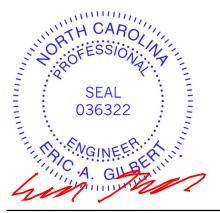


Trenco 818 Soundside Rd Edenton, NC 27932


Re: P02609-25470 996 Serenity

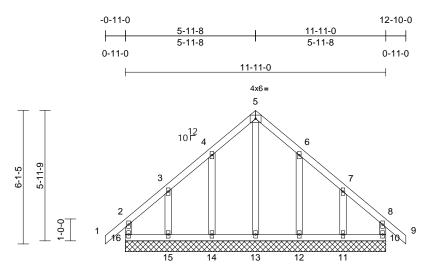
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73525653 thru I73525684

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 16,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A01E	Common Supported Gable	1	1	Job Reference (optional)	173525653

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:01 ID:3zjpp5t30P7uPc0sXPBTWdzxXRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

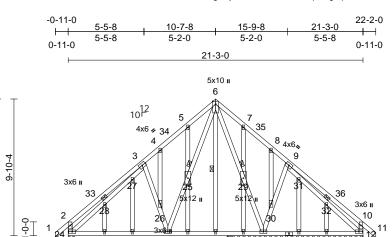
Page: 1

11-11-0

Scale =	1:52.7
---------	--------

Scale = 1:52.7															
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	15.4/	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.08 0.05 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%	
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wo 6-0-0 oc purli Rigid ceiling of bracing. (size) 10: 12: 14: 16: Max Horiz 16: Max Uplift 10: 12: 15: Max Grav 10: 12: 14: 14: 14: 14: 16:	bod shea ins, exc directly a =11-11-1 =11-11-1 =-133 (LC =-36 (LC =-96 (LC =-145 (LC =145 (LC =174 (LL =173 (LL =173 (LL =175 (LC	LC 12) C 11), 11=-94 (LC 15 C 15), 14=-61 (LC 14 C 14), 16=-48 (LC 10 C 26), 11=178 (LC 2 C 27), 13=179 (LC 2 C 30), 15=183 (LC 2 C 27)), 3) 4)), 5) 7), 9), 6)	Vasd=91mpi II; Exp B; En and C-C Cor to 5-11-8, Cc to 12-10-0 zc vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 Pasf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai	7-10; Vult=115m r; TCDL=6.0psf; closed; MWFRS ner (3) -0-11-0 tc orner (3) 5-11-8 tc one; cantilever lei nd right exposed IFRS for reaction ate grip DOL=1.6 red for wind loads ds exposed to w d Industry Gable valified building di 7-10; Pr=20.0 ps snow: Lum DOL= Exp B; Partially E is been designed psf or 1.00 times on-concurrent wi igner/Project eng n Load = 5.0 (psf s specific to the u	BCDL=3. (envelope 1-11-8, I o 8-11-8, I o 8-11-8, I t and right ;C-C for r s shown; 30 s in the pl ind (norm End Deta esigner a: s f (roof LL f (ground ±1.15 Plai t, Ct=1 f for great f flat roof lu th other lip ineer res) covers r	Opsf; h=25ft; e) exterior zor Exterior (2) 1- Exterior (2) 8- t exposed ; e nembers and Lumber ane of the tru ial to the face ils as applica s per ANSI/TI :: Lum DOL= snow); Pf=1! te DOL=1.15) .10 er of min roof oad of 15.4 p: ve loads. ponsible for ain loading	ne 11-8 -11-8 nd ss), ble, Pl 1. 1.15 5.4 ; live sf on	LOAD	CASE(S)) Sta	ndard		
FORCES	Tension 2-16=-127/66 3-4=-79/95, 4 6-7=-78/93, 7	6, 1-2=0/ 1-5=-133 7-8=-72/6	oression/Maximum (41, 2-3=-84/80, 6/157, 5-6=-133/156, 67, 8-9=0/41,	8) 9)	Gable require Truss to be f braced again	2 2x4 () MT20 u es continuous bo ully sheathed from st lateral movem spaced at 2-0-0	ttom choi m one fac ient (i.e. c	d bearing.			L		OR OFES	ROLIN	1
BOT CHORD		3, 14-15=	=-63/68, 13-14=-63/6 =-63/68, 10-11=-63/6	58, ``	chord live loa	is been designed ad nonconcurrent	with any	other live loa					SEA		111
WEBS		3, 4-14=-	136/77, 3-15=-128/9	14	on the bottor	nas been designe n chord in all are by 2-00-00 wide v	as where	a rectangle	•				0363		UIII)
NOTES 1) Unbalance this design		ls have l	been considered for	13)	chord and ar Provide mec bearing plate 16, 36 lb upli	y other members hanical connection capable of withs ft at joint 10, 61 I 15, 61 Ib uplift at	s. on (by oth standing 4 b uplift at	ers) of truss t l8 lb uplift at j joint 14, 96 ll	o oint		11.		SEA 0363	EER.	UIII.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A02SE	Common Structural Gable	1	1	Job Reference (optional)	173525654

10-0-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:03 ID:oaDEAbrbluzDInIrgrS3jCzGbAB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20

21

3x6=

22

23

3x6=

19 18 17

16

1514

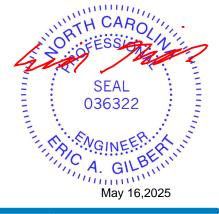
3x6= 3x6= 3x6 II

13

3x6=

Scale = 1:83			ł	<u>7-2</u> 7-2		<u>11-9-0</u> 4-6-13	14-0-13 2-3-13	<u>21-3</u> 7-2-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.28 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.01	(loc) 22-23 22-23 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 1 Row at midpt 1 Brace at Jt(s): 25, 28, 29, 32 (size) 12=9-9-8, 16=9-9-8, 24=0-5-8 Max Horiz 24=205 (I Max Uplift 12=-80 (L 16=-74 (L 24=-78 (L 12=307 (L 12=307 (L 12=307 (L 12=308 (I (lb) - Maximum Com Tension 1-2=0/41, 2-3=-406/ 4-5=-413/176, 5-6=- 7-8=-103/150, 8-9=-	applied or 10-0-0 oc 1-16,13-14,12-13. 6-19 , 13=9-9-8, 14=9-9-8, , 17=9-9-8, 18=0-3-8, LC 13) LC 15), 14=-7 (LC 11), LC 14), 17=-86 (LC 15) LC 31), 13=124 (LC 5) LC 31), 13=124 (LC 5), LC 2) 158, 3-4=-405/154, 440/232, 6-7=-148/18 113/129, 9-10=-255/1 121/148, 10-12=-319/1 23=-99/420, 21=-61/178, 19=-61/177,	or N(1) 2) , , 3) 4) 8, 88, 60	this design. Wind: ASC Vasd=91m II; Exp B; E and C-C Es 10-5-2, Ext to 22-2-0 zv vertical left forces & M DOL=1.60 Truss desig only. For s see Standa or consult C TCLL: ASC Plate DOL= psf (flat roo Category II This truss H load of 12.(overhangs Building De	4-26=-51/16, 7-29=-152/57 14-31=-37/37 d roof live load: E 7-10; Vult=1 ph; TCDL=6.0p nclosed; MWF terior (2) -0-11 erior (2) 10-5-2 one; cantilever and right expo WFRS for reac plate grip DOL- gned for wind lo tuds exposed t and Industry Ga qualified buildin E 7-10; Pr=20. = 1.15); Pg=20.0 of snow: Lum D ; Exp B; Partial as been desig 0 psf or 1.00 tim non-concurren esigner/Project	96, 9-30=-26 40, 6-25=-18 5, 21-26=-29 8, 27-28=-18 8, 27-28=-18 9-31=-147/ 43, 12-32=-1 5-25=-92/63, 22-27=0/119 1, 17-29=-125 1, 13-32=-4/7 s have been 15mph (3-see st; BCDL=3. RS (envelop I-0 to 2-1-0, I 2 to 13-5-2, Ir left and right sed;C-C for r tions shown; =1.60 bads in the pl to wind (norm ble End Deta 19 designer a 0 psf (rootLl 0 psf (ground OL=1.15 Pla IN Exp.; Ct=1 ned for great nes flat roof I engineer res	9/185, 6/489, 0/160, 4/31, 171, 17/138, 20-25=-41/43, 20-25	8, /11, r Cat. he -0 to -2 d ss ,),)ole, PI 1. I.15 5.4 ; live	brac 9) Gabl 10) This chor 11) * Thi on tr 3-06 chor 12) Prov bear 16, 7 uplift 13) In th of th LOAD C 1) Dea 1n C Uni \ \ Tra	ed agair le studs truss ha d live loc is truss h d bive loc is truss h d bive loc is truss h d and ar ide mecc ing plate 78 lb upl t at joint e LOAD e truss a ASE(S) ad + Snor rease=1 form Lo Vert: 1-2 pezoida	nst late space as bee ad nor nas be m choo by 2-0 ny oth hanic e capa iff at ji c ta a capa are no Stal ow (be ads (II Load	heathed from on eral movement (ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit er members. al connection (b able of withstanc oint 24, 80 lb up id 7 lb uplift at jo E(S) section, loa ted as front (F) of ndard alanced): Lumbe b/ft) 2-6=-51, 6-10=-	e face or securely i.e. diagonal web). a 10.0 psf bottom any other live loads a live load of 20.0ps here a rectangle between the bottom y others) of truss to ing 74 lb uplift at join iff at joint 12, 86 lb int 14. ds applied to the fac or back (B). r Increase=1.15, Pla	sf n nt ce ate
		4=-35/76, 12-13=-35/7		requiremen	ain Load = 5.0 hts specific to th re 2x4 () MT2	ne use of this	truss compor				in.		ALBERTING	

Continued on page 2

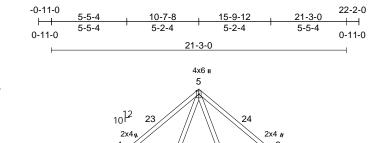

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A02SE	Common Structural Gable	1	1	Job Reference (optional)	173525654

 $\begin{array}{l} \mbox{Vert: } 24{=}-20{\text{-to}-}23{=}{-}22 \ (F{=}{-}2), \ 23{=}{-}22 \ (F{=}{-}2){\text{-}} \\ \mbox{to}{-}22{=}{-}23 \ (F{=}{-}3), \ 22{=}{-}23 \ (F{=}{-}3){\text{-}}{\text{to}{-}21{=}{-}25 \ (F{=}{-}5), \\ \mbox{21{=}{-}25 \ (F{=}{-}5){\text{-}}{\text{to}{-}20{=}{-}26 \ (F{=}{-}6), \ 20{=}{-}26 \ (F{=}{-}6){\text{-}} \\ \mbox{to}{-}19{=}{-}28 \ (F{=}{-}8), \ 19{=}{-}28 \ (F{=}{-}8){\text{-}}{\text{to}{-}18{=}{-}28 \ (F{=}{-}8), \\ \mbox{18{=}{-}28 \ (F{=}{-}8){\text{-}}{\text{to}{-}17{=}{-}29 \ (F{=}{-}9), \ 17{=}{-}29 \ (F{=}{-}9){\text{-}} \\ \mbox{to}{-}16{=}{-}30 \ (F{=}{-}10), \ 16{=}{-}30 \ (F{=}{-}10){\text{-}}{\text{to}{-}15{=}{-}31 \ (F{=}{-}12), \ 14{=}{-}32 \ (F{=}{-}12){\text{-}}{\text{to}{-}13{=}{-}33 \ (F{=}{-}13), \ 13{=}{-}33 \ (F{=}{-}13){\text{-}}{\text{to}{-}12{=}{-}35 \ (F{=}{-}15) \end{array}$

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:03 ID:oaDEAbrbluzDInlrgrS3jCzGbAB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

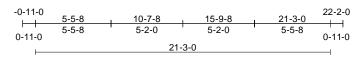
Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A03	Common	5	1	Job Reference (optional)	173525655

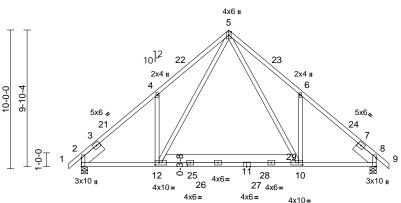
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:03 ID:mdoALiogfFEu4Y_WdQZqk9zxXRO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-2-0	14-1-0	21-3-0	J
Scale = 1:83	7-2-0	6-11-0	7-2-0	I
Plate Offsets (X, Y): [2:0-7-3,0-0-1], [8:0-7-3,0-0-1]				

