

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: David Weekley Homes

Model: B330 A CP TMB BNS GLH

THE PLACEMENT PLAN NOTES:

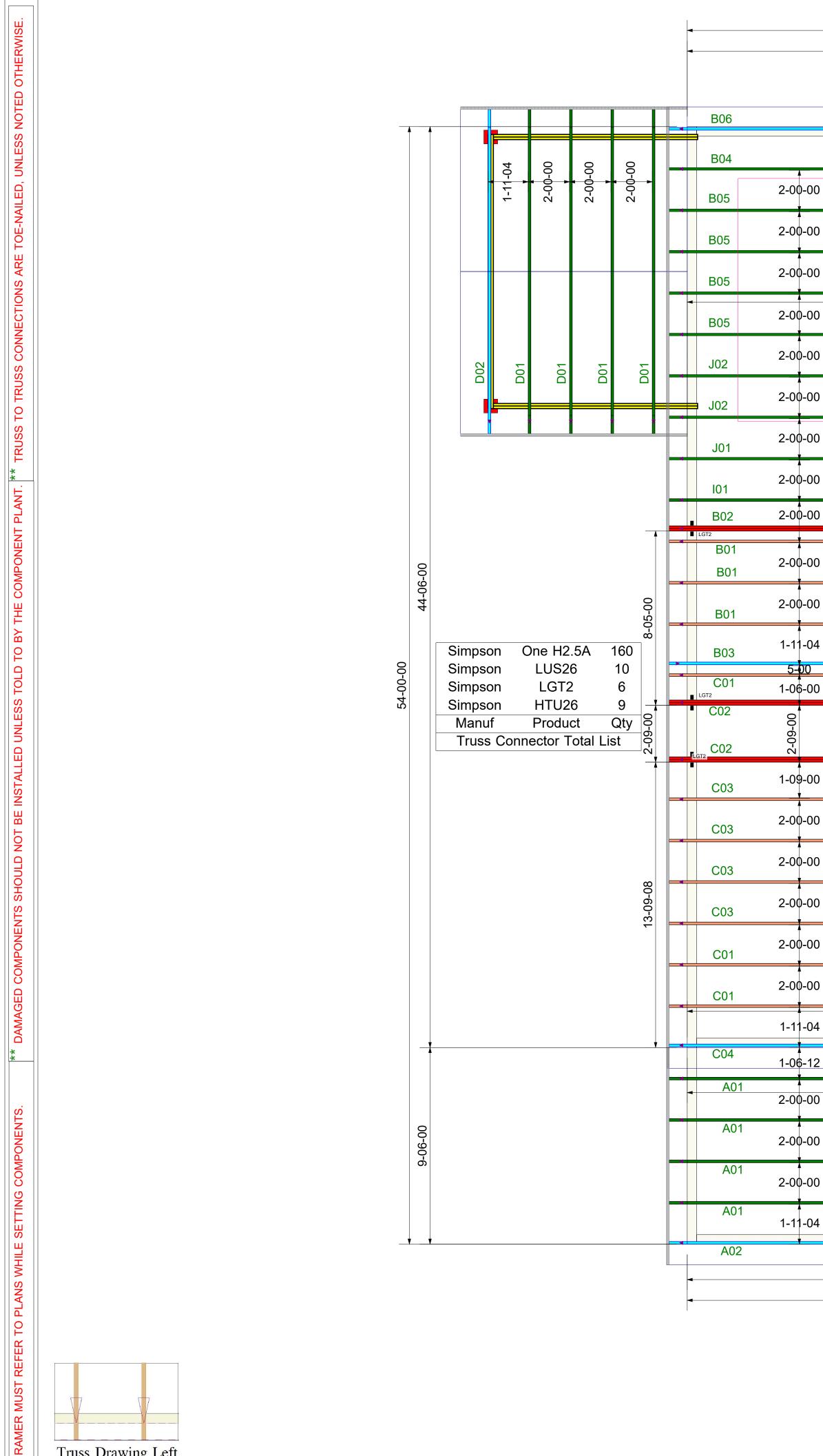
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

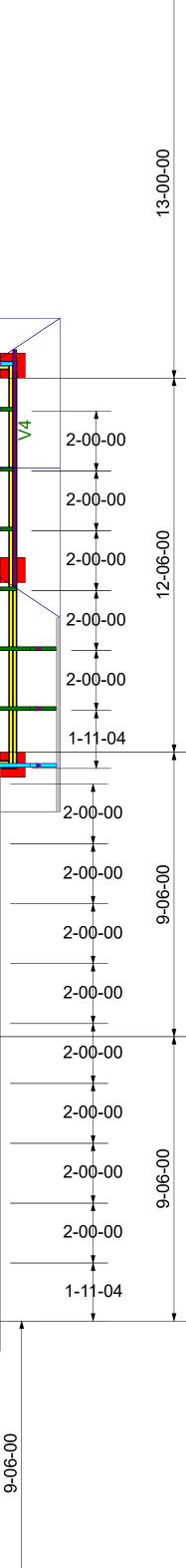
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS.


Truss Drawing Left End Indicator

*

P0-1-1-1 F04 F04 F02	
F04	
-02	
02	ςΛ
	┿╼═╇
02	
01	
-03	
01	
01	-
	-
01	
01 -	
01	
01	
01	
01	-
02	
1-06-00	
	9-06-00
	0-0
0-00	•

45-00-00

	Rev	isions
	00/00/00	Name
acto	00/00/00	Name
Der ontra	00/00/00	Name
y. F Pr co	00/00/00	Name
onl o	00/00/00	Name
** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor	systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
		Lunber
IS ARE READ AS: F		
ed together prior to adding any loads. ** Dimensions are read as: foot-inch-sixteenth.	David Weekley Homes 898 Serenity-Roof-B330 A CP	TMB BNS GLH ROOF PLACEMENT PLAN
	E Scale:	Roo
	E Scale:	ROOF PLACEMENT PLAN
	Scale: Date: 5/27	Од vтs /2025
	Scale: Date: 5/27	vrs /2025 signer: c Darr
	Scale: Date: 5/27 Det Nick	NTS 7/2025 signer:
	Scale: Date: 5/27 Det Nick Proje 25050	VTS 7/2025 signer: C Darr sct Number:
6 ** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: F	Scale: Date: 5/27 Det Nick Proje 25050	VTS 7/2025 signer: C Darr sct Number: 0159-01

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25050159-01 898 Serenity-Roof-B330 A CP TMB BNS GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73765505 thru I73765546

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 28,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	A01	Common	4	1	I73765505 Job Reference (optional)

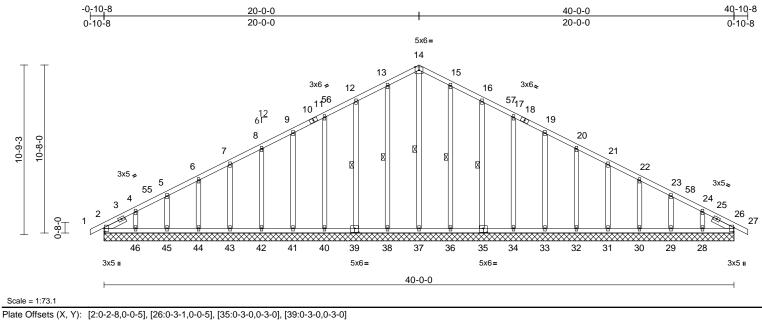
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:13 ID:CttcSzQgwNcSj9X9hY?FsHzF_uO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 40-10-8 6-10-5 13-5-3 40-0-0 20-0-0 26-6-13 33-1-11 0-10-8 6-10-5 6-6-13 6-6-13 6-6-13 6-6-13 6-10-5 0-10-8 5x6= 6 5x8 🧔 5x8. 27 28 26 29 5 12 61 10-9-3 10-8-01 2x4、 2x4 🥡 4 8 3x5 🎜 25 30 3x5 9 3 10 0-8-0 Ò 11 31 1532 14 3313 34 12 16 3x5= 4x6= 3x8= 4x6= 3x5= 6x8 ı 6x8 II 10-1-12 20-0-0 29-10-4 40-0-0 10-1-12 9-10-4 9-10-4 10-1-12 Scale = 1:73.1 Plate Offsets (X, Y): [2:0-4-1,Edge], [5:0-4-0,0-3-0], [7:0-4-0,0-3-0], [10:0-4-1,Edge] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.87 Vert(LL) -0.37 14-16 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 1.00 Vert(CT) -0.64 14-16 >754 180 TCDL 10.0 Rep Stress Incr WB Horz(CT) YES 0.41 0.15 10 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 213 lb BCDL 10.0 FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No 1 II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x4 SP No.1 BOT CHORD and C-C Exterior(2E) -0-10-8 to 3-1-8, Interior (1) 3-1-8 WEBS 2x4 SP No.3 *Except* 14-6:2x4 SP No.2 to 16-0-0, Exterior(2R) 16-0-0 to 24-0-0, Interior (1) SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 24-0-0 to 36-10-8, Exterior(2E) 36-10-8 to 40-10-8 zone; -- 1-6-0 cantilever left and right exposed ; end vertical left and BRACING right exposed C-C for members and forces & MWERS TOP CHORD Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 2-2-0 oc purlins. DOL=1.60 BOT CHORD Rigid ceiling directly applied or 2-2-0 oc 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 bracing. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate WEBS 1 Row at midpt 7-14, 5-14 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2=0-5-8, 10=0-5-8 REACTIONS (size) Cs=1.00; Ct=1.10 Max Horiz 2=-165 (LC 15) 4) Unbalanced snow loads have been considered for this Max Uplift 2=-170 (LC 14), 10=-170 (LC 15) desian. Max Grav 2=1809 (LC 3), 10=1809 (LC 3) 5) This truss has been designed for greater of min roof live FORCES (Ib) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Tension overhangs non-concurrent with other live loads. TOP CHORD 1-2=0/23, 2-4=-3431/321, 4-6=-3226/333, This truss has been designed for a 10.0 psf bottom 6) The Real Providence of the Pro 6-8=-3226/333, 8-10=-3431/321, 10-11=0/23 chord live load nonconcurrent with any other live loads. BOT CHORD 2-16=-330/2978, 14-16=-191/2524, * This truss has been designed for a live load of 20.0psf 7) ORTH 12-14=-109/2524, 10-12=-185/2978 on the bottom chord in all areas where a rectangle WEBS 6-14=-114/1658, 7-14=-853/247, 3-06-00 tall by 2-00-00 wide will fit between the bottom 7-12=-25/626, 8-12=-301/191, chord and any other members, with BCDL = 10.0psf. 5-14=-853/247, 5-16=-25/626, 4-16=-301/191 8) One H2.5A Simpson Strong-Tie connectors THURSDAY WANTED recommended to connect truss to bearing walls due to NOTES UPLIFT at jt(s) 2 and 10. This connection is for uplift only Unbalanced roof live loads have been considered for 1) and does not consider lateral forces. this design. LOAD CASE(S) Standard 867

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 28,2025

Page: 1



Edenton, NC 27932

GA

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	A02	Common Supported Gable	1	1	I73765506 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:14 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.04 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 26	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 286 lb	GRIP 244/190 ET = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 OTHERS 2x4 SLIDER Left 1-I BRACING TOP CHORD Stru BOT CHORD Rigi brac WEBS 1 RC REACTIONS (size)	SP No.2 SP No.2 SP No.3 *Excep 2x4 SP No.3 5-0 ctural wood she 0 oc purlins. d ceiling directly ing. w at midpt 2=40-0-0 32=40-0- 32=40-0- 32=40-0- 32=40-0- 32=40-0- 32=40-0- 32=40-0- 34=40-0- 41=40-0- 41=40-0- 41=40-0- 41=40-0- 41=40-0- 33=-48 (I 33=-48 (I 33=-48 (I 33=-48 (I 40=-44 (I 42=-44 (I	C 10), 28=-80 (LC 15 LC 15), 30=-46 (LC 1 LC 15), 32=-44 (LC 1 LC 15), 34=-44 (LC 1 LC 15), 36=-35 (LC 1 LC 14), 39=-47 (LC 1 LC 14), 41=-43 (LC 1 LC 14), 43=-43 (LC 1 LC 14), 45=-33 (LC 1	2 No.3 ed or , FORCES)-0, TOP CHORD 0-0,	30=160 32=161 34=179 36=247 38=247 40=179 42=161 44=160	(LC 37), (LC 37), (LC 37), (LC 22), (LC 22), (LC 22), (LC 21), (LC 21), (LC 21), (LC 36) ompressi 6/79, 4-5 -96/108, -72/178 3-14=-1; 5-16=-11 '-19=-72, 21=-48/6 24=-99/3 46=-44/1 -42=-44, -42=-44, -37=-44, -37=-44, -37=-44, -32=-44, -32=-44, -32=-44,	29=160 (LC 1) 31=160 (LC 1) 33=160 (LC 3) 35=233 (LC 2: 37=200 (LC 22; 39=233 (LC 2: 41=160 (LC 3) 43=160 (LC 1) 45=160 (LC 1) on/Maximum 5=-167/82, 7-8=-74/131, 3, 11-12=-85/20 21/245, 04/200, 7/122, 35, 24-26=-144/ 54, 7/154,), 7), 2), 3), 1), 6), 1, 9,	thi: 2) Wi Va II; an to 24	S balancec s design. ind: ASCI isd=103m Exp B; Ei d C-C Ex 16-0-0, E -0-0 to 38 pillouro to 38	12-39 9-41= 6-44= 15-366 17-34 20-32 22-30 24-28 d roof lif Ξ 7-16; mph; TC nnclosed terior(: xterior) 5-10-8, sft and ed;C-C s s show	=-168/45, 13-38 =-193/71, 11-40 =-126/68, 8-42=-1: -127/69, 5-45=-1: =-205/71, 16-35 =-140/67, 19-33 =-126/68, 21-31 =-127/69, 23-29 =-131/89 ive loads have be ; Vult=130mph (3 CDL=6.0psf; BCD d; MWFRS (enve 2E) -0-10-8 to 3-1 (2R) 16-0-0 to 24 Exterior(2E) 36- right exposed ; e for members and m; Lumber DOL=	-205/71, -140/67, 26/68, 7-43=-126/67, 26/62, 4-46=-131/100 -193/72, -126/68, -126/68, -126/64, en considered for -second gust) L=6.0psf; h=25ft; Cat lope) exterior zone -8, Interior (1) 3-1-8 -0-0, Interior (1) 10-8 to 40-10-8 zone;

May 28,2025

Page: 1

L. GA minin

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	A02	Common Supported Gable	1	1	I73765506 Job Reference (optional)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:14 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

May 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B01	Attic	3	1	Job Reference (optional)

