL=42psf; BCDL=3.0psf; h=25ft; Cl 10-1-8, Corner (3) 10-11-8 to 13-1-8, Exterior (2) 2-1- 10-1-8, Corner (3) 10-11-8 to 13-1-8, Exterior (2) 2-1- 10-1-8, Corner (3) 10-11-8 to 13-1-8, Exterior (2) 2-1- to 2-1-4, Exterior (2) 3-1- to 2-1-6, Exterior (2) 3-0, TI-20-30, TI-30, TI-20-30, TI-20-30, TI-30, TI-20-30, TI-30, TI-20-30, TI-30, TI-20-30, TI-30, TI-30, TI-30, TI-	(psf) 20.0 Plate Grip DOL 16.5/15.0 16.5/15.0 10.0Spacing Plate Grip DOL 1.25 Rep Stress Incr VES CodeCSI TC 0.0.0DEFL in Vert(LL) n/a2x4 SP No.2 2x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.12x4 SP No.2 2x4 SP No.21Unbalanced roof live loads have been considered for this design.2311Unbalanced roof live loads in the place of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. TCL: ASCE 7-10; Pr=220.0 psf (roof LL: LumDC = 1.50) Category II; Exp B; Partially Exp; Ct=1.10, Lu=50-00Max Grav 2=189 (LC 54), 12=134 (LC 2), 13=349 (LC 54), 14=13 (LC 2), 2.20=-300 (LC 54)1(b) - Maximum Compression/Maximum Tension 12=20/22, 2.3=-77/56, 3-4=67/95, 4-5=-68/123, 5-67-74/162, 6-7=74/153, 7-8=-56/123, 5-67-74/162, 6-7=74/153, 7-8=-56/123, 5-67-74/162, 6-7=74/153, 7-8=-56/123, 5-16=-16/2121, 8-16	(psf) 20.0 Plate Grip DOL 12.6 Rep Stress Incr 10.0Spacing Plate Grip DOL 1.2.5 Rep Stress Incr VES CodeCSI TC TC DC WB WBDEFL in (loc) Vert(L1) valueIn (loc) Vert(L1) valueDEFL in (loc) Vert(L1) valueIn (loc) Vert(L1) valueDEFL in (loc) Vert(L1) valueIn (loc) Vert(L1) value2.45 CP No.2 2.44 SP No.2 2.44 SP No.21)Unbalanced roof live loads have been considered for this design.1)Unbalanced roof live loads have been considered for this design.14)Pro- beam beam and C-C Corner (3) -0.110 to 2-1-0. Exterior (2) 2.10 to 2.1-0.10 10-1-8, Corner (3) -0.110 to 2.1-0.12, Exterior (2) 2.10-10 10-1-8, Corner (3) -0.110 to 2.1-0.10 10-1-8, Corner (3) -0.110 to 2.1-0.11 10-1-8, Corner (3) -0.110 to 2.1-0.11 110-1-8, Corner (3) -0.110 to 2.1-0.11 -10.110 to 2.1-0.11 -10.110 to 2	(psf) 20.0 16.5.715.0 (200) Rep Stress Incr 1.25 Rep Stress Incr 1.25 Rep Stress Incr 1.25 Rep Stress Incr 1.25 Rep Stress Incr 1.25 Rep Stress Incr 10.0 CSI TC TC 0.00 DEFL in (1.20 $Vert(L)$ $Vart($	(psf) 20.0 16.5.715.0 20.0° Rep Stress incr 1.25 Rep Stress incr 1.25 <	(psf) 200Spacing 2012-00 12.5CSI TC TC 0.00DEFL understand 1.25in(loc)Idelf 1.24PLATES MT2016.67/57.6Lumber DOL 1.251.25TC BC C.0120.0012n/an/a992/4SP No.2Rep Stress Incr 10.0VESWB0.05Horz(CT)0.0012n/an/a2/4 SP No.22/4 SP No.210Unbalanced roof Ive loads have been considered for this design.14) Provide mechanical connection fey bearing plate capable of withstandi tarion 11.6 spc.14) Provide mechanical connection fey weight: 99 lb2/4 SP No.211Unbalanced roof Ive loads have been considered for this design.14) Provide mechanical connection fey unditation 11.6 spc.2/4 SP No.211Unbalanced roof Ive loads have been considered for this design.14) Provide mechanical connection fey unditation 11.5 spc.2/4 SP No.211Unbalanced roof Ive loads have been considered for this design.14) Provide mechanical connection fey upilit at joint 12.9 Spc.2/4 SP No.21112-60-02116-20-02116-20-022/2 of upilits, except end verticals, and toracing.10-1-63. Comer (3) 10-1-80 toracing.110-14-120-02152-20-30, 12-20-	(psf) 200Spacing 2002-0-0 1.25CSI TC0.20 0.20DEFLin(loc)(ldel L/d) -PLATESGRIP MT2010.01.25TC0.20 BC0.12Verf(L)n/a-n/a989 MT20244/1902x4 SP No.210.01.001.001.25 km/sWB0.05North CTNorth CT<

May 21,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G02	Roof Special	1	1	Job Reference (optional)	173629580

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:26 ID:fxJoxS61x0o48MJX4cwsorzxFJn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	7-0-3	13-5-13	20-3-0
Г Scale = 1:65.5	7-0-3	6-5-11	6-9-3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MS	0.89 0.49 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.03	(loc) 7-8 10-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER		<u> </u>	3) T	CLL: ASCE	7-10; Pr=20.0 psf	(roof LL	.: Lum DOL=	1.25						
TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat except end verticals, (6-0-0 max.): 5-6. Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=89 (LC Max QPift 2=-135 (LC Max Grav 2=794 (LC 	athing directly applied , and 2-0-0 oc purlins applied or 10-0-0 oc 7=0-5-8 15) C 16), 7=-120 (LC 17) C 2), 7=743 (LC 2)	F F C 4) L 5) T k 6) E 6) E 7) F 8) T 7	Plate DOL=1 Plate DOL=1 sof (flat roof s Category II; E Jubalanced s Jubalanced s Jubalanced s Jubalanced s Jubalanced s Jubalanced s Provide adeq This truss ha Provide adeq This truss ha	.25); Pg=15.0 psf (snow: Lum DOL=1. Exp B; Partially Exp snow loads have b s been designed fc osf or 1.00 times fla on-concurrent with gner/Project engin 1 Load = 5.0 (psf) c specific to the use juate drainage to p s been designed fc di oppconcurrent with	ground 15 Plat 5.; Ct=1 een cor or great at roof k eer responser covers r e of this revent v or a 10.0	snow); Pf=16 e DOL=1.15) .10, Lu=50-0- usidered for the er of min roof pad of 11.5 pro- re loads. ponsible for ain loading truss compor- water ponding 0 psf bottom 0 ther live load	6.5 ; -0 his flive sf on nent. g.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9) * c	This truss h	as been designed n chord in all areas	for a liv where	e load of 20.0 a rectangle	Opsf						
TOP CHORE	1-2=0/22, 2-3=-1277, 4-5=-1130/193, 5-6=	/219, 3-4=-1143/226, -50/18, 6-7=-116/37	3 C	3-06-00 tall b shord and an	y 2-00-00 wide will y other members.	fit betv	veen the botto	om						
BOT CHORE	2-10=-227/1113, 8-1 7-8=-249/1228 3-10=-280/141, 4-10 5-8=-339/160, 5-7=-1	0=-135/746, =-97/446, 4-8=-37/38 1342/268	10) F b 4, 7	Provide mech bearing plate and 135 lb	nanical connection capable of withsta uplift at joint 2.	(by oth Inding 1	ers) of truss t 20 lb uplift at	to t joint				mm	1111.	
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 II; Exp B; and C-C 10-1-8, E to 20-1-4 vertical le forces & DOL=1.6	ced roof live loads have in. ICE 7-10; Vult=115mph mph; TCDL=4.2psf; BCI Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2- xterior (2) 10-1-8 to 13- zone; cantilever left and off and right exposed;C-(MWFRS for reactions sh 0 plate grip DOL=1.60	been considered for (3-second gust) DL=3.0psf; h=25ft; Ca velope) exterior zone -1-0, Interior (1) 2-1-0 1-8, Interior (1) 13-1-8 d right exposed ; end C for members and hown; Lumber	LOA	or the orienta oottom chord D CASE(S)	Standard	long the	top and/or	512 e		And the second s	the second se	SEA 0363	ROLU L 22 ILBERT	Community.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minim May 21,2025

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G03	Roof Special	1	1	Job Reference (optional)	173629581