	(X, Y): [2:0-7-3,0-0-1],	[8:0-7-3,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.53 0.28	Vert(CT) Horz(CT)	-0.20 0.03	(loc) 11-13 11-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER		-11-0, Right 2x8 SF	PDSS 4	psf (flat roof Category II;) This truss ha	1.15); Pg=20.0 psf snow: Lum DOL=1 Exp B; Partially Ex as been designed for psf or 1.00 times fil	i.15 Pla p.; Ct=1 or great	te DOL=1.15 .10 er of min roo); f live					
BRACING TOP CHORD BOT CHORD	RACING IP CHORD Structural wood sheathing directly applied or 5-2-3 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.				on-concurrent with signer/Project engir in Load = 5.0 (psf) s specific to the use as been designed for	neer res covers i e of this	ponsible for ain loading truss compo	onent.					
0 0 7 11) * This truss on the botto 3-06-00 tall	ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members,	l for a liv s where Il fit betv	e load of 20. a rectangle veen the bott	.0psf tom					
FORCES	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-967/		8) Provide med bearing plate	chanical connection e capable of withsta uplift at joint 8.	n (by oth	ers) of truss	to					
BOT CHORD WEBS	5-6=-893/214, 6-8=- 2-13=-156/782, 11-1 5-11=-157/469, 6-11 5-13=-156/469, 4-13	3=0/539, 8-11=-41/ =-255/190,	L 691	OAD CASE(S)									unn.
this design 2) Wind: ASC Vasd=91n II; Exp B; and C-C E	ed roof live loads have	been considered fo (3-second gust) DL=3.0psf; h=25ft; (velope) exterior zor -1-0, Interior (1) 2-1	Cat. ne -0 to							4	ALL N	ORTH CA	• –


Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 10-7-8, Exterior (2) 10-7-8 to 13-7-8, Interior (1) 13-7-8 to 22-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322 MGINEER A. GILBER May 16,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A04	Common	3	1	Job Reference (optional)	173525656

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:03 ID:bn9RclsRF5?1oTRg_hgE_QzxXRI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	5-5-8	11-11-0	15-9-8	21-3-0	
Scale = 1:83	5-5-8	6-5-8	3-10-8	5-5-8	

Plate Offsets (X, Y): [2:0-7-3,0-0-1], [8:0-7-3,0-0-1], [10:0-3-8,0-2-0], [12:0-3-8,0-2-0]

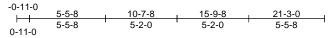
	(;;; ;): [<u>=</u> :e : e;e e :];	[0:0 : 0;0 0 :];[:0:	0 0,0 2	0],[12:0 0 0,0	2 0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.59 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 0.04	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 12-10:2x8 SP DSS WEBS 2x4 SP No.2 SLIDER Left 2x8 SP DSS 1-11-0, Right 2x8 SP DSS 1-11-0 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 4-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-5-8, 8=0-5-8 Max Horiz Max Horiz 2=-186 (LC 12)				Plate DOL= psf (flat roof Category II; This truss he load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha	E 7-10; Pr=20.0 psf 1.15); Pg=20.0 psf snow: Lum DOL=1 Exp B; Partially Ex as been designed f psf or 1.00 times fl ion-concurrent with signer/Project engir in Load = 5.0 (psf) s specific to the us as been designed f ad nonconcurrent v	(ground .15 Pla p.; Ct=1 or great at roof I other li neer res covers I e of this or a 10.	snow); Pf=19 er DOL=1.15) .10 er of min roof bad of 15.4 p ve loads. ponsible for ain loading truss compoi 0 psf bottom	5.4); f live ssf on nent.					
REACTIONS (size) 2=0-5-8, 8=0-5-8				 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 									
FORCES TOP CHORD	,	3/155, 4-5=-1219/322		 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 2 and 107 lb uplift at joint 8. 									
5-6=-1246/326, 6-8=-1213/159, 8-9=0/35 BOT CHORD 2-12=-175/953, 10-12=-14/622, 8-10=-61/881 WEBS 5-10=-255/778, 6-10=-284/224, 5-12=-242/695, 4-12=-286/225				9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 113 lb down and 17 lb up at 12-7-8, and 113 lb down and 17 lb up at 8-7-8 on bottom chord. The design/selection of								RO	
NOTES 1) Unbalanced roof live loads have been considered for this design				such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).									
 this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 10-7-8, Exterior (2) 10-7-8 to 13-7-8, Interior (1) 13-7-8 to 22-2-0 zone; cantilever left and right exposed; end 				DAD CASE(S) Dead + Sn Increase=1 Uniform Lo Vert: 1-5	Standard ow (balanced): Lun .15	nber Inc	rease=1.15,					SEA 0363	• –

Concentrated Loads (lb)

to 22-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Vert: 26=-100 (F), 27=-100 (F)

818 Soundside Road Edenton, NC 27932


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A05	Common	1	1	Job Reference (optional)	173525657

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:04 ID:Qf_HI?kXrjcbzm6Zqt_f15zxXRT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

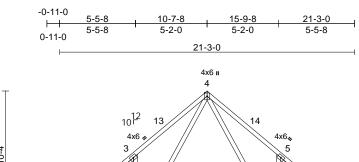
Page: 1

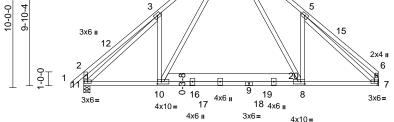
	5-5-8	11-11-0	15-9-8	21-3-0	
= 1:83	5-5-8	6-5-8	3-10-8	5-5-8	I

Plate Offsets (X, Y): [2:0-7-3,0-0-1], [8:0-7-7,Edge], [9:0-3-8,0-2-0], [11:0-3-8,0-2-0]

	X, 1): [2:07 5,00 1];	[0:0 7 7;Edge]; [0:0 0	0,0 2 0]	, [11.0 0 0,0 2	0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.57 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.19 0.04	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; f and C-C E 10-7-8, Ex to 21-3-0 z vertical lef forces & M	1-11-0 Structural wood sheat 4-2-13 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=181 (LC Max Uplift 2=-104 (L Max Grav 2=1059 (L (Ib) - Maximum Com Tension 1-2=0/35, 2-4=-1185 5-6=-1252/326, 6-8= 2-11=-184/947, 9-11 5-9=-255/785, 6-9=-: 4-11=-286/225 ed roof live loads have h. CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2	I-11-0, Right 2x8 SP D athing directly applied applied or 10-0-0 oc 3=0-5-8 C 13) C 14), 8=-95 (LC 15) .C 2), 8=1024 (LC 2) pression/Maximum 5/155, 4-5=-1220/322, 1218/163 =-23/616, 8-9=-80/877 287/224, 5-11=-242/65 been considered for (3-second gust) DL=3.0psf; h=25ft; Cai velope) exterior zone -1-0, Interior (1) 2-1-0 7-8, Interior (1) 13-7-8 d right exposed ; end C for members and	SS 4) or 5) 6) 7) 8) 9) 94, 10 t. 1) to	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss ha chord and ar Provide mec bearing platt 8 and 104 lb Hanger(s) or provided suf down and 17 up at 8-78 d such connec 0) In the LOAD of the truss a DAD CASE(S) Dead + Sno Increase=1 Uniform Lo	ow (balanced): Lu .15	f (ground 1.15 Pla xp.; Ct=1 for great flat roof I h other li ineer res o covers i se of this for a 10. with any d for a 10. with BC n (by oth tanding f he respo , loads a (F) or ba mber Inco	snow); Pf=1. e DOL=1.15, 10 er of min roor bad of 15.4 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps ers) of truss 95 lb uplift at c) shall be ated load(s) 1 lb down and gn/selection nsibility of ott pplied to the ck (B). rease=1.15,	5.4); f live psf on ads. Opsf tom if. to joint 113 lb of hers. face Plate				SEA 0363	• –

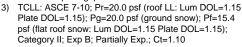
- Concentrated Loads (lb)
- Vert: 25=-100 (F), 26=-100 (F)


G mmm May 16,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A06	Common	2	1	Job Reference (optional)	173525658

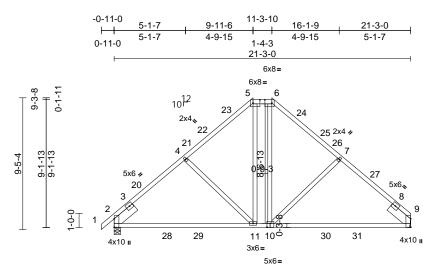
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:04 ID:usYfWLI9c1kSbwhIObVuaJzxXRS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

	5-5-8	11-11-0	15-9-8	21-3-0	_
Scale = 1:83	5-5-8	6-5-8	3-10-8	5-5-8	7
Plate Offects (X, V): [8:0-3-8 0-2-0] [10:0-3-8 0-2-0]					

Plate Offsets ((X, Y): [8:0-3-8,0-2-0],	[10:0-3-8,0-2-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.49 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20%	
this design 2) Wind: ASC Vasd=91rn II; Exp B; and C-C E 10-7-8, Ex to 21-1-4 vertical lef forces & M DOL=1.60 3) TCLL: AS Plate DOL psf (flat ro	2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood she 4-11-5 oc purlins, e Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=203 (L Max Uplift 7=-93 (LC Max Grav 7=1012 (L (lb) - Maximum Com Tension 1-2=0/41, 2-3=-339/ 4-5=-1254/309, 5-6 2-11=-370/154, 6-7= 10-11=-125/950, 8-1 4-8=-237/786, 5-8=- 3-10=-254/227, 3-11 ed roof live loads have	athing directly applied xcept end verticals. applied or 10-0-0 oc inical, 11=0-5-8 .C 11) : 15), 11=-105 (LC 14 .C 2), 11=1057 (LC 2 upression/Maximum 172, 3-4=-1218/303, -289/133, -272/110 0=-11/611, 7-8=-57/8 258/229, 4-10=-222/6 =-999/26, 5-7=-1064 been considered for (3-second gust) DL=3.0psf; h=25ft; C. invelope) exterior zone -1-0, Interior (1) 2-1-7-8, Interior (1) 13-7- d right exposed ; end for members and hown; Lumber roof LL: Lum DOL=1. ground snow); Pf=15. 15 Plate DOL=1.15);	6 7 7 8 9 9 1 384 590, 754 1 1 384 L 1 300, 754 1 2 0 to 8	 load of 12.0 overhangs n Building Desverifying Rai requirement This truss ha chord live lo * This truss la on the bottor 3-06-00 tall l chord and an Refer to gird Provide mee bearing plate 11 and 93 lb Hanger(s) oi provided suf down and 11 up at 8-7-8 such connect In the LOAD of the truss a OAD CASE(S) Dead + Smi Increase=1 Uniform Lo Vert: 1-2 (F) 	ow (balanced): Lun .15	at roof le other lineer res covers r e of this or a 10. with any for a liv s where Il fit betw with BC uss com a diverse (by oth anding 1 device(s oncentra nd 119 The des e respoi loads a F) or ba	bad of 15.4 p e loads. consible for ain loading truss compo D psf bottom other live loa e load of 20.1 EDL = 10.0ps lections. ers) of truss (05 lb uplift ai) shall be ated load(s) 1 lb down and gn/selection nsibility of oth opplied to the ck (B). rease=1.15,	nent. ads. Opsf om f. to t joint 119 lb of ners. face Plate		A MATTINE A		SEA 0363	22 EERER III	Nonumero,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A07	Hip	1	1	Job Reference (optional)	173525659

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:04 ID:BT?kYY1DyOI2TcWModwWYNzxXR4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

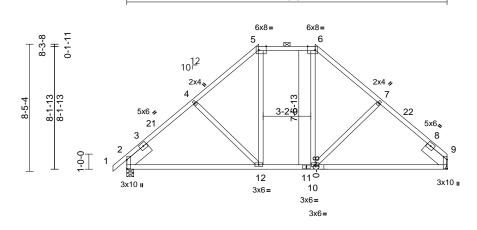
11	-1-14
10-1-2	21-3-0
10-1-2	10-1-2
1	-0-11