11-0-0

2-6-0

-0-10-8

0-10-8

5-1-0

5-1-0

10-2-0

5-1-0

4

9¹²

4x5 🍫

32

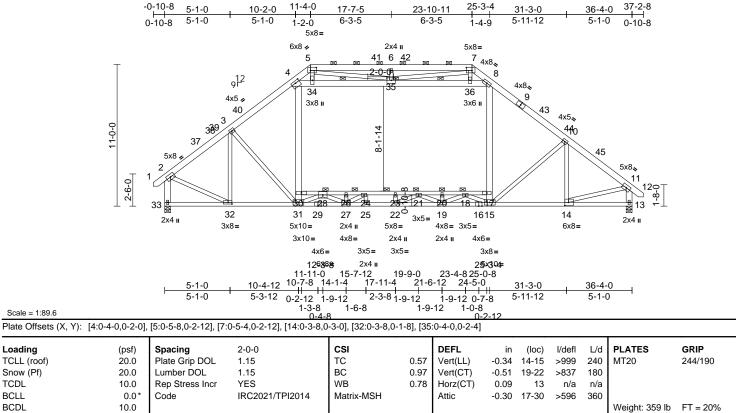
3x8=

389³

37

5-1-0

5-1-0


5x8 🍫 2

33 🛓

2x4 II

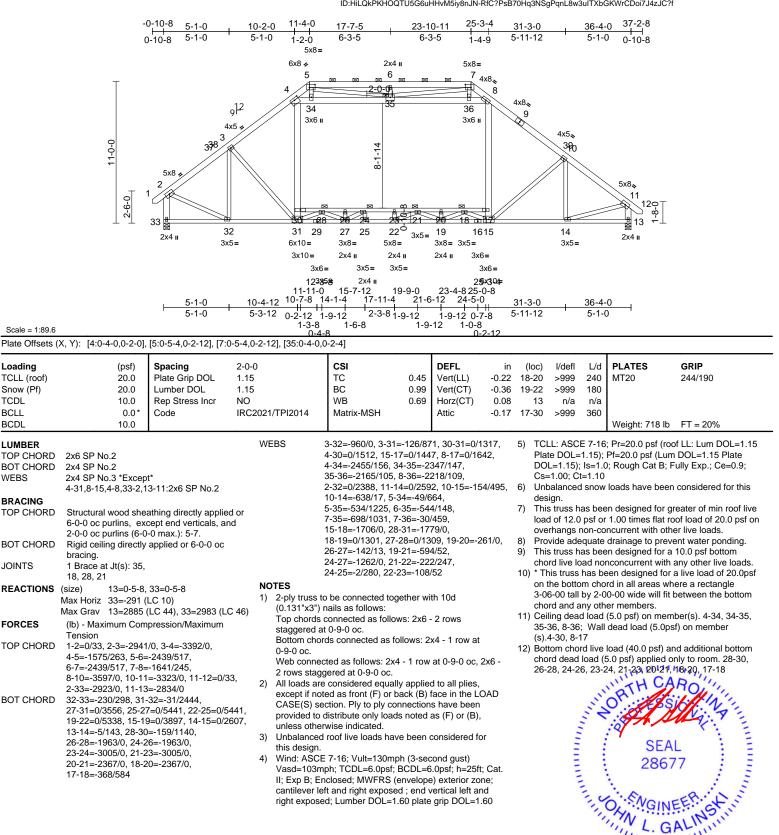
40

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:14 ID:6tPM5Ir?FJUMxDStPvqO5SzF_Wb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:89.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.97 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.51 0.09	(loc) 14-15 19-22 13 17-30	l/defl >999 >837 n/a >596	L/d 240 180 n/a 360	PLATES MT20 Weight: 359 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S 29-16 WEBS 2x4 S 2.0E, BRACING TOP CHORD Struct TOP CHORD Struct 4-0-1 2-0-0 BOT CHORD Rigid DBOT CHORD Bigid bracit WEBS 1 Row 28, 13 JOINTS 1 Bra 28, 13 REACTIONS (size) Max He Max G FORCES (lb) - 1 TOP CHORD 1-2=0 4-5=- 6-7=- 8-10= 2-333 BOT CHORD 32-333 27-31 BOT CHORD 22-32 23-24 20-21 13-14 26-26	:2x4 SP 2400 P No.3 *Excep 8-15,4-8,33-2 tural wood she 1 oc purlins, e oc purlins (4-(ceiling directl) 13, 13=0-5-8 oriz 33=-291 rav 13=2167 Maximum Con on //33, 2-3=-233(1513/234, 5-6: 2487/524, 7-8: -2806/0, 10-1: -2322/0, 11-1: -2322/02, 31 =0/2814, 25-2	nt* 4-31:2x6 SP 24001 13-11:2x6 SP No.2 athing directly applie- xcept end verticals, a -1 max.): 5-7. • applied or 2-10-3 oc 4-35, 8-35 , 33=0-5-8 (LC 12) (LC 48), 33=2202 (LC apression/Maximum 0/0, 3-4=-2636/0, =-2487/524, =-1533/226, I=-2664/0, 11-12=0/3 3=-2298/0 -32=0/1803, 7=0/4772, 22-25=0/4 9=0/3211, 14-15=0/2)=-207/1160, 62=-2016/0, 23=-3077/0,	2, = d or ind 1) 2) 2 48) 3, 772, 3) 996, 3) 4)	CTES Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Exte to 6-2-5, Exte 16-5-11 to 18 (1) 29-0-5 to zone; cantile and right exp MWFRS for I grip DOL=1.6 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs no	7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat	=0/792, 0-14=-4: -35=-15: -36=-14: 4=0/204 36=-17/4 35=-54: -27=-12: 8=-174: 2-23=-11: 8=-174: 2-23=-11: 8=-174: 2-23=-11: 8=-174: 8=-174: 13-54: 12-54: 13-54: 14-54: 14-54: 15-	8-17=0/980, 79/0, 82/73, 91/24, 1, 5-34=-33/5 121, 3/1335, 90/0, 90/0, 18-19=0/ (16, 04/49, 35 considered fo cond gust) 0.0psf; h=25ft; 9) exterior zor Interior (1) 2- Interior (1) to 29-0-5, Inte I-10 to 37-0-4 ; end vertical di forces & DOL=1.60 pla cli di forces & DOL=1.60 pla cli di forces & DOL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof pad of 20.0 ps/ ve loads.	548, 1225, r ; Cat. he 11-6 erior left 1.15 ; ; his live sf on	cho 8) * Tr on t 3-00 cho 9) Ceii 35 (s). 10) Bott cho 26 11) Gra or tl bott	rd live lo his truss he botto 6-00 tall rd and a ling dead 36, 8-36 4-30, 8-1 tom chor rd dead 28, 24-21 phical phical phical phical phical phical c room c c room c c CASE(S)	ad nor has be m cho by 2-0 ny oth d load ; Wall 17 rd live load (6, 23-2 urlin re tation o rd. shecked) Star	nconcurrent with seen designed for rd in all areas with 0-00 wide will fit er members. (5.0 psf) on men dead load (5.0psf) load (40.0 psf) a 5.0 psf) applied c 24, 21-23, 20-21, presentation dor of the purlin alon d for L/360 defle	between the bottom nber(s). 4-34, 34-35, sf) on member nd additional bottom only to room. 28-30, 18-20, 17-18 es not depict the size g the top and/or ction.

May 28,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B02	Attic Girder	1	2	Job Reference (optional)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue May 27 12:47:15 ID:HiLQkPKHOQTU5G6uHHvM5iy8nJN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ontinued on page 2

TCDL

BCLL

BCDL

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

May 28,2025

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B02	Attic Girder	1	2	I73765508 Job Reference (optional)

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 839 Ib down and 71 lb up at 25-3-4, and 839 lb down and 71 Ib up at 10-4-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

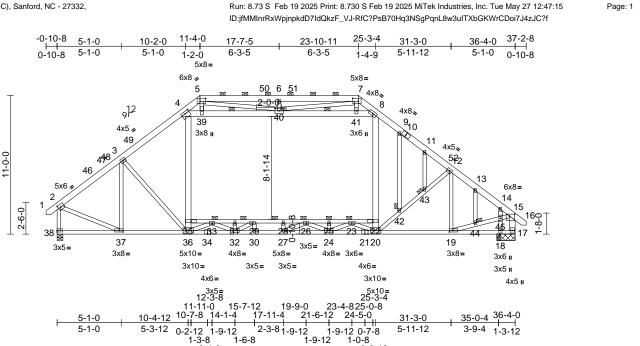
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-60, 2-5=-60, 5-7=-60, 7-11=-60,
 - 11-12=-60, 13-33=-20, 17-30=-30, 4-34=-10,
 - 34-35=-10, 35-36=-10, 8-36=-10 Drag: 4-30=-10, 8-17=-10
 - Concentrated Loads (lb)

Vert: 31=-450 (F), 15=-450 (F)

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:15 ID:HiLQkPKHOQTU5G6uHHvM5iy8nJN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

May 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B03	Attic Structural Gable	1	1	I73765509 Job Reference (optional)

5-1-0

5-1-0

Scale = 1:91.4

Plate Offsets (X, Y): [2:0-2-8,0-2-8]	, [4:0-4-0,0-2-0], [5:0-5-		<u>4-8</u> -2-12], [15:0-5-0,0-1	-12], [19		2-12 [37:0-3-	-8,0-1	-8], [40:0	4-0,0-2	-4]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.91 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.28 -0.48 0.09 -0.25		25 >999 27 >869 18 n/a	240 180 n/a	PLATES MT20 Weight: 378 lb	GRIP 244/190 FT = 20%
	34-21:2x4 SP 2400f 2x4 SP No.3 *Excep 4-36,8-20,4-8,17-15 SP No.2 2x4 SP No.3 Structural wood she 4-4-1 oc purlins, ex 2-0-0 oc purlins (4-C Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 23, 33, 26, 40, 42, 43, 44 (size) 17=1-5-8, Max Horiz 38=-290 (Max Uplift 17=-458 (Max Grav 17=1518	ot* :2x6 SP No.2, 19-15:2x eathing directly applied of cept end verticals, and)-1 max.): 5-7. r applied or 2-9-12 oc 4-40, 8-40 (LC 12) (LC 12) (LC 11), 18=-519 (LC 12) (LC 44), 18=1812 (LC	WEBS or	37-38=-244/283, 3 32-36=0/2923, 30 24-27=0/4682, 20- 18-19=-461/193, 1 33-35=-116/739, 3 29-31=-2198/0, 28 26-28=-3188/0, 22 23-25=-2366/0, 22 3-37=-697/0, 3-36 4-35=0/885, 20-22 20-42=0/433, 42-4 12-19=-623/33, 4- 39-40=-1441/25, 4 8-41=-1491/37, 2- 44-45=0/2166, 15- 33-36=-1780/0, 23 24-25=-196/0, 31- 29-32=-1148/0, 26 29-30=0/258, 27-2 5-40=-534/1306, 6 7-40=-513/1256, 7 11-43=-38/6, 13-4 18-45=-1263/405	32=0/48 24=0/30 7-18=-4 1-33=-2 -29=-31 -26=-23 -23=-22 =-90/527 =0/738, 3=0/418 39=-151 0-41=-1 37=0/18 45=0/21 -24=0/1: 32=-111, -27=-11 8=-112/; -40=-53 -41=-17,	38, 27-30=0/. 87, 19-20=0/ 61/193, 198/0, 56/0, 2/559 7, 35-36=0/70 8-22=0/926, 1, 12-43=0/43: 4/30, 450/35, 72, 19-44=0/2 4/9, 20-23=-1 252, 32-33=0. '3, 24-26=-74 7/278, 23, 5-39=-20/ 9/147, '426, 9-42=-5	1859, 5, 8, 2184, 779/0, /1226, 0/0, 522, 5/38,	4) 5) 6) 7) 8) 9) 10) 11)	only. For see Stanc or consult TCLL: AS Plate DOI DOL=1.16 Cs=1.00; Unbalanc design. This truss load of 12 overhangs Provide a All plates Truss to b braced ag Gable stu This truss	studs e: ard Indi qualifie CE 7-16 =1.15); i); Is=1.1 Ct=1.10 ed snow has bee .0 psf or s non-cc dequate are 2x4 e fully s ainst lat ds spac has bee has bee	xposed to wind (r ustry Gable End I d building design 5; PT=20.0 psf (ro Pf=20.0 psf (Lun 0; Rough Cat B; I v loads have beer en designed for g r 1.00 times flat m drainage to prev MT20 unless oth theathed from onu- teral movement (i ed at 2-0-0 oc. en designed for a	ent water ponding. erwise indicated. e face or securely .e. diagonal web). 10.0 psf bottom
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-2328 4-5=-1529/224, 5-6= 6-7=-2492/514, 7-8= 9-11=-2603/0, 11-12	3/0, 3-4=-2610/0, =-2492/514, =-1503/213, 8-9=-2570/ 2=-2680/0, 12-13=-2332 15=-1932/40, 15-16=0/3	this design 2) Wind: ASC 2) Wind: ASC 20, Vasd=103 33, and C-CE to 6-2-5, E 16-5-11 to (1) 29-2-0 cantilever right exposi	E 7-16; Vult=130m; mph; TCDL=6.0psf; Enclosed; MWFRS (xterior(2E) -0-8-4 to xterior(2R) 6-2-5 to 18-9-0, Exterior(2R) to 33-2-0, Exterior(2 left and right expose sed;C-C for member ns shown; Lumber D	oh (3-seo BCDL=6 envelope 2-11-6, 16-5-11, 18-9-0 E) 33-2- d ; end v s and fo	cond gust) .0psf; h=25ft; a) exterior zor Interior (1) 2- Interior (1) to 29-2-0, Inte 0 to 37-0-4 zo vertical left an rces & MWFF	; Cat. ne 11-6 erior one; id			Supervision Supervision	ORTHCA SEA 2867	EEP. China and a start of the s

1-6-8

0-4-8

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 28,2025

818 Soundside Road

Edenton, NC 27932

35-0-4 36-4-0

1-3-12

3-9-4

31-3-0

5-11-12

n

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH	
25050159-01	B03	Attic Structural Gable	1	1	Job Reference (optional)	73765509
Carter Components (Sanford, NC	.). Sanford. NC - 27332.	Run: 8.73 S Feb 19 2	025 Print: 8.	730 S Feb 19	9 2025 MiTek Industries, Inc. Tue May 27 12:47:15	Page: 2

ID:jfMMInrRxWpjnpkdD7IdQkzF_VJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Ceiling dead load (5.0 psf) on member(s). 4-39, 39-40, 40-41, 8-41; Wall dead load (5.0psf) on member (s).4-35, 8-22
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 33-35, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 22-23

15) N/A

16) N/A

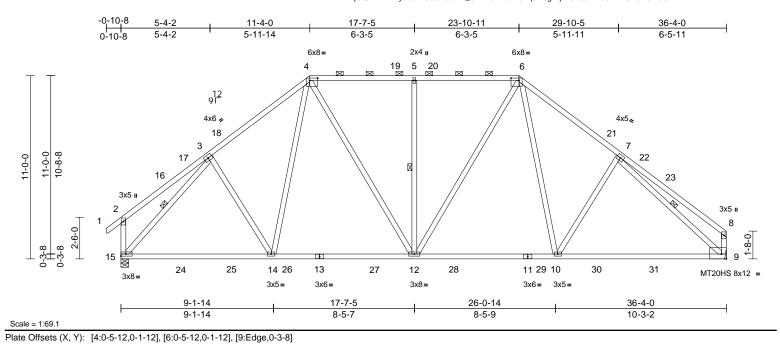
17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

May 28,2025

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

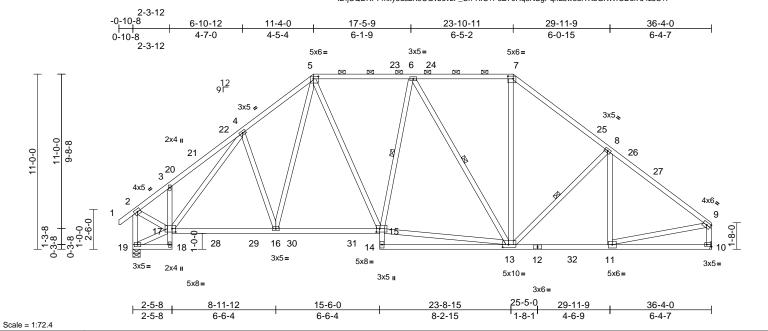
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B04	Piggyback Base	1	1	I73765510 Job Reference (optional)

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:16 ID:jCQDRPFmxy5us2K9CGvbovzF_Un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.32	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.56	9-10	>774	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 251 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.1 *Except* 13-11:2x4 SP No.2 2x4 SP No.3 *Except* 14-4,12-4,12-5,12-6,10-6:2x4 SP No.2	2)	Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-9-15 to 2-9-11, Interior (1) 2-9-11 to 6-2-5, Exterior(2R) 6-2-5 to 16-5-11, Interior (1) 16-5-11 to 18-9-0, Exterior(2R) 18-9-0 to 29-0-5, Interior	 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard
TOP CHORD	Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (3-1-0 max.): 4-6.		(1) 29-0-5 to 32-6-10, Exterior(2E) 32-6-10 to 36-2-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces &	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc		MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	
WEBS REACTIONS	Max Horiz 15=-283 (LC 12)	3)	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10	
	Max Uplift 9=-138 (LC 15), 15=-149 (LC 14) Max Grav 9=1708 (LC 47), 15=1765 (LC 47)	4)		
FORCES	(lb) - Maximum Compression/Maximum Tension	5)	This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on	
TOP CHORD	1-2=0/35, 2-3=-242/100, 3-4=-1991/263, 4-5=-1771/279, 5-6=-1771/279, 6-7=-2140/281, 7-8=-380/115, 2-15=-287/116, 8-9=-343/119	6) 7) 8)	overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom	
BOT CHORD	14-15=-200/1406, 12-14=-137/1390, 10-12=-33/1455, 9-10=-92/1645	9)	chord live load nonconcurrent with any other live loads.	RTH
WEBS	3-15=-1989/151, 7-9=-1999/108, 4-14=-61/463, 3-14=-92/352, 4-12=-148/619, 5-12=-691/184, 6-12=-156/489,	3)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	A SUL
	6-10=-83/661, 7-10=-263/243) Refer to girder(s) for truss to truss connections.	E E SEAL
NOTES 1) Unbalance this design	ed roof live loads have been considered for	11	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 9. 	28677
		12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift only and does not consider lateral forces.	ON NGINEER STUD


> mm May 28,2025

L. GA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

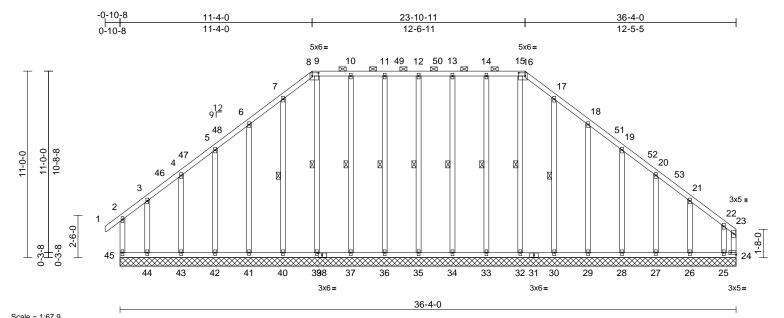
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B05	Piggyback Base	4	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:16 ID:jCQDRPFmxy5us2K9CGvbovzF_Un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [5:0-3-12,0-1-12], [7:0-4-0,0-2-0], [10:Edge,0-1-8], [13:0-4-8,0-2-0], [15:0-2-8,0-2-8], [17:0-2-12,0-2-8]

	X, Y): [5:0-3-12,0-1-1	2], [7:0-4-0,0-2-0], [1	0:Edge,0-	1-8], [13:0-4-8	,∪-∠-∪j, [15:0-2-8,0·	-2-ŏ], ['ì	1:0-2-12,0-2-0	8]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.79 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.30 0.09	(loc) 13-14 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 277 lb	GRIP 244/190
BODL	10.0											Weight. 277 ib	11 = 2070
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 Structural wood she	ot* 15-5,13-6,13-7:2x4 athing directly applied	2) 4 SP d or	this design. Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext 2-9-11 to 6-2 16-5-11 to 15	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-9-15 to 2-5, Exterior(2R) 6- 8-9-0, Exterior(2R) 32-6-10, Exterior(2R)	h (3-seo 3CDL=6 envelope 2-9-11 2-5 to 1 18-9-0	cond gust) 6.0psf; h=25ft; e) exterior zor , Interior (1) 6-5-11, Interio to 29-0-5, Inte	; Cat. ne or (1) erior	or t	he orien tom cho	tation o rd.	of the purlin along	s not depict the size the top and/or
BOT CHORD	2-0-0 oc purlins (2-2	applied or 10-0-0 oc		zone; cantile and right exp MWFRS for grip DOL=1.	ver left and right exposed;C-C for mem reactions shown; L 60	kpósed Ibers ar Jumber I	; end vertical Id forces & DOL=1.60 pla	left ite					
		LC 15), 19=-148 (LC	14) 4)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b	Lum DC B; Fully	DL=1.15 Plate Exp.; Ce=0.9);					
FORCES	(lb) - Maximum Com		5)		as been designed fo								
TOP CHORD	Tension 1-2=0/35, 2-3=-1705 4-5=-2133/306, 5-6= 6-7=-1482/268, 7-8= 8-9=-2106/191, 2-19 9-10=-1724/172	=-1780/268, =-1909/267,	(, 6) 7) 8)	overhangs n Provide adeo This truss ha chord live loa	psf or 1.00 times fla on-concurrent with quate drainage to p as been designed for ad nonconcurrent w nas been designed	other lin prevent or a 10.0 vith any	ve loads. water ponding) psf bottom other live load	g. ds.			and a	OR. FSS	ROUT
BOT CHORD	18-19=-28/22, 17-18 16-17=-201/1637, 1	3=0/41, 3-17=-262/16 5-16=-152/1473, =0/76, 11-13=-75/163	4,	on the bottor 3-06-00 tall b chord and ar	n chord in all areas by 2-00-00 wide wil by other members, er(s) for truss to tru	s where I fit betv with BC	a rectangle veen the botto CDL = 10.0psf	om				SEA	
WEBS	5-15=-128/587, 13-1 6-15=-188/232, 6-13	8=-628/203, =-439/191, 8-11=-174 19=-264/276, 17=-516/154,	10 /84,	 Provide mec bearing plate 10. One H2.5A S recommende UPLIFT at jt(hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 19. This connec isider lateral forces	(by oth anding 1 conne to bear tion is fo	ers) of truss to 39 lb uplift at ctors ing walls due	joint to		10.0	and and a	SEA 2867	E.P. ALIN
NOTES				uces not cor	ISIGET INTERNI TOPCES							1111111	mm

May 28,2025


Page: 1

TRENCO AMITEK ATTILIATE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B06	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:16 ID:va6oJ_bKLZdwDLTYr9P9wpzF_UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