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:26 ID:Qd5FEBNuVgbMqC383TEswazxFD_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		L	7-7-12	1	14-7-4		18-5-6	20-0-4	22-3-8		27-7-12	
Seele - 1:66 9		I	7-7-12	I	6-11-8	I	3-10-2	1-6-14	2-3-4	1	5-4-4	I
	(X X): [6:0-4-0 0-1-15	1 [8.0.2.8 0.1.8]										
	(7, 1). [0.0-4-0,0-1-13	j, [0.0-2-0,0-1-0]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.80	Vert(LL)	-0.10	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.25	BC	0.86	Vert(CT)	-0.17	15-18	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI20	14 Matrix-MS								
BCDL	10.0										Weight: 137 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 Right 2x4 SP No.2 Structural wood she 4-5-1 oc purlins, exc 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=-76 (LC Max Uplift 2=-139 (L 11=-117 (Max Grav 2=853 (LC 11=780 (L	t* 5-6:2x4 SP No.1 t* 14-8:2x4 SP No.1 • 2-6-0 athing directly applied • 2 - 0 applied or 10-0-0 oc 3=0-4-8, 11=0-5-8 • 21) C 16), 8=-126 (LC 17 LC 17) C 2), 8=566 (LC 41), -C 2)	 2) Wind: Vasd: II; Exi and C 10-1- to 22- 1 or expose expose reacti DOL= 3) TCLL 7 CLL 9 Plate 9 psf (fl Categ 4) Unba 9 desig 5) This t 	ASCE 7-10; Vult=119 =91mph; TCDL=4.2ps o B; Enclosed; MWFR C-C Exterior (2) -0-11 8, Exterior (2) 10-1-8 + 1-12, Exterior (2) 22 12 to 28-10-4 zone; ca sed ; end vertical left a sed; C-C for members ons shown; Lumber D c1.60 ASCE 7-10; Pr=20.0 DOL=1.25); Pg=15.0 at roof snow: Lum DC opyr II; Exp B; Partially lanced snow loads ha n. russ has been design	5mph (3-sec f; BCDL=3.(S (envelope 0 to 2-1-0, Ir to 13-1-8, In 1-12 to 25-1 antilever left and right exp and forces & VOL=1.60 pla psf (roof LL psf (ground VL=1.15 Plat / Exp.; Ct=1 ve been cor ed for greate	cond gust) cond gust) copsr; h=25f exterior z terior (1) 2 terior (1) 1; -12, Interio and right oosed; porc & MWFRS ate grip .: Lum DOL snow); Pf= e DOL=1.1 .10, Lu=50 nsidered for er of min rc	t; Cat. zone 2-1-0 to 3-1-8 r (1) th right for ==1.25 =16.5 5); -0-0 r this pof live					
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-1402 4-5=-1672/436, 5-6= 8-9=0/43	pression/Maximum 2/281, 3-4=-1222/272, 636/225, 6-8=-657/3	load o overh 6) Buildi 56, verify requir	of 12.0 psf or 1.00 time angs non-concurrent ng Designer/Project e ing Rain Load = 5.0 (p	es flat roof lo with other liv ngineer resposf) covers r	bad of 11.5 ve loads. ponsible for ain loading truss comr	psf on r				, minim	inn.
BOT CHORD	2-15=-205/1227, 13- 12-13=-268/1456, 1 10-11=-208/491, 8-1	-15=-87/854, 1-12=-208/491, 0=-211/480	7) Provie 8) This t	de adequate drainage russ has been design	to prevent v ed for a 10.0	water pond) psf bottor	ing. n oads			A. L.	OR FESS	ROLLIN
WEBS	3-15=-296/148, 4-15 4-13=-257/880, 5-13 6-10=-244/68, 5-12=	5=-75/426, 3=-481/210, 1018/173, 6-12=-17/	9) * This on the 195 3-06-	bottom chord in all a bottom chord in all a 00 tall by 2-00-00 wide	ned for a liv reas where e will fit betw	e load of 2 a rectangle veen the bo	0.0psf e ottom		The second	Ð	SEA	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	chord 10) Provi bearin 2, 12t 11) Grapi or the botton LOAD CA	and any other memb de mechanical connec g plate capable of wi b lb uplift at joint 8 and nical purlin representa orientation of the pur n chord. (SE(S) Standard	ers. ction (by oth thstanding 1 I 117 lb uplit tion does no lin along the	ers) of trus 39 lb uplift t at joint 11 ot depict the top and/or	s to at joint I. e size r		IIIIIIIII			

May 21,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G04	Roof Special	1	1	Job Reference (optional)	173629582

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:27 ID:UJ4B4mAHyyw?IL6qwKQLbVzxFBy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			20-	3-8	
1	6-7-12	12-7-4	20-0-4	27-7-12	
	6-7-12	5-11-8	7-5-0	7-4-4	
			0-3	3-4	

Scale = 1:68	
Plate Offsets (X_Y)	[6:0-4-0 0-1-15] [8:0-4-8 0-1-8]

	(74, 1). [0.0 1 0,0 1 10]], [0:0 1 0,0 1 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.62 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.18 0.02	(loc) 10-19 10-19 10	l/defl >731 >473 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Right 2x4 SP No.2 	t* 5-6:2x4 SP No.1 2-6-0 athing directly applier cept -2 max.): 5-6. applied or 6-0-0 oc 3=0-4-8, 10=0-5-8 21) C 16), 8=-117 (LC 12 LC 13) 2 2), 8=426 (LC 41), (LC 2) pression/Maximum	2) d or 3) 2), 4) 5)	Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext 10-1-8, Exte to 20-1-12, E 23-1-12 to 21 exposed; er exposed; C-C reactions shu DOL=1.60 TCLL: ASCE Plate DOL=1 psf (flat roof Category II; Unbalanced design. This truss ha	7-10; Vult=115m n; TCDL=4.2psf; E (closed; MWFRS (erior (2) -0-11-0 tc rior (2) 10-1-8 to ² Exterior (2) 20-1-1 8-10-4 zone; cant d vertical left and 2 for members an- own; Lumber DOL 7-10; Pr=20.0 ps 1.25); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E snow loads have us been designed	ph (3-sec 3CDL=3. (envelope 5 2-1-0, Ir 12-9-0, In 2 to 23-1 liever left right exp d forces & =1.60 pl: f (roof LL f (ground 1.15 Plat xp.; Ct=1 been cor for great	cond gust) pops; h=25ft;) exterior zon terior (1) 2-1 terior (1) 12-5 -12, Interior (1) and right bosed; porch & MWFRS for ate grip .: Lum DOL= snow); Pf=1(e DOL=1.15) .10, Lu=50-0 sidered for the er of min roof	Cat. ne -0 to 9-0 1) right r 1.25 6.5 ; -0 his						
TOP CHORD	Tension 1-2=0/22, 2-3=-1223 4-5=-1014/307, 5-6= 8-9=0/43	/262, 3-4=-1116/279 -887/251, 6-8=-196/3	, 6) 337,	overhangs n Building Des verifying Rai	on-concurrent wit igner/Project eng n Load = 5.0 (psf)	h other liv ineer resp covers r	ve loads. ponsible for ain loading					mmin	uun.	
BOT CHORD WEBS	2-13=-195/1065, 11- 10-11=-152/99, 8-10 3-13=-279/143, 4-13	13=-64/674, =-179/79 =-119/468,	7) 8)	Provide ade This truss ha chord live loa	quate drainage to as been designed ad nonconcurrent	prevent v for a 10.0 with any	water ponding psf bottom other live loa	g. ids.			ALL A	OP FESS	ROLIN	~
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for	9) 10 11 LC	 This truss I on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 143 lb upl Graphical pu or the orienta bottom chord DAD CASE(S) 	has been designe n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs ift at joint 10 and ift at joint 10 and ift at joint 10 and to attion of the purlin d. Standard	d for a liv as where vill fit betw n (by oth tanding 1 117 lb up n does no along the	e load of 20.0 a rectangle veen the bottu ers) of truss t 35 lb uplift at 35 lb uplift at lift at joint 8. ot depict the s top and/or	upst co : joint size				SEA 0363	L 22 ILBERT	Manunun,

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G05	Roof Special	1	1	Job Reference (optional)	173629583