Scale = 1:82.6

Scale = 1.02.0											
Plate Offsets (X, Y): [2:0-7-3,	0-0-1], [5:0-6-0,Edge], [6:0-6	-0,Edge], [9:0-7-	3,0-0-1], [10:0-2-12,0-3	-4]							
TCLL (roof) 2 Snow (Pf/Pg) 20.4/2 TCDL 1 BCLL 1	Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2015/TPI20 ⁷	CSI TC BC WB 14 Matrix-MS	0.52 0.76 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-18 11-18 9	l/defl >999 >858 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
1-11-0 BRACING TOP CHORD BOT CHORD BOT CHORD Rigid ceiling d bracing. REACTIONS REACTIONS (size) 2=0 Max Horiz 2=1 Max Uplif 2=- Max Grav 2=1 FORCES (lb) - Maximur Tension TOP CHORD 1-2=0/35, 2-4: 5-6=-713/164; BOT CHORD 1-2=0/35, 2-4: 5-6=-713/164; BOT CHORD 1-2=0/35, 2-4: 5-6=-713/164; BOT CHORD 2-11=-155/956 WEBS 4-11=-359/161 7-10=-362/161 NOTES 1) Unbalanced roof live loads this design. 2) Wind: ASCE 7-10; Vult=11 Vasd=91mph; TCDL=6.0p II; Exp B; Enclosed; MWFI and C-C Exterior (2) -0-11	s (6-0-0 max.): 5-6. irectly applied or 10-0-0 oc -5-8, 9= Mechanical 69 (LC 15) 79 (LC 16), 9=-67 (LC 17) 204 (LC 39), 9=1155 (LC 39) n Compression/Maximum -1363/144, 4-5=-1077/169, 6-7=-1079/172, 7-9=-1365/ 4, 9-11=-81/957 5, 5-11=-59/340, 6-10=-63/3 y have been considered for 5mph (3-second gust) sf; BCDL=3.0psf; h=25ft; Ca \$\$ (envelope) exterior zone 0 to 2-1-0, Interior (1) 2-1-0 to 15-6-8, Interior (1) 21-6-6 and right exposed ; end ied;C-C for members and ions shown; Lumber	Plate I psf (fla Categ 20SS 4) Unbala desigr 5) This tr load o overha 6) Buildir verifyi require 7) Provid 8) This buildir verifyi require 7) Provid 8) This chord 9) * This on the 3-06-C chord 10) Refer 118 11) Provid bearin 43, 9 and 12) Graph or the botton LOAD CA	ASCE 7-10; Pr=20.0 p DOL=1.15); Pg=20.0 ps the roof snow: Lum DOL= ory II; Exp B; Partially E anced snow loads have uses has been designed f 12.0 psf or 1.00 times angs non-concurrent wi ng Designer/Project eng org Rain Load = 5.0 (psf ements specific to the u e adequate drainage to use has been designed bive load nonconcurrent truss has been designed bottom chord in all are 0 tall by 2-00-00 wide x and any other members to girder(s) for truss to e mechanical connection g plate capable of withs 79 lb uplift at joint 2. ical purlin representatio orientation of the purlin n chord. SE(S) Standard	of (ground =1.15 Plat exp.; Ct=1 been cor for great flat roof lt th other lin incer res;) covers r ise of this o prevent to for a 10.0 to with any do for a liv as where will fit betv s, with BC truss conr on (by oth standing 6 on does no	snow); Pf=20 e DOL=1.15) .10, Lu=50-0- hsidered for the er of min roof paad of 15.4 ps ve loads. ponsible for ain loading truss compore water ponding ob psf bottom other live loa e load of 20.0 a rectangle veen the bottom DL = 10.0psf hections. ers) of truss t io t depict the s).4 ;-0 his live sf on hent. g. ds. opsf om c.			Ì	SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

H


G mmm May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A08	Нір	1	1	Job Reference (optional)	173525660

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:05 ID:ffZ6mu2rjitv5m5ZMLSI4azxXR3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	8-10-12	12-4-4	21-3-0	
Scale = 1:76.4	8-10-12	3-5-8	8-10-12	1
Plate Offsets (X, Y): [2:0-7-3,0-0-1], [5:0-6-0,Edge], [6:0-6-0,Edge]	, [9:0-7-3,0-0-1]			

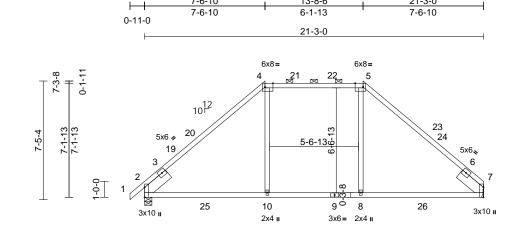
Plate Offsets ((X, Y): [2:0-7-3,0-0-1],	[5:0-6-0,Edge], [6:0-	6-0,Edge], [9:0-7-3,0-0-	1]						-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.59 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.22 0.03	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x8 SP DSS 7 1-11-0 Structural wood she 5-6-3 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.)-Ò max.): 5-6. applied or 10-0-0 oc 9= Mechanical C 11)	DSS 4)	Plate DOL= psf (flat roof Category II; This truss ha load of 12.0 overhangs m Building Des verifying Rai requirement Provide ade This truss ha chord live lo * This truss i on the botto	E 7-10; Pr=20.0 psf 1.15); Pg=20.0 psf snow: Lum DOL=1 Exp B; Partially Ex as been designed f psf or 1.00 times fl on-concurrent with signer/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to p as been designed ad nonconcurrent that the signed m chord in all area:	(ground 1.15 Pla p.; Ct=1 or great at roof l other li beer res covers l e of this prevent or a 10. with any l for a liv s where	snow); Pf=2/ e DOL=1.15/ .10, Lu=50-0 pad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20.0 a rectangle	0.4); -O f live sf on nent. g. ads. 0psf				
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 2=906 (LC (lb) - Maximum Com Tension 1-2=0/35, 2-4=-957/ 5-6=-569/165, 6-7=- 2-12=-124/719, 10-1	C 2), 9=849 (LC 2) pression/Maximum	55 /684 1	 chord and an Refer to gird Provide med bearing plate 9 and 76 lb t 1) Graphical put 	by 2-00-00 wide winy other members, ler(s) for truss to tru- hanical connection e capable of withst- uplift at joint 2. urlin representation ation of the purlin a d.	with BC uss coni n (by oth anding 6 does no	DL = 10.0ps nections. ers) of truss 3 lb uplift at j ot depict the s	f. to joint			TH CA	ROVY
this design 2) Wind: ASC Vasd=91n II; Exp B; I and C-C B 8-9-0, Ext to 21-3-0 z vertical lef forces & M	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 erior (2) 8-9-0 to 16-10 zone; cantilever left an t and right exposed;C- MWFRS for reactions s Uplate grip DQI = 1 60	at. 9 0 to 0	OAD CASE(S)					4		SEA 0363	• •	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mm May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A09	Нір	1	1	Job Reference (optional)	173525661

13-8-6


84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:05 ID:ffZ6mu2rjitv5m5ZMLSI4azxXR3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-3-0

Page: 1

1	7-8-6	13-6-10	21-3-0
Scale = 1:72.2	7-8-6	5-10-5	7-8-6

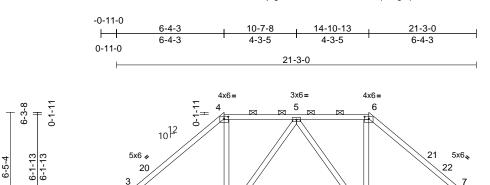
7-6-10

-0-11-0

Plate Offsets (X, Y): [2:0-7-7,Edge], [4:0-6-0,Edge], [5:0-6-0,Edge], [7:0-7-7,Edge]

- 1010 0110010	(X, 1): [2:077,Euge],	[1.0 0 0,Edg0], [0.0	0 0,Edg0]	, [1.0 1 1,Eug	5]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.78 0.71 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.41 0.09	(loc) 8-13 8-13 2	l/defl >722 >615 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x8 SP DSS 1 1-11-0 Structural wood she 3-6-8 oc purlins, exc 2-0-0 oc purlins (5-9 Rigid ceiling directly bracing.	athing directly applie pept -9 max.): 4-5. applied or 10-0-0 oc 7= Mechanical C 13) C 14), 7=-58 (LC 15)	ed or 5)	Plate DOL= psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement Provide ade This truss ha chord live lo. * This truss la on the bottoo 3-06-00 tall	F7-10; Pr=20.0 ps 1.15); Pg=20.0 ps snow: Lum DOL= Exp B; Partially E as been designed psf or 1.00 times on-concurrent wit igner/Project eng n Load = 5.0 (psf, s specific to the u: quate drainage to as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed by 2-00-00 wide w y other members	f (ground 1.15 Pla xp.; Ct=1 for great flat roof I h other li ineer ress) covers I se of this prevent for a 10. with any d for a liv as where vill fit betv	snow); Pf=2/ te DOL=1.15/ .10, Lu=50-0 cad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa- re load of 20.1	0.4); -O f live sf on nent. g. ads. Opsf om					
FORCES	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-1084 5-7=-1083/161		10) Provide med bearing plate	er(s) for truss to t hanical connection capable of withs uplift at joint 2.	on (by oth	ers) of truss						
BOT CHORD WEBS			754 11) Graphical pu	Irlin representatio ation of the purlin			size					
this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C 7-6-10, E 13-8-6, E to 21-3-0 vertical le forces & I	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) 7-6-10 to 11- xterior (2) 13-8-6 to 17- zone; cantilever left an ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.60	(3-second gust) DL=3.0psf; h=25ff; (vxelope) exterior zon 2-1-0, Interior (1) 2-1- 9-8, Interior (1) 11-9 -11-5, Interior (1) 17- d right exposed ; enc C for members and	Cat. e -0 to -8 to 11-5	bottom chord DAD CASE(S)								SEA 0363	22 EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A10	Нір	1	1	Job Reference (optional)	173525662

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:05 ID:7s7UzE3TU00mjwglw2z_dozxXR2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	ė	1 //		_ _						
± +		ע 3x10 ∎	23	11 3x6=	24	10 3x6=	9 3x6=	25	Зх10 ш	

	6-5-15	14-9-1	21-3-0
Scale = 1:68	6-5-15	8-3-2	6-5-15

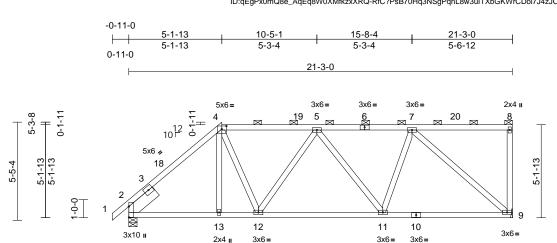
Plate Offsets (X, Y): [2:0-7-7,Edge], [4:0-3-0,0-1-7], [6:0-3-0,0-1-7], [8:0-7-7,Edge]

0-

	(A, T). [2.0-7-7,Euge],	[4.0-3-0,0-1-7], [0.0-3	5-0,0-1-7]	, [8.0-7-7,Euge	·]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.61 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.04	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Left 2x8 SP DSS 1 1-11-0 Structural wood she 4-6-12 oc purlins, ex 2-0-0 oc purlins (6-0		DSS 4)	Plate DOL=1 psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adec This truss ha	7-10; Pr=20.0 ps .15); Pg=20.0 psf snow: Lum DOL= Exp B; Partially Ex so been designed psf or 1.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to is been designed	(ground 1.15 Plat (p.; Ct=1 for great for great lat roof I n other li neer res covers I se of this prevent for a 10.	snow); Pf=2 e DOL=1.15 .10, Lu=50-0 er of min rool oad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom	0.4); -0 f live sf on nent. g.					
REACTIONS	•	(LC 15), 8=-51 (LC 15)	8)	chord live loa * This truss h on the bottor 3-06-00 tall h	ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	with any d for a liv is where ill fit betv	other live loa e load of 20. a rectangle veen the bott	0psf om					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-1007 5-6=-715/161, 6-8=- 2-11=-156/703, 9-11	pression/Maximum 7/149, 4-5=-713/162,	10 705 11	Refer to gird) Provide mec bearing plate 8 and 64 lb u) Graphical pu	ny other members er(s) for truss to tr hanical connection e capable of withst uplift at joint 2. Irlin representation ation of the purlin a	russ coni n (by oth anding t	nections. ers) of truss in 1b uplift at j ot depict the s	to joint				TH CA	Bours
this design 2) Wind: ASC Vasd=91n II; Exp B; I and C-C B; 6-4-3, Ext 14-10-13, 19-1-11 to exposed ;	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 erior (2) 6-4-3 to 10-7-4 Exterior (2) 14-10-13 t 0 21-3-0 zone; cantileve end vertical left and rig and forces & MWFRS	(3-second gust) DL=3.0psf; h=25ft; Ca velope) exterior zone -1-0, Interior (1) 2-1-0 8, Interior (1) 10-7-8 tk o 19-1-11, Interior (1) er left and right ght exposed;C-C for	at. 9) to 0	DAD CASE(S)	Standard					CA CHILLING	the second se	SEA 0363	• -

Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 6-4-3, Exterior (2) 6-4-3 to 10-7-8, Interior (1) 10-7-8 to 14-10-13, Exterior (2) 14-10-13 to 19-1-11, Interior (1) 19-1-11 to 21-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


G

mmm May 16,2025

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A11	Half Hip	1	1	Job Reference (optional)	173525663

