

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Glenwood Homes

Model: Forsyth 3 GRH 10x10 CP Lot 18 Austin Park

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

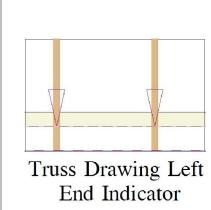
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

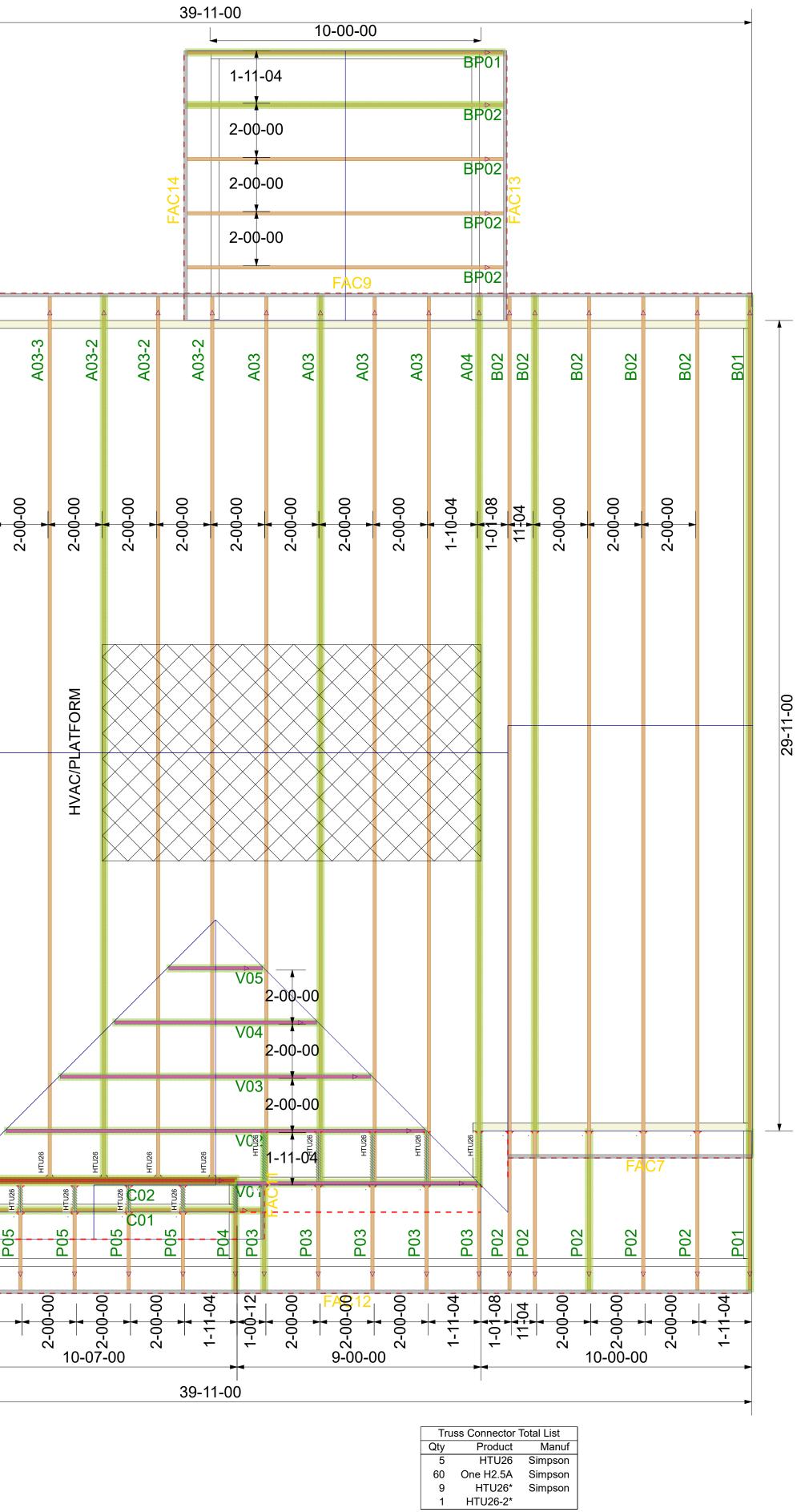
Date: _____

A01	A02	A02	A02	A02	A03-4	A03-3	
	1-1-04	2-00-00	2-00-00	2-00-00	2-00-00	2-00-00	2-00-00
P08		<u>v</u> v	FAC8	~			

** DAMAGED COMPONENTS SHOULD NOT BE INST

COMPONENTS

U Z


WHILE

TO PLANS

REFER

FRAMER MUST

*

	Revis	
<u>tor.</u>	00/00/00	Name Name
utrac	00/00/00	Name
con	00/00/00	Name
	00/00/00	Name
r and		
ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The dision of the tuss support structure	0 % 9
AD AS: FOOT-INCH-SIXTEENTH. ANSI/TPI 1		Lunder
ADDING ANY LOADS. DIMENSIONS ARE RE	ood Homes 18 Austin Forsvth 3 GRH	x10 CP CEMENT PLAN
ected Together Prior to Adding any Loads. Dimensions are read as: Foot-Inch-sixteenth.	Glenwood Homes Install 18 Austin Park-Roof-Forsyth 3 GRH	10x10 CP ROOF PLACEMENT PLAN
	Scale:	ROO
	Scale: NT Date: 1/16/2	Ooy rs 2025
	Scale: NT Date: 1/16/2	Og rs 2025 gner:
	Scale: NT Date: 1/16/2 Desi Blake S Project	rs 2025 gner: crivner Number:
	Scale: NT Date: 1/16/2 Desi Blake S Project 25010	rs 2025 gner: crivner Number:
GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOK TO ADDING ANY LOADS. DIMENSIONS ARE RE	Scale: NT Date: 1/16/2 Desi Blake S Project 25010	rs 2025 gner: crivner Number: 102-A

Trenco 818 Soundside Rd Edenton, NC 27932

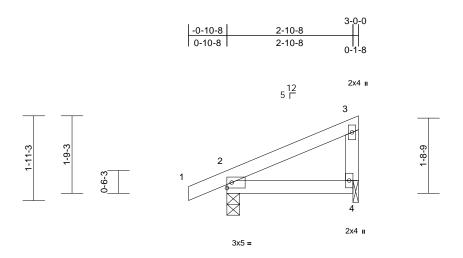
Re: 25010102-A Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I70832358 thru I70832383

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


January 17,2025

Galinski, John

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P07	Monopitch	5	1	I70832358 Job Reference (optional)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Thu Jan 16 13:58:01 ID:H6EDvr40XynBJmDRnRMme_yUWDZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD

WFBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

.3				1			1					
	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	4-7	>999	180		
	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
	10.0										Weight: 12 lb	FT = 20%
	2x4 SP No.2			has been desigr			0psf	-			-	

2-10-8

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Bearings are assumed to be: , Joint 4 SP No.3 . 7)
- Bearing at joint(s) 4 considers parallel to grain value 8) using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 9)
 - bearing plate at joint(s) 4.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-87/75 BOT CHORD 2-4=-67/43 WEBS 3-4=-102/70

2x4 SP No.2

2x4 SP No.3

3-0-0 oc purlins.

Max Horiz 2=53 (LC 14)

bracing.

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8, 4=0-1-8

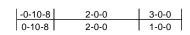
Max Uplift 2=-24 (LC 14), 4=-27 (LC 14)

Max Grav 2=236 (LC 21), 4=138 (LC 21)

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

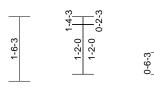
Page: 1

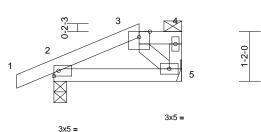

January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P05	Half Hip	5	1	I70832359 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:2ZcXJKLNfWDi6YdvGrHiDKyUWEV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f




12 5 Г

2x4 II

5x6 =

Page: 1

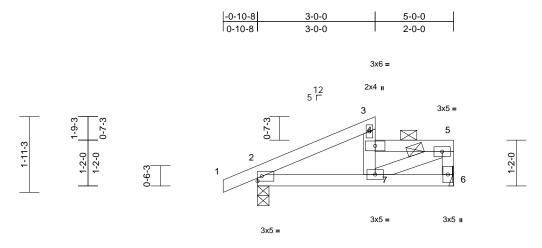
3-0-0

Scale = 1:27.1

Scale = 1:27.1												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI201		0.11 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-8 5-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ; members a Lumber D0 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; 0	Max Horiz 2=37 (LC Max Uplift 2=-41 (LC Max Grav 2=282 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-228/ 4-5=-247/109 2-5=-74/212 3-5=-305/136 ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	cept end verticals, a applied or 10-0-0 or 5= Mechanical 13) 2 14), 5=-59 (LC 11) 2 38), 5=400 (LC 37 pression/Maximum 106, 3-4=-22/26, been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zor ilever left and right ght exposed;C-C for for reactions shown VL=1.60 roof LL: Lum DOL=* um DOL=1.15 Plate 8; Fully Exp.; Ce=0.5	load of overha 6) Provide 7) This tru- chord ii and 8) * This tr on the c 3-06-00 chord a 9) Refer tr 10) Provide bearing 5. 11) One H2 recomr UPLIFT does no 12) Graphic or the c bottom 13) In the L 10 Dead c 2000 chord a 13) In the L 10 Dead context 10 Dead context 10 Dead context vert context 10 Dead context vert context 10 Dead context vert context 10 Dead context vert context 10 Dead context vert context co	ss has been designe 12.0 psf or 1.00 time: ngs non-concurrent w adequate drainage t ss has been designe ve load nonconcurrer uss has been design pottom chord in all an- it all by 2-00-00 wide nd any other membe o girder(s) for truss to mechanical connect plate capable of with .5A Simpson Strong- nended to connect tru- at jt(s) 2. This conne- t consider lateral for al purlin representati rientation of the purli chord. OAD CASE(S) section uss are noted as fror E(S) Standard + Snow (balanced): L se=1.15 m Loads (lb/ft) t: 1-3=-60, 3-4=-460	s flat roof I ith other I io prevent d for a 10. th with any ed for a live eas where will fit betw rs. truss conni ion (by oth sstanding fu- triss to bear ection is fo ces. ion does n n along the on, loads a tt (F) or ba	oad of 20.0 p ve loads. water pondini, 0 psf bottom other live load ve load of 20.1 a rectangle ween the botti- nections. hers) of truss t 59 lb uplift at j ctors ring walls due r uplift only ar ot depict the s e top and/or pplied to the lock (B).	sf on g. ads. Opsf om to joint e to nd size face			A A A A A A A A A A A A A A A A A A A	ORTH CA ORTH CA SEA 286	FER St.
											Januar	v 17.2025