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:27 ID:9WVjaYmS6CQPzUd?5LG3P7zxF9v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	5-4-0		11-8-12		18-3-8		20-0-4	l	2	27-7-12	_
Scale - 1:66 1		1	5-4-0	1	6-4-12	1	6-6-12		1-8-12	2'		7-7-8	I
Plate Offsets (X, Y): [6	6:0-4-0,0-1-15	5], [9:0-2-8,0-1-8], [13:	:0-3-0,0-3-	0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.74 0.76 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.05	(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Right 2 BRACING TOP CHORD Structu 3-11-1 2-0-0 (BOT CHORD Rigid (bracin: REACTIONS (size) Max HO Max Up Max Gra FORCES (Ib) - N Tensic TOP CHORD 1-2=0/ 4-5=-1 ROT CHORD 2-14=- 11-12= WEBS 3-14=- 6-13=- NOTES 1) Unbalanced roof lin this design.	 No.2 *Excep No.2 No.2 No.2 No.2 No.2 X4 SP No.2 - ural wood she 3 oc purlins, 6 cpurlins, 14-5 ceiling directly g. 2=0-5-8, 9 riz 2=75 (LC 11=-75 (L 11=-75 (L 11=-75 (L av 2=1055 (I 11=314 (I taximum Com n 29, 2-3=-1782 9/0, 4-6=-121 263/1535, 12 -256/1199, 9 333/140, 6-12 65/311, 4-13= ve loads have 	bt* 4-6:2x4 SP DSS - 2-6-0 eathing directly applied except 5-7 max.): 4-6. y applied or 10-0-0 oc 9=0-4-8, 11=0-5-8 16) .C 16), 9=-161 (LC 17 .C 12) LC 39), 9=933 (LC 39 LC 7) npression/Maximum 4/334, 3-4=-1783/386 9/323, 6-7=-1189/265 0=0/43 -14=-218/1203, -11=-256/1199 2=-80/86, 7-12=-307/ =-27/150, 4-14=-151/6 been considered for	2) d or 3) (), 4) 5) 5, 6) 7) 142, 8) 510 9) 10] 11] 11] LC	Wind: ASC Vasd=91m II; Exp B; E and C-C E 10-1-8, Ex 18-1-12, E 21-1-12 to exposed; C reactions s DOL=1.60 TCLL: ASC Plate DOL psf (flat roo Category I Unbalance design. This truss load of 12. overhangs Building D verifying R requirement Provide ad This truss chord live I * This truss on the bott 3-06-00 tal chord and) Provide md bearing pla 2, 161 lb u) Graphical or the orien bottom cho	 E 7-10; Vult=115 ph; TCDL=4.2psi inclosed; MWFR: xterior (2) -0-11-0 terior (2) 9-6-3 to xterior (2) 18-1-1: 28-10-4 zone; ca end vertical left a -C for members a shown; Lumber D CE 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum DO E 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO CE 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO DE 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO DE 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO De 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO De 7-10; Pr=20.0 =1.25); Pg=15.0 of snow: Lum BO Di fon concurrent v esigner/Project et ain Load = 5.0 (p nts specific to the equate drainage has been designe load nonconcurrent v esigner/Project et ain Load = 5.0 (p nts specific to the equate drainage has been designe load nonconcurrent v esigner/Project et ain Load = 5.0 (p nts specific to the disigned oad nonconcurrent v esigner/Project et ain Load = 5.0 (p nts specific to the purl on the purl ord. Standard 	imph (3-sec f; BCDL=3.(S (envelope) to 2-1-0, Ir 12-6-3, Inte 2 to 21-1-12 2 to 21-1-12 2 to 21-1-12 expand forces & OL=1.60 pla psf (roof LL osf (ground L=1.15 Plat Exp.; Ct=1 <i>ve</i> been cor ed for greate s flat roof k with other lin ngineer resp sf) covers r. use of this sf (or vers r. use of this to prevent v ed for a 10.0 nt with any ned for a 10.0 nt with any ned for a 10.0 nt with any ned sor a 10.0 nt with	ond gust) opps(; h=25ft;) exterior zo titerior (1) 2- rior (1) 12-6 2, Interior (1) and right osed; porch MWFRS fo ate grip : Lum DOL= snow); Pf=1 e DOL=1.15 10, Lu=50-0 isidered for t er of min rooi sidered for t er of min rooi soad of 11.5 p re loads. consible for ain loading truss compo other live loa e load of 20. a rectangle reen the bott ers) of truss 58 lb uplift a at joint 11.	Cat. ne 1-0 to -3 to -3 to right r :1.25 6.5); -0 his f live usf on nent. g. ads. 0psf om to t joint size				SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G06	Нір	1	1	Job Reference (optional)	173629584

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:28 ID:w84SXYh7CY?d49RcYIdtU8zxF8j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

04 7 0

Page: 1

		L	6-0-4		11-7-12	16-	J-0	20-0-4		, <u> </u>	27-	-7-12	
Scale - 1:69		I	6-0-4	I	5-7-8	4-4	-4	4-0-4	'1-7	'-4 '	6-	0-4	
Plate Offsets	(X, Y): [2:0-2-12,0-1-8]], [4:0-4-10,Edge], [5:0	0-4-10,Ed	ge], [8:0-2-8	,0-1-8]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.70 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.31 0.06	(loc) 14-15 14-15 8	l/defl >999 >787 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE BOT CHORE BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE BOT CHORE NOTES 1) Unbaland this desig	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Right 2x4 SP No.2 Structural wood sheat 3-9-14 oc purlins, ex 2-0-0 oc purlins, (5x 2-0-0 oc purlins, (5x (size) 2=0-5-8, 8 Max Horiz 2=-84 (LC Max Upifit 2=-180 (L1 11=-68 (L1 Max Grav 2=1092 (L 11=278 (L (lb) - Maximum Com Tension 1-2=0/22, 2-3=-1959 4-5=-1116/297, 5-6= 6-8=-1556/325, 8-9= 2-15=-279/1690, 14- 12=420/1116, 11 10-11=-198/1458, 8- 3-15=0/267, 3-14=-6 5-12=-48/338, 6-12= 2ced roof live loads have gn. 	2-6-0 athing directly applied (cept -3 max.): 4-5. applied or 10-0-0 oc 3=0-4-8, 11=0-5-8 (21) C 16), 8=-123 (LC 17) C 17) .C 39), 8=1042 (LC 38 .C 55) pression/Maximum /345, 3-4=-1332/296, -1324/305, 0/34 15=-279/1690, 1-12=-198/1458, 10=-198/1458 63/184, 4-14=-28/380 -398/116, 6-10=-110/ been considered for	2) l or 3)), 4) 9), 5) 6) 7) 8) 9) 101 10) 11) 11) LO	Wind: ASC Vasd=91m II; Exp B; E and C-C E2 11-6-0, Ext to 16-1-12, 20-4-11 to 1 exposed ; e members a Lumber DO TCLL: ASC Plate DOL= psf (flat roo Category II Unbalancee design. This truss H load of 12.0 overhangs Building De verifying Ra requiremen Provide add This truss H chord live Ik * This truss S on the botto 3-06-00 tall chord and a Provide me bearing pla 2, 123 lb up or the orien bottom cho	E 7-10; Vult=11; ph; TCDL=4.2ps nclosed; MWFR terior (2) -0-11- erior (2) 11-6-0 Exterior (2) 16-0 Exterior (2) 16-0 Ext	5mph (3-sec of; BCDL=3.0; S (envelope 0 to 2-1-0, Ir to 15-8-15, I 1-12 to 20-4 antilever left and right exp (FRS for real ip DOL=1.66 IP sf (roof LL psf (ground JL=1.15 Plat / Exp.; Ct=1 ve been cor ed for greate es flat roof lo with other lin ingineer resg to prevent ve ed for a 10.0; ent with any ined for a 10.0; ent with any ined for a liv ireas where e will fit betw ers, with BC tion (by oth thstanding 1 d 68 lb uplift tion does no lin along the	cond gust) cond gust) Dpsf; h=25ft; exterior 12 c- titerior (1) 2- interior (1) 2- in	Cat. one 1-0 to 5-8-15 (1) or e1.25 6.5 ();)-0 this of live osf on onent. opsf to ti joint size				SEA 0363	22 ILBERT
												,	,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G07	Нір	1	1	Job Reference (optional)	173629585

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:28 ID:uhQdVkMhiyN2eN_7eH6F4FzxF6Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:74.5
---------	--------

Plate Offsets (X, Y): [8:0-2-7,0-1-7]