00010 - 1.01.0	_			
Plate Offsets (X, Y):	[8:0-4-8.0-2-4].	[16:0-4-8.0-2-4].	[24:Edge.0-1-8].	[38:0-2-11.0-1-8]

Loading	((psf)	[16:0-4-8,0-2-4], [2	2-0-0		CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf) TCDL	:	20.0 20.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES		TC BC WB	0 0).48).25).23	Vert(LL) Vert(CT) Horz(CT)	n/a n/a -0.01	- - 24	n/a n/a n/a	999 999 n/a	MT20	244/190
BCLL BCDL		0.0* 10.0	Code	IRC2	021/TPI2014	Matrix-N	MR							Weight: 326 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	4 SP No.2 Structural wo 6-0-0 oc purli 2-0-0 oc purli	*Excep 33-14,3 ood shea ins, exc ins, 6-0	t* 2-15,36-11,37-10,3 athing directly appli sept end verticals, a -0 max.): 8-16. applied or 6-0-0 oc	ed or and	FORCES		26=167 (LC 28=231 (LC 30=234 (LC 33=238 (LC 35=230 (LC 37=238 (LC 40=234 (LC 42=230 (LC 44=247 (LC	26), 45), 45), 40), 40), 40), 40), 40), 43), 12),	25=602 (LC 27=183 (LC 29=232 (LC 32=230 (LC 36=229 (LC 39=203 (LC 41=232 (LC 43=182 (LC 45=199 (LC on/Maximum	53), 45), 54), 40), 40), 56), 43), 43), 53)	, this	balanceo design.	14-33 17-30 19-28 21-26 11-36 9-39= 5-42=	-190/90, 4-43=-1	190/62, 192/99, 144/90, 277/244, 198/57, 94/64, 6-41=-192/100, 48/87, 3-44=-153/122
WEBS	bracing. 1 Row at mid	dpt	12-35, 13-34, 14-3 15-32, 17-30, 11-3 10-37, 9-39, 7-40	3,	TOP CHORD	2-45=-141 3-4=-68/1 6-7=-147/2		'156, 66/31	5-6=-125/19 0, 8-9=-137/		Vas II; E anc	sd=103m Exp B; E I C-C Ex	nph; TC nclose terior(2	CDL=6.0psf; BCD d; MWFRS (enve 2E) -0-9-15 to 2-9	DL=6.0psf; h=25ft; Cat. elope) exterior zone
	27: 30: 34: 37: 41: 44: Max Horiz 45: Max Uplift 24: 28: 28: 30: 33: 35: 37: 41: 43:	r=36-4-C =36-4-C =36-4-C =36-4-C =36-4-C =36-4-C =-283 (I =-622 (I =-62 (L =-62 (L =-65 (L)=-45 (L =-35 (L '=-33 (L '=-33 (L '=-76 (L)	LC 13), 25=-511 (L C 15), 27=-68 (LC C 15), 29=-75 (LC C 15), 32=-22 (LC C 11), 34=-28 (LC C 10), 36=-28 (LC C 14), 40=-41 (LC C 14), 42=-68 (LC C 14), 44=-162 (LC	5-4-0, 5-4-0, 5-4-0, 5-4-0, 5-4-0, 5-4-0, C 10), 15), 15), 12), 15), 14), 14), 14),	BOT CHORD	13-14=-13 15-16=-13 17-18=-14 19-20=-17 21-22=-21 23-24=-34 44-45=-20 42-43=-20 42-43=-20 37-39=-20 35-36=-20 33-34=-20 30-32=-20 28-29=-20)2/196, 43-44)2/196, 41-42)2/196, 39-4()2/196, 36-33)2/196, 34-33)2/196, 32-33)2/196, 29-3()2/196, 27-28)2/196, 25-26	5=-1: 7=-1: 9=-1: 1=-1: 3=-34 4=-20 2=-20 0=-20 7=-20 5=-20 0=-20 8=-20	37/273, 55/321, 57/255, 56/203, 45/342, 02/196, 02/100/10000000000000000000000000000000		(1) zon and MW	29-0-5 te e; cantil	o 32-6- ever le	-10, Exterior(2E) off and right exposi- ;C-C for member	9-0 to 29-0-5, Interior 32-6-10 to 36-2-4 sed ; end vertical left s and forces & ber DOL=1.60 plate

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road Edenton, NC 27932

May 28,2025

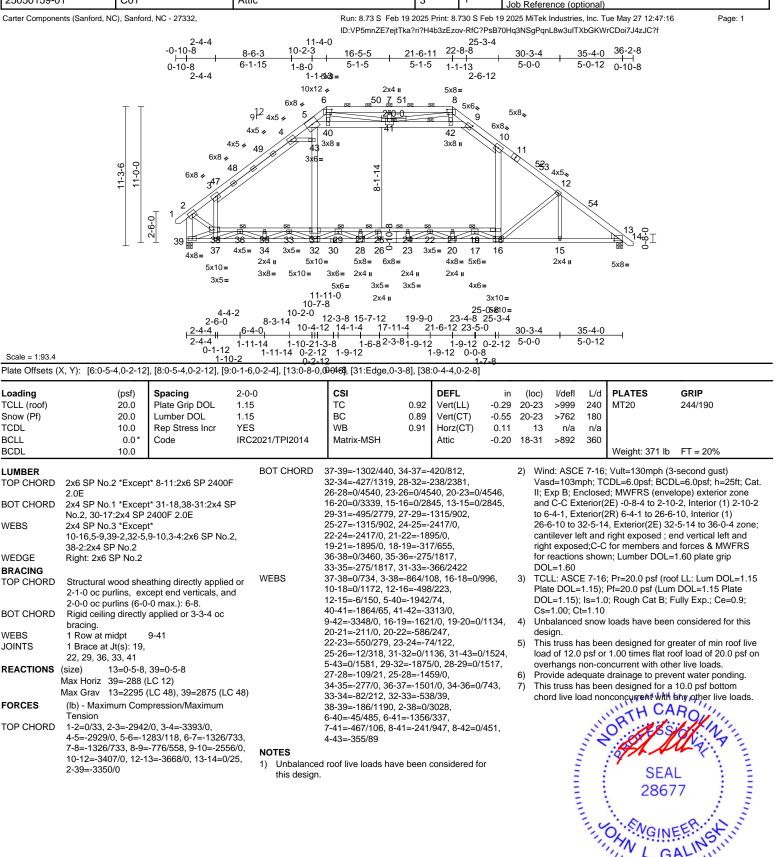
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	B06	Piggyback Base Supported Gable	1	1	I73765512 Job Reference (optional)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 622 lb uplift at joint
- 24.
- 15) N/A
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:16 ID:va6oJ_bKLZdwDLTYr9P9wpzF_UL-RfC?PsB70Hg3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2



May 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C01	Attic	3	1	Job Reference (optional)

May 28,2025

GA

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C01	Attic	3	1	I73765513 Job Reference (optional)

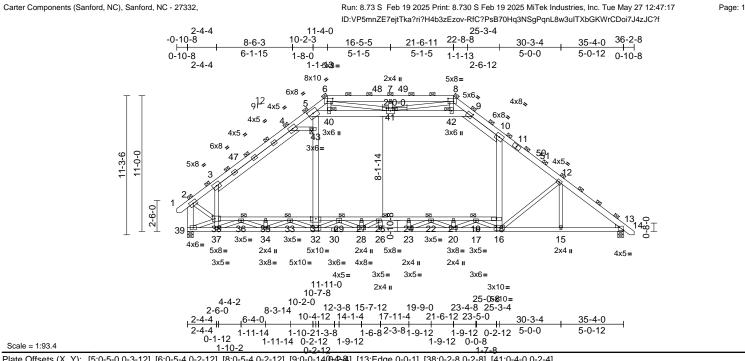
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 3-4, 9-10, 5-40, 40-41, 41-42, 9-42, 4-43; Wall dead load (5.0psf) on member(s).3-38, 10-18, 31-43, 5-43
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 29-31, 27-29, 25-27, 24-25, 22-24, 21-22, 19-21, 18-19, 36-38, 35-36, 33-35, 31-33
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:16 ID:VP5mnZE7ejtTka?ri?H4b3zEzov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

SEAL 28677

May 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C02	Attic Girder	2	2	Job Reference (optional)

Scale = 1:93.4

Continued on page 2

Plate Offsets (X, Y): [5:0-5-0,0-3-12]], [6:0-5-4,0-2-12], [8	0-5-4,0-2	-12], [9:0-0-14	00-42-84], [13:Edge,0)-0-1], [3	8:0-2-8,0-2-8]], [41:0-4	4-0,0-2	2-4]				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.99 0.92	Vert(CT)		20-2	3 >999 3 >946 3 n/a	L/d 240 180 n/a 360	PLATES MT20 Weight: 739 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD WEDS WEDGE BRACING TOP CHORD BOT CHORD FORCES TOP CHORD	Right: 2x4 SP No.3 2-0-0 oc purlins (5-4 verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 6, 8, 2, 19, 22, 29, 36, 33, 40, 41, 42, 43 (size) 13=0-5-8, Max Horiz 39=-432 (Max Grav 13=3443 ((lb) - Maximum Com Tension 1-2=0/50, 2-3=-4165 4-5=-4173/0, 5-6=-11 6-7=-1988/1100, 7-8 8-9=-1161/848, 9-10 10-12=-4743/0, 12-1 2-39=-4774/0 37-39=-1966/630, 34 32-34=-668/1826, 22 26-28=0/6659, 23-26	t* 30-17:2x4 SP No.1 t* .9-10,4-3:2x6 SP No. -10 max.), except er ated: Spacing > 2-8-0 applied or 6-0-0 oc 39=0-5-8 LC 10) (LC 44), 39=4313 (LC pression/Maximum 5/0, 3-4=-4765/0, 800/178, 3=-1988/1100, 0=-3523/0, 13=-5104/0, 13-14=0/ 4-37=-627/1142, 8-32=-369/3380, 6=0/6659, 20-23=0/6 6=0/3969, 13-15=0/3 7-29=-1809/1417, 24-25=-3459/23, -22=-2733/0, 9=-432/1105, 6=-357/2742,	= 2 id). (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	OTES 2-ply truss to (0.131"x3") r Top chords of staggered at Bottom chor 0-9-0 oc. Web connec 2 rows stagg All loads are except if not CASE(S) se provided to of unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef	37-38=0/1080, 3-3 16-18=0/1474, 10 12-16=-742/336, 1 5-40=-2857/120, 4 41-42=-4929/0, 9- 31-43=0/2309, 5 25-28=-2184/0, 27 16-19=-2414/0, 15 20-22=-830/374, 2 23-24=-98/211, 25 28-29=0/2300, 34 34-36=0/1087, 33 32-33=-853/48, 36 2-38=0/4351, 6-40 7-41=-701/156, 8 4-43=-538/141 b be connected tog hails as follows: 20-9-0 oc. ds connected as follow ted as follows: 2x- gered at 0-9-0 oc. considered equal ed as follows: 2x- gered at 0-9-0 oc. considered	-18=0/17 2-15=0/. 10-41=-2 42=-497 42=-497 -28=-16 -20=0/1 22-23=-8 -35=-420 -34=-99/. -39=-24 0=-71/63 41=-364. gether wi ws: 2x6 - ollows: 2 4 - 1 row ly applie back (B) nnection ls noted // been // c been	 46, 230, 756/107, 776/107, 775/107, 775, 25-26=-13/ 5/51, 25-26=-13/ 5/51, 735, 20-21=-3 29/414, 26(0, 1/0, 36-37=-22 362, 8/1805, 9, 6-41=-2061 7/1400, 8-42=0 th 10d - 2 rows x4 - 1 row at at 0-9-0 oc, 2 d to all plies, face in the LC is have been as (F) or (B), considered for sond gust) 3.0psf; h=25ft; a) exterior zon vertical left and solver the text of text	/436, 347/0, 224/0, //494, //632,	F E C C C C C C C C C C C C C C C C C C	Plate DOL= DOL=1.15) CS=1.00; C Jubalance: lesign. This truss h and of 12.0 Provide add This truss h shord live li This truss on the botti b-06-00 tall chord and a Ceiling dea 6-40, 40-41	=1.15); ; Is=1.0 it=1.10 d snow has bee 0 psf or non-cc equate has bee bad no has be by 2-0 any oth d load , (41-42);	Pf=20.0 psf (Lun 0; Rough Cat B; f v loads have beer en designed for g r 1.00 times flat rr oncurrent with oth drainage to prev en designed for a nconcurrent with een designed for a nconcurrent with een designed for a nconcurrent with een designed for all areas 00-00 wide will fit her members. (5.0 psf) on merr 2, 9-42, 4-43; Wa 10.18 31,423	ent water ponding. 10.0 psf bottom any other live loads a live load of 20.0ps here a rectangle between the bottom her(s). 3-4, 9-10, all dead load (5.0psf	s on s. sf f)
												Max	, 00 000E	

May 28,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C02	Attic Girder	2	2	I73765514 Job Reference (optional)

12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 29-31, 27-29, 25-27, 24-25, 22-24, 21-22, 19-21, 18-19, 36-38, 35-36, 33-35, 31-33

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:17 ID:VP5mnZE7ejtTka?ri?H4b3zEzov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

May 28,2025

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C03	Attic	4	1	Job Reference (optional)

25050159-01	1 C03		Attic		4	1		h Doforonoo (onti	onol)		173765515
	its (Sanford, NC), Sanfor	rd, NC - 27332,		Run: 8.73 S Feb		rint: 8.730 S		b Reference (opti 25 MiTek Industries,		May 27 12:47:18	Page: 1
		244	11-4		Tka?ri?H4b			3NSgPqnL8w3ulTXI	bGKWrCD	oi7J4zJC?f	
		2-4-4 -0-10-8	8-6-3 10-0-13		_ 0 11	25-3 2-9-13	30-	3-4 35-4	-0 37	-8-0	
		0-10-8 2-4-4	6-1-15 1-6-11 1-35	5-1-5 38=	5-1-5	1-3-32-5-	-7 5-0	0-0 5-0-1	2 2-	4-0	
		2.1.1	10x12		5	5x8=					
	т т		9 ¹² 6x8 ¢ 6			8 6x8					
			4x5 x 5 4x5 x 1	2*0-0		9	6x8💊				
		4x	5, 4	40 41		42 2x4 	10				
		6x8 🛩	50 43 3×6=		2		53	4x8 、			
	-7-14 11-0-0	6×8 48 347	9	8-1-14				4x5 1 2			
	12-7-14	3.		œ							
									54		
		2-6-0							13	, o	
		⊥ 39 5 36	4x5= 34 32	30 28 26 2	4 22 3 3x5= 3	20 17	16	15		0-8-∏ 14	
	\perp	5x10=	2x4 II 5x10 3x8= 3x5=			4x8= 4x5= 2x4 u		2x4 I	4x8=	\checkmark	
		3x5=	5x10=	5x6= 3x5= 3	x5=	4x6=					
			10-7-	11-0 2x4 n 8			3x10= 05&810=				
		4-4-3 2-6-0	8-3-14 10 4 1			23-4-8 2 12 23-5-0	25-3-4				
		<u> 2-4-4</u> 	-1 ⁰⁻⁴⁻⁰ 1 111	0-4-8 1-6-82-3-8)-2-12 5-0				
Scale = 1:95.5		0-1-12 1-10-	1-11-14 0-2-12	2 1-9-12 ´´	1-9-12 <u>1-9-1</u>	0-0-8	7-8				
late Offsets (X	(, Y): [6:0-5-4,0-2-12	2], [8:0-5-4,0-2-12], [1:	3:0-8-0,0-0-7], [31:Ebb	e80-3-8], [38:0-4-4,0	-2-8]						
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc) l/defl		LATES	GRIP
CLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		Vert(LL) Vert(CT)	-0.29 -0.55		240 M 180	T20	244/190
CDL	10.0	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.10	13 n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MSH	· · · · · ·	Attic	-0.19	18-31 >949	360 W	/eight: 364 lb	FT = 20%
UMBER			BOT CHORD	37-39=-1298/437,	34-37=-39	97/829,		2) Wind: ASCE	7-16; Vu	الt=130mph (3-	second gust)
	2x6 SP No.2 *Excep 2.0E	ot* 8-11:2x6 SP 2400F	=	32-34=-359/1322, 26-28=0/4467, 23-			0/4440				=6.0psf; h=25ft; Cat. ope) exterior zone
BOT CHORD	2x4 SP No.1 *Excep	ot* 31-18,38-31:2x4 S	P	16-20=0/3246, 15-	16=0/2811	1, 13-15=0		and C-C Exte	erior(2E)	-0-8-4 to 2-10-	2, Interior (1) 2-10-2
VEBS	No.2, 30-17:2x4 SP 2x4 SP No.3 *Excep	2400F 2.0E ot* 10-16:2x6 SP 2400)F	29-31=-395/2685, 25-27=-1282/780,						6-4-1 to 26-6-1 terior(2E) 34-3-	0, Interior (1) 4 to 37-9-10 zone;
	2.0E, 5-9,38-2:2x4 S	SP No.2,		22-24=-2341/0, 21 19-21=-1767/0, 18		,					d vertical left and forces & MWFRS
VEDGE	39-2,5-32,9-10,4-3:2 Right: 2x4 SP No.3	200 SP N0.2		36-38=0/3439, 35-	36=-238/1	735,		for reactions		_umber DOL=1	
BRACING	Structural wood she	athing directly applied	d or WEBS	33-35=-238/1735, 37-38=0/737, 3-38			0/1009,	DOL=1.60 3) TCLL: ASCE	7-16; Pr	=20.0 psf (roof	LL: Lum DOL=1.15
	3-2-2 oc purlins, ex	cept end verticals, an		10-18=0/1184, 12- 12-15=-10/145, 5-4							DOL=1.15 Plate Illy Exp.; Ce=0.9;
BOT CHORD	2-0-0 oc purlins (5-6 Rigid ceiling directly			40-41=-1690/57, 4	1-42=-306	61/0,		Cs=1.00; Ct=	=1.10	0	
VEBS	bracing. 1 Row at midpt	5-41		9-42=-3099/0, 16-1 20-21=-212/0, 20-2			0/1164,	 Unbalanced design. 	snow loa	ids have been o	considered for this
VEBS	2 Rows at 1/3 pts	9-41		22-23=-523/277, 2 29-32=-1852/0, 28							ater of min roof live
IOINTS	1 Brace at Jt(s): 19, 22, 29, 36, 33, 41			27-28=-115/19, 25	-26=-12/3	07,	0/4544	overhands n	on-concu	rrent with othe	r live loads.
		, 39=0-5-8 (I.C. 12)		25-28=-1418/0, 31 5-43=0/1576, 34-3	5=-277/0,	36-37=-1	508/0,	 6) Provide adec 7) All plates are 	auate dra 2x4 MT		nt water ponding. wise indicated.
		(LC 12) (LC 48), 39=2867 (LC	2 48)	34-36=0/741, 33-3 6-40=-2/504, 6-41=						CA.	
ORCES	(lb) - Maximum Com Tension	pression/Maximum		8-41=-249/1175, 8 38-39=-162/1194,	-42=0/381	,			Jun .	2TH UN	Philip
OP CHORD	1-2=0/33, 2-3=-2932			JU-JJ=-102/1194,	2-00=0/00	, 17, 4-40=	- 303/33		12	Steps!	1. A.L.
		360/50, 6-7=-1572/53 =-799/377, 9-10=-254	1/0 NOTES	d roof live loads hav	e heer oo	insiderad	for	1	4	EN M	KY E
	10-12=-3378/0, 12-1 2-39=-3339/0	13=-3628/0, 13-14=0/8	89, this design		e neen co	SUCIEU				SEAL	. 1 1
	2 00- 0000/0							Ē		2867	7 🗄 🗄
								1			ER. 54
								1	1.40	NGINE	ERIE
									111	NICA	LINSII
									.,	111. GF	in the second se
										May	28 2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