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



January 17,2025

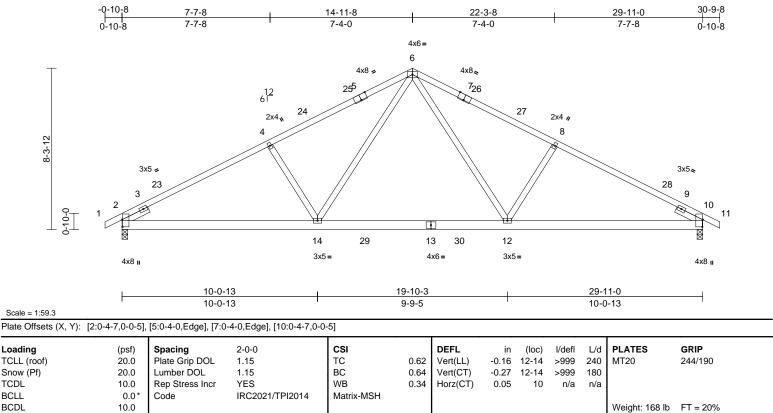
Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P03	Half Hip	5	1	I70832360 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:mKH8oSIGuSqGhhCMlpaqs9yUni4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

7J4zJC?f

Scale = 1:29.4

Scale = 1:29.4													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.64 0.25 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD S BOT CHORD S BOT CHORD F BOT CHORD F BOT CHORD 1 FORCES (I TOP CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 1 BOT CHORD 2 WEBS 5 NOTES 1) Unbalanced r this design. 2) Wind: ASCE Vasd=103mp II; Exp B; Enc and C-C Exte left and right 0 exposed;C-C reactions sho DOL=1.60 3) TCLL: ASCE Plate DOL=1. DOL=1.15); Its CS=1.00; Cts	Structural wood she -0-0 oc purlins, exi -0-0 oc purlins; 4-7 ligid ceiling directly racing. ze) 2=0-3-8, 6 ax Horiz 2=57 (LC ax Uplift 2=-57 (LC ax Grav 2=472 (LC b) - Maximum Com- ension -2=0/28, 2-3=-619/; -4=-36/170, 4-5=-8 -7=-203/569, 6-7=- -7=-396/972 roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; Be closed; MWFRS (en- enrior(2E) -0-10-8 to - exposed ; end vertii for members and five my; Lumber DOL=' 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10	applied or 10-0-0 oc 5= Mechanical 11) 2 14), 6=-128 (LC 11 2 38), 6=863 (LC 43) pression/Maximum 237, 4-7=-409/214, 82/379, 5-6=-957/40 11/16 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon 4-10-4 zone; cantilev cal left and right orces & MWFRS for	6) 7) ed or nd 8) 5 9) 10) 11) 9 12) 9 12) 13) 10 13) 10 13) 10 13) Cat. e /er .15 ;	load of 12.0 overhangs n Provide adec * This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 6. One H2.5A S recommende UPLIFT at jt(does not cor 0 Graphical pu or the orienta bottom chorc 1 In the LOAD of the truss a AD CASE(5) Dead + Snot Increase=1 Uniform Loa	CASE(S) section are noted as front Standard ow (balanced): Lu .15	flat roof le h other li prevent i for a 10. with any d for a liv as where rill fit betv russ comment is comment s to bear tion is for is. n does me along the , loads a (F) or ba	bad of 20.0 p ve loads. water pondin. D psf bottom other live load e load of 20.1 a rectangle veen the bott nections. ers) of truss : 28 lb uplift ar ctors ing walls due to the depict the size to pand/or oplied to the ck (B). rease=1.15,	esf on g. ads. Opsf to to t joint e to nd size face				SEA 286	EEP. St.


January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
2501	10102-A	B02	Common	5	1	I70832361 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:VGpvpMM?47Q8UVDMnI1wzuyUnmT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TOP CHORD	2x4 SP 2400F 2.0E
BOT CHORD	
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-10-3 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=125 (LC 14)
	Max Horiz 2=125 (LC 14)
FORCES	Max Horiz 2=125 LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (lb) Maximum Compression/Maximum
FORCES	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (lb) - Maximum Compression/Maximum Tension
	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2347/244, 4-6=-2173/271,
FORCES TOP CHORD	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (Ib) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2347/244, 4-6=-2173/271, 6-8=-2173/271, 8-10=-2347/244, 10-11=0/23
FORCES	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (Ib) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2347/244, 4-6=-2173/271, 6-8=-2173/271, 8-10=-2347/244, 10-11=0/23
FORCES TOP CHORD	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2347/244, 4-6=-2173/271, 6-8=-2173/271, 8-10=-2347/244, 10-11=0/23 2-14=-211/2018, 12-14=-31/1364,
FORCES TOP CHORD BOT CHORD	Max Horiz 2=125 (LC 14) Max Uplift 2=-131 (LC 14), 10=-131 (LC 15) Max Grav 2=1357 (LC 5), 10=1357 (LC 6) (lb) - Maximum Compression/Maximum Tension 1-2=0/23, 2-4=-2347/244, 4-6=-2173/271, 6-8=-2173/271, 8-10=-2347/244, 10-11=0/23 2-14=-211/2018, 12-14=-31/1364, 10-12=-113/2018

NOTES

TCDL

BCLL

BCDL

LUMBER

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-11-8, Exterior(2R) 11-11-8 to 17-11-8, Interior (1) 17-11-8 to 27-9-8, Exterior(2E) 27-9-8 to 30-9-8 zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

4) Unbalanced snow loads have been considered for this desian.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)

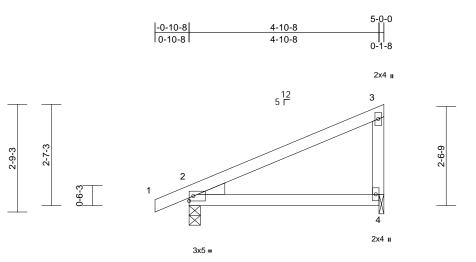
chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors 8) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only

and does not consider lateral forces. LOAD CASE(S) Standard

Page: 1

January 17,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P02	Monopitch	5	1	I70832362 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:Mlfsl27ib_ktvS3K3qe5chyUnhb-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-10-8

Scale = 1:29.6

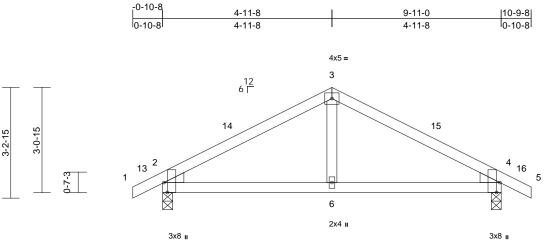
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.53 0.33 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 4-7 4-7 2	l/defl >999 >833 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood sheatt 5-0-0 oc purlins. Rigid ceiling directly ap bracing. (size) 2=0-3-8, 4= Max Horiz 2=86 (LC 1/2 Max Grav 2=361 (LC 2/2) (lb) - Maximum Compr Tension 1-2=0/31, 2-3=-183/14 2-4=-176/115	pplied or 10-0-0 oc :0-1-8 4) 14), 4=-48 (LC 14) 21), 4=266 (LC 21) ression/Maximum	9) 10	on the botton 3-06-00 tall li- chord and ar Bearings arig using ANSI/ designer sho Provide mec bearing platte 0 One H2.5A S recommender UPLIFT at jtt	has been design in chord in all ar by 2-00-00 wide by other membe assumed to be int(s) 4 conside IPI 1 angle to g puld verify capac thanical connect at joint(s) 4. Simpson Strong ed to connect tru (s) 2 and 4. This t consider latera Standard	eas where will fit betw ers. ::, Joint 4 S rs parallel t rain formula city of beari tion (by othe -Tie connec uss to beari s connection	a rectangle veen the bott SP No.3. o grain value a. Building ng surface. ers) of truss ctors ng walls due	om e to e to					
WEBS	3-4=-195/128												
Vasd=103 II; Exp B;	CE 7-16; Vult=130mph (3 3mph; TCDL=6.0psf; BCE Enclosed; MWFRS (enve Exterior(2E) zone: captile	DL=6.0psf; h=25ft; elope) exterior zone										TH CA	Route

II; EXP B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 20 CUL: ASCE 7.16; Pr=200 pcf (raof H: LUM DOL=1.11)

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 28677

Page: 1


January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	BP02	Common	4	1	I70832363 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:c9QGRIbXAR6FWgLqLHztC?zum7I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-8.Edge], [4:0-3-8.Edge]

Scale = 1:33.7

Plate Offsets (X,	Y): [2:0-3-8,Edge],	[4:0-3-8,Edge]			-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.34 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 6-12 6-12 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 WEDGE L TOP CHORD 5 BOT CHORD 6 BOT CHORD 6 REACTIONS (si MA FORCES (TOP CHORD 7 TOP CHORD 7 BOT CHORD 7 BOT CHORD 7 BOT CHORD 7 WEBS 3 NOTES 1 Unbalance 1 this design. 2 Wind: ASCE Vasd=103mp II; Exp B; End and right exp C for member shown; Lumb	6-0-0 oc purlins. Rigid ceiling directly bracing. ize) 2=0-3-8, 4 ax Horiz 2=46 (LC ax Uplift 2=-55 (LC ax Grav 2=561 (LC (b) - Maximum Com Tension 1-2=0/29, 2-3=-558/2 4-5=0/29 2-6=-92/415, 4-6=-92 3-6=0/206 roof live loads have 7-16; Vult=130mph bh; TCDL=6.0psf; Bf closed; MWFRS (enerior(2E) -0-10-8 to 2) erior(2E) 7-9-8 to 10 oosed; end vertical II trs and forces & MW ber DOL=1.60 plate 5.7-16; Pr=20.0 psf (L .15); Pf=20.0 psf (L	14) 14), 4=-55 (LC 15) 21), 4=561 (LC 22) pression/Maximum 234, 3-4=-558/234, 2/415 been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-1-8, Exterior(2R) 2- 9-8 zone; cantilever eft and right exposed (FRS for reactions grip DOL=1.60 roof LL: Lum DOL=1.	Cat. 2	 design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A S recommended UPLIFT at jtt 	snow loads have t is been designed f paf or 1.00 times fl on-concurrent with is been designed n chord in all area: by 2-00-00 wide wi y other members. Simpson Strong-Ti d to connect truss (s) 2 and 4. This co t consider lateral fo Standard	or great lat roof le other li or a 10. with any l for a liv s where ll fit betw e conne s to bear onnectio	er of min rood pad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due	f live asf on ads. Opsf com				SEA 286	EEP. St.