-													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 16.5/15.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	5/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.58 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.03	(loc) 12-15 12-15 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	11(02010	/1112014	Matrix-INO							Weight: 114 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanca this design 2) Wind: ASG Vasd=91n II; Exp B; and C-C E 13-6-0, Ex to 19-7-12 vertical lef forces & M DOL=1.60	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she: 4-4-12 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=157 (LC Max Uplift 2=-143 (L (ax Grav 2=827 (LC (b) - Maximum Com Tension 1-2=0/22, 2-3=-1397 5-6=-531/170, 6-7=-1 2-12=-268/1198, 10- 9-10=-127/531, 8-9= 3-12=0/301, 3-10=-7 6-9=-115/173, 7-9=- ed roof live loads have n. CE 7-10; Vult=115mph hph; TCDL=4.2psf; BC Enclosed; MWFRS (en Exterior (2) 1-0-11-0 to 2 terior (2) 1-0-11-0 to 18- zone; cantilever left at t and right exposed; C- IWFRS for reactions sl 0 plate grip DOL=1.60	athing directly applied xcept end verticals, ai -0 max.): 5-6. applied or 10-0-0 oc 3=0-1-8 C 16), 8=-104 (LC 16 C 39), 8=852 (LC 39) pression/Maximum /206, 3-5=-707/163, 676/150, 7-8=-812/17 -12=-268/1198, 39/47 /59/211, 5-10=-42/185 111/624 been considered for (3-second gust) DL=3.0psf; h=25ft; Ca ivelope) exterior zone -1-0, Interior (1) 2-1-0 () Interior (1) 18-4 nd right exposed ; end C for members and hown; Lumber	3) d or nd 5) 6) 7) 8) 9) 78 10) 5, 11) 12) at. 13) 7) to -11 LC d	TCLL: ASCE Plate DOL=1 psf (flat roof s Category II; I Unbalanced design. This truss ha load of 12.0 g overhangs ne Building Des verifying Rain requirements Provide adeo This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI/T designer sho Provide mech bearing plate 2 and 104 lb Graphical pu or the orienta bottom chorce AD CASE(S)	7-10; Pr=20.0 psf 25); Pg=15.0 psf snow: Lum DOL=1 Exp B; Partially Exp snow loads have b s been designed for bosf or 1.00 times fla on-concurrent with gner/Project enging 1 Load = 5.0 (psf) c specific to the usg uate drainage to p s been designed for d nonconcurrent w as been designed for the properties of the pur- s tandard	(roof LL ground 15 Plat 5.; Ct=1 een cor or great at roof lo other line eer res covers r e of this revent to or a 10. vith any for a liv to where I fit betw barallel 1 formula (by oth (by oth noding 1 does no long the	:: Lum DOL= snow); Pf=1: e DOL=1.15, 10, Lu=50-0 isidered for t er of min roo bad of 11.5 p re loads. consible for ain loading truss compo water pondin) ps bottom other live loa e load of 20. a rectangle yeen the bott o grain value a. Building ng surface. ers) of truss 43 lb uplift a t depict the t top and/or	1.25 6.5 ;; -0 his f live sf on nent. g. ads. 0psf om to to to to to				SEA 0363	ROLL 22

G mmm May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	G08	Common	4	1	Job Reference (optional)	173629586

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:28 ID:_ZNp9qgdUU8Gz7jwqvkNIozF0cE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78

Plate Offsets (X, Y): [7:0-2-7,0-1-7]

											_			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.81 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.33 0.02	(loc) 8-10 10-13 7	l/defl >999 >712 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-9-11 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 7 Max Horiz 2=158 (LC Max Uplift 2=-144 (LI Max Grav 2=778 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-1142 5-6=-323/119, 6-7=-1 2-10=-250/983, 8-10 5-8=-439/127, 5-10=	athing directly applie xcept end verticals. applied or 10-0-0 of 5-8 (4) 5) 2 7) 8) 6) 9) 10] (48 11]	Unbalanced design. This truss ha load of 12.0 y overhangs ne Building Des verifying Rain requirements This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Bearing at jo using ANSI/T designer sho) Provide mect bearing plate Provide mect bearing plate	snow loads have be s been designed fo osf or 1.00 times fla on-concurrent with gner/Project engin h Load = 5.0 (psf) of specific to the use s been designed for d nonconcurrent with as been designed h chord in all areas y 2-00-00 wide will y other members, int(s) 7 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 7. nanical connection	een cor or great at roof lo other live eer res covers r of this or a 10.0 ith any for a live where of the tw with BC arallel 1 formula of bear (by oth nding 1	nsidered for t er of min rooi bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps to grain value a. Building ing surface. ers) of truss 44 lb uplift a	this f live sof on onent. ads. 0psf to to to to to to to to						
NOTES			10	AD CASE(S)	Standard							11111 00	1111	

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 13-9-14, Exterior (2) 13-9-14 to 16-9-14, Interior (1) 16-9-14 to 19-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

CASE(S) Sta

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J01	Jack-Open	16	1	Job Reference (optional)	173629587

ID:KtEmtnagn0UUZo?jDttDcazxFcY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 3-11-8 3-11-8 0-11-0 3-11-8 12 6 Г 3 8 7 2-7-12 2-9-3 2 6 0-8-0 4 3x6 II

3-11-8

Scale = 1:28.4

						-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20. 11.5/15. 7. 0. 10.	f) S .0 P .0 Lu .0 R .0* C	pacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER 5) This TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8 Max Horiz 5=66 (LC 16) Max Uplift 3-49 (LC 16), 5=-30 (LC 16) Max Grav 3=89 (LC 2), 4=69 (LC 7), 5=204 (LC 2) FORCES (b) - Maximum Compression/Maximum						as been designed for psf or 1.00 times file on-concurrent with signer/Project engin in Load = 5.0 (psf) of s specific to the use as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. ler(s) for truss to tru- chanical connection a capable of withsta	or great at roof l other li eer res covers i of this or a 10. vith any for a liv where l fit betv uss con (by oth anding 3	er of min roo aad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 0 lb uplift at	f live isf on inent. ads. Opsf to to joint					
	(lb) - Maximum Tension 2-5171/103_1	Compre	ession/Maximum	I	LOAD CASE(S)	Standard								
BOT CHORD	4-5=0/0	2=0/20	, 2 0= 00/01											
NOTES 1) Unbalance this desig 2) Wind: ASC Vasd=91r II; Exp B; and C-C E	ed roof live loads h n. CE 7-10; Vult=115 nph; TCDL=4.2psf Enclosed; MWFR Exterior (2) -0-11-0	mave bee mph (3- ; BCDL= S (envel) to 2-1-(en considered for -second gust) =3.0psf; h=25ft; C lope) exterior zon 0, Interior (1) 2-1-	Cat. le -0 to								- Martin	ORTH CA	ROLIN

3-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3)

Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

GI minin May 21,2025

SEAL

036322

anninnin an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Contraction of the

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J02	Jack-Open	4	1	Job Reference (optional)	173629588

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:29 ID:KtEmtnagn0UUZo?jDttDcazxFcY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Plate Offse	ets (X,	Y):	[8:0-1	-9,0-0-4
Plate Offse	ets (X,	Y):	[8:0-1	-9,0-0-4

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 11.5/15.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.15 0.15 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.01	(loc) 6-11 6-11 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2015/1	FPI2014	Matrix-MP							Weight: 17 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-11-8 oc purlins. Rigid ceiling directly bracing. (size) 4= Mecha 8=0-5-8 Max Horiz 8=70 (LC Max Uplift 4=-29 (LC 8=-26 (LC Max Grav 4=77 (LC (LC 2)	athing directly applie applied or 10-0-0 oc anical, 5= Mechanica 16) 2 16), 5=-17 (LC 16), 2 16) 2), 5=74 (LC 7), 8=2	4) - 5) E 5) E 7) - 1, - 9) E 15	This truss ha load of 12.0 p overhangs no Building Desi verifying Rair requirements This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate 4, 26 lb uplift	s been designed for on-concurrent with gner/Project engin to Load = 5.0 (psf) of specific to the use s been designed for d nonconcurrent w as been designed the chord in all areas y 2-00-00 wide will y other members. ar(s) for truss to tru- nanical connection capable of withsta at joint 8 and 17 lb Standard	or greate at roof lo other live eer resp covers r e of this or a 10.0 <i>i</i> th any for a live where l fit betw uss con (by oth anding 2 o uplift a	er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 9 lb uplift at t joint 5.	f live osf on onent. ads. 0psf tom to joint						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LUA		Standard									
TOP CHORD BOT CHORD	1-2=0/26, 2-3=-56/5 7-8=-102/37, 6-7=-1 5-6=0/0	2, 3-4=-118/30 0/37, 3-6=-37/114,												
WEBS	2-8=-184/99											N''LL CA	Dille	
NOTES 1) Wind: ASC Vasd=91rr II; Exp B; I and C-C E 1-10-13 to exposed ; members I Lumber Di 2) TCL: ASC Plate DOL psf (flat ro Category I 3) Unbalance	CE 7-10; Vult=115mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er ixterior (2) -0-11-0 to 1 3-10-12 zone; cantile end vertical left and riu and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (6 snow: Lum DOL=1. II; Exp B; Partially Exp ed snow loads have be	(3-second gust) DL=3.0psf; h=25ft; C twelope) exterior zon -10-13, Interior (1) ver left and right ght exposed;C-C for for reactions shown; $DL=1.60(roof LL: Lum DOL=1ground snow); Pf=1115 Plate DOL=1.15);.; Ct=1.10the considered for the$	at. e .25 .5							Continue	The second secon	SEA 0363		Manning

3) Unbalanced snow loads have been considered for this design.