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:06 ID:qEgPx0mQ8e_AqEq8W0XMfkzxXRQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			<u> </u>	<u>5-0-1</u> 5-0-1	7-2-3	<u>14-0</u> 6-10				<u>21-3-0</u> 7-2-3		—	
$\frac{\text{Scale} = 1:63.8}{\text{Plate Offsets (X, Y):}}$	[2:0-7-3,0-0-1]	, [4:0-3-0,0-2-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.56 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.03	(loc) 9-11 9-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 SLIDER Left BRACING TOP CHORD Stru 5-2- BOT CHORD Rigi brac REACTIONS (size) Max I Max 0 FORCES (lb) TOP CHORD 1-2= 5-7= BOT CHORD 2-11 (lb) 11-1 WEBS 7-9= 5-12 NOTES 1) Unbalanced root this design. 2) Wind: ASCE 7-1 Vasd=91mph; T II; Exp B; Enclos and C-C Exterion 5-1-13, Exterior 21-1-4 zone; car vertical left expo	SP No.2 SP No.2 SP No.2 SP No.2 2x8 SP DSS ctural wood she 3 oc purlins, ex 0 oc purlins, for 4 ceiling directly ing. 2=0-5-8, 9 4 oriz 2=147 (L0 Jplift 2=-61 (L0 Grav 2=900 (L0 -Maximum Com 50/35, 2-4=-960/ -828/719, 7-8=- 2=-155/935, 9- 2=-155/935, 9- 2=-155/935, 9- 2=-155/935, 9- 1 ive loads have 0; Vult=115mph CDL=6.0psf; BC ied; MWFRS (er r (2) -0-11-0 to 2 (2) 5-1-13 to 9-4 tillever left and i sed;C-C for mer	athing directly applie cept end verticals, a -0 max.): 4-8. applied or 10-0-0 or 9= Mechanical C 14) C 11), 9=-130 (LC 11 C 2), 9=845 (LC 1) pression/Maximum 132, 4-5=-806/128, 17/1, 8-9=-144/43 13=-135/674, 11=-119/729 33/69, 4-12=-70/38 e-179/70, 7-11=-10/3 been considered fo	nnd 5 c 6 7 1) 8 1 37, 1 371 1 371 1 vr 1 Cat. ne -0 to 11 to	 Plate DOL= psf (flat roc Category II This truss I load of 12.0 overhangs Building De verifying Ra requiremer Provide ad This truss I chord live I * This truss on the botto 3-06-00 tal chord and a Refer to gir Provide me bearing pla 9 and 61 lb Graphical p 		f (ground 1.15 Pla xp.; Ct=1 for great flat roof I h other li ineer res) covers I se of this prevent for a 10. with any d for a liva as where ill fit betw. russ coni n (by oth tanding 1 n does n n does n	snow); Pf=2 te DOL=1.15 .10, Lu=50-C er of min roo oad of 15.4 p ve loads. ponsible for ain loading truss compoc water pondin 0 psf bottom other live loa te load of 20. a rectangle veen the bott nections. ers) of truss 130 lb uplift a	20.4 ;);)-0 of live posef on onent. 19. ads. .0psf tom to at joint				SEA 0363	ROCINI

GI 11111111 May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A12	Half Hip	1	1	Job Reference (optional)	173525664

9-7-7

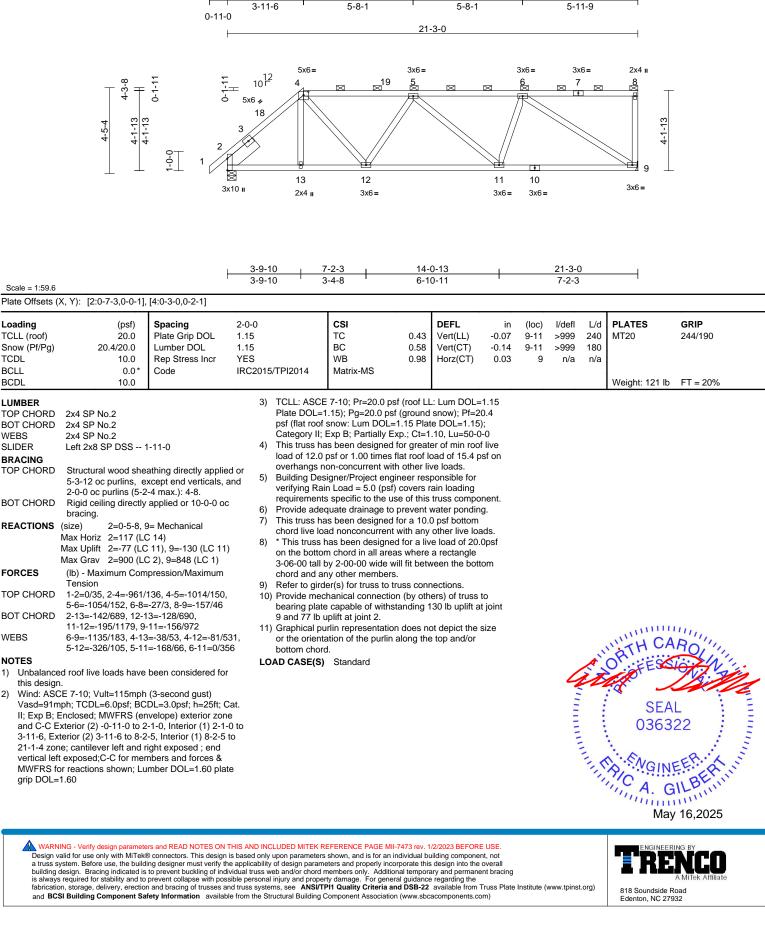
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

1)

2)

-0-11-0

H


3-11-6

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:06 ID:IQEo8Mn2uy61SOPK3j2bBxzxXRP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-3-0

15-3-7

Page: 1

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A13	Half Hip	1	1	Job Reference (optional)	173525665

8-9-13

6-0-13

⊠19

12

3x6=

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

3-1-13 3-1-13

1-0-0

3-5-4

-0-11-0

0-11-0

0-1-11 ⊣

⊠

3x10 u

3

 \mathbf{F}

2-9-0

2-9-0

12 10

5x6 🖌 4

18

5x6=

13

2x4 🛛

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:06 ID:IQEo8Mn2uy61SOPK3j2bBxzxXRP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-10-11

6-0-13

21-3-0

3x6=

5

÷

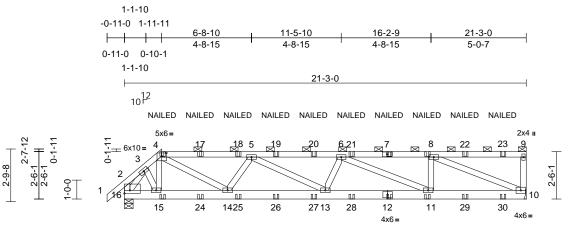
Page: 1

3x6= 3x6 = 3x6 II 6 7 8 \bowtie \bowtie 4 /**†** 3-1-13 . 9 11 10 3x6 = 3x6 = 3x6=

21-3-0

6-4-5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	A14G	Half Hip Girder	1	2	Job Reference (optional)	173525666

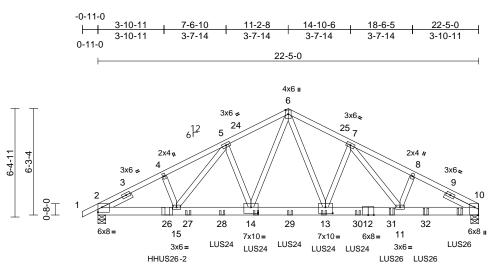
Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:07 ID:0dM?pb6_YEWCBXzW9u1xnezxXR_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED NAILED

			1-9-15	5-5-8	10-7-8		16-	-2-9		21	-3-0		
Scale = 1:60.9			1-9-15	3-7-9	5-2-0	I	5-	7-1		5-	0-7	Ι	
Plate Offsets (X,	Y): [2:Edge,0-2-0],	[4:0-3-0,0-2-1]											
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 20.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC 0.: BC 0.:	21 V	DEFL √ert(LL) √ert(CT)		(loc) 11-13 11-13	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	NO	5/TPI2014	WB 0.1 Matrix-MS		Horz(CT)	0.02	10	n/a	n/a	Weight: 259 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BBRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (s M FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss to (0.131"x3") t Top chords o oc.	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. ize) 10= Mech 1ax Horiz 16=59 (LC 1ax Uplift 10=-233 (1ax Grav 10=1153 / (Ib) - Maximum Com Tension 1-2=0/41, 2-3=-232/ 4-5=-2107/425, 5-6= 6-8=-2102/423, 8-9 2-16=-297/74 15-16=-157/663, 14- 13-15=-126/531, 4-14 5-14=-715/211, 5-13 6-11=-818/182, 8-11 8-10=-2223/443 o be connected toget nails as follows: connected as follows	cept end verticals, -0 max.): 4-9. applied or 10-0-0 (c anical, 16=0-5-8 C 10) LC 7), 16=-215 (LC (LC 2), 16=1203 (L pression/Maximum 71, 3-4=-1080/232, -2839/564, -65/17, 9-10=-177, -15=-211/928, 1-13=-590/2849, 5=-366/118, B=-45/422, 6-13=-2' =-16/541, ther with 10d s: 2x4 - 1 row at 0-5	ied or 3) and 4) bc 5) C 7) 5) C 2) (67, 7) (67, 7) 8) 9) 10 7/121, 11 12 13 9-0	except if not CASE(S) se provided to d Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp B; Er cantilever le exposed; Lu TCLL: ASCE Plate DOL=' psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement Provide ade All plates ard) This truss ha chord live lo) * This truss lo chord and ai 0, Refer to gird) Refer to gird 0, Graphical pu	e considered equally app ed as front (F) or back (ction. Ply to ply connect distribute only loads not wise indicated. roof live loads have be 5.7-10; Vult=115mph (3- h; TCDL=6.0psf; BCDL iclosed; MWFRS (envel ft and right exposed ; er mber DOL=1.60 plate (5.7-10; Pr=20.0 psf (roo snow: Lum DOL=1.15) Exp B; Partially Exp.; C as been designed for gr psf or 1.00 times flat ro ion-concurrent with othe signer/Project engineer in Load = 5.0 (psf) cove e 3x6 (=) MT20 unless as been designed for a ad nonconcurrent with a ad nonconcurrent with as been designed for a ad nonconcurrent with if the system of an all areas wh by 2-00-00 wide will fit the ny other members. ler(s) for truss to truss of thanical connection (by e capable of withstandir lb uplif at joint 16. urlin representation doe ation of the purlin along	B) factions h lead as en cor seconn =3.0ps ope) e d veri rrip DO f LL: L und an t=1.10 eater (d load er live respon rs rain his tru- nt wai otherwine a live h a live h a live h a live h a live h otherwine onnec others onnec others onnec others as not c	ce in the LC have been (F) or (B), nsidered for exterior zoir rtical left OL=1.60 Lum DOL= now); Pf=20 DOL=1.15) 0, Lu=50-0 of min roof d of 15.4 p loads. nsible for n loading uss compon ater ponding wise indica osf bottom ther live loa load of 20.0 rectangle en the bott ctions. s) of truss to 3 lb uplift at depict the s	or Cat. ne; 1.15 0.4); -0 f live sf on f live sf on nent. g. tted. ads. 0psf om to t joint	(0.1 LOAD C 1) De Inc Ur Cc	48"x3.2 CASE(S and + Sr crease= inform Lu Vert: 1-: oncentra Vert: 4= 11=-21 19=-26 23=-26 27=-21	5") toe) Star 1.15 22=-51, ted Lo. -38 (B), 8= (B), 24 (B), 28	s 3-10d (0.148"x; -nails per NDS gr ndard alanced): Lumber b/ft) 2-4=-51, 4-9=-61 ads (lb)	3") or 3-12d uidlines. Increase=1.15, Plate , 10-16=-20 21 (B), 15=-34 (B), B), 18=-26 (B), (B), 22=-26 (B), (B), 26=-21 (B), (B), 30=-21 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	B01G	Common Girder	1	2	Job Reference (optional)	173525667

Scale

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:07 ID:Ma9usJA6Mn8UIJsUxRd6UhzxXQv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUS24

1	4-7-8	9-0-3	13-4-13	17-9-8	22-5-0	_
e = 1:67.8	4-7-8	4-4-11	4-4-11	4-4-11	4-7-8	1

Plate Offsets (X, Y): [2:Edge,0-3-8], [10:0-5-8,Edge], [13:0-5-0,0-4-4], [14:0-5-0,0-4-4]