January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A03	Common	4	1	I70832364 Job Reference (optional)

Loading

Snow (Pf)

LUMBER

TCDL

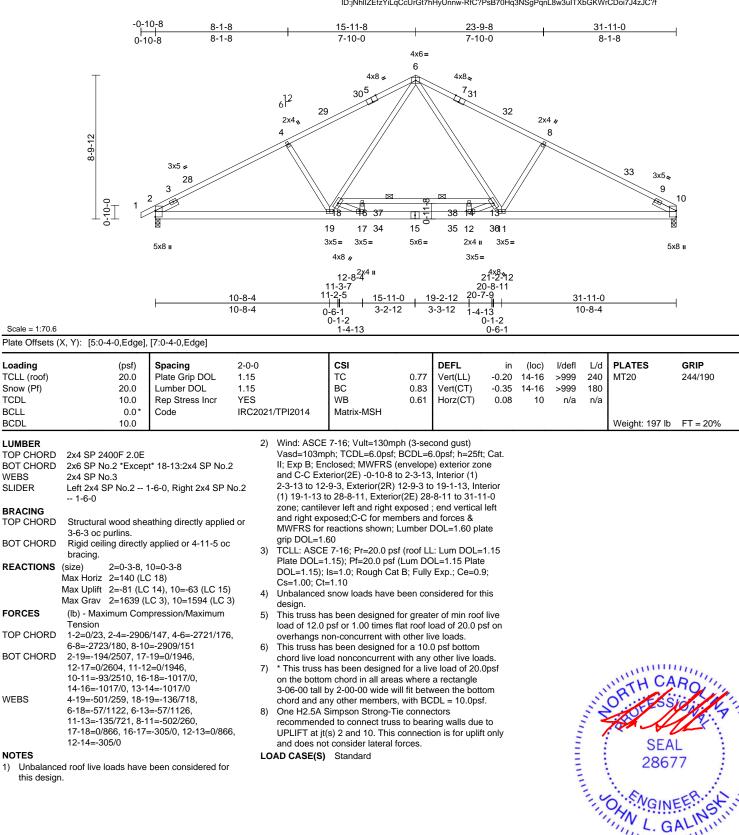
BCLL

BCDL

WEBS

SLIDER

BRACING


FORCES

WEBS

NOTES

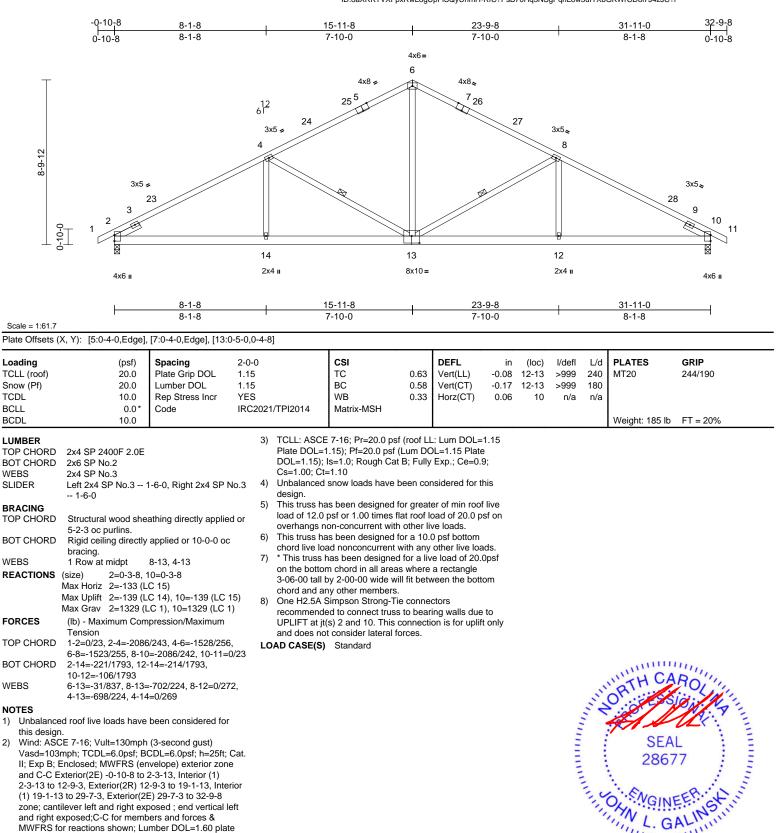
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:59 ID:jNhIIZEfzYiLqCcUrGt7hHyUnnw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

January 17,2025

L. GA

THURSDAY TO BE WANTED


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A02	Common	4	1	I70832365 Job Reference (optional)

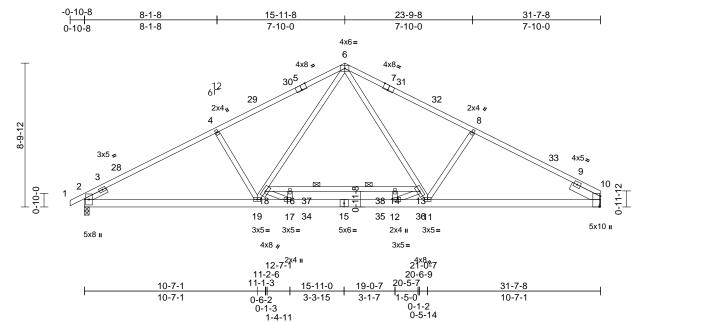
2)

grip DOL=1.60

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:59 ID:8aXRKTVXFpxRwL8gUpFISQyUnmH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

January 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A03-2	Common	3	1	I70832366 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:59 ID:CfMqn93xjIOYbpNINFcI_qyUnmr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.6 Plate Offsets (X, Y): [2:0-4-9,0-0-13], [5:0-4-0,Edge], [7:0-4-0,Edge], [10:0-7-13,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)		14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.35	14-16	>999	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.09	10	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH							Waisht 100 lb	FT 200/
BCDL	10.0											Weight: 198 lb	FT = 20%
UMBER			2)		7-16; Vult=130m								
OP CHORD	2x4 SP 2400F 2.0E				ph; TCDL=6.0psf								
BOT CHORD		ot* 18-13:2x4 SP No.	2		closed; MWFRS								
VEBS	2x4 SP No.3				erior(2E) -0-10-8			-3-7					
SLIDER	Left 2x4 SP No.2 2-0-0	1-6-0, Right 2x6 SP	No.2	19-1-7 to 28	<pre>kterior(2R) 12-9-9 -5-9, Exterior(2E)</pre>	28-5-9 to	31-7-8 zone						
BRACING					ft and right expos								
TOP CHORD	Structural wood she 3-5-15 oc purlins.	athing directly applie	ed or	for reactions	d;C-C for membe shown; Lumber I			RS					
BOT CHORD		applied or 2-2-0 oc	3)		E 7-16; Pr=20.0 p								
REACTIONS	0	10= Mechanical			1.15); Pf=20.0 psf								
	Max Horiz 2=143 (L0			DOL=1.15); Cs=1.00; Ct	Is=1.0; Rough Ca	it B; Fully	Exp.; Ce=0.	9;					
	Max Uplift 2=-81 (LC	C 14), 10=-61 (LC 15)		snow loads have	hoon co	cidorod for t	hic					
	Max Grav 2=1625 (I	LC 5), 10=1580 (LC	3) ⁴⁾	design.	Show loads have	been co		1115					
ORCES	(lb) - Maximum Corr Tension	pression/Maximum	5)	This truss h	as been designed psf or 1.00 times								
OP CHORD		3/144, 4-6=-2695/17	7,		on-concurrent wit								
	6-8=-2608/174, 8-10)=-2788/151	6)		as been designed								
BOT CHORD			,	chord live lo	ad nonconcurrent	with any	other live loa	ads.					
	12-17=0/2595, 11-1		7)		has been designe			0psf				OR LESS	1111
	10-11=-87/2403, 16	,			m chord in all are							W'TH CA	ROUL
	14-16=-1029/0, 13-1				by 2-00-00 wide v						N	R	
VEBS	4-19=-500/259, 18-1				ny other members			t.			5.	O'.EESS	VSI.VY
	6-18=-62/1128, 6-13 11-13=-125/614, 8-1	,	8) 9)		er(s) for truss to t						22		13.7 -
	17-18=0/871, 16-17				hanical connection capable of withs						-	:970	1 4 · · · ·
	12-14=-297/0	- 502/0, 12 15-0/05	· · ,	10.	e capable of with	lanuing e	or ib uplint at	joint		-		CEA	1 1 2
NOTES	0		1(Simpson Strong-T	ie conne	ctors			=	:	SEA	L : I
	ed roof live loads have	been considered for			ed to connect trus			e to		=		2867	77 ; =
this design				UPLIFT at jt	(s) 2. This connects sider lateral force	tion is fo				-		SEA 2867 O, SNGIN	EER. K
			1.	OAD CASE(S)							20	S.ENIA	-cRins
			L.		Glandaru						1	OL GIN	EF. GT
											1	NI	11111
												111, L. G	AL
												in the second se	mm
												January	/ 17.2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

/////// January 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A03-3	Common	2	1	I70832367 Job Reference (optional)

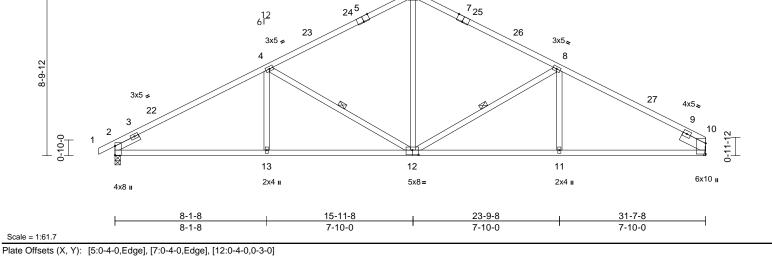
15-11-8

7-10-0

4x8 🞜

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8 0-10-8


8-1-8

8-1-8

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:59 ID:CfMqn93xjIOYbpNINFcI_qyUnmr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 23-9-8 31-7-8 7-10-0 7-10-0 4x6= 6 4x8~ 7₂₅ 26 3x5 👟 8