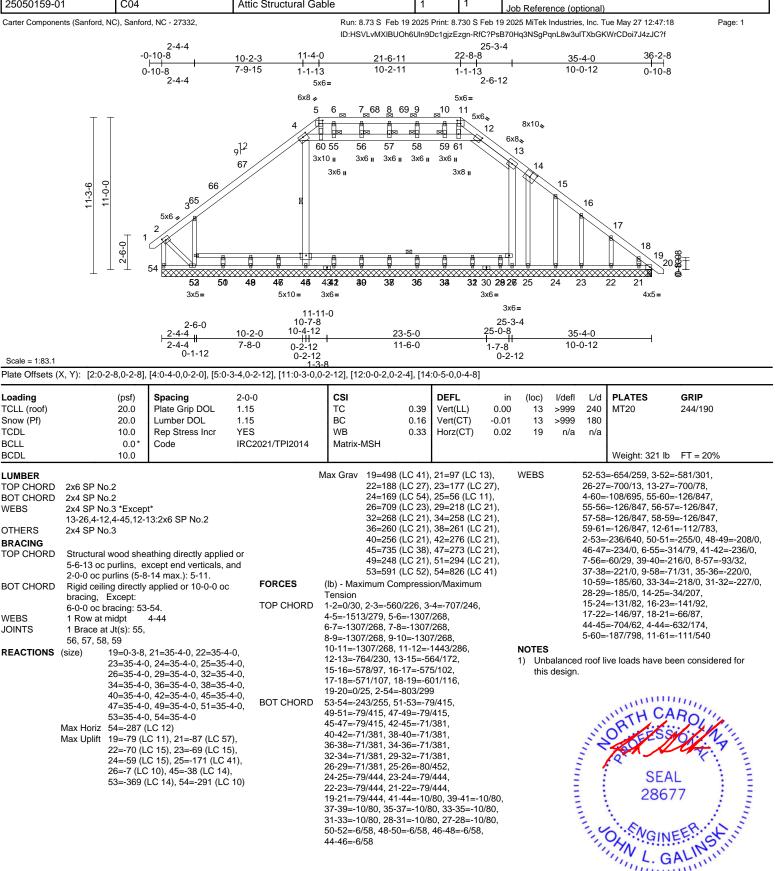
May 28,2025

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C03	Attic	4	1	I73765515 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 3-4, 9-10, 5-40, 40-41, 41-42, 9-42, 4-43; Wall dead load (5.0psf) on member(s).3-38, 10-18, 31-43, 5-43
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 29-31, 27-29, 25-27, 24-25, 22-24, 21-22, 19-21, 18-19, 36-38, 35-36, 33-35, 31-33
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:18 ID:VP5mnZE7ejtTka?ri?H4b3zEzov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


May 28,2025

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	C04	Attic Structural Gable	1	1	I73765516 Job Reference (optional)

May 28,2025

Continued on page 2

TCDL

BCLL

BCDL

WEBS

WEBS

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH		
25050159-01	C04	Attic Structural Gable	1	1	Job Reference (optional)	73765516	
Carter Components (Sanford N	C) Sanford NC - 27332	Run: 8.73 S. Feb 19.2025 Print: 8.730 S.Feb 19.2025 MiTek Industries. Inc. Tue May 27.12.47.18					

ID:HSVLvMXIBUOh6UIn9Dc1gjzEzgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-4 to 2-10-2, Interior (1) 2-10-2 to 6-4-1, Exterior(2R) 6-4-1 to 26-8-2, Interior (1) 26-8-2 to 32-5-0, Exterior(2E) 32-5-0 to 36-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Ceiling dead load (5.0 psf) on member(s). 12-13, 4-60, 55-60, 55-56, 56-57, 57-58, 58-59, 59-61, 12-61; Wall dead load (5.0psf) on member(s).3-52, 13-27, 4-44
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 41-44, 39-41, 37-39, 35-37, 33-35, 31-33, 28-31, 27-28, 50-52, 48-50, 46-48, 44-46
- 14) N/A
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

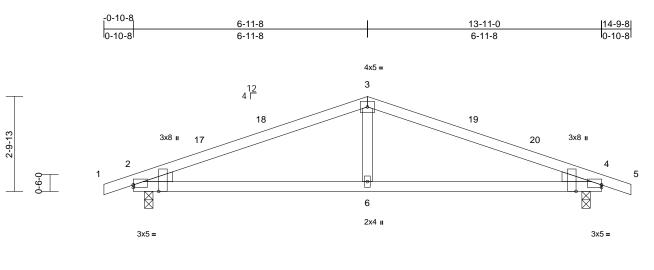
HON SUL ORT SEAL 28677 L. GA

May 28,2025

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	D01	Common	4	1	I73765517 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 ID:nqLL14Jf5JAmMe82YAnlwAzF_pM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

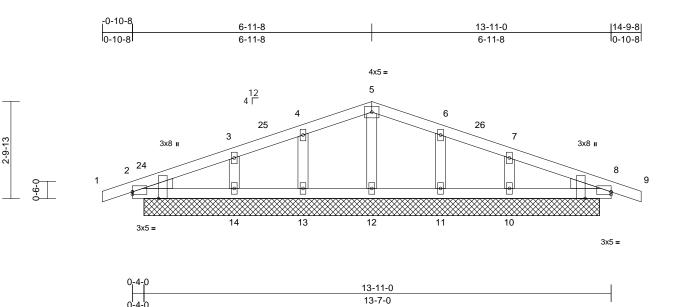
2-11-0

Plate Offsets (X, Y); [2:Edge.0-0-14], [2:0-2-5.Edge], [4:Edge.0-0-14], [4:0-2-5.Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.56 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.13 0.02	(loc) 6-11 6-11 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASG Vasd=103 II; Exp B; I and C-C E to 3-11-8, 9-11-8 to cantilever right expor members a	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 4-1-1 oc purlins. Rigid ceiling directly a bracing. (size) 2=0-3-0, 4- Max Horiz 2=41 (LC 1 Max Uplift 2=-221 (LC Max Grav 2=708 (LC (lb) - Maximum Comp Tension 1-2=0/17, 2-3=-901/5 4-5=0/17 2-6=-458/775, 4-6=-4 3-6=-116/268	applied or 8-6-15 oc =0-3-0 (4) C 10), 4=-221 (LC 11 21), 4=708 (LC 22) pression/Maximum 94, 3-4=-901/594, 58/775 been considered for (3-second gust) DL=6.0psf; h=25f; (velope) exterior zone -1-8, Interior (1) 2-1- 9-11-8, Interior (1) 9-8 to 14-9-8 zone; end vertical left and exposed;C-C for or reactions shown;	6) 7) 8) LO Cat. -8	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 j overhangs n This truss ha load of 12.0 j overhangs n the bottor 3.06-00 tall b chord and ar u UPLIFT at jt(snow loads have b s been designed for on-concurrent with s been designed for d nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will y other members. simpson Strong-Tie d to connect truss s) 2 and 4. This co c consider lateral for	Lum DC B; Fully eeen cor or greate at roof k other lin or a 10.0 vith any for a liv s where l fit betw e connee to bear	L=1.15 Plate Exp.; Ce=0.9 Isidered for the er of min roof bad of 20.0 p re loads. 0 psf bottom other live loa e load of 20.1 a rectangle reen the botthe stors ng walls due	e 9; f live f live sf on ads. 0psf om				ORTH CA ORTH CA SEA 286	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 28,2025



GA minin

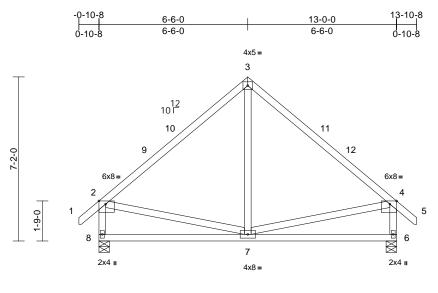
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	D02	Common Supported Gable	1	1	I73765518 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 ID:1TK06ScRmkTOI44B0PU7IMyaR2O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.5

2-11-0


Plate Offsets (Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [8:Edge,0-0-14], [8:0-2-5,Edge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	11-4 15 15 ES C2021/TP	PI2014	CSI TC BC WB Matrix-MSH	0.28 0.19 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
	IBER CHORD 2x4 SP No.2 CHORD 2x4 SP No.2 IERS 2x4 SP No.2 IERS 2x4 SP No.2 Right: 2x4 SP No.2 Right: 2x4 SP No.2 CING Structural wood sheathing directly applied or 10-0-0 oc purlins. CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. CTIONS (size) 2=13-3-0, 8=13-3-0, 10=13-3-0, 11=13-3-0, 12=13-3-0, 13=13-3-0, 14=13-3-0 Max Horiz 2=40 (LC 14) Max Uplift 2=-1 (LC 21), 8=-68 (LC 36), 10=-43 (LC 15), 11=-34 (LC 11), 12=-46 (LC 10), 13=-22 (LC 14), 14=-73 (LC 10) Max Grav 2=0 (LC 10), 8=124 (LC 22), 10=293 (LC 22), 11=199 (LC 22), 12=407 (LC 21), 13=120 (LC 21), 14=423 (LC 21)			 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 3-11-8, Corner(3R) 3-11-8 to 9-11-8, Exterior(2N) 9-11-8 to 11-9-8, Corner(3E) 11-9-8 to 14-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); IS=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 								WITH CA	Rout
FORCES	Tension 1-2=0/16, 2-3=-213/- 4-5=-119/399, 5-6=-	418, 3-4=-160/389, 118/383, 6-7=-165/380,	9) Th ch	nis truss ha nord live loa	spaced at 2-0-0 oc s been designed fo d nonconcurrent v as been designed	or a 10. vith any	other live loa				N.V.	A A	Day
BOT CHORD	7-8=-210/393, 8-9=0 2-14=-354/252, 13-1 12-13=-354/252, 11- 10-11=-354/252, 8-1	4=-354/252, 12=-354/252,	3-0	06-00 tall b	n chord in all areas y 2-00-00 wide wil y other members.			om				SEA 2867	L 77
WEBS NOTES 1) Unbalance this design	5-12=-349/176, 4-13 3-14=-266/148, 6-11 7-10=-205/123 ed roof live loads have	=-141/106, =-177/124,									A MARINE STREET	SEA 2867	EER. Strung

May 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	E01	Common	3	1	I73765519 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 ID:wb1oEU3ot9zDodjcIXhweSzF_Yu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

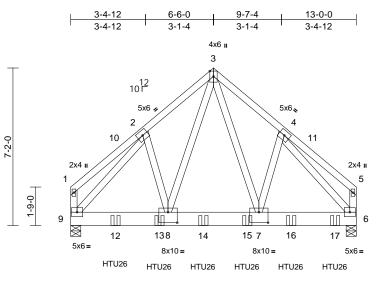
Plate Offsets (X, Y):	[2:0-3-8,Edge],	[4:0-3-8,Edge]
	[2.0 0 0,Eugo],	[+.0 0 0, Lugo]

Scale = 1:50.3

Plate Offsets ((X, Y): [2:0-3-8,Edge],	[4:0-3-8,Edge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.35 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
this design 2) Wind: ASG Vasd=103 II; Exp B; and C-C E to 3-6-0, E 10-9-14, E cantilever right expo for reactio DOL=1.6C 3) TCLL: AS Plate DOL	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-8-3 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-5-8, & Max Horiz 8=196 (LC Max Uplift 6=-49 (LC Max Uplift 6=-49 (LC Max Grav 6=648 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-8=-590/ 7-8=-208/283, 6-7=- 3-7=0/226, 2-7=-59/ ed roof live loads have n. CE 7-16; Vult=130mph Binch; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) 10-9-14 to Exterior(2E) 10-9-14 to Exterior(2E) 10-9-14 to Staterior(2E) 10-9	athing directly applied cept end verticals. applied or 10-0-0 oc 3=0-5-8 C 13) C 15), 8=-49 (LC 14) C 22), 8=648 (LC 21) pression/Maximum 139, 3-4=-546/139, 171, 4-6=-590/160 98/208 224, 4-7=-61/224 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 2-2-2, Interior (1) 2-2 6-0, I	d or 6) 7) 8) L(Cat. 3 -2 to 1 5 .15	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jt(snow loads have b s been designed fr bor-concurrent with s been designed fr ad nonconcurrent with s been designed fr in chord in all areas y 2-00-00 wide wil y other members. Simpson Strong-Tie d to connect truss s) 8 and 6. This co consider lateral for Standard	or great at roof le other li or a 10. vith any for a liv s where l fit betw e conne to bear nnectio	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due	f live osf on ads. Opsf com				SEA OKWGIN CHINA	EER. Chunning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 28,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	E02	Common Girder	1	2	I73765520 Job Reference (optional)

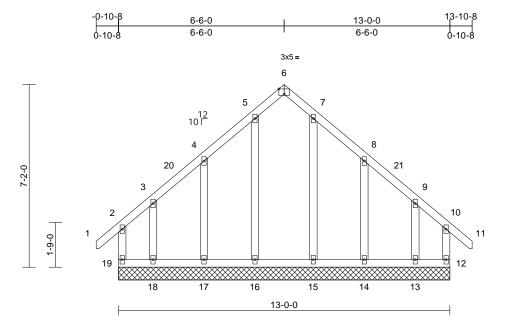
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 ID:ySTbSlhb7CBDnk89ITG2qHzF_9Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-5-3	8-6-13	13-0-0
4-5-3	4-1-11	4-5-3

Scale = 1:52.5

Plate Offsets	(X, Y): [7:0-5-0,0-5-12], [8:0-5-0,0-5-12]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.27 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 227 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x8 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 5-9-14 oc purlins, e Rigid ceiling directly bracing. (size) 6=0-5-8, S Max Horiz 9=-172 (L Max Uplift 6=-274 (L Max Grav 6=4618 (L	applied or 10-0-0 oc 9=0-5-8 C 10) C 13), 9=-428 (LC 12) .C 6), 9=4922 (LC 5)	4) or 5) 6)	this design. Wind: ASCE Vasd=103mp II; Exp B; En- cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15; I Cs=1.00; Ct= Unbalanced design.	snow loads have b	h (3-sec 3CDL=6 nvelope 1 ; end v 60 plate (roof Ll Lum DC B; Fully een cor	cond gust) .0psf; h=25ft; a) exterior zor vertical left an grip DOL=1. .: Lum DOL=: L=1.15 Plate Exp.; Ce=0.9 asidered for th	; Cat. ne; d 60 1.15 ;			=-1489	()	3), 14=-1489 (B), =-442 (B)	
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 6=4618 (LC 6), 9=4922 (LC 5) ORCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1-2=-510/100, 2-3=-4407/490, 3-4=-4293/465, 4-5=-470/88, 1-9=-414/90, 5-6=-386/81 OT CHORD 8-9=-316/3083, 7-8=-220/2476, 6-7=-237/3001 /EBS 3-7=-288/2634, 4-7=-130/998, 3-8=-355/2933, 2-8=-135/1019,				 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 									
 2-9=-4497/377, 4-6=-4419/362 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-6-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.) Use Simpsor 14-10dx1 1/2 max. starting connect truss) Use Simpsor 14-10dx1 1/2 12-0-8 from t of bottom ch) Fill all nail ho DAD CASE(S) Dead + Sno Increase=1 Uniform Los	les where hanger i Standard ow (balanced): Lum 15	6 (10-1) ent space eft end of botton 6 (20-1) Girder) lect trus is in cor aber Inc	eed at 2-0-0 o to 10-0-8 to n chord. Od Girder, or equivalent s(es) to back htact with lum	at face ber.		. and the second s	in N State	SEA 2867	ER. 54.	