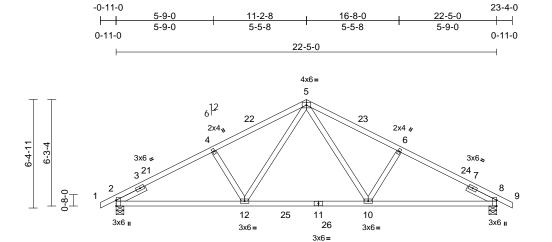
	, , , , , , , , , , , , , , , , , , , ,	1], [-						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)		14-15	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.25		>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.41	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 293 lb	FT = 20%
	2x4 SP No.1 *Excep 2x6 SP DSS 2x4 SP No.2 Left 2x4 SP No.2	1-11-0, Right 2x4 SP athing directly applie applied or 10-0-0 oc 10=0-5-8 12) C 12), 10=-614 (LC ·	3 d or 4 5 13)	except if not CASE(S) se provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp B; En cantilever let right expose Plate DOL=' psf (flat roof	considered equa ed as front (F) or l ction. Ply to ply co distribute only load wise indicated. roof live loads ha 7-10; Vult=115m h; TCDL=6.0psf; E uclosed; MWFRS (ft and right expose d; Lumber DOL=1 7-10; Pr=20.0 psf snow: Lum DOL= Exp B; Partially E	back (B) ponnection ds noted ph (3-sec 3CDL=3. (envelope d; end \ 60 plate of (roof LL f (ground 1.15 Plat	face in the LC s have been as (F) or (B), considered fo cond gust) opps; h=25ft; (s) exterior zor vertical left an grip DOL=1. :: Lum DOL=: snow); Pf=15 e DOL=1.15)	r Cat. ne; d 60 1.15 5.4	SD at 2 15- chc 14) Use SD 17- fac 15) Use Tru 19- to f 16) Fill LOAD	9212 Tru 2-0-0 oc 3-12 to o ord. e Simpso 9212 Tru 3-12 froi e of botti e of botti e Simpso ss) or e 3-12 froi ront face all nail h CASE(S	uss, Sir max. s connecton on Stro uss, Sir m the le con Stro quivale m the le of bot toles w) Star	ngle Ply Girder) c tarting at 5-3-12 t truss(es) to fror ng-Tie LUS26 (4 ngle Ply Girder) c eft end to connec rd. ng-Tie LUS26 (4 nt spaced at 2-0- eft end to 21-3-1 tom chord. there hanger is in ndard	-SD9112 Girder, 4-
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6		snow loads have			nis	ÍIn	crease=	1.15	,	11010030-1110, 110
TOP CHORD	1-2=0/31, 2-4=-8413 5-6=-7089/934, 6-7= 7-8=-8319/934, 8-10	-7027/831,	200, 7	load of 12.0	as been designed psf or 1.00 times on-concurrent wit	flat roof l	oad of 15.4 ps				6=-51 [°] ,	6-10=-51, 16-20	=-20
BOT CHORD	2-15=-1064/7340, 14 13-14=-558/5127, 1 10-11=-762/7378		8	verifying Rai	signer/Project eng in Load = 5.0 (psf) s specific to the us	covers r	ain loading	hent				TH CA	RO
WEBS	6-13=-303/3180, 7-1 7-11=-162/1624, 8-1 6-14=-569/3334, 5-1 5-15=-358/1441, 4-1	1=-31/285, 4=-998/276,	9) 1/) This truss ha chord live loa 0) * This truss l	as been designed ad nonconcurrent has been designe m chord in all area	for a 10. with any d for a liv	0 psf bottom other live load re load of 20.0	ds.		4	in	OR SS	A AN
(0.131"x3"	to be connected toge) nails as follows: s connected as follows	ther with 10d	0	3-06-00 tall I chord and ar 1) Provide meo bearing plate 10 and 688 I	by 2-00-00 wide w ny other members chanical connectio e capable of withs b uplift at joint 2.	rill fit betw n (by oth tanding 6	veen the botto ers) of truss to 14 lb uplift at	o joint		TH DAY		SEA 0363	L 22
staggered	ords connected as foll at 0-8-0 oc. ected as follows: 2x4 -		1.	4-10d Truss	n Strong-Tie HHU) or equivalent at 4 s(es) to front face	4-1-0 fror	n the left end					SEA 0363	EEP

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of them been section of the prevent of the prevent of them been section of the prevent of the prevent of the prevent of them been section of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	B01G	Common Girder	1	2	Job Reference (optional)	173525667

Vert: 13=-762 (F), 14=-825 (F), 18=-877 (F), 26=-1073 (F), 27=-830 (F), 28=-828 (F), 29=-774 (F), 30=-750 (F), 31=-1135 (F), 32=-876 (F) Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:07 ID:Ma9usJA6Mn8UIJsUxRd6UhzxXQv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

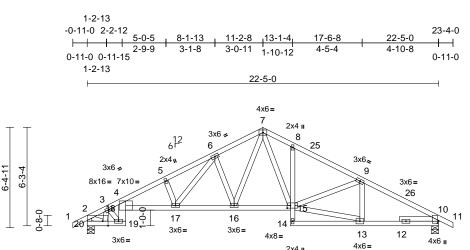
Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	B02	Common	3	1	Job Reference (optional)	173525668

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:08 ID:XuImTdh1nU6AV9oob1vjtFzxXRX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

			7-6		14-10		1	22-			_	
Scale = 1:67.8			7-6	-13	7-3-5	i	1	7-6	-13		I	
Plate Offsets (2	X, Y): [2:0-4-1,Edge],	[8:0-4-1,Edge]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB 014 Matrix	0.45 0.55 0.11 MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.21 0.04	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 No.2 1-11-0 Structural wood she 4-6-10 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=79 (LC Max Uplift 2=-103 (L Max Grav 2=952 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-4=-1400 5-6=-1278/192, 6-8= 2-12=-151/1215, 10 8-10=-89/1215 5-10=-90/465, 6-10= 4-12=-295/137 ed roof live loads have	athing directly applie applied or 10-0-0 or 3=0-5-8 16) C 16), 8=-103 (LC 1) C 2), 8=952 (LC 2) pression/Maximum 9/169, 4-5=-1278/192 e-1409/169, 8-9=0/25 -12=-35/845, =-295/137, 5-12=-90/ been considered for	Plate psf (I Cate 4) Unba desig 5) This load overi 6) Build verify requi 7) This chorr 7) 8) * Thi on th 3-06 chorr 7) 8) * Thi on th 3-06 chorr 2 anc LOAD C,	DOL=1.15); Pg llat roof snow: Lu gory II; Exp B; P alanced snow loa ŋn. truss has been o of 12.0 psf or 1.0 hangs non-conce ling Designer/Pri ying Rain Load = irements specific truss has been o d live load nonco s truss has been e bottom chord -00 tall by 2-00-0 d and any other ide mechanical of	•	snow); Pf=1. e DDL=1.15, 10 isidered for t er of min roo bad of 15.4 p ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss	5.4); f live psf on onent. ads. Opsf f. to			and the second se	WITH CA	ROLIN
Vasd=91m II; Exp B; E and C-C E 11-2-8, Ex 23-4-0 zon vertical left forces & M	ph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) -0-11-0 to 2 terior (2) 11-2-8 to 14- ne; cantilever left and r and right exposed;C- IWFRS for reactions s plate grip DOL=1.60	DL=3.0psf; h=25ft; C avelope) exterior zono 2-1-0, Interior (1) 2-1- -2-8, Interior (1) 14-2- ight exposed ; end C for members and	e 0 to						THUW.	ALL THE REAL PROPERTY OF THE P	SEA 0363 NGINI	22 EB

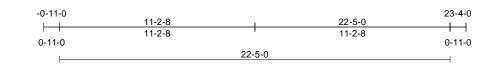
May 16,2025

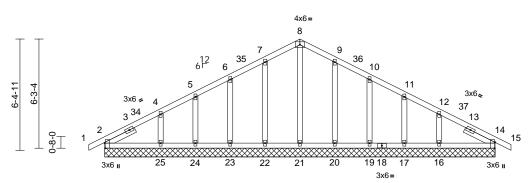
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	B03	Roof Special	5	1	Job Reference (optional)	173525669

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:08 ID: XulmTdh1nU6AV9 oob1v jt FzxXRX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff


			2-5-	8 5-7-10	9-4-7	12-11-8	3 17	-6-8	. 2	2-5-0			
Scale = 1:73.5			2-5-	8 3-2-2	3-8-13	3-7-1		7-0		-10-8			
	(X, Y): [2:0-4-1,Edge],	[10:0-1-9,0-0-15], [1	5:0-2-8,0	-2-0]									
Loading	(psf)	Spacing	2-0-0	1	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(03)	Plate Grip DOL	1.15		TC	0.88	Vert(LL)		17-18	>999	240	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.26	17-18	>999	180		210,000
TCDL	10.0	Rep Stress Incr	YES		WB	0.29	Horz(CT)	0.16	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 137 lb	FT = 20%
LUMBER			2)) Wind: ASCE									
TOP CHORD					h; TCDL=6.0p								
BOT CHORD		ot* 19-4:2x6 SP No.2,			nclosed; MWFI								
WEBS	18-15:2x4 SP No.1 2x4 SP No.2				terior (2) -0-11 xterior (2) 11-2								
SLIDER	Right 2x4 SP No.2	- 2-6-0			ne; cantilever								
BRACING		200			and right expos								
TOP CHORD	Structural wood she	athing directly applie	d or		VFRS for react		Lumber						
	2-2-0 oc purlins, ex		3		late grip DOL= E 7-10; Pr=20.			1 15					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3,	Plate DOL=	1.15); Pg=20.0) psf (ground	snow); Pf=1	15.4					
REACTIONS	(size) 10=0-5-8,	20=0-5-8			snow: Lum De Exp B; Partial			5);					
	Max Horiz 20=-76 (L		4		snow loads h			this					
	Max Uplift 10=-103 (16)	design.				tino					
	Max Grav 10=945 (L	,, (,	5)) This truss h	as been desigi	ned for great	er of min roc	of live					
FORCES	(lb) - Maximum Com	pression/Maximum			psf or 1.00 tim			psf on					
TOP CHORD	Tension 1-2=0/29, 2-3=-154/3	31 3-1-1105/120	0	0	ion-concurrent								
	4-5=-2074/232, 5-6=	, ,	0) Building De: verifying Ra	in Load = 5.0 (
	6-7=-1340/191, 7-8=	,			s specific to th			onent.					
	,)=-1433/159, 10-11=0	0/25, 7)) This truss h	as been desigi	ned for a 10.	0 psf bottom						111.
	2-20=-196/77				ad nonconcuri							W'LL CA	Dall
BOT CHORD	19-20=-156/953, 18- 4-18=-12/175, 17-18		8)) * This truss							1	aTH	91 March
	16-17=-112/1326, 15				m chord in all by 2-00-00 wid						1	O'.FESO	Idin 4
	14-15=0/92, 8-15=-2				ny other mem					6	15	it I	
	10-13=-92/1224	, ,	9		chanical conne		ers) of truss	to					
WEBS		5=-95/92, 7-16=-98/5	18,		e capable of w		03 Ib uplift a	at joint		-		SEA	1 1 1
	5-17=-430/116, 6-17		0/00		lb uplift at joint	20.				=		JLA	
	6-16=-456/129, 3-20 9-13=-236/49, 13-15)=-1131/114, 3-19=-7 582/1176	∠/38, L	OAD CASE(S)	Standard							0363	22 : 3
NOTES	5 10-200/48, 10-10	- 02/11/0									2 0	SEA 0363	1 5
	ed roof live loads have	been considered for									5.	N. E.	Airs
this design											25	S GINI	EFICAS
											11	C	BEIN
												A. G	IL IIII
													10.0005
												May	16,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	B04E	Common Supported Gable	1	1	Job Reference (optional)	173525670

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:08 ID:yTQv5fjv4PUkMdXMHATQUuzxXRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-5-0

0			ł				22-5-	0						
Scale = 1:66.2 Plate Offsets (X, Y): [2:0-3-8,	Edael.	[14:0-4-1.Edge]											
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	[1	-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	15.4/2	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	5/TPI2014	CSI TC BC WB Matrix-MS	0.09 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	1	10.0	Code	IRG20	5/1712014	Matrix-INS							Weight: 127 lb	FT = 20%
	No.2 1-11-0 Structural woo 6-0-0 oc purlin Rigid ceiling of bracing. (size) 2=2 177 21= 24 Max Horiz 2=3) od shea ns. directly a 22-5-0, =22-5-0 =22-5-0 =22-5-0 79 (LC 1	,	 N 1 1 1 2 4 5-0, -5-0, -5-0, -5-0, 	this desig Wind: AS Vasd=91r II; Exp B; and C-CC (11-2-8, C 23-4-0 zo vertical le forces & M DOL=1.6(8-21=-91/9, 7-22 5-24=-105/49, 4- 9-20=-145/106, 1 11-17=-105/49, 1 ed roof live loads ha CE 7-10; Vult=115n nph; TCDL=6.0psf; Enclosed; MWFRS Corner (3) -0-11-0 to forner (3) -0-11-0 to orner (25=-167/ 0-19=-12 2-16=-16 ave been hph (3-sec BCDL=3. (envelope 2-2-1-0, E 4-2-8, Ex hd right ex ;C-C for r s shown; 50	00, 3/68, 7/100 considered fc cond gust) 0psf; h=25ft; e) exterior 20, exterior (2) 2-1 terior (2) 14-2 posed ; end nembers and Lumber	or Cat. ne -0 to 2-8 to	on t 3-06 choi 13) Prov bea 2, 6 at jo 39 II joint	he botto 5-00 tall rd and a vide me ring plat lb uplift b uplift a t 17, 73 plift at jo	om cho by 2-0 iny oth chanic te capa at join 25 lb up at joint lb uplif pint 14.	een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi t 14, 40 lb uplift at plift at joint 24, 74 20, 44 lb uplift at it at joint 16, 18 lb	a live load of 20.0psf
	Max Horiz 2=79 (LC 16) Max Uplift 2=-18 (LC 17), 14=-6 (LC 17), 16=-73 (LC 17), 17=-27 (LC 17), 19=-44 (LC 17), 20=-39 (LC 17), 22=-40 (LC 16), 23=-44 (LC 16), 24=-25 (LC 16), 25=-78 (LC 16) Max Grav 2=199 (LC 2), 14=199 (LC 2), 16=240 (LC 35), 17=132 (LC 2), 19=166 (LC 2), 20=185 (LC 24), 21=130 (LC 33), 22=185 (LC 23), 23=166 (LC 2), 24=132 (LC 2), 25=240 (LC 34)					studs exposed to w lard Industry Gable qualified building d CE 7-10; Pr=20.0 p =1.15); Pg=20.0 p iof snow: Lum DOL II; Exp B; Partially f ed snow loads have has been designed	End Deta esigner a sf (roof Ll sf (ground =1.15 Pla Exp.; Ct=1 been col	ils as applica s per ANSI/TI .: Lum DOL= snow); Pf=1 e DOL=1.15) .10 nsidered for the er of min roof	ble, PI 1. 1.15 5.4 ;; his		4	A	ORTH CA	ROUTIN
FORCES	(lb) - Maximu	``	pression/Maximum			.0 psf or 1.00 times s non-concurrent wi			sf on		11		SEA	
TOP CHORD BOT CHORD	8-9=-87/182, 11-12=-82/76 2-25=0/74, 24 22-23=0/74, 2	6-7=-76 9-10=-7 6, 12-14= 1-25=0/7 21-22=0	, 4-5=-86/74, //144, 7-8=-87/180, /6/146, 10-11=-75/1 -89/32, 14-15=0/29 74, 23-24=0/74, /74, 20-21=0/74, /74, 16-17=0/74,	107, 8 5 9 1	 Building L verifying I requireme All plates Gable rec Gable stu This truss 	esigner/Project en Rain Load = 5.0 (ps ents specific to the u are 2x4 () MT20 u uires continuous bo ds spaced at 2-0-0 has been designed load nonconcurren	gineer res f) covers i ise of this inless oth ottom choi oc. I for a 10.	ponsible for ain loading truss compo erwise indica d bearing. 0 psf bottom	ted.		1111111	A THE REAL PROPERTY OF THE PRO		22 EER H