11111111

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J03	Jack-Open	2	1	Job Reference (optional)	173629589

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:29 ID:41zM1vRDLD?bAQ9nDbaFM8zxFWH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x6 II

2-0-0

Scale = 1:26.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 11.5/15.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.06 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MR	0.00		0.00				Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shi 2-0-0 oc purlins, e: Rigid ceiling direct bracing. (size) 3= Mech 5=0-5-8 Max Horiz 5=37 (LC Max Uplift 3=-24 (L Max Grav 3=37 (LC (LC 2)	eathing directly appli kcept end verticals. y applied or 10-0-0 c anical, 4= Mechanic 2 16) C 16), 5=-24 (LC 16 2 2), 4=33 (LC 7), 5=	6) 7) ied or 8) pc al, 9) 10 10	Building Des verifying Rai requirement This truss ha chord live loo * This truss loo on the botton 3-06-00 tall I chord and an Refer to gird Provide mec bearing plate 5 and 24 lb to DAD CASE(S)	signer/Project eng n Load = 5.0 (psf; s specific to the us as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to chanical connectio e capable of withs uplift at joint 3. Standard	ineer res) covers r se of this for a 10.0 with any d for a liv d for a liv d for a liv d for a liv s where vill fit betw s. truss con on (by oth standing 2	consible for ain loading truss comport of the load of 20.0 a rectangle veen the botton nections. ers) of truss t 4 lb uplift at j	nent. Dpsf om oint					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum											
TOP CHORD BOT CHORD	2-5=-120/80, 1-2=0 4-5=0/0	/26, 2-3=-29/13											
NOTES	od roof live loads bev	boon considered fr											
this design	eu rooi live loads have	e been considered to	ונ										• 1 200 To 1

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J04	Jack-Closed Girder	2	1	Job Reference (optional)	173629590

-0-11-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

TCDL

BCLL

BCDL

1)

2)

3)

Page: 1

2-0-0 3-11-8 2-0-0 1-11-8 0-11-0 3-11-8 3x6 = 12 6 Г 3 -8-0 1-9-7 2 0-8-0 9 5 5x8 🦼 3-11-8 Scale = 1:26.3 Plate Offsets (X, Y): [2:0-3-7,0-1-10], [3:0-3-0,0-2-0] Loading 2-0-0 CSI DEFL in l/defl L/d (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.76 Vert(LL) -0.02 5-8 >999 240 Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.25 BC 0.49 Vert(CT) -0.03 5-8 >999 180 Rep Stress Incr WB 0.00 Horz(CT) 7.0 NO 0.01 2 n/a n/a 0.0 IRC2015/TPI2014 Matrix-MP Code 10.0 LUMBER 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading TOP CHORD 2x4 SP No.1 *Except* 3-4:2x4 SP No.2 BOT CHORD 2x6 SP No.2 requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. WEDGE Left: 2x6 SP No.2 8) This truss has been designed for a 10.0 psf bottom BRACING chord live load nonconcurrent with any other live loads. Structural wood sheathing directly applied or TOP CHORD * This truss has been designed for a live load of 20.0psf 9) 3-11-8 oc purlins, except on the bottom chord in all areas where a rectangle 2-0-0 oc purlins: 3-4. 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord and any other members. bracing 10) Refer to girder(s) for truss to truss connections. **REACTIONS** (size) 2=0-5-8, 5= Mechanical 11) Provide mechanical connection (by others) of truss to Max Horiz 2=43 (LC 12) bearing plate capable of withstanding 40 lb uplift at joint Max Uplift 2=-40 (LC 12), 5=-47 (LC 9) 2 and 47 lb uplift at joint 5. Max Grav 2=224 (LC 32), 5=153 (LC 31) 12) Graphical purlin representation does not depict the size FORCES (Ib) - Maximum Compression/Maximum or the orientation of the purlin along the top and/or Tension bottom chord. TOP CHORD 1-2=0/29, 2-3=-300/588, 3-4=0/0 13) Hanger(s) or other connection device(s) shall be BOT CHORD 2-5=-158/280 provided sufficient to support concentrated load(s) 20 lb down and 47 lb up at 2-0-0 on top chord, and 30 lb NOTES down and 9 lb up at 2-0-0 on bottom chord. The Unbalanced roof live loads have been considered for design/selection of such connection device(s) is the this design responsibility of others. Wind: ASCE 7-10; Vult=115mph (3-second gust) 14) In the LOAD CASE(S) section, loads applied to the face Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. of the truss are noted as front (F) or back (B). II; Exp B; Enclosed; MWFRS (envelope) exterior zone; LOAD CASE(S) Standard cantilever left and right exposed ; end vertical left and

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-37, 3-4=-47, 5-6=-20
 - Concentrated Loads (lb) Vert: 9=-2 (F)

PLATES

Weight: 19 lb

MT20

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J05	Jack-Open	1	1	Job Reference (optional)	173629591

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:29 ID:FvdNL1Rb19IsdiadpOLEbBzGJvW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-15

Scale = 1:25.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-8, 3 Mechanic Max Horiz 2=44 (LC Max Grav 2=156 (LC (LC 7)	athing directly applied applied or 10-0-0 oc 3= Mechanical, 4= al 16) 2 16), 3=-16 (LC 16) C 2), 3=34 (LC 2), 4=	 6) This truss h chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) Refer to gird 9) Provide me bearing plat 2 and 16 lb LOAD CASE(S) 	as been designed aad nonconcurrent has been designe m chord in all are: by 2-00-00 wide v iny other members der(s) for truss to chanical connectic e capable of withs uplift at joint 3.) Standard	f for a 10.0 t with any ad for a liv as where will fit betw s. truss com on (by oth standing 3) psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 7 lb uplift at j	ds.)psf om o oint					
FORCES	(lb) - Maximum Corr Tension 1-2=0/29, 2-3=-44/2	pression/Maximum										
BOT CHORD	2-4=-22/27											
NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed ; c members a Lumber DC 2) TCLL: ASC Plate DDL= psf (flat roc Category II	E 7-10; Vult=115mph ph; TCDL=4.2psf; BC inclosed; MWFRS (er xterior (2) zone; cantil end vertical left and ri, and forces & MWFRS DL=1.60 plate grip DC E 7-10; Pr=20.0 psf (=1.25); Pg=15.0 psf (of snow: Lum DOL=1. ; Exp B; Partially Exp	(3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; iL=1.60 roof LL: Lum DOL=1 ground snow); Pf=11. 15 Plate DOL=1.15); ;: Ct=1.10	at. 9 25 5						0		ORTH CA	

Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

SEAL 036322 MGINEER May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J06	Jack-Open	1	1	Job Reference (optional)	173629592

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:30 ID:VegnE6YEvwQaC4mMqn0LT4zGJvN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-15

Scale = 1:25.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 3 Mechanic Max Horiz 2=44 (LC Max Uplift 2=-37 (LC Max Grav 2=156 (LC (LC 7)	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 16) : 16), 3=-16 (LC 16) C 2), 3=34 (LC 2), 4=	6) 7) d or 5: 8) 9) LC -30	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 2 and 16 lb u DAD CASE(S)	s been designed f ad nonconcurrent i has been designed in chord in all area by 2-00-00 wide wi by other members. ar(s) for truss to t hanical connection capable of withst plift at joint 3. Standard	for a 10. with any I for a liv s where ill fit betv russ con n (by oth anding 3	D psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to 17 lb uplift at jo	ds. Ipsf om D						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
BOT CHORD	1-2=0/29, 2-3=-44/2	1												
NOTES	2-4-22/21													
 Wind: ASC Vasd=91n II; Exp B; and C-C E exposed; members Lumber D TCLL: AS Plate DOL psf (flat ro Category Unbalance 	CE 7-10; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (_=1.25); Pg=15.0 psf (of snow: Lum DOL=1.^ II; Exp B; Partially Exp. ed snow loads have be	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 pround snow); Pf=11 15 Plate DOL=1.15); ; Ct=1.10 een considered for th	Cat. e .25 .5							4		OR FESS SEA		•

- design.
 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J07	Jack-Open	2	1	Job Reference (optional)	173629593

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

ID:1jeqbakH8rRJ7X?Rm8I56SzGJv7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-2-8 4-0-0 4-0-0 1-2-8 4-0-0 12 6 Г 10 9 2-4-3 2-11-3 2 8 9-4-3 4

2x4 =

Soolo .	- 1.20 2
- NUMBER OF	= 1 20 2

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

desian.