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.71 0.85 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.33 0.13	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC202	1/TPI2014	Matrix-MSH							Weight: 158 lb	FT = 20%
FORCES (Ib) - Max Grav FOR CHORD (Ib) - A C C C CHORD (Ib) - A C	1.1 1.3 P No.2 wood she purlins. 1g directly nidpt 2=0-3-8, ; 2=143 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-138 (L/ 2=-2042) (I/741, 11 0/1683 783, 8-12= (Z22, 4-13) vads have t=130mph 6-0.psf; B WFRS (er 0-10-8 to 0-10-8 to	LC 14), 10=-119 (LC 1 LC 21), 10=1264 (LC hpression/Maximum 2/238, 4-6=-1490/255 3=-1983/238 -13=-221/1741, =-612/216, 8-11=0/26 3=0/279 been considered for (3-second gust) CDL=6.0psf; h=25ft; 0 ryelope) exterior zone 2-3-7, Interior (1) 2-3-	5) d or 6) 7) 1) 9) , 10 0, LC Cat.	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha * This t	snow loads have b s been designed for performance of the second second second performance of the second second second s been designed for an ochord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection capable of withsta Simpson Strong-Tie do to connect truss s) 2. This connect isider lateral forces	Lum DC B; Fully een cor or greate at roof k other lin or a 10.0 ith any for a liv where l fit betw ss conre (by oth unding 1 e conne- to bear on is fol	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the botthe nections. ers) of truss to 19 lb uplift at ctors ing walls due	e Filve sf on ds. Dopsf om to to			And	SEA 2867	ROUNT IN THE ROUTE

19-1-7 to 28-5-9, Exterior(2E) 28-5-9 to 31-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Ununun January 17,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

VGINEE G

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	BP01	Common Supported Gable	1	1	I70832368 Job Reference (optional)

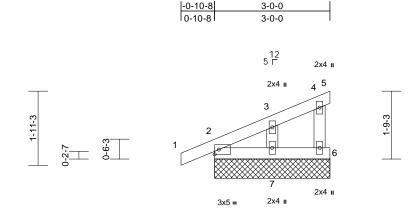
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:NivH61hYHv77TuyMpz6lXhzum7A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			L			9-11-0							
Scale = 1:30.4			I								I		
Plate Offsets (X, Y):	[2:0-3-8,Edge]	, [8:0-3-8,Edge]											
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1 15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=9-11-0, 11=9-11-C 14=9-11-C Max Horiz 2=45 (LC Max Uplift 2=-18 (LC 10=-37 (L 13=-48 (L Max Grav 2=126 (LC 10=153 (L 14=153 (L (lb) - Maximum Com Tension 1-2=0/29, 2-3=-45/3i 4-5=-60/107, 5-6=-6 7-8=-37/36, 8-9=0/25	14) : 10), 8=-10 (LC 11), C 15), 11=-48 (LC 15 C 14), 14=-42 (LC 14 C 21), 8=126 (LC 22), .C 22), 11=247 (LC 2 .C 22), 13=247 (LC 2 .C 21) pression/Maximum 6, 3-4=-51/37, 0/107, 6-7=-51/34, 9	d or 3) 1-0, 4) (2), 5) (2), 6) 1), 7) 8) 9) 10,	Vasd=103mp II; Exp B; En and C-C Cor to 7-9-8, Cor and right exp C for membe shown; Lumb Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable requir Gable studs This truss ha load russ ha chord live load	7-16; Vult=130m 7-16; Vult=130m 7-16; Vult=130m 7-16; Vult=6.0psf; closed; MWFRS (ner(3E) -0-10-8 to ner(3E) 7-9-8 to 1 9-9-8 to 1 9-9-10 t	BCDL=6 (envelope 2 2-1-8, C 10-9-8 zo al left and /WFRS f ite grip D in the pl: nd (norm End Deta ssigner as f (roof LL (Lum DC t B; Fully been cor for greate flat roof lk h other lin s otherwittom chor pc. for a 10.0 with any	:.0psf; h=25ft e) exterior zo corner(3R) 2- ne; cantileve d right expose or reactions OL=1.60 ane of the tru al to the face ils as applica s per ANSI/T :: Lum DOL= DL=1.15 Plate Exp.; Ce=0. sidered for t er of min rooi bad of 20.0 p ve loads. se indicated. d bearing. D psf bottom other live loa	ne -1-8 r left ed;C- uss e), bble, PI 1. -1.15 e 9; his f live sf on			And	ORTH CA	ROULAN
BOT CHORD WEBS NOTES 1) Unbalance this design	11-12=-5/69, 10-11= 5-12=-98/0, 4-13=-2 6-11=-207/139, 7-10 ed roof live loads have	5/69, 8-10=-16/69 07/139, 3-14=-131/10 9=-131/107	12)	3-06-00 tall b chord and an Provide mec bearing plate 2, 10 lb uplift at joint 14, 48	n chord in all area yy 2-00-00 wide w hy other members hanical connectio c capable of withs: at joint 8, 48 lb u 8 lb uplift at joint 1 joint 2 and 10 lb Standard	rill fit betv n (by oth tanding 1 plift at joi I 1, 37 lb	veen the bott ers) of truss 8 lb uplift at nt 13, 42 lb u uplift at joint	to joint uplift		111111	S THE STATE	SEA 2867	EER. Human

January 17,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P08	Monopitch Supported Gable	1	1	I70832369 Job Reference (optional)

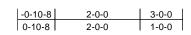
Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:WrHdowBfPjvwu9P9pq0tWtyUWDQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

Scale = 1:30												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2	CSI TC BC WB Matrix-MP	0.08 0.02 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 3-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=3-0-0, 6 Max Horiz 2=57 (LC Max Uplift 2=-24 (LC 7=-30 (LC Max Grav 2=166 (LC) 7=142 (LC) (lb) - Maximum Com	cept end verticals. applied or 10-0-0 or 3) (10), 6=-11 (LC 14), (14) 221), 6=-78 (LC 21), 221)	desi 5) This load over 6) Gab 9) This chor 5) This chor 9) This chor 9) This chor 10) Prov brow 2, 1' uplif	truss has been desig of 12.0 psf or 1.00 tin hangs non-concurrent le requires continuous le studs spaced at 2-C truss has been desig d live load nonconcur s truss has been desi to bottom chord in all -00 tall by 2-00-00 wid d and any other memi ide mechanical conne ing plate capable of w lb uplift at joint 6, 30 : at joint 2.	ned for great nes flat roof li t with other li s bottom chor)-0 oc. ned for a 10. rent with any gned for a liv areas where de will fit betw bers. ection (by oth vithstanding 2	er of min rool pad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss i 24 lb uplift at j	f live isf on ads. Opsf om to joint					
TOP CHORD	Tension 1-2=0/29, 2-3=-99/6 4-6=-69/35	0, 3-4=-31/33, 4-5=-		ASE(S) Standard								
BOT CHORD WEBS	2-7=-32/51, 6-7=-17, 3-7=-115/149	/30										
NOTES	07=110/140											11111
Vasd=103/ II; Exp B; E and C-C C exposed ; members a Lumber D0 2) Truss desi only. For s see Stand or consult 3) TCLL: ASC Plate DOL	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (en corner(3E) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L c); Is=1.0; Rough Cat B Ct=1.10	CDL=6.0psf; h=25ft; ivelope) exterior zor ever left and right ght exposed;C-C for for reactions shown IL=1.60 the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=- um DOL=1.15 Plate	ne ; ss), ole, Pl 1. 1.15							and states of the states of th	SEA 286	EER. St.

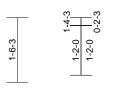
- 2 only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

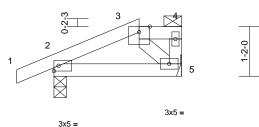
January 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P06	Half Hip	1	2	I70832370 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:26fOSymifzVtBmERG_ugbVyUWDz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



12 5 Г



Page: 1

-6-3

3-0-0

Scale = 1:27.1

Ocale = 1.27.1												
Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	5-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	5-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0						_				Weight: 26 lb	FT = 20%
LUMBER				CE 7-16; Vult=130n								
	2x4 SP No.2			Smph; TCDL=6.0ps								
	2x4 SP No.2			Enclosed; MWFRS Exterior(2E) zone; c			ie					
WEBS	2x4 SP No.3			end vertical left an								
BRACING	0	- the internation of the second in	momborg	and forces & MWF								
TOP CHORD	Structural wood she 3-0-0 oc purlins, ex			OL=1.60 plate grip			,					
	2-0-0 oc purlins; ex		5) TCLL: AS	CE 7-16; Pr=20.0 p	osf (roof L	L: Lum DOL=	1.15					
BOT CHORD	Rigid ceiling directly			_=1.15); Pf=20.0 ps								
	bracing.		DOL=1.1	5); Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.9	9;					
REACTIONS (size) 2=0-3-8.5	5= Mechanical	Cs=1.00;									
```````````````````````````````````````	Max Horiz 2=36 (LC			ed snow loads have	e been co	nsidered for th	nis					
Ν	Max Uplift 2=-40 (LC	(LC 11), 5=-59 (LC 11)	design.	has been designed	d for groat	or of min roof	livo					
Ν	Max Grav 2=275 (L0	C 38), 5=396 (LC 37		2.0 psf or 1.00 times								
FORCES	(lb) - Maximum Com	pression/Maximum		s non-concurrent wi			51 011					
	Tension			dequate drainage to			<b>]</b> .					
	1-2=0/28, 2-3=-225/	105, 3-4=-21/26,	9) This trus	has been designed	d for a 10.	0 psf bottom	-					
	4-5=-246/109			load nonconcurren								
	2-5=-74/210			ss has been designe			)psf					
WEBS	3-5=-301/135			ttom chord in all are		0						
NOTES				all by 2-00-00 wide I any other member		ween the botto	om					
	o be connected toge	ther with 10d		irder(s) for truss to		actions					minin	11111
```	nails as follows:		100 5 11	nechanical connecti			0				WAH CA	Rolly
oc.	connected as follows	s: 2x4 - 1 fow at 0-6-	0 /	late capable of with		,				1	River	Section 1
	rds connected as foll	ows: 2x4 - 1 row at	5.		0							Phillip:
0-9-0 oc.			13) One H2.5	A Simpson Strong-	Tie conne	ctors					Ch N	13: 1
Web conne	cted as follows: 2x4 -	- 1 row at 0-9-0 oc.		nded to connect tru					-		if the second	1 N N 1 =
2) All loads are	e considered equally	applied to all plies,		t jt(s) 2. This conne		r uplift only ar	nd		-		SEA	AL : -
	ted as front (F) or ba			consider lateral forc					- 8	1	000	
	ection. Ply to ply conr			purlin representation			size		=		286	11 : 3
	distribute only loads	noted as (F) or (B),	bottom cl	entation of the purlir	i along the	e top and/or				. 1	SEA 286	1 2
	rwise indicated.	heen considered for		(S) Standard						-	1. A.	als S
this design.	l roof live loads have	been considered to		Snow (balanced): L	umber Inc	rease-1 15 F	Plate				O. SVGIN	EET
this design.			Increase			10030-1.10,1	late			14	YA,	IN IN
				Loads (lb/ft)							11. L. G	AL
				1-3=-58, 3-4=-458 (F=-400), \$	5-6=-19					111111	11111
					,,							y 17,2025
											Janual	y 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