TRENCO A MITCH Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	E03	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 ID:hs_OLPz9_OqUDEXuG81pmYzF_Z1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

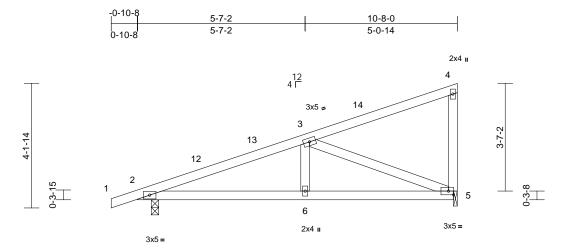
Scale = 1:45.2

Plate Offsets (X, Y): [6:0-2-8,Edge]

1 1010 0110010 ((i, i): [0:0 ± 0;±0g0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.12 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=13-0-(18=13-0-(Max Horiz 19=196 (I Max Uplift 12=-131 (14=-104 (18=-167 (I Max Grav 12=212 (I 14=250 (I 16=264 (I	applied or 6-0-0 oc 0, 13=13-0-0, 14=13-0- 0, 16=13-0-0, 17=13-0- 0, 19=13-0-0	or 0, 3) 0, 4) 4), 0) 1, 5) 6)	Vasd=103mp II; Exp B; En and C-C Extt to 3-4-4, Extt to 10-9-14, E cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha	7-16; Vult=130m sh; TCDL=6.0psf; closed; MWFRS (prior(2E) -0-9-14 (prior(2R) 3-4-4 to and right exposed t and right exposed t; C-C for membel shown; Lumber E ed for wind loads ids exposed to wid alified building de 7-16; Pr=20.0 psf is=1.0; Rough Ca =1.10 snow loads have s been designed psf or 1.00 times i	BCDL=((envelopto 2-2-2, 9-7-12, I 14 to 13- ed; end v rs and fo DOL=1.6(in the pl nd (norm End Deta esigner a of (roof LI (Lum DC t B; Fully been con for great	6.0psf; h=25ft; a) exterior zor Interior (1) 2 nterior (1) 9 9-14 zone; vertical left an rces & MWFR 0 plate grip ane of the tru al to the face ils as applical s per ANSI/TF DL=1.15 Plate Exp.; Ce=0.5 ensidered for th er of min roof	ne 2-2 r-12 kd RS ss), ble, PI 1. 1.5 e 9; ive					
FORCES	(lb) - Maximum Com Tension 2-19=-156/94, 1-2=0			All plates are	on-concurrent with 2x4 MT20 unles es continuous bot	s otherwi	se indicated.				an'	OR ESS	ROUL
BOT CHORD	18-19=-103/109, 17- 16-17=-103/109, 15- 14-15=-103/109, 13- 12-13=-103/109	5/195, 8-9=-66/87, 1==0/37, 10-12=-151/88 -18=-103/109, -16=-103/109, -14=-103/109,	9) 3 10) 11)	 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 								• •	
WEBS NOTES 1) Unbalance this design	14-15=-103/109, 13-14=-103/109, 12-13=-103/109 121 5-16=-210/0, 7-15=-210/0, 4-17=-209/164, 3-18=-146/125, 8-14=-209/160, 9-13=-143/124 12) * This truss has been designed for all ive load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. ced roof live loads have been considered for Considered for												EER. ALING

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

May 28,2025

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	F01	Monopitch	2	1	I73765522 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:19 $ID:9J?nSM2QtleiTNQUoeql4rzF_lq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Page: 1

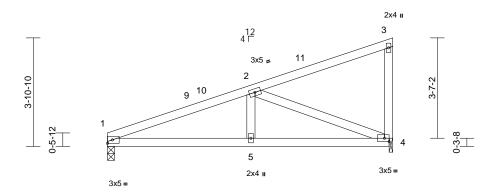
0-5-8	5-7-2	10-6-8	10-8-0
0-5-8	5-1-10	4-11-6	0-1-8

0			0-5-8							0-1-8			
Scale = 1:38.4		i			i							i	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.27 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=147 (LC Max Uplift 2=-190 (L Max Grav 2=559 (LC (Ib) - Maximum Com Tension	cept end verticals. applied or 9-2-5 oc 5=0-1-8 C 13) C 10), 5=-159 (LC 1 C 21), 5=525 (LC 21) ppression/Maximum	ed or 7 8 9 9 0) 1	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Bearings are Bearing at jo using ANSI/7 designer shc Provide mec bearing plate One H2.5A S recommende UPLIFT at jt(Is been designed as been designed has been designe n chord in all area by 2-00-00 wide w hy other members assumed to be: int(s) 5 considers FPI 1 angle to grat hanical connection e at joint(s) 2, 5. Simpson Strong-T d to connect trus (s) 2 and 5. This of t consider lateral	with any d for a liv as where vill fit betw , Joint 5 \$ parallel in formul y of bear on (by oth Te conne to bear s to bear connectio	other live load e load of 20. a rectangle veen the bott SP No.3. to grain value a. Building ing surface. ers) of truss ctors ing walls due	Opsf om e to					
	1-2=0/17, 2-3=-858/- 4-5=-187/105 2-6=-404/775, 5-6=- 3-6=-80/216, 3-5=-8	404/775	L	OAD CASE(S)	Standard								
 Vasd=103n II; Exp B; E and C-C Ey to 7-64, Ey and right ex porch left a forces & M DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 3) Unbalanced design. 4) This truss h 	E 7-16; Vult=130mph nph; TCDL=6.0psf; Bi nclosed; MWFRS (er kterior(2E) -0-10-8 to 1 kterior(2E) 7-6-4 to 10 wposed; end vertical ind right exposed;C-C WFRS for reactions s plate grip DOL=1.60 E 7-16; Pr=20.0 psf (L ; Is=1.0; Rough Cat E t=1.10 d snow loads have be has been designed for 0 psf or 1.00 times flat	CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 -6-4 zone; cantileven left and right expose for members and hown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9 even considered for th r greater of min roof	e I-8 r left d; .15 ; is								and a state of the	SEA 286	EER. Stuning

- э, I шу хp., y Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this
- design. 4) This truss has been designed for greater of min roof live
- load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

May 28,2025

minin


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	F02	Monopitch	4	1	I73765523 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:GvbiD6mwqAlkl5J6aNwunUzF_nU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

l	5-1-10	10-1-0	10-2-8
ſ	5-1-10	4-11-6	0-1-8

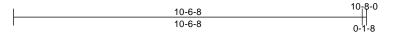
Casla 4:44.0				511	0		4110		0-1-8				
Scale = 1:41.2													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.40	Vert(LL)	0.03	5-8	>999	240	MT20	244/190
Snow (Pf) TCDL	20.0	Lumber DOL	1.15 YES		BC WB	0.28 0.45	Vert(CT)	-0.04	5-8 4	>999	180 n/a		
BCLL	10.0 0.0*	Rep Stress Incr Code		1/TPI2014	Matrix-MSH	0.45	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	11(0202	1/11/2014	Matrix-Mort							Weight: 46 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-0,4 Max Horiz 1=139 (LC Max Uplift 1=-141 (L Max Grav 1=464 (LC	cept end verticals. applied or 8-6-4 oc 4=0-1-8 C 13) C 10), 4=-162 (LC 1 C 21), 4=530 (LC 21)	8) 9) 0)	on the bottor 3-06-00 tall b chord and ar Bearings are Bearing at jo using ANSI/I designer sho Provide mec bearing plate One H2.5A S recommende UPLIFT at jt(and does no	Simpson Strong-Tie ed to connect truss s) 1 and 4. This co t consider lateral fo	s where Il fit betv Joint 4 S parallel t n formula of bear n (by oth e conne to bear to bear onnectio	a rectangle ween the bott SP No.3 . o grain value a. Building ng surface. ers) of truss ctors ing walls due	om e to e to					
	(lb) - Maximum Com Tension			DAD CASE(S)	Standard								
TOP CHORD BOT CHORD	1-2=-879/481, 2-3=- 1-5=-463/796, 4-5=-	,)4										
WEBS	2-5=-94/219, 2-4=-8												
NOTES	,												
Vasd=103 II; Exp B; I and C-C E 7-0-12, Ex left and rig exposed; r and forces DOL=1.60 2) TCLL: AS(Plate DOL DOL=1.15 Cs=1.00; (CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bt Enclosed; MWFRS (er staterior(2E) 0-0-0 to 3-i tterior(2E) 7-0-12 to 10 ght exposed ; end vertii porch left and right exp s & MWFRS for reactio op late grip DOL=1.60 CE 7-16; Pr=20.0 psf (L i=1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; ivelope) exterior zon 0-0, Interior (1) 3-0-(i-0-12 zone; cantilev cal left and right ivosed;C-C for memb ins shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate s; Fully Exp.; Ce=0.9	ne D to Per Ders 1.15 9;									SEA 286	ROLLA

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

TRENCO A MiTek Affiliate

L. GAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	F03	Monopitch Supported Gable	1	1	I73765524 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 $ID:_?Pus1XWS1h0GXUA82Y8iGzF_IC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

-0-10-8 10-8-0 10-8-0 0-10-8 7 6 12 4 Г 18 5 3-7-2 4 b 4-1-14 17 3 P 16 Fe 2 0-3-15 0-3-8 8 10 9 12 11

3x5 =

Scale = 1:34.8

				_								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	only. For see Stan or consul 3) TCLL: AS	CSI TC BC WB Matrix-MSH signed for wind loads studs exposed to wi dard Industry Gable it qualified building de SCE 7-16; Pr=20.0 ps L=1.15; Pf=20.0 ps	ind (norm End Deta esigner a sf (roof Ll	ane of the tru al to the face ils as applica s per ANSI/TI _: Lum DOL=	e), ble, PI 1. 1.15	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD	6-0-0 oc purlins, ex		d or DOL=1.1 Cs=1.00;	5); ls=1.0; Rough Ca Ct=1.10	t B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD REACTIONS FORCES TOP CHORD	bracing. (size) 2=10-2-8, 10=10-2-1 Max Horiz 2=147 (LC Max Uplift 2=-40 (LC 9=-35 (LC 11=-37 (L Max Grav 2=238 (LC 9=230 (LC 11=223 (I (lb) - Maximum Com Tension 1-2=0/17, 2-3=-110/ 4-5=-79/87, 5-6=-69 7-8=-67/38	C 10), 8=-13 (LC 11), C 10), 10=-34 (LC 14), C 10), 12=-37 (LC 14), C 21), 8=83 (LC 21), C 21), 10=214 (LC 2 ⁻¹ , LC 21), 12=96 (LC 1) hpression/Maximum (116, 3-4=-91/101,	design. 5) This truss load of 12 verhang 6) All plates 7) Gable stu 7) Gable stu 8) This truss 4) chord live 3-06-00 t chord and 10) Provide n bearing p	ted snow loads have thas been designed 2.0 psf or 1.00 times s non-concurrent wit are 2x4 MT20 unles ds spaced at 2-0-0 of has been designed load nonconcurrent ss has been designed tom chord in all area all by 2-00-00 wide w d any other members nechanical connectic late capable of withs lb uplift at joint 2.	for great flat roof le h other lin s otherwin c. for a 10.1 with any d for a liv d for a l	er of min roof oad of 20.0 p ve loads. se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss f	f live sf on ads. Opsf om to				тн с4	ROMA
BOT CHORD WEBS	9-10=-45/65, 8-9=-4 6-9=-187/111, 5-10=	2=-45/65, 10-11=-45/ 5/65 =-177/91, 4-11=-175/								N.C.	OF	A Start
Vasd=103 II; Exp B; and C-C E to 7-6-4, E and right e C for mem	3-12=-119/74 CE 7-16; Vult=130mph Smph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to Exterior(2E) 7-6-4 to 10 exposed ; end vertical nbers and forces & MW umber DOL=1.60 plate	CDL=6.0psf; h=25ft; nvelope) exterior zon 2-1-8, Interior (1) 2-1 0-6-4 zone; cantilever left and right exposed VFRS for reactions	e -8 r left							J. J	SEA 286	EER. A.

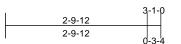
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 28,2025

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	F04	Monopitch Supported Gable	1	1	I73765525 Job Reference (optional)

3-1-0

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:05Rb2nqdzWbg0FxJai2r9FzF_oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚

1-6-2

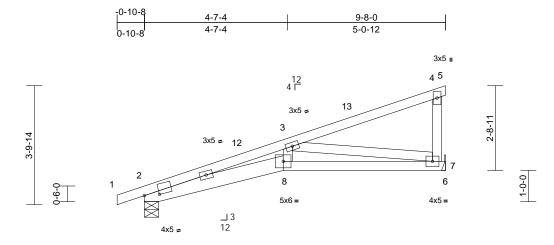
12 4 Г 2x4 II 3 2 le 1-6-2 1 0-5-12 0 æ 4

2x4 =

Scale = 1:22.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021,	/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-1-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=3-1-0, 3 Max Horiz 1=43 (LC Max Uplift 1=-8 (LC 4=-80 (LC Max Grav 1=126 (LC 4=375 (LC	cept end verticals. applied or 10-0-0 oc 3=3-1-0, 4=3-1-0 13) 10), 3=-183 (LC 20), 5 (4) C 20), 3=49 (LC 14),	7) 8) d or	This truss had chord live load * This truss h on the bottom 3-06-00 tall b chord and an Provide med	spaced at 2-0-0 oc s been designed f id nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta	or a 10.0 vith any for a liv s where I fit betv (by oth	other live load e load of 20.0 a rectangle veen the botto ers) of truss to)psf om o					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-30/49, 2-3=-65 1-4=-47/54												
NOTES 1) Wind: ASC Vasd=103r II; Exp B; E and C-C E; exposed; c members a Lumber DC 2) Truss desig only. For s see Standa or consult (3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalance design.	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; pL=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANS/ITP roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9 seen considered for th	e , , le, I 1. .15 ;							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and	SEA 2867	EER.St.

May 28,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	G01	Monopitch	9	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:Dy_JjEEKvGAptckEgqDBdczF_tK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

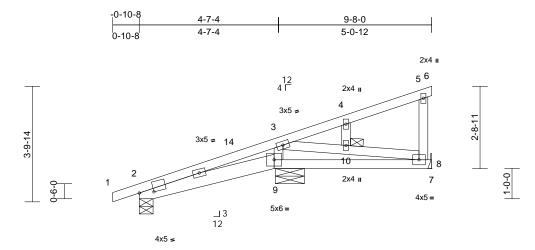
Plate Offsets (X, Y): [2:0-5-12,0-1-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.52 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.05	(loc) 8 7-8 7	l/defl >999 >872 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-5-5 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=121 (LC Max Uplift 2=-81 (LC Max Grav 2=491 (LC) 	athing directly applie cept end verticals. applied or 7-11-15 of 7= Mechanical C 11) C 10), 7=-74 (LC 14) C 21), 7=524 (LC 21)	эс 7) 8)	load of 12.0 overhangs n This truss ha chord live loa * This truss l on the botton 3-06-00 tall l chord and ar Refer to gird Bearing at jc using ANSI/ designer sho	as been designed for psf or 1.00 times fit on-concurrent with as been designed for ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil y other members. er(s) for truss to tru- int(s) 2 considers p ICPI 1 angle to grain build verify capacity hanical connection	at roof li other li or a 10. vith any for a liv s where Il fit betw uss com parallel n formul of bear	bad of 20.0 p ve loads. 2) psf bottom other live load e load of 20. a rectangle veen the bott nections. to grain value a. Building ing surface.	eds. Opsf com					
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-1714		10	7.	e capable of withsta Simpson Strong-Tie	0	•	joint					
BOT CHORD WEBS NOTES	4-5=-8/0, 4-7=-224/1	119 =-544/1531, 6-7=0/0		recommende	ed to connect truss (s) 2. This connecti isider lateral forces	to bear on is fo	ing walls due						
 Wind: AS Vasd=100 II; Exp B; and C-C 1-11-13 tt cantileven right expo for reactit DOL=1.6 TCLL: AS 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to o 6-8-0, Exterior(2E) 6- r left and right exposed based;C-C for members ons shown; Lumber DO 0 SCE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L	CDL=6.0psf; h=25ft; ivelope) exterior zon 1-11-13, Interior (1) 8-0 to 9-8-0 zone; ; end vertical left and and forces & MWFR iL=1.60 plate grip roof LL: Lum DOL=1	Cat. le d .S		Clanderd					authus.	and a second	OR TH CA OR SEA SEA 2867	L

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

May 28,2025

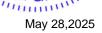
Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	G02	Monopitch Structural Gable	1	1	I73765527 Job Reference (optional)

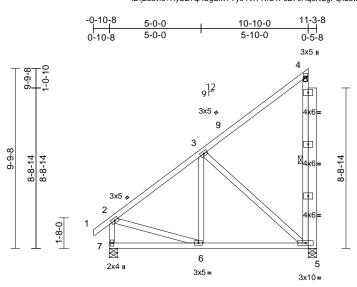
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:j7LOAWWFe1s7RV5MhJbHFGzF_qO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

0-5-8	³ 4-5-8	5-5-8	9-4-12	9-8-0
0-5-8	4-0-0	1-0-0	3-11-4	0-3-4

Plate Offsets (X, Y): [2:0-5-12,0-1-0]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	FPI2014	CSI TC BC WB Matrix-MSH	0.31 0.18 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 10 (size) 2=0-5-8, 1 Max Horiz 2=121 (L0 Max Uplift 2=-43 (L0 9=-73 (L0 (Max Grav 2=221 (L1 9=513 (L0 (lb) - Maximum Com Tension 1-2=0/17, 2-3=-144/ 4-5=-65/30, 5-6=-8/4 2-9=-108/202, 8-9=- 3-9=-377/185, 3-10=	eathing directly applied cept end verticals. ⁷ applied or 10-0-0 oc 8= Mechanical, 9=0-1 ⁷ C 11) C 10), 8=-39 (LC 14), C 14) C 21), 8=281 (LC 21), C 21) npression/Maximum (55, 3-4=-105/24, 0, 5-8=-177/93	3) T F or C 4) U 5) T 1-8 6) C 7) T 8) * 3 6) C 7) T 7) T 6) C 7) T 7) T 7) T 6) C 7) T 7) T 7) T 7) T 7) T 7) T 7) T 7) T	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Jnbalanced design. This truss ha coad of 12.0 overhangs n Gable studs This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and ar Refer to gird Bearing at jo using ANSI/7 designer sho	snow loads have b as been designed for perfor 1.00 times fli- on-concurrent with spaced at 2-0-0 oc is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- int(s) 2 considers p FPI 1 angle to grain uld verify capacity	d (norm nd Deta signer a (roof Ll Lum DC B; Fully been col or great at roof I other li : or a 10. vith any for a liv s where I fit betv uss com barallel o formul of bear	al to the face ils as applicates s per ANSI/T ELL and DOL= L=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott nections. to grain value a. Building ing surface.	e), hble, PI 1. 1.15 e 9; his f live sof on ads. Opsf com				Weght 47 ID	
Vasd=103 II; Exp B; and C-C E 1-11-13 to cantilever right expo	4-10=-71/47 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 0 6-8-0, Exterior(2E) 6- left and right exposed sed;C-C for members ons shown; Lumber DC	b 8 Cat. 12) (12)	bearing plate 3 and 73 lb u One H2.5A S ecommende JPLIFT at jt(hanical connection e capable of withsta uplift at joint 9. Simpson Strong-Tie ed to connect truss s) 2. This connecti sider lateral forces Standard	e conne to bear on is fo	89 lb uplift at ctors ing walls due	joint e to			and Street	O SEA 286 O MGIN	EEP. Stur	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	H01	Monopitch	1	1	I73765528 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:jzudvf5?HySB7qACgSkvP7y94VX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:62.8
---------	--------

Scale = 1:62.8					-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-5-8, 7	cept end verticals. applied or 10-0-0 oc 4-5 7=0-5-8	 load of 12 overhang 5) This truss chord live 6) * This trus 6) * This trus on the bo 3-06-00 t chord and 7) Bearing a using AN designer 	CSI TC BC WB Matrix-MSH has been designed 0.0 psf or 1.00 times s non-concurrent wi has been designed load nonconcurren s has been designed tom chord in all are all by 2-00-00 wide v d any other member t joint(s) 5 considers SI/TPI 1 angle to gra should verify capacia A Simpson Strong-	flat roof I th other li I for a 10. t with any ed for a liv as where will fit betw s. s parallel ain formul ty of bear	oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.0 a rectangle ween the bott to grain value a. Building ing surface.	sf on Ids. Opsf om	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%	
FORCES	Max Horiz 7=344 (LC Max Uplift 5=-200 (L Max Grav 5=955 (LC (lb) - Maximum Com	C 14), 7=-14 (LC 14) C 21), 7=535 (LC 21)) UPLIFT a) and does 9) In the LO	nded to connect trus t jt(s) 7 and 5. This not consider lateral AD CASE(S) section	connectic forces. n, loads a	n is for uplift	only						
Vasd=103 II; Exp B; I and C-C E to 7-8-4, E and right e C for mem	4-5=-695/109, 2-7=-	494/139 140/461 3/196, 2-6=-49/314 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-2-1, Interior (1) 2-2 0-8-4 zone; cantilever left and right exposer /FRS for reactions	LOAD CASE 1) Dead + Increase Uniform Vert: Concen Cat. Vert: te 2-1 r left	ss are noted as from (S) Standard Snow (balanced): Lu =1.15 Loads (lb/ft) 1-2=-60, 2-4=-60, 5- rated Loads (lb) 4=-380 (F)	umber Inc		Plate			No.	SEA 286	R N N N L 77	A THURSDAY AND A THURSDAY
Plate DOL DOL=1.15 Cs=1.00; (CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	;							S. S	NGIN NN L. G	EER.SK	unin.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