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension

2-4=-28/43

DOL=1.60 plate grip DOL=1.60

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-41 (LC 16), 3=-44 (LC 16) Max Grav 2=221 (LC 2), 3=89 (LC 2), 4=70

(lb) - Maximum Compression/Maximum

Mechanical

Max Horiz 2=75 (LC 16)

1-2=0/29, 2-3=-54/31

Wind: ASCE 7-10; Vult=115mph (3-second gust)

forces & MWFRS for reactions shown; Lumber

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25

Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5

psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

(LC 7)

2=0-3-0, 3= Mechanical, 4=

Scale = 1:28.2					I								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.17	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.25		BC	0.14	Vert(CT)	-0.02	4-7	>999	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 15 lb	FT = 20%
LUMBER			5)	Building Des	signer/Project en	gineer res	oonsible for						
TOP CHORD	2x4 SP No.2			verifying Rai	in Load = 5.0 (ps	sf) covers r	ain loading						
BOT CHORD	2x4 SP No.2			requirement	s specific to the	use of this	truss compo	onent.					
BRACING			6)	This truss ha	as been designe	d for a 10.0) psf bottom						
TOP CHORD	Structural wood shea	athing directly applied	ctly applied or chord live load nonconcurrent wit 7) * This truss has been designed for					ads. .0psf					

4-0-0

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 44 lb uplift at joint 3 and 41 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J08	Jack-Open	2	1	Job Reference (optional)	173629594

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:30 ID: IWb IhDW5J7 ad IXYiL9YJ hmzx Eni-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

2x4 =

2-0-0

Scale = 1:24.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER IOP CHORD 2x4 SP 3OT CHORD 2x4 SP 3OT CHORD 2x4 SP 3RACING IOP CHORD Structu 2-0-0 c bracing COP CHORD Structu 2-0-0 c bracing COP CHORD Structu Max Hor Max Upl Max Grave CORCES (Ib) - M Tensio IOP CHORD 1-2=0/- 3OT CHORD 2-4=-1' NOTES I) Wind: ASCE 7-10; Vasd=91mph; TCD II; Exp B; Enclosed and C-C Exterior (2 exposed ; end verti members and force Lumber DOL=1.60 2) TCLL: ASCE 7-10; Plate DOL=1.25); F psf (flat roof snow: Category II; Exp B; 3) Unbalanced snow I design. 4) This truss has been load of 12.0 psf or	No.2 No.2 No.2 ral wood she ic purlins. eiling directly 2=0-3-0, : Mechanic iz 2=33 (LC ift 2=-50 (LC v 2=141 (Lt (LC 7) aximum Com n 17, 2-3=-48/4 7/15 Vult=115mph L=4.2psf; BC ; MWFRS (er c) zone; cantil es & MWFRS plate grip DC Pr=20.0 psf (Cg=15.0 psf (g Lum DCL=1. Partially Exp oads have be n designed fo 1.00 times fla	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 12) 2 12), 3=-19 (LC 16) C 2), 3=41 (LC 2), 4= apression/Maximum 3 (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; VL=1.60 roof LL: Lum DOL=1 ground snow); Pf=11 15 Plate DOL=1.15); .; Ct=1.10 pen considered for th r greater of min roof 1	6) 7) d or 9) 10) 34 LO 34 LO 34 LO	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 2 and 19 b u AD CASE(S)	as been designed f ad nonconcurrent i has been designed n chord in all area: by 2-00-00 wide wi ny other members. er(s) for truss to tt hanical connectior at joint(s) 2. hanical connectior e capable of withst uplift at joint 3. Standard	or a 10.0 with any for a liv s where Il fit betw russ con a (by oth anding 5	0) psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to ers) of truss to 0 lb uplift at jo	ds. Dpsf om o o oint		Manna.		SEA 0363	ROUNT	Mooning
overhangs non-cor	current with a	other live loads									1.5	A PARA	SEN AN	S

- overhangs non-concurrent with other live loads.
 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

A. GILBERT May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J09G	Jack-Closed Girder	2	1	Job Reference (optional)	173629595

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:24.8	

Plate Offsets	(X, Y): [2:0-2-15,0-2-0]], [3:0-3-0,0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.59 0.88 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.01	(loc) 5-8 5-8 2	l/defl >885 >561 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood shea 4-0-0 oc purlins, exc 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing. (size) 2=0-3-0, 5 Max Horiz 2=34 (LC Max Uplift 2=-65 (LC Max Grav 2=217 (LC (lb) - Maximum Com Tension 1-2=0/20 2-3=-50/4/	athing directly applie ept applied or 10-0-0 oc 5= Mechanical 8) 532), 5=-46 (LC 9) 32), 5=-45 (LC 31) pression/Maximum	6) 7) 8) d or 9) 10 11, 12 13,	Building Des verifying Rai requirements Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 2 and 46 lb u or the actiont	igner/Project engin n Load = 5.0 (psf) of s specific to the use uate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wil y other members. er(s) for truss to tru- hanical connection e at joint(s) 2. hanical connection c capable of withsta- uplift at joint 5.	eer res covers r e of this prevent to or a 10. vith any for a liv s where l fit betv uss con (by oth anding 6 does no	consible for ain loading truss compo- water pondim, o psf bottom other live loa e load of 20.1 a rectangle ween the bott nections. ers) of truss t ers) of truss t 5 lb uplift at j bt depict the s to pandor	nent. g. Dpsf om to so size					
BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; cantilever right expo	2-5=-10/45 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=4.2psf; BCI Enclosed; MWFRS (en left and right exposed ised: Lumber DOL=1.6(been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon ; end vertical left anc 0 plate grip DOL=1.6	14 at. e; 15	bottom chord bottom chord) Hanger(s) or provided suff down and 48 down and 71 design/selec responsibility) In the LOAD of the truss a	other connection of ficient to support co b up at 2-0-0 on b b up at 2-0-0 on b tion of such connect of of others. CASE(S) section, are noted as front (I	device(s oncentra top cho ottom c ction de loads a F) or ba) shall be ated load(s) 2 rd, and 27 lb hord. The vice(s) is the oplied to the t ck (B).	4 lb face		C		ORTH CA	ROUT

4-0-0

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-37, 3-4=-47, 5-6=-20 Concentrated Loads (lb)
 - Vert: 9=-2 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	J10	Jack-Open	2	1	Job Reference (optional)	173629596

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

4-0-0

Scale - 1.26.3

00010 - 112010														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, Mechania Max Horiz 2=53 (LC Max Uplift 2=-58 (LC Max Grav 2=207 (L (LC 7) (lb) - Maximum Con Tension 1-2=0/17, 2-3=-70/5	eathing directly applie r applied or 10-0-0 or 3= Mechanical, 4= ral 12) C 12), 3=-40 (LC 16) C 2), 3=93 (LC 2), 4= appression/Maximum 0	5) 6) ed or 7) c 8) 9) =71 10	Building Des verifying Rain requirements This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3 and 58 lb u DAD CASE(S)	igner/Project engin in Load = 5.0 (psf) of s specific to the use is been designed for ad nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection e at joint(s) 2. hanical connection e capable of withsta uplift at joint 2. Standard	eer resp covers r of this or a 10.0 rith any for a liv where fit betw uss con (by oth nding 4	consible for ain loading truss compor 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 0 lb uplift at ju	nent. ds.)psf om o o						
BOT CHORD NOTES 1) Wind: AS Vasd=91r II; Exp B; and C-C B 3-11-4 zo vertical le forces & N	2-4=-66/38 CE 7-10; Vult=115mpt nph; TCDL=4.2psf; BC Enclosed; MWFRS (e Exterior (2) -1-0-0 to 2- ne; cantilever left and ft and right exposed;C WWFRS for reactions s	n (3-second gust) IDL=3.0psf; h=25ft; (Ivelope) exterior zor 0-0, Interior (1) 2-0-0 right exposed ; end C for members and shown; Lumber	Cat. ne) to								in the	ORTH CA	ROUT	

- DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minin May 21,2025

SEAL

036322

WILLING THE

818 Soundside Road Edenton, NC 27932

Weinen and and the

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	P01G	Half Hip Girder	1	1	Job Reference (optional)	173629597