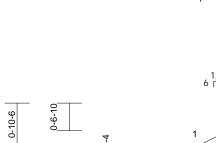
818 Soundside Road Edenton, NC 27932

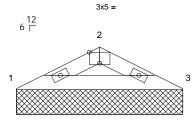
NGINEERING

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	V05	Valley	1	1	I70832371 Job Reference (optional)

Run: 8.73 S Nov 16 2023 Print: 8.730 S Nov 16 2023 MiTek Industries, Inc. Fri Jan 17 10:55:12 ID:ZQk?XJk4XySbJQfWf0cRGeyUnlz-0bMRp5goVGjJ3iaf2dzcJqXtfMbRVnQfhStaxczuf1V

2-9-9


1-1-5


3-4-8

0-6-15

1-8-4

1-8-4

2x4 🞜

2x4 👟

3-4-8

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a	-	
BCLL	0.0*	Code	IRC2021/TPI201	4 Matrix-MP								
BCDL	10.0				-						Weight: 9 lb	FT = 20%
LUMBER			8) This tr	iss has been designed	for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2		chord l	ve load nonconcurrent	t with any	other live loa	ıds.					
BOT CHORD	2x4 SP No.2		,	russ has been designe			0psf					
BRACING				bottom chord in all are								
TOP CHORD	Structural wood she	athing directly appli) tall by 2-00-00 wide v and any other members		veen the bott	om					
	3-4-8 oc purlins.		10) Drovid	e mechanical connection		ers) of truss t	to					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 c	C /	plate capable of withs		,						
DEACTIONS	bracing.	1 0 0 405/0 4 0		4 lb uplift at joint 3.								
	(lb/size) 1=135/3-4 Max Horiz 1=11 (LC	1-8, 3=135/3-4-8	LOAD CAS	SE(S) Standard								
	Max Uplift 1=-14 (LC	,										
	Max Grav 1=150 (LC	,, , , ,										
FORCES	(lb) - Max. Comp./M	,,	,									
	(lb) or less except w											
NOTES												
,	ed roof live loads have	been considered for	or									
this design		(A)										
	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B		Cot									
	Enclosed; MWFRS (er		,									
	Exterior(2E) zone; cant										IIIIII	1111
	end vertical left and right		r								IN'TH CA	ROUL
	and forces & MWFRS		1;							N	OR TESS	PULL
	OL=1.60 plate grip DC									3.	O'. FESS	OKN'S
	igned for wind loads in									: 5		14:7 -
only. For s	studs exposed to wind	(normal to the face	e).							-		1.

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.0; Ct=1.10 5) Unbalanced snow loads have been considered for this

design.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 4-0-0 oc.

Page: 1

January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A04	Common	1	1	Job Reference (optional)

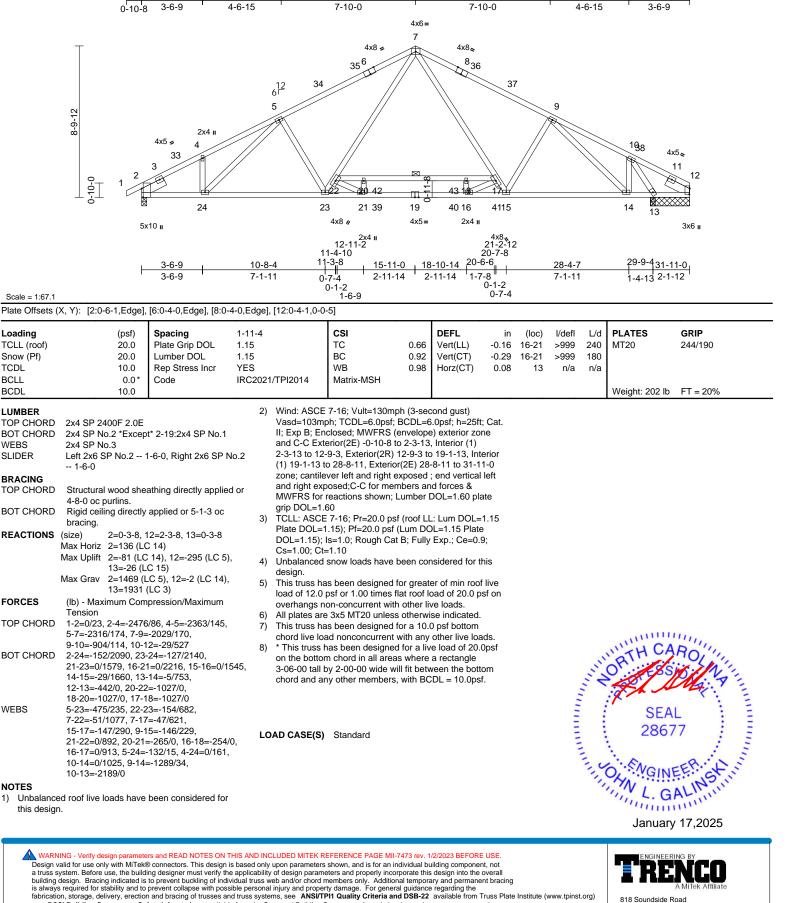
15-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

3-6-9

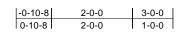
8-1-8


Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:59 ID:wJLAEGS0vBsqr0bTwgGQv_yUnrV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28-4-7

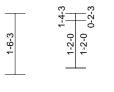
31-11-0

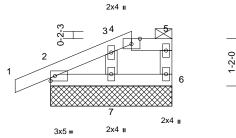
23-9-8


Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P04	Half Hip Supported Gable	1	1	I70832373 Job Reference (optional)


Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:oIVHIdqPnJopSxreFJ0dzFyUWFA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


12 5 Г

-6-3

3-0-0

Scale = 1:28.5

Plate Offsets (X, Y): [4:0-2-8,Edge]

Plate Olisets ((∧, f). [4.0-2-0,⊏uge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2021/TPI20	CSI TC BC WB Matrix-MP	0.27 0.08 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 3-0-0 oc purlins, ex 2-0-0 oc purlins: 4-5 Rigid ceiling directly bracing.	cept end verticals, and applied or 10-0-0 oc 6=3-0-0, 7=3-0-0 13) 2 18), 6=-34 (LC 10), 2 11) C 38), 6=224 (LC 37)	Plate DOL= Cs=1 5) Unba desig dor 6) This t load (overt and load (overt 7) Provi 8) Gable 9) Gable 10) This t chorc 11) * This on th 3-06-	: ASCE 7-16; Pr=20. DOL=1.15); Pf=20.0 =1.15); Is=1.0; Rough .00; Ct=1.10 lanced snow loads hin. russ has been design of 12.0 psf or 1.00 tim angs non-concurrent de adequate drainage e requires continuous e studs spaced at 2-0 russ has been design live load nonconcurr truss has been design e bottom chord in all 00 tall by 2-00-00 wick and any other meml	psf (Lum DC a Cat B; Fully ave been cor ned for great nes flat roof lt t with other life t oprevent b bottom chor 0-0 oc. ned for a 10.1 rent with any gned for a live areas where de will fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 prove loads. water ponding d bearing. D psf bottom other live load e load of 20.0 a rectangle	e 9; his f live sf on g. ds. 0psf					
FORCES TOP CHORD		0, 3-4=-53/73,	12) Provi beari	de mechanical conne ng plate capable of w	ection (by oth /ithstanding 3	88 lb uplift at j	joint					
BOT CHORD WEBS NOTES 1) Unbalance this design	TOP CHORD 1-2=0/28, 2-3=-73/80, 3-4=-53/73, 4-5=-21/36, 5-6=-259/209 2, 34 lb uplift at joint 6, 52 lb uplift at joint 7 and 38 lb uplift at joint 2. BOT CHORD 2-7=-58/41, 6-7=-11/20 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or NOTES 14) In the LOAD CASE(S) section, loads applied to the face									ROJ VIII		
 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 3) Truss designed for wind loads in the plane of the truss LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-58, 4-5=-458 (F=-400), 6-8=-19 												
see Stand	studs exposed to wind lard Industry Gable En qualified building desi	d Details as applicab	ole,								L.G	ALIMIN

111111111 January 17,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	V04	Valley	1	1	I70832374 Job Reference (optional)

3-8-4

3-8-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-6-10

1-10-6

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:02 ID:CTx6UbhxjQqJDfnYtT0GZayUnm2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-8

6-9-9

3-1-5

7-4-8

0-6-15

3

2x4 👟

4x5 = $6 \downarrow^2$ $1 \downarrow^2$ $2 \downarrow^1$ 4x5 = $1 \downarrow^2$ $4 \downarrow^2$ $4 \downarrow^2$ $2x4 \Rightarrow$ 2x4 = $2 \downarrow^1$