May 16,2025


Page: 1

TRENCO AMITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	G01	Common	11	1	Job Reference (optional)	173525671

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:08 ID:bVd02xfmFtrSFrePUdtFnqzxXRZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	7-0-	13 13-10-3	18-1-8	1
Scale = 1:61.7	7-0-	13 6-9-5	4-3-5	1
Plate Offsets (X, Y): [2:0-3-10,0-0-2]				
	1			

Plate Offsets (.	X, Y): [2:0-3-10,0-0-2]		-									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.31 0.44 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.13 0.02	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1- Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. (size) 2=0-5-8, 8: Max Horiz 2=141 (LC Max Grav 2=776 (LC (lb) - Maximum Comp Tension 1-2=0/31, 2-4=-887/1 5-6=-629/142, 6-7=-2 2-11=-164/779, 10-11 5-10=-64/123, 6-10=- 4-11=-275/152, 6-8=-	athing directly applied sept end verticals. applied or 10-0-0 oc = Mechanical (14) 14), 8=-55 (LC 15) (2), 8=718 (LC 2) pression/Maximum 108, 4-5=-825/163, 20/64, 7-8=-28/15 1=-35/461, 8-10=-42/4 -25/177, 5-11=-113/48	7) 8) 9) LC	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar Refer to gird Provide mec bearing plate	is been designed psf or 1.00 times i on-concurrent witt igner/Project engi n Load = 5.0 (psf) s specific to the us is been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w hy other members er(s) for truss to th hanical connectio e capable of withs ipplift at joint 8. Standard	flat roof li h other lin ineer res covers r se of this for a 10.1 with any d for a liv as where rill fit betw , with BC russ conr n (by oth	bad of 15.4 p ve loads. ponsible for ain loading truss compoi 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi ections.	sf on nent. Ids. Dpsf f. to					1111.
this design 2) Wind: ASC	ed roof live loads have b n. CE 7-10; Vult=115mph (nph: TCDL=6.0psf: BCE	(3-second gust)	t.							4	1111	OP FESS	ROUNT

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 10-5-8, Exterior (2) 10-5-8 to 13-5-8, Interior (1) 13-5-8 to 17-11-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 SEAL 036322 A. GILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	G01E	Common Supported Gable	1	1	Job Reference (optional)	173525672

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:09

ID:3iBOFHgO0B_Jt?Db2KOUK2zxXRY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 10-5-8 18-1-8 +10-5-8 7-8-0 0-11-0 18-1-8 H 4x6= 8 RTH CA 7 9 12 81 6 10 7-7-12 SEAL 5 11 3x6 🖌 12 4 3 2-6-7 13 \otimes \times ***** $\times\!\!\times\!\!\times$ G 21 20 19 18 17 1615 14 22 3x6 II mm 3x6=

18-1-8

Scale = 1:60.1 Plate Offsets (X, Y): [2:0-3-14,Edge]

Contraction of the

	,,	0,=ago	1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2) 2015/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.04 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 121	GRIP 244/190 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	Structura 6-0-0 occ Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/31 5-6=-109 8-9=-135 11-12=-2 2-22=-2/2 19-20=-2	lo.2 lo.2 lo.2 SP No.2 2 solution of the second sec	athing directly applie cept end verticals. applied or 10-0-0 oc 13=18-1-8, 14=18-1 3, 17=18-1-8, 18=18- 3, 20=18-1-8, 21=18- 3 C 14) C 10), 13=-4 (LC 15), C 15), 16=-57 (LC 14) C 14), 21=-44 (LC 1- C 14) C 27), 13=63 (LC 2), LC 27), 16=192 (LC 2) C 26), 20=176 (LC 2) C 26), 20=176 (LC 2) C 20), 22=217 (LC 26) C 27), 14=35/16 C 27), 14=58/16	ed or -8, -1-8, -1-8, -1-8, 5), -1-8, 5), 4), 4), 27), 29), 26), 5) 7, 62,	 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Cor 10-5-8, Corn to 17-11-12; vertical left e MWFRS for grip DOL=1. 3) Truss design only. For stt see Standar or consult qu 4) TCLL: ASCE Plate DOL=1 psf (flat roof Category II; 5) This truss ha load of 12.0 overhangs n 6) Building Des verifying Rai requirements 7) All plates are 8) Gable requir 9) Gable studs 10) This truss ha chord live loa 11) * This truss f 	7-10; Vult=115r h; TCDL=6.0psf; closed; MWFRS mer (3) -0-11-0 tr er (3) 10-5-8 to zone; cantilever xposed;C-C for reactions shown 60 red for wind load ds exposed to alified building c i 7-10; Pr=20.0 p snow: Lum DOL Exp B; Partially I is been designer psf or 1.00 times on-concurrent wi igner/Project on a spaced at 2-0-0 is been designer ad nonconcurrent	22=-155/S 11-14=-11 ave been mph (3-sec BCDL=3. (envelope o 2-1-0, E: 13-5-8, Ex- left and rig members ; Lumber I aright and rig members ; Lumber I aright and rig members ; Lumber I s in the pl vind (norm End Deta lesigner a: s f (roord Ll s f (ground =1.15 Plai s f, (ar coft ll ith other ling inger res f) covers r uses of this unless oth bottom chor oc. d for a liv ed for a liv	00, 9-17=-129, 9/65 considered fo cond gust) 0psf; h=25ft; (9) exterior zor xterior (2) 2-1-5 ght exposed ; and forces & DOL=1.60 pla ane of the true al to the face) ils as applicat s per ANSI/TF e DOL=1.50 .10 er of min roof oad of 15.4 ps ve loads. ponsible for ain loading truss compor erwise indicat of bettom other live loa re load of 20.0	/61, r Cat. le -0 to -8 end te ss), -1.15 5.4 ; live sf on hent. ed.	bea 13, at jc 52 l join 13) In tt of tt LOAD (1) De Inα Ur	ring plat 55 lb up bint 20, 4 b uplift at t 14 and he LOAE he truss CASE(S ead + Sr crease= hiform Lo Vert: 1-1 apezoid Vert: 2-2 21=-24 to-12=-2 18=-29 to-16=-2 (F=-13).	te capa lift at jo 44 lb up 55 lb u 0 CASI 55 lb u 0 CASI 50 CASI	able of withstar bint 2, 54 lb up plift at joint 21, 17, 57 lb uplift uplift at joint 2. E(S) section, lc ted as front (F ndard alanced): Lumb b/ft) 8-12=-51 ds (lb/ft) b-25=-20 (F=0) -2), 22=-22 (F= -7), 19=-27 (F= -7), 19=-27 (F= -12), 16=-32 (F	oads applied to the fa	int uplift 22, lift at Plate),),),

May 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

chord and any other members.

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	J01	Jack-Open Girder	1	1	Job Reference (optional)	173525673

3-8-0

3-8-0

3-11-8 6 F NAILED

3x6 🚽 1 3

1

ПΓ 13

-0-11-0

0-11-0

2x4 I

2-9-3

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Scale = 1:41.5

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

TOP CHORD

BOT CHORD

REACTIONS (size)

LUMBER

TOP CHORD BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:09 ID:muJbwW?KfTNUc9nn7VNpwkzxXR7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-12

3-11-8

0-3-8

3x6 u

65

2x4 II

Page: 1

GRIP

244/190

FT = 20%

NAILED 3-11-8 3-8-0 -3-8-0 0-3-8 Plate Offsets (X, Y): [2:0-1-8,0-0-5], [4:0-3-0,0-1-4] PLATES Spacing 2-0-0 CSI DEFL l/defl L/d in (loc) Plate Grip DOL 1.15 TC 0.23 Vert(LL) 0.01 6-9 >999 240 MT20 Lumber DOL 1.15 BC 0.15 Vert(CT) -0.02 6-9 >999 180 Rep Stress Incr WB 0.00 Horz(CT) NO 0.01 2 n/a n/a Code IRC2015/TPI2014 Matrix-MP Weight: 20 lb 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom 6) Left 2x4 SP No.2 -- 1-11-0 chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Rigid ceiling directly applied or 10-0-0 oc Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to 2=0-5-8, 4= Mechanical, 6= bearing plate capable of withstanding 20 lb uplift at joint 2, 41 lb uplift at joint 4 and 2 lb uplift at joint 6. 10) Gap between inside of top chord bearing and first Max Uplift 2=-20 (LC 12), 4=-41 (LC 12), 6=-2 diagonal or vertical web shall not exceed 0.500in. 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d 2=209 (LC 2), 4=94 (LC 19), 6=77 (0.148"x3.25") toe-nails per NDS guidlines. 12) In the LOAD CASE(S) section, loads applied to the face (lb) - Maximum Compression/Maximum of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-51, 5-7=-20 Wind: ASCE 7-10; Vult=115mph (3-second gust) Concentrated Loads (lb) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. Vert: 11=-26 (F), 13=-3 (F) II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15

2) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this 3)

(psf)

20.0

10.0

0.0

10.0

Mechanical

(LC 12)

(LC 7)

15.4/20.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.2

bracing.

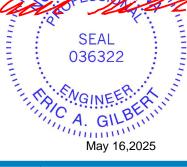
Max Grav

Tension

4-6=0/0

3-11-8 oc purlins.

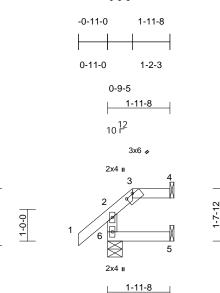
Max Horiz 2=67 (LC 12)


1-2=0/25. 2-4=-133/34

2-6=-57/60, 5-6=0/0

- design
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	J02	Jack-Open	1	1	Job Reference (optional)	173525674

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:09 ID:3zjpp5t30P7uPc0sXPBTWdzxXRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-9-5

1-9-8

Scale = 1:36.2

Plate Offsets (X, Y): [3:0-3-0,0-0-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	1-11-8 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 4= Mecha 6=0-5-8 Max Horiz 6=34 (LC Max Uplift 4=-18 (LC (LC 16) Max Grav 4=71 (LC (LC 36) (lb) - Maximum Com Tension	applied or 10-0-0 oc anical, 5= Mechanical 13) 2 13), 5=-2 (LC 13), 6 35), 5=33 (LC 7), 6=2	nd 7) 8) , 9) =-12 215 10 11	design. This truss he load of 12.0 overhangs n Building Des verifying Rai requirement Provide ade This truss he chord live lo * This truss lo on the bottoo 3-06-00 tall l chord and al D) Refer to gird Provide mee bearing plate 6, 18 lu oplif 2) Graphical pu	snow loads have I as been designed f psf or 1.00 times fi ion-concurrent with signer/Project engin in Load = 5.0 (psf) s specific to the us quate drainage to p as been designed fad nonconcurrent t has been designed m chord in all area by 2-00-00 wide win ny other members. lef(s) for truss to t chanical connectior e capable of withst t at joint 4 and 2 lb urlin representation ation of the purlin a	for great lat roof I o other lineer res covers i e of this prevent or a 10. with any I for a lin s where II fit betw russ cor n (by oth anding 1 uplift at odoes n	er of min rooi bad of 15.4 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 2 lb uplift at joint 5.	f live sf on nent. g. ads. Opsf om to joint					
this desigr 2) Wind: ASC	5-6=0/0 ed roof live loads have n. CE 7-10; Vult=115mph	(3-second gust)		bottom chore DAD CASE(S)	d.						A.	ORTH CA	NROUTIN

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 1-11-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK ATFILIATE

A. GILP

SEAL 036322

818 Soundside Road Edenton, NC 27932

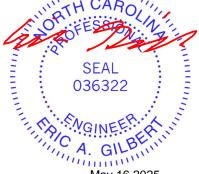
VULLING

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	J03	Jack-Open	9	1	Job Reference (optional)	173525675

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:09

ID:3zjpp5t30P7uPc0sXPBTWdzxXRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,