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:30.8

Plate Offsets (X, Y): [3:0-3-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.38	Vert(LL)	-0.01	6-8	>999	240	MT20	244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.25		BC	0.21	Vert(CT)	-0.01	6-8	>999	180		
TCDL	7.0	Rep Stress Incr	NO		WB	0.16	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 43 lb	FT = 20%
			6)	Building Des	igner/Project engin	eer resi	oonsible for						
	2x4 SP No 2		0)	verifying Rai	$n \mid oad = 5.0 \text{ (nsf)}$	covers r	ain loading						
	2x6 SP No 2			requirements	specific to the use	e of this	truss compo	nent.					
WEBS	2x4 SP No 2		7)	Provide adec	uate drainage to p	orevent v	vater pondin	a.					
			8)	This truss ha	s been designed for	or a 10.0) psf bottom	5					
	Structural wood chor	athing directly applie	, od or	chord live loa	ad nonconcurrent w	vith any	other live loa	ads.					
		cent end verticals a	nd 9)	* This truss h	as been designed	for a liv	e load of 20.	0psf					
	2-0-0 oc purlins; 2-4	cept enu verticais, ai	nu /	on the bottor	n chord in all areas	where	a rectangle						
	Rigid ceiling directly	applied or 10-0-0 or	c.	3-06-00 tall b	y 2-00-00 wide wil	I fit betv	veen the bott	om					
	bracing.		0	chord and ar	y other members.								
REACTIONS	(size) 2=0-4-8 5	5=0-5-8	10) Provide mec	hanical connection	(by oth	ers) of truss	to					
	Max Horiz 2–70 (LC	9) 9)		bearing plate	capable of withsta	anding 9	7 lb uplift at	joint					
	Max I Inlift 297 (LC	(12) 591 (IC 9)		2 and 91 lb u	plift at joint 5.								
	Max Grav 2=460 (LC	C 32), 5=403 (LC 2)	11) Graphical pu	rlin representation	does no	ot depict the s	size					
FORCES	(lb) - Maximum Com	pression/Maximum		bottom chore	1	iong the							
	Tension		12) Hanger(s) or	other connection of	device(s) shall be						
TOP CHORD	1-2=0/38, 2-3=-557/	101, 3-4=-21/16,		provided suff	icient to support co	oncentra	ted load(s) 1	129					
	4-5=-137/53			lb down and	75 lb up at 4-0-0.	and 44	b down and	35 lb					
BOT CHORD	2-6=-105/460, 5-6=-	107/446		up at 6-0-12	on top chord, and	76 lb do	own at 4-0-0	, and					
WEBS	3-6=0/273, 3-5=-505	/108		33 lb down a	t 6-0-12 on bottom	n chord.	The design/	i					
NOTES				selection of s	such connection de	vice(s)	is the						111.
1) Unbalanc	ed roof live loads have	been considered for	r	responsibility	of others.							IN CA	DUL
, this desig	n.		13) In the LOAD	CASE(S) section,	loads a	oplied to the	face			- 5	"ATH UA	TO 11
2) Wind: AS	CE 7-10; Vult=115mph	(3-second gust)		of the truss a	re noted as front (I	F) or ba	ck (B).			/	S	OTHESS	ich in
Vasd=91r	nph; TCDL=4.2psf; BC	DL=3.0psf; h=25ft; C	Cat. LC	AD CASE(S)	Standard					6	24	190	NA:
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zon	ne; 1)	Dead + Sno	ow (balanced): Lum	nber Inc	rease=1.15,	Plate		Z	2		mill
cantilever	left and right exposed	; end vertical left and	d	Increase=1	.15					2	() j		11 1 E
right over	cod: Lumbor DOL -1.60	Ω plate arip DOI = 1.6	80	Uniform Los	ads (Ih/ft)							CEA	1 1 2

- TCLL: ASCE 7-10; Pr=20.0 psf (root LL: Lum DOL=1.25)
 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

Vert: 1-3=-37, 3-4=-47, 2-5=-20 Concentrated Loads (lb)

Vert: 6=-53 (F), 3=-60 (F), 10=-18 (F), 11=-23 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	P02E	Jack-Open Supported Gable	1	1	Job Reference (optional)	173629598

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:31 ID:qJ?Np1SbLdK6VfSwjUQQwlzxFJL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

. .

1-6-0

Scale = 1:27.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 1-6-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=1-6-0, 4 Max Horiz 2=30 (LC Max Uplift 2=-41 (LC Max Grav 2=144 (LC (Ib) - Maximum Com Tension 1-2=0/29, 2-3=-60/20 2-4=-27/65	athing directly applied cept end verticals. applied or 10-0-0 oc 15) 16), 4=-3 (LC 13) 2 2), 4=35 (LC 7) pression/Maximum 5, 3-4=-19/23	 6) This truss ha load of 12.0 overhangs n 7) Building Des verifying Rai d or 8) Gable studs 9) This truss ha chord live los 10) * This truss ha chord live los 10) * This truss 10 on the botton 3-06-00 tall 1 chord and at 11) Provide med bearing plate 2, 3 lb uplift LOAD CASE(S) 	as been designed for psf or 1.00 times fla on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use spaced at 2-0-0 oc as been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will y other members. hanical connection a capable of withsta at joint 4 and 41 b Standard	or great at roof k other liv eer resp covers r of this or a 10.0 ith any for a liv where fit betw (by oth nding 4 uplift at	er of min roof I pad of 11.5 psi re loads. ponsible for ain loading truss compon- 0 psf bottom other live load e load of 20.00 a rectangle reen the botto ers) of truss to 1 lb uplift at jo joint 2.	ive f on ent. ls. osf m j int					
 Unbalance this design Wind: ASC Vasd=91m II; Exp B; E 	d roof live loads have L E 7-10; Vult=115mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (en	been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone	at.									Politi

and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss

- rruss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

In parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

A. GILD.

SEAL

036322

1111111111

Variation

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	P03G	Hip Girder	1	1	Job Reference (optional)	173629599

4-0-0

4-0-0

5-3-0

1-3-0

9-3-0 NAILED

NAILED

-1-0-0

1-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Loading

TCDL

BCLL

BCDL

WFBS

BRACING

FORCES

WEBS

NOTES

1)

2)

3)

4)

5)

desian.

LUMBER

TCLL (roof)

Run: 8.83 S. Apr 24 2025 Print: 8.830 S. Apr 24 2025 MiTek Industries. Inc. Tue May 20 12:09:31 ID:jeKISsylbVENEDtp0Qj_hazxEn7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-3-0

4-0-0

10-3-0

1-0-0

Page: 1

GRIP

244/190

FT = 20%

4x6 = 4¹² 4x6 = 316 174 <u>⊞0-8-0</u>⊞ 15 1-11-11 18 1-10-1 1-3-1 5 6 ΠĤ Ψ ΠΠ Ř X 19 8 7 20 3x6 = 2x4 II 3x6 = 2x4 u NAILED NAILED NAILED NAILED 5 - 1 - 44-1-12 9-3-0 4-1-12 4-1-12 0-11-8 Scale = 1:46.1 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (psf) (loc) Plate Grip DOL 20.0 1.25 TC 0.21 Vert(LL) -0.03 8-11 >999 240 MT20 BC 0.48 Snow (Pf/Pg) 16 5/15 0 Lumber DOL 1 25 Vert(CT) -0.05 8-11 >999 180 7.0 Rep Stress Incr NO WB 0.04 Horz(CT) 0.01 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 35 lb 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 requirements specific to the use of this truss component. 2x4 SP No.2 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. TOP CHORD Structural wood sheathing directly applied or * This truss has been designed for a live load of 20.0psf 9) 5-10-15 oc purlins, except on the bottom chord in all areas where a rectangle 2-0-0 oc purlins (6-0-0 max.): 3-4. 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord and any other members. bracing 10) Provide mechanical connection (by others) of truss to **REACTIONS** (size) 2=0-3-0, 5=0-3-0 bearing plate capable of withstanding 163 lb uplift at joint Max Horiz 2=22 (LC 12) 2 and 163 lb uplift at joint 5. Max Uplift 2=-163 (LC 8), 5=-163 (LC 9) 11) Graphical purlin representation does not depict the size Max Grav 2=598 (LC 35), 5=598 (LC 35) or the orientation of the purlin along the top and/or (lb) - Maximum Compression/Maximum bottom chord. Tension 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d TOP CHORD 1-2=0/20, 2-3=-934/218, 3-4=-864/216, (0.148"x3.25") toe-nails per NDS guidlines 4-5=-934/218, 5-6=0/20 13) In the LOAD CASE(S) section, loads applied to the face BOT CHORD 2-8=-183/852, 7-8=-182/864, 5-7=-181/852 of the truss are noted as front (F) or back (B). 3-8=-17/155, 4-7=-17/155 LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Unbalanced roof live loads have been considered for this design Uniform Loads (lb/ft) ORT Wind: ASCE 7-10; Vult=115mph (3-second gust) Vert: 1-3=-37, 3-4=-47, 4-6=-37, 9-12=-20 Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. Concentrated Loads (lb) II; Exp B; Enclosed; MWFRS (envelope) exterior zone; Vert: 3=-24 (B), 4=-24 (B), 8=-22 (B), 7=-22 (B), cantilever left and right exposed ; end vertical left and 19=-125 (B), 20=-125 (B) COLUMN CONTRACTOR right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 SEAL Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); 036322 Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads. G mmm May 21,2025