Scale =	- 1.24 /

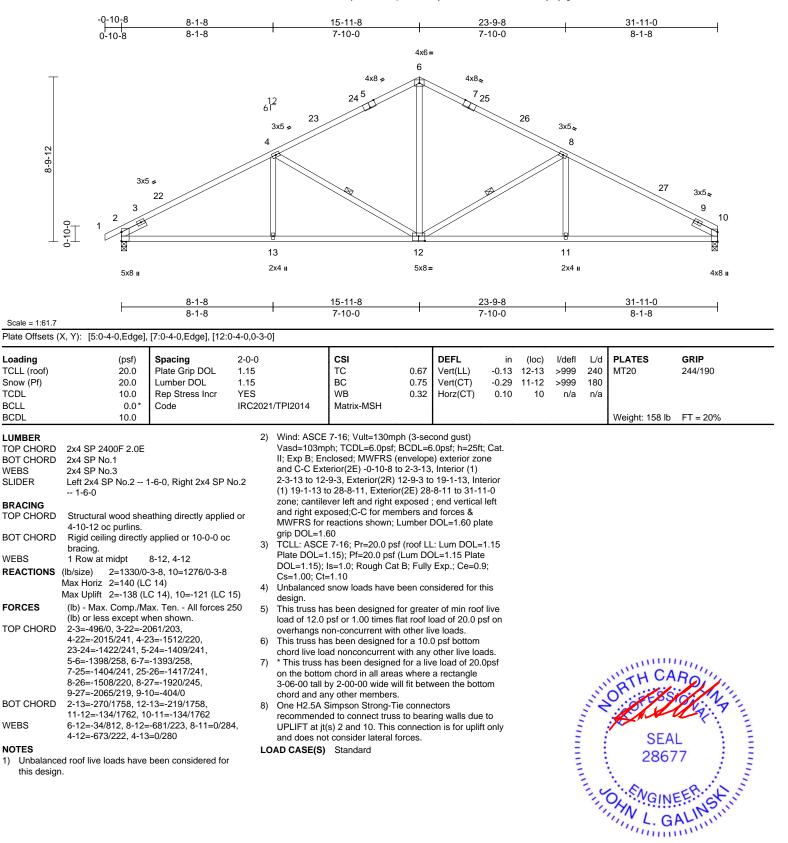
Scale = 1.24.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.24 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-4-8 oc purlins. Rigid ceiling directly bracing. (size) 1=7-4-8,3 Max Horiz 1=-27 (LC Max Uplift 1=-10 (LC 4=-38 (LC Max Grav 1=111 (LC 4=486 (LC (lb) - Maximum Com Tension 1-2=-125/241, 2-3=- 1-4=-208/141, 3-4=- 2-4=-355/194	 33=7-4-8, 4=7-4-8 2 15) 2 14), 3=-16 (LC 15), 2 14), 3=-16 (LC 15), 2 14), 3=-111 (LC 21) C 20) 10 pression/Maximum 125/241 208/141	 Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss has chord live loo * This truss loo * This trus	snow loads have b es continuous bott spaced at 4-0-0 oc as been designed fr ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. hanical connection e capable of withstat t at joint 3 and 38 II	Lum DC B; Fully been cor om chor c. or a 10.0 vith any for a liv s where I fit betv I (by oth anding 1	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss to 0 lb uplift at j	e); his ds. Dpsf om					
	ed roof live loads have	been considered for									, mining	unin,

this design.
Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-5-0, Exterior(2E) 4-5-0 to 7-5-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 28677


January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A03-4	Common	1	1	I70832375 Job Reference (optional)

Run: 8.73 S Nov 16 2023 Print: 8.730 S Nov 16 2023 MiTek Industries, Inc. Fri Jan 17 11:10:40 ID:jNhIIZEfzYiLqCcUrGt7hHyUnnw-nVY0?5w9U0uMedhOXyfi0y2gcFrmPJdYX89naizueoz Page: 1

January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	V03	Valley	1	1	I70832376 Job Reference (optional)

Loading

Snow (Pf)

LUMBER

OTHERS

FORCES

WFBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design

4=-75 (LC 14)

4=882 (LC 20)

1-2=-172/510, 2-3=-172/510

1-4=-390/223, 3-4=-390/223

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 8-5-0, Exterior(2E) 8-5-0 to 11-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-

C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

(lb) - Maximum Compression/Maximum

Max Grav

Tension

2-4=-690/350

TCDL

BCLL

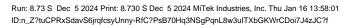
BCDL

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01

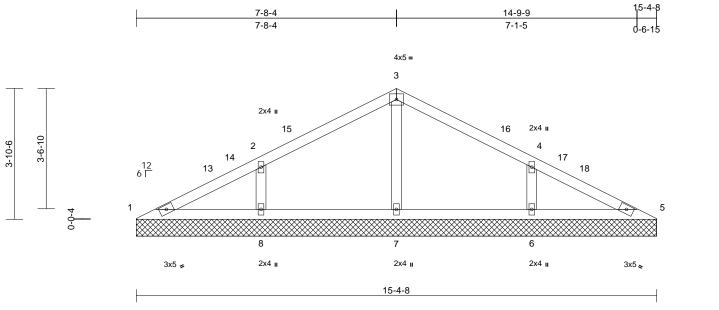
ID:FB7N5DD1CEaUC31IHYLu93yUnnx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-8-4 10-9-9 5-8-4 5-1-5 4x5 = 2 10 2 11 2-10-6 2-6-12 6 Г 12 3 ę 4 3x5 🍬 2x4 🛛 3x5 💊 11-4-8 Scale = 1:29.7 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.57 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 BC Lumber DOL 1 15 0.53 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.16 Horiz(TL) 0.01 4 n/a n/a Matrix-MSH 0.0 Code IRC2021/TPI2014 10.0 Weight: 37 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) BRACING desian. TOP CHORD Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 10-0-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf REACTIONS (size) 1=11-4-8, 3=11-4-8, 4=11-4-8 9) Max Horiz 1=43 (LC 14) on the bottom chord in all areas where a rectangle Max Uplift 1=-55 (LC 21), 3=-55 (LC 20),

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1=113 (LC 20), 3=113 (LC 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint

1, 55 lb uplift at joint 3 and 75 lb uplift at joint 4. LOAD CASE(S) Standard



Page: 1


January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	V02	Valley	1	1	I70832377 Job Reference (optional)

Page: 1

Scale =	1:34
---------	------

CLL (roof) 20.0 F now (Pf) 20.0 L CDL 10.0 F	Spacing 2-0- Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC.	i	CSI TC BC WB Matrix-MSH	0.31 0.11 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
CDL 10.0										Weight: 55 lb	FT = 20%
7=15-4-8, 8= Max Horiz 1=-59 (LC 15 Max Uplift 1=-7 (LC 15) (LC 15), 8=-5 Max Grav 1=96 (LC 35	oplied or 6-0-0 oc =15-4-8, 6=15-4-8, =15-4-8 5)), 5=-6 (LC 15), 6=-98 99 (LC 14)	 only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirr Gable studs a chord live loa This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b 	ed for wind loads i ds exposed to wind I Industry Gable E alified building des 7-16; Pr=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have b es continuous bott spaced at 4-0-0 oc s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members.	d (norm nd Deta signer as (roof LL Lum DC B; Fully eeen cor om chor s or a 10.0 vith any for a liv s where	al to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. 1.15); his ds.)psf					
ORCES (Ib) - Maximum Compre Tension OP CHORD 1-2=-129/117, 2-3=-58/		bearing plate	nanical connection capable of withsta pint 5, 99 lb uplift a	anding 7	' lb uplift at joi	int 1,					
4-5=-129/117 OT CHORD 1-8=-65/109, 7-8=-65/5 5-6=-65/109	57, 6-7=-65/57,	joint 6. LOAD CASE(S)	Standard							ORTH CA	unin,
/EBS 3-7=-267/75, 2-8=-392/	160 1 6- 202/160									N ALL CA	D-11

- this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-8-12, Exterior(2R) 4-8-12 to 10-8-12, Interior (1) 10-8-12 to 12-5-0, Exterior(2E) 12-5-0 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SEAL

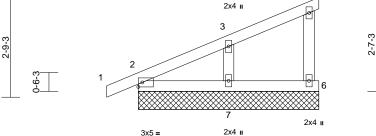
28677

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	P01	Monopitch Supported Gable	1	1	I70832378 Job Reference (optional)

5-0-0

5-0-0

-0-10-8


0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

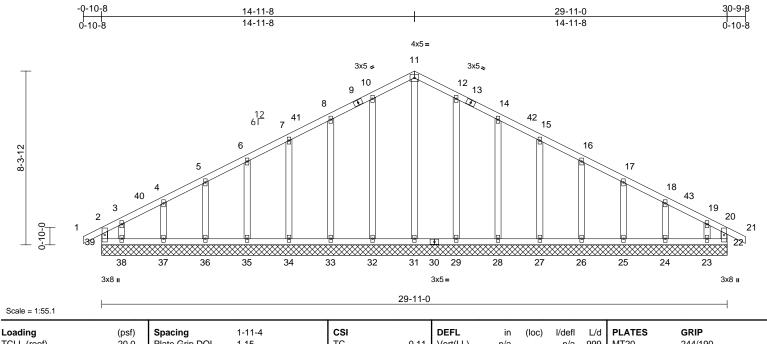
Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:7q8tznEjjRkkthhsXVnzxNyUnhT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II 5 Г 4 ⁵

Scale = 1:31.9

Scale = 1:31.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MP	0.12 0.05 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 5-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=5-0-0, 6 Max Horiz 2=89 (LC Max Uplift 2=-17 (LC Max Grav 2=202 (LC 7=299 (LC	cept end verticals. applied or 10-0-0 oc 3=5-0-0, 7=5-0-0 13) : 10), 6=-13 (LC 14), : 14) 2 21), 6=117 (LC 21) 2 21)	de 5) Th loa ov 6) Ga 7) Ga 8) Th ch 9) * T on 3-(ch 10) Pr be y, 2,	sign. is truss has ad of 12.0 p erhangs no able require able studs s is truss has ord live loa This truss h the bottom D6-00 tall b ord and an ovide mech aring plate	snow loads have t s been designed f ssf or 1.00 times fl ss continuous bott spaced at 2-0-0 or s been designed f d nonconcurrent t as been designed n chord in all area: y 2-00-00 wide wi y other members. nanical connectior capable of withst at joint 6, 57 lb up 2.	for great lat roof le other lin om chor C. for a 10. with any I for a liv s where Il fit betw anding 1	er of min roof pad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i 7 lb uplift at j	live sf on ds. Dpsf om oint					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-115/9 4-6=-103/56			CASE(S)	Standard								
BOT CHORD WEBS		/49											un.
Vasd=103 II; Exp B; and C-C C exposed ; members Lumber D 2) Truss des only. For see Stand or consult 3) TCLL: AS Plate DOL	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed; MWFRS (en Corner(3E) zone; cantill end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable Enq qualified building desig CE 7-16; Pr=20.0 psf (Li =1.15); Pf=20.0 psf (Li 5); Is=1.0; Rough Cat B Ct=1.10	CDL=6.0psf; h=25ft; ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1.15 Plate	e ss , le, 11. .15							. and the second second	and and a start of the start of	SEA 2867	EER. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

January 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	B01	Common Supported Gable	1	1	I70832379 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:NmW_5wCr87n_QVjsX3Jtx9yUnmg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