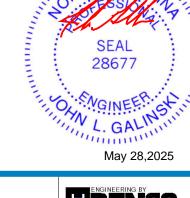
(((())))))) May 28,2025

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	H02	Monopitch	1	1	I73765529 Job Reference (optional)

Scale = 1:62.8

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:jzudvf5?HySB7qACgSkvP7y94VX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


11-3-8 || 0-5-8 5-0-0 10-10-0 5-0-0 5-10-0 3x5 II 3 --10 8-6-6 9¹² 3x5 🍫 8 2 9-9-8 8-8-14 8-8-14 8-8-14 3x5 🖌 1 1-8-0 1-8-0 X 5 2x4 u 4 3x5= 3x10=

		i			•		·						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.28 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING TOP CHORD Sti BOT CHORD Rig WEBS 1 F REACTIONS (size Max Max	D-0 oc purlins, exe gid ceiling directly acing. Row at midpt e) 4=0-5-8, 6 (Horiz 6=322 (LC (Uplift 4=-194 (LC (Grav 4=940 (LC		7) 8) 9) LC	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Bearing at jo using ANSI/1 designer sho One H2.5A S recommende UPLIFT at jt(does not cor		vith any for a liv s where Il fit betw Joint 4 S uss conre- barallel n formul of bear of bear to bear on is for	other live loa e load of 20. a rectangle veen the bott SP No.2 . nections. to grain value a. Building ing surface. ctors ing walls due r uplift only a	Opsf om e to nd					
Te TOP CHORD 1-2 1-6 BOT CHORD 5-6 WEBS 2-5 NOTES 1) Wind: ASCE 7- Vasd=103mph II; Exp B; Enclo	nsion 2=-455/90, 2-3=-2 3=-420/95 5=-308/467, 4-5=- 5=0/186, 2-4=-462 -16; Vult=130mph ; TCDL=6.0psf; B4 psed; MWFRS (en	33/191, 3-4=-688/107 134/453 /197, 1-5=-43/304	Cat.	Increase=1 Uniform Loa Vert: 1-3	ads (lb/ft) =-58, 4-6=-19 ed Loads (lb)	nber Inc	rease=1.15,	Plate				NITH CA	ROUT

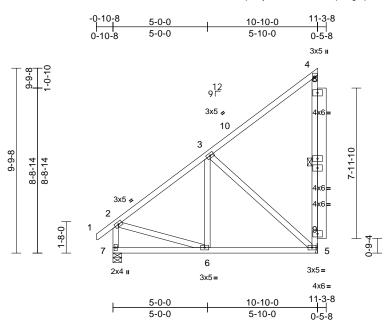
and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 7-8-4, Exterior(2E) 7-8-4 to 10-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL

28677

Markow Marina


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	H03	Monopitch	2	1	I73765530 Job Reference (optional)

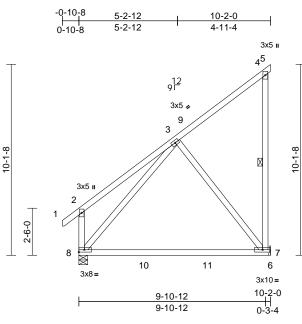
Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:20 ID:A?EbZVSK3TRLQ4LGGcpFRfy94Xe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale		4.04
Scale	=	1:01

Leading TCLL (roof) (pst) 200 200 Plate Grap DOL 1.15 Spacing Plate Grap DOL 1.15 2-0-0 TC CSI TC DEFL TC in (loc) (loc) Itel Ide Ide Ide Ide Ide Ide Ide Ide Ide Ide	Scale = 1.01												
BCDL 10.0 Weight: 97 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on overhangs non-concurrent with any other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on overhangs non-concurrent with any other live loads. 5) This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 6) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) WEBS 1 Row at midpt 4-5 8 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at joint 5. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect trus to bearing walls due to UPLIFT at it(s) 7. This connection is for uplift only and does not consider lateral forces. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 458 Ib down and 79 lb up at 10-8-4 on top chord. The design/selection of such connection device(s) is the	TCLL (roof) Snow (Pf) TCDL	20.0 20.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO	TC BC WB	0.32	Vert(LL) Vert(CT)	-0.03 -0.06	5-6 5-6	>999 >999	240 180		
TOP CHORD BOT CHORD2x4 SP No.2load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.WEBS OTHERS TOP CHORD2x4 SP No.3 *Except* 4-5:2x4 SP No.25)This truss has been designed for a live load of 20.0 psf bottom chord live load nonconcurrent with any other live loads.BRACING TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.6)* This truss has been designed for a live load of 20.0 psf or the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.5Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at joint 5.REACTIONS(size) te-sofo (LC 21), 7=522 (LC 21) Max Grav 5=966 (LC 21), 7=522 (LC 21), 7=522 (LC 21) TOP CHORD9One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.TOP CHORD1.2=0/35, 2.3=-452/95, 3.4=-231/212, 4-5=-706/108, 2-7=-482/13810Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 458 th down and 79 lb up at 10-8-4 on top chord. The design/selection of such connection device(s) is the			Code	IRC2021/1PI2014	Matrix-MSH							Weight: 97 lb	FT = 20%
Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. May 28,2025	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 II; Exp B; and C-C E to 7-8-4, E and right e C for men shown; LU 2) TCLL: AS Plate DOL DOL=1.15 CS=1.00; 3) Unbalance	2x4 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 5= Mecha Max Horiz 7=344 (L Max Uplift 5=-202 (L Max Grav 5=966 (LC (lb) - Maximum Com Tension 1-2=0/35, 2-3=-452/ 4-5=-706/108, 2-7=- 6-7=-330/484, 5-6=- 3-6=0/197, 3-5=-475/ CE 7-16; Vult=130mph Benclosed; MWFRS (er Exterior(2E) -0-9-15 to Exterior(2E) -0-9-15 to Exterior(2	athing directly applie cept end verticals. applied or 10-0-0 oc 4-5 C 11) C 14), 7=-0-5-8 C 11) (C 14), 7=-11 (LC 14) C 21), 7=522 (LC 21) pression/Maximum 95, 3-4=-231/212, 482/138 138/449 5/203, 2-6=-61/304 (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zon 2-2-1, Interior (1) 2-2 D-8-4 zone; cantilever left and right exposer /FRS for reactions grip DOL=1.60 froof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; C=0.9	load of 12. overhangs 5) This truss chord live 6) * This trus on the bott 3-06-00 ta chord and 7) Refer to gi 8) Provide m bearing pla 5. 9) On H2.5/ recommer UPLIFT at does not c 10) Hanger(s) provided s lb down ar design/sel responsibi LOAD CASE(1) Dead + S Cat. Increases re Cat. Increases re Cat. Increases re 1.15	0 psf or 1.00 times non-concurrent w has been designer load nonconcurrers is has been design om chord in all are I by 2-00-00 wide any other member rder(s) for truss to echanical connecti tate capable of with A Simpson Strong- ded to connect tru jt(s) 7. This conne onsider lateral forc or other connection ufficient to support id 79 lb up at 10-8 ection of such con- lity of others. 5) Standard now (balanced): L =1.15 .oads (lb/ft) -2=-60, 2-4=-60, 5 ated Loads (lb)	e flat roof I ith other li d for a 10. it with any ed for a 110. it with any eas where will fit betw rs. truss conion on (by oth standing 2 Tie conne ss to beau ction is fo ses. n device(s concentra -4 on top nection de umber Inc	bad of 20.0 p ve loads. O psf bottom other live loa other live load of 20. a rectangle veen the bot nections. ers) of truss 202 lb uplift a ctors ing walls due r uplift only a s) shall be ated load(s) 4 chord. The vice(s) is the	esf on ads. Opsf tom to to to nd 458				in min	EEP.SK

- 3) Unbalanced snow loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

May 28,2025

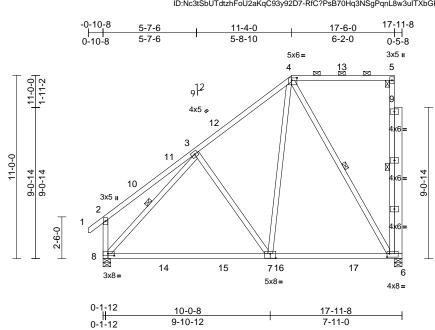
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	101	Monopitch	1	1	I73765531 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:TVTffuiZsp7mVnXghlb00Ay94Qs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.1

Scale = 1.01.1											
Loading (psf)	Spacing 2-0	-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	5	TC	0.97	Vert(LL)	-0.37	7-8	>316	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.1		BC	0.55	Vert(CT)	-0.61	7-8	>192	180		
TCDL 10.0	Rep Stress Incr YE	S	WB	0.45	Horz(CT)	0.00	7	n/a	n/a		
BCLL 0.0*	Code IRC	C2021/TPI2014	Matrix-MSH								
BCDL 10.0										Weight: 75 lb	FT = 20%
6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt	applied or 10-0-0 oc 4-7 nical, 8=0-5-8 (11) C 11) C 25), 8=571 (LC 31) pression/Maximum 143, 3-4=-220/183, 79, 2-8=-312/194 /0 210/248 (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone 2-2-1, Interior (1) 2-2-1 -2-0 zone; cantilever left eft and right exposed;C- FRS for reactions grip DOL=1.60 roof LL: Lum DOL=1.15 Jim DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	 load of 12.0 overhangs n 5) This truss ha chord live loa 6) * This truss f on the bottor 3-06-00 tall t chord and ar 7) Refer to gird 8) Provide mec 	s been designed for psof or 1.00 times fit pon-concurrent with is been designed for an chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru hanical connection is capable of withsta Standard	at roof le other lif or a 10.1 vith any for a liv s where l fit betw with BC uss conr (by oth	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the botti DL = 10.0psi nections. ers) of truss t	sf on nds. Opsf om f. to				SEA 286 ON MGIN	FEP. GLUNN

May 28,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	J01	Piggyback Base	1	1	I73765532 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:Nc3tSbUTdtzhFoU2aKqC93y92D7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.2		0-1-12	5
Plate Offsets (X Y)	[4.0-3-12 0-1-12] [6.0-1-12 0-2-8]	[7:0-4-0 0-3-4] [8:0-4-	8 0-1-81

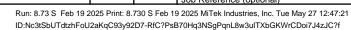
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	-0.31	7-8	>666	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.52	7-8	>399	180		
CDL	10.0	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 154 lb	FT = 20%
UMBER			3) TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL=	1.15	Сс	oncentra	ated Lo	ads (lb)	
OP CHORD	2x4 SP No.2				1.15); Pf=20.0 psf (Vert: 5=	-436 (I	F)	
OT CHORD	2x4 SP No.1				Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;					
/EBS	2x4 SP No.2 *Excep	ot* 8-2,8-3,7-3:2x4 SI		Cs=1.00; Ct									
	No.3		4		snow loads have b	een cor	nsidered for t	his					
THERS	2x6 SP No.2		-	design.	a baan daalarad f	or arost	or of min read	Flive					
RACING			5		is been designed f psf or 1.00 times fl								
OP CHORD	Structural wood she				on-concurrent with			51 011					
	6-0-0 oc purlins, ex		nd 6		quate drainage to p			a					
	2-0-0 oc purlins (5-3				is been designed f			y.					
OT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;		ad nonconcurrent v			ads.					
VEBS	0	5-6, 4-6, 3-8	8) * This truss I	nas been designed	for a liv	e load of 20.	0psf					
	(size) 6=0-5-8, 8	, ,		on the botto	n chord in all areas	s where	a rectangle						
EACTIONS	Max Horiz 8=391 (LC				oy 2-00-00 wide wi								
	Max Uplift 6=-235 (L	,	\ \		ny other members,								
	Max Grav 6=1324 (L				int(s) 8 considers			9					
ORCES	(lb) - Maximum Com	<i>.</i>	+)		FPI 1 angle to grain ould verify capacity								
011020	Tension		1		Simpson Strong-Tie								
OP CHORD	1-2=0/35, 2-3=-266/	106. 3-4=-703/191.	'		ed to connect truss			to					
	4-5=-142/187, 5-6=-		24		(s) 6 and 8. This co								111.
OT CHORD	6-8=-240/791				t consider lateral fo							White CA	Dalle
VEBS	4-6=-849/150, 3-8=-	753/79, 4-7=-70/678	, 1	1) Graphical pu	Irlin representation	does no	ot depict the	size				ath	TOI'L
	3-7=-293/233			or the orient	ation of the purlin a	long the	e top and/or				5	OVESS	in the
OTES				bottom chore		-					32	OR JESS	11.73
) Unbalance	ed roof live loads have	been considered for	· 1		other connection						2	The Al	114: 2
this desigr					ficient to support c					-		054	
	CE 7-16; Vult=130mph				92 lb up at 28356							SEA	L ; (
	mph; TCDL=6.0psf; B				tion of such conne	ction de	vice(s) is the					2867	77
	Enclosed; MWFRS (en			responsibility	CASE(S) section,	loade e	poliod to the	faco		-		. 2007	1 1
	xterior(2E) -0-9-15 to 2		2-1		are noted as front (IACE				N	1 1
	Exterior(2R) 7-1-1 to 14				,	i j ui ba	UK (D).				2 .	in En.	RINS

 14-4-4 to 17-4-4 zone; cantilever left and right exposed;
 LOAD C.

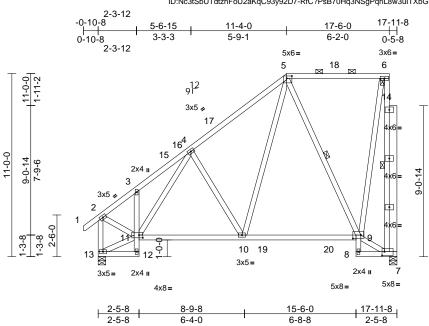
 end vertical left and right exposed;
 C for members and for cess & MWFRS for reactions shown; Lumber
 1) Der

DOL=1.60 plate grip DOL=1.60

- LOAD CASE(S) Standard
 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-60, 2-4=-60, 4-5=-60, 6-8=-20


May 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



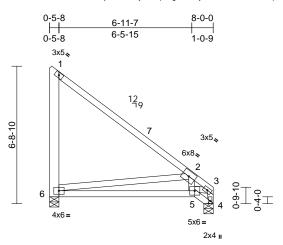
L. GAL

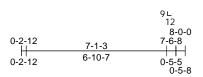
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	J02	Piggyback Base	2	1	I73765533 Job Reference (optional)

Scale = 1:69.2

Plate Offsets (X, Y): [5:0-3-12,0-1-12], [7:0-1-12,0-2-12], [9:0-5-12,0-2-8], [11:0-2-12,0-2-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.62 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.18 0.03	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	5-11-3 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	t* 9-5:2x4 SP No.2, .0E athing directly applied xcept end verticals, a -0 max.): 5-6. applied or 6-0-0 oc 6-7, 5-9 13=0-5-8 .C 14) C 14), 13=-9 (LC 14) .C 43), 13=918 (LC 4	l or nd 3) 4) 5) 4)	Vasd=103mp II; Exp B; En and C-C Extt 2-2-11 to 7-1 (2E) 14-2-8 t vertical left e MWFRS for grip DOL=1.6 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n	7-16; Pr=20.0 psf .15); Pf=20.0 psf ls=1.0; Rough Cat	BCDL=6 envelope o 2-2-11 1-1 to 1 ntilever I embers Lumber I f (roof LI (Lum DC B; Fully peen con for great hat roof I o other In	6.0psf; h=25ft e) exterior zoo, Interior (1) 4-2-8, Exterior eft exposed ; and forces & DOL=1.60 plate Exp.; Ce=0.1 nsidered for t er of min rool and of 20.0 p ve loads.	ne or end ate £1.15 e 9; his f live sf on	of th LOAD (1) De Inc Ur Cc	he truss CASE(S ead + Sr crease= niform Lo	are no) Stan now (ba 1.15 oads (ll 2=-60, 20, 7-8= ated Los	ted as front (F) c ndard alanced): Lumbe b/ft) 2-5=-60, 5-6=-60 20 ads (Ib)	r Increase=1.15, Plate
TOP CHORD BOT CHORD	2-13=-963/159 12-13=-25/1, 11-12=	168/32, 6-7=-1450/24 ₅0/42, 3-11=-125/79,	, 0,	chord live loa * This truss h on the bottor 3-06-00 tall b	is been designed f ad nonconcurrent v nas been designed n chord in all area by 2-00-00 wide wi	with any I for a liv s where Il fit betv	other live loa e load of 20. a rectangle veen the bott	0psf .om				TH CA	ROUT
WEBS	10-11=-293/774, 9-1 7-8=-106/0 5-9=-618/224, 7-9=C 4-11=-222/71, 4-10= 5-10=-141/654, 11-1 2-11=-72/697	-378/263,	9)	One H2.5A S recommende UPLIFT at jt(and does not	ny other members, Simpson Strong-Ti ed to connect truss (s) 7 and 13. This t consider lateral for rlin representation	e conne to bear connecti orces.	ctors ing walls due on is for uplif	e to t only			N. C. C.	O E SS SEA	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for		or the orienta bottom choro Hanger(s) or provided suff lb down and lb up at 2839	ation of the purlin a	along the device(s oncentra 3, and 44 ord. The	e top and/or) shall be ated load(s) 5 14 lb down ar design/selec	523 nd 92		1115	J. M.	SEA 2865	EER. ALIN


May 28,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	K01	Roof Special	4	1	I73765534 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:jzudvf5?HySB7qACgSkvP7y94VX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.3

NOTES

2)

3)

4)

DOL=1.60

design.

Cs=1.00; Ct=1.10

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	1.00	Vert(LL)	-0.13	5-6	>682	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.27	5-6	>339	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.02	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 53 lb	FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 *Except* 6-1:2x6 SP No.2 WFBS BRACING TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 4=0-5-8, 6=0-5-8 Max Horiz 6=-224 (LC 10) Max Uplift 4=-4 (LC 15), 6=-92 (LC 15) Max Grav 4=359 (LC 21), 6=440 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-237/119, 2-3=-644/140, 3-4=-355/12, TOP CHORD 1-6=-268/221 BOT CHORD 5-6=-239/751, 4-5=-16/20 WEBS 3-5=-228/764, 2-5=-165/124, 2-6=-760/588

1) Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior (1) 3-2-12 to 4-10-4, Exterior(2E) 4-10-4 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

chord live load nonconcurrent with any other live loads.