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	P04	Common	2	1	Job Reference (optional)	173629600

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

4-7-8	9-3-0	
4-7-8	4-7-8	

Scale = 1:37.5	5								-					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.21 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.01	(loc) 6-12 6-12 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=-24 (LC Max Uplift 2=-160 (L Max Grav 2=396 (LC (Ib) - Maximum Com Tension 	athing directly applie applied or 9-6-13 oc 4=0-3-0 2 17) C 12), 4=-160 (LC 1: C 2), 4=396 (LC 2) apression/Maximum	5 6 ed or 7 c 8 3) 9	 This truss he load of 12.0 overhangs r Building Deeverhangs requirement This truss he chord live loo * This truss on the botto 3-06-00 tall chord and a Provide mean bearing plat 2 and 160 lb 	as been designed psf or 1.00 times ion-concurrent wit signer/Project eng in Load = 5.0 (psf, s specific to the ui as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectic e capable of withs o uplift at joint 4. Standard	for great flat roof k h other lin ineer res) covers r se of this for a 10.1 with any d for a liv with any d for a liv as where vill fit betv s. n (by oth tanding 1	er of min rool bad of 11.5 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss 1 60 lb uplift at	f live isf on nent. ads. 0psf com t joint						
TOP CHORD	 1-2=0/17, 2-3=-551/- 4-5=0/17 2-6=-370/486, 4-6=- 	439, 3-4=-551/439, 370/486												
WEBS	3-6=-165/185													
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91 II; Exp B; and C-C 4-7-8, Ex 10-3-0 zc vertical le exposed; reactions DOL=1.6	ced roof live loads have gn. CCE 7-10; Vult=115mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior (2) -1-0-0 to 2-1 terior (2) -4-7-8 to 7-7-8 ne; cantilever left and r eft and right exposed; pr C-C for members and f shown; Lumber DOL= 0	been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon 0-0, Interior (1) 2-0-0 , Interior (1) 7-7-8 to ight exposed; end orch left and right orces & MWFRS for 1.60 plate grip	r Cat. ie) to							(W. Children		OR FESE SEA 0363		-

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	V01	Valley	1	1	Job Reference (optional)	173629601

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

2)

TCLL (roof)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:31

Page: 1

9-10-11, Exterior (2) 9-10-11 to 12-10-11, Interior (1) 12-10-11 to 19-4-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm May 21,2025 VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	917 Serenity	
P02611-25472	V02	Valley	1	1	Job Reference (optional)	173629602

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:32 ID:qRLGrh5531faTHqJjKi8pLzxFfl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

13-0-5

DEFL

0.16 Vert(LL)

in

n/a

(loc)

l/defl

n/a 999

L/d

n/a 999 n/a n/a PLATES

Weight: 45 lb

MT20

GRIP

244/190

FT = 20%

Scale	_	1.37 /
Scale	=	1.37.4

Loading

TCLL (roof)

Snow (Pf/Pg) TCDL BCLL BCDL	11.5/15.0 7.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.25 YES IRC201	5/TPI2014	BC WB Matrix-MS	0.12 0.03	Vert(TL) Horiz(TL)	n/a 0.00	5			
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-1-5 7=13-1-5 Max Horiz 1=41 (LC (LC 17), 16) Max Grav 1=63 (LC (LC 34), 33)	eathing directly applie y applied or 6-0-0 oc , 5=13-1-5, 6=13-1-5 , 8=13-1-5 ; 16) C 17), 5=-4 (LC 17), (7=-7 (LC 16), 8=-91 ; 2), 5=63 (LC 2), 6=2 7=276 (LC 2), 8=291	3) ed or 5) (1C 8) (1C 8) (1C 1) (1C 1)	 Truss design only. For stu see Standarior consult qu TCLL: ASCE Plate DOL=' psf (flat roof Category II; Unbalanced design. Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live los 0) * This truss ha 	need for wind load uds exposed to ' d Industry Gable Jalified building E 7-10; Pr=20.0 1.25); Pg=15.0 p snow: Lum DOI Exp B; Partially snow loads hav signer/Project er in Load = 5.0 (pis s specific to the res continuous spaced at 4-0-C as been designe ad nonconcurre has been design	ds in the pla wind (norm e End Deta designer as psf (roof LL ssf (ground _=1.15 Plat Exp.; Ct=1 re been cor ngineer res sf) covers r use of this tottom chor o co. dt for a 10.0 nt with any leas where	ane of the tru ial to the face ils as applica s per ANSI/T .: Lum DOL= snow); Pf=1 te DOL=1.15 .10 nsidered for t ponsible for ain loading truss compo rd bearing. 0 psf bottom other live loa re load of 20.0	nss e), bble, PI 1. 1.25 1.5); his nent. ads. 0psf				
FORCES	(lb) - Maximum Cor Tension	npression/Maximum		 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to begring plate capable of withstanding 11 h unlift at joint 								
TOP CHORD	1-2=-72/45, 2-3=-63 4-5=-71/41	3/60, 3-4=-63/59,	1									
BOT CHORD	1-8=-11/60, 7-8=-9/	30, 6-7=-9/30, 5-6=-1	1/56	1 4 lb unlift	at joint 5 7 lb ur	lift at ioint	7 91 lb unlift	at				

2-0-0

1.25

CSI

тс

WEBS 3-7=-192/40, 2-8=-224/117, 4-6=-224/117 NOTES

(psf)

20.0

Spacing

Plate Grip DOL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-6-11, Exterior (2) 6-6-11 to 9-6-11, Interior (1) 9-6-11 to 13-1-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- joint 8 and 91 lb uplift at joint 6. 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	917 Serenity				
P02611-25472	V03	Valley	1	1	Job Reference (optional)	173629603			

3-2-3

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 20 12:09:32 ID:qRLGrh5531faTHqJjKi8pLzxFfl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-4-5

3-2-3 3-2-3 6-4-5 3x6 = 2 12 6 Г 3 1 0-0-4 3x6 🍃 3x6 👟 6-4-5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 21,2025

1-7-5

Scale = 1:22.8 Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.21 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-4-5, 3 Max Horiz 1=-19 (LC Max Uplift 1=-38 (LC Max Grav 1=235 (LC (lb) - Maximum Com	athing directly applied applied or 10-0-0 oc 4=6-4-5 21) 16), 3=-38 (LC 17) 5 2), 3=235 (LC 2) pression/Maximum	 6) Building I verifying I requireme 7) Gable rec 8) Gable stu 9) This truss chord live 10) * This trus on the bo 3-06-00 ta chord and 11) Provide n bearing p 1 and 38 	esigner/Project engir lain Load = 5.0 (psf) nts specific to the us uires continuous bott ds spaced at 4-0-0 or has been designed load noncourrent v s has been designed tom chord in all area: Il by 2-00-00 wide wi any other members. echanical connectior ate capable of withst b uplift at joint 3.	neer res covers r e of this om chor c. or a 10. with any for a liv s where Il fit betw n (by oth anding 3	ponsible for ain loading truss compor d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 8 lb uplift at j	nent. Ids. Dpsf om to oint					
TOP CHORD	Tension 1-2=-443/174, 2-3=-4	443/174	LOAD CASE	S) Standard								
 NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed; (members a Lumber DC 3) Truss desig only. For s see Standa or consult (4) TCLL: ASC Plate DOL- psf (flat roc Category II 5) Unbalance design. 	d roof live loads have E 7-10; Vult=115mph ph; TCDL=4.2psf; BC inclosed; MWFRS (en xterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO gned for wind loads in studs exposed to wind ard Industry Gable Enq qualified building desig (2E 7-10; Pr=20.0 psf (g of snow: Lum DOL=1. ⁻ ; Exp B; Partially Exp. d snow loads have be	been considered for (3-second gust) DL=3.0psf; h=25ft; Ca velope) exterior zone ever left and right wh exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI roof LL: Lum DOL=1. round snow); Pf=11. (5 Plate DOL=1.15); ; Ct=1.10 en considered for this	at. 9 e, 1. 25 5						M. GUILLINN,		SEA 0363	ROUTER REPRESENTATION