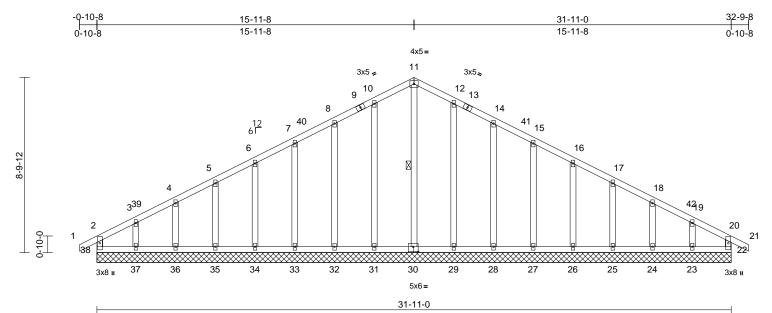
Page: 1

TCLL (roof)	20	0.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20	0.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL		0.0	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.00	22	n/a	n/a		
BCLL		0.0*	Code	IRC2021/TPI20	14	Matrix-MR								
BCDL	10	0.0											Weight: 188 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlin: Rigid ceiling di bracing. (size) 22=2 24=2 26=2	ns, exc irectly a 29-11-0 29-11-0 29-11-0	thing directly applied ept end verticals. applied or 6-0-0 oc 0, 23=29-11-0, 0, 25=29-11-0, 0, 27=29-11-0,	TOP CHO d or BOT CHO		2-39=-114/45, 1 3-4=-98/65, 4-5 6-7=-41/129, 7- 10-11=-93/259, 12-14=-75/218, 15-16=-41/129, 18-19=-67/42, 1 20-22=-101/29 38-39=-29/119, 36-37=-29/119, 32-33=-29/119, 29-31=-29/119, 27-28=-29/119,	=-67/77, 5- 8=-57/173, 11-12=-93, 14-15=-57, 16-17=-29, 9-20=-109, 37-38=-29, 35-36=-29, 33-34=-29, 31-32=-29, 28-29=-29,	6=-49/100, 8-10=-75/218 (259, (173, (85, 17-18=-4 (85, 17-18=-4 (43, 20-21=0/ (119, (119, (119, (119, (119,	2/49, 27,	 only see or c or c Plat DOI Cs= 0 Unb des (oac ove 	/. For si Standa onsult q L: ASC ie DOL= L=1.15); 1.00; C palancec ign. s truss h d of 12.0 rhangs i	uds ex rd Indu ualified E 7-16 1.15); Is=1.0 I snow as bee psf or non-co	<pre>kposed to wind (n ustry Gable End D d building design ;; Pr=20.0 psf (roo Pf=20.0 psf (Lur D; Rough Cat B; F loads have been en designed for g</pre>	
	28=2 31=2 33=2 35=2 37=2 39=2 Max Horiz 39= Max Uplift 22=- 24=-	29-11-(29-11-(29-11-(29-11-(29-11-(29-11-(109 (LC -20 (LC -39 (LC	0, 29=29-11-0, 0, 32=29-11-0, 0, 34=29-11-0, 0, 38=29-11-0, 0, 38=29-11-0, 0 C 13) C 13) C 11), 23=-103 (LC 1 C 15), 25=-43 (LC 15)),		27-28=-29/119, 25-26=-29/119, 23-24=-29/119, 11-31=-166/24, 8-33=-182/79, 7 5-36=-121/73, 4 12-29=-198/68, 15-27=-131/74, 17-25=-121/73, 19-23=-82/101	24-25=-29/ 22-23=-29/ 10-32=-19/ -34=-131/7 I-37=-127/8 14-28=-18: 16-26=-123	(119, (119 8/68, (4, 6-35=-123 (5, 3-38=-89/9 2/79, 3/75,	/75,	 Gat True brac I0) Gat This 	ble requi ss to be ced agai ble studs s truss h rd live lo	res co fully sl nst late space as bee ad no	ntinuous bottom o heathed from one eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with	chord bearing. e face or securely .e. diagonal web). 10.0 psf bottom any other live loads.
FORCES	28=- 34=- 36=- 38=- 24=' 24=' 28=/ 31=' 33=/ 35=' 37=' 39=' (lb) - Maximum	-45 (LC -40 (LC -42 (LC -42 (LC -44 (LC -127 (L 123 (LC 155 (LC 221 (LC 178 (LC 221 (LC 155 (LC 155 (LC 163 (LC 150 (LC	2 15), 27=-42 (LC 15 2 15), 27=-39 (LC 15 2 14), 33=-44 (LC 14 2 14), 33=-42 (LC 14 2 14), 37=-37 (LC 14 C 14), 37=-37 (LC 14 C 28), 23=94 (LC 31 C 28), 23=94 (LC 31 C 22), 25=154 (LC 2 C 37), 27=170 (LC 2 C 28), 32=237 (LC 2 C 21), 34=170 (LC 2 C 36), 36=154 (LC 3 C 32) pression/Maximum), NOTES), 1) Unba), 2) Wind 0) Vasd), 2) Wind 0) Vasd 1), 11; Ex 2), and C 2), to 11: 2), 17-11 1), cantil 1), for re 1), for e	esign ASC =103r b B; E C-C C 11-8, -8 to ever l expos action	d roof live loads h E 7-16; Vult=130 mph; TCDL=6.0ps inclosed; MWFR orner(3E) -0-10-8 Corner(3E) -0-10-8 Corner(3R) 11-1 27-9-8, Corner(3 eft and right expc ed;C-C for memt is shown; Lumbe	mph (3-sec sf; BCDL=6 S (envelope to 2-1-8, E 1-8 to 17-1 E) 27-9-8 to psed ; end v pers and for	cond gust) a.Opsf; h=25ft; b) exterior zor exterior(2N) 2 1-8, Exterior(b) 30-9-8 zone vertical left an rces & MWFF	; Cat. ne -1-8 2N) ; d			and summer	SEA 2867	EER SKIIII
	Tension												January	/ 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	B01	Common Supported Gable	1	1	I70832379 Job Reference (optional)

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 39, 20 lb uplift at joint 22, 40 lb uplift at joint 32, 44 lb uplift at joint 33, 42 lb uplift at joint 34, 42 lb uplift at joint 35, 44 lb uplift at joint 36, 37 lb uplift at joint 37, 127 lb uplift at joint 38, 39 lb uplift at joint 29, 45 lb uplift at joint 28, 42 lb uplift at joint 27, 42 lb uplift at joint 26, 43 lb uplift at joint 25, 39 lb uplift at joint 24 and 103 lb uplift at joint 23.

LOAD CASE(S) Standard


Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:NmW_5wCr87n_QVjsX3Jtx9yUnmg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A01	Common Supported Gable	1	1	I70832380 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:58 ID:v60T0CbYMGxttalCyVOdn6yUnm9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58

Plate Offsets (X, Y): [30:0-3-0,0-3-0]

			-													
Loading		(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)		20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	(100)		999	MT20	244/190			
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-		999		211/100			
TCDL		10.0	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.00	22		n/a					
BCLL		0.0*	Code	IRC2021/TPI2014	Matrix-MR	0.22	11012(01)	0.00		n/a	n/a	1				
BCDL		10.0	Code	11(02021/11/12014	Widdinx-Will							Weight: 206 lb	FT = 20%			
		10.0										Ŭ				
LUMBER				FORCES	(lb) - Maximum	Compressi	on/Maximum						e plane of the truss			
TOP CHORD					Tension	2 0/27 2	2 405/00						normal to the face),			
BOT CHORD				TOP CHORE	2-38=-120/75, 1 3-4=-81/74, 4-5								Details as applicable, er as per ANSI/TPI 1.			
WEBS	2x4 SP N				6-7=-55/160, 7-6	, -	,						of LL: Lum DOL=1.15			
OTHERS	2x4 SP N	0.3			10-11=-108/290			,					n DOL=1.15 Plate			
BRACING					12-14=-91/249,								Fully Exp.; Ce=0.9;			
TOP CHORD			athing directly applie	d or	15-16=-55/159,		,			s=1.00; C			uny LAP., 06-0.3,			
B 0 T 0 10			cept end verticals.		17-18=-36/71, 1		,	38					n considered for this			
BOT CHORD		ing directly	applied or 6-0-0 oc		20-21=0/27, 20-		,	00,	,	sign.	2 3110 W					
	bracing.		44.00	BOT CHORE							as bee	en designed for a	reater of min roof live			
WEBS	1 Row at	•	11-30	201 0110112	35-36=-31/113,					ad of 12.0) psf or	1.00 times flat ro	pof load of 20.0 psf on			
REACTIONS	(size)		-0, 23=31-11-0,		33-34=-31/113.							ncurrent with oth				
			-0, 25=31-11-0,		31-32=-31/113,	29-31=-31	/114,						erwise indicated.			
			-0, 27=31-11-0,		28-29=-31/114,	27-28=-31	/114,		8) Ga	able requi	ires co	ntinuous bottom	chord bearing.			
			-0, 29=31-11-0,		26-27=-31/114,	25-26=-31	/114,						e face or securely			
			-0, 31=31-11-0,		24-25=-31/114,	23-24=-31	/114,						.e. diagonal web).			
			-0, 33=31-11-0,		22-23=-31/114							ed at 2-0-0 oc. `	0 ,			
			-0, 35=31-11-0,	WEBS	11-30=-191/37,	10-31=-19	8/66,		11) Th	is truss h	as bee	en designed for a	10.0 psf bottom			
		36=31-11	-0, 37=31-11-0,		8-32=-182/80, 7	-33=-131/7	4, 6-34=-122/	75,	ćch				any other live loads.			
	May Hariz				5-35=-122/75, 4			107,								
	Max Horiz		C 11), 23=-84 (LC 1	-)	12-29=-198/66,	14-28=-18	2/80,					minin	11111			
	Max Uplin				15-27=-131/74,	16-26=-12	3/75,					IN'LY CA	Roll			
			C 15), 25=-45 (LC 1		17-25=-122/76,	18-24=-12	4/71,				1	all	PL			
		· ·	.C 15), 27=-42 (LC 1 .C 15), 29=-37 (LC 1	<i>, , , , , , , , , ,</i>	19-23=-117/112							O' ASS	KING			
		· ·	.C 15), 29=-37 (LC 1: .C 14), 32=-45 (LC 1:	" NOTES							5 3		1.72			
			.C 14), 32=-45 (LC 14 .C 14), 34=-42 (LC 14		ed roof live loads h	ave been	considered for				2	TAN	Mar -			
			.C 14), 34=-42 (LC 14 .C 14), 36=-30 (LC 14		ın.					-			. <u>11</u>			
			.C 14), 38=-37 (LC 1		CE 7-16; Vult=130	mph (3-seo	cond gust)					SEA	L : =			
	Max Gray		_C 22), 23=139 (LC 3		3mph; TCDL=6.0ps	sf; BCDL=6	0.0psf; h=25ft;	Cat.			:	2005				
	IVIAN GIAV		_C 22), 25=159 (LC 3 _C 22), 25=155 (LC 2	<i>),</i>	Enclosed; MWFRS					1		280	// : z			
			_C 22), 23=155 (LC 2 _C 37), 27=170 (LC 2		Corner(3E) -0-10-8	to 2-3-13,	Exterior(2N)						1 2			
			_C 22), 29=238 (LC 2		12-9-3, Corner(3R) 12-9-3 to	19-1-13, Exte	rior			2	· .	0123			
	30=183 (I C 28), 31=236 (I C 21), (21)				9-1-13 to 29-7-3, Corner(3E) 29-7-3 to 32-9-8					2 O SNGINEER F						
	32=221 (I C 21), 33=170 (I C 21), 20				cantilever left and right exposed ; end vertical left						11	YA	5. NS N			
	32=221 (LC 21), 33=170 (LC 21), 34=155 (LC 36), 35=155 (LC 21),				and right exposed;C-C for members and forces &					at. SEAL 28677 t L.GALMUNIUM						
	34=155 (LC 36), 35=155 (LC 21), 36=159 (LC 21), 37=144 (LC 30),			30) MWERS	/FRS for reactions shown; Lumber DOL=1.60 plate					L. Chunn						
		38=139 (L		grip DOL	=1.60							- ann	111.			
												January	y 17,2025			