This truss has been designed for a 10.0 psf bottom

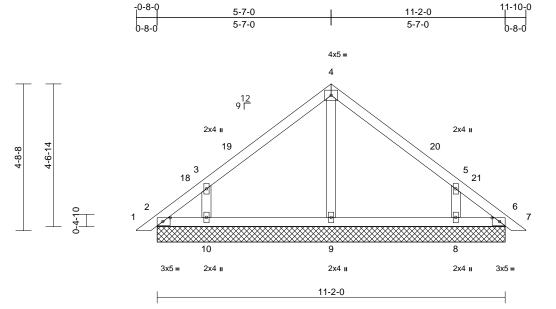
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearing at joint(s) 4, 6 considers parallel to grain value

- Bearing at joint(s) 4, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 6. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

May 28,2025

Page: 1


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	PB1	Piggyback	8	1	I73765535 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:iEW3YzpCkaFU49jPj8F7u4y94Qj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X	V)· [2·0-2-13 0-1-8	1 [6.0.2.13 0.1.

Scale = 1:37

L/d PLATES GRIP 999 MT20 244/190 999 n/a Weight: 49 lb FT = 20%
SEAL 28677

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 28,2025

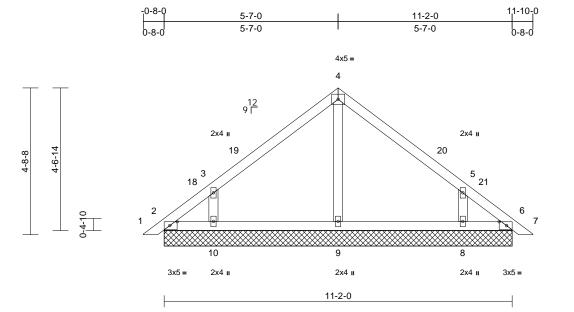
Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH				
25050159-01	PB1GE	Piggyback	2	1	I73765536 Job Reference (optional)				

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:bQaQZ9EDEEiwq0yVzEIB2Yy94Jj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

							11-2-0					_	
Scale = 1:37				1								1	
Plate Offsets (X, Y): [2:0-	2-13,0-1-8], [8:0-2-13,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.03 0.05	Vert(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
6-0-0 oc p Rigid ceili bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav	o.2 o.3 wood she purlins. ng directly 2=11-2-0, 11=11-2-(2=-106 (L 2=-106 (L 2=-107 (L 14=-68 (L 2=102 (L 10=209 (L 10=209 (L 12=132 (L 14=209 (L	C 12) C 10), 10=-67 (LC 15 C 15), 13=-71 (LC 15 C 14) C 26), 8=93 (LC 1), C 22), 11=269 (LC 2 C 28), 13=269 (LC 2 C 21)	ed or 0, ³ 0, ² -0, ⁴), ⁴ 22), ⁵	 Vasd=103rr II; Exp B; Ei and C-C Exp B; Ei and C-C Exp B; Ei and C-C Exp B; Ei and right ex C for memb shown; Lur Truss desig only. For si see Standa or consult q TCLL: ASC Plate DOL= DOL=1.15); Cs=1.00; C: Unbalanced design. This truss h 	E 7-16; Vult=130m; pph; TCDL=6.0psf; nclosed; MWFRS (terior(2E) 0-3-1 to terior(2E) 9-3-9 to sposed ; end vertica evers and forces & M hoter DOL=1.60 pla uned for wind loads tuds exposed to win rd Industry Gable E ualified building de E 7-16; Pr=20.0 psf it.15); Pf=20.0 psf it.=1.0; Rough Cat t=1.10 d snow loads have as been designed psf or 1.00 times f	BCDL=€ envelope 3-3-1, E: 12-3-9 z: al left and WFRS f te grip D in the pl nd (norm End Deta signer a: if (roof Ll (Lum DC t B; Fully been con for great	6.0psf; h=25ft; a) exterior zon (terior(2R) 3-3; one; cantileve d right expose or reactions OL=1.60 ane of the trus ils as applicat s per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof	Cat. ne 3-1 r left d;C- ss), ble, 1.15 l.15 l; live	LOAD				
Tension TOP CHORD 1-2=0/16, 4-5=-97/1 7-8=-66/4 3OT CHORD 2-14=-34/ 11-12=-32 WEBS 5-12=-92/	2-3=-89/7 07, 5-6=-9 2, 8-9=0/1 84, 13-14= 4/84, 10-11 0, 4-13=-2 9/116, 7-10	34/84, 12-13=-34/8 =-34/84, 8-10=-34/8 29/116, 3-14=-168/9)=-168/91	8 9 4, 1 4 1 1,	overhangs i All plates ar Gable requi Gable studs O) This truss h chord live lc 1) * This truss on the botto 3-06-00 tall	non-concurrent with re 2x4 MT20 unless res continuous bot s spaced at 2-0-0 o as been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w nny other members	h other li s otherwi tom chor c. for a 10. with any d for a liv as where rill fit betw	ve loads. se indicated. d bearing. 0 psf bottom other live load re load of 20.0 a rectangle	ds.)psf			and a state of the	SEA 286	
			1	Detail for Co	rd Industry Piggyb onnection to base t lified building desig	truss as a						L.G	ALIN

May 28,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH				
25050159-01	PB1GR	Piggyback	1	2	I73765537 Job Reference (optional)				

Scale = 1:37

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:21 ID:nQ3TCLvnvyfTTDuVPZSo4yy90TY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y):	[2:0-2-13,0-1-8], [6:0-2-13,0-1-8]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 97 lb	FT = 20%

2022		1010	
LUMBER TOP CHORD BOT CHORD OTHERS		0.2	
BRACING			
TOP CHORD	Structura 6-0-0 oc j		athing directly applied or
BOT CHORD			applied or 10-0-0 oc
REACTIONS	(size)		6=11-2-0, 8=11-2-0, 10=11-2-0
	Max Horiz	2=-106 (L	C 12)
	Max Uplift		10), 6=-16 (LC 11), C 15), 10=-133 (LC 14)
	Max Grav		26), 6=69 (LC 25), 8=432 =282 (LC 21), 10=432
FORCES	(lb) - Max Tension	timum Com	pression/Maximum
TOP CHORD		2-3=-105/9	91, 3-4=-189/97,
			2/57.6-7=0/16
BOT CHORD	2-10=-29/ 6-8=-28/7	,	28/72, 8-9=-28/72,
WEBS	4-9=-193/	/18, 3-10=-4	402/208, 5-8=-402/208
NOTES			
Top chord		d with 10d (her as follows: 0.131"x3") nails as

follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

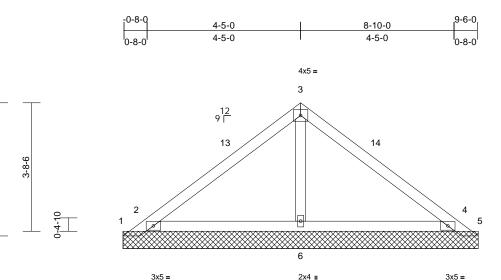
4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-1 to 3-3-1, Exterior(2R) 3-3-1 to 9-3-9, Exterior(2E) 9-3-9 to 12-3-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 7) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 4-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

May 28,2025

Page: 1


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH				
25050159-01	PB2	Piggyback	7	1	I73765538 Job Reference (optional)				

3-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:9tvbUfm9bkrgXna7Y?YDo6y91zG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-10-0

Loading TCLL (roof)		· / I	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.57	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)			Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999	···· = •	
TCDL	1	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC202	21/TPI2014	Matrix-MP								
BCDL	1	0.0											Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlin Rigid ceiling di bracing. (size) 1=1	ns. lirectly a 10-2-11,	thing directly applied applied or 10-0-0 oc 2=10-2-11, 4=10-2 6=10-2-11	5	only. For stu see Standar or consult qu) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) Gable requir	snow loads hav es continuous b	wind (norm e End Detai designer as psf (roof LL sf (Lum DC Cat B; Fully re been cor pottom chor	al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th), ble, ⊃I 1. 1.15 9;					
	Max Horiz 1=8 Max Uplift 1=-5	35 (LC 1 531 (LC) This truss ha chord live loa	spaced at 4-0-0 is been designe ad nonconcurre nas been desigr	ed for a 10.0 nt with any	other live loa						
	4=9		14), 2=932 (LC 21), 22), 5=170 (LC 15), 21)	, -	on the bottor 3-06-00 tall I	n chord in all ar by 2-00-00 wide by other membe	eas where will fit betw	a rectangle						
FORCES	(lb) - Maximun Tension	m Comp	ression/Maximum	1	0) Provide med	hanical connect	tion (by oth							
TOP CHORD	1-2=-170/341, 4-5=-140/339	,	18/255, 3-4=-218/25	,		uplift at joint 5.	istanting 5							
BOT CHORD WEBS	2-6=-194/103, 3-6=-140/16	, 4-6=-19	94/103	1	1) IN/A								OR CA	0.00
NOTES	0 0= 140/10												W'TH CA	Ro
	ed roof live loads	s have b	een considered for	1		d Industry Pigg						J.	ORIZES	I This

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-1 to 3-3-1, Exterior(2R) 3-3-1 to 6-11-9, Exterior(2E) 6-11-9 to 9-11-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
 LOAD CASE(S) Standard

May 28,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH				
25050159-01	PB2GE	Piggyback	1	1	I73765539 Job Reference (optional)				

4-5-0

4-5-0

0-8-0

0-8-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:33.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:Rmslk9DbSapxNulK2kUs_ty916S-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-10-0

4 - 5 - 0

.9-6-0

0-8-0

4x5 = 4 9 Г 2x4 ı 2x4 ı 3 5 3-10-0 3-8-6 2 6 0-4-10 10 9 8 2x4 II 2x4 II 2x4 = 2x4 = 2x4 II 8-10-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) n/a 999 MT20 n/a 20.0 1 15 BC 0.08 Lumber DOL Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 6 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 41 lb 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc purlins. Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) bracing. desian. REACTIONS (size) 2=8-10-0, 6=8-10-0, 8=8-10-0, 6) This truss has been designed for greater of min roof live 9=8-10-0, 10=8-10-0 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Horiz 2=-85 (LC 12) overhangs non-concurrent with other live loads. Max Uplift 2=-7 (LC 15), 8=-95 (LC 15), Gable requires continuous bottom chord bearing. 7) 10=-96 (LC 14) Gable studs spaced at 2-0-0 oc. 8) Max Grav 2=164 (LC 21), 6=164 (LC 22), 9) This truss has been designed for a 10.0 psf bottom 8=335 (LC 22), 9=101 (LC 28), chord live load nonconcurrent with any other live loads. 10=335 (LC 21) 10) * This truss has been designed for a live load of 20.0psf (Ib) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom 1-2=0/16, 2-3=-74/58, 3-4=-106/95, chord and any other members. 4-5=-106/95, 5-6=-64/50, 6-7=0/16 11) N/A 2-10=-25/76, 9-10=-25/76, 8-9=-25/76,

WEBS 4-9=-70/4, 3-10=-260/149, 5-8=-260/149 NOTES

6-8=-25/76

Unbalanced roof live loads have been considered for 1) this design. 2)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-1 to 3-1-5, Exterior(2R) 3-1-5 to 7-1-5, Exterior(2E) 7-1-5 to 9-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

May 28,2025

GRIP

244/190

FT = 20%

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	PB2GR	Piggyback	2	2	I73765540 Job Reference (optional)

4-5-0

4-5-0

12 9 Г

0-8-0

0-8-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue May 27 12:47:22 ID:QK7wdrNdUZYeXNZwa6E_Hcy918r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 3

8-10-0

4 - 5 - 0

13 14 3-10-0 3-8-6 6 2x4 = 2x4 = 2x4 II 8-10-0 Plate Offsets (X, Y): [2:0-1-8,0-1-0], [4:0-1-8,0-1-0] 3-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.47 Vert(LL) 999 MT20 n/a n/a 20.0 Lumber DOL 1.15 BC 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr WB Horiz(TL) NO 0.02 0.00 4 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MP Code 10.0 Weight: 73 lb 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No 2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x4 SP No.2 bottom chord. and C-C Exterior(2E) 0-3-1 to 3-3-1, Exterior(2R) 3-3-1 2x4 SP No.3 LOAD CASE(S) Standard to 6-11-9, Exterior(2E) 6-11-9 to 9-11-9 zone; cantilever left and right exposed ; end vertical left and right 2-0-0 oc purlins (6-0-0 max.) exposed;C-C for members and forces & MWFRS for (Switched from sheeted: Spacing > 2-8-0). reactions shown; Lumber DOL=1.60 plate grip Rigid ceiling directly applied or 10-0-0 oc DOL=1.60 bracing. Truss designed for wind loads in the plane of the truss 5) **REACTIONS** (size) 1=10-2-11, 2=10-2-11, 4=10-2-11, only. For studs exposed to wind (normal to the face), 5=10-2-11, 6=10-2-11 see Standard Industry Gable End Details as applicable, 1=128 (LC 13) Max Horiz or consult qualified building designer as per ANSI/TPI 1. Max Uplift 1=-763 (LC 21), 2=-372 (LC 14), TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 6) 4=-341 (LC 15), 5=-759 (LC 22) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Max Grav 1=300 (LC 14), 2=1361 (LC 21), DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 4=1343 (LC 22), 5=246 (LC 15), Cs=1.00: Ct=1.10 6=389 (LC 21) 7) Unbalanced snow loads have been considered for this (lb) - Maximum Compression/Maximum design.

FORCES Tension 1-2=-248/491, 2-3=-323/382, 3-4=-323/379, TOP CHORD 4-5=-200/489 BOT CHORD 2-6=-307/168, 4-6=-307/168 WEBS 3-6=-215/25

NOTES

Scale = 1:33.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

- 2-ply truss to be connected together as follows: 1) Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 763 lb uplift at joint 1 and 759 lb uplift at joint 5. 13) N/A
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

GRIP

244/190

FT = 20%

.9-6-0

0-8-0

HOW THE STATE OR MAN TO THE SEAL 28677 GA

May 28,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	PB3	Piggyback	3	1	I73765541 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:jzudvf5?HySB7qACgSkvP7y94VX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

76

2x4 II

0-2-

in

n/a

n/a

0.00

(loc)

5

l/defl

n/a 999

n/a 999

n/a n/a

L/d

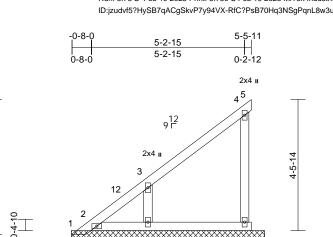
PLATES

Weight: 27 lb

MT20

GRIP

244/190


FT = 20%

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

8

2x4 II

5-2-15 5-2-15

0.20

0.08

0.14

2x4 =

CSI

TC

BC

WB

Gable studs spaced at 4-0-0 oc.

Cs=1.00; Ct=1.10

desian.

Matrix-MP

2-0-0

1.15

1 15

YES

IRC2021/TPI2014

3)

4)

5)

6)

7)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=6-7-8, 2=6-7-8, 5=6-7-8, 6=6-7-8, 7=6-7-8, 8=6-7-8

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

Scale = 1:39.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Max Horiz 1=163 (LC 14) Max Uplift 1=-35 (LC 12), 2=-10 (LC 14), 5=-219 (LC 21), 6=-160 (LC 7), 7=-102 (LC 14), 8=-110 (LC 14) Max Grav 1=109 (LC 14), 2=83 (LC 30), 5=94 (LC 14), 6=-48 (LC 10), 7=524 (LC 21), 8=374 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-281/137, 2-3=-245/129, 3-4=-109/96, TOP CHORD

(psf)

20.0

20.0

10.0

10.0

0.0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

- 4-5=-145/88 BOT CHORD 2-8=-26/14, 7-8=0/0, 6-7=0/0 WEBS 3-8=-320/224, 4-7=-403/273 NOTES
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearing at joint(s) 2, 1, 5, 2 considers parallel to grain 9)

This truss has been designed for a 10.0 psf bottom

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

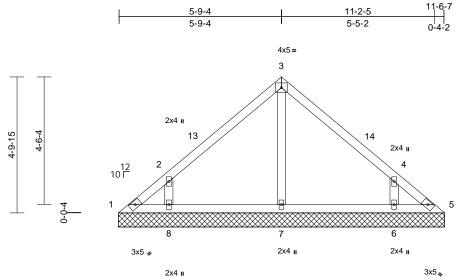
Unbalanced snow loads have been considered for this

Gable requires continuous bottom chord bearing.

value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to

- bearing plate capable of withstanding 160 lb uplift at joint 6, 35 lb uplift at joint 1 and 219 lb uplift at joint 5. 11) N/A
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


Page: 1

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	V1	Valley	1	1	I73765542 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:F?srD3E8Afz2EulzeZOMFizF_Uo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-6-7

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.31	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		21.0.00
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC2)21/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 47 lb	FT = 20%
LUMBER					3) Truss desigr	ed for wind loads	in the pl	ane of the tru	SS					
TOP CHORD	2x4 SP N	lo.2				uds exposed to wi								
BOT CHORD	2x4 SP N					d Industry Gable I								
OTHERS	2x4 SP N	0.3				alified building de								
BRACING						7-16; Pr=20.0 ps 1.15); Pf=20.0 psf								
TOP CHORD	Structura 6-0-0 oc		athing directly applie	ed or		Is=1.0; Rough Ca								
BOT CHORD		•	applied or 10-0-0 oc		Cs=1.00; Ct									
	bracing.	5,			,	snow loads have	been co	nsidered for t	his					
REACTIONS	(size)	,	5=11-7-1, 6=11-7-1	,	design. 6) Gable requir	es continuous bo	ttom cho	rd bearing						
		7=11-7-1,				spaced at 4-0-0 c		la boaring.						
		1=-109 (L	,		8) This truss ha	s been designed	for a 10.	0 psf bottom						
	Max Uplint		C 10), 5=-9 (LC 11), .C 15), 8=-137 (LC 1-	4)	chord live loa	ad nonconcurrent	with any	other live loa	ids.					
	Max Grav		25), 5=60 (LC 24), 6			nas been designe			Opsf					
		· ·	257, 5=66 (EC 24), 6 =254 (LC 20), 8=43			n chord in all area								
		20)		- (-		by 2-00-00 wide w ny other members		ween the bott	om					
FORCES	(lb) - Max	kimum Com	pression/Maximum			hanical connectio		ers) of truss	'n					
	Tension				,	capable of withs		,						
TOP CHORD		,	223/114, 3-4=-223/1	14,		at joint 5, 137 lb u								
	4-5=-95/6				uplift at joint		. ,							
BOT CHORD		,	/73, 6-7=-27/73,			e or shim required			g				TH CA	1111
WEBS	5-6=-30/7		3/235, 4-6=-423/235			truss chord at joir	nt(s) 1, 5.						What CA	Dalle
WLD0	5-7=-105	/0, 2-0=-42	5/255, 4-0=-425/255	,	LOAD CASE(S)	Standard							11101	10, 14