-0-11-0 3-11-8 3-11-8 0-11-0 3-11-8 12 6 Г 3 8 7 2-7-12 2-9-3 2 6 0-8-0 4 3x6 II

3-11-8

Scale = 1:28.4

Scale = 1.20.4													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
	$\begin{array}{l} 2x4 \ \text{SP No.2} \\ \end{array}$	xcept end verticals. applied or 10-0-0 or nnical, 4= Mechanica 16) 2 16), 5=-19 (LC 16) 2), 4=70 (LC 7), 5=2 npression/Maximum	7 8 al, 9 223	 load of 12.0 overhangs r Building Desverifying Rarequirement This truss has chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide meet bearing plate 	as been designed psf or 1.00 times to ion-concurrent with signer/Project engi in Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to t chanical connectio e capable of withs uplift at joint 3.	flat roof li h other li ineer res o covers r se of this for a 10.1 with any d for a liv as where vill fit betw i. truss con n (by oth	bad of 15.4 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss	onent. ads. Opsf com to					
 Unbalance this design Wind: ASC Vasd=91m II; Exp B; E and C-C E 	ed roof live loads have CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) -0-11-0 to 2	(3-second gust) DL=3.0psf; h=25ft; (nvelope) exterior zor -1-0, Interior (1) 2-1	Cat. ne -0 to								A. I.	OR FESS	ROLIN

- 3-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

May 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	173525676

Scale = 1:26.9

1-11-12

ID:X9GB1RuhnjFI1mb356ji3rzxXRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-2-0 5-6-8 5-6-8 1-2-0 5-6-8 2x4 II 12 3 Г 2x4 ı 4 3 12 11 1-8-8 e 2 -3-14 5 6 3x6 = 2x4 II

2x4 u

5-6-8

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:10

Page: 1

GRIP

244/190

FT = 20%

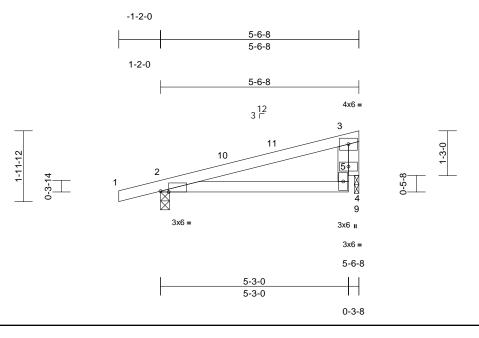
Loading 2-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.21 Vert(LL) n/a n/a 999 MT20 Snow (Pf/Pg) BC 0.36 15 4/20 0 Lumber DOL 1 15 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 2 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MP BCDL 10.0 Weight: 21 lb TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 LUMBER 4) Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 TOP CHORD 2x4 SP No.2 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); BOT CHORD 2x4 SP No.2 Category II; Exp B; Partially Exp.; Ct=1.10 2x4 SP No 2 WFBS Unbalanced snow loads have been considered for this OTHERS 2x4 SP No.2 5) desian. BRACING This truss has been designed for greater of min roof live 6) TOP CHORD Structural wood sheathing directly applied or load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on 5-6-8 oc purlins, except end verticals. overhangs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Building Designer/Project engineer responsible for 7) bracing verifying Rain Load = 5.0 (psf) covers rain loading **REACTIONS** (size) 2=5-6-8, 5=5-6-8, 6=5-6-8 requirements specific to the use of this truss component. Max Horiz 2=53 (LC 12) Gable requires continuous bottom chord bearing. Max Uplift 2=-51 (LC 12), 6=-33 (LC 16) Gable studs spaced at 2-0-0 oc. Max Grav 2=207 (LC 2), 5=117 (LC 7), 6=290 10) This truss has been designed for a 10.0 psf bottom (LC 2) chord live load nonconcurrent with any other live loads. FORCES (lb) - Maximum Compression/Maximum * This truss has been designed for a live load of 20.0psf 11) Tension on the bottom chord in all areas where a rectangle TOP CHORD 1-2=0/17, 2-3=-57/31, 3-4=-22/2, 4-5=-20/37 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2-6=-18/53, 5-6=0/0 chord and any other members. WEBS 3-6=-218/149 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint NOTES

LOAD CASE(S) Standard

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-2-0 to 1-10-0, Exterior (2) 1-10-0 to 5-4-12 zone; cantilever left and right exposed; end vertical left exposed; porch left and right exposed; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

2, 33 lb uplift at joint 6 and 51 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	P02	Monopitch	5	1	Job Reference (optional)	173525677

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:10 ID:RFxCcIBYIlqga_ERsiMSG9zxWWn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.27 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 4-8 4-8 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	5-6-8 oc purlins, ex	applied or 10-0-0 oc 9=0-1-8 12) .C 12), 9=-64 (LC 12 C 2), 9=183 (LC 2) .pression/Maximum	; 7) 8)) 9) 10	design. This truss he load of 12.0 overhangs n Building Des verifying Rai requirements This truss he chord live loa * This truss he on the botton 3-06-00 tall I chord and an Bearing at jc using ANSI/ designer sho) Provide mece bearing plate	snow loads have as been designed psf or 1.00 times on-concurrent wit igner/Project eng n Load = 5.0 (psf s specific to the u as been designed ad nonconcurrent has been designed m chord in all are: by 2-00-00 wide w ny other members int(s) 9 considers puld verify capacit thanical connectic a t joint(s) 2, 9. hanical connectic e capable of withs pulft at joint 9.	for great flat roof I th other In jineer res) covers r se of this for a 10. with any d for a liv as where vill fit betv s. parallel in formul ty of bear on (by oth	er of min rood oad of 15.4 p ve loads. oonsible for ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott o grain value a. Building ng surface. ers) of truss	f live lisf on nent. ads. Opsf om e to					
NOTES 1) Unbalance	ed roof live loads have	been considered for	LC	AD CASE(S)	, ,							UNTH CA	Politi

- this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-2-0 to 1-10-0, Interior (1) 1-10-0 to 5-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

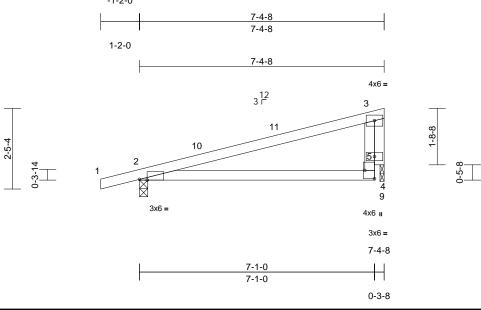
818 Soundside Road Edenton, NC 27932

G

May 16,2025

SEAL

036322


VIIIIIIIIIIII

Variation and and the

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	P03	Monopitch	4	1	Job Reference (optional)	173525678

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:10 ID:X9GB1RuhnjFI1mb356ji3rzxXRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.7

Loading	(psf) 20.0	Spacing	2-0-0 1.15	CSI TC	0.54	DEFL Vert(LL)	in 0.08	(loc) 4-8	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCLL (roof) Snow (Pf/Pg)	15.4/20.0	Plate Grip DOL Lumber DOL	1.15	BC	0.54 0.44	Vert(LL)	-0.11	4-0 4-8	>999	240 180	101120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.00	4-0 2	>000 n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR	0.00	11012(01)	0.00	2	11/a	n/a		
BCDL	10.0	Code	11(02013/11/12014	Matrix-IVIIX							Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 2=0-3-0, § Max Horiz 2=64 (LC Max Uplift 2=-127 (L	applied or 10-0-0 oc 0=0-1-8 12)	or 7) This truss h chord live lo 8) Building Der verifying Ra requirement chord live lo 8) * This truss on the bottoo 3-06-00 tall chord and a 9) Bearing at jo	as been designed psf or 1.00 times ion-concurrent wit signer/Project eng in Load = 5.0 (psf s specific to the u as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide w ny other members bint(s) 9 considers	flat roof lo h other liv ineer res) covers r se of this for a 10.0 with any d for a liv as where vill fit betv s. parallel t	bad of 15.4 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20. a rectangle ween the bott	nent. ads. Opsf					
	Max Grav 2=367 (LC	C 2), 9=258 (LC 2)	designer sh	TPI 1 angle to gra ould verify capacit	y of bear	ing surface.						
FORCES	(lb) - Maximum Com Tension	pression/waximum		chanical connectic e at joint(s) 9.	on (by oth	ers) of truss	to					
TOP CHORD	1-2=0/17, 2-3=-320/ ⁻ 3-5=-127/140	171, 4-5=-131/152,	11) Provide med	e at joint(s) s. chanical connectic e capable of withs								
BOT CHORD	2-4=-185/289			uplift at joint 9.		21 10 001110	, joint					
WEBS	3-9=-206/179		LOAD CASE(S)	Standard								
this desigr	ed roof live loads have n. CE 7-10; Vult=115mph									A.I.I	ORTH CA	Rojin

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-2-0 to 1-10-0, Interior (1) 1-10-0 to 6-11-4 zone; cantilever left and right exposed; end vertical left exposed; porch left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	P04	Monopitch	9	1	Job Reference (optional)	173525679

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:10 ID:VbI0cpydmvQMp3HnFDX?_9zxWX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

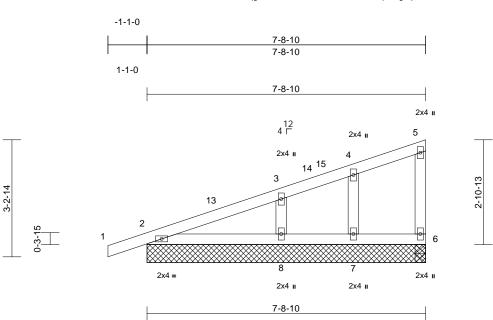
Page: 1

Scale = 1:38 Plate Offsets (X, Y): [4:Edge,0-3-8]

	i, i, i, [ii_ige,e e]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.60 BC 0.46 WB 0.00 Matrix-MR	Vert(CT)	0.10	l/defl >889 >692 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-5-4, 9 Max Horiz 2=88 (LC Max Uplift 2=-123 (L Max Grav 2=375 (LC (Ib) - Maximum Com Tension 1-2=0/21, 2-3=-275/ 3-5=-172/196	y applied or 10-0-0 oc 9=0-1-8 12) C. C 12), 9=-102 (LC 1: C 2), 9=272 (LC 2) 1pression/Maximum	 load of 12.0 overhangs r Building De verifying Ra requiremeni This truss h chord live lo * This truss son the bottoo 3-06-00 tall chord and a Bearing at ju using ANSI/ designer sh Provide meni bearing plat Provide meni 	as been designed for grea psf or 1.00 times flat roof non-concurrent with other I signer/Project engineer res in Load = 5.0 (psf) covers ts specific to the use of this as been designed for a 10 nad nonconcurrent with any has been designed for a li m chord in all areas where by 2-00-00 wide will fit bet up other members. oint(s) 9 considers parallel (TPI 1 angle to grain formu ould verify capacity of bea chanical connection (by oth re at joint(s) 9.	load of 15.4 psf ive loads. sponsible for rain loading truss compone 0 psf bottom v other live load ve load of 20.0p e a rectangle ween the bottor to grain value la. Building ring surface. hers) of truss to hers) of truss to	i on ent. s. osf m				
BOT CHORD WEBS	2-4=-149/227 3-9=-253/220		2 and 102 lt LOAD CASE(S	o uplift at joint 9. Standard						
this design	ed roof live loads have							-	TH CA	ROUT

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-1-0 to 1-11-0, Interior (1) 1-11-0 to 7-3-6 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SEAL 036322 MgINEER May 16,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	P05E	Monopitch Structural Gable	2	1	Job Reference (optional)	173525680

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:10 ID:RFxCcIBYIlqga_ERsiMSG9zxWWn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.9