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	A01	Common Supported Gable	1	1	I70832380 Job Reference (optional)

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 38, 15 lb uplift at joint 22, 39 lb uplift at joint 31, 45 lb uplift at joint 32, 42 lb uplift at joint 33, 42 lb uplift at joint 34, 45 lb uplift at joint 35, 30 lb uplift at joint 36, 97 lb uplift at joint 37, 37 lb uplift at joint 29, 46 lb uplift at joint 28, 42 lb uplift at joint 27, 42 lb uplift at joint 26, 45 lb uplift at joint 25, 33 lb uplift at joint 24 and 84 lb uplift at joint 23.

LOAD CASE(S) Standard

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:57:58 ID:v60T0CbYMGxItalCyVOdn6yUnm9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	C01	Common Supported Gable	1	1	I70832381 Job Reference (optional)

13

5-3-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-5-12

0-10-0

-0-10-8

0-10-8

2

3x8 II

14

15

1

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:EmtPvLJx2oAV5hA4PxCEw_yUWDG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-7-0

11

8

3x8 II

10

q

5-3-8 5-3-8 4x5 = 5 1<u>2</u> 6 Г 4 6 16 Þ ø 3 7 ø 0 0

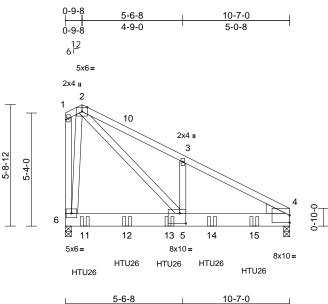
12

10-7-0

Scale = 1:30.5

Scale = 1:30.5		1									1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2021/TPI2	CSI TC BC WB 014 Matrix-MR	0.09 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 49 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood si 6-0-0 oc purlins, or Rigid ceiling direct bracing. (size) 9=10-7 15=10- Max Horiz 15=57 Max Uplift 9=-9 (L 11=-45 14=-49 Max Grav 9=43 (L 11=245 13=249		Vasc I; E3 and to 7- and d or C for show 3) Trus only. 7-0, or cc 4) TCLI Plate DOL 2), Cs= (1), 6) This 1), 6) This	truss has been designed of 12.0 psf or 1.00 times	; BCDL=6 (envelopp o 2-1-8, C 10-5-4 zo al left and WWFRS f ate grip D s in the pl ind (norm End Deta esigner a: sf (roof Lt f (Lum DC t Lub R; Fully been cor l for great flat roof ld	:.0psf; h=25ft s) exterior zo: corner(3R) 2- ne; cantileve d right expose or reactions DL=1.60 ane of the tru al to the face ils as applica s per ANSI/T :: Lum DOL= L=1.15 Plate Exp.; Ce=0.1 asidered for t er of min rool oad of 20.0 p	ne 1-8 r left ed;C- sss e), bble, PI 1. 1.15 e) 9; his f live					
FORCES		ompression/Maximum	7) All p	hangs non-concurrent wi lates are 2x4 MT20 unle	s otherwi	se indicated.						um.
TOP CHORD	2-15=-117/102, 1-	2=0/27, 2-3=-35/28, 50/136, 5-6=-50/136, 27/29, 8-9=-36/12	9) Trus brac	le requires continuous bo s to be fully sheathed fro ed against lateral moven	m one fac ient (i.e. d	e or securely				and the	OR	ROUNT
BOT CHORD	14-15=-21/39, 13-	14=-21/39, 12-13=-21/3 11=-21/39, 9-10=-21/3	^{39,} 11) This	le studs spaced at 2-0-0 truss has been designed d live load nonconcurren	for a 10.0		ade			Ĩ	4/	A The A
WEBS	5-12=-111/0, 4-13 6-11=-205/134, 7-	=-208/133, 3-14=-131/5 10=-157/123	^{91,} 12) * Thi	is truss has been designed the bottom chord in all are	ed for a liv	e load of 20.					SE/	AL
NOTES 1) Unbalance this design		ve been considered for	3-06 chor 13) Prov bear 15, 9 at joi 10.	-00 tall by 2-00-00 wide d and any other member ide mechanical connecti ing plate capable of with 0 lb uplift at joint 9, 46 lb int 14, 45 lb uplift at joint (ASE(S) Standard	vill fit betv s. on (by oth standing 2 uplift at joi	veen the bott ers) of truss 8 lb uplift at j nt 13, 49 lb u	to joint ıplift		1105	S. S		AROLINA AL 77

LOAD CASE(S) Standard


January 17,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	C02	Common Girder	1	2	I70832382 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:00 ID:ec5z5BYULxhfVmiwa7ZwjCyUWCy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

 5-6-8
 10-7-0

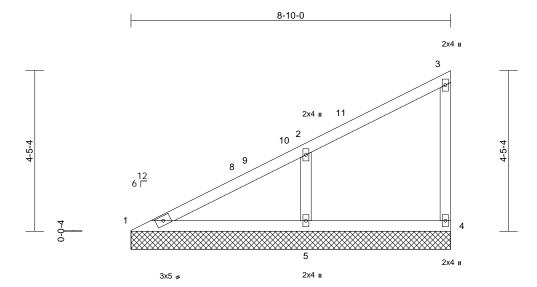
 5-6-8
 5-0-8

Plate Offsets (X, Y):	[4:Edge,0-4-1],	[5:0-3-8,0-5-12]
-----------------------	-----------------	------------------

Scale = 1:54.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1-11-4 1.15 1.15 NO		CSI TC BC WB	0.39 0.39 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0		IRC2021/1	FPI2014	Matrix-MSH							Weight: 160 lb	FT = 20%
5-8-10 oc purlins, e Rigid ceiling directly bracing. REACTIONS (size) 4=0-3-8, (Max Horiz 6=-178 (L Max Uplift 4=-293 (L Max Grav 4=3329 (I FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2e-138/71, 2-3=-4 1-6=-128/59 BOT CHORD 5-6=-7/367, 4-5=-24	athing directly applied xcept end verticals. applied or 10-0-0 oc S=0-3-8 C 10) C 13), 6=-304 (LC 13) C 19), 6=4352 (LC 6) pression/Maximum 377/434, 3-4=-4408/33 2/3881 -250/199, 2-6=-2138/2 ther with 10d s: 2x4 - 1 row at 0-9-0 cows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOAi nections have been noted as (F) or (B),	or 5) - 6) (7) - 8) - 34, 9) (239 (10) (11) F LOA 1)	Vasd=103mp I; Exp B; Encantilever left right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); ID Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss h chord live loa * This truss h chord and and This truss h chord and and TONE H2.5A S recommende UPLIFT at jt(and does not USe Simpsor 14-10dx1 1/2 max. starting connect truss Fill all nail hoi Dead + Snc Increase=1. Uniform Loa Vert: 1-2: Concentrate Vert: 11=	snow loads have I s been designed f d nonconcurrent to as been designed n chord in all area y 2-00-00 wide wi y other members. impson Strong-Ti d to connect truss s) 4 and 6. This cr consider lateral fn o Strong-Tie HTU2 Truss) or equival at 0-11-0 from the s(es) to back face les where hanger Standard w (balanced): Lur 15	BCDL=6 enveloped d; end v 60 plate f (roof LL Lum DC B; Fully been cor or a 10.0 with any l for a liv s where ll fit betw e connet to bear onces. 6 (10-14 ent space e left end of bottor is in cor nber Inc =-19 41 (B), 7	.0psf; h=25ft eventor zo ertical left ar grip DOL=1 .: Lum DOL= L=1.15 Plate Exp.; Ce=0. usidered for t 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ng walls due n is for uplift 6d Girder, red at 2-0-0 of t to 8-11-0 to n chord. tact with lum rease=1.15,	ne; nd 60 1.15 9; his ads. 0psf om e to only pc ber. Plate				SEA 2867	EFR. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


January 17,2025

Job	Truss	Truss Type	Qty	Ply	Install 18 Austin Park-Roof-Forsyth 3 GRH 10x10 CP
25010102-A	V01	Valley	1	1	I70832383 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Thu Jan 16 13:58:01 ID:n_Z?tuCPRxSdavS6jrqfcsyUnny-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-10-0

Scale = 1:31.8

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		, í						
BCDL	10.0										Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 od 4=8-10-0, 5=8-10-0 C 11) C 11), 5=-93 (LC 14) C 1), 4=156 (LC 20),	design. 5) Gable rec 6) Gable stu 7) This truss chord live ad or 8) * This trus on the bo 3-06-00 ta chord and 9) Provide m bearing p 4 and 93	ed snow loads have uires continuous bo ds spaced at 4-0-0 has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide l any other member hechanical connecti ate capable of with b uplift at joint 5. S) Standard	ottom chor oc. d for a 10. it with any ed for a liv eas where will fit betv rs. on (by oth	rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	ds.)psf om o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD WEBS	,		5									
NOTES												
Vasd=103 II; Exp B; and C-C E 4-5-13, Ex left and rig exposed;(reactions : DOL=1.6C 2) Truss des only. For see Stand or consult 3) TCLL: AS Plate DOL	igned for wind loads in studs exposed to wind lard Industry Gable En- t qualified building desi (CE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; velope) exterior zon 0-8, Interior (1) 3-0-6 8-12 zone; cantileve cal left and right prces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1	ne 3 to sr ss s, ole, Pl 1. 1.15							and	SEA 286	EER. Church

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 17,2025