NOTES

Scale = 1:40.9

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 8-7-1, Exterior(2E) 8-7-1 to 11-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

May 28,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

J	lob	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
2	25050159-01	V2	Valley	1	1	I73765543 Job Reference (optional)

3-11-10

3-11-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:30.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design

DOL=1.60

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:jCQDRPFmxy5us2K9CGvbovzF_Un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

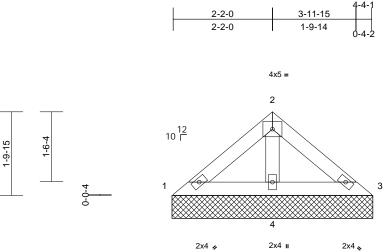
4x5 =

7-7-2

3-7-8

Page: 1

2 9 10 3-0-2 3-3-15 12 10 ∟ 0-0-4 3 4 2x4 🛛 3x5 🍫 3x5 💊 7-11-4 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 BC Lumber DOL 1 15 0.32 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.11 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 30 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or 6) Gable requires continuous bottom chord bearing. 7-11-4 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf (size) 1=7-11-14, 3=7-11-14, 4=7-11-14 9) Max Horiz 1=-74 (LC 10) on the bottom chord in all areas where a rectangle Max Uplift 1=-37 (LC 21), 3=-37 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-91 (LC 14) chord and any other members. Max Grav 1=101 (LC 20), 3=101 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=628 (LC 20) bearing plate capable of withstanding 37 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 37 lb uplift at joint 3 and 91 lb uplift at joint 4. Tension 11) Beveled plate or shim required to provide full bearing 1-2=-113/286, 2-3=-113/286 surface with truss chord at joint(s) 1, 3. 1-4=-222/174, 3-4=-222/174 LOAD CASE(S) Standard 2-4=-507/236 HON SUL Unbalanced roof live loads have been considered for OR Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-11-14, Exterior(2E) 4-11-14 to 7-11-14 zone; cantilever left and right exposed ; end vertical left and SEAL right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 867 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. GA May 28,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

THURSDAY TO THE TANK

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	V3	Valley	1	1	I73765544 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:_PCt1VqtCUIRorSEgzcdUCzF_Jj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-1

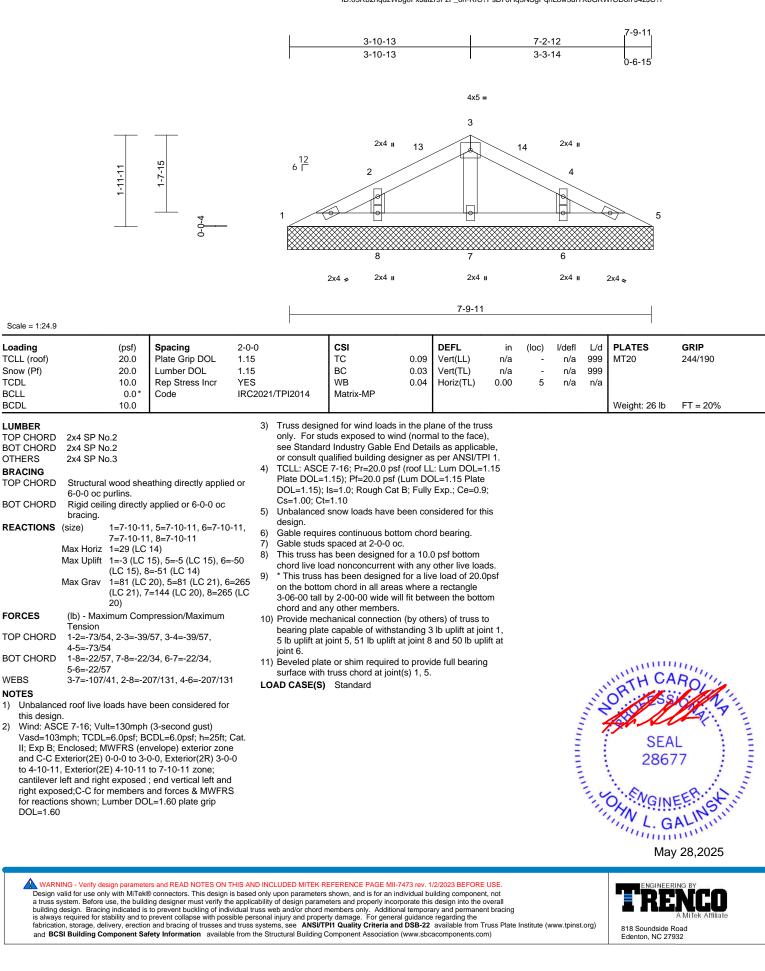
Scale = 1:25.2 _

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		- ()						
BCDL	10.0										Weight: 15 lb	FT = 20%
LUMBER			,	ed snow loads have	e been coi	nsidered for th	nis					
TOP CHORD			design. 6) Gable re	nuirea continuque ha	ttom ohou	dhooring						
BOT CHORD				quires continuous bo uds spaced at 4-0-0		u bearing.						
OTHERS	2x4 SP No.3			s has been designed		0 psf bottom						
BRACING	Otm	a da ta an altara a da a ana di	بذالمتعطم	e load nonconcurrent			ds					
TOP CHORD	Structural wood she 4-4-1 oc purlins.	• • • •	9) * This tru	ss has been designe	ed for a liv	e load of 20.0						
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 6-0-0 oc	3-06-00	ottom chord in all are all by 2-00-00 wide v	will fit betv		om					
REACTIONS	(size) 1=4-4-10	, 3=4-4-10, 4=4-4-10		d any other member		ana) af trui t						
	Max Horiz 1=38 (LC	11)		nechanical connection								
	Max Uplift 1=-1 (LC	14), 3=-8 (LC 15), 4		at joint 3 and 27 lb t			mit I,					
	(LC 14)		11) Beveled	plate or shim require			a					
	Max Grav 1=82 (LC (LC 20)	20), 3=82 (LC 21),	4=258 surface v	ith truss chord at joi			9					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	LOAD CASE	(S) Standard								
TOP CHORD		5/87										
BOT CHORD	1-4=-70/75, 3-4=-70											
WEBS	2-4=-176/77											
NOTES												
	ed roof live loads have	been considered fo	r									11.
this design											11''' CI	No lin
	CE 7-16; Vult=130mpl	n (3-second gust)									THU	HOI'M
	Bmph; TCDL=6.0psf; B									5	O KK	Sit Main
II; Exp B;	Enclosed; MWFRS (e	nvelope) exterior zor	ne							22	1.01	1911: 7 2
	Exterior(2E) zone; can									2	77 × /	AL -
	end vertical left and ri									5		. 19 E.
	and forces & MWFRS OL=1.60 plate grip D0		ı;						=	6 C	SEA	AL : =
	ligned for wind loads in		ee						=		286	77 : E
	studs exposed to wind										: 200	11 E E
	lard Industry Gable Er									-	N	1 2
	qualified building des									20	SEA 286	- CRUDS
	CE 7-16; Pr=20.0 psf									1	OL GIN	EF. GUN
	_=1.15); Pf=20.0 psf (L									1	NI O	AL 10
	5); Is=1.0; Rough Cat I	B; Fully Exp.; Ce=0.9	9;								China L. G	Mullin,
Cs=1.00;	Ct=1.10										- min	THE

May 28,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	V4	Valley	1	1	Job Reference (optional)

1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:22 ID:05Rb2nqdzWbg0FxJai2r9FzF_oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	898 Serenity-Roof-B330 A CP TMB BNS GLH
25050159-01	V5	Valley	1	1	I73765546 Job Reference (optional)

2-6-13

2-6-13

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue May 27 12:47:23 ID:OFXJJBg5e0puLYiHs6bBoUzF_ZP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

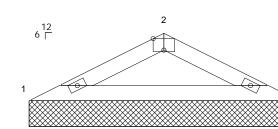
4-6-12

1-11-14

5-1-11

0-6-15

3


2x4 👟

Page: 1

3x5 = 2 12 6 Г 0-11-15 1-3-11 0-0-4 2x4 🍃 5-1-11

MII-7473 rev. 1/2/2023 BEFORE USE D MITEK REFEREN WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ate Offsets (X, Y): [2:0-2-8,Edge] bading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d PLATES GRIP Diversity 20:0 Unimer DOL 1.15 TC 0.23 Vert(TL) n/a - n/a 999 MT20 244/15 DL 10:0 Code IRC2021/TPI2014 BC 0.00 Matrix-MP Vert(TL) n/a - n/a 999 MT20 244/15 DL 10:0 Code IRC2021/TPI2014 Matrix-MP Vert(TL) n/a - n/a 999 MT20 244/15 DL 10:0 Code IRC2021/TPI2014 Matrix-MP Vert(TL) n/a - n/a 99 No 20 Vert(TL) n/a - n/a 99 No 24/21 Vert(TL) n/a - n/a 99 No 20 Vert(TL) <th>ate Offsets (X, Y): [2:0-2:4.Edge] Dating (ps) Spacing 2:0-0 CSI DEFL in (loc) (ldell U/d 21.1 (not) 2:0.0 Lumber DOL 1.15 TC 0.23 Vert(L) n/a - n/a 999 MT20 244/190 20.1 1:0.0 Col ISC 0.23 Vert(L) n/a - n/a 999 MT20 244/190 21.1 0.0* Col ISC 0.19 Vert(L) n/a - n/a 999 MT20 244/190 20.1 1.0.0 Other ISC2021/TFI2014 WB 0.00 Mtrace MT20 244/190 Weight: 14 lb FT = 20% MSER This trus has been designed for a 10.0 pb botom -</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>5-1-</th> <th>11</th> <th></th> <th></th> <th></th> <th>_</th> <th></th>	ate Offsets (X, Y): [2:0-2:4.Edge] Dating (ps) Spacing 2:0-0 CSI DEFL in (loc) (ldell U/d 21.1 (not) 2:0.0 Lumber DOL 1.15 TC 0.23 Vert(L) n/a - n/a 999 MT20 244/190 20.1 1:0.0 Col ISC 0.23 Vert(L) n/a - n/a 999 MT20 244/190 21.1 0.0* Col ISC 0.19 Vert(L) n/a - n/a 999 MT20 244/190 20.1 1.0.0 Other ISC2021/TFI2014 WB 0.00 Mtrace MT20 244/190 Weight: 14 lb FT = 20% MSER This trus has been designed for a 10.0 pb botom -				-			5-1-	11				_	
CLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a - n/a 999 MT20 244/15 Dow (P) 20.0 Rep Stress Incr BC 0.19 Vert(LL) n/a - n/a 999 MT20 244/15 DL 0.0* Code IRC2021/TPI2014 Matrix-MP Horiz(TL) 0.01 3 n/a n/a JMBER 0.0* Code IRC2021/TPI2014 Matrix-MP Weight: 14 lb FT = 2 JMBER 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live loads for 20.0psf on the bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a 10.0 psf bottom chord line la areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other live loads for 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other live loads for 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit ta joint 3. 1) Becleveld plate or shim required to provide full bearing subce with truss chord at joint(s) 1, 3. 1) Beveled plate or shim required to provide full bearing subce with truss chord at joint(s) 1, 3. LOAD CASE(S) <	Particle (197) Spacing (198) Spacing (198) Plate Grip DOL 1.15 TC 0.23 DEFL in (100) I/det L/d (110) PLATES GRIP Miles (197) 20.0 Lumber DOL 1.15 BC 0.19 Vert(LL) n/a - n/a 999 MT20 244/190 JUL 0.01 0.01 Rep Stress Incr VFS RC2021/TPI2014 WB 0.00 Vert(TL) n/a - n/a 999 Horiz(TL) 0.01 3 n/a n/a JMBER DDC 2x4 SP No.2 Code IRC2021/TPI2014 Watrix-MP Vert(TL) n/a - n/a 999 Weight: 14 lb FT = 20% JMBER ACING DP CHORD 2x4 SP No.2 This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 will be 2-00-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in all areas where a rectangle 3-06-00 wide will ft between the bottom chord in	Scale = 1:22.3												
StL (roof) 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a - n/a 999 MT20 244/15 ow (P) 20.0 Rep Stress Incr BC 0.19 Vert(LL) n/a - n/a 999 MT20 244/15 DL 0.0* Code IRC2021/TPI2014 Matrix-MP Horiz(TL) 0.01 3 n/a n/a MBER 0.00 Motion Code IRC2021/TPI2014 Matrix-MP Weight: 14 lb FT = 2 MBER 0.00 Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load for 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide members. 9) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide with trus chord at any other ive load s. 9) This truss has been designed tor a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide with trus chord at any other ive load s. 9) This truss has been designed tor a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide with trus chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide with truss chord at any others o	LL (foot) 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a - n/a 999 MCD 10.0 0.0* Code IRC2021/TPI2014 WB 0.00 Vert(LL) n/a - n/a 999 MEER 0.0* Code IRC2021/TPI2014 Matrix-MP Matrix-MP Vert(LL) n/a n/a n/a n/a MBER 10.0 0.0* Code IRC2021/TPI2014 Matrix-MP No.10 Solution No.2 No.10 No.2 No.10 No.2 <	ite Offsets (X, Y): [2:0-2-8,Edge]											-	
 IMBER JP CHORD 2x4 SP No.2 PC CHORD 2x4 SP No.2 PC CHORD Structural wood sheathing directly applied or 5-1-11 oc purlins. DT CHORD Rigid ceiling directly applied or 5-1-11 oc purlins. DT CHORD Rigid ceiling directly applied or 5-1-11 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 1=5-2-11 Max Horiz 1=-18 (LC 19) Max Uplif 1=-21 (LC 14), 3=-21 (LC 15) Max Grav 1=241 (LC 20), 3=241 (LC 21) DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1:2=-437/191, 2-3=-437/191 DP CHORD 1:3=-158/383 DT ES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been this theory is the purplic distribution. Unbalanced roof live loads have been theory is the purplic distribution. Unbalanced roof live loads have been theory is the purplic distribution. Unbalanced roof live loads have been theory theory theory and theory. Unbalanced roof live loads have been theory theory theory and theory. Unbalanced roof live loads have been theory theory and theory. Unbalanced roof l	 JMBER JP CHORD 2x4 SP No.2 P CHORD 2x4 SP No.2 P CHORD Structural wood sheathing directly applied or 5-1.11 oc purlins. DT CHORD Rigid ceiling directly applied or 5-1.11 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 1-5-2-11 Max Horiz 1=-18 (LC 19) Max Grav 1=221 (LC 14), 3=-21 (LC 15) Max Grav 1=221 (LC 14), 3=-21 (LC 15) Max Grav 1=221 (LC 14), 3=-21 (LC 15) Max Grav 1=241 (LC 20), 3=2241 (LC 21) DRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2=-437/191, 2-3=-437/191 DT CHORD 1-3=-158/383 DT EIS Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(ZE) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members defined. Mirze A and Y and Y	CLL (roof) 20.0 now (Pf) 20.0 CDL 10.0 CLL 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0 0).19	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
 PCHORD 2x4 SP No.2 PCHORD 2x4 SP No.2 Structural wood sheathing directly applied or 5-1-11 oc purlins. PCHORD Rigid ceiling directly applied or 10-0-0 oc bracing. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. CHORD (size) 1=5-2-11, 3=5-2-11 Max Horiz 1=-18 (LC 19) Max Upilit 1=-21 (LC 14), 3=-21 (LC 15) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 20) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 20) Max Grav 1=241 (LC 20) Max Grav	 PCHORD 2x4 SP No.2 PCHORD 2x4 SP No.2 Structural wood sheathing directly applied or 5-1-11 oc purlins. DT CHORD Structural wood sheathing directly applied or 5-1-11 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. CHORD (size) 1=5-2-11, 3=5-2-11 Max Horiz 1=-18 (LC 19) Max Horiz 1=-18 (LC 19) Max Grav 1=241 (LC 20), 3=241 (LC 21) Max Grav 1=241 (LC 20), 3=241 (LC 20) Max Grav 1=241 (LC 20) Max Gra	CDL 10.0											Weight: 14 lb	FT = 20%
Plate DDL=1.15); P=20.0 pst (Lum DDL=1.15 Plate DDL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this	design. Gable requires continuous bottom chord bearing. May 28,2025	RACING OP CHORD Structural wood she 5-1-11 oc purlins. OT CHORD Rigid ceiling directly bracing. EACTIONS (size) 1=5-2-11 Max Horiz 1=-18 (LC Max Uplift 1=-21 (LC Max Uplift 1=-21 (LC Max Grav 1=241 (L ORCES (Ib) - Maximum Con Tension OP CHORD 1-2=-437/191, 2-3= OT CHORD 1-3=-158/383 OTES) Unbalanced roof live loads have this design.) Wind: ASCE 7-16; Vult=130mpf Vasd=103mph; TCDL=6.0psf; B II; Exp B; Enclosed; MWFRS (e and C-C Exterior(2E) zone; can exposed ; end vertical left and ri members and forces & MWFRS Lumber DOL=1.60 plate grip DC) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Er or consult qualified building des) TCLL: ASCE 7-16; Pr=20.0 psf Plate DOL=1.15); Is=-10; Rough Cat I Cs=1.00; Ct=1.10	y applied or 10-0-0 oc , 3=5-2-11 C 19) C 14), 3=-21 (LC 15) C 20), 3=241 (LC 21) npression/Maximum -437/191 e been considered for n (3-second gust) CDL=6.0psf; h=25ft; i nvelope) exterior zone lilever left and right ight exposed; C-C for for reactions shown; DL=1.60 n the plane of the trus d (normal to the face), id Details as applicab igner as per ANSI/TP (roof LL: Lum DOL=1. Jum DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	8) Thi cha 9) * Thi 9) * Thi 9) * Thi 9) * Thi 9) * Thi 9 10 10 10 10 10 10 10 10 10 10	is truss has bee ord live load nor his truss has be the bottom cho 6-00 tall by 2-0 ord and any oth ovide mechanic aring plate capa ind 21 lb uplift a veled plate or s face with truss	en designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit er members. al connection (by able of withstand at joint 3. him required to p chord at joint(s)	any a live here betw y othe ing 2	other live load e load of 20.0 a rectangle reen the botto ers) of truss to 1 lb uplift at jo)psf om o oint				OR TH CA OR TH CA SEA 2867	L TT EEER.St.