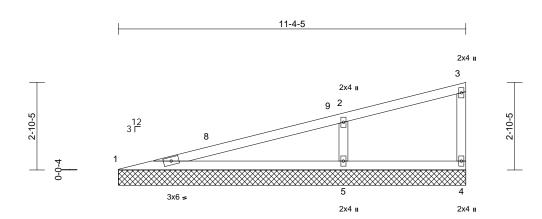
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	8-11	>999	240	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	8-11	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI201	4 Matrix-MP									
BCDL	10.0	-									Weight: 33 lb	FT = 20%	
LUMBER			4) TCLL:	ASCE 7-10; Pr=20.0	psf (roof Ll	.: Lum DOL=	1.15						
TOP CHORD	2x4 SP No.2			OL=1.15); Pg=20.0 p									
BOT CHORD			psf (fla	roof snow: Lum DOI	L=1.15 Pla	e DOL=1.15);						
WEBS	2x4 SP No.2		Catego	ry II; Exp B; Partially	Exp.; Ct=1	.10							
OTHERS	2x4 SP No.2		5) Unbala	nced snow loads hav	e been coi	nsidered for t	his						
BRACING			design										
TOP CHORD	Structural wood she	athing directly applie		iss has been designe									
	6-0-0 oc purlins, ex		load of	12.0 psf or 1.00 time			osf on						
BOT CHORD	Rigid ceiling directly			ngs non-concurrent w									
	bracing.		Buildin	g Designer/Project er									
REACTIONS	(size) 2=7-8-10.	6=7-8-10, 7=7-8-10		g Rain Load = 5.0 (p									
	8=7-8-10	· ·	require	ments specific to the		truss compo	nent.						
	Max Horiz 2=90 (LC	15)		studs spaced at 2-0-0 iss has been designe) not hottom							
	Max Uplift 2=-42 (LC	C 12), 6=-9 (LC 13), 7		ve load nonconcurre			ade						
	(LC 12), 8	3=-54 (LC 16)		russ has been design									
	Max Grav 2=199 (LC			bottom chord in all ar			opor						
	(LC 23), 8	3=281 (LC 2)) tall by 2-00-00 wide			om						
FORCES	(lb) - Maximum Com	pression/Maximum		and any other membe									
	Tension			mechanical connect		ers) of truss	to						
TOP CHORD	1-2=0/21, 2-3=-96/7			plate capable of with									
	4-5=-40/37, 5-6=-49			uplift at joint 6, 27 lb u									
BOT CHORD	2-8=-35/42, 7-8=-35			and 42 lb uplift at join		, I							
WEBS	4-7=-106/68, 3-8=-1	89/61	LOAD CAS	E(S) Standard								in the	
NOTES				()							WITH CA	ROUL	
1) Unbalance	ed roof live loads have	been considered for								×	A	in the	
this desigr										6.	C FESS	CON V	1
	CE 7-10; Vult=115mph									22		12/	-
	nph; TCDL=6.0psf; BC								~	-	27		-
	Enclosed; MWFRS (er								-		SEA	(i :	=
	xterior (2) -1-1-0 to 1-									:		·- :	1
	zone; cantilever left an		1						=		0363	322 :	-
	t and right exposed;C-									- B			-
	IWFRS for reactions s plate grip DOL=1.60	nown; Lumber									Sec. 1.	a de la compañía de l	WILLING THE
	igned for wind loads in	the plane of the true								20	C. SNOW	-ER. X :	2
	studs exposed to wind									1	S C A	E. A.S	
	ard Industry Gable En									1	CA .	BEIN	

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI

minin May 16,2025


Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	V01	Valley	1	1	Job Reference (optional)	173525681

11-4-5

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:11 ID:X9GB1RuhnjFI1mb356ji3rzxXRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-4-5

Scale = 1:37.7

		i										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.59	Vert(TL)	n/a	-	n/a	999		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2015/TPI2014	WB Matrix-MS	0.05	Horiz(TL)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/1112014	IVIAUIX-IVIS							Weight: 38 lb	FT = 20%
	1010		-								Hoight oo lo	
LUMBER				ed snow loads have	been coi	nsidered for t	his					
TOP CHORD	2x4 SP No.2		design.									
BOT CHORD	2x4 SP No.2			esigner/Project engi Rain Load = 5.0 (psf)								
WEBS OTHERS	2x4 SP No.2 2x4 SP No.2			ents specific to the us			nent					
BRACING	274 01 100.2			uires continuous bot								
TOP CHORD	Structural wood she	athing directly applie	d or 7) Gable stu	ds spaced at 4-0-0 o	с.	0						
	6-0-0 oc purlins.		This truss	has been designed								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		load nonconcurrent is has been designed								
REACTIONS	0	4=11-4-5, 5=11-4-5		tom chord in all area		0						
	Max Horiz 1=81 (LC		3-06-00 t	all by 2-00-00 wide w any other members		veen the bott	om					
	Max Uplift 1=-23 (LC			echanical connectio		ers) of truss t	to					
	5=-104 (L		bearing n	ate capable of withs								
	Max Grav 1=241 (LC (LC 2)	C 2), 4=68 (LC 22), 5	=604 4, 23 lb u	olift at joint 1 and 104	1 lb uplift	at joint 5.						
FORCES	(IC 2) (Ib) - Maximum Com	procesion/Maximum	LOAD CASE	 Standard 								
TORGES	Tension	pression/maximum										
TOP CHORD	1-2=-675/82, 2-3=-4	3/10										
BOT CHORD	1-5=-143/648, 4-5=0)/0										
WEBS	2-5=-400/117, 3-4=-	67/41										
NOTES												Un.
	CE 7-10; Vult=115mph		N =4								WHY CA	Pall
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (en									1	all	
	xterior (2) 0-1-0 to 3-1									N's	O'.FESS	Vie.
	ne; cantilever left and r								6	15	IP /	City
	t and right exposed;C-										.0	
	IWFRS for reactions s	hown; Lumber							-		SEA	1 4 5
	plate grip DOL=1.60 gned for wind loads in	the plane of the true							Ξ			
	studs exposed to wind								1		0363	22 : :
	ard Industry Gable En								-	0		1 S
or consult	qualified building desig	gner as per ANSI/TP	11.						5	1	N. En.	Airs
	CE 7-10; Pr=20.0 psf (RC NGIN	EF
	=1.15); Pg=20.0 psf (g of snow: Lum DOL=1.1										CA O	II BEIN
	I; Exp B; Partially Exp.										111A. G	in the second seco
	, , _, , _ ,	, =									Max A. G	16 2025

May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type)		Qty	,	Ply	996 S	Serenit	y			
P02609-25470	V02		Valley			1		1	Job R	Refere	nce (op	tional)		173525682
34 Lumber-2383 (Dunn, NC), D	Dunn, NC - 2	8334,							4 2025 N	liTek In	dustries	, Inc. Th	u May 15 12:23:11	Page: 1
					ID: /MIQZENVJY	6-0-5	-xd2zx <i>x</i>	KF-KIC?Ps	зв <i>т</i> онqз		nL8w3u	IIXDGK	WrCDoi7J4zJC?f	
						6-0-5				 2x4 II				
		0-0-4	1	3 ¹²	6	7	8					1-6-5		
					3x6 =					3 2x4 ∎				
										"				
Scale = 1:27.1						6-0-5				-				
Loading TCLL (roof) Snow (Pf/Pg) 15. TCDL SCLL SCDL	(psf) 20.0 .4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TI	PI2014	CSI TC BC WB Matrix-MP	0.43 0.51 0.02	DEFL Vert(L Vert(T Horiz	-L) ГL)	in (n/a n/a .01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
6-0-0 oc pu BOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav	.2 .2 wood shea urlins. ng directly a 1=6-0-5, 3: 1=41 (LC 1 1=-31 (LC 1=235 (LC mum Comp 48 327 38 =115mph (5.0psf; BCE WFRS (env 1-0 to 3-1- r left and rig coposed;C-C eactions sh OL=1.60 d loads in f Gable End Iding desig :20.0 psf (rr 20.0 psf (gn n DOL=1. trially Exp.;	12) 12), 3=-41 (LC 12) 2), 3=235 (LC 2) pression/Maximum (3-second gust) DL=3.0psf; h=25ft; Cz velope) exterior zone 0, Interior (1) 3-1-0 to ght exposed ; end C for members and iown; Lumber the plane of the truss (normal to the face), 1 Details as applicable iner as per ANSI/TPI oof LL: Lum DOL=1. round snow); Pf=15.4 5 Plate DOL=1.15); 5 Ct=1.10	t.	erifying Rain equirements sable require sable studs s his truss has hord live loa This truss h n the bottom -06-00 tall b hord and an rovide mech earing plate	gner/Project eng specific to the u is continuous bo spaced at 4-0-0 d s been designed d nonconcurrent as been designed n chord in all are y 2-00-00 wide v y other members nanical connectic capable of withs plift at joint 1. Standard) covers raise of this se of this ttom chore oc. for a 10.0 with any d for a live as where vill fit betw s. on (by othe	ain load truss c d beari) psf bo other li e load a recta veen th ers) of	ding omponent ng. ottom ve loads. of 20.0psf ngle e bottom truss to					SEA 0363	L 22 EF. ALL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1 818 Soundside Road Edenton, NC 27932

ENGINEERING

Job	Truss	3	Truss Type		Qty	Ply	996 Seren	ity			170505000
P02609-254	70 V03		Valley		1	1	Job Refere	ence (optio	onal)		173525683
34 Lumber-2383	(Dunn, NC), Dunn, NC	- 28334,		Run: 8.83 S Apr 24 : ID:?MqZEnvJY0Ncfv			1 2025 MiTek I	ndustries, li	nc. Th		Page: 1
			1	7-5-							
					-						
				7-5-	5						
			, , , , , , , , , , , , , , , , , , ,				2x4 II				
		T					3	T			
						9					
		3-8-15		2x4 II	//			3-8-15			
		8- 8-	12 6 Г	8 2				8- 6			
		-0-0-4-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	$ \frac{1}{8}$			******	4				
			<u>××××××</u> 2x	4 ¢	~~~~~	~~~~~	2x4 II				
				2x4 ။ 7-5-	5						
Scale = 1:36				1-0-	5						
Loading	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0).21 Vert		in (loc) n/a -		L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.13 Vert	(TL)	n/a - .00 5	n/a	999 n/a		21,,100
BCLL BCDL	0.0*	Code	IRC2015/TPI2014	Matrix-MP		2(12) 0	.00 0	1/4	n/a	Weight: 29 lb	FT = 20%
LUMBER	10.0	1	4) TCLL: ASC	CE 7-10; Pr=20.0 psf (rc	of LL: Lum	n DOL=1.15	-	-		Wolght. 20 ib	
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		psf (flat roo	=1.15); Pg=20.0 psf (gr of snow: Lum DOL=1.15	5 Plate DO						
WEBS OTHERS	2x4 SP No.2 2x4 SP No.2		5) Unbalance	I; Exp B; Partially Exp.; d snow loads have bee		ed for this					
BRACING TOP CHORD	Structural wood sh	eathing directly applied	design. d or 6) Building Do	esigner/Project enginee	r responsil	ole for					
BOT CHORD	Rigid ceiling directl	xcept end verticals. y applied or 10-0-0 oc	requiremen	ain Load = 5.0 (psf) cov nts specific to the use of uires continuous bottom	f this truss	component					
REACTIONS	bracing. (size) 1=7-5-5,	4=7-5-5, 5=7-5-5	8) Gable stud	ls spaced at 4-0-0 oc. has been designed for a							
		.C 13), 5=-84 (LC 16)	chord live l	load nonconcurrent with s has been designed for	any other	live loads.					
	Max Grav 1=101 (L 5=365 (L	_C 30), 4=120 (LC 2), _C 2)	on the bott	om chord in all areas w I by 2-00-00 wide will fit	here a rect	angle					
FORCES	Tension	mpression/Maximum	chord and	any other members. echanical connection (b							
TOP CHORD BOT CHORD	1-2=-163/108, 2-3= 1-5=-56/129, 4-5=-		4 and 84 lb	ate capable of withstanc o uplift at joint 5.	ling 19 lb u	plift at joint					
WEBS NOTES	2-5=-262/147		LOAD CASE(S	 Standard 							
this design		e been considered for								WHILL CA	Politi
Vasd=91m		CDL=3.0psf; h=25ft; C						/	S.	OP TESS	
and C-C E		envelope) exterior zone 0-8, Interior (1) 3-0-8 t ight exposed : end						4	V.	in the second	
vertical left		C-C for members and						111		SEA	L
DOL=1.60	plate grip DOL=1.60		3					E LI		0363	
only. For s	tuds exposed to win	d (normal to the face), nd Details as applicabl						111	3		a
		signer as per ANSI/TPI						THE REAL PROPERTY OF	11	A MGIN	ERIN
										May May	ILDUN
											16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org)

May 16,2025

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	996 Serenity	
P02609-25470	V04	Valley	1	1	Job Reference (optional)	173525684

4-1-5

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334

Loading

TCDL

BCLL

BCDL

WFBS

FORCES

NOTES

1)

2)

3)

4)

5)

LUMBER

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 12:23:11 ID:?MqZEnvJY0NcfwAFfpExb2zxXRF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-1-5 2x4 II 2 7 6 12 6 Г 2-0-15 2-0-15 0 3 2x4 🧔 2x4 ı 4-1-5 Scale = 1:28.5 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.19 Vert(LL) n/a 999 MT20 244/190 n/a BC Snow (Pf/Pg) 1 15 15 4/20 0 Lumber DOL 0.22 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 FT = 20%Weight: 14 lb 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 requirements specific to the use of this truss component. 2x4 SP No.2 Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 4-0-0 oc. 8) BRACING This truss has been designed for a 10.0 psf bottom 9) TOP CHORD Structural wood sheathing directly applied or 4-1-5 oc purlins, except end verticals. chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf BOT CHORD Rigid ceiling directly applied or 10-0-0 oc on the bottom chord in all areas where a rectangle bracing. 3-06-00 tall by 2-00-00 wide will fit between the bottom **REACTIONS** (size) 1=4-1-5, 3=4-1-5 chord and any other members. Max Horiz 1=55 (LC 13) 11) Provide mechanical connection (by others) of truss to Max Uplift 1=-18 (LC 16), 3=-31 (LC 16) bearing plate capable of withstanding 31 lb uplift at joint Max Grav 1=159 (LC 2), 3=159 (LC 2) 3 and 18 lb uplift at joint 1. (Ib) - Maximum Compression/Maximum LOAD CASE(S) Standard Tension TOP CHORD 1-2=-260/77, 2-3=-99/72 BOT CHORD 1-3=-131/226 Unbalanced roof live loads have been considered for this design Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-0-1 zone; cantilever left and right exposed ; end \cap vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss SEAL only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, 036322 or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this G design. mm May 16,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

